数字信号处理实验报告实验三

合集下载

数字信号处理实验报告 3

数字信号处理实验报告 3

数字信号处理实验报告姓名:班级:通信学号:实验名称:频域抽样定理验证实验类型:验证试验指导教师:实习日期:2013.频域采样定理验证实验一. 实验目的:1. 加深对离散序列频域抽样定理的理解2.了解由频谱通过IFFT 计算连续时间信号的方法3.掌握用MATLAB 语言进行频域抽样与恢复时程序的编写方法 4、用MATLAB 语言将X(k)恢复为X(z)及X(e jw )。

二. 实验原理:1、1、频域采样定理: 如果序列x(n)的长度为M ,频域抽样点数为N ,则只有当频域采样点数N ≥M 时,才有x N (n)=IDFT[X(k)]=x(n),即可由频域采样X(k)无失真的恢复原序列 x(n)。

2、用X(k)表示X(z)的内插公式:∑-=-----=10111)(1)(N k kNNzWz k X Nz X内插函数: zWzkNNN z 1k111)(-----=ϕ频域内插公式:∑-=-=10)2()()(N K j k Nk X e X πωϕω频域内插函数:e N j N N )21()2sin()2sin(1)(--=ωωωωϕ三. 实验任务与步骤:实验一:长度为26的三角形序列x(n)如图(b)所示,编写MATLAB 程序验证频域抽样定理。

实验二:已知一个时间序列的频谱为X(e jw )=2+4e -jw +6e -j2w +4e -j3w +2e -j4w分别取频域抽样点数N为3、5和10,用IPPT计算并求出其时间序列x(n),用图形显示各时间序列。

由此讨论原时域信号不失真地由频域抽样恢复的条件。

实验三:由X32(k)恢复X(z)和X(e jw)。

四.实验结论与分析:实验一:源程序:M=26;N=32;n=0:M; %产生M长三角波序列x(n)xa=0:floor(M/2);xb= ceil(M/2)-1:-1:0; xn=[xa,xb];Xk=fft(xn,512); %1024点FFT[x(n)], 用于近似序列x(n)的TFX32k=fft(xn,32); %32点FFT[x(n)]x32n=ifft(X32k); %32点IFFT[X32(k)]得到x32(n)X16k=X32k(1:2:N); %隔点抽取X32k得到X16(K)x16n=ifft(X16k,N/2); %16点IFFT[X16(k)]得到x16(n)subplot(3,2,2);stem(n,xn,'.');box ontitle('(b) 三角波序列x(n)');xlabel('n');ylabel('x(n)');axis([0,32,0,20])k=0:511;wk=2*k/512;subplot(3,2,1);plot(wk,abs(Xk));title('(a)FT[x(n)]');xlabel('\omega/\pi');ylabel('|X(e^j^\omega)|');axis([0,1,0,200])k=0:N/2-1;subplot(3,2,3);stem(k,abs(X16k),'.');box ontitle('(c) 16点频域');xlabel('k');ylabel('|X_1_6(k)|');axis([0,8,0,200])n1=0:N/2-1;subplot(3,2,4);stem(n1,x16n,'.');box ontitle('(d) 16点IDFT[X_1_6(k)]');xlabel('n');ylabel('x_1_6(n)');axis([0,32,0,20])k=0:N-1;subplot(3,2,5);stem(k,abs(X32k),'.');box ontitle('(e) 32点频域采样');xlabel('k');ylabel('|X_3_2(k)|');axis([0,16,0,200])n1=0:N-1;subplot(3,2,6);stem(n1,x32n,'.');box ontitle('(f) 32点IDFT[X_3_2(k)]');xlabel('n');ylabel('x_3_2(n)');axis([0,32,0,20])结果如下所示:实验一分析:序列x(n)的长度M=26,由图中可以看出,当采样点数N=16<M时,x16(n)确实等于原三角序列x(n)以16为周期的周期延拓序列的主值序列。

信号处理实验三报告

信号处理实验三报告

信号处理实验三报告实验三:时域信号的采样与重构一、实验目的1.学习使用示波器进行时域信号采样;2.学习时域信号重构的方法。

二、实验器材1.数字示波器;2.函数发生器;3.电缆。

三、实验原理1.时域信号的采样时域信号的采样是将连续时间的信号转换为离散时间的信号。

采样过程可以理解为在时间轴上以一定的时间间隔取样,得到采样点的幅值。

采样后的信号可以用离散时间信号表示。

2. Nyquist采样定理Nyquist采样定理指出,要恢复一个最高频率为f的连续时间信号,采样频率必须大于2f,即采样定理为Fs > 2f。

这是由于频谱中的高频分量蕴含着较大的信息量,必须以足够高的采样频率进行采样,否则会出现混叠现象。

3.时域信号的重构时域信号的重构是将采样得到的离散时间信号重新转化为连续时间信号的过程。

重构的方法主要有零阶保持插值、线性插值和插值滤波器等。

实验步骤1.连接示波器和函数发生器。

将函数发生器的输出端通过电缆与示波器的输入端连接。

2.设置函数发生器的频率为1kHz,并选择一个适当的幅度。

3.设置示波器的水平和垂直缩放,使信号在示波器的屏幕上能够完整显示。

4.调节示波器的触发方式和触发电平,使信号的波形稳定。

5.通过示波器的采样功能,进行信号的采样。

选择适当的采样率,观察采样得到的离散时间信号。

6. 根据Nyquist采样定理,选择适当的采样率进行采样,并进行离散时间信号的重构。

选择不同的重构方法,如零阶保持插值和线性插值,观察重构后的信号与原信号的差异。

实验结果1.通过示波器的采样功能,得到了采样频率为1kHz的离散时间信号。

2.通过零阶保持插值和线性插值的方法进行重构,观察到重构后的信号与原信号的差异。

可以发现,零阶保持插值会导致信号的平滑度降低,而线性插值能够更好地重构原信号。

实验分析1. 通过实验结果可以验证Nyquist采样定理的正确性。

当采样频率小于2f时,会出现混叠现象,无法正确恢复原信号。

数字信号处理实验三

数字信号处理实验三

实验报告课程名称:数字信号处理实验三:窗函数的特性分析班级:通信1403学生姓名:强亚倩学号:1141210319指导教师:范杰清华北电力大学(北京)一、实验目的分析常用窗函数的时域和频域特性,灵活运用窗函数分析信号频谱和设计FIR数字滤波器。

二、实验原理在确定信号谱分析、随机信号功率谱估计以及FIR数字滤波器设计中,窗函数的选择起着重要的作用。

在信号的频谱分析中,截短无穷长的序列会造成频率泄漏,影响频谱分析的精度和质量。

合理选取窗函数的类型,可以改善泄漏现象。

在FIR数字滤波器设计中,截短无穷长的系统单位脉冲序列会造成FIR滤波器幅度特性的波动,且出现过渡带。

三、实验内容1.分析并绘出常用窗函数的时域特性波形(1)矩形窗函数时域波形及频谱①编程②结果:N=51;w=boxcar(N)Y=fft(w,256);subplot(2,1,1);stem([0:N-1],w);xlabel('w');ylabel('y');title('时域波形');subplot(2,1,2);Y0=abs(fftshift(Y));plot([-128:127],Y0)xlabel('W');ylabel('Y0');title('频谱图形');(2)hanning窗函数时域波形及频谱①编程②结果clear all;clc;n=51;w=hanning(n);y0=fft(w,256);subplot(2,1,1);stem([0:n-1],w)xlabel('n');ylabel('w');title('hanning窗时域波形')subplot(2,1,2);Y=abs(fftshift(y0));plot([-128:127],Y);xlabel('w')ylabel('Y')title('hanning频域波形')(3)哈明窗函数时域波形及频谱①编程clear all;clc;n=51;w=hamming(n);y0=fft(w,256);subplot(2,1,1);stem([0:n-1],w)xlabel('n');ylabel('w');title('hamming窗时域波形')subplot(2,1,2);Y=abs(fftshift(y0));plot([-128:127],Y);xlabel('w')ylabel('Y')title('hamming频域波形')②结果(4)blackman窗函数时域波形及频谱①编程clear all;clc;n=51;w=blackman(n);y0=fft(w,256);subplot(2,1,1);stem([0:n-1],w)xlabel('n');ylabel('w');title('blackman窗时域波形')subplot(2,1,2);Y=abs(fftshift(y0));plot([-128:127],Y);xlabel('w')ylabel('Y')title('blackman频域波形') ②结果(5)battlett窗函数时域波形及频域特性①编程②结果clear all;clc;n=51;w=bartlett(n);y0=fft(w,256);subplot(2,1,1);stem([0:n-1],w)xlabel('n');ylabel('w');title('bartlett窗时域波形')subplot(2,1,2);Y=abs(fftshift(y0));plot([-128:127],Y);xlabel('w')ylabel('Y')title('bartlett频域波形')(6)Kaiser窗函数时域及频域波形①编程clear all;clc;n=51;w=kaiser(n);y0=fft(w,256);subplot(2,1,1);stem([0:n-1],w)xlabel('n');ylabel('w');title('Kaiser时域波形')subplot(2,1,2);Y=abs(fftshift(y0));plot([-128:127],Y);xlabel('w')ylabel('Y')title('Kaiser频域波形')②结果3. 研究凯塞窗(Kaiser)的参数选择对其时域和频域的影响。

数字信号处理实验报告实验三

数字信号处理实验报告实验三

实验三:用FFT 对信号做频谱分析1 实验目的学习用FFT 对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便正确应用FFT 。

2 实验原理用FFT 对信号做频谱分析是学习数字信号处理的重要内容。

经常需要进行谱分析的信号是模拟信号和时域离散信号。

对信号进行谱分析的重要问题是频谱分辨率D 和分析误差。

频谱分辨率直接和FFT 的变换区间N 有关,因为FFT 能够实现的频率分辨率是N /2π,因此要求D N ≤/2π。

可以根据此式选择FFT 的变换区间N 。

误差主要来自于用FFT 作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N 较大时离散谱的包络才能逼近于连续谱,因此N 要适当选择大一些。

周期信号的频谱是离散谱,只有用整数倍周期的长度作FFT ,得到的离散谱才能代表周期信号的频谱。

如果不知道信号周期,可以尽量选择信号的观察时间长一些。

对模拟信号进行谱分析时,首先要按照采样定理将其变成时域离散信号。

如果是模拟周期信号,也应该选取整数倍周期的长度,经过采样后形成周期序列,按照周期序列的谱分析进行。

3 实验步骤及内容(1)对以下序列进行谱分析。

⎪⎩⎪⎨⎧≤≤-≤≤-=⎪⎩⎪⎨⎧≤≤-≤≤+==其它nn n n n n x 其它n n n n n n x n R n x ,074,330,4)(,074,830,1)()()(3241 选择FFT 的变换区间N 为8和16 两种情况进行频谱分析。

分别打印其幅频特性曲线。

并进行对比、分析和讨论。

(2)对以下周期序列进行谱分析。

4()c o s 4x n n π= 5()c o s (/4)c o s (/8)x n n n ππ=+ 选择FFT 的变换区间N 为8和16 两种情况分别对以上序列进行频谱分析。

分别打印其幅频特性曲线。

并进行对比、分析和讨论。

(3)对模拟周期信号进行谱分析6()cos8cos16cos20x t t t t πππ=++选择 采样频率Hz F s 64 ,变换区间N=16,32,64 三种情况进行谱分析。

河北大学数字信号处理实验三报告(含思考题)

河北大学数字信号处理实验三报告(含思考题)

班级 学号 姓名实验三 离散时间系统的频域分析一、实验目的(1)了解DFS 、DFT 与DTFT 的联系;加深对FFT 基本理论的理解;掌握用MATLB 语言进行傅里叶变换时常用的子函数;(2)了解离散系统的零极点与系统因果性和稳定性的关系;加深对离散系统的频率响应特性基本概念的理解;熟悉MATLAB 中进行离散系统零极点分析的常用子函数;掌握离散系统幅频响应和相频响应的求解方法。

二、实验内容1. 已知离散时间系统函数为()432143213.07.05.11.112.01.03.01.02.0--------+-+-++++=z z z z z z z z z H求该系统的零极点;画出零极点分布图(提示:用zplane 实现);判断系统的因果、稳定性。

程序代码:a=[0.2 0.1 0.3 0.1 0.2];b=[1 -1.1 1.5 -0.7 0.3];r1=roots(a) %求分子多项式的根,即系统的零点r2=roots(b) %求分母多项式的根,即系统的极点figure(1)zplane(a,b); %调用zplane 函数画零极点图运行结果:r1 =-0.5000 + 0.8660i-0.5000 - 0.8660i0.2500 + 0.9682i0.2500 - 0.9682ir2 =0.2367 + 0.8915i0.2367 - 0.8915i0.3133 + 0.5045i0.3133 - 0.5045i由图像可知该系统的全部极点都在单位圆内,所以该系统因果稳定。

2. 已知离散时间系统的系统函数为()432143213.07.05.11.112.01.03.01.02.0--------+-+-++++=z z z z z z z z z H 求该系统在π~0频率范围内的幅频响应、相频响应。

(提示:用freqz 实现)程序文件:a=[0.2 0.1 0.3 0.1 0.2];b=[1 -1.1 1.5 -0.7 0.3];[h,w]=freqz(a,b);c=abs(h); %取幅度d=angle(h); %取相角figure(1)subplot(2,1,1)plot(w,c); %画幅频特性曲线title('幅频特性曲线');subplot(2,1,2)plot(w,d); %画相频特性曲线title('相频特性曲线');运行结果:3. 已知()[]301,2,4,8≤≤=n n x ,画出由离散时间傅里叶变换求得的幅度谱()()[]ωωj j e arg e X X 和图形。

数字信号处理实验报告 3

数字信号处理实验报告 3

数字信号处理实验报告姓名:班级:通信学号:实验名称:频域抽样定理验证实验类型:验证试验指导教师:实习日期:2013.频域采样定理验证实验一. 实验目的:1. 加深对离散序列频域抽样定理的理解2.了解由频谱通过IFFT 计算连续时间信号的方法3.掌握用MATLAB 语言进行频域抽样与恢复时程序的编写方法 4、用MATLAB 语言将X(k)恢复为X(z)及X(e jw )。

二. 实验原理:1、1、频域采样定理: 如果序列x(n)的长度为M ,频域抽样点数为N ,则只有当频域采样点数N ≥M 时,才有x N (n)=IDFT[X(k)]=x(n),即可由频域采样X(k)无失真的恢复原序列 x(n)。

2、用X(k)表示X(z)的内插公式:∑-=-----=10111)(1)(N k kNN zWz k X Nz X内插函数: zWzkNNN z 1k111)(-----=ϕ频域内插公式:∑-=-=10)2()()(N Kj k Nk X e X πωϕω频域内插函数:e N j N N )21()2sin()2sin(1)(--=ωωωωϕ三. 实验任务与步骤:实验一:长度为26的三角形序列x(n)如图(b)所示,编写MATLAB 程序验证频域抽样定理。

实验二:已知一个时间序列的频谱为X(e jw )=2+4e -jw +6e -j2w +4e -j3w +2e -j4w分别取频域抽样点数N为3、5和10,用IPPT计算并求出其时间序列x(n),用图形显示各时间序列。

由此讨论原时域信号不失真地由频域抽样恢复的条件。

实验三:由X32(k)恢复X(z)和X(e jw)。

四.实验结论与分析:实验一:源程序:M=26;N=32;n=0:M; %产生M长三角波序列x(n)xa=0:floor(M/2);xb= ceil(M/2)-1:-1:0; xn=[xa,xb];Xk=fft(xn,512); %1024点FFT[x(n)], 用于近似序列x(n)的TF X32k=fft(xn,32); %32点FFT[x(n)]x32n=ifft(X32k); %32点IFFT[X32(k)]得到x32(n)X16k=X32k(1:2:N); %隔点抽取X32k得到X16(K)x16n=ifft(X16k,N/2); %16点IFFT[X16(k)]得到x16(n)subplot(3,2,2);stem(n,xn,'.');box ontitle('(b) 三角波序列x(n)');xlabel('n');ylabel('x(n)');axis([0,32,0,20])k=0:511;wk=2*k/512;subplot(3,2,1);plot(wk,abs(Xk));title('(a)FT[x(n)]');xlabel('\omega/\pi');ylabel('|X(e^j^\omega)|');axis([0,1,0,200])k=0:N/2-1;subplot(3,2,3);stem(k,abs(X16k),'.');box ontitle('(c) 16点频域');xlabel('k');ylabel('|X_1_6(k)|');axis([0,8,0,200])n1=0:N/2-1;subplot(3,2,4);stem(n1,x16n,'.');box ontitle('(d) 16点IDFT[X_1_6(k)]');xlabel('n');ylabel('x_1_6(n)');axis([0,32,0,20]) k=0:N-1;subplot(3,2,5);stem(k,abs(X32k),'.');box on title('(e) 32点频域采样');xlabel('k'); ylabel('|X_3_2(k)|');axis([0,16,0,200]) n1=0:N-1;subplot(3,2,6);stem(n1,x32n,'.');box on title('(f) 32点IDFT[X_3_2(k)]');xlabel('n'); ylabel('x_3_2(n)');axis([0,32,0,20])结果如下所示:实验一分析:序列x(n)的长度M=26,由图中可以看出,当采样点数N=16<M 时,x 16(n)确实等于原三角序列x(n)以16为周期的周期延拓序列的主值序列。

数字信号处理实验报告完整版[5篇模版]

数字信号处理实验报告完整版[5篇模版]

数字信号处理实验报告完整版[5篇模版]第一篇:数字信号处理实验报告完整版实验 1利用 T DFT 分析信号频谱一、实验目的1.加深对 DFT 原理的理解。

2.应用 DFT 分析信号的频谱。

3.深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。

二、实验设备与环境计算机、MATLAB 软件环境三、实验基础理论T 1.DFT 与与 T DTFT 的关系有限长序列的离散时间傅里叶变换在频率区间的N 个等间隔分布的点上的 N 个取样值可以由下式表示:212 /0()|()()0 1Nj knjNk NkX e x n e X k k Nπωωπ--====≤≤-∑由上式可知,序列的 N 点 DFT ,实际上就是序列的 DTFT 在 N 个等间隔频率点上样本。

2.利用 T DFT 求求 DTFT方法 1 1:由恢复出的方法如下:由图 2.1 所示流程可知:101()()()Nj j n kn j nNn n kX e x n e X k W eNωωω∞∞----=-∞=-∞=⎡⎤==⎢⎥⎣⎦∑∑∑由上式可以得到:IDFT DTFT第二篇:数字信号处理实验报告JIANGSUUNIVERSITY OF TECHNOLOGY数字信号处理实验报告学院名称:电气信息工程学院专业:班级:姓名:学号:指导老师:张维玺(教授)2013年12月20日实验一离散时间信号的产生一、实验目的数字信号处理系统中的信号都是以离散时间形态存在的,所以对离散时间信号的研究是数字信号的基本所在。

而要研究离散时间信号,首先需要产生出各种离散时间信号。

使用MATLAB软件可以很方便地产生各种常见的离散时间信号,而且它还具有强大绘图功能,便于用户直观地处理输出结果。

通过本实验,学生将学习如何用MATLAB产生一些常见的离散时间信号,实现信号的卷积运算,并通过MATLAB中的绘图工具对产生的信号进行观察,加深对常用离散信号和信号卷积和运算的理解。

数字信号处理实验报告

数字信号处理实验报告

数字信号处理实验报告实验一:混叠现象的时域与频域表现实验原理:当采样频率Fs不满足采样定理,会在0.5Fs附近引起频谱混叠,造成频谱分析误差。

实验过程:考虑频率分别为3Hz,7Hz,13Hz 的三个余弦信号,即:g1(t)=cos(6πt), g2(t)=cos(14πt), g3(t)=cos(26πt),当采样频率为10Hz 时,即采样间隔为0.1秒,则产生的序列分别为:g1[n]=cos(0.6πn), g2[n]=cos(1.4πn), g3[n]=cos(2.6πn)对g2[n],g3[n] 稍加变换可得:g2[n]=cos(1.4πn)=cos((2π-0.6π)n)= cos(0.6πn)g3[n]=cos(2.6πn)= cos((2π+0.6π)n)=cos(0.6πn)利用Matlab进行编程:n=1:300;t=(n-1)*1/300;g1=cos(6*pi*t);g2=cos(14*pi*t);g3=cos(26*pi*t);plot(t,g1,t,g2,t,g3);k=1:100;s=k*0.1;q1=cos(6*pi*s);q2=cos(14*pi*s);q3=cos(26*pi*s);hold on; plot(s(1:10),q1(1:10),'bd');figuresubplot(2,2,1);plot(k/10,abs(fft(q1)))subplot(2,2,2);plot(k/10,abs(fft(q2)))subplot(2,2,3);plot(k/10,abs(fft(q3)))通过Matlab软件的图像如图所示:如果将采样频率改为30Hz,则三信号采样后不会发生频率混叠,可运行以下的程序,观察序列的频谱。

程序编程改动如下:k=1:300;q=cos(6*pi*k/30);q1=cos(14*pi*k/30);q2=cos(26*pi*k/30);subplot(2,2,1);plot(k/10,abs(fft(q)))subplot(2,2,2);plot(k/10,abs(fft(q1)))subplot(2,2,3);plot(k/10,abs(fft(q2)))得图像:问题讨论:保证采样后的信号不发生混叠的条件是什么?若信号的最高频率为17Hz,采样频率为30Hz,问是否会发生频率混叠?混叠成频率为多少Hz的信号?编程验证你的想法。

数字信号处理实验报告三

数字信号处理实验报告三

实验三 抽样一、实验原理抽样过程基于两个基本原理:混叠合重建,涉及正弦波合现行调频信号的混叠。

二、 实验内容.3.3.1抽样引起的混叠 由于在MATLAB 中不能产生模拟信号,实验需要做实时t 轴的仿真。

因此,把仿真时的△t 与所研究的抽样周期Ts 明确地区分开始很重要的。

1. 正弦信号混叠对连续时间正弦信号考虑下面表达式:()()φπ+=t f t 02sin x可以按抽样频率ST s f 1=对()t x 抽样来获得离散时间信号[]()()⎪⎪⎭⎫ ⎝⎛+=====φπn f f t x t x s f n t nT t ss 0/2sin n x 2. 实验内容以不同组合的0f 和s f 绘出[]n x ,可以说明混叠问题。

以下,取抽样频率s f =8kHz.a. 首先,绘出一个被抽样的正弦波的单图。

令正弦波的频率为300Hz ,然后在10ms 长间隔上抽样。

相位φ可以任意指定。

使用stem 绘出产生的离散时间信号。

因为是用眼睛实现重建可视化信号包络,应该很容易看到正弦信号的轮廓。

b. 如果必要,使用plot 绘图。

在这种情况下,点用直线段连接 起来, 这样正弦信号的特点应该是明显的。

用直线段连接信号 样本是自离散时间样本产生连续时间信号的“信号重建”的 一 种方式。

它 不是抽样定理所说的理想重建,但对大多数的情形它已经是足够好,很有用。

c. 把正弦的频率从100Hz 变至475Hz,每次增加125Hz ,如在()a 部 分中那样,绘出一系列相应的图。

注意,正如所预期的那样, 显 现的正弦信号的频率在逐渐增加。

最好用subplot 指令把四 个图放在同一屏上。

d. 把正弦的频率从7525Hz 变至7900Hz ,每次增加125Hz ,正 如在()c 中那样,另外绘出一系列相应的图。

注意现在显现的正弦信号的频率在逐渐减少。

解释这一现象。

e.把正弦的频率从32100Hz变至32475Hz,每次增加125Hz,再次绘出一些列类似的图。

数字信号处理实验三

数字信号处理实验三

数字信号处理实验三数字信号处理实验三是针对数字信号处理课程的一项实践性任务。

本实验旨在通过实际操作,加深对数字信号处理理论的理解,并培养学生的实验能力和问题解决能力。

在本实验中,我们将学习和实践以下内容:1. 实验目的本实验的目的是通过使用MATLAB软件进行数字信号处理,加深对数字信号处理基本概念和算法的理解,掌握数字信号的采样、量化、滤波等基本操作。

2. 实验器材在本实验中,我们将使用以下器材:- 个人计算机- MATLAB软件3. 实验步骤本实验的具体步骤如下:步骤一:信号生成首先,我们需要生成一个模拟信号,可以是正弦信号、方波信号或其他类型的信号。

在MATLAB中,我们可以使用相关函数生成这些信号。

生成信号的目的是为了后续的数字信号处理操作提供输入。

步骤二:信号采样在本步骤中,我们将对生成的模拟信号进行采样。

采样是指在一定的时间间隔内对信号进行离散化处理,得到离散时间上的信号序列。

在MATLAB中,我们可以使用采样函数对信号进行采样。

步骤三:信号量化在本步骤中,我们将对采样后的信号进行量化。

量化是指将连续的信号离散化为一组离散的幅值。

在MATLAB中,我们可以使用量化函数对信号进行量化。

步骤四:信号滤波在本步骤中,我们将对量化后的信号进行滤波。

滤波是指通过一系列滤波器对信号进行处理,以去除不需要的频率成分或噪声。

在MATLAB中,我们可以使用滤波函数对信号进行滤波。

步骤五:信号重构在本步骤中,我们将对滤波后的信号进行重构。

重构是指将离散化的信号恢复为连续的信号。

在MATLAB中,我们可以使用重构函数对信号进行重构。

步骤六:信号分析在本步骤中,我们将对重构后的信号进行分析。

分析是指对信号的频谱、功率等特性进行分析,以了解信号的特点和性能。

在MATLAB中,我们可以使用分析函数对信号进行分析。

4. 实验结果在完成以上步骤后,我们可以得到经过数字信号处理的结果。

这些结果可以是经过采样、量化、滤波和重构后的信号波形,也可以是信号的频谱、功率等特性。

数字信号处理实验报告-实验3

数字信号处理实验报告-实验3

数字信号处理实验报告林鸿运10282039 生医1002实验1 常见离散信号的matlab产生和图形显示五个常见离散信号1.单位抽样序列程序源代码:clcclear alln=0:10;x=[n==0];subplot(2,2,1);stem(n,x);title('单位抽样序列');xlabel('n');ylabel('x(n)');程序运行截图2.单位阶跃序列程序源代码:clcclear alln=0:10;x=[n>=0];subplot(2,2,1);stem(n,x);title('单位阶跃序列');xlabel('n');ylabel('x(n)');程序运行截图:3.正弦序列程序源代码:clcclear alln=0:20;A=5;f=2/pi;Fs=4;b=2*pi;x=A*sin(2*pi*f*n/Fs+b);subplot(2,2,1);stem(n,x);title('正弦序列');xlabel('n');ylabel('x(n)');程序运行截图:4.实指数序列程序源代码:clcclear alln=0:0.5:10;a=10;x=a.^n;subplot(2,2,1);stem(n,x);title('实指数序列');xlabel('n');ylabel('x(n)');程序运行截图:5.复指数序列程序源代码:clcclear alln=0:0.5:10;a=10;b=10x=exp((a+j*b)*n);subplot(2,2,1);stem(n,x);title('复指数序列');xlabel('n');ylabel('x(n)');程序运行截图:实验内容1.实验内容11.产生x(n)=δ(n+2)-2δ(n-1) (-5<=n<=5)序列的波形图2. 产生x(n)=u(n)-u (n-5) (0<=n<10)序列的波形图3. 产生x(n)=2sin(0.04πn+π/3) (0<=n<50)序列的波形图4. 产生x(n)=0.8n (0<=n<10)序列的波形图程序源代码:clcclear alln=-5:5;x=[(n+2)==0]-2*[(n-1)==0];subplot(2,2,1);stem(n,x);title('抽样序列');xlabel('n');ylabel('x(n)');n=0:10;x=[n>=0]-[(n-5)>=0];subplot(2,2,2);stem(n,x);title('阶跃序列');xlabel('n');ylabel('x(n)');n=0:50;x=2*sin(0.04*pi*n+pi/3); subplot(2,2,3);stem(n,x);title('正弦序列');xlabel('n');ylabel('x(n)');n=0:10;x=0.8.^n;subplot(2,2,4);stem(n,x);title('实指数序列'); xlabel('n');ylabel('x(n)');程序运行截图:产生复指数序列x(n)=e(-0.1+j0.3)n(-20<=n<20),画出它的实部、虚部、幅值和相位图,以此讨论复指数序列的性质程序源代码:clcclear alln=-20:20;x=exp((-0.1+0.3j)*n);subplot(2,2,1);stem(n,real(x));title('实部');xlabel('n');subplot(2,2,2);stem(n,imag(x));title('虚部');xlabel('n');subplot(2,2,3);stem(n,abs(x));title('幅值');xlabel('n');subplot(2,2,4);stem(n,(180/pi)*angle(x));title('相位');xlabel('n');程序运行截图:复指数序列的性质:2.实验内容2(1).产生x(n)= (n.^2).*{ [(n-5)>=0]-[(n-6)>=0]} +10*[n==0]+ 20*(0.5.^n).*{ [(n-4)>=0]-[(n-10)>=0]} (-10<=n<10)序列的样本,要求用四个框图分别显示表达式中的三个相加项和x(n)波形程序源代码:clcclear alln=-10:10;a=[(n-5)>=0]-[(n-6)>=0];b=[(n-4)>=0]-[(n-10)>=0];x1=(n.^2).*a;x2=10*[n==0];x3=20*(0.5.^n).*b;x=x1+x2+x3;subplot(2,2,1);stem(n,x1);title('x1(n)');xlabel('n');subplot(2,2,2);stem(n,x2);title('x2(n)');xlabel('n');subplot(2,2,3);stem(n,x3);title('x3(n)');xlabel('n');subplot(2,2,4);stem(n,x);title('x(n)');xlabel('n');程序运行截图:(2)a .程序源代码:clcclear alln=-20:20;x1=cos(0.3*pi*n);x2=cos(0.4*pi*n);subplot(2,1,1);stem(n,x1);title('余弦序列1');xlabel('n');ylabel('x1(n)');subplot(2,1,2);stem(n,x2);title('余弦序列2');xlabel('n');ylabel('x2(n)');程序截图:分析:两个序列都是周期序列,基本周期是20,如果f0=K/N是一个有理数,N为周期;K代表一个周期里有多少个震荡。

数字信号处理实验报告 (3)

数字信号处理实验报告 (3)

武汉工程大学实验报告实验课程数字信号处理一、实验目的(1)加深对离散傅里叶变换(DFT)基本概念的理解。

(2)了解有限长序列傅里叶变换(DFT)与周期序列傅里叶级数(DFS)、离散时间傅里叶变换(DTFT)的联系。

(3)掌握用MA TLAB语言进行离散傅里叶变换和逆变换的方法。

二、实验内容1.有限长序列的傅里叶变换(DFT)和逆变换(IDFT)2.有限长序列DFT与周期序列DFS的联系3.有限长序列DFT与离散时间傅里叶变换DTFT的联系三、实验环境MA TLAB7.0四丶:实验内容、原理描述及实验结果1.离散时间信号的表示离散时间信号定义为一时间函数,它只在某些离散的瞬时给出函数值,而在其他处无定义。

因此,它是时间上不连续按一定先后次序排列的一组数的集合,故称为时间序列,简称序列,通常表示为{x(n)} -∞<n<+∞(1)单位抽样序列用Matlab编写的实验程序n0=0;n1=-5;n2=5;n=[n1:n2];nc=length(n);x=zeros(1,nc);for i=1:ncif n(i)==n0x(i)=1;endendstem(n,x)xlabel('n');ylabel('x(n)');title('单位抽样序列');grid(2)单位阶跃序列用Matlab编写编写的生成单位阶跃序列的函数n0=0;n1=-5;n2=5;n=[n1:n2];x=[(n-n0)>=0];stem(n,x)xlabel('n');ylabel('x(n)');title('单位阶跃序列');grid图形如下(3)指数序列程序代码如下:n=[0:20];x=(0.78).^n;stem(n,x)xlabel('n');ylabel('x(n)');title('指数序列'); grid图形如下:(4)正余弦序列用matlab编写正弦序列x(n)=5sin(0.1πn+π/3)函数的程序。

数字信号处理实验报告(实验三)

数字信号处理实验报告(实验三)

实验三 用双线性变换法设计IIR 数字滤波器1. 实验目的(1) 熟悉用双线性变换法设计IIR 数字滤波器的原理与方法。

(2) 掌握数字滤波器的计算机仿真方法。

(3) 通过观察对实际心电图信号的滤波作用, 获得数字滤波的感性知识。

2. 实验内容(1) 用双线性变换法设计一个巴特沃斯低通IIR 数字滤波器。

设计指标参数为:在通带内频率低于0.2π时,最大衰减小于1dB ;在阻带内[0.3π, π] 频率区间上,最小衰减大于15dB 。

(2) 以 0.02π为采样间隔, 打印出数字滤波器在频率区间[0, π/2]上的幅频响应特性曲线。

(3) 用所设计的滤波器对实际心电图信号采样序列(在本实验后面给出)进行仿真滤波处理,并分别打印出滤波前后的心电图信号波形图, 观察总结滤波作用与效果。

3.实验原理为了克服用脉冲响应不变法产生频谱混叠现象,可以采用非线性频率压缩方法(正切变换),从s 平面映射到s1平面,再从s1平面映射到z 平面,即实现了双线性变换。

4. 实验步骤(1) 复习有关巴特沃斯模拟滤波器设计和用双线性变换法设计IIR 数字滤波器的内容, 按照例 6.4.2, 用双线性变换法设计数字滤波器系统函数H(z)。

例 6.4.2 中已求出满足本实验要求的数字滤波器系统函数:(2-1)161212120.0007378(1)()(1 1.2680.705)(1 1.01060.3583)(10.9040.215)z H z zz zz z z -------+=-+-+-+31()k K H z ==∏(2-2)A=0.09036B1=1.2686, C1=-0.7051 B2=1.0106, C2=-0.3583 B3=0.9044, C3=-0.2155由(2-1)式和(2-2)式可见,滤波器H(z)由三个二阶滤波器H1(z),H2(z)和H3(z)级联组成,如图 2-1 所示。

(2) 编写滤波器仿真程序,计算H(z)对心电图信号采样序列x(n)的响应序列y(n)。

数字信号处理实验三报告 数字信号处理上机实验报告.doc

数字信号处理实验三报告 数字信号处理上机实验报告.doc

数字信号处理实验三报告数字信号处理上机实验报告实验一系统响应及系统稳定性一、实验目的(1)掌握求系统响应的方法。

(2)掌握时域离散系统的时域特性。

(3)分析、观察及检验系统的稳定性。

二、实验内容(1)给定一个低通滤波器的差分方程为y(n)=0.05x(n)+0.05x(n-1)+0.9y(n-1)输入信号x1(n)=R8(n)x2(n)=u(n)(a) 分别求出系统对x1(n)=R8(n) 和x2(n)=u(n)的响应序列,并画出其波形。

(b) 求出系统的单位冲响应,画出其波形。

实验程序:A=[1,-0.9];B=[0.05,0.05]; %%系统差分方程系数向量 B 和 Ax1n=[1 1 1 1 1 1 1 1 zeros(1,50)]; %产生信号 x1(n)=R8(n)x2n=ones(1,8); %产生信号 x2(n)=u(n)y1n=filter(B,A,x1n); %求系统对 x1(n)的响应 y1(n)n=0:length(y1n)-1;subplot(2,2,1);stem(n,y1n,".");title("(a) 系统对 R_8(n)的响应y_1(n)");xlabel("n");ylabel("y_1(n)");y2n=filter(B,A,x2n); %求系统对 x2(n)的响应 y2(n) n=0:length(y2n)-1;subplot(2,2,2);stem(n,y2n,".");title("(b) 系统对 u(n)的响应y_2(n)");xlabel("n");ylabel("y_2(n)");hn=impz(B,A,58); %求系统单位脉冲响应 h(n)n=0:length(hn)-1;subplot(2,2,3);y=hn;stem(n,hn,".");title("(c) 系统单位脉冲响应h(n)");xlabel("n");ylabel("h(n)");运行结果图:(2)给定系统的单位脉冲响应为h1(n)=R10(n)h2(n)= δ(n)+2.5δ(n-1)+2.5δ(n-2)+δ(n-3)用线性卷积法分别求系统h1(n)和h2(n)对x1(n)=R8(n)的输出响应,波形。

数字信号处理实验报告 (3)

数字信号处理实验报告 (3)

数字信号处理实验报告13050Z011305024237数字信号处理实验报告实验一 采样定理(2学时) 内容:给定信号为()exp()cos(100**)x t at at π=-,其中a 为学号, (1)确定信号的过采样和欠采样频率(2)在上述采样频率的条件下,观察、分析、记录频谱,说明产生上述现象的原因。

基本要求:验证采样定理,观察过采样和欠采样后信号的频谱变化。

a=37; %1305024237 fs=10000; %抽样频率 t=0:1/fs:0.05;x1=exp(-a*t).*cos(100*pi*a*t);N=length(x1); %信号时域横轴向量 k=(0:N-1); %信号频域横轴向量 Y1=fft(x1); Y1=fftshift(Y1); subplot(2,1,1); plot(t,x1);hold on ; stem(t,x1,'o'); subplot(2,1,1); plot(k,abs(Y1)); gtext('1305024237');051015201305024237 刘德文a=37; %1305024237 fs=800; %抽样频率 t=0:1/fs:0.05;x1=exp(-a*t).*cos(100*pi*a*t);N=length(x1); %信号时域横轴向量 k=floor(-(N-1)/2:(N-1)/2); %信号频域横轴向量 Y1=fft(x1); Y1=fftshift(Y1); subplot(2,1,1); plot(t,x1);hold on ; stem(t,x1,'o'); subplot(2,1,2); plot(k,abs(Y1)); title('1305024237 ');0.0050.010.0150.020.0250.030.0350.040.0450.05-20-15-10-50510152005101305024237 刘德文实验二 信号谱分析(2学时) 内容: 给定信号为:(1)()cos(100**)x t at π= (2)()exp()x t at =-(3)()exp()cos(100**)x t at at π=-其中a 为实验者的学号,记录上述各信号的频谱,表明采样条件,分析比较上述信号频谱的区别。

数字信号处理实验三:离散时间信号的频域分析

数字信号处理实验三:离散时间信号的频域分析

实验三:离散时间信号的频域分析一.实验目的1.在学习了离散时间信号的时域分析的基础上,对这些信号在频域上进行分析,从而进一步研究它们的性质。

2.熟悉离散时间序列的3种表示方法:离散时间傅立叶变换(DTFT),离散傅立叶变换(DFT)和Z变换。

二.实验相关知识准备1.用到的MATLAB命令运算符和特殊字符:< > .* ^ .^语言构造与调试:error function pause基本函数:angle conj rem数据分析和傅立叶变换函数:fft ifft max min工具箱:freqz impz residuez zplane三.实验内容1.离散傅立叶变换在MATLAB中,使用fft可以很容易地计算有限长序列x[n]的离散傅立叶变换。

此函数有两种形式:y=fft(x)y=fft(x,n) 求出时域信号x的离散傅立叶变换n为规定的点数,n的默认值为所给x的长度。

当n取2的整数幂时变换的速度最快。

通常取大于又最靠近x的幂次。

(即一般在使用fft函数前用n=2^nextpow2(length(x))得到最合适的n)。

当x的长度小于n时,fft函数在x的尾部补0,以构成长为n点数据。

当x的长度大于n时,fft函数将序列x截断,取前n点。

一般情况下,fft求出的函数多为复数,可用abs及angle分别求其幅度和相位。

注意:栅栏效应,截断效应(频谱泄露和谱间干扰),混叠失真例3-1:fft函数最通常的应用是计算信号的频谱。

考虑一个由100hz和200hz正弦信号构成的信号,受零均值随机信号的干扰,数据采样频率为1000hz。

通过fft函数来分析其信号频率成分。

t=0:0.001:1;%采样周期为0.001s,即采样频率为1000hzx=sin(2*pi*100*t)+sin(2*pi*200*t)+1.5*rand(1,length(t));%产生受噪声污染的正弦波信号subplot(2,1,1);plot(x(1:50));%画出时域内的信号y=fft(x,512);%对x进行512点的fftf=1000*(0:256)/512;%设置频率轴(横轴)坐标,1000为采样频率subplot(2,1,2);plot(f,y(1:257));%画出频域内的信号实验内容3-2:频谱泄漏和谱间干扰假设现有含有三种频率成分的信号x(t)=cos(200πt)+sin(100πt)+cos(50πt)用DFT分析x(t)的频谱结构。

(完整版)数字信号处理实验三

(完整版)数字信号处理实验三

实验三 离散时间信号的频域分析实验室名称:信息学院2204 实验时间:2015年10月15日姓 名:蒋逸恒 学号:20131120038 专业:通信工程 指导教师:陶大鹏成绩教师签名:一、实验目的1、 对前面试验中用到的信号和系统在频域中进行分析,进一步研究它们的性质。

2、 学习离散时间序列的离散时间傅立叶变换(DTFT 、离散傅立叶变换(DFT 和z 变换。

二、实验内容Q3.1在程序P3.1中,计算离散时间傅里叶变换的原始序列是什么?Matlab 命令pause的作用是什么?Q3.2运行程序P3.1,求离散时间傅里叶变换得的实部、虚部以及幅度和香相位谱。

离散时间傅里叶变换是 w 的周期函数吗?若是,周期是多少?描述这四个图形表示的 对称性。

Q3.2修改程序P3.1,在范围0W w Wn 内计算如下序列的离散时间傅里叶变换:0.7 0.5e jw 0.3e j2w e j3w1 0.3e jw 0.5e j2w 0.7e j3w并重做习题P3.2,讨论你的结果。

你能解释相位谱中的跳变吗? 可以移除变化。

试求跳变被移除后的相位谱。

Q3.6通过加入合适的注释语句和程序语句,修改程序 两个轴加标记。

哪个参数控制时移量?Q3.10通过加入合适的注释语句和程序语句,修改程序 两个轴加标记。

哪个参数控制频移量?Q3.14通过加入合适的注释语句和程序语句,修改程序 两个轴加标记。

Q3.15运行修改后的程序并讨论你的结果。

Q3.17通过加入合适的注释语句和程序语句,修改程序 两个轴加标记。

Q3.20通过加入合适的注释语句和程序语句,修改程序 两个轴加标记。

试解释程序怎样进行时间反转运算。

Q3.23编写一个MATLAB?序,计算并画出长度为为值,其中L > N,然后计算并画出L 点离散傅里叶逆变换X[k]。

对不同长度N 和不同的 离散傅里叶变换长度L ,运行程序。

讨论你的结果。

U(e jw )MATLAE 命P3.2,对程序生成的图形中的 P3.3,对程序生成的图形中的 P3.4,对程序生成的图形中的P3.5,对程序生成的图形中的 P3.6,对程序生成的图形中的 N 的L 点离散傅里叶变换X[k]的Q3.26在函数circshift 中,命令rem 的作用是什么? Q3.27解释函数circshift 怎样实现圆周移位运算。

数字信号处理课程设计报告实验三

数字信号处理课程设计报告实验三

课程设计报告课程 : 数字信号处理课程设计学院 : 信息工程学院专业 : 信息工程学号 :学生姓名 :教师姓名 :2019年 10月 13日实验三: FFT频谱分析及应用一、实验目的:(一)通过实验,加深对FFT的理解,熟悉 FFT子程序。

(二)熟悉用 FFT对典型信号进行频谱分析的方法。

二、实验原理与方法:在各种信号序列中,有限长序列占有重要地位。

对有限长序列,可以利用离散傅里叶变换( DFT)进行分析。

DFT不但可以很好的反应序列频谱特性,而且易于用快速算法( FFT)在计算机上实现。

设序列为 x(n),长度为 N,其 DFT定义为:,反变换为,有限长序列的 DFT是其 Z 变换在单位圆上的等距采样,或者说是序列傅里叶变换的等距采样,因此可以用于序列的谱分析。

FFT是 DFT的一种快速算法,是对变换式进行一次次分解,使其成为若干小点数的组合,从而减少运算量。

常用的FFT是以 2 为基数,其长度为 N=2M。

它的效率高,程序简单,使用方便。

当要变换的序列长度不等于 2 的整数幂次时,为了使用以2 为基数的 FFT,可以使用末尾补零的方法,使其长度为 2 的整数次方。

在MATLAB信号处理工具箱中的函数为 fft(x,N) ,可用于序列 x(n)的 N 点快速傅里叶变换。

经函数 fft 求得的序列一般是复序列,通常要求其幅值和相位。

MATLAB中提供了求复数的幅值和相位函数:abs、angle。

三、实验内容:(一)模拟信号,以 0.01n 进行采样,其中n=0,⋯ ,N-1:①求 N=40 点 FFT的幅度频谱,从图中能否观察出信号的 2 个频率分量?②提高采样点数,如 N=128,再求该信号的幅度频谱,此时幅度频谱发生了什么变化?信号的 2个模拟频率和数字频率各为多少? FFT频谱分析结果与理论上是否一致?解:① MATLAB程序:3/13N=40;n=0:N-1;t=0.01*n;x=2*cos(4*pi*t)+5*cos(8*pi*t);k=0:N/2;w=2*pi/N*k;X=fft(x,N);magX=abs(X(1:N/2+1));subplot(2,1,1);stem(n,x,'.');title('signal x(n)');grid on; subplot(2,1,2);plot(w/pi,magX);title('FFT N=40');xlabel('f (unit:pi)');ylabel('|X|');grid on;结果截图:能观察出信号的 2 个频率分量②MATLAB程序:N=128;n=0:N-1;t=0.01*n;x=2*cos(4*pi*t)+5*cos(8*pi*t);k=0:N/2;w=2*pi/N*k;X=fft(x,N);magX=abs(X(1:N/2+1));subplot(2,1,1);stem(n,x,'.');title('signal x(n)');grid on; subplot(2,1,2);plot(w/pi,magX);title('FFT N=128');xlabel('f (unit:pi)');ylabel('|X|');grid on;结果截图:幅度频谱变得更加密集,模拟频率和数字频率各为 4hz 和 100hz 频谱分析结果与理论相一致的。

数字信号处理实验三离散时间傅里叶变换DTFT及IDTFT

数字信号处理实验三离散时间傅里叶变换DTFT及IDTFT

数字信号处理实验三离散时间傅里叶变换DTFT及IDTFT一、实验目的:(1)通过本实验,加深对DTFT和IDFT的理解。

(2)熟悉应用DTFT对典型信号进行频谱分析的方法.(3)掌握用MATLAB进行离散时间傅里叶变换及其逆变换的方法。

二、实验内容:(1)自己生成正弦序列(如矩形序列,正弦序列,指数序列等),对其进行频谱分析,观察其时域波形和频域的幅频特性。

记录实验中观察到的现象,绘出相应的时域序列和幅频特性曲线。

矩形序列:程序:M=10;N=2*M+1;T=0.5;n=—4*M:4*M;x=[zeros(1,3*M),ones(1,N),zeros(1,3*M)];w=[-15:0。

1:15]+1e—10;X=sin(0.5*N*w*T)./sin(0。

5*w*T);subplot(1,3,1);stem(n,x,'.');axis([-20,20,-0。

1,1.1]),grid onxlabel('n’),title('(a)序列幅度')subplot(1,3,2),plot(w,X),gridonxlabel('\Omega’),title('(b)幅频特性')subplot(1,3,3),plot(w,X),gridonv=axis;axis([-pi/T,pi/T,v(3),v(4)]);xlabel(’\Omega’),title('(c)横轴放大后幅频特性')set(gcf,'color','w')正弦序列:程序:n=-10:10;x=sin(n*pi);k=-200:200;w=(pi/100)*k;X=x*(exp(—j*pi/100)).^(n'*k);magX=abs(X);angX=angle(X);subplot(3,1,1);stem(n,x,’。

k');title('x(n)=sin(πn)’);subplot(3,1,2);plot(w/pi,magX,'。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字信号处理实验报告实验三:IIR滤波器设计实验
班级:13080241
姓名:徐可
学号:1308024121
实验三 IIR 滤波器设计实验
一、实验目的
1.学习模拟-数字变换滤波器的设计方法
2.掌握双线性变换滤波器的设计方法
3.掌握实现数字滤波的具体方法。

二、实验要求
1. 用双线性变换法设计一个巴特沃斯低通IIR 数字滤波器。

设计指标参数为:在通带内频率低于0.2π时,最大衰减小于1dB ;在阻带内[0.3π, π]频率区间上,最小衰减大于15dB.
2.0.02π为采样间隔,打印出数字滤波器在频率区间[0, π/2]上的频率响应特性曲线。

3. 用所设计的滤波器对实际心电图信号采样序列进行仿真滤波处理,观察总结滤波作用与效果
附:心电图采样序列x(n)
人体心电图信号在测量过程中往往受到工业高频干扰,所以必须经过低通滤波处理后,才能作为判断心脏功能的有用信息。

下面给出一实际心电图信号采样序列样本x(n),其中存在高频干扰。

在实验中以x(n)作为输入序列,滤除其中的干扰成分。

{x(n)}={-4,-2,0,-4,-6,-4,-2,-4,-6,-6,-4,-4,-6,-6,-2,6,12,8,0,-16,-38,-60,-84,-90,-66,-32,-4,-2,-4,8,12,12,10,6,6,6,4,0,0,0,0,0,-2,-4,0,0,0,-2,-2,0,0,-2,-2,-2,-2,0}
三、实验设备
计算机、Matlab 软件
四、实验报告要求
1.给出详细的滤波器设计说明书;
2.整理好经过运行并证明是正确的程序并且加上详细注释;
3.用所设计的滤波器对心电信号进行滤波,打印滤波后的波形;
五、实验结果及分析
IIR 滤波器设计步骤:
1. 将数字滤波器的技术指标转换为巴特沃斯模拟低通滤波器的技术指标。

2. 算出巴特沃斯低通滤波器的阶数N 及c W
3. 确定归一化模拟滤波器模型的零极点形式,确定()a H s 。

4. 用双线性变换法将()a H s 转换为()H z 。

根据双线性法设计滤波器的步骤实现。

ap=1;as=15; %数字滤波器指标
T=0.02*pi; %采样频率与间隔
fsa=1/T;
wp=0.2*pi;ws=0.3*pi; %转换为数字角频率
Wp=2/T*tan(wp/2);Ws=2/T*tan(ws/2); %由数字角频率转换为模拟角频率
[N,Wc]=buttord(Wp,Ws,ap,as,'s'); %获取模拟滤波器的阶数和3dB 截止频率
[Z,P,K]=buttap(N); %归一化模拟滤波器模型的零极点形式参数
[B,A]=zp2tf(Z,P,K); %归一化模拟滤波器传递函数的系数
[Bl,Al]=lp2lp(B,A,Wc); %把模拟滤波器原型转换成截至频率为Wc 的低通滤波器
[b,a]=bilinear(Bl,Al,fsa);%用双线性变换法实现模拟滤波器到数字滤波器的转换
[H,w]=freqz(b,a); %获取频率响应
L=length(w)/2+1;
figure(1),plot(w(1:L)/pi,abs(H(1:L))),grid,xlabel('角频率(\pi )'),ylabel('频率响应幅度');
%plot(w*fsa/(2*pi),abs(H));grid; %绘制频率响应曲线
%xlabel('频率(Hz)');ylabel('频率响应幅度');
00.050.10.150.20.250.3
0.350.40.450.5
00.2
0.4
0.6
0.81
1.2
1.4
角频率( )频率响应幅度
2.消除心电图中干扰成分
ap=1;as=15; %数字滤波器指标
T=0.02*pi; %采样频率与间隔
fsa=1/T;
wp=0.2*pi;ws=0.3*pi; %转换为数字角频率
Wp=2/T*tan(wp/2);Ws=2/T*tan(ws/2); %由数字角频率转换为模拟角频率
[N,Wc]=buttord(Wp,Ws,ap,as,'s'); %获取模拟滤波器的阶数和3dB截止频率
[Z,P,K]=buttap(N); %归一化模拟滤波器模型的零极点形式参数
[B,A]=zp2tf(Z,P,K); %归一化模拟滤波器传递函数的系数
[Bl,Al]=lp2lp(B,A,Wc); %把模拟滤波器原型转换成截至频率为Wc的低通滤波器
[b,a]=bilinear(Bl,Al,fsa);%用双线性变换法实现模拟滤波器到数字滤波器的转换
[H,w]=freqz(b,a); %获取频率响应
L=length(w)/2+1;
figure(1),plot(w(1:L)/pi,abs(H(1:L))),grid,xlabel('角频率(\pi)'),ylabel('频率响应幅度');
%plot(w*fsa/(2*pi),abs(H));grid; %绘制频率响应曲线
%xlabel('频率(Hz)');ylabel('频率响应幅度');
x=[-4,-2,0,-4,-6,-4,-2,-4,-6,-6,-4,-4,-6,-6,-2,6,12,8,0,-16,-38,-60,-84,-90,-66,-32,-4,-2,-4,8,12,12,10,6,6,6,4,0,0,0,0,0,-2,-4,0,0,0,-2,-2,0,0,-2,-2,-2,-2,0];
y=filter(b,a,x);
figure(2),
subplot(2,1,1),plot(x),title('原心电图信号');
subplot(2,1,2),plot(y),title('滤波后的心电图信号');
0102030405060
-100-50
50
原心电图信号
0102030405060
-100-50
50
滤波后的心电图信号
六、实验体会
1.消除心电图中的干扰成分我们从图中看出是切实可行的,可将各种滤波器大量运用与生活和生产中。

2. 抽样响应不变法的缺点为产生了频率响应的混叠失真,双线性变换法能消除混叠但是以严重的非线性为代价的,它是多对一的非单值映射关系。

3.巴特沃斯模拟低通滤波器的特点是在通带内有最大平坦的幅频响应。

相关文档
最新文档