2015年高考文科数学押题密卷(湖北)新课标I卷word版含答案

合集下载

2015高考文科数学押题卷及答案

2015高考文科数学押题卷及答案

2015年高考新课标数学押题卷(文)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟,第Ⅰ卷1至3页,第Ⅱ卷4至11页。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利!第Ⅰ卷注意事项:1. 答第Ⅰ卷前,考生务必将自己的姓名和准考证号填写在答题卡上,并在规定位置粘贴考试用条形码。

2. 每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试卷上的无效。

3. 本卷共12小题,每小题5分,共50分。

参考公式:·如果事件A 、B 互斥,那么 ·如果事件A 、B 相互独立,那么P(A ∪B)=P(A)+P(B) P(AB)=P(A)P(B) ·棱柱的体积公式V=Sh, 棱锥的体积公式V=13sh , 其中S 标示棱柱的底面积。

其中S 标示棱锥的底面积。

h 表示棱柱的高。

h 示棱锥的高。

一、选择题(共12题,每小题5分)1、已知全集{}{}2,|20,|220,xU R A x x x B x ==-<=-≥则()U AC B =( )A .{}|02x x <<B .{}|01x x <<C .{}|01x x <≤D .{}|02x x <≤ 2、复数11i+在复平面上对应的点的坐标在第几象限( )A .第一象限B .第二象限C .第三象限D . 第四象限3、下列命题错误的是( )A .对于命题p 、q ,若p ∧q 为假命题,则命题p 、q 至少有一个为假命题B .命题“”,那么命题为C .“a >b ”是“ac 2>bc 2”的充要条件D .命题:“若一个数不是负数,则它的平方不是正数”的否定是:“若一个数不是负数,则它的平方是正数”4、如图,若一个空间几何体的三视图中,直角三角形的直角边长均为1,则该几何体的侧面积为( )A.B.C.D.5、若函数sin()(0,0,)2y A x b A πωϕωϕ=++>><在一个周期内的图像如图所示,则函数的解析式为( ) A .3sin(2)13y x π=++ B .2sin(2)13y x π=++ C .3sin(2)13y x π=-+ D .2sin(2)13y x π=-+6、在等比数列{n a }中,2741=++a a a ,8852=++a a a ,求9S ( ) A .32 B .16 C .42 D .217、右图是表示分别输出22222222221,13,135,,1352011+++++++的值的过程的一个程序框图,那么在图中①②处应分别填上( )A. i ≤2011?,1i i =+B. i ≤1006?,1i i =+C. i ≤2011?,2i i =+D. i ≤1006?,2i i =+是 否结束② 输出S 开始 1=i0=S ① 2i S S +=8、底面边长为,各侧面均为直角三角形的正三棱锥的四个顶点都在同一球面上,则此球的表面积为( )A .B .C .D .9、已知双曲线的两个焦点为,,是此双曲线上一点, 若,,则该双曲线的方程是( )A .B .C .D .10、已知向量,,其中.若4=∙b a ,则的最小值为( )A .B .C .D .11、已知函数)(x f 是定义在R 上的奇函数,0)1(=f ,0)()(2>-'xx f x f x )(0>x ,则不等式0)(2>x f x 的解集是( )A. (-∞,-1)⋃(1,∞+) B .(-∞,-1)⋃(O,1)C. (-1,0)⋃(1,∞+)D.(-1,0)⋃(0,1)12、若函数满足且时,,则函数的图象与图象交点个数为( )A.1B.3C.2D. 4第Ⅱ卷注意事项:1. 答卷前将密封线内的项目填写清楚。

(完整版)2015年新课标1卷文科数学高考真题及答案,推荐文档

(完整版)2015年新课标1卷文科数学高考真题及答案,推荐文档

2015年普通高等学校招生全国统一考试(新课标1卷)文 一、选择题:每小题5分,共60分 1、已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B I 中的元素个数为(A ) 5 (B )4 (C )3 (D )22、已知点(0,1),(3,2)A B ,向量(4,3)AC =--u u u r ,则向量BC =u u u r(A ) (7,4)-- (B )(7,4) (C )(1,4)- (D )(1,4)3、已知复数z 满足(1)1z i i -=+,则z =( )(A ) 2i -- (B )2i -+ (C )2i - (D )2i +4、如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )(A )310 (B )15 (C )110 (D )1205、已知椭圆E 的中心为坐标原点,离心率为12,E 的右焦点与抛物线2:8C y x =的焦点重合,,A B 是C 的准线与E 的两个交点,则AB =(A ) 3 (B )6 (C )9 (D )126、《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )(A )14斛 (B )22斛 (C )36斛 (D )66斛7、已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =( )(A ) 172 (B )192(C )10 (D )12 8、函数()cos()f x x ωϕ=+的部分图像如图所示,则()f x 的单调递减区间为( )(A )13(,),44k k k Z ππ-+∈(B )13(2,2),44k k k Z ππ-+∈(C )13(,),44k k k Z -+∈(D )13(2,2),44k k k Z -+∈ 9、执行右面的程序框图,如果输入的0.01t =,则输出的n =( )(A ) 5 (B )6 (C )7 (D )810、已知函数1222,1()log (1),1x x f x x x -⎧-≤=⎨-+>⎩ , 且()3f a =-,则(6)f a -=(A )74- (B )54-(C )34-(D )14- 11、圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( )(A )1(B )2(C )4(D )812、设函数()y f x =的图像与2x a y +=的图像关于直线y x =-对称,且(2)(4)1f f -+-=,则a =( )(A ) 1- (B )1 (C )2 (D )4二、填空题:本大题共4小题,每小题5分13、数列{}n a 中112,2,n n n a a a S +==为{}n a 的前n 项和,若126n S =,则n = .14.()31f x ax x =++的图像在点()()1,1f 的处的切线过点()2,7,则 a = . 15. 若x ,y 满足约束条件20210220x y x y x y +-≤⎧⎪-+≤⎨⎪-+≥⎩,则z =3x +y 的最大值为 .16.已知F 是双曲线22:18y C x -=的右焦点,P 是C 左支上一点,()0,66A ,当APF ∆周长最小时,该三角形的面积为 .三、解答题17. (本小题满分12分)已知,,a b c 分别是ABC ∆内角,,A B C 的对边,2sin 2sin sin B A C =.(I )若a b =,求cos ;B (II )若90B =o ,且2,a = 求ABC ∆的面积.18. (本小题满分12分)如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ABCD ⊥平面,(I )证明:平面AEC ⊥平面BED ;(II )若120ABC ∠=o ,,AE EC ⊥ 三棱锥E ACD -的体积为63,求该三棱锥的侧面积. 19. (本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的宣传费i x 和年销售量()1,2,,8i y i =L 数据作了初步处理,得到下面的散点图及一些统计量的值.(I )根据散点图判断,y a bx =+与y c x =+,哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型(给出判断即可,不必说明理由);(II )根据(I )的判断结果及表中数据,建立y 关于x 的回归方程;(III )已知这种产品的年利润z 与x ,y 的关系为0.2z y x =- ,根据(II )的结果回答下列问题:(i )当年宣传费x =49时,年销售量及年利润的预报值时多少?(ii )当年宣传费x 为何值时,年利润的预报值最大?20. (本小题满分12分)已知过点()1,0A 且斜率为k 的直线l 与圆C :()()22231x y -+-=交于M ,N 两点.(I )求k 的取值范围;(II )若12OM ON ⋅=u u u u r u u u r ,其中O 为坐标原点,求MN .21. (本小题满分12分)设函数()2ln x f x e a x =-.(I )讨论()f x 的导函数()f x '的零点的个数;(II )证明:当0a >时()22lnf x a a a ≥+. 请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号22. (本小题满分10分)选修4-1:几何证明选讲如图AB 是e O 直径,AC 是e O 切线,BC 交e O 与点E .(I )若D 为AC 中点,证明:DE 是e O 切线;(II )若3OA CE = ,求ACB ∠的大小.23. (本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线1:2C x =-,圆()()222:121C x y -+-=,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (I )求12,C C 的极坐标方程.(II )若直线3C 的极坐标方程为()πR 4θρ=∈,设23,C C 的交点为,M N 求2C MN ∆ 的面积. 24. (本小题满分10分)选修4-5:不等式选讲已知函数()12,0f x x x a a =+--> .(I )当1a = 时求不等式()1f x > 的解集;(II )若()f x 的图像与x 轴围成的三角形面积大于6,求a 的取值范围.一、D A C C B B B (8)D (9)C (10)A (11)B (12)C 二、填空题(13)6 (14)1 (15)4 (16) 三、 17、解:(I )由题设及正弦定理可得2b =2ac.又a=b ,可得cosB=2222a c b ac +-=14……6分 (II )由(I )知2b =2ac. 因为B=o 90,由勾股定理得222a c =b +.故22a c =2ac +,的. 所以△ABC 的面积为1. ……12分18、解:(I )因为四边形ABCD 为菱形,所以AC ⊥BD.因为BE ⊥平面ABCD,所以AC ⊥BE,故AC ⊥平面BED.又AC ⊂平面AEC,所以平面AEC ⊥平面BED. ……5分 (II )设AB=x ,在菱形ABCD 中,又∠ABC=o 120 ,可得,GB=GD=2x . 因为AE ⊥EC,所以在Rt △AEC 中,可的x . 由BE ⊥平面ABCD,知△EBG 为直角三角形,可得. 由已知得,三棱锥E-ACD 的体积E ACD V -=13×12AC ·GD ·3x = 故x =2 ……9分从而可得.所以△EAC 的面积为3,△EAD 的面积与 △ECD故三棱锥E-ACD 的侧面积为. ……12分19、解:(I )由散点图可以判断,适宜作为年销售量y 关于年宣传费x 的回归方程式类型.(II)令w =y 关于w 的线性回归方程式.由于28181()()108.8d=681.6()i i i i i w w y y w w ==--==-∑∑),56368 6.8100.6c y d w =-=-⨯=)), 所以y 关于w 的线性回归方程为y=100.668w +),因此y 关于x 的回归方程为y 100.6=+)(Ⅲ)(i )由(II )知,当x =49时,年销售量y的预报值y 100.6=+), 年利润z 的预报值 z=576.60.24966.32⨯-=) ……9分 (ii )根据(II )的结果知,年利润z 的预报值=-20.12x x ++).13.6=6.82=,即x =46.24时,z )取得最大值. 故年宣传费为46.24千元时,年利润的预报值最大. ……12分20、解:(I )由题设,可知直线l 的方程为1y kx =+.因为l 与C 交于两点,.解得k 所以k的取值范围为. ……5分 (II )设()1122,,(,)M x y N x y .将1y kx =+代入方程22(2)(3)1x y -+-=,整理得22(1)4(1)70k x k x +-++=. 所以1212224(1)7,11k x x x x k k++==++. 1212OM ON c x y y ⋅=+()()2121211k x x k x x =++++ ()24181k k k+=++. 由题设可得()24181k k k+=++=12,解得k=1,所以l 的方程是y=x+1. 故圆心C 在l 上,所以2MN =. ……12分21、解:(I )()f x 的定义域为()()20,,2(0)x a f x e x x '+∞=-〉. 当a ≤0时,()()0f x f x ''〉,没有零点;当0a 〉时,因为2x e 单调递增,a x -单调递减,所以()f x '在()0,+∞单调递增,又()0f a '〉, 当b 满足0<b <4a 且b <14时,()0f b '〈,故当a <0时()f x '存在唯一零点.……6分 (II )由(I ),可设()f x '在()0,+∞的唯一零点为0x ,当()00x x ∈,时,()f x '<0;当()0x x ∈+∞,时,()f x '>0. 故()f x 在()0+∞,单调递减,在()0x +∞,单调递增,所以0x x =时, ()f x 取得最小值,最小值为()0f x . 由于02020x a e x -=,所以()0002221212a f x ax a n a a n x a a=++≥+. 故当0a 〉时,()221f x a a na ≥+. ……12分 23、解:(I )因为cos ,sin x y ρθρθ==,所以1C 的极坐标方程为cos 2ρθ=-, 2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=. ……5分 (II )将4πθ=代入22cos 4sin 40ρρθρθ--+=,得240ρ-+=,解得12ρρ==.故12ρρ-=,即MN = 由于2C 的半径为1,所以2C MN ∆的面积为12. ……10分 24、解:(I )当1a =时,()1f x >化为12110x x +--->. 当1x ≤-时,不等式化为40x ->,无解;当11x -<<时,不等式化为320x ->,解得213x <<; 当1x ≥,不等式化为-x +2>0,解得1≤x <2.所以()1f x >的解集为223x x ⎧⎫⎨⎬⎩⎭︱<<. ……5分 (II )由题设可得,()12,1312,1,12,.x a x f x x a x a x a x a --⎧⎪=+--≤≤⎨⎪-++⎩<<所以函数()f x 的图像与x 轴围成的三角形的三个丁点分别为()()21,0,21,0,,13a A B a C a a -⎛⎫++ ⎪⎝⎭,△ABC 的面积为()2213a +. 由题设得()2213a +>6,故a >2. 所以a 的取值范围为()2+∞,. ……10分。

2015高考数学真题-湖北省文科、理科数学卷word版(有答案)

2015高考数学真题-湖北省文科、理科数学卷word版(有答案)

2015年普通高等学校招生全国统一考试(湖北卷)数学(文史类)一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.i 为虚数单位,607i=( )A .iB .-iC .1D .-12.我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( ) A .134石 B .169石 C .338石 D .1365石3.命题“000(0,),ln 1x x x ∃∈+∞=-”的否定是( )A .(0,),ln 1x x x ∀∈+∞≠-B .(0,),ln 1x x x ∀∉+∞=-C .000(0,),ln 1x x x ∃∈+∞≠-D .000(0,),ln 1x x x ∃∉+∞=-4.已知变量x 和y 满足关系0.11y x =-+,变量y 与z 正相关,下列结论中正确的是( ) A .x 与y 正相关,x 与z 负相关 B .x 与y 正相关,x 与z 正相关 C .x 与y 负相关,x 与z 负相关 D .x 与y 负相关,x 与z 正相关5. 12,l l 表示空间中的两条直线,若p :12,l l 是异面直线,q :12,l l 不相交,则( ) A .p 是q 的充分条件,但不是q 的必要条件 B .p 是q 的必要条件,但不是q 的充分条件 C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件6.函数256()lg 3x x f x x -+=-的定义域为( )A .(2,3)B .(2,4]C .(2,3)(3,4]D .(1,3)(3,6]-7.设x R ∈,定义符号函数1,0sgn 0,01,0x x x x >⎧⎪==⎨⎪-<⎩,则( )A .{||sgn |}x x x =B .{|sgn ||}x x =C .{||sgn x x x =D .{|sgn x x x = 8.在区间[0,1]上随机取两个数x ,y ,记1p 为事件“12x y +≤”的概率,2P 为事件“12xy ≤”的概率,则( ) A .1212p p <<B .2112p p <<C .2112p p <<D .1212p p <<9.将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长b ()a b ≠同时增加m (0)m >个单位长度,得到离心率为2e 的双曲线2C ,则( )A .对任意的a ,b ,12e e <B .当a b > 时,12e e <;当a b <时,12e e >C .对任意的a ,b ,12e e >D .当a b > 时,12e e >;当a b <时,12e e <10.已知集合22{(,)|1,,}A x y x y x y Z =+≤∈,{(,)|||2,||2,,}B x y x y x y Z =≤≤∈,定义集合12121122{(,)|(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为( )A .77B .49C .45D .30二、填空题:本大题共7小题,每小题5分,共35分。

2015年湖北省高考数学押题卷(文)及答案

2015年湖北省高考数学押题卷(文)及答案

2015年湖北省高考数学押题卷第一部分(选择题共50分)一、选择题(共10小题,每小题5分,共50分。

在每小题列出的四个选项中,选出符合题目要求的一项)1.已知集合M={2,m},N={1,2,3},则“m=3”是“M ?N ”的()A .充分而不必条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件2.已知i 是虚数单位,a ,b ∈R ,a+bi=,则a+b 等于()A .﹣1 B. 1 C. 3 D. 43.下列函数中,其图象既是轴对称图形又在区间(0,+∞)上单调递增的是()A . y=B. y=﹣x 2+1 C ..y=2xD . y=lg|x+1|4.已知命题p :?x 0∈R ,cosx 0≤,则?p 是()A .?x 0∈R ,cosx 0≥B .?x 0∈R ,cosx 0>C .?x ∈R ,cosx ≥D .?x ∈R ,cosx >5.设等差数列{a n }的前n 项和为S n ,若112a ,295a a ,则当S n 取最小值时,n等于()A . 9 B. 8 C. 7 D. 66.若m ,n 为两条不重合的直线,α,β为两个不重合的平面,下列命题正确的是()A .若m ∥α,n ∥α,则m ∥nB .若m ⊥α,n ⊥β,且α∥β,则m ∥nC .若α⊥β,m ⊥α,则m ∥βD .若α⊥β,m ⊥n ,且m ⊥α,则n ⊥β7.根据如下样本数据x 3 4 5 6 7 y4.02.5-0.50.5[来源:学+科+网]-2.0得到的回归方程为.若a=7.9,则x 每增加1个单位,y 就()A .增加 1.4个单位B .减少 1.4个单位C .增加 1.2个单位D .减少 1.2个单位8.已知f (x )=kx ﹣1,其中实数k 随机选自区间[﹣2,2],?x ∈[0,1],f (x )≤0的概率是() A .B.C.D.9.设平面点集 A ={( x , y)|( y - x)( y -1x)≥0}, B ={( x , y)|(x -1) 2+( y -1) 2≤1},则 A ∩ B 所表示的平面图形的面积为()A. B. C. D.。

高考湖北文科数学试题及答案word解析版

高考湖北文科数学试题及答案word解析版

高考湖北文科数学试题及答案word 分析版2015 年一般高等学校招生全国一致考试(湖北卷)数学(文科)一、选择题:本大题共 10 小题,每题5 分,共 50 分,在每题给出的四个选项中,只有一项切合题目要求.( 1)【 2015 年湖北,文 1, 5 分】 i 为虚数单位, i 607()( A ) i ( B ) i (C ) 1(D )1【答案】 A【分析】 i 607 i 4 151 i 3 i ,应选 A .( 2)【 2015 年湖北,文 2,5 分】我国古代数学名着《数书九章》有“米谷粒分 ”题:粮仓开仓收粮,有人送来米1534 石,验得米内夹谷,抽样取米一把,数得 254 粒内夹谷 28 粒,则这批米内夹谷约为( )( A )134 石 (B )169 石 ( C )338 石( D ) 1365 石【答案】 B【分析】依题意,这批米内夹谷约为281534169 石,应选 B .254( 3)【 2015 年湖北,文 3, 5 分】命题 “ x 0(0,) , ln x 0 x 0 1 ”的否认是()( A ) x 0 (0, ) , ln x 0 x 0 1( B ) x 0 (0,) , ln x 0 x 0 1( C )x (0,) , ln x x1(D )x(0,) , ln x x1【答案】 C【分析】由特称命题的否认为全称命题可知,所求命题的否认为x 0,, ln x x 1,应选 C .( 4)【 2015 年湖北,文 4,5 分】已知变量 x 和 y 知足关系 y1 ,变量 y 与 z 正有关.以下结论中正确的是()( A ) x 与 y 负有关, x 与 z 负有关 ( B ) x 与 y 正有关, x 与 z 正有关( C ) x 与 y 正有关, x 与 z 负有关( D ) x 与 y 负有关, x 与 z 正有关【答案】 A【分析】 因为变量 x 和 y 知足关系 y0.1x 1 ,此中 0.1 0 ,所以 x 与 y 成负有关; 又因为变量 y 与 z 正有关,不如设 z kyb k 0 ,则将 y1 代入即可获得: zk 0.1x 1bkb ,所以 x 与z 负有关,综上可知,应选 A .( 5)【 2015 年湖北,文 5, 5 分】 l 1 ,l 2 表示空间中的两条直线,若 p : l 1 ,l 2 是异面直线; q : l 1 ,l 2 不订交,则()( A ) p 是 q 的充足条件,但不是 q 的必需条件( B ) p 是 q 的必需条件,但不是 q 的充足条件( C ) p 是 q 的充足必需条件 (D ) p 既不是 q 的充足条件,也不是 q 的必需条件【答案】 A【分析】若 p : l 1 ,l 2 是异面直线,由异面直线的定义知,l 1 ,l 2 不订交,所以 q : l 1 ,l 2 不订交成立,即 p 是 q 的充足条件;反过来,若 q : l 1 ,l 2 不订交,则 l 1,l 2 可能平行,也可能异面,所以不可以推出l 1 ,l 2 是异面直线,即 p不是 q 的必需条件,应选A .26的定义域为(( 6)【 2015 年湖北,文 6, 5 分】函数 f ( x)4 | x | lg x5 x)x 3( A ) (2, 3)( B ) (2, 4]( C ) (2, 3) U (3, 4](D ) ( 1, 3) U (3, 6]【答案】 C0 ,x2【分析】由函数yf x 的表达式可知,函数fx 的定义域应知足条件:4 x5 x6 0 ,解之得x 32 x 2 , x2 , x3 ,即函数 fx 的定义域为 (2, 3) U (3, 4] (2, 3) U (3, 4] ,应选 C .1, x 0 ( 7)【 2015 年湖北,文 7, 5 分】设 xR ,定义符号函数 sgn x0, x 0 ,则()1,x 0( A ) | x | x | sgn x |( B ) | x |xsgn | x |( C ) | x | | x | sgn x(D ) | x |xsgn x【答案】 D高考湖北文科数学试题及答案word 分析版【分析】关于选项A ,右侧x sgn xx, x 0,而左侧xx, x 0,明显不正确;关于选项B ,右侧0, x 0x, x 0x, x 0x, x 0x, x 0x sgn x,而左侧 xC ,右侧 x sgn x0, x0 ,0, xx, x,明显不正确;关于选项x, x 0x, x 0x, x 0x, x而左侧xx sgn x0, x 0 ,而左侧 x,x, x ,明显不正确; 关于选项 D ,右侧x, xx, x 0明显正确,应选D .( 8)【 2015 年湖北,文 8,5 分】在区间 [0, 1] 上随机取两个数x, y ,记 p 1 xy1”的概率, p 2为事件为事件 “2“ 1” 的概率,则()xy2( A ) p 1p 21 ( B ) p 11 p 2( C ) p 2 1 p 1(D )1p 2 p 1【答案】 B22221 1 11,事件“【分析】由题意知,事件“ y 1”的概率为 p 122 21 ”的概率x21 18xy2p 2S 0,此中 S1 1 1 1dx1 1 ln2 , S1 1 1 ,所以1S22 2 x 2S 0 1 1 ln 2 1 1p 2 21 ln2 ,应选 B .S1 12 2( 9)【 2015 年湖北,文 9,5 分】将离心率为 e 1 的双曲线 C 1 的实半轴长 a 和虚半轴长 b (ab) 同时增添 m (m0)个单位长度,获得离心率为 e 2 的双曲线 C 2 ,则( )( A )对随意的 a, b , e 1 e 2 ( B )当 a b 时, e 1 e 2 ;当 a b 时, e 1 e 2 ( C )对随意的 a, b , e 1e 2( D )当 a b 时, e 1e 2 ;当 a b 时, e 1e 2【答案】 D222a2b m 2b2【分析】依题意,e 1a b1b , em 1m ,a a2a ma m因为bb m ab bmab am m ba0 , a 0 , b0 ,a a,因为 maa ma a m m当 ab 时, 0b1 ,b m,bb2b m 2,所以 12 ;1m , baamaa maa mee2b2当 ab 时,b1 ,bm 1 ,而bbm,所以bm ,所以 e 1 e 2 .aa ma a ma a m 所以当 ab 时, e 1 e 2 ,当 a b 时, e 1 e 2 ,应选 D .( 10)【 2015 年湖北,文 10,5 分】已知会合 A {( x, y) x 2y 21, x, y Z} ,B {( x, y) | x | 2 , | y | 2, x, y Z } ,定义会合 AB {( x 1x 2 , y 1 y 2 ) (x 1, y 1 ) A, (x 2 , y 2 ) B},则AB 中元素的个数为()(A )77(B )49(C ) 45(D )30【答案】 C【分析】因为会合 Ax, y x 2y 2 1, x, yZ ,所以会合 A 中有 9 个元素(即 9 个点),即、图中圆中的整点, 会合 B {( x, y) | x | 2 , | y | 2, x, y Z} 中有 25 个元素(即 25 个点):即图中正方形 ABCD 中的整点,会合 AB {( x 1 x 2 , y 1 y 2 ) ( x 1 , y 1 ) A, ( x 2 , y 2 ) B}的元素可看作正方形 A 1 B 1C 1 D 1 中的整点(除掉四个极点) ,即 7 7 4 45个,应选 C .高考湖北文科数学试题及答案word 分析版二、填空题:共7 小题,每题 5 分,共 35 分.请将答案填在答题卡对应题号 的地点上 答错地点,书写不清,....... .... 含糊其词均不得分.( 11)【 2015 年湖北,文 uuur uuur uuur uuur uuur11, 5 分】已知向量 OA AB , |OA| 3,则 OA OB . 【答案】 9 uuur uuur uuur uuur uuur uuur uuur uuur uuur uuur uuur uuur2 2 32 9 . 【分析】因为 OA AB , OA 3, OA OB OA OA OB OA OA OB OAx y 4,( 12)【 2015 年湖北, 文 12,5 分】若变量 x, y 知足拘束条件x y 2, 则 3x y3xy 0,的最大值是 .【答案】 10【分析】第一依据题意所给的拘束条件画出其表示的平面地区以以下图所示,而后依据图像可得 : 目标函数 z 3xy 过点 B 3,1 获得最大值,即z max 33 1 10 ,故应填 10.( 13)【 2015 年湖北,文 13, 5 分】函数 f ( x) π 2的零点个数为.2sin x sin( x )x【答案】 22【分析】函数 f x2sin xsin22sin xsin x20 2 x 的零点个数等价于方程x2的根的个数,即函数 gx2sin x sin x2sin x cos xsin 2 与 h x2的2x图像交点个数.于是,分别画出其函数图像以以下图所示,由图可知,函数 g x与 h x 的图像有 2 个交点.( 14)【 2015 年湖北,文 14, 5 分】某电子商务企业对10000 名网络购物者 2014 年度的花费状况进行统计,发现花费金额(单位:万元)都在区间 [0.3, 0.9] 内,其频次散布直方图以下图.(Ⅰ)直方图中的 a _________ ;(Ⅱ)在这些购物者中, 花费金额在区间[0.5, 0.9] 内的购物者的人数为 _________.【答案】(Ⅰ) 3;(Ⅱ) 6000【分析】由频次散布直方图及频次和等于1 可得2a1 ,解之的 a 3 .于是花费金额在区间 0.5,0.9 内频次为0.1 0.8 0.1 2 0.1 3 0.1 0.6 ,所以花费金 额在区间 0.5,0.9 内的购物者的人数为:100006000.( 15)【 2015 年湖北,文 15,5 分】如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶 D 在西偏北 30o 的方向上, 行驶 600m 后抵达 B 处,测得此山顶在西偏北 75o 的方向上,仰角为30o ,则此山的高度 CDm .【答案】 100 6【分析】依题意, BAC 30 , ABC 105 ,在 ABC 中,由所以 ACB 45 ,因为 AB 600 ,由正弦定理可得 因为CBD30 , BC 300 2 ,所以 tan30CDBCABCBACACB180 ,600BC ,即 BC 300 2 m ,在 Rt BCD 中,sin 45sin30CD ,所以 CD 100 6 m .300 2( 16)【 2015 年湖北,文 16, 5 分】如图,已知圆C 与 x 轴相切于点 T (1, 0) ,与 y 轴正半轴交于两点 A , B (B 在 A 的上方),且 AB 2 .(Ⅰ)圆 C 的标准 方程为 _________;..(Ⅱ)圆 C 在点 B 处的切线在 x 轴上的截距为 _________.22【答案】(Ⅰ) xy22 ;(Ⅱ) 1 21【分析】(Ⅰ)设点 C 的坐标为(x 0 , y 0 ) ,则由圆 C 与 x 轴相切于点 T (1, 0) 知,点 C 的横坐标为 1,即 x 0 1 ,半高考湖北文科数学试题及答案word 分析版径 ry 0 .又因为AB 2 ,所以 12 12 y 02 ,即 y 02r ,所以圆 C 的标准方程为( x2( y 22 .1)2)(Ⅱ)令 x0 得: B(0, 2 1) .设圆 C 在点 B 处的切线方程为 y ( 2 1) kx ,则圆心 C 到其距离为:d k2212 ,解之得 k 1 .即圆 C 在点 B 处的切线方程为yx ( 2 1) ,于是令21ky0 可得 x2 1,即圆 C 在点 B 处的切线在x 轴上的截距为 12 .( 17)【 2015 年湖北,文 17, 5 分】 a 为实数,函数f ( x) | x 2 ax | 在区间 [0, 1] 上的最大值记为g ( a) . 当 a_________时, g (a ) 的值最小.【答案】 2 2 2【分析】解法一:因为函数 f xx 2 ax ,所以分以下几种状况进行议论:①当a 0 时,函数 f x x 2 axx 2ax在区间 0,1 上单一递加,所以f xmaxg a1 a ;②当 0a222 时,此时222a 2 2f aaaa a, f 1 1 a ,而a1 a2 0 ,所以 fxmaxg a1 a ;4222 4421 a a2 2 2③当 a2 22 时, fxmaxg aa.综上可知,g aa 2 a2 2 2 ,所以 g a 在44,2 2 2 上单一递减, 在 2 2 2,上单一递加, 所以 g amaxg 2 2 2 ,所以当 a2 22时, g a 的值最小.解法二:fa a 2 2 22 a1① a 0 , g af 11 a ;② 0 a1 , g a 24;f 1 1 a 0 a 2 22③ 1 a 2 , g afaa 2 ;④ a 2 , g af 1 a1 ;24综上所述,当 a 2 22 时, g a 取到最小值3 2 2 .三、解答题:共 5 题,共65 分.解答应写出文字说明,演算步骤或证明过程.( 18)【2015 年湖北,文 18,12 分】某同学用 “五点法 ”画函数 f ( x) A sin( x) ( 0,| | π在某一个周期) 2内的图象时,列表并填入了部分数据,以下表:0 5(Ⅰ)请将上表数据增补完好,填写在答题卡上相应地点 ,并直接写出函数f (x) 的分析式;...........(Ⅱ)将 y f ( x) 图象上全部点向左平行挪动π个单位长度,获得 yg ( x) 的图象. 求 yg ( x) 的图象离原点 O 近来的对称中心.6解:(Ⅰ)依据表中已知数据,解得A 5,2,π. 数据补全以下表:6高考湖北文科数学试题及答案word 分析版5且函数表达式为f ( x)5sin(2 xπ) .6(Ⅱ)由(Ⅰ)知f (x)5sin(2 xπ,所以 g ( x) 5sin[2( xπ π5sin(2 xπ.) )])6666因为 ysin x 的对称中心为 (k π,0) , kZ. 令πk π πk Z2 x kx,.6 π,解得212π ππ 即 yg( x) 图象的对称中心为 , kZ ,此中离原点 O 近来的对称中心为 ( , 0) . (,)21212( 19)【2015 年湖北,文 19 ,12 分】设等差数列 { a n } 的公差为 d 前 n 项和为 S n ,等比数列 { b n } 的公比为 q .已知b 1 a 1 , b 2 2 , q d , S 10 100 .(Ⅰ)求数列 {a n}n, { b } 的通项公式;(Ⅱ)当 d1 时,记 c na n,求数列 { c n } 的前 n 项和 T n .b na 1110a 1 45d 1002a 1 9d20a 1 1 9 a n 2n 1 a n2n79解:( Ⅰ )由题意知:,即,解得2 ,故9.a 1d 2a 1d 2或db n2n 1或2 n 1d 29b n99( Ⅱ )由 d 1 ,知 a n2n 1, b n 2n 12n 1 ,,故 c n2 n 1于是 T n 1 35 7 9 L L2n 1①1T n1 3579 2n1②2 234 2n 12 2 2345 L L 2 n2 2 22222由① -②可得 1T 2 1 1 1 1 1 L L 1 2n 1 3 2n 3 T 6 2n 32 n 2 2345 n 2nn,故nn 1 .2 2 2 2 2 2 22( 20)【 2015 年湖北,文 20, 13 分】《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马, 将四个面都为直角三角形的四周体称之为鳖臑.如图,在阳马 P ABCD中,侧棱 PD 底面 ABCD ,且 PD CD ,点 E 是 PC 的中点,连结 DE, BD , BE .(Ⅰ)证明: DE 平面 PBC . 试判断四周体 EBCD 能否为鳖臑,假如,写出其每个面的直角(只要写出结论) ;若不是,请说明原因;(Ⅱ)记阳马 PABCD 的体积为 V 1 ,四周体 EBCD 的体积为 V 2 ,求V 1的值.V 2解:(Ⅰ)因为 PD所以 BC所以 DE由 BC底面 ABCD ,所以 PD BC . 由底面 ABCD 为长方形,有 BC CD ,而 PD I CD D ,平面 PCD . DE 平面 PCD ,所以 BC DE . 又因为 PD CD ,点 E 是 PC 的中点,PC . 而 PCI BC C ,所以 DE 平面 PBC .平面 PCD , DE 平面 PBC ,可知四周体 EBCD 的四个面都是直角三角形,即四周体 EBCD 是一个鳖臑,其四个面的直角分别是BCD,BCE, DEC, DEB.(Ⅱ)由已知,PD 是阳马 P ABCD 的高,所以 V 11S ABCD PD1BC CDPD ;33由(Ⅰ)知, DE 是鳖臑 DBCE 的高, BCCE ,所以 V 21S BCE DE1BC CE DE .36在 Rt △ PDC 中,因为 PD CD ,点 E 是 PC 的中点,所以 DECE2 CD ,12V 1 BC CD PD2CD PD3于是1CE 4.V 2DEBC CE DE6 分】设函数 f ( x) , g( x) 的定义域均为 R ,且 f ( x) 是奇函数, g( x) 是偶函数,( 21)【 2015 年湖北,文 21, 14高考湖北文科数学试题及答案word分析版f (x) g( x)e x,此中 e为自然对数的底数.(Ⅰ)求f(x) , g( x) 的分析式,并证明:当x 0 时, f ( x)0 , g ( x) 1 ;(Ⅱ)设 a 0 , b 1 ,证明:当x0 时,ag( x) (1 a)f (x)bg( x) (1 b) .xx x 解:(Ⅰ)由 f ( x) ,g ( x) 的奇偶性及联立①②解得 f ( x)1x (e 2又由基本不等式,有g (x)(Ⅱ)由(Ⅰ)得 f ( x)1(e x2g ( x) 1 (e x2f ( x)g( x)e x ) ,g (x)1 xe x(e)211xx)(ee21x ) 1 (e xe2e ,①f ( x) g( x) e .②1 x x.当x 0时,x,x1,故f ( x) 0.③(e e ) 1 0 e2x x1,即 g (x) 1.④e ee x1xe x)g( x) ,⑤2x)(ee2x1 (e xe2 x ) e x ) f ( x) ,⑥e2当 x0时, f ( x)ag( x)(1a) 等价于 f ( x)axg ( x)(1a) x ,⑦xf ( x)bg(x)(1b) 等价于 f (x)bxg ( x)(1 b)x.⑧x设函数h( x) f ( x) cxg (x)(1c) x ,由⑤⑥,有 h ( x)g( x)cg(x)cxf (x) (1 c)(1 c)[ g( x)1] cxf ( x).当 x 0 时,( 1)若c0,由③④,得h ( x) 0 ,故 h(x) 在 [0,) 上为增函数,进而h(x) h(0)0 ,即 f (x) cxg (x) (1 c) x ,故⑦成立.( 2)若c1,由③④,得h (x)0 ,故 h( x) 在 [0,) 上为减函数,进而 h (x)h(0)0 ,即 f (x)cxg (x)(1c)x ,故⑧成立.综合⑦⑧,得ag( x)(1a)f ( x)(1 b) .bg( x)x1 所示.O是滑槽AB的中点,短杆( 22)【 2015 年湖北,文22, 14 分】一种作图工具如图ON 可绕 O 转动,长杆 MN 经过 N 处铰链与 ON 连结, MN 上的栓子 D 可沿滑槽 AB 滑动,且DN ON1, MN 3 .当栓子 D 在滑槽 AB 内作来去运动时,带动..N 绕O转动一周( D 不动时, N 也不动), M 处的笔尖画出的曲线记为 C.以O为原点,AB所在的直线为 x 轴成立如图 2 所示的平面直角坐标系.(Ⅰ)求曲线 C 的方程;(Ⅱ)设动直线l 与两定直线 l1 : x2y 0 和 l2 : x 2 y0分别交于P, Q 两点.若直线l总与曲线C 有且只有一个公共点,尝试究:△OPQ 的面积能否存在最小值?若存在,求出该最小值;若不存在,说明原因.解:(Ⅰ)设点 D(t, 0) (| t| 2) ,N(x0, y0), M ( x, y),依题意,uuuur uuur uuur uuur1,MD2DN,且|DN | |ON|( x0221,所以 (t x,y)2(x0t, y0 ) ,且t)y0x02y02 1.即tx 2 x02t ,且 t(t2x0 )0.因为当点 D 不动时,点 N y 2 y0 .也不动,所以 t 不恒等于0,于是t2x0,故x0x, y0y ,,可得 x2y242代入 x02y021 1 ,即所求的曲线C的方程为164(Ⅱ)( 1)当直线l的斜率不存在时,直线l 为 x 4 或 x 4 ,都有x2y2161.4S OPQ1.4 4 82高考湖北文科数学试题及答案word分析版( 2)当直线l的斜率存在时,设直线l : y kx m (k 1)y kx m,,由2 4 y216, 2x消去 y ,可得(14k2 )x28kmx所以2222 64k m4(1 4k)(4 m y kx m,可得 P(2m又由2 y0,,x 1 2k 由原点 O到直线 PQ 的距离为 d11x Q S OPQ| PQ | d| m || x P22将①代入②得,SOPQ2m214k24m2160.因为直线 l 总与椭圆 C 有且只有一个公共点,16)0 ,即224 .①m16km;同理可得Q(2m m1),) .2 k12k 12k| m |和|PQ|1k2 | x P x Q | ,可得21 k2m2|12m2m| m |2k12k12.②214k4k218.4 k2 1当k21时, S OPQ8(4k218(12)8 ;2)244k14k1当021时, S OPQ4k 218(12k48(4k2)12 ) .14k因 0k 21,则 014k2 1 ,22 2 ,所以 S OPQ8( 122) 8,414k1 4 k 当且仅当 k0 时取等号.所以当k0时, S OPQ的最小值为 8.综合( 1)( 2)可知,当直线l 与椭圆 C 在四个极点处相切时,△ OPQ 的面积获得最小值 8.。

2015年高考文科数学押题试卷及答案(word版可打印)

2015年高考文科数学押题试卷及答案(word版可打印)

2015年高考文科数学押题试卷及答案(word 版可打印)第I 卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中。

只有一项是符合题目要求的.1.已知全集{}{}{}1,2,3,4,5,6,=1246=135U U A B A C B =⋃集合,,,,集合,,,则= A.{}123456,,,,, B.{}1,2,4,6 C.{}2,4,6 D.{}2,3,4,5,62.已知复数12,z z 在复平面上对应的点分别为()()211,2,1,3,z A B z -=则 A.1i + B.i C.1i - D.i -3.设,a b R ∈,则“1a ≥且1b ≥”是“2a b +≥”的 A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件4.已知椭圆方程22143x y +=,双曲线的焦点是椭圆的顶点,顶点是椭圆的焦点,则双曲线的离心率为C.2D.35.已知变量,x y 满足约束条件230,330,10,x y x y y +-≤⎧⎪+-≥⎨⎪-≤⎩则目标函数2z x y =+的最大值是A.6B.3C.32D.16.下列函数中,既是偶函数,又在()0,1上单调递增的函数是A.3log y x =B.3y x =C.x y e =D.cos y x = 7.命题1:0:x a p q y a a-=>;命题是R 上的增函数,则p 是q 的 A.必要不充分条件 B.充分不必要条件 C.充分且必要条件 D.既不充分也不必要条件8.设l m n 、、为不同的直线,αβ、为不同的平面,如下四个命题中,正确的有①若//l l αβαβ⊥⊥,则 ②若,,l l αβαβ⊥⊂⊥则③若,,//l m m n l n ⊥⊥则 ④若,////,m n m n αβαβ⊥⊥且则 A.0个 B.1个 C.2个 D.3个9.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是A.336cmB.348cmC.360cmD.372cm10.右图是某程序的流程图,则其输出结果为A.20102011 B.12011 C.20122013D.1201211.已知P 是直线:34110l x y -+=上的动点,PA 、PB 是圆222210x y x y +--+=的两条切线,C 是圆心,那么四边形PACB 面积的最小值是B.D.12.给定方程1sin 102xx ⎛⎫+-= ⎪⎝⎭,有下列命题:(1)该方程没有小于0的实数解;(2)该方程有无数个实数解;(3)该方程在(),0-∞内有且只有一个实数解;(4)若0x 是该方程的实数解,01x -则>.其中正确命题的个数是A.1B.2C.3D.4第II 卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.以椭圆2213x y +=的右焦点为焦点,且顶点在原点的抛物线标准方程为______.14.若函数()2log ,0,21,0,x x x f x x ⎧=⎨-+≤⎩>则函数()f x 的零点为_________.15.已知O 是坐标原点,点M 的坐标为(2, 1),若点N (),x y 为平面区域2,1,2x y x y x+≤⎧⎪⎪≥⎨⎪≥⎪⎩上的一个动点,则OM ON 的最大值是_______. 16.已知点()()1212,,x x A x a B x a 、是函数x y a =的图象上任意不同两点,依据图象可知,线段AB 总是位于A 、B 两点之间函数图象的上方,因此有结论121222x x x x a a a ++>成立.运用类比思想方法可知,若点()()()1122,sin ,sin sin 0,A x x B x x y x x π=∈⎡⎤⎣⎦、是函数图象上的不同两点,则类似地有________________成立.三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)在ABC ∆中,已知角A 、B 、C 所对的边分别为a 、b 、c ,直线1:10l ax y ++=与直线()222:40l b c bc x ay +-++=互相平行(其中4a ≠). (I )求角A 的值, (II )若22,,sin cos 2232A CB B ππ+⎡⎫∈+⎪⎢⎣⎭求的取值范围.18.(本小题满分12分)某省重点中学从高二年级学生中随机抽取120名学生,测得身高(单位:cm )情况如下图所示:(1)请在频率分布表中的①②位置上填上适当的数据,并补全频率分布直方图;(II)现从身高在180~190cm的这些同学中随机地抽取两名,求身高为185cm以上(包括185cm)的同学被抽到的概率.19.(本小题满分12分)如图,点C是以AB为直径的圆上一点,直角梯形BCDE所在平面与圆O所在平面垂直,且DE//BC,DC ⊥BC,DE=12 3.2BC AC CD ===, (I )证明:EO//平面ACD ; (II )证明:平面ACD ⊥平面BCDE ; (III )求三棱锥E —ABD 的体积.20.(本小题满分12分)已知{}n a 是一个公差大于0的等差数列,且满足362755,16.a a a a =+=(I )求数列{}n a 的通项公式;(II )若数列{}n a 和数列{}n b 满足等式123232222nn n b b b b a =+++⋅⋅⋅+(n 为正整数),求数列{}n b 的前n 项和n S .21.(本小题满分12分)已知2212221x y F F a b +=、是椭圆的左、右焦点,O 为坐标原点,点1,2P ⎛- ⎝⎭在椭圆上,线段PF 2与轴的交点M 满足20PM F M +=;(I )求椭圆的标准方程;(II )O 是以12F F 为直径的圆,一直线:l y kx m =+与相切,并与椭圆交于不同的两点A 、B.当23,34OA OB AOB λλ⋅=≤≤∆且满足时,求面积S 的取值范围.22.(本小题满分14分)已知函数()()()12ln 20f x a x ax a x=-++≤. (I )当0a =时,求()f x 的极值; (II )当0a <时,讨论()f x 的单调性; (III)若对任意的()[]()()()12123,2,,1,3,ln 32ln 3a x x m a f x f x ∈--∈+--恒有成立,求实数m 的取值范围.。

2015年高考文科数学试题全国新课标Ⅰ逐题详解-(纯word解析版)

2015年高考文科数学试题全国新课标Ⅰ逐题详解-(纯word解析版)

2015年全国统一高考数学试卷(文科)(新课标I)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2015新课标I文)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A. 5 B. 4 C. 4 D. 2解:A={x|x=3n+2,n∈N}={2,5,8,11,14,17,…},则A∩B={8,14},故集合A∩B中元素的个数为2个,故选:D.2.(2015新课标I文)已知点A(0,1),B(3,2),向量=(﹣4,﹣3),则向量=()A.(﹣7,﹣4)B.(7,4)C.(﹣1,4) D. (1,4)解:由已知点A(0,1),B(3,2),得到=(3,1),向量=(﹣4,﹣3),则向量==(﹣7,﹣4);故答案为:A.3.(2015新课标I文)已知复数z满足(z﹣1)i=1+i,则z=()A.﹣2﹣i B.﹣2+i C. 2﹣i D. 2+i解:由(z﹣1)i=1+i,得z﹣1=,∴z=2﹣i.故选:C.4.(2015新课标I文)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为()A.B.C.D.解:从1,2,3,4,5中任取3个不同的数,有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10种,其中只有(3,4,5)为勾股数,故这3个数构成一组勾股数的概率为.故选:C5.(2015新课标I文)已知椭圆E的中心在坐标原点,离心率为,E的右焦点与抛物线C:y2=8x的焦点重合,A,B是C的准线与E的两个交点,则|AB|=()A. 3 B. 6 C. 9 D. 12解:椭圆E的中心在坐标原点,离心率为,E的右焦点(c,0)与抛物线C:y2=8x的焦点(2,0)重合,可得c=2,a=4,b2=12,椭圆的标准方程为:,抛物线的准线方程为:x=﹣2,由,解得y=±3,所以a(﹣2,3),B(﹣2,﹣3).|AB|=6.故选:B.6.(2015新课标I文)《九章算术》是我国古代内容极为丰富的数学明著,书中有如下问题:"今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1。

2015高考数学(文)全国新课标(I)卷word版-高考数学试题

2015高考数学(文)全国新课标(I)卷word版-高考数学试题
且 ,则
(A)
(B)
(C)
(D)
11、圆柱被一个平面截去一部分后与半球(半径为 )组成一个几何体,该几何体的三视图中的正视和俯视图如图所示,若该几何体的表面积为 ,则 ( )
(A)
(B)
(C)
(D)
12、设函数 的图像与 的图像关于直线 对称,且
,则 ( )
(A) (B) (C) (D)
二、填空题:本大题共4小题,每小题5分
(A) (B) (C) (D)
5、已知椭圆E的中心为坐标原点,离心率为 ,E的右焦点与抛物线 的焦点重合, 是C的准线与E的两个交点,则
(A) (B) (C) (D)
6、《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各位多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有()
(ii)当年宣传费 为何值时,年利润的预报值最大?
20.(本小题满分12分)已知过点 且斜率为k的直线l与圆C: 交于M,N
两点.
(I)求k的取值范围;
(II) ,其中O为坐标原点,求 .
21.(本小题满分12分)设函数 .
(I)讨论 的导函数 的零点的个数;
(II)证明:当 时 .
请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号
2015年普通高等学校招生全国统一考试(新课标1卷)文
一、选择题:每小题5分,共60分
1、已知集合 ,则集合 中的元素个数为
(A)5(B)4(C)3(D)2

2015高考真题——数学文(新课标1)word版

2015高考真题——数学文(新课标1)word版

绝密★启封并使用完毕前2015年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至3页,第Ⅱ卷4至6页。

注意事项:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上。

考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。

2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。

第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。

3.考试结束,监考员将试题卷、答题卡一并收回。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合A={x|x=3n+2,n∈N},B={6,8,12,14},则集合A⋂B中元素的个数为(A)5 (B)4 (C)3 (D)2(2)已知点A(0,1),B(3,2),向量AC=(-4,-3),则向量BC=(A)(-7,-4)(B)(7,4)(C)(-1,4)(D)(1,4)(3)已知复数z满足(z-1)i=i+1,则z=(A)-2-I (B)-2+I (C)2-I (D)2+i(4)如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为(A)103(B)15(C)110(D)120(5)已知椭圆E的中心在坐标原点,离心率为12,E的右焦点与抛物线C:y²=8x的焦点重合,A,B是C的准线与E的两个焦点,则|AB|=(A)3 (B)6 (C)9 (D)12(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。

问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有A.14斛B.22斛C.36斛D.66斛(7)已知错误!未找到引用源。

2015年全国高考文科数学试题和答案word精校版(新课标1卷)

2015年全国高考文科数学试题和答案word精校版(新课标1卷)

2015年全国高考文科数学试题和答案word精校版(新课标1卷)2015年普通高等学校招生全国统一考试(新课标1卷)文科一、选择题:每小题5分,共60分1.已知集合 $A=\{x|x=3n+2,n\in N\}$,$B=\{6,8,10,12,14\}$,则集合 $A$ 中的元素个数为()A)5 (B)4 (C)3 (D)22.已知点 $A(0,1)$,$B(3,2)$,向量$\overrightarrow{AC}=(-4,-3)$,则向量$\overrightarrow{BC}$ 为()A)$(-7,-4)$ (B)$(7,4)$ (C)$(-1,4)$ (D)$(1,4)$3.已知复数 $z$ 满足 $(z-1)i=1+i$,则 $z$ 等于()A)$-2-i$ (B)$-2+i$ (C)$2-i$ (D)$2+i$5.已知椭圆 $E$ 的中心为坐标原点,离心率为$\frac{1}{2}$,$E$ 的右焦点与抛物线$C:y=8x$ 的焦点重合,$A,B$ 是 $C$ 的准线与 $E$ 的两个交点,则 $AB$ 的长度为()A)3 (B)6 (C)9 (D)126.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A)14斛(B)22斛(C)36斛(D)66斛7.已知 $\{a_n\}$ 是公差为1的等差数列,$S_n$ 为$\{a_n\}$ 的前 $n$ 项和,若 $S_8=4S_4$,则 $a_{10}$ 等于()A)17 (B)22 (C)10 (D)128.函数 $f(x)=\cos(\omega x+\varphi)$ 的部分图像如图所示,则 $f(x)$ 的单调递减区间为()A)$(k\pi-\frac{13}{4},k\pi+\frac{4}{4}),k\in Z$B)$(2k\pi-\frac{1}{4},2k\pi+\frac{3}{4}),k\in Z$C)$(k-\frac{1}{4},k+\frac{3}{4}),k\in Z$D)$(2k-\frac{1}{4},2k+\frac{3}{4}),k\in Z$9.执行右面的程序框图,如果输入的 $t=0.01$,则输出的$n$ 等于()A)5 (B)6 (C)7 (D)810.已知函数 $f(x)=\begin{cases} 2x-1-2,&x\le 1\\ -\log_2(x+1),&x>1 \end{cases}$,且 $f(a)=-3$,则 $f(6-a)$ 等于()A)$-\frac{7}{4}$ (B)$-\frac{5}{4}$11、圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r=()C)412、设函数y=f(x)的图像与y=2x+a的图像关于直线y=-x对称,且f(-2)+f(-4)=1,则a=()A)-113、数列{an}中a1=2,an+1=2an,Sn为{an}的前n项和,若Sn=126,则n=6.14.已知函数f(x)=ax+x+1的图像在点(1,f(1))的处的切线过点(2,7),则a=3.15.若x,y满足约束条件{x+y-2≤0.x-2y+1≤0.2x-y+2≥0},则z=3x+y的最大值为5.16.已知F是双曲线C:x-8^2-y^2=1的右焦点,P是C左支上一点,A(0,6),当△APF周长最小时,该三角形的面积为24.17.(本小题满分12分)已知a,b,c分别是△ABC内角A,B,C的对边,sinB=2sinAsinC.I)若a=b,求cosB;II)若B=90,且a=2,求△ABC的面积.18.(本小题满分12分)如图四边形ABCD为菱形,G为AC与BD交点,BE⊥平面ABCD。

(word完整版)2015年高考湖北文科数学试题及答案(word解析版),推荐文档

(word完整版)2015年高考湖北文科数学试题及答案(word解析版),推荐文档

2015年普通高等学校招生全国统一考试(湖北卷)数学(文科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求. (1)【2015年湖北,文1,5分】i 为虚数单位,607i =( )(A )i - (B )i (C )1- (D )1 【答案】A【解析】60741513i i i i ⨯=⋅=-,故选A . (2)【2015年湖北,文2,5分】我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( ) (A )134石 (B )169石 (C )338石 (D )1365石 【答案】B【解析】依题意,这批米内夹谷约为281534169254⨯=石,故选B .(3)【2015年湖北,文3,5分】命题“0(0,)x ∃∈+∞,00ln 1x x =-”的否定是( ) (A )0(0,)x ∃∈+∞,00ln 1x x ≠- (B )0(0,)x ∃∉+∞,00ln 1x x =-(C )(0,)x ∀∈+∞,ln 1x x ≠- (D )(0,)x ∀∉+∞,ln 1x x =-【答案】C【解析】由特称命题的否定为全称命题可知,所求命题的否定为()0,x ∀∈+∞,ln 1x x ≠-,故选C .(4)【2015年湖北,文4,5分】已知变量x 和y 满足关系0.11y x =-+,变量y 与z 正相关.下列结论中正确的是( )(A )x 与y 负相关,x 与z 负相关 (B )x 与y 正相关,x 与z 正相关 (C )x 与y 正相关,x 与z 负相关 (D )x 与y 负相关,x 与z 正相关 【答案】A 【解析】因为变量x 和y 满足关系0.11y x =-+,其中0.10-<,所以x 与y 成负相关;又因为变量y 与z 正相关,不妨设()0z ky b k =+>,则将0.11y x =-+代入即可得到:()()0.110.1z k x b kx k b =-++=-++,所以x 与z 负相关,综上可知,故选A . (5)【2015年湖北,文5,5分】12,l l 表示空间中的两条直线,若p :12,l l 是异面直线;q :12,l l 不相交,则( )(A )p 是q 的充分条件,但不是q 的必要条件 (B )p 是q 的必要条件,但不是q 的充分条件 (C )p 是q 的充分必要条件 (D )p 既不是q 的充分条件,也不是q 的必要条件 【答案】A【解析】若p :12,l l 是异面直线,由异面直线的定义知,12,l l 不相交,所以q :12,l l 不相交成立,即p 是q 的充分 条件;反过来,若q :12,l l 不相交,则12,l l 可能平行,也可能异面,所以不能推出12,l l 是异面直线,即p 不是q 的必要条件,故选A .(6)【2015年湖北,文6,5分】函数256()lg 3x x f x x -+-的定义域为( )(A )(2,3) (B )(2,4] (C )(2,3)(3,4]U (D )(1,3)(3,6]-U 【答案】C【解析】由函数()y f x =的表达式可知,函数()f x 的定义域应满足条件:40x -≥,25603x x x -+>-,解之得22x -≤≤,2x >,3x ≠,即函数()f x 的定义域为(2,3)(3,4]U ,故选C . (7)【2015年湖北,文7,5分】设x ∈R ,定义符号函数1,0sgn 0,01,0x x x x >⎧⎪==⎨⎪-<⎩,则( )(A )|||sgn |x x x = (B )||sgn ||x x x = (C )||||sgn x x x = (D )||sgn x x x = 【答案】D(2,3)(3,4]U【解析】对于选项A ,右边,0sgn 0,0x x x x x ≠⎧==⎨=⎩,而左边,0,0x x x x x ≥⎧==⎨-<⎩,显然不正确;对于选项B ,右边,0sgn 0,0x x x x x ≠⎧==⎨=⎩,而左边,0,0x x x x x ≥⎧==⎨-<⎩,显然不正确;对于选项C ,右边,0sgn 0,0,0x x x x x x x >⎧⎪===⎨⎪<⎩,而左边,0,0x x x x x ≥⎧==⎨-<⎩,显然不正确;对于选项D ,右边,0sgn 0,0,0x x x x x x x >⎧⎪===⎨⎪-<⎩,而左边,0,0x x x x x ≥⎧==⎨-<⎩,显然正确,故选D .(8)【2015年湖北,文8,5分】在区间[0,1]上随机取两个数,x y ,记1p 为事件“12x y +≤”的概率,2p 为事件“12xy ≤” 的概率,则( )(A )1212p p << (B )1212p p << (C )2112p p << (D )2112p p <<【答案】B【解析】由题意知,事件“12x y +≤”的概率为11111222118p ⨯⨯==⨯,事件“12xy ≤”的概率 02S p S =,其中()110211111ln 2222S dx x=⨯+=+⎰,111S =⨯=,所以()()0211ln 21121ln 21122S p S +===+>⨯,故选B .(9)【2015年湖北,文9,5分】将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位长度,得到离心率为2e 的双曲线2C ,则( )(A )对任意的,a b ,12e e > (B )当a b >时,12e e >;当a b <时,12e e <(C )对任意的,a b ,12e e < (D )当a b >时,12e e <;当a b <时,12e e > 【答案】D【解析】依题意,22211a b b e a +⎛⎫==+ ⎪⎝⎭,()()22221a m b m b m e a m ++++⎛⎫==+ ⎪+⎝⎭,因为()()()m b a b b m ab bm ab am a a m a a m a a m -++---==+++,由于0m >,0a >,0b >, 当a b >时,01b a <<,01b m a m +<<+,b b m a a m +<+,22b b m a a m +⎛⎫⎛⎫< ⎪ ⎪+⎝⎭⎝⎭,所以12e e <;当a b <时,1b a >,1b m a m +>+,而b b m a a m +>+,所以22b b m a a m +⎛⎫⎛⎫> ⎪ ⎪+⎝⎭⎝⎭,所以12e e >.所以当a b >时,12e e <,当a b <时,12e e >,故选D .(10)【2015年湖北,文10,5分】已知集合22{(,)1,,}A x y x y x y =+≤∈Z ,{(,)||2,||2,,}B x y x y x y =≤≤∈Z ,定义集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为( )(A )77 (B )49 (C )45 (D )30 【答案】C【解析】因为集合(){}22,1,,A x y xy x y =+≤∈Z ,所以集合A 中有9个元素(即9个点),即、 图中圆中的整点,集合{(,)||2,||2,,}B x y x y x y =≤≤∈Z 中有25个元素(即25个点): 即图中正方形ABCD 中的整点,集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈的元素可看作正方形1111A B C D 中的整点(除去四个顶点),即77445⨯-=个,故选C .二、填空题:共7小题,每小题5分,共35分.请将答案填在答题卡对应题号.......的位置上....答错位置,书写不清,模棱两可均不得分.(11)【2015年湖北,文11,5分】已知向量OA AB ⊥u u u r u u u r,||3OA =u u u r ,则OA OB ⋅=u u u r u u u r . 【答案】9【解析】因为OA AB ⊥u u u r u u u r ,3OA =u u u r ,()22239OA OB OA OA OB OA OA OB OA ⋅=⋅+=+⋅===u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r .(12)【2015年湖北,文12,5分】若变量满足约束条件 则的最大值是 . 【答案】10【解析】首先根据题意所给的约束条件画出其表示的平面区域如下图所示,然后根据图像可得: 目标函数3z x y =+过点()3,1B 取得最大值,即max 33110z =⨯+=,故应填10.(13)【2015年湖北,文13,5分】函数的零点个数为 .【答案】2【解析】函数()22sin sin 2f x x x π⎛⎫=+- ⎪⎝⎭的零点个数等价于方程22sin sin 02x x x π⎛⎫+-= ⎪⎝⎭的根的个数,即函数()2sin sin 2sin cos sin 22g x x x x x π⎛⎫=+== ⎪⎝⎭与()2h x x =的图像交点个数.于是,分别画出其函数图像如下图所示,由图可知,函数()g x 与()h x 的图像有2个交点.(14)【2015年湖北,文14,5分】某电子商务公司对10000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间内,其频率分布直方图如图所示. (Ⅰ)直方图中的_________; (Ⅱ)在这些购物者中,消费金额在区间内的购物者的人数为_________. 【答案】(Ⅰ)3;(Ⅱ)6000【解析】由频率分布直方图及频率和等于1可得0.20.10.80.1 1.50.120.1 2.50.10.11a ⨯-⨯-⨯+⨯+⨯+⨯=,解之的3a =.于是消费金额在区间[]0.5,0.9内频率为0.20.10.80.120.130.10.6⨯-⨯+⨯+⨯=,所以消费金额在区间[]0.5,0.9内的购物者的人数为:0.6100006000⨯=.(15)【2015年湖北,文15,5分】如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30o 的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75o 的方向上,仰角为30o ,则此山的高度CD = m .【答案】1006 【解析】依题意,30BAC ∠=︒,105ABC ∠=︒,在ABC ∆中,由180ABC BAC ACB ∠+∠+∠=︒, 所以45ACB ∠=︒,因为600AB =,由正弦定理可得600sin 45sin30BC-=︒︒,即3002BC =m ,在Rt BCD ∆中, 因为30CBD ∠=︒,3002BC =,所以tan303002CD BC ︒==,所以1006CD =m . (16)【2015年湖北,文16,5分】如图,已知圆C 与x 轴相切于点(1,0)T ,与y 轴正半轴交于两点A ,B (B 在A 的上方),且2AB =. (Ⅰ)圆C 的标准..方程为_________; (Ⅱ)圆C 在点B 处的切线在x 轴上的截距为_________.,x y 4,2,30,x y x y x y +≤⎧⎪-≤⎨⎪-≥⎩3x y +2π()2sin sin()2f x x x x =+-[0.3,0.9]a =[0.5,0.9]【答案】(Ⅰ)()(2212x y-+=;(Ⅱ)1-【解析】(Ⅰ)设点的坐标为,则由圆与轴相切于点知,点的横坐标为,即,半径.又因为,所以,即,所以圆的标准方程为.(Ⅱ)令得:.设圆在点处的切线方程为,则圆心到其距离为:.即圆在点处的切线方程为,于是令0y=可得,即圆在点处的切线在轴上的截距为(17)【2015年湖北,文17,5分】a为实数,函数在区间上的最大值记为.当_________时,的值最小.【答案】2【解析】解法一:因为函数()2f x x ax=-,所以分以下几种情况进行讨论:①当0a≤时,函数()22f x x ax x ax=-=-在区间[]0,1上单调递增,所以()()max1f xg a a==-;②当02a<≤时,此时222224a a a af a⎛⎫⎛⎫=-⨯=⎪ ⎪⎝⎭⎝⎭,()11f a=-,而()()22212044aaa---=-<,所以()()max1f xg a a==-;③当2a>时,()()2max4af xg a==.综上可知,()21224a ag a aa⎧-≤⎪=⎨>⎪⎩,所以()g a在(2⎤-∞⎦上单调递减,在(2,⎤+∞⎦上单调递增,所以()()max2g a g=,所以当2a=-时,()g a的值最小.解法二:①0a≤,()()11g a f a==-;②01a<≤,()()()()221241102a af ag af a a⎧⎛⎫=<≤⎪ ⎪⎪⎝⎭=⎨⎪=-<<⎪⎩;③12a<<,()224a ag a f⎛⎫==⎪⎝⎭;④2a≥,()()11g a f a==-;综上所述,当2a=时,()g a取到最小值3-三、解答题:共5题,共65分.解答应写出文字说明,演算步骤或证明过程.(18)【2015年湖北,文18,12分】某同学用“五点法”画函数()sin()f x A xωϕ=+π(0,||)2ωϕ><在某一个周期...........(Ⅱ)将()y f x=图象上所有点向左平行移动π6个单位长度,得到()y g x=的图象.求()y g x=的图象离原点O最近的对称中心.C00(,)x y C x(1,0)T C11x=r y=2AB=22211y+=y r=C22(1)(2x y-+-=x=1)B C B1)kxy-=Cd=1k=C B x1)y=+x1=C B x1-2()||f x x ax=-[0,1]()g a a=()g a解:(Ⅰ)根据表中已知数据,解得π5,2,6A ωϕ===-. 数据补全如下表:x ωϕ+ 0π2π 3π2 2π xπ12 π3 7π125π613π12 sin()A x ωϕ+0 5 0 5-且函数表达式为()5sin(2)6f x x =-.(Ⅱ)由(Ⅰ)知π()5sin(2)6f x x =-,因此 πππ()5sin[2()]5sin(2)666g x x x =+-=+.因为sin y x =的对称中心为(π,0)k ,k ∈Z . 令π2π6x k +=,解得ππ212k x =-,k ∈Z .即()y g x =图象的对称中心为ππ0212k -(,),k ∈Z ,其中离原点O 最近的对称中心为π(,0)12-. (19)【2015年湖北,文19,12分】设等差数列{}n a 的公差为d 前n 项和为n S ,等比数列{}n b 的公比为q .已知11b a =,22b =,q d =,10100S =.(Ⅰ)求数列{}n a ,{}n b 的通项公式;(Ⅱ)当1d >时,记n n nac b =,求数列{}n c 的前n 项和n T .解:(Ⅰ)由题意知:1110451002a d a d -=⎧⎨=⎩,即1129202a d a d +=⎧⎨=⎩,解得112a d =⎧⎨=⎩或1929a d =⎧⎪⎨=⎪⎩,故1212n n n a n b -=-⎧⎪⎨=⎪⎩或()112799299n n n a n b -⎧=+⎪⎪⎨⎛⎫⎪= ⎪⎪⎝⎭⎩. (Ⅱ)由1d >,知21n a n =-,12n n b -=,故1212n n n c --=,于是2341357921122222n n n T --=+++++L L ① 2345113579212222222n n n T -=+++++L L ②由①-②可得234521111111212323222222222n n n n n n T --+=++++++-=-L L ,故12362nn n T -+=-. (20)【2015年湖北,文20,13分】《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P ABCD - 中,侧棱PD ⊥底面ABCD ,且PD CD =,点E 是PC 的中点,连接,,DE BD BE .(Ⅰ)证明:DE ⊥平面PBC . 试判断四面体EBCD 是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,请说明理由;(Ⅱ)记阳马P ABCD -的体积为1V ,四面体EBCD 的体积为2V ,求12VV 的值.解:(Ⅰ)因为PD ⊥底面ABCD ,所以PD BC ⊥. 由底面ABCD 为长方形,有BC CD ⊥,而PD CD D =I ,所以BC ⊥平面PCD . DE ⊂平面PCD ,所以BC DE ⊥. 又因为PD CD =,点E 是PC 的中点, 所以DE PC ⊥. 而PC BC C =I ,所以DE ⊥平面PBC .由BC ⊥平面PCD ,DE ⊥平面PBC ,可知四面体EBCD 的四个面都是直角三角形,即四面体EBCD 是一个鳖臑,其四个面的直角分别是,,,.BCD BCE DEC DEB ∠∠∠∠(Ⅱ)由已知,PD 是阳马P ABCD -的高,所以11133ABCD V S PD BC CD PD =⋅=⋅⋅;由(Ⅰ)知,DE 是鳖臑D BCE -的高, BC CE ⊥,所以21136BCE V S DE BC CE DE ∆=⋅=⋅⋅.在Rt △PDC 中,因为PD CD =,点E 是PC 的中点,所以2DE CE CD ==,于是 12123 4.16BC CD PD V CD PD V CE DEBC CE DE ⋅⋅⋅===⋅⋅⋅(21)【2015年湖北,文21,14分】设函数()f x ,()g x 的定义域均为R ,且()f x 是奇函数,()g x 是偶函数,()()e x f x g x +=,其中e 为自然对数的底数.(Ⅰ)求()f x ,()g x 的解析式,并证明:当0x >时,()0f x >,()1g x >;(Ⅱ)设0a ≤,1b ≥,证明:当0x >时,()()(1)()(1)f x ag x a bg x b x+-<<+-.解:(Ⅰ)由()f x , ()g x 的奇偶性及()()e x f x g x +=, ① ()()e .x f x g x --+= ②联立①②解得1()(e e )2x x f x -=-,1()(e e )2x x g x -=+.当0x >时,e 1x >,0e 1x -<<,故()0.f x > ③ 又由基本不等式,有1()(e e )e e 12x x x x g x --=+>=,即() 1.g x > ④(Ⅱ)由(Ⅰ)得 2111e 1()(e )(e )(e e )()2e 2e 2x x x x x x x f x g x -''=-=+=+=, ⑤2111e 1()(e )(e )(e e )()2e 2e 2x x x x x x x g x f x -''=+=-=-=, ⑥当0x >时,()()(1)f x ag x a x >+-等价于()()(1)f x axg x a x >+-, ⑦()()(1)f x bg x b x<+-等价于()()(1).f x bxg x b x <+- ⑧设函数 ()()()(1)h x f x cxg x c x =---,由⑤⑥,有()()()()(1)h x g x cg x cxf x c '=----(1)[()1]().c g x cxf x =--- 当0x >时,(1)若0c ≤,由③④,得()0h x '>,故()h x 在[0,)+∞上为增函数,从而()(0)0h x h >=,即()()(1)f x cxg x c x >+-,故⑦成立.(2)若1c ≥,由③④,得()0h x '<,故()h x 在[0,)+∞上为减函数,从而()(0)0h x h <=,即()()(1)f x cxg x c x <+-,故⑧成立.综合⑦⑧,得 ()()(1)()(1)f x ag x a bg x b x+-<<+-.(22)【2015年湖北,文22,14分】一种作图工具如图1所示.O 是滑槽AB 的中点,短杆ON 可绕O 转动,长杆MN 通过N 处铰链与ON 连接,MN 上的栓子D 可沿滑槽AB 滑动,且1DN ON ==,3MN =.当栓子D 在滑槽AB 内作往复运动时,带动..N 绕O 转动一周(D 不动时,N 也不动),M 处的笔尖画出的曲线记为C .以O 为原点,AB 所在的直线为x 轴建立如图2所示的平面直角坐标系. (Ⅰ)求曲线C 的方程;(Ⅱ)设动直线l 与两定直线1:20l x y -=和2:20l x y +=分别交于,P Q 两点.若直线l 总与曲线C 有且只有一个公共点,试探究: △OPQ 的面积是否存在最小值?若存在,求出该最小值;若 不存在,说明理由.解:(Ⅰ)设点(,0)(||2)D t t ≤,00(,),(,)N x y M x y ,依题意,2MD DN =u u u u r u u u r,且||||1DN ON ==u u u r u u u r ,所以00(,)2(,)t x y x t y --=-,且2200220()1,1.x t y x y ⎧-+=⎪⎨+=⎪⎩ 即0022,2.t x x t y y -=-⎧⎨=-⎩且0(2)0.t t x -= 由于当点D 不动时,点N也不动,所以t 不恒等于0,于是02t x =,故00,42x yx y ==-,代入22001x y +=,可得221164x y +=,即所求的曲线C 的方程为22 1.164x y +=(Ⅱ)(1)当直线l 的斜率不存在时,直线l 为4x =或4x =-,都有14482OPQ S ∆=⨯⨯=.(2)当直线l 的斜率存在时,设直线1:()2l y kx m k =+≠±,由22,416,y kx m x y =+⎧⎨+=⎩消去y ,可得222(14)84160k x kmx m +++-=.因为直线l 总与椭圆C 有且只有一个公共点,所以2222644(14)(416)0k m k m ∆=-+-=,即22164m k =+. ① 又由,20,y kx m x y =+⎧⎨-=⎩可得2(,)1212m m P k k --;同理可得2(,)1212m m Q k k -++.由原点O 到直线PQ 的距离为d 和|||P Q PQ x x -,可得22111222||||||||222121214OPQP Q m m m S PQ d m x x m k k k ∆=⋅=-=⋅+=-+-. ② 将①代入②得,222241281441OPQk m S k k ∆+==--. 当214k >时,2224128()8(1)84141OPQ k S k k ∆+==+>--;当2104k ≤<时,2224128()8(1)1414OPQ k S k k ∆+==-+--.因2104k ≤<,则20141k <-≤,22214k ≥-,所以228(1)814OPQ S k∆=-+≥-, 当且仅当0k =时取等号.所以当0k =时,OPQ S ∆的最小值为8.综合(1)(2)可知,当直线l 与椭圆C 在四个顶点处相切时,△OPQ 的面积取得最小值8.。

2015年高考新课标Ⅰ卷文科数学【 答案加解析】

2015年高考新课标Ⅰ卷文科数学【 答案加解析】

绝密★启封并使用完毕前2015年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至3页,第Ⅱ卷4至6页。

注意事项:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上。

考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。

2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。

第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。

3.考试结束,监考员将试题卷、答题卡一并收回。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合A={x|x=3n+2,n ∈N},B={6,8,12,14},则集合A ⋂B 中元素的个数为(A )5 (B )4 (C )3 (D )2解析:{|32,}{6,8,12,14}{8,14}A B x x n n N ==+∈=,答案选D.(2)已知点A (0,1),B (3,2),向量AC =(-4,-3),则向量BC =(A )(-7,-4) (B )(7,4) (C )(-1,4) (D )(1,4)解析:由(4,3)AC =--及点A (0,1)可得点C (-4,-2),则(43,22)(7,4)BC =----=--,答案选A.(3)已知复数z 满足(z-1)i=i+1,则z=(A )-2-i (B )-2+i (C )2-i (D )2+i解析:由(z-1)i=i+1可得112i z i i+=+=-,答案选C (4)如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为(A )103 (B )15 (C )110 (D )120解析:由题意可知1,2,3,4,5中只有3,4,5这一组勾股数,3335110C P C ==,答案选C.(5)已知椭圆E 的中心在坐标原点,离心率为12,E 的右焦点与抛物线C :y²=8x 的焦点重合,A ,B 是C 的准线与E 的两个交点,则|AB|=(A )3 (B )6 (C )9 (D )12解析:抛物线C :y²=8x 的焦点为(2,0),则椭圆E 22221(0)x y a b a b+=>>中的22122,,4,12,||62c b c e a b AB a a ========,答案故选B.(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。

2015年全国卷1文科高考真题数学卷word版(附答案)68832

2015年全国卷1文科高考真题数学卷word版(附答案)68832

2015 年一般高等学校招生全国一致考试(新课标1 卷)文一、选择题:每题5分,共60分1、已知会合 A{ x x 3n 2,nN}, B{6,8,10,12,14} ,则会合 A I B 中的元素个数为(A ) 5(B )4(C )3(D )2uuur4,uuur2、已知点 A(0,1), B(3,2) ,向量 AC (3) ,则向量 BC(A ) ( 7, 4)1( B ) (7, 4) (C ) (1,4)( D ) (1,4)、已知复数z 知足 ( z1)ii ,则z( )3( A )2 i( B ) 2 i(C ) 2 i(D ) 2 i4、假如 3 个正整数可作为一个直角三角形三条边的边长,则称这 3 个数为一组勾股数, 从 1,2,3,4,5 中任取 3 个不一样的数,则这 3 个数构成一组勾股数的概率为()( A )311( D )110( B )( C )2051 105、已知椭圆 E 的中心为坐标原点, 离心率为 ,E 的右焦点与抛物线 C : y 28x 的焦点重合, A, B 是2C 的准线与 E 的两个交点,则AB(A ) 3(B ) 6 (C ) 9 (D )126、《九章算术》 是我国古代内容极为丰富的数学名著, 书中有以下问题: “今有委米依垣内角,下周八尺,高五尺,问 ”积及为米几何? ”其意思 为: “在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一) ,米堆底部的弧长为 8 尺,米堆的高为 5 尺,问米堆的体积和堆放的米各为多少? ”已知 1 斛米的体积约为 1.62 立方尺,圆周率约为 3,估量出堆放的米约有( )(A ) 14斛(B ) 22斛 ( C ) 36斛 (D ) 66斛7 、已知 { a n } 是公差为1 的等差数列, S n 为 { a n } 的前 n 项和,若S 8 4S 4 ,则 a 10()( A ) 17( B )19(C ) 10(D ) 12228、函数 f (x) cos( x) 的部分图像以下图,则f (x) 的单一递减区间为( )( A ) ( k13Z, k), k44( B ) (2k1 ,2 k3 Z4), k4( C ) (k1 , k3), k Z44( D ) (2 k1,2 k3), k Z449、履行右边的程序框图,假如输入的t 0.01,则输出的 n()(A ) 5(B ) 6(C ) 7(D )82x 12, x110、已知函数 f (x),log 2 (x1),x 1且 f (a)3,则 f (6 a)7 (A )4 ( B )54( C )34( D ) 1411、圆柱被一个平面截去一部分后与半球(半径为r )构成一个几何体,该几何体的三视图中的正视图和俯视图以下图,若该几何体的表面积为 16 20 ,则 r ( )(A )1(B ) 2(C ) 4(D )812、设函数 yf (x) 的图像与 y 2x a 的图像对于直线 yx 对称,且f ( 2) f ( 4) 1 ,则 a ( )( A ) 1 (B )1(C ) 2 (D ) 4二、填空题:本大题共 4小题,每题 5分13、数列 a n 中 a 1 2, a n 12a n , S n 为 a n 的前 n 项和,若 S n 126 ,则 n.14.已知函数 fxax 3 x 1 的图像在点 1, f 1 的处的切线过点 2,7,则 a.x y 2 015. 若 x,y 知足拘束条件x 2y 1 0 ,则 z=3x+y 的最大值为 .2x y 216.已知 F 是双曲线 C : x 2y 2 1 的右焦点, P 是 C 左支上一点, A 0,6 6 ,当APF 周长最小时,8该三角形的面积为 .三、解答题17. (本小题满分 12 分)已知 a,b, c 分别是 ABC 内角 A, B, C 的对边, sin 2 B 2sin Asin C .( I )若 a b ,求 cos B;( II )若 B90o ,且 a2, 求 ABC 的面积 .18. (本小题满分12 分)如图四边形 ABCD 为菱形, G 为 AC 与 BD 交点, BE平面 ABCD ,N 两点.( I )求 k 的取值范围;uuuur uuur 12 ,此中 O 为坐标原点,求MN .(II )若 OM ON 21. (本小题满分 12 分)设函数f xe 2xa ln x .( I )议论 fx 的导函数f x 的零点的个数;( II )证明:当 a0 时 f x2a a ln2.a请考生在 22、 23、 24 题中任选一题作答 ,假如多做 ,则按所做的第一题计分 ,做答时请写清题号( I )证明:平面AEC 平面 BED ;23. (本小题满分10 分)选修 4-4:坐标系与参数方程xOy 中,直线 C 1 : x2,圆C 222,x 轴正半120o , AE6,求该三棱锥的侧面积在直角坐标系 : x 1y 21 ,以坐标原点为极点 ( II )若 ABCEC , 三棱锥 E ACD 的体积为.轴为极轴成立极坐标系 .3( I )求 C 1,C 2 的极坐标方程 .19. (本小题满分12 分)某企业为确立下一年度投入某种产品的宣传费,需认识年宣传费x (单位:千π元)对年销售量 y (单位: t )和年收益 z (单位:千元)的影响,对近8 年的宣传费 x 和年销售量( II )若直线 C 3 的极坐标方程为R ,设 C 2, C 3 的交点为 M , N ,求 C 2 MN 的面积 .i4y i i 1,2, L ,8 数据作了初步办理,获得下边的散点图及一些统计量的值.24. (本小题满分 10 分)选修 4-5:不等式选讲已知函数 f x x 1 2 x a , a 0 .( I )当 a 1 时求不等式 f x 1 的解集;( II )若 fx 的图像与 x 轴围成的三角形面积大于6,求 a 的取值范围 .( I )依据散点图判断, y a bx 与 y c d x ,哪一个适合作为年销售量 y 对于年宣传费 x 的回归方程种类(给出判断即可,不用说明原因); ( II )依据( I )的判断结果及表中数据,成立 y 对于 x 的回归方程;( III )已知这类产品的年收益 z 与 x , y 的关系为 z 0.2 y x ,依据( II )的结果回答以下问题:( i )当年宣传费 x =49 时,年销售量及年收益的预告值时多少? ( ii )当年宣传费 x 为什么值时,年收益的预告值最大?20. (本小题满分12 分)已知过点 A 1,022且斜率为 k 的直线 l 与圆 C : x 2 y 31交于 M ,2015 年一般高等学校招生全国一致考试(新课标 1 卷)文答案一、选择题( 1)D (2)A (3)C (4)C ( 5)B (6)B( 7)B( 8)D(9)C (10)A( 11)B (12)C二、填空题(13) 6(14)1( 15)4(16) 12 6三、解答题17、解:( I )由题设及正弦定理可得b 2 =2ac.2又 a=b ,可得 cosB=ac 2 b 2 = 1 6 分( II )由( I )知 b 22ac 4=2ac.因为 B= 90o ,由勾股定理得 a 2 c 2 =b 2 .故 a 2 c 2 =2ac ,的 c=a= 2 . 所以△ ABC 的面积为 1. 12 分 18、解:( I )因为四边形 ABCD 为菱形,所以 AC ⊥BD.因为 BE ⊥平面 ABCD,所以 AC ⊥ BE,故 AC ⊥平面 BED.又 AC 平面 AEC, 所以平面 AEC ⊥平面 BED.5 分( II )设 AB= x ,在菱形 ABCD 中,又∠ ABC= 120o,可得 AG=GC=3x , GB=GD= x .22因为 AE ⊥EC,所以在 Rt △ AEC 中,可的 EG=3x .2由 BE ⊥平面 ABCD,知△ EBG 为直角三角形,可得BE=2x .2由已知得,三棱锥 E-ACD 的体积 V EACD =1 × 1 AC ·GD ·BE= 6 x 3 6 . 故 x =2329 分243进而可得 AE=EC=ED= 6 .所以△ EAC 的面积为 3,△ EAD 的面积与 △ECD 的面积均为 5 .故三棱锥 E-ACD 的侧面积为 3+2 5 .12 分19、解:( I )由散点图能够判断, y=c+dx 适合作为年销售量y 对于年宣传费 x 的回归方程式种类 .( II )令 wx ,先成立 y 对于 w 的线性回归方程式.因为8) i 1( w i w)( y i y)108.8d=868 ,(w i w) 21.6)i1y)563 686.8 100.6 ,cd w所以 y 对于 w 的线性回归方程为)68w ,所以 y 对于 x 的回归方程为y=100.6) 100.668 xy(Ⅲ)( i )由( II )知,当 x =49 时,年销售量y 的预告值)68 49=576.6 ,y 100.6年收益 z 的预告值)0.2 49 66.329 分z=576.6( ii )依据( II )的结果知,年收益z 的预告值)x)-x=-x 13.6 x 20.12 .z=0.2(100.6+68 所以当x 13.6 )2 =6.8 ,即 x =46.24 时, z 获得最大值 .故年宣传费为 46.24 千元时,年收益的预告值最大 .12 分20、解: l 的方程为 y kx1( I )由题设,可知直线.因为 l 与 C 交于两点,所以 2k 3 11 k2 1.解得47 k 47 .33所以 k 的取值范围为(47 , 4 7) .5 分33( II )设 M x 1, y 1 , N ( x 2 , y 2 ) . 将 ykx 1 代入方程 ( x2)2 ( y 3)21 ,整理得(1k 2 )x 2 4(1 k )x 7 0 .所以 x 1 x 2 4(1 k )7 2 . 1 k 2 , x 1 x 2k 1OM ONc 1x 2 y 1 y 21 k2 x 1x 2 k x 1 x 214k 1 k8 .1 k 2由题设可得4k 1 k8=12 ,解得 k=1 ,所以 l 的方程是 y=x+1.1 k 2故圆心 C 在 l上,所以 MN 2 .12 分21、解:( I ) fx 的定义域为 0,, fx2e 2xa(x 0) .当 a ≤ 0 时, f x 0,f x 没有零点;x当 a 0 时,因为 e2x单一递加,a单一递减,所以f x 在 0,单一递加,又f a 0 ,当 b 知足 0< b < a 且 b <1x时, f (b) 0,故当 a < 0 时 fx 存在独一零点 .446 分( II )由( I ),可设 f x 在 0,的独一零点为 x 0 ,当 x0,x 0 时, f x < 0;当 xx 0, 时, f x >0.故 f x 在 0, 单一递减,在 x ,单一递加,所以xx 0 时, f x 获得最小值,最小值为f x 0 .因为 2e2xa 0 ,所以 f x 0a 2ax 0 a1n 22a a1n 2.x 02 x 0 aa 故当 a 0时, f x2a a1n 2.12 分a( II )设 CE=1 , AE= x ,由已知得 AB= 2 3 ,BE=12 x 22CE BE ,.由射影定理可得,AE所以 x 212 x 2 ,即 x 4 x 2 12 0 .可得 x3 ,所以∠ ACB= 60o .10 分23、解:( I )因为 x cos , ysin ,所以 C 1 的极坐标方程为 cos 2 ,C 2 的极坐标方程为 22cos4 sin40 . 5 分(II )将代入 22 cos 4 sin4 0,得2324 0,解得41 22,22.故 122,即 MN2因为 C 2 的半径为 1,所以C 2MN 1 10 分的面积为.224、解:( I )当 a 1 时, f x1化为 x 1 2 x 1 1>0 .当 x 1时,不等式化为 x 4>0 ,无解;当 1<x <1时,不等式化为 3x 2>0 ,解得 2< x <1;x 1 3当 ,不等式化为 - x +2 > 0,解得 1≤ x <2.f x1x 22所以x.5 分的解集为︱<<3x 12a, x < 1 ( II )由题设可得,f x3x12a, 1 x a,x 1 2a, x < a.所以函数 fx 的图像与 x 轴围成的三角形的三个丁点分别为2 aA 2a1,0, B 2a 1,0 , C a,a1 ,△ ABC 的面积为 1 .233由题设得2a12> 6,故 a > 2.32,所以 a 的取值范围为 .10 分。

(word完整版)2015年全国高考文科数学试题及答案-新课标1,推荐文档

(word完整版)2015年全国高考文科数学试题及答案-新课标1,推荐文档

绝密★启封并使用完毕前2015年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至3页,第Ⅱ卷4至6页。

注意事项:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上。

考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。

2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。

第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。

3. 考试结束,监考员将试题卷、答题卡一并收回。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合A={x|x=3n+2,n ∈N},B={6,8,12,14},则集合A ⋂B 中元素的个数为(A )5(B )4(C )3(D )2(2)已知点A (0,1),B (3,2),向量AC u u u r =(-4,-3),则向量BC uuu r =(A )(-7,-4) (B )(7,4) (C )(-1,4) (D )(1,4) (3)已知复数z 满足(z-1)i=i+1,则z=(A )-2-I (B )-2+I (C )2-I (D )2+i(4)如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为(A )103 (B )15 (C )110 (D )120(5)已知椭圆E 的中心在坐标原点,离心率为12,E 的右焦点与抛物线C :y ²=8x 的焦点重合,A ,B 是C 的准线与E 的两个焦点,则|AB|= (A )3 (B )6 (C )9 (D )12(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。

2015年高考真题——数学文(湖北卷)word版有答案

2015年高考真题——数学文(湖北卷)word版有答案

绝密★启用前2015年普通高等学校招生全国统一考试(湖北卷)数 学(文史类)本试题卷共5页,22题。

全卷满分150分。

考试用时120分钟。

★祝考试顺利★注意事项:1.答卷前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.i 为虚数单位,607i =A .i -B .iC .1-D .12.我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534 石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为 A .134石 B .169石 C .338石 D .1365石3.命题“0(0,)x ∃∈+∞,00ln 1x x =-”的否定是 A .0(0,)x ∃∈+∞,00ln 1x x ≠- B .0(0,)x ∃∉+∞,00ln 1x x =- C .(0,)x ∀∈+∞,ln 1x x ≠-D .(0,)x ∀∉+∞,ln 1x x =-4.已知变量x 和y 满足关系0.11y x =-+,变量y 与z 正相关. 下列结论中正确的是 A .x 与y 负相关,x 与z 负相关 B .x 与y 正相关,x 与z 正相关 C .x 与y 正相关,x 与z 负相关 D .x 与y 负相关,x 与z 正相关5.12,l l 表示空间中的两条直线,若p :12,l l 是异面直线;q :12,l l 不相交,则 A .p 是q 的充分条件,但不是q 的必要条件 B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件6.函数256()lg 3x x f x x -+-的定义域为A .(2,3)B .(2,4]C .(2,3)(3,4]D .(1,3)(3,6]-7.设x ∈R ,定义符号函数1,0,sgn 0,0,1,0.x x x x >⎧⎪==⎨⎪-<⎩则 A .|||sgn |x x x = B .||sgn ||x x x = C .||||sgn x x x =D .||sgn x x x =8. 在区间[0,1]上随机取两个数,x y ,记1p 为事件“12x y +≤”的概率,2p 为事件“12xy ≤” 的概率,则A .1212p p << B .1212p p << C .2112p p <<D .2112p p << 9.将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位 长度,得到离心率为2e 的双曲线2C ,则 A .对任意的,a b ,12e e > B .当a b >时,12e e >;当a b <时,12e e < C .对任意的,a b ,12e e <D .当a b >时,12e e <;当a b <时,12e e > 10.已知集合22{(,)1,,}A x y x y x y =+≤∈Z ,{(,)||2,||2,,}B x y x y x y =≤≤∈Z ,定义集合 12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为 A .77 B .49 C .45 D .30二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号.......的位 置上. 答错位置,书写不清,模棱两可均不得分. 11.已知向量OA AB ⊥,||3OA =,则OA OB ⋅=_________.12.若变量,x y 满足约束条件4,2,30,x y x y x y +≤⎧⎪-≤⎨⎪-≥⎩则3x y +的最大值是_________.13.函数2π()2sin sin()2f x x x x =+-的零点个数为_________.14.某电子商务公司对10000名网络购物者2014年度的消费情况进行统计,发现消费金额 (单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示. (Ⅰ)直方图中的a =_________;(Ⅱ)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为_________.15.如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75的方向上,仰角为30,则此山的高度CD =_________m.16.如图,已知圆C 与x 轴相切于点(1,0)T ,与y 轴正半 轴交于两点A ,B (B 在A 的上方),且2AB =. (Ⅰ)圆C 的标准..方程为_________; (Ⅱ)圆C 在点B 处的切线在x 轴上的截距为_________.17. a 为实数,函数2()||f x x ax =-在区间[0,1]上的最大值记为()g a . 当a =_________时,()g a 的值最小.第16题图第14题图 第15题图AB三、解答题:本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分12分)某同学用“五点法”画函数π()sin()(0,||)2f x A x ωϕωϕ=+><在某一个周期内的图象时,列表并填入了部分数据,如下表:(Ⅰ)请将上表数据补充完整,填写在答题卡上相应位置...........,并直接写出函数()f x 的解 析式;(Ⅱ)将()y f x =图象上所有点向左平行移动π6个单位长度,得到()y g x =图象,求 ()y g x =的图象离原点O 最近的对称中心. 19.(本小题满分12分)设等差数列{}n a 的公差为d ,前n 项和为n S ,等比数列{}n b 的公比为q .已知11b a =,22b =,q d =,10100S =.(Ⅰ)求数列{}n a ,{}n b 的通项公式; (Ⅱ)当1d >时,记nn na cb =,求数列{}nc 的前n 项和n T . 20.(本小题满分13分)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.在如图所示的阳马P ABCD -中,侧棱PD ⊥底面ABCD ,且PD CD =,点E 是PC 的 中点,连接,,DE BD BE .(Ⅰ)证明:DE ⊥平面PBC . 试判断四面体EBCD 是否为鳖臑,若是,写出其每个面的直角(只需 写出结论);若不是,请说明理由;(Ⅱ)记阳马P ABCD -的体积为1V ,四面体EBCD 的体积为2V ,求12V V 的值. 第20题图21.(本小题满分14分)设函数()f x ,()g x 的定义域均为R ,且()f x 是奇函数,()g x 是偶函数, ()()e x f x g x +=,其中e 为自然对数的底数.(Ⅰ)求()f x ,()g x 的解析式,并证明:当0x >时,()0f x >,()1g x >; (Ⅱ)设0a ≤,1b ≥,证明:当0x >时,()()(1)()(1)f x ag x a bg x b x+-<<+-. 22.(本小题满分14分)一种画椭圆的工具如图1所示.O 是滑槽AB 的中点,短杆ON 可绕O 转动,长杆MN 通过N 处铰链与ON 连接,MN 上的栓子D 可沿滑槽AB 滑动,且1DN ON ==,3MN =.当栓子D 在滑槽AB 内作往复运动时,带动..N 绕O 转动,M 处的笔尖画出的椭圆记为C .以O 为原点,AB 所在的直线为x 轴建立如图2所示的平面直角坐标系. (Ⅰ)求椭圆C 的方程;(Ⅱ)设动直线l 与两定直线1:20l x y -=和2:20l x y +=分别交于,P Q 两点.若直线l总与椭圆C 有且只有一个公共点,试探究:△OPQ 的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.第22题图1第22题图2绝密★启用前2015年普通高等学校招生全国统一考试(湖北卷)数学(文史类)试题参考答案一、选择题(本大题共10小题,每小题5分,共50分)1.A 2.B 3.C 4.A 5.A 6.C 7.D 8.B 9.D 10.C 二、填空题(本大题共7小题,每小题5分,共35分)11.9 12.10 13.2 14.(Ⅰ)3;(Ⅱ)600015.16.(Ⅰ)22(1)(2x y-+=;(Ⅱ)1-17.2三、解答题(本大题共5小题,共65分)18.(12分)(Ⅰ)根据表中已知数据,解得π5,2,6Aωϕ===-. 数据补全如下表:且函数表达式为π()5sin(2)6f x x=-.(Ⅱ)由(Ⅰ)知π()5sin(2)6f x x=-,因此πππ()5sin[2()]5sin(2)666g x x x=+-=+.因为siny x=的对称中心为(π,0)k,k∈Z. 令π2π6x k+=,解得ππ212kx=-,k∈Z.即()y g x=图象的对称中心为ππ0 212k-(,),k∈Z,其中离原点O最近的对称中心为π(,0)12-. 19.(12分)(Ⅰ)由题意有,111045100,2,a d a d +=⎧⎨=⎩ 即112920,2,a d a d +=⎧⎨=⎩解得11,2,a d =⎧⎨=⎩ 或19,2.9a d =⎧⎪⎨=⎪⎩ 故121,2.n n n a n b -=-⎧⎪⎨=⎪⎩或11(279),929().9n n n a n b -⎧=+⎪⎪⎨⎪=⋅⎪⎩(Ⅱ)由1d >,知21n a n =-,12n n b -=,故1212n n n c --=,于是 2341357921122222n n n T --=++++++, ① 2345113579212222222n n n T -=++++++. ② ①-②可得 221111212323222222n n n n n n T --+=++++-=-, 故n T 12362n n -+=-.20.(13分)(Ⅰ)因为PD ⊥底面ABCD ,所以PD BC ⊥.由底面ABCD 为长方形,有BC CD ⊥,而PDCD D =,所以BC ⊥平面PCD . DE ⊂平面PCD ,所以BC DE ⊥.又因为PD CD =,点E 是PC 的中点,所以DE PC ⊥. 而PC BC C =,所以DE ⊥平面PBC .由BC ⊥平面PCD ,DE ⊥平面PBC ,可知四面体EBCD 的四个面都是直角三角形,即四面体EBCD 是一个鳖臑,其四个面的直角分别是,,,.BCD BCE DEC DEB ∠∠∠∠ (Ⅱ)由已知,PD 是阳马P ABCD -的高,所以11133ABCD V S PD BC CD PD =⋅=⋅⋅;由(Ⅰ)知,DE 是鳖臑D BCE -的高, BC CE ⊥,所以21136BCE V S DE BC CE DE ∆=⋅=⋅⋅.在Rt △PDC 中,因为PD CD =,点E 是PC 的中点,所以DE CE ==, 于是 12123 4.16BC CD PD V CD PD V CE DEBC CE DE ⋅⋅⋅===⋅⋅⋅21.(14分) (Ⅰ)由()f x , ()g x 的奇偶性及()()e x f x g x +=, ①得 ()()e .x f x g x --+= ②联立①②解得1()(e e )2x x f x -=-,1()(e e )2x x g x -=+.当0x >时,e 1x >,0e 1x -<<,故()0.f x > ③又由基本不等式,有1()(e e )12x x g x -=+=,即() 1.g x > ④(Ⅱ)由(Ⅰ)得 2111e 1()(e )(e )(e e )()2e 2e 2x x x x x x x f x g x -''=-=+=+=, ⑤2111e 1()(e )(e )(e e )()2e 2e 2x x x x x x x g x f x -''=+=-=-=, ⑥当0x >时,()()(1)f x ag x a x>+-等价于()()(1)f x axg x a x >+-, ⑦()()(1)f x bg x b x<+-等价于()()(1).f x bxg x b x <+- ⑧设函数 ()()()(1)h x f x cxg x c x =---,由⑤⑥,有()()()()(1)h x g x cg x cxf x c '=----(1)[()1]().c g x cxf x =--- 当0x >时,(1)若0c ≤,由③④,得()0h x '>,故()h x 在[0,)+∞上为增函数,从而()(0)0h x h >=,即()()(1)f x cxg x c x >+-,故⑦成立.(2)若1c ≥,由③④,得()0h x '<,故()h x 在[0,)+∞上为减函数,从而()(0)0h x h <=,即()()(1)f x cxg x c x <+-,故⑧成立. 综合⑦⑧,得 ()()(1)()(1)f x ag x a bg x b x+-<<+-. 22.(14分)(Ⅰ)因为||||||314OM MN NO ≤+=+=,当,M N 在x 轴上时,等号成立;同理||||||312OM MN NO ≥-=-=,当,D O 重合,即MN x ⊥轴时,等号成立.所以椭圆C 的中心为原点O ,长半轴长为4,短半轴长为2,其方程为221.164x y +=(Ⅱ)(1)当直线l 的斜率不存在时,直线l 为4x =或4x =-,都有14482OPQ S ∆=⨯⨯=.(2)当直线l 的斜率存在时,设直线1:()2l y kx m k =+≠±,由22,416,y kx m x y =+⎧⎨+=⎩ 消去y ,可得222(14)84160k x kmx m +++-=. 因为直线l 总与椭圆C 有且只有一个公共点,所以2222644(14)(416)0k m k m ∆=-+-=,即22164m k =+. ① 又由,20,y kx m x y =+⎧⎨-=⎩可得2(,)1212m m P k k --;同理可得2(,)1212m m Q k k -++.由原点O 到直线PQ 的距离为d =和|||P Q PQ x x =-,可得22111222||||||||222121214OPQP Q m m m S PQ d m x x m k k k ∆=⋅=-=⋅+=-+-. ② 将①代入②得,222241281441OPQk m S k k ∆+==--. 当214k >时,2224128()8(1)84141OPQ k S k k ∆+==+>--;当2104k ≤<时,2224128()8(1)1414OPQ k S k k ∆+==-+--.因2104k ≤<,则20141k <-≤,22214k ≥-,所以228(1)814OPQ S k ∆=-+≥-, 当且仅当0k =时取等号.所以当0k =时,OPQ S ∆的最小值为8.综合(1)(2)可知,当直线l 与椭圆C 在四个顶点处相切时,△OPQ 的面积取得最小值8.。

最新2015年全国卷1文科高考真题数学卷word版(附答案)

最新2015年全国卷1文科高考真题数学卷word版(附答案)

2015年普通高等学校招生全国统一考试(新课标1卷)文 1 一、选择题:每小题5分,共60分2 1、已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B 中的元素个数为 3(A ) 5 (B )4 (C )3 (D )2 4 2、已知点(0,1),(3,2)A B ,向量(4,3)AC =--,则向量BC = 5 (A ) (7,4)-- (B )(7,4) (C )(1,4)- (D )(1,4)63、已知复数z 满足(1)1z i i -=+,则z =( ) 7 (A ) 2i -- (B )2i -+ (C )2i - (D )2i +8 4、如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾9 股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( ) 10 (A )310 (B )15 (C )110 (D )120115、已知椭圆E 的中心为坐标原点,离心率为12,E 的右焦点与抛物线2:8C y x =的焦12 点重合,,A B 是C 的准线与E 的两个交点,则AB = 13 (A ) 3 (B )6 (C )9 (D )1214 6、《九章算术》是我国古代内容极为丰富的数学名著,书15中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”16 积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,17 米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆18 的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛19 米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( ) 20 (A )14斛 (B )22斛 (C )36斛 (D )66斛21 7、已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =( )22(A ) 172(B )192(C )10 (D )1223 8、函数()cos()f x x ωϕ=+的部分图像如图所示,则()f x 的单24 调递减区间为( )25 (A )13(,),44k k k Z ππ-+∈26 (B )13(2,2),44k k k Z ππ-+∈27 (C )13(,),44k k k Z -+∈28 (D )13(2,2),44k k k Z -+∈293031 9、执行右面的程序框图,如果输入的0.01t =,则输出的n =( )32 (A ) 5 (B )6 (C )7 (D )83334 35 10、已知函数1222,1()log (1),1x x f x x x -⎧-≤=⎨-+>⎩ ,36 且()3f a =-,则(6)f a -=37 (A )74-38 (B )54-39 (C )34-40(D )14-41 42 43 11、圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的44三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( ) 45 (A )1 46 (B )2 47 (C )4 48 (D )84950 5152 12、设函数()y f x =的图像与2x a y +=的图像关于直线y x =-对称,且 53 (2)(4)1f f -+-=,则a =( )54 (A ) 1- (B )1 (C )2 (D )455二、填空题:本大题共4小题,每小题5分56 13、数列{}n a 中112,2,n n n a a a S +==为{}n a 的前n 项和,若126n S =,则n = .57 14.已知函数()31f x ax x =++的图像在点()()1,1f 的处的切线过点()2,7,则 58 a = .59 15. 若x ,y 满足约束条件20210220x y x y x y +-≤⎧⎪-+≤⎨⎪-+≥⎩,则z =3x +y 的最大值为 .60 16.已知F 是双曲线22:18y C x -=的右焦点,P 是C 左支上一点,()0,66A ,当APF ∆61周长最小时,该三角形的面积为 . 62 三、解答题63 17. (本小题满分12分)已知,,a b c 分别是ABC ∆内角,,A B C 的对边,2sin 2sin sin B A C =. 64 (I )若a b =,求cos ;B65 (II )若90B =,且2,a = 求ABC ∆的面积. 66 67 68 69 70 71 18. (本小题满分12分)如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ABCD ⊥平面,7273(I )证明:平面AEC ⊥平面BED ;74 (II )若120ABC ∠=,,AE EC ⊥ 三棱锥E ACD -的体积为6,求该三棱锥的侧面75 积.76 19. (本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年77 宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对78 近8年的宣传费i x 和年销售量()1,2,,8i y i =数据作了初步处理,得到下面的散点图及一79 些统计量的值. 8081 (I )根据散点图判断,y a bx =+与y c d x =+,哪一个适宜作为年销售量y 关于年82宣传费x 的回归方程类型(给出判断即可,不必说明理由); 83 (II )根据(I )的判断结果及表中数据,建立y 关于x 的回归方程;84 (III )已知这种产品的年利润z 与x ,y 的关系为0.2z y x =- ,根据(II )的结果85回答下列问题: 86 (i )当年宣传费x =49时,年销售量及年利润的预报值时多少? 87 (ii )当年宣传费x 为何值时,年利润的预报值最大?8889 20. (本小题满分12分)已知过点()1,0A 且斜率为k 的直线l 与圆C :90()()22231x y -+-=交于M ,N 两点. 91 (I )求k 的取值范围; 92 (II )若12OM ON ⋅=,其中O 为坐标原点,求MN .9321. (本小题满分12分)设函数()2ln x f x e a x =-. 94 (I )讨论()f x 的导函数()f x '的零点的个数;95(II )证明:当0a >时()22ln f x a a a≥+.96 请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请97 写清题号 98 23. (本小题满分10分)选修4-4:坐标系与参数方程99在直角坐标系xOy 中,直线1:2C x =-,圆()()222:121C x y -+-=,以坐标原点为极100点,x 轴正半轴为极轴建立极坐标系.101 (I )求12,C C 的极坐标方程. 102 (II )若直线3C 的极坐标方程为()πR 4θρ=∈,设23,C C 的交点为,M N ,求2C MN ∆ 的103面积.104 24. (本小题满分10分)选修4-5:不等式选讲 105 已知函数()12,0f x x x a a =+--> . 106 (I )当1a = 时求不等式()1f x > 的解集; 107 (II )若()f x 的图像与x 轴围成的三角形面积大于6,求a 的取值范围.108109110 2015年普通高等学校招生全国统一考试(新课标1卷)文111 答案112113一、 选择题 114(1)D (2)A (3)C (4)C (5)B (6)B115 (7)B (8)D (9)C (10)A (11)B (12)C116117 二、 填空题 118 (13)6 (14)1 (15)4 (16)119120 三、 解答题 121 17、解:122 (I )由题设及正弦定理可得2b =2ac.123 又a=b ,可得cosB=2222a c b ac +-=14……6分124 (II )由(I )知2b =2ac.125 因为B=o90,由勾股定理得222a c =b +. 126 故22ac =2ac +,的.127 所以△ABC 的面积为1. ……12分 128 18、解:129 (I )因为四边形ABCD 为菱形,所以AC ⊥BD.130 因为BE ⊥平面ABCD,所以AC ⊥BE,故AC ⊥平面BED.131 又AC ⊂平面AEC,所以平面AEC ⊥平面BED. ……5分 132 (II )设AB=x ,在菱形ABCD 中,又∠ABC=o120 ,可得133AG=GC=2x ,GB=GD=2x . 134 因为AE ⊥EC,所以在Rt △AEC 中,可的EG=2x . 135 由BE ⊥平面ABCD,知△EBG 为直角三角形,可得BE=2x . 136 由已知得,三棱锥E-ACD 的体积E ACD V -=13×12AC ·GD ·BE=3243x =. 137 故x =2 ……9分 138 从而可得.139 所以△EAC 的面积为3,△EAD 的面积与 △ECD140 故三棱锥E-ACD 的侧面积为. ……12分 141 19、解:142(I )由散点图可以判断,适宜作为年销售量y 关于年宣传费x 的回归方143程式类型.144 (II)令w =y 关于w 的线性回归方程式.由于14528181()()108.8d=681.6()iii i i w w y y w w ==--==-∑∑, 14656368 6.8100.6c y d w =-=-⨯=,147 所以y 关于w 的线性回归方程为y=100.668w +,因此y 关于x 的回归方程为148y 100.6=+149(Ⅲ)(i )由(II )知,当x =49时,年销售量y 的预报值150y100.6=+,151年利润z的预报值152z=576.60.24966.32⨯-=……9分153(ii)根据(II)的结果知,年利润z的预报值154=-20.12 x x+.15513.6=6.82=,即x=46.24时,z取得最大值.156故年宣传费为46.24千元时,年利润的预报值最大. ……12分15720、解:158(I)由题设,可知直线l的方程为1y kx=+.159因为l与C1.160解得k.161所以k的取值范围为. ……5分162(II)设()1122,,(,)M x y N x y.163将1y kx=+代入方程22(2)(3)1x y-+-=,整理得16422(1)4(1)70k x k x+-++=.165所以1212224(1)7,11kx x x xk k++==++.1661212OM ON c x y y⋅=+167()()2121211k x x k x x=++++168()24181k kk+=++.169由题设可得()24181k kk+=++=12,解得k=1,所以l的方程是y=x+1.170故圆心C在l上,所以2MN=. ……12分17121、解:172(I)()f x的定义域为()()20,,2(0)xaf x e xx'+∞=-〉.173当a≤0时,()()f x f x''〉,没有零点;174当0a〉时,因为2xe单调递增,ax-单调递减,所以()f x'在()0,+∞单调递增,又()0f a'〉,175当b满足0<b<4a且b<14时,()0f b'〈,故当a<0时()f x'存在唯一零点.176……6分177(II)由(I),可设()f x'在()0,+∞的唯一零点为x,当()0x x∈,时,()f x'<0;178当()x x∈+∞,时,()f x'>0.179故()f x在()0+∞,单调递减,在()x+∞,单调递增,所以x x=时,()f x取得最小值,180最小值为()0f x.181由于0220xaex-=,所以()002221212af x ax a n a a nx a a=++≥+.182故当0a〉时,()221f x a a na≥+. ……12分183(II)设CE=1,AE=x,由已知得AB=,BE=.由射影定理可得,1842AE CE BE=⋅,185所以2x,即42120x x+-=.可得x=ACB=60o.186……10分 187 23、解:188 (I )因为cos ,sin x y ρθρθ==,所以1C 的极坐标方程为cos 2ρθ=-,189 2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=. ……5分190 (II )将4πθ=代入22cos 4sin 40ρρθρθ--+=,得240ρ-+=,解得191 12ρρ==.故12ρρ-=MN =192 由于2C 的半径为1,所以2C MN ∆的面积为12. ……10分 193 24、解:194 (I )当1a =时,()1f x >化为12110x x +--->.195 当1x ≤-时,不等式化为40x ->,无解;196 当11x -<<时,不等式化为320x ->,解得213x <<;197 当1x ≥,不等式化为-x +2>0,解得1≤x <2.198 所以()1f x >的解集为223x x ⎧⎫⎨⎬⎩⎭︱<<. ……5分 199 (II )由题设可得,()12,1312,1,12,.x a x f x x a x a x a x a --⎧⎪=+--≤≤⎨⎪-++⎩<<200 所以函数()f x 的图像与x 轴围成的三角形的三个丁点分别为201 ()()21,0,21,0,,13a A B a C a a -⎛⎫++⎪⎝⎭,△ABC 的面积为()2213a +. 202203 由题设得()2213a +>6,故a >2.204 所以a 的取值范围为()2+∞,. ……10分205 206 207208209210 211 212 213 214 215 216 217 218 219 220221222。

2015年高考文科数学押题密卷word版含答案

2015年高考文科数学押题密卷word版含答案

2015年高考文科数学押题密卷(全国新课标Ⅰ卷)说明:一、本试卷分为第Ⅰ卷和第Ⅱ卷.第Ⅰ卷为选择题;第Ⅱ卷为非选择题,分为必考和选考两部分.二、答题前请仔细阅读答题卡上的“注意事项”,按照“注意事项”的规定答题. 三、做选择题时,每小题选出答案后,用铅笔把答题卡上对应题目的标号涂黑.如需改动,用橡皮将原选涂答案擦干净后,再选涂其他答案.四、考试结束后,将本试卷与原答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项符合题目要求.(1)设集合{}{}21,0,1,|M N x x x =-==,则M N ⋂=(A ){}1,0,1-(B ){}0,1(C ){}1 (D ){}0(2)复数z =1-3i1+2i,则(A )|z |=2 (B )z 的实部为1 (C )z 的虚部为-i (D )z 的共轭复数为-1+i (3)不等式x -1x 2-4>0的解集是(A )(-2,1)∪(2,+∞) (B )(2,+∞)(C )(-2,1)(D )(-∞,-2)∪(1,+∞)(4)执行右面的程序框图,若输出的k =2,则输入x 的取值范围是(A )(21,41) (B )[21,41] (C )(21,41] (D )[21,41) (5)已知p : ∀x ∈R ,ax 2-ax +1≥0,q :(a -1)2≤1;则p 是q 成立的(A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件 (6)函数f (x )=(x +2)3-(1 2)x的零点所在区间是(A )(-2,-1) (B )(-1,0) (C )(0,1) (D )(1,2)(7)已知向量a=(1, 2),b=(2,3)若(c +a )∥b ,c ⊥(b +a ),则c=(A )( 79 , 73 ) (B )( 73 , 79 )(C )(73 , 79 ) (D )(- 79 ,- 73)(8)某几何体的三视图如图所示,则该几何体的体积为(A )1136(B ) 3俯视图(C )533(D )433(9)已知等比数列{a n }的前n 项和为S n , a 1+a 3= 5 2,且a 2+a 4= 5 4,则S na n=(A )4n -1 (B )4n-1 (C )2n -1 (D )2n -1(10)已知函数f (x )=cos (2x +π 3),g (x )=sin (2x +2π3),将f (x )的图象经过下列哪种变换可以与g (x )的图象重合(A )向右平移 π12(B )向左平移 π6(C )向左平移 π12(D )向右平移 π6(11)过双曲线x 2a 2-y 2b2=1的一个焦点F 作一条渐近线的垂线,若垂足恰在线段OF (O 为原点)的垂直平分线上,则双曲线的离心率为 (A ) 2 (B )2 (C ) 5 (D ) 3(12)函数xx x x 2cos 21)(f +-=,其图像的对称中心是(A )(1,-1) (B )(-1,1) (C )(0,1)(D )(0,-1)第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填写在题中横线上. (13)在等差数列{a n }中,a 7=8,前7项和S 7=42,则其公差是为_________.(14)四棱锥P -ABCD 的底面是边长为42的正方形,侧棱长都等于45,则经过该棱锥五个顶点的球面面积为_________. (15)点P 在△ABC 内部(包含边界),|AC|=3, |AB|=4,|BC|=5,点P 到三边的距离分别是d 1, d 2 , d 3 ,则d 1+d 2+d 3的取值范围是_________.(16)△ABC 的顶点A 在圆O :x 2+y 2=1上,B ,C 两点在直线3x+y+3=0上,若|-AC |=4,则△ABC 面积的最小值为_____.三、解答题:本大题共70分,其中(17)—(21)题为必考题,(22),(23),(24)题为选考题.解答应写出文字说明、证明过程或演算步骤. (17)(本小题满分12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a ≥b ,sin A +3cos A =2sin B . (Ⅰ)求角C 的大小;(Ⅱ)求a +bc 的最大值.(18)(本小题满分12分)(Ⅰ(Ⅱ)从乙比赛得分在20分以下的6场比赛中随机抽取2场进行失误分析,求抽到恰好有1场得分不足10分的概率.(19)(本小题满分12分)如图,三棱柱ABC -A 1B 1C 1的侧面AB 1B 1A 为正方形,侧面BB 1C 1C 为菱形,∠CBB 1=60 ,AB ⊥B 1C . (Ⅰ)求证:平面AB 1B 1A ⊥BB 1C 1C ; (Ⅱ)若AB =2,求三棱柱ABC -A 1B 1C 1体积.B CB 1BAC 1A 1A(20)(本小题满分12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点M (-2,-1),离心率为22.过点M 作倾斜角互补的两条直线分别与椭圆C 交于异于M 的另外两点P 、Q . (Ⅰ)求椭圆C 的方程; (Ⅱ)试判断直线PQ 的斜率是否为定值,证明你的结论.(21)(本小题满分12分)已知函数 x 轴是函数图象的一条切线. (Ⅰ)求a ; (Ⅱ)已知 .请考生在第(22),(23),(24)三题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B 铅笔在答题卡上把所选题目对应的题号涂黑. (22)(本小题满分10分)选修4-1:几何证明选讲如图所示,AC 为⊙O 的直径,D 为BC ︵的中点,E 为BC 的中点. (Ⅰ)求证:DE ∥AB ; (Ⅱ)求证:AC ·BC =2AD ·CD .(23)(本小题满分10分)选修4-4:坐标系与参数方程在极坐标系Ox 中,直线C 1的极坐标方程为ρsin θ=2,M 是C 1上任意一点,点P 在射线OM 上,且满足|OP |·|OM |=4,记点P 的轨迹为C 2. (Ⅰ)求曲线C 2的极坐标方程;(Ⅱ)求曲线C 2上的点到直线ρcos (θ+4)=2距离的最大值.(24)(本小题满分10分)选修4-5:不等式选讲设f (x )=|x -3|+|x -4|. (Ⅰ)解不等式f (x )≤2; (Ⅱ)若存在实数x 满足f (x )≤ax -1,试求实数a 的取值范围.2015年高考文科数学押题密卷(全国新课标Ⅰ卷)参考答案一、选择题:BDACB BDCDA A C 二、填空题:(13)23;(14)100π;(15)[ 12 5,4];(16)1.三、解答题:(17)解:(Ⅰ)sin A+3cos A=2sin B即2sin(A+π3)=2sin B,则sin(A+π3)=sin B.…3分因为0<A,B<π,又a≥b进而A≥B,所以A+π3=π-B,故A+B=2π3,C=π3.……………………………6分(Ⅱ)由正弦定理及(Ⅰ)得a+b c =sin A+sin Bsin C=23[sin A+sin(A+π3)]=3sin A+cos A=2sin(A+π6). (10)分当A=π3时,a+bc取最大值2.……………………………12分(18)解:(Ⅰ)x-甲=18(7+9+11+13+13+16+23+28)=15,x-乙=18(7+8+10+15+17+19+21+23)=15,s2甲=18[(-8)2+(-6)2+(-4)2+(-2)2+(-2)2+12+82+132]=44.75,s2乙=18[(-8)2+(-7)2+(-5)2+02+22+42+62+82]=32.25.甲、乙两名队员的得分均值相等;甲的方差较大(乙的方差较小).…4分(Ⅱ)题设所述的6个场次乙得分为:7,8,10,15,17,19.……………………………7分从中随机抽取2场,这2场比赛的得分如下:(7,8),(7,10),(7,15),(7,17),(7,19),(8,10),(8,15),(8,17),(8,19),(10,15),(10,17),(10,19),(15,17),(15,19),(17,19),共15种可能,……………………………9分其中恰好有1场得分在10分以下的情形是:(7,10),(7,15),(7,17),(7,19),(8,10),(8,15),(8,17),(8,19),共8种可能,所求概率P=815.……………………………12分(19)解:(Ⅰ)由侧面AB1B1A为正方形,知AB⊥BB1.又AB⊥B1C,BB1∩B1C=B1,所以AB⊥平面BB1C1C,又AB⊂平面AB1B1A,所以平面AB1B1A⊥BB1C1C.…4分(Ⅱ)设O 是BB 1的中点,连结CO ,则CO ⊥BB 1.由(Ⅰ)知,CO ⊥平面AB 1B 1A ,且CO =32BC =32AB =3.连结AB 1,则V C -ABB 1= 1 3S △ABB 1·CO = 1 6AB 2·CO =233. …8分因V B 1-ABC =V C -ABB 1= 1 3V ABC -A 1B 1C 1=233,故三棱柱ABC -A 1B 1C 1的体积V ABC -A 1B 1C 1=23. ………………………12分 (20)解:(Ⅰ)由题设,得4a 2+1b2=1, ①且a 2-b 2a =22, ②由①、②解得a 2=6,b 2=3,椭圆C 的方程为x 26+y 23=1.………………………………………………5分(Ⅱ)记P (x 1,y 1)、Q (x 2,y 2).设直线MP 的方程为y +1=k (x +2),与椭圆C 的方程联立,得 (1+2k 2)x 2+(8k 2-4k )x +8k 2-8k -4=0,-2,x 1是该方程的两根,则-2x 1=8k 2-8k -41+2k 2,x 1=-4k 2+4k +21+2k 2.设直线MQ 的方程为y +1=-k (x +2),同理得x 2=-4k 2-4k +21+2k 2.………………………………………………9分因y 1+1=k (x 1+2),y 2+1=-k (x 2+2),故k PQ =y 1-y 2x 1-x 2=k (x 1+2)+k (x 2+2)x 1-x 2=k (x 1+x 2+4)x 1-x 2=8k1+2k28k 1+2k 2=1,因此直线PQ 的斜率为定值. ……………………………………………12分 (21)解:(Ⅰ)f '(x ) = 当x ∈(0,a )时,f '(x )<0,f (x )单调递减, 当x ∈(a ,+∞)时,f '(x )>0,f (x )单调递增. …………………………2分 ∵ x 轴是函数图象的一条切线,∴切点为(a ,0).f (a )=lna +1=0,可知a =1. ……………………………5分 (Ⅱ)令1+,由x>0得知t>1,,于是原不等式等价于: . ……………………………7分 取,由(Ⅰ)知: 当t ∈(0,1)时,g '(t )<0,g (t )单调递减, 当t ∈(1,+∞)时,g '(t )>0,g (t )单调递增. ∴ g (t )> g (1)=0,也就是.BCB 1BAC 1A 1AO∴ . ……………………………12分 (22)证明:(Ⅰ)连接OE ,因为D 为BC ︵的中点,E 为BC 的中点,所以OED 三点共线. 因为E 为BC 的中点且O 为AC 的中点,所以OE ∥AB ,故DE ∥AB .(Ⅱ)因为D 为BC ︵的中点,所以∠BAD =∠DAC ,又∠BAD =∠DCB ⇒∠DAC =∠DCB . 又因为AD ⊥DC ,DE ⊥CE ⇒△DAC ∽△ECD . ⇒AC CD =ADCE ⇒AD ·CD =AC ·CE⇒ 2AD ·CD =AC ·2CE⇒ 2AD ·CD =AC ·BC . (23)解:(Ⅰ)设P (ρ,θ),M (ρ1,θ),依题意有 ρ1sin θ=2,ρρ1=4. ……………………………3分 消去ρ1,得曲线C 2的极坐标方程为ρ=2sin θ. ………………………5分(Ⅱ)将C 2,C 3的极坐标方程化为直角坐标方程,得 C 2:x 2+(y -1)2=1,C 3:x -y =2. ………………………… …7分C 2是以点(0,1)为圆心,以1为半径的圆,圆心到直线C 3的距离d =322,故曲线C 2上的点到直线C 3距离的最大值为1+322. ………………………10分(24)(Ⅰ)f (x )=|x -3|+|x -4|=⎩⎪⎨⎪⎧7-2x ,x <3,1,3≤x ≤4,2x -7,x >4.………………………2分作函数y =f (x )的图象,它与直线y =2交点的横坐标为 5 2和 92,由图象知不等式f (x )≤2的解集为[5 2, 92]. ………………………5分(Ⅱ)函数y =ax -1当且仅当函数y =f (x )与直线y =ax -1有公共点时,存在题设的x .由图象知,a 取值范围为(-∞,-2)∪[ 12,+∞). …………………10分= 1 2A。

2015高考文数湖北卷试题答案解析(word版)

2015高考文数湖北卷试题答案解析(word版)

第1页
一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个
选项中,只有一项是符合题目要求的.)
1.i 为虚数单位,607
i
A .i
B .i
C .1
D .1
【答案】A . 【解析】试题分析:因为
607
2303
()
i
i i i ,所以应选A .
考点:1、复数的四则运算;
2.我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为(

A .134石
B .169石
C .338石
D .1365石
【答案】B .
考点:1、简单的随机抽样;3.命题“
(0,)x ,00ln 1x x ”的否定是
A .0(0,)x ,00ln 1
x x B .0(0,)x ,00ln 1x x C .
(0,
)x ,ln 1
x
x D .
(0,
)x
,ln 1
x
x 【答案】C . 【解析】
试题分析:由特称命题的否定为全称命题可知,所求命题的否定为
(0,
)x
,ln 1x
x ,
故应选C .
考点:1、特称命题;2、全称命题;
4.已知变量x 和y 满足关系0.11y x ,变量y 与z 正相关. 下列结论中正确的是
A .x 与y 负相关,x 与z 负相关
B .x 与y 正相关,x 与z 正相关
C .x 与y 正相关,x 与z 负相关
D .x 与y 负相关,x 与z 正相关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年高考文科数学押题密卷(全国新课标Ⅰ卷)说明:一、本试卷分为第Ⅰ卷和第Ⅱ卷.第Ⅰ卷为选择题;第Ⅱ卷为非选择题,分为必考和选考两部分.二、答题前请仔细阅读答题卡上的“注意事项”,按照“注意事项”的规定答题. 三、做选择题时,每小题选出答案后,用铅笔把答题卡上对应题目的标号涂黑.如需改动,用橡皮将原选涂答案擦干净后,再选涂其他答案.四、考试结束后,将本试卷与原答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项符合题目要求.(1)设集合{}{}21,0,1,|M N x x x =-==,则M N ⋂=(A ){}1,0,1-(B ){}0,1(C ){}1 (D ){}0(2)复数z =1-3i1+2i,则(A )|z |=2 (B )z 的实部为1 (C )z 的虚部为-i (D )z 的共轭复数为-1+i (3)不等式x -1x 2-4>0的解集是(A )(-2,1)∪(2,+∞) (B )(2,+∞)(C )(-2,1)(D )(-∞,-2)∪(1,+∞)(4)执行右面的程序框图,若输出的k =2,则输入x 的取值范围是(A )(21,41) (B )[21,41] (C )(21,41] (D )[21,41) (5)已知p : ∀x ∈R ,ax 2-ax +1≥0,q :(a -1)2≤1;则p 是q 成立的(A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件 (6)函数f (x )=(x +2)3-(1 2)x的零点所在区间是(A )(-2,-1) (B )(-1,0) (C )(0,1) (D )(1,2)(7)已知向量a=(1, 2),b=(2,3)若(c +a )∥b ,c ⊥(b +a ),则c=(A )( 79 , 73 ) (B )( 73 , 79 )(C )(73 , 79 ) (D )(- 79 ,- 73)(8)某几何体的三视图如图所示,则该几何体的体积为(A )1136(B ) 3俯视图(C )533(D )433(9)已知等比数列{a n }的前n 项和为S n , a 1+a 3= 5 2,且a 2+a 4= 5 4,则S na n=(A )4n -1 (B )4n-1 (C )2n -1 (D )2n -1(10)已知函数f (x )=cos (2x +π 3),g (x )=sin (2x +2π3),将f (x )的图象经过下列哪种变换可以与g (x )的图象重合(A )向右平移 π12(B )向左平移 π6(C )向左平移 π12(D )向右平移 π6(11)过双曲线x 2a 2-y 2b2=1的一个焦点F 作一条渐近线的垂线,若垂足恰在线段OF (O 为原点)的垂直平分线上,则双曲线的离心率为 (A ) 2 (B )2 (C ) 5 (D ) 3(12)函数xx x x 2cos 21)(f +-=,其图像的对称中心是(A )(1,-1) (B )(-1,1) (C )(0,1)(D )(0,-1)第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填写在题中横线上. (13)在等差数列{a n }中,a 7=8,前7项和S 7=42,则其公差是为_________.(14)四棱锥P -ABCD 的底面是边长为42的正方形,侧棱长都等于45,则经过该棱锥五个顶点的球面面积为_________. (15)点P 在△ABC 内部(包含边界),|AC|=3, |AB|=4,|BC|=5,点P 到三边的距离分别是d 1, d 2 , d 3 ,则d 1+d 2+d 3的取值范围是_________.(16)△ABC 的顶点A 在圆O :x 2+y 2=1上,B ,C 两点在直线3x+y+3=0上,若|AB -AC |=4,则△ABC 面积的最小值为_____.三、解答题:本大题共70分,其中(17)—(21)题为必考题,(22),(23),(24)题为选考题.解答应写出文字说明、证明过程或演算步骤. (17)(本小题满分12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a ≥b ,sin A +3cos A =2sin B . (Ⅰ)求角C 的大小;(Ⅱ)求a +bc 的最大值.(18)(本小题满分12分)(Ⅰ(Ⅱ)从乙比赛得分在20分以下的6场比赛中随机抽取2场进行失误分析,求抽到恰好有1场得分不足10分的概率.(19)(本小题满分12分)如图,三棱柱ABC -A 1B 1C 1的侧面AB 1B 1A 为正方形,侧面BB 1C 1C 为菱形,∠CBB 1=60 ,AB ⊥B 1C . (Ⅰ)求证:平面AB 1B 1A ⊥BB 1C 1C ;(Ⅱ)若AB =2,求三棱柱ABC -A 1B 1C 1体积.(20)(本小题满分12分)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)经过点M (-2,-1),离心率为22.过点M 作倾斜角互补的两条直线分别与椭圆C 交于异于M 的另外两点P 、Q . (Ⅰ)求椭圆C 的方程; (Ⅱ)试判断直线PQ 的斜率是否为定值,证明你的结论.(21)(本小题满分12分)已知函数 x 轴是函数图象的一条切线. (Ⅰ)求a ; (Ⅱ)已知 .请考生在第(22),(23),(24)三题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B 铅笔在答题卡上把所选题目对应的题号涂黑. (22)(本小题满分10分)选修4-1:几何证明选讲如图所示,AC 为⊙O 的直径,D 为BC ︵的中点,E 为BC 的中点. (Ⅰ)求证:DE ∥AB ; (Ⅱ)求证:AC ·BC =2AD ·CD .B CB 1BA C 1A 1A(23)(本小题满分10分)选修4-4:坐标系与参数方程在极坐标系Ox中,直线C1的极坐标方程为ρsinθ=2,M是C1上任意一点,点P在射线OM上,且满足|OP|·|OM|=4,记点P的轨迹为C2.(Ⅰ)求曲线C2的极坐标方程;(Ⅱ)求曲线C2上的点到直线ρcos(θ+π4)=2距离的最大值.(24)(本小题满分10分)选修4-5:不等式选讲设f(x)=|x-3|+|x-4|.(Ⅰ)解不等式f(x)≤2;(Ⅱ)若存在实数x满足f(x)≤ax-1,试求实数a的取值范围.2015年高考文科数学押题密卷(全国新课标Ⅰ卷)参考答案一、选择题:BDACB BDCDA A C二、填空题:(13)23;(14)100π;(15)[ 12 5,4];(16)1.三、解答题:(17)解:(Ⅰ)sin A+3cos A=2sin B即2sin(A+π3)=2sin B,则sin(A+π3)=sin B.…3分因为0<A,B<π,又a≥b进而A≥B,所以A+π3=π-B,故A+B=2π3,C=π3.……………………………6分(Ⅱ)由正弦定理及(Ⅰ)得a+b c =sin A+sin Bsin C=23[sin A+sin(A+π3)]=3sin A+cos A=2sin(A+π6). (10)分当A=π3时,a+bc取最大值2.……………………………12分(18)解:(Ⅰ)x-甲=18(7+9+11+13+13+16+23+28)=15,x-乙=18(7+8+10+15+17+19+21+23)=15,s2甲=18[(-8)2+(-6)2+(-4)2+(-2)2+(-2)2+12+82+132]=44.75,s2乙=18[(-8)2+(-7)2+(-5)2+02+22+42+62+82]=32.25.甲、乙两名队员的得分均值相等;甲的方差较大(乙的方差较小).…4分(Ⅱ)题设所述的6个场次乙得分为:7,8,10,15,17,19.……………………………7分从中随机抽取2场,这2场比赛的得分如下:(7,8),(7,10),(7,15),(7,17),(7,19),(8,10),(8,15),(8,17),(8,19),(10,15),(10,17),(10,19),(15,17),(15,19), (17,19),共15种可能, ……………………………9分 其中恰好有1场得分在10分以下的情形是: (7,10),(7,15),(7,17),(7,19), (8,10),(8,15),(8,17),(8,19),共8种可能,所求概率P =815. ……………………………12分(19)解: (Ⅰ)由侧面AB 1B 1A 为正方形,知AB ⊥BB 1. 又AB ⊥B 1C ,BB 1∩B 1C =B 1,所以AB ⊥平面BB 1C 1C , 又AB 平面AB 1B 1A ,所以平面AB 1B 1A ⊥BB 1C 1C .…4分(Ⅱ)设O 是BB 1的中点,连结CO ,则CO ⊥BB 1.由(Ⅰ)知,CO ⊥平面AB 1B 1A ,且CO =32BC =32AB =3.连结AB 1,则V C -ABB 1= 1 3S △ABB 1·CO = 1 6AB 2·CO =233. …8分因V B 1-ABC =V C -ABB 1= 1 3V ABC -A 1B 1C 1=233,故三棱柱ABC -A 1B 1C 1的体积V ABC -A 1B 1C 1=23. ………………………12分 (20)解:(Ⅰ)由题设,得4a 2+1b2=1, ①且a 2-b 2a =22, ②由①、②解得a 2=6,b 2=3,椭圆C 的方程为x 26+y 23=1.………………………………………………5分(Ⅱ)记P (x 1,y 1)、Q (x 2,y 2).设直线MP 的方程为y +1=k (x +2),与椭圆C 的方程联立,得 (1+2k 2)x 2+(8k 2-4k )x +8k 2-8k -4=0,-2,x 1是该方程的两根,则-2x 1=8k 2-8k -41+2k 2,x 1=-4k 2+4k +21+2k 2.设直线MQ 的方程为y +1=-k (x +2),同理得x 2=-4k 2-4k +21+2k 2.………………………………………………9分因y 1+1=k (x 1+2),y 2+1=-k (x 2+2),BCB 1BAC 1A 1AO故k PQ =y 1-y 2x 1-x 2=k (x 1+2)+k (x 2+2)x 1-x 2=k (x 1+x 2+4)x 1-x 2=8k1+2k28k 1+2k 2=1,因此直线PQ 的斜率为定值. ……………………………………………12分 (21)解:(Ⅰ)f '(x ) = 当x ∈(0,a )时,f '(x )<0,f (x )单调递减, 当x ∈(a ,+∞)时,f '(x )>0,f (x )单调递增. …………………………2分 ∵ x 轴是函数图象的一条切线,∴切点为(a ,0).f (a )=lna +1=0,可知a =1. ……………………………5分 (Ⅱ)令1+,由x>0得知t>1,,于是原不等式等价于: . ……………………………7分 取,由(Ⅰ)知: 当t ∈(0,1)时,g '(t )<0,g (t )单调递减, 当t ∈(1,+∞)时,g '(t )>0,g (t )单调递增. ∴ g (t )> g (1)=0,也就是. ∴ . ……………………………12分 (22)证明:(Ⅰ)连接OE ,因为D 为BC ︵的中点,E 为BC 的中点,所以OED 三点共线. 因为E 为BC 的中点且O 为AC 的中点,所以OE ∥AB ,故DE ∥AB .(Ⅱ)因为D 为BC ︵的中点,所以∠BAD =∠DAC ,又∠BAD =∠DCB ⇒∠DAC =∠DCB . 又因为AD ⊥DC ,DE ⊥CE ⇒△DAC ∽△ECD . ⇒AC CD =ADCE ⇒AD ·CD =AC ·CE⇒ 2AD ·CD =AC ·2CE⇒ 2AD ·CD =AC ·BC . (23)解:(Ⅰ)设P (ρ,θ),M (ρ1,θ),依题意有 ρ1sin θ=2,ρρ1=4. ……………………………3分 消去ρ1,得曲线C 2的极坐标方程为ρ=2sin θ. ………………………5分(Ⅱ)将C 2,C 3的极坐标方程化为直角坐标方程,得 C 2:x 2+(y -1)2=1,C 3:x -y =2. ………………………… …7分C 2是以点(0,1)为圆心,以1为半径的圆,圆心到直线C 3的距离d =322,故曲线C 2上的点到直线C 3距离的最大值为1+322. ………………………10分(24)(Ⅰ)f (x )=|x -3|+|x -4|=⎩⎪⎨⎪⎧7-2x ,x <3,1,3≤x ≤4,2x -7,x >4.………………………2分作函数y =f (x )的图象,它与直线y =2交点的横坐标为 5 2和 92,由图象知不等式f (x )≤2的解集为[5 2, 92]. ………………………5分O A(Ⅱ)函数y =ax -1当且仅当函数y =f (x )与直线y =ax -1有公共点时,存在题设的x .由图象知,a 取值范围为(-∞,-2)∪[ 12,+∞). …………………10分= 1 2。

相关文档
最新文档