概率论

合集下载

概率论全部

概率论全部
23.假設檢驗中可能犯的第Ⅰ類錯誤,也稱棄真錯誤,犯此類錯誤的概率是(D:P(拒絕Ho|Ho為真)
24.設正態總體X~N(μ,σ2),σ2未知, ,S2是樣本平均值和樣本方差,給定顯著性水準α,檢驗假設Ho:σ2= ,H1:σ2≠ 應使用的檢驗用統計量是(A: )。
11、設X~b(3,0.5),則P(X≥1)的值是(D:0.875)。
12、已知(X ,Y )的分佈律為
0
1
1
0
1/6
2
1/12
1/6
3
1/2
1/12
則X的邊緣分佈律為(C:
X
0
1
P
13、設連續型隨機變數X的分佈函數為F(x)= 則A的值為(C:0.5)。
14、設X的分佈律為
則E(X)=(C:0.8)
53.设X1,X2,…Xn是总体X的一个样本,g(X1,X2,…Xn)是X1,X2,…Xn的函数,若g是连续函数,且g中不含任何未知参数,则称g(X1,X2,…Xn)是一个统计量。
54.设A与 互为对立事件,则 。
55.若二维随机变量(X,Y)在平面区域D中的密度函数为 其中A为D的面积,则称(X,Y)在区域D上服从均匀分布。
19.设随机测得某化工产品得率的5个样本观察值为82,79,80,78,81,则样本平均值 80。
20.设总体X~N(μ,σ2),x1,x2,…,xn是来自总体X的样本,则σ2已知时,μ的1-a置信区间为 。
21.假设检验可能犯的两类错误是弃真错误和纳伪错误。
22.设总体X~N(μ,σ2),对假设 做假设检验时,所使用的统计量是 它所服从的分布是 。
X
0
1
P
0.2
0.8
15、已知X~b(n, 0.2)則E(X) =(D:0.2n)

概率论知识点

概率论知识点

第一章随机事件及其概率§ 1.1 随机事件及其运算随机现象:概率论的基本概念之一。

是人们通常说的偶然现象。

其特点是,在相同的条件下重复观察时,可能出现这样的结果,也可能出现那样的结果,预先不能断言将出现哪种结果•例如,投掷一枚五分硬币,可能国徽”向上,也可能伍分”向上;从含有5件次品的一批产品中任意取出3件,取到次品的件数可能是0,1,2或3.随机试验:概率论的基本概念之一•指在科学研究或工程技术中,对随机现象在相同条件下的观察。

对随机现象的一次观察(包括试验、实验、测量和观测等),事先不能精确地断定其结果,而且在相同条件下可以重复进行,这种试验就称为随机试验。

样本空间:概率论术语。

我们将随机试验E的一切可能结果组成的集合称为E的样本空间,记为1。

样本空间的元素,即E的每一个结果,称为样本点。

随机事件:实际中,在进行随机试验时,人们常常关心满足某种条件的那些样本点所组成的集合.称试验E的样本空间I ■■的子集为E的随机事件,简称事件•在每次试验中,当且仅当这一子集中的一个样本点出现时,称这一事件发生.特别,由一个样本点组成的单点集,称为基本事件.样本空间门包含所有的样本点,它是门自身的子集,在每次试验中它总是发生的,称为必然事件.空集?不包含任何样本点,它也作为样本空间的子集,它在每次试验中都不发生称为不可能事件.互斥事件(互不相容事件):若事件A与事件B不可能同时发生,亦即A B =①,则称事件A与事件B是互斥(或互不相容)事件。

互逆事件:事件A与事件B满足条件A B =①,A B =1 ,则称A与B是互逆事件,也称A与B是对立事件,记作B (或A = B )。

互不相容完备事件组:若事件组A,A2,…A满足条件A i A j二①,(i,i=t n ),nA-、_:,则称事件组A, A2,…A n为互不相容完备事件组(或称A, A2,…A n为样本空i=1间门的一个划分)。

§ 1.2 随机事件的概率概率:随机事件出现的可能性的量度。

概率论基础知识

概率论基础知识
几何性质:介于曲线y=f(x)与Ox轴之间的面积等于1。X落在区间(x1,x2]的概率P{x1<X≤x2}等于区间(x1,x2]上曲线y=f(x)之下的曲边梯形的面积。
对于连续型随机变量来说,它取任一指定实数值a的概率均为0,即P{X=a}=0。事实上0≤P{X=a}≤P{a-△x<X≤a}=F(a)-F(a-△x).P{a<X≤b}=P{a≤X≤b}=P{a<X<b}.
定理二:若事件A与B相互独立,则下列各对事件也相互独立:
多个事件相互独立:一般,设A1,A2,…,An是n(n≥2)个事件,如果对于其中任意2个,任意3个,…,任意n个事件的积事件的概率,都等于各事件概率之积,则称事件A1,A2,…,An相互独立。
推论:①若事件A1,A2,…,An(n≥2)相互独立,则其中任意k(2≤k≤n)个事件也是相互独立的。
第一章 概率论的基本概念
一、事件运算常用定律(设A,B,C为事件):
二、频率与概率
1.概率的公理化定义:
①非负性:对于每一个事件A,有P加性:设A1,A2,…是两两互不相容的事件,即对于AiAj=∅,i≠j,i,j=1,2,…,有P(A1∪A2∪…)=P(A1)+P(A2)+….
P{X>s+t|X>s}=P{X>t}
3.正态分布(高斯分布)[X~N(μ,σ2)]:
正态分布性质:
①曲线关于x=μ对称,这表明对于任意h>0有P{μ-h<X≤μ}=P{μ<X≤μ+h }.
②当x=μ时取到最大值 ,x离μ越远,f(x)的值越小。
③在x=μ±σ处曲线有拐点。曲线以Ox轴为渐近线。
标准正态分布:μ=0,σ=1.其概率密度和分布函数分别用φ(x),Φ(x)表示,即有:
②若n个事件A1,A2,…,An(n≥2)相互独立,则将A1,A2,…,An中任意多个事件换成它们各自的对立事件,所得的n个事件仍相互独立。

概率论公式总结

概率论公式总结
f (x) 具有如下性质:
1° f (x) 的图形是关于 x 对称的; 2° 当 x 时, f () 1 为最大值;
2 若 X ~ N (, 2 ) ,则 X 的分布函数为
F(x) 1
(t )2
x
e
2 2
dt
2
(x) 是不可求积函数,其函数值,已编制成表可供查用。
X
~ N (0,1)
充要条件:X 和 Y 不相关。
(1) D(C)=0;E(C)=C
(2) D(aX)=a2D(X); E(aX)=aE(X)
(3) 方差 的性 质
(3) D(aX+b)= a2D(X); E(aX+b)=aE(X)+b (4) D(X)=E(X2)-E2(X) (5) D(X±Y)=D(X)+D(Y),充分条件:X 和 Y 独立;
更一般地,对事件 A1,A2,…An,若 P(A1A2…An-1)>0,则有
P( A1A2 … An) P( A1)P( A2 | A1)P( A3 | A1A2) …… P( An | A1A2 … An 1) 。
独立性
①两个事件的独立性
设事件 A 、 B 满足 P( AB) P( A)P(B) ,则称事件 A 、 B 是相互独立的。
第三章 二维随机变量及其分布
对 于 二 维 随 机 向 量 (X,Y) , 如 果 存 在 非 负 函 数
f (x, y)( x , y ) ,使对任意一个其邻边
分别平行于坐标轴的矩形区域 D,即 D={(X,Y)|a<x<b,c<y<d}有
连续型
P{(X ,Y ) D} f (x, y)dxdy, 则称 为连续型随机向量;

概率论的公式大全

概率论的公式大全

概率论的公式大全概率论是一门研究随机现象的数学分支,它使用概率来描述和解释随机事件发生的规律性。

在实际应用中,我们常常需要使用一些基本概率公式来计算和分析各种随机现象。

以下是一些常见的概率论公式:1.概率的定义公式:P(A)=N(A)/N(S)其中P(A)表示事件A的概率,N(A)表示事件A发生的次数,N(S)表示样本空间中发生的总次数。

2.加法公式:P(A∪B)=P(A)+P(B)-P(A∩B)其中P(A∪B)表示事件A和事件B至少发生一个的概率,P(A∩B)表示事件A和事件B同时发生的概率。

3.乘法公式:P(A∩B)=P(A)某P(B,A)其中P(A∩B)表示事件A和事件B同时发生的概率,P(B,A)表示在事件A发生的条件下事件B发生的概率。

4.条件概率公式:P(A,B)=P(A∩B)/P(B)其中P(A,B)表示在事件B发生的条件下事件A发生的概率,P(A∩B)表示事件A和事件B同时发生的概率,P(B)表示事件B的概率。

5.全概率公式:P(A)=ΣP(A,Bi)某P(Bi)其中P(A)表示事件A的概率,P(A,Bi)表示在事件Bi发生的条件下事件A发生的概率,P(Bi)表示事件Bi发生的概率,Σ表示对所有可能的事件Bi求和。

6.贝叶斯公式:P(Bi,A)=P(A,Bi)某P(Bi)/ΣP(A,Bj)某P(Bj)其中P(Bi,A)表示在事件A发生的条件下事件Bi发生的概率,P(A,Bi)表示在事件Bi发生的条件下事件A发生的概率,P(Bi)表示事件Bi发生的概率,P(A,Bj)表示在事件Bj发生的条件下事件A发生的概率,Σ表示对所有可能的事件Bj求和。

7.期望值的公式:E(X)=ΣXi某P(Xi)其中E(X)表示随机变量X的期望值,Xi表示随机变量X的可能取值,P(Xi)表示随机变量X取值为Xi的概率,Σ表示对所有可能的取值Xi求和。

8.方差的公式:Var(X) = E(X^2) - [E(X)]^2其中Var(X)表示随机变量X的方差,E(X^2)表示随机变量X的二阶矩,[E(X)]^2表示随机变量X的期望值的平方。

概率论 概念

概率论 概念

概率论概念一、什么是概率论概率论是一门研究随机现象的科学,主要探讨随机现象背后的数学规律和结构。

在概率论中,随机现象是指结果无法在事前确定的现象,它们的发生具有一定的不确定性。

而概率则是衡量随机事件发生可能性的数值表示。

二、概率论的发展简史概率论的发展始于17世纪,最初主要是用来解决赌博问题。

随着时间的推移,概率论的应用范围逐渐扩大,涉及到诸多领域,如统计学、经济学、生物学、物理学等。

在现代社会,概率论已经成为许多学科的重要基础。

三、概率论的基本概念1.样本空间与样本点:样本空间是指随机实验所有可能结果组成的集合,而样本点则是样本空间中的具体元素。

例如,在一次抛掷硬币的实验中,样本空间可以包含正面和反面两种结果,即{正面,反面},而每个结果则是样本点。

2.事件:事件是由样本空间中某些样本点组成的集合。

事件可以包含一个或多个样本点。

例如,在抛掷硬币的实验中,事件可以包括{正面}和{反面}两个集合。

3.概率:概率是一个描述随机事件发生可能性的数值,通常用P来表示。

根据定义,一个事件的概率P(A)满足以下三个条件:0≤P(A)≤1;对于不可能事件,P(A)=0;对于必然事件,P(A)=1。

4.条件概率:条件概率是指在某个已知条件下,某个事件发生的概率。

条件概率的公式为P(A|B)=P(A∩B)/P(B)。

5.独立性:如果两个事件A和B相互独立,则一个事件的发生不会影响到另一个事件的发生概率。

如果A和B相互独立,则P(A∩B)=P(A)P(B)。

6.随机变量:随机变量是用来描述随机实验结果的数学工具。

随机变量可以分为离散型和连续型两种类型。

离散型随机变量是在可数范围内取值的变量,而连续型随机变量则是取值范围无法列举完的变量。

7.分布函数:分布函数是用来描述随机变量取值概率的函数。

对于离散型随机变量,分布函数是所有可能取值的概率之和;对于连续型随机变量,分布函数则是一条连续曲线。

8.期望与方差:期望值是随机变量所有可能取值的加权平均值;方差则是描述随机变量取值分散程度的数值,方差越小说明随机变量的取值越集中。

概率论的公式大全

概率论的公式大全

概率论的公式大全1.基本概率公式:对于一个随机事件A,它发生的概率(记作P(A))等于A包含的元素数目除以样本空间中元素的总数目。

P(A)=个数(A)/个数(样本空间)2.条件概率公式:对于两个事件A和B,如果B已经发生,则A发生的概率记作P(A,B)。

P(A,B)=P(A交B)/P(B)3.全概率公式:对于一系列互不相容的事件B1,B2,...,Bn,它们的并集等于样本空间,那么对于另一个事件A,可以用条件概率公式表示为:P(A)=Σ(P(A,Bi)*P(Bi)),i=1到n4.贝叶斯定理:对于一系列互不相容的事件B1,B2,...,Bn,它们的并集等于样本空间,那么对于另一个事件A,可以用条件概率公式表示为:P(Bi,A)=(P(A,Bi)*P(Bi))/Σ(P(A,Bj)*P(Bj)),j=1到n5.独立事件公式:对于两个事件A和B,如果它们相互独立(即A的发生与B的发生没有任何关系),则它们的联合概率等于它们的乘积。

P(A交B)=P(A)*P(B)6.乘法公式:对于一系列独立事件A1,A2,...,An,它们的概率等于各个事件发生的概率的乘积。

P(A1交A2交...交An)=P(A1)*P(A2)*...*P(An)7.加法公式:对于两个事件A和B,它们的并集的概率等于各个事件发生的概率之和减去它们的交集的概率。

P(A并B)=P(A)+P(B)-P(A交B)8.期望值公式:对于一个随机变量X和它的概率分布P(X),它的期望值可以表示为:E(X)=Σ(Xi*P(Xi))9.方差公式:对于一个随机变量X和它的期望值E(X),它的方差可以表示为:Var(X) = Σ((Xi - E(X))^2 * P(Xi)),i为X的取值范围内的索引10.协方差公式:对于两个随机变量X和Y,它们的协方差可以表示为:Cov(X, Y) = E((X - E(X)) * (Y - E(Y)))11.相关系数公式:对于两个随机变量X和Y,它们的相关系数可以表示为:Corr(X, Y) = Cov(X, Y) / (σ(X) * σ(Y)),其中σ(X)和σ(Y)分别是X和Y的标准差12.大数定律:对于独立同分布的随机变量序列X1,X2,...,Xn,当n趋向于无穷大时,它们的算术平均值逐渐接近它们的期望值。

概率论公式

概率论公式


n
注:如果有 n 个变量服从同一个 0-1 分布, Xi ~ b(1, p) ,则其和 X Xi 服从二项 i
分布 X ~ b(n, p)
11. Poisson 分布
X ~ P() P( X k) k e , k 0,1,...
F
(x)

0, 1,
x x

c c
E(X ) c
Var( X ) 0
9. 二项分布
X ~ b(n, p)
P( X k) Cnk pk (1 p)nk E(X ) np
Var( X ) np(1 p)
10. 二点分布(0-1 分布)
X ~ b(1, p)
P( X x) px (1 p)1x , x 0,1
p(
x)


2
n 2
1 (
n
)
e

x 2
x
n 2
1
,
x

0
2

0, x 0
E(X ) n
Var( X ) 2n
Gamma 分布变为 2 分布:
当 X ~ Ga(,) ,则 2 X ~ Ga(, 1) 2 (2 ) 2
20. 严格单调函数Y g(X )
pY ( y) px[h(x)] | h '(x) |
21. K 阶原点矩和中心矩
k E(X k ) k E( X E( X ))k
中心矩和原点矩关系:
k
k Cik i (i )ki i0
22. 变异系数
Cv
(
X
)

( E(

概率论的公式大全

概率论的公式大全

概率论的公式大全概率论是数学的一个分支,研究随机事件发生的概率。

以下是概率论中常用的公式。

1.基本概率公式:P(A)=n(A)/n(S)其中,P(A)表示事件A发生的概率,n(A)表示事件A的样本空间中的有利结果数量,n(S)表示样本空间中的总结果数量。

2.加法公式:P(A或B)=P(A)+P(B)-P(A且B)其中,P(A或B)表示事件A或事件B发生的概率,P(A且B)表示事件A和事件B同时发生的概率。

3.乘法公式:P(A且B)=P(A)×P(B,A)其中,P(B,A)表示在事件A发生的条件下,事件B发生的概率。

4.条件概率公式:P(A,B)=P(A且B)/P(B)其中,P(A,B)表示在事件B发生的条件下,事件A发生的概率。

5.全概率公式:P(A)=Σ(P(A,Bi)×P(Bi))其中,P(A)表示事件A的概率,Bi表示S的一个划分,P(A,Bi)表示在事件Bi发生的条件下,事件A发生的概率,P(Bi)表示事件Bi的概率。

6.贝叶斯公式:P(Bi,A)=(P(A,Bi)×P(Bi))/Σ(P(A,Bj)×P(Bj))其中,P(Bi,A)表示在事件A发生的条件下,事件Bi发生的概率,P(A,Bi)表示在事件Bi发生的条件下,事件A发生的概率,P(Bi)表示事件Bi的概率。

7.期望值公式:E(X)=Σ(Xi×P(Xi))其中,E(X)表示随机变量X的期望值,Xi表示X的取值,P(Xi)表示X取值为Xi的概率。

8.方差公式:Var(X) = Σ((Xi - E(X))^2 × P(Xi))其中,Var(X)表示随机变量X的方差,Xi表示X的取值,E(X)表示X 的期望值,P(Xi)表示X取值为Xi的概率。

9.标准差公式:SD(X) = √Var(X)其中,SD(X)表示随机变量X的标准差,Var(X)表示X的方差。

10.二项分布的概率公式:P(X=k)=C(n,k)×p^k×(1-p)^(n-k)其中,P(X=k)表示X取值为k的概率,C(n,k)表示组合数,p表示单次实验成功的概率,n表示试验重复的次数,k表示成功发生的次数。

概率论公式

概率论公式

概率论公式1.随机事件及其概率吸收律:A AB A A A A =⋃=∅⋃Ω=Ω⋃)( AB A A A AA =⋃⋂∅=∅⋂=Ω⋂)()(AB A B A B A -==- 反演律:B A B A =⋃ B A AB ⋃=n i i n i i A A 11=== ni i n i i A A 11===2.概率的定义及其计算)(1)(A P A P -=若B A ⊂ )()()(A P B P A B P -=-⇒对任意两个事件A , B , 有 )()()(AB P B P A B P -=- 加法公式:对任意两个事件A , B , 有)()()()(AB P B P A P B A P -+=⋃)()()(B P A P B A P +≤⋃)()1()()()()(2111111n n nnk j i k j i n j i j i n i i n i i A A A P A A A P A A P A P A P -≤<<≤≤<≤==-+++-=∑∑∑3.条件概率()=A B P )()(A P AB P乘法公式())0)(()()(>=A P A B P A P AB P()())0)(()()(12112112121>=--n n n n A A A P A A A A P A A P A P A A A P 全概率公式∑==n i i AB P A P 1)()( )()(1i ni i B A P B P ⋅=∑=Bayes 公式)(A B P k )()(A P AB P k = ∑==n i i i k kB A P B P B A P B P 1)()()()(4.随机变量及其分布分布函数计算)()()()()(a F b F a X P b X P b X a P -=≤-≤=≤<5.离散型随机变量(1) 0 – 1 分布1,0,)1()(1=-==-k p p k X P k k(2) 二项分布 ),(p n B若P ( A ) = p nk p p C k X P k n kk n ,,1,0,)1()( =-==-*Possion 定理0lim >=∞→λn n np 有,2,1,0!)1(lim ==---∞→k k e p p C kkn n k n k n n λλ(3) Poisson 分布 )(λP,2,1,0,!)(===-k k e k X P kλλ6.连续型随机变量(1) 均匀分布 ),(b a U⎪⎩⎪⎨⎧<<-=其他,0,1)(bx a a b x f⎪⎪⎩⎪⎪⎨⎧--=1,,0)(a b ax x F(2) 指数分布 )(λE⎪⎩⎪⎨⎧>=-其他,00,)(x e x f x λλ ⎩⎨⎧≥-<=-0,10,0)(x e x x F x λ(3) 正态分布 N (μ , σ 2 )+∞<<∞-=--x e x f x 222)(21)(σμσπ⎰∞---=x t t e x F d 21)(222)(σμσπ*N (0,1) — 标准正态分布 +∞<<∞-=-x e x x 2221)(πϕ +∞<<∞-=Φ⎰∞--x t e x x td 21)(22π7.多维随机变量及其分布二维随机变量( X ,Y )的分布函数 ⎰⎰∞-∞-=x ydvdu v u f y x F ),(),(边缘分布函数与边缘密度函数⎰⎰∞-+∞∞-=x X dvdu v u f x F ),()(⎰+∞∞-=dv v x f x f X ),()(⎰⎰∞-+∞∞-=y Y dudv v u f y F ),()(⎰+∞∞-=du y u f y f Y ),()(8. 连续型二维随机变量(1) 区域G 上的均匀分布,U ( G )⎪⎩⎪⎨⎧∈=其他,0),(,1),(G y x Ay x f(2)二维正态分布+∞<<-∞+∞<<∞-⨯-=⎥⎥⎦⎤⎢⎢⎣⎡-+------y x e y x f y y x x ,121),(2222212121212)())((2)()1(21221σμσσμμρσμρρσπσ 9. 二维随机变量的 条件分布 0)()()(),(>=x f x y f x f y x f X X Y X0)()()(>=y f y x f y f Y Y X Y⎰⎰+∞∞-+∞∞-==dy y f y x f dy y x f x f Y Y X X )()(),()(⎰⎰+∞∞-+∞∞-==dx x f x y f dx y x f y f X X Y Y )()(),()()(y x f Y X )(),(y f y x f Y = )()()(y f xf x y f Y X X Y =)(x y f X Y )(),(x f y x f X = )()()(x f y fy x f X Y Y X = 10.随机变量的数字特征数学期望∑+∞==1)(k k k p x X E ⎰+∞∞-=dx x xf X E )()(随机变量函数的数学期望X 的 k 阶原点矩 )(k X E X 的 k 阶绝对原点矩 )|(|k X E X 的 k 阶中心矩 )))(((k X E X E - X 的 方差 )()))(((2X D X E X E =-X ,Y 的 k + l 阶混合原点矩)(l k Y X E X ,Y 的 k + l 阶混合中心矩()l k Y E Y X E X E ))(())((-- X ,Y 的 二阶混合原点矩 )(XY E X ,Y 的二阶混合中心矩 X ,Y 的协方差 ()))())(((Y E Y X E X E -- X ,Y 的相关系数 XY Y D X D Y E Y X E X E ρ=⎪⎪⎭⎫⎝⎛--)()())())(((X 的方差D (X ) =E ((X - E (X ))2) )()()(22X E X E X D -= 协方差 ()))())(((),cov(Y E Y X E X E Y X --= )()()(Y E X E XY E -= ())()()(21Y D X D Y X D --±±=相关系数 )()(),cov(Y D X D Y X XY =ρ。

概率论知识

概率论知识

概率论知识概率论知识概率论是数学的一个分支,主要研究随机事件的规律性和统计规律。

它是一种量化分析随机现象的工具,被广泛应用于自然科学、社会科学、工程技术等领域。

一、基本概念1. 随机事件:指在一定条件下可能发生或不发生的事情,如掷骰子出现1点或2点等。

2. 样本空间:指所有可能发生的随机事件组成的集合,如掷骰子样本空间为{1, 2, 3, 4, 5, 6}。

3. 事件:指样本空间中一个或多个元素组成的集合,如掷骰子出现偶数为事件A={2, 4, 6}。

4. 概率:指某个事件发生的可能性大小,通常用P(A)表示。

概率的取值范围在0到1之间,且所有事件概率之和为1。

二、基本公式1. 加法公式:P(A∪B)=P(A)+P(B)-P(A∩B),其中A∩B表示A和B同时发生的事件。

2. 条件概率公式:P(A|B)=P(A∩B)/P(B),其中A|B表示在B发生的条件下A发生的概率。

3. 乘法公式:P(A∩B)=P(B)×P(A|B),其中A∩B表示A和B同时发生的事件。

4. 全概率公式:P(A)=Σi=1nP(A|Bi)×P(Bi),其中Bi为样本空间的一个划分,且所有的Bi不相交且并起来等于样本空间。

5. 贝叶斯公式:P(Bi|A)=P(A|Bi)×P(Bi)/Σj=1nP(A|Bj)×P(Bj),其中Bi 为样本空间的一个划分,且所有的Bi不相交且并起来等于样本空间。

三、概率分布1. 离散型随机变量:指取有限个或可数个值的随机变量,如掷骰子点数就是一个离散型随机变量。

其概率分布可以用概率质量函数(PMF)表示,即p(x)=P(X=x),其中X是随机变量,x是它可能取到的值。

2. 连续型随机变量:指取无限多个可能值的随机变量,如身高、体重等。

其概率分布可以用概率密度函数(PDF)表示,即f(x),满足f(x)≥0且∫f(x)dx=1。

3. 期望:指随机变量的平均值,通常用E(X)表示。

概率论

概率论

S 7 : { ( x , y ) | T 0≤ x ≤ y ≤ T 1 }
返回主目录
第一章 概率论的基本概念
2、 随 机 事 件
定义: 定义: •随机事件 : 称试验 E 的样本空间 S 的子集为 E 的 随机事件 随机事件; 可能发生,也可能不发生) 随机事件; 可能发生,也可能不发生) ( •基本事件 : 有一个样本点组成的单点集; 基本事件 有一个样本点组成的单点集; ( •必然事件 : 样本空间 S 本身; 必然发生) 必然事件 本身; 必然发生) •不可能事件 : 空集∅。 不可能事件 空集∅ (必然不发生) 必然不发生)
返回主目录
第一章 概率论的基本概念 2 ) 频率的稳定性 n=500时 时 nA 251 249 256 253 251 246 fn(A) 0.502 0.498 0.512 0.506 0.502 0.492
244 0.488
0.002 -0.002 0.012 0.006 0.002 -0.008 -0.012 实验者 德•摩根 摩根 蒲 丰 n 2048 4040 nH 1061 2048 6019 fn(H) 0.5181 0.5096 0.5016 0.5005
A U A = A, A I A = A
A U B = B U A, A I B = B I A
( A U B ) U C = A U (B U C ) ( A I B ) I C = A I (B I C )
A U (B I C ) = ( A U B ) I ( A U C ) Morgan定律 定律: De Morgan定律: U A α = I Aα , I A α = U A α
不能同时发生 与 不能同时发生” 50 互不相容 A I B = ∅ “A与B不能同时发生” 60 对立(互逆)事件 A I B = ∅ 且 A U B = S 对立(互逆)

概率论与数理统计公式

概率论与数理统计公式

概率论与数理统计公式1.概率公式:
1.1概率加法公式:
P(A∪B)=P(A)+P(B)-P(A∩B)
1.2条件概率公式:
P(A,B)=P(A∩B)/P(B)
P(B,A)=P(A∩B)/P(A)
1.3乘法公式:
P(A∩B)=P(A)*P(B,A)
P(A∩B)=P(B)*P(A,B)
1.4全概率公式:
P(A)=ΣP(A,B_i)*P(B_i)
1.5贝叶斯公式:
P(B,A)=P(A,B)*P(B)/P(A)
2.数理统计中的基本概念和公式:
2.1样本均值:
样本均值 = (x1 + x2 + ... + xn) / n
2.2总体均值:
总体均值=(样本均值*n-x)/(n-1)
2.3样本方差:
样本方差 = Σ(xi - x̄)² / (n-1)
2.4总体方差:
总体方差= Σ(xi - µ)² / N
2.5样本标准差:
样本标准差=√(样本方差)
2.6总体标准差:
总体标准差=√(总体方差)
2.7样本中位数:
样本中位数=(x[n/2]+x[(n+1)/2])/2(当n为偶数时)
2.8样本四分位数:
样本四分位数Q1=x[(n+3)/4]
样本四分位数Q3=x[(3n+1)/4]
2.9标准正态分布的累积分布函数的逆函数:
Zα=Φ^(-1)(α),其中Φ(z)表示标准正态分布的累积分布函数。

2.10卡方分布的累积分布函数的逆函数:
x^2α=χ^2^(-1)(α),其中χ^2(x)表示卡方分布的累积分布函数。

概率论

概率论

1第一章 随机事件及其概率第一节 随机事件一. 必然现象与随机现象在自然界里,在生产实践和科学实验中,人们观察到的现象大体可归结为两种类型。

一类是可事前预言的,即在准确地重复某些条件下,它的结果总是肯定的,或是根据它过去的状态,在相同条件下完全可以预言将来的发展。

我们把这一类型现象称之为确定性现象或必然现象。

如在一个大气压下,水在100度时会沸腾等。

一类是事前不可预言的,即在相同条件下重复进行试验,每次结果未必相同;或是知道它过去状况,在相同条件下,未来的发展事前却不能完全肯定。

这一类型的现象我们称之为偶然性现象或随机现象。

如掷一个质地均匀的硬币,结果可能是正面向上,或是背面向上。

二. 样本空间尽管一个随机试验将要出现的结果是不确定的, 但其所有可能结果是明确的, 我们把随机试验的每一种可能的结果称为一个样本点, 记为ω;它们的全体称为样本空间, 记为Ω.事件 是指某一可观察特征的随机试验的结果。

基本事件是相对观察目的而言不可再分解的、最基本的事件,其它事件均可由它们复合而成,一般地,我们称由基本事件复合而成的事件为复合事件.如掷一枚骰子,向上的一面会出现1点,2点,3点,4点,5点,6点。

则样本点有6个。

若记,16i i i ω=≤≤,i ω即为样本点。

样本空间为123456{,,,,,}ωωωωωωΩ=。

记{}i i A ω=,i A 为一个基本事件,把“出现偶数点”这样一个事件记为B ,则246{,,}B ωωω=。

B 为一个复合事件。

三. 事件的运算规律事件间的关系及运算与集合的关系及运算是一致的,为了方便,给出下列对照表:表1.1没有相同的元素与互不相容和事件事件的差集与不发生发生而事件事件的交集与同时发生与事件事件的和集与至少有一个发生与事件事件的相等与相等与事件事件的子集是发生发生导致事件的余集的对立事件子集事件元素基本事件空集不可能事件全集必然事件样本空间集合论概率论记号B A B A AB B A B A B A B A B A AB B A B A B A B A B A B A B A B A B A A A A A ∅=-=⊂∅Ω ω,第二节 随机事件的概率一. 概率的定义定义1 设E 是随机试验, Ω是它的样本空间,对于E 的每一个事件A 赋于一个实数, 记为)(A P , 若)(A P 满足下列三个条件:1. 非负性:对每一个事件A ,有 0)(≥A P ;2. 完备性:()1P Ω=;3. 可列可加性:设 ,,21A A 是两两互不相容的事件,则有.)()(11∑∞=∞==i ii i AP A P2则称)(A P 为事件A 的概率.二. 概率的性质性质1:()0P ∅=。

概率论公式

概率论公式

概率论公式
概率论中常用的公式有:
1. 总概率公式:对于事件A和B,如果A和B构成一个完备事件组,则P(A) = P(A|B)P(B) + P(A|B')P(B'),其中B'
表示事件B的补集。

(该公式可以推广到多个事件的情况)
2. 乘法公式:对于事件A和B,P(A∩B) = P(A|B)P(B) =
P(B|A)P(A)。

3. 加法公式:对于不互斥的事件A和B,P(A∪B) = P(A)
+ P(B) - P(A∩B)。

4. 条件概率公式:对于事件A和B,如果P(B) > 0,则
P(A|B) = P(A∩B) / P(B)。

5. 贝叶斯公式:对于事件A和B,如果P(A) > 0和P(B) > 0,则P(A|B) = P(A)P(B|A) / P(B)。

6. 期望值公式:对于一个离散型随机变量X,其期望值E(X) = ΣxP(X=x),其中x为X的所有可能取值。

7. 方差公式:对于一个离散型随机变量X,其方差Var(X) = E[(X-E(X))^2] = Σ(x-E(X))^2P(X=x),其中E(X)为X的期望值。

请注意,以上公式只是概率论中的一部分常用公式,还有
许多其他公式可根据具体概率问题的性质和假设来使用。

概率论公式大全

概率论公式大全

* Possion 定理
lim
n
npn
0

lim
n
Cnk
pnk
(1
pn )nk
e
k k!
k 0,1,2,
(3) Poisson 分布 P() P( X k) e k , k 0,1,2,
k!
2
6.连续型随机变量
(1) 均匀分布 U (a,b)
f
(
x)
b
1
a
,
a xb
0,
其他
0,
F
(
(P( A1 A2 An1 ) 0)
全概率公式
n
n
P( A) P( ABi ) P(Bi ) P( A Bi )
i 1
i 1
Bayes 公式
P(Bk
A) P( ABk ) P( A)
P(Bk )P( A Bk )
n
P(Bi )P( A Bi )
i 1
4.随机变量及其分布
分布函数计算
fY ( y)
f (x, y)dx
fY X ( y x) f X (x)dx
fX Y (x y)
f (x, y) fY ( y)
fY X ( y x) fX (x) fY ( y)
fY X ( y x)
f (x, y) fX (x)
fX Y (x y) fY ( y) fX (x)
y
FY ( y)
f (u, v)dudv
fY ( y)
f (u, y)du
8. 连续型二维随机变量
(1) 区域 G 上的均匀分布,U ( G )
f
(x,
y)
1 A
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P( A1 A2 An ) P( A1 ) P( A2 A1 ) P( A3 ( A1 A2 )) P( An ( A1 A2 An 1 ))
全概率公式
设A1 ,A2 ,...,An 构成一个完备事件组,且 P(Ai )>0 ,i=1,2,...,n,则对任一随机事件B, 有
P( B) P( Ai ) P( B | Ai )
i 1
n

A1 A2 A3
P( A1 ) P( B | A1 ) P( A2 ) P( B | A2 ) P( A3 ) P(B | A3 )
P( B)
贝叶斯公式 Bayes’ Theorem
设A1,A2,…, An构成完备事件组,且诸P(Ai)>0)
B为样本空间的任意事件,P( B) >0 , 则有
3 某工人照看三台机床,一个小时内1号,2号,3 号机床需要照看的概率分别为0.3, 0.2, 0.1。设各机床 之间是否需要照看是相互独立的,求在一小时内:1) 没有一台机床需要照看的概率;2)至少有一台不需要 照看的概率;3)至多有一台需要照看的概率。
练习2
发报台分别以概率 0.6 和 0.4发出信号“ .” 和“ - ”,• 由于通信系统受到干扰,当发出信 号“ .”时,收报台分别以概率 0.8 及 0.2 收 到信号 “ .”和“ - ”,同样,当发报台发 出信号“ - ”时,收报台分别以概率 0 .9 和 0.1 收到信号“ - ”和“ .”.求 (1) 收报台收到信号“ .”的概率. (2) 当收报台收到信号“ .”时,发报台确系 发出信号“ .”的概率.
x1 , x2 ,

, xn ,
,而取值 xk 的概率为
pk
PX xk pk
称此式为X的分布律(列)或概率分布
(Probability distribution)
其中 pk (k=1,2, …) 满足: (1) pk 0, k=1,2, …
( 2)
p 1
k k
求分布律举例
用x, y, z 表示下列事件的概率:
1) P( A B) 3) P( A B)
2) P( A B) 4) P( A B)
2, 设 A,B
为随机事件, 且
P( A) 0.5, P( A B) 0.2, P( B A) 0.1
P( AB )
3, 设 A,B 为随机事件, 且
P( A) 0.5, P( B) 0.1, P( A B) 0.55
P ( AB ) P( A B) P( B)
为在事件B发生的条件下,事件A发生的条件概率.
乘法法则
P( AB) P( A) P( B A) P( B) P( A B)
推广
P( AB) P( B A) P( A) P( AB) P( A B) P( B)
P( ABC) P( A)P(B A) P(C | AB)
贝努利定理
定理 设在一次试验中事件A发生的概率为 p (0<p<1) , 则A在n次贝努里试验中恰好发生 k次的概率为
Pn (k ) C p q
k n k
n k
( k= 0,1,2,...,n )
其中
q 1 p
1 P( A) x, P( B) y, P( A B) z.
设“发出信号.”为事件A,“接收信号.”为B 则
P( A) 0.6; P( A) 0.4; P( B A) 0.8; P( B A) 0.2; P( B A) 0.9; P( B A) 0.1
练习3
爱滋病普查:使用一种血液试验来检测人体内是 否携带爱滋病病毒.设这种试验的假阴性比例为5% (即在携带病毒的人中,有5%的试验结果为阴 性),假阳性比例为1%(即在不携带病毒的人中, 有1%的试验结果为阳性).据统计人群中携带病毒 者约占1‟,若某人的血液检验结果呈阳性,试问该
A1 , A2 ,
两两互不相容时
P(A1 ∪A2 ∪…)=P(A1)+P(A2)+…
P() 0
n
P(
i 1
Ai ) P( Ai), 各Ai,A j互不相容
i 1
n
P( A B) P( A) P( B) P( AB)
若 A B,则 P (B - A) = P(B) - P(A)
解 设Ai表示“第i台机床需要照看”,(i=1,2,3) 则 P(A1)=0.3; P(A2)=0.2; P(A3)=0.1;
P(1) P( A1 A2 A3 ) 0.7 0.8 0.9 0.504
P(2) 1 P( A1 A2 A3 ) 1 0.3 0.2 0.1 0.994
P(3) P( A1 A2 A3 ) P ( A1 A2 A3 ) P ( A1 A2 A3 ) P( A1 A2 A3 ) 0.902
练习 设某电子元件的使用寿命在1000小时以上的概 率为0.2,当三个电子元件相互独立使用时,求在使 用了1000小时的时候,最多只有一个损坏的概率。 解 设A表示“元件使用1000小时不坏”,则
概率论
集合论
样本空间(必然事件) Ω
不可能事件 Φ
全集
空集Φ
子事件 A⊂B
和事件 A∪B
子集A⊂B
并集A∪B
积事件 A∩B
差事件 A-B
交集A∩B
差集A-B
对立事件
A
补集
A
事件之间的运算律

交换律
A BB
A AB BA
结合律
分配律
( A B) C A ( B C )
A( B C ) ( AB) ( AC )
人携带爱滋病毒的概率.
符号引入:“携带病毒”为A,“实验呈阳性”为B,则
P( A) 0.001, P( B A) 0.05, P( B A) 0.01
求 P( A B)
(贝叶斯公式)
4 某工人照看三台机床,一个小时内1号,2号,3 号机床需要照看的概率分别为0.3, 0.2, 0.1。设各机床 之间是否需要照看是相互独立的,求在一小时内:1) 没有一台机床需要照看的概率;2)至少有一台不需要 照看的概率;3)至多有一台需要照看的概率。
6, 甲箱中有3个白球,2个黑球,乙箱中有1个白球,3个黑球。现从甲 箱中任取一球放入乙箱中,再从乙箱任意取出一球。问从乙箱中取出 白球的概率是多少?
7, 甲乙二人向同一目标射击,甲击中目标的概率为0.6,乙击中目标 的概率为0.5。试计算 1)两人都击中目标的概率;2)恰有一人击中 目标的概率;3)目标被击中的概率。
CH1 概率论的基本概念
1.1 随机试验 1.2 样本空间、随机事件 1.3 频率与概率 1.4 古典概型 1.5 几何概型 1.6 条件概率 1.7 事件的独立性 测试题及答案
要求: 1、了解样本空间和随 机事件的概念,掌握事 件的关系与运算 2、掌握古典概型解法 3、掌握概率的基本性 质及概率的运算 4、掌握乘法公式、全 概率公式与Bayes公式 5、理解事件独立性
事件A包含的基本事件数 m P( A) 试验的基本事件总数 n
概率的公理 化定义
给定一个随机试验,Ω是它的样本空间,对于 任意一个事件A,赋予一个实数
P ( A) ,如果
那么,称
非负性: 规范性:
P() 满足下列三条公理,
P ( A) 为事件A的概率.
P(A)≥0 P(Ω)=1
可列可加性:
C P{X=2 C }
2 3 2 20
3 =P(抽得的两件全为次品) 190
故 X的分布律为
X
pk
0
136 190
1
51 190
2
3 190
而“至少抽得一件次品”={X≥1} = {X=1}{X=2} 注意:{X=1}与{X=2}是互不相容的! 故
51 3 54 27 P{X≥1}= P{X=1}+P{X=2} 190 190 190 95
A (BC) (A B)(A C)
摩根律
AB A B
A B A B
Venn图演示集合的关系与运算
古典概型的概率计算
确定试验的基本事件总数
设试验结果共有n个基本事件ω1,ω2,...,ωn , 而且这些事件的发生具有相同的可能性
确定事件A包含的基本事件数
事件A由其中的m个基本事件组成
P( AB )
4, 用4个机床加工同一种零件, 零件由各机床加工的概率分别 为0.5,0.3,0.1,0.1,各机 床加工的零件为合格品的概率 分别等于0.94,0.9,0.95, 0.9,求全部产品的合格率。
5
设播种用麦种中混有一等,二等,三等,四等四个等级的种子,分别各占95.5 %,2%,1.5%,1%,用一等,二等,三等,四等种子长出的穗含50颗以上麦粒的 概率分别为0.5,0.15,0.1,0.05,求这批种子所结的穗含有50颗以上麦粒的概率.
例1 设有一批产品20件,其中有3件次品,从中
任意抽取2件,如果用X表示取得的次品数,求随机变 量X的分布律及事件“至少抽得一件次品”的概率。 解:X的可能取值为 0,1,2
2 C17 136 P{X=0} 2 C 20 190
=P(抽得的两件全为正品)
1 1 C3 C17 51 P{X=1} =P(只有一件为次品) 2 C20 190
P ( Ak | B )
P ( Ak ) P( B | Ak )
P( A ) P( B | A )
i i i 1
n
证明
P ( Ak B ) P( Ak B ) P( B)
( k =1 , 2 )P(B Ak )
相关文档
最新文档