概率论与数理统计答案
概率论与数理统计练习册答案
概率论与数理统计练习册答案第一章概率论的基本概念一、选择题4. 答案:(C )注:C 成立的条件:A 与B 互不相容.5. 答案:(C )注:C 成立的条件:A 与B 互不相容,即AB φ=.6. 答案:(D )注:由C 得出A+B=Ω. 8. 答案:(D )注:选项B 由于11111()1()1()1()1(1())nn n n n i i i i i i i i i i P A P A P A P A P A ======-=-==-=--∑∑∏∏9.答案:(C )注:古典概型中事件A 发生的概率为()()()N A P A N =Ω. 10.答案:(A )解:用A 来表示事件“此r 个人中至少有某两个人生日相同”,考虑A的对立事件A “此r 个人的生日各不相同”利用上一题的结论可知365365!()365365r r r rC r P P A ?==,故365()1365rrP P A =-.12.答案:(B )解:“事件A 与B 同时发生时,事件C 也随之发生”,说明AB C ?,故()()P AB P C ≤;而()()()()1,P A B P A P B P AB ?=+-≤ 故()()1()()P A P B P AB P C +-≤≤.13.答案:(D )解:由(|)()1P A B P A B +=可知2()()()1()()()1()()()(1())()(1()()())1()(1())()(1())()(1()()())()(1())()()()()()()(())()()()P AB P AB P AB P A B P B P B P B P B P AB P B P B P A P B P AB P B P B P AB P B P B P A P B P AB P B P B P AB P AB P B P B P A P B P B P B P AB P B -?+=+--+--+==-?-+--+=-?-+--+=2(())()()()P B P AB P A P B -?=故A 与B 独立. .16.答案:(B )解:所求的概率为()1()1()()()()()()()11111100444161638P ABC P A B C P A P B P C P AB P BC P AC P ABC =-??=---+++-=---+++-= 注:0()()0()0ABC AB P ABC P AB P ABC ??≤≤=?=. 17.答案:(A )解:用A 表示事件“取到白球”,用i B 表示事件“取到第i 箱”1.2.3i =,则由全概率公式知112233()()(|)()(|)()(|)11131553353638120P A P B P A B P B P A B P B P A B =++=++=.18.答案:(C )解:用A 表示事件“取到白球”,用i B 表示事件“取到第i 类箱子” 1.2.3i =,则由全概率公式知112233()()(|)()(|)()(|)213212765636515P A P B P A B P B P A B P B P A B =++=++=.19.答案:(C )解:即求条件概率2(|)P B A .由Bayes 公式知3263222711223315()(|)5(|)()(|)()(|)()(|)7P B P A B P B A P B P A B P B P A B P B P A B ===++. 二、填空题2.;ABC ABC ABC ABC ABC 或AB BC AC3.0.3,0.5 解:若A 与B 互斥,则P (A+B )=P (A )+P (B ),于是 P (B )=P (A+B )-P (A )=0.7-0.4=0.3;若A 与B 独立,则P (AB )=P (A )P (B ),于是由P (A+B )=P (A )+P (B )-P (AB )=P (A )+P (B )-P (A )P (B ),得()()0.70.4()0.51()10.4P A B P A P B P A +--===--.4.0.7 解:由题设P (AB )=P (A )P (B|A )=0.4,于是P (AUB )=P (A )+P (B )-P (AB )=0.5+0.6-0.4=0.7.解:因为P (AUB )=P (A )+P (B )-P (AB ),又()()()P AB P AB P A +=,所以()()()0.60.30.3P AB P A B P B =-=-= .6.0.6 解:由题设P (A )=0.7,P (AB )=0.3,利用公式AB AB A +=知()()()P AB P A P AB =-=0.7-0.3=0.4,故()1()10.40.6P AB P AB =-=-=. 7.7/12 解:因为P (AB )=0,所以P (ABC )=0,于是()()1()1[()()()()()()()]13/42/67/12P ABC P A B C P A B C P A P B P C P AB P BC P AC P ABC ==-=-++---+=-+= . 10.11260解:这是一个古典概型问题,将七个字母任一种可能排列作为基本事件,则全部事件数为7!,而有利的基本事件数为12121114=,故所求的概率为417!1260=. 11.3/7 解:设事件A={抽取的产品为工厂A 生产的},B={抽取的产品为工厂B 生产的},C={抽取的是次品},则P (A )=0.6,P (B )=0.4,P (C|A )=0.01,P (C|B )=0.02,故有贝叶斯公式知()()(|)0.60.013(|)()()(|)()(|)0.60.010.40.027P AC P A P C A P A C P C P A P C A P B P C B ?====+?+?. 12.6/11解:设A={甲射击},B={乙射击},C={目标被击中},则P (A )=P (B )=1/2,P (C|A )=0.6,P (C|B )=0.5,故()()(|)0.50.66 (|)()()(|)()(|)0.50.60.50.511P AC P A P C A P A C P C P A P C A P B P C B ?====+?+?. 四、 )(,21)|(,31)|(,41)(B A P B A P A B P A P ?===求。
概率论与数理统计答案(汇总版)
概率论与数理统计答案(汇总版)篇一:概率论与数理统计教程答案(徐建豪版)习题1、写出下列随机试验的样本空间.(1)生产产品直到有4件正品为正,记录生产产品的总件数.(2)在单位园中任取一点记录其坐标.(3)同时掷三颗骰子,记录出现的点数之和.解:(1)??{4,5,6,7,8?}(2)??{()x2?y2?1}(3)??{3,4,5,6,7,8,9,10,?,18}2、同时掷两颗骰子,x、y分别表示第一、二两颗骰子出现的点数,设事件A表示“两颗骰子出现点数之和为奇数”,B表示“点数之差为零”,C表示“点数之积不超过20”,用样本的集合表示事件B?A,BC,B?C.解:B?A?{(),(),(),(),(),()}BC?{(),(),(),()}B?C?{(),(),(),(),(),(),(),(),(),()}3、设某人向靶子射击3次,用Ai表示“第i次射击击中靶子”(i?1,2,3),试用语言描述下列事件.(1)A1?A2 (2)(A1?A2)A3 (3)A1A2?A2A2解:(1)第1,2次都没有中靶(2)第三次中靶且第1,2中至少有一次中靶(3)第二次中靶4.设某人向一把子射击三次,用Ai表示“第i次射击击中靶子”(i=1,2,3),使用符号及其运算的形式表示以下事件:(1)“至少有一次击中靶子”可表示为;(2)“恰有一次击中靶子”可表示为;(3)“至少有两次击中靶子”可表示为;(4)“三次全部击中靶子”可表示为;(5)“三次均未击中靶子”可表示为;(6)“只在最后一次击中靶子”可表示为 . 解:(1)A1?A2?A3;(2) A123?1A23?12A3;(3)A1A2?A1A3?A2A3; (4) A1A2A3; (5) 123(6) 12A35.证明下列各题(1)A?B?A (2)A?B?(A?B)?(AB)?(B?A)证明:(1)右边=A(??B)?A?AB=A且??B??A?B=左边(2)右边=(AB)?(AB)?(BA)=A或??B??A?B习题1.设A、B、C三事件,P(A)?P(B)?P(C)?14P(AC)?P(BC)?18,P(AB)?0,求A、B、C至少有一个发生的概率.解:?P(AB)?0?P(ABC)?0P(A?B?C).?P(A)?P(B)?P(C)?P(AB)?P(BC)?P(AC)?P(ABC) =3?11 4?2?8?122.已知p()? ,P(B)? , P(B)?,求(1)P(AB)(2)P(A?B),(3)P(A?B), (4)P(AB).解:(1)?A?B,?AB?A?P(AB)?P(A)?(2)?A?B,?A?B?B?P(A?B)?P(B)?3.设P(A)=(A?B)= 互斥,求P(B).解:?A,B互斥,P(A?B)?P(A)?P(B), ,故P(B)?P(A?B)?P(A)4.设A、B是两事件且P(A)=,P(B)?(1)在什么条件下P(AB)取到最大值,最大值是多少?(2)在什么条件下P(AB)取到最小值,最小值是多少?解:由加法公式P(AB)?P(A)?P(B)?P(A?B)=?P(A?B)(1)由于当A?B时A?B?B,P(A?B)达到最小,即P(A?B)?P(B)?,则此时P(AB)取到最大值,最大值为(2)当P(A?B)达到最大,即P(A?B)?P(?)?1,则此时P(AB)取到最小值,最小值为5.设P(A)?P(B)?P(C)?1115,P(AB)?P(BC)?P(AC)?,P(??)?, 4816求P(A?B?C). 解:P(ABC)?1?P(ABC)?1?P(??)?1?151?, 1616P(A?B?C).?P(A)?P(B)?P(C)?P(AB)?P(BC)?P(AC)?P(ABC) =3?1117?3 481616习题1.从一副扑克牌(52张)中任取3张(不重复)求取出的3张牌中至少有2张花色相同的概率.解:设事件A={3张中至少有2张花色相同} 则A={3张中花色各不相同}3111C4C13C13C13P(A)?1?P(A)?1?? 3C52只铆钉随机地取来用在10个部件上,其中有3个铆钉强度太弱,每个部件用3只铆钉,若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱,问发生一个部件强度太弱的概率.3解法一随机试验是从50只铆钉随机地取3个,共有C50种取法,而发生“某3C31一个部件强度太弱”这一事件只有C这一种取法,其概率为3?,而10C501960033个部件发生“强度太弱”这一事件是等可能的,故所求的概率为p??pi?i?110101 ?1960019603解法二样本空间的样本点的总数为C50,而发生“一个部件强度太弱”这13一事件必须将3只强度太弱的铆钉同时取来,并都装在一个部件上,共有C10C3种情况,故发生“一个部件强度太弱”的概率为13C10C31 p??31960C503.从1至9的9个整数中有放回地随机取3次,每次取一个数,求取出的3个数之积能被10整除的概率.解法一设A表示“取出的3个数之积能被10整除”,, A1表示“取出的3个数中含有数字5”, A2表示“取出的3个数中含有数字偶数”P(A)?P(A1A2)?1?P(A1A2)?1?P(A1?A2)?1?P(A1)?P(A2)?P(A1A2)?8??5??4??11???9??9??9?解法二设Ak为“第k次取得数字,Bk为“第k次取得偶数”,5”k?1,2,3。
概率论与数理统计答案
概率论与数理统计答案1. 观察某地区未来3 天的天气情况,记表示“有天不下雨”,用事件运算的关系式表示:“三天均下雨” “三天中至少有一天不下雨” 。
正确答案:2. 一根长为的棍子在任意两点折断,则得到的三段能围成三角形的概率为。
正确答案:. 3.两事件与相互独立,且满足,,则。
正确答案:4. 已知随机变量的概率分布为,则,。
正确答案:1,5. 设随机变量X 服从区间[0,5]上的均匀分布,对随机变量X 的取值进行了三次独立观察,则至少有两次观察值不超过 2 的概率为。
正确答案:0.3526. 随机变量,则由切比雪夫不等式有。
正确答案:7. 已知随机变量X 和Y 的协方差矩阵为,则= 。
正确答案:,28. 设总体X 服从正态分布,其中未知,现取得样本容量为64 的一个样本,则的0.95的置信区间的长度为。
正确答案:0.989. 设总体X 服从正态分布,是总体的样本,则,正确答案:,10. 设随机变量的概率密度为,则的概率密度为。
正确答案:二、选择题(每题2 2 分,共0 10 分)1.设设A A ,B B 为两随机事件,且,则( ) 。
正确答案A.B.C.D.正确答案:D2. 已知随机变量X X 的概率密度函数( ( A 0,A 为常数) ) ,则概率(0 )的值()。
正确答案A. 与无关,随的增大而增大B. 与无关,随的增大而减小C. 与无关,随的增大而增大D. 与无关,随的增大而减小正确答案:C3. 若~,~,那么的联合分布为()。
正确答案A.二维正态分布,且B.二维正态分布,且不定C.未必是二维正态分布D.以上都不对正确答案:C4. 总体均值的的95% 置信区间的意义是( ) 。
正确答案A. 这个区间以95%的概率含样本均值B. 这个区间以95%的概率含的真值C. 这个区间平均含总体95%的值D. 这个区间平均含样本95%的值正确答案:B5. 对正态总体的数学期望进行假设检验,如果在显著水平下接受,那么在显著水平1 0.01 下,下列结论中正确的是( ) 。
概率论与数理统计(练习参考答案)
一、填空题 (每小题2分,共10分)1、一射手对同一个目标独立地进行4次射击,若至少命中一次的概率为8180,则该射手的命中率为 .2、 设随机变量X 在区间[2,5]上服从均匀分布,则=)(2X E ____13_____ .3、 设X 服从参数为10=θ的指数分布,Y )2,3(~2N ,且X 与Y 相互独立,Y X Z 23-=,则=)(Z D ___916_____.4、已知5.0,9)(,4)(===XY Y D X D ρ,则=+)(Y X D 19_ .5、设总体),(~2σμN X ,n X X X ,,,21Λ为来自X 的简单随机样本,则~11∑==ni iX n X ),(2n N σμ. 二、单项选择题 (每小题2分,共10分)(1)对于任意两事件A 和B ,=-)(B A P C .(A ))()(B P A P - (B ))()()(AB P B P A P +- (C ) )()(AB P A P - (D ))()()(B A P A P A P -+ 2、.对于任意两个随机变量,若)()()(Y E X E XY E =则____B _____.(A))()()(Y D X D XY D = (B))()()(Y D X D Y X D +=+ (C) X 与Y 相互独立 (D)X 与Y 相互不独立 3、设Y X ,相互独立,X 和Y 的分布律分别为,则必有 D .(A )Y X = (B ){}0==Y X P(C ){}1==Y X P (D ){}58.0==Y X P4、 在假设检验中,原假设0H ,备择假设1H ,则称_____D _____ 为犯第二类错误 (A)10H H 为真,接受 (B) 00H H 不真,拒绝 (C) 10H H 为真,拒绝 (D) 00H H 不真,接受5、 已知341.1)15(90.0-=t 。
设随机变量X 服从自由度为15的t 分布,若90.0)(=<a X P ,则=a _____B _____.(A) -1.341 (B) 1.341 (C) 15 (D) -15三、计算题 (共52分)1、 有四位同学报考硕士研究生,他们被录取的概率分别为0.2、0.3、0.45、0.6,试求至少有一位同学被录取的概率. (5分) 解: 设}{个同学被录取第i A i =),4,3,2,1(=i ;}{至少有一位同学被录取=B则有 4321A A A A B +++= ;∑=-=-=41)(1)(1)(i iA PB P B P8768.04.055.07.08.01=⨯⨯⨯-=2、 某年级有甲,乙,丙三个班级,其中各班的人数分别占年级总人数的1/ 4, 1/3, 5/12,已知甲,乙,丙三个班级中是独生子女的人数分别占各班人数的1/ 2, 1/ 4, 1/5, 求:: (1) 从该年级中随机的选一人,该人是独生子女的概率为多少?(2) 从该年级中随机的选一人,发现其为独生子女,则此人是甲班的概率为多少? (8分) 解: 设}{为独生子女从该年级中随机选一人=B }{1选到的是甲班的人=A}{2选到的是乙班的人=A ;}{3选到的是丙班的人=A ;则321,,A A A 为一个分割,41)(1=A P ,1)(2=A P ,125)(3=A P ;21)(1=A B P ,41)(2=A B P ,51)(3=A B P . (1) ∑==31)()()(i i i A P A B P B P =32=⨯+⨯+⨯511254*********7; (2) )(1B A P =)()()(11B P A P A B P =73.3、设有5件产品,其中有两件次品,今从中连取二次,每次任取一件不放回,以X 表示所取得的次品数,试求: : (1)X 的分布律和分布函数)(x F ; (2)122+=X Y 的分布律. (9分) 解: (1)(2)4、 某商品的日销量X (公斤)~)300,10000(2N , 求:日销量在9700到10300公斤之间的概率. (8413.0)1(=Φ 97725.0)2(=Φ备用) (8分)解: 300,10000==σμ)9700()10300(}103009700{F F X P -=≤≤=)3001000010300(-Φ-)300100009700(-Φ=)1()1(--ΦΦ=1)1(2-Φ=6826.018413.02=-⨯5、设随机变量X 的密度函数为⎩⎨⎧≥=-其它0)(2x Ce x f x,求: (1) 常数C ; (2) 概率}2/11{<<-X P ; (3) )(X E ;(4)设X Y 2=,则Y 的密度函数)(y f Y 。
概率论与数理统计
04183 概率论与数理统计(经管类)一 、单选题1、将一枚硬币连抛两次,则此随机试验的样本空间为 【 】 A:{(正,正),(反,反),(一正一反)}B:{ (反,正),(正,反),(正,正),(反,反)} C:{一次正面,两次正面,没有正面}D:{先得正面,先得反面} 做题结果:A 参考答案:B.{ (反,正),(正,反),(正,正),(反,反)}2、若AB ≠Φ,则下列各式中错误的是【 】A:P(AB)>=0B:P(AB)<=1 C:P(A+B)=P(A)+P(B) D:P(A-B)<=P(A) 做题结果:A 参考答案:C.P(A+B)=P(A)+P(B)3、袋中有a 个白球,d 个黑球,从中任取一个,则取得白球的概率是 【 】A:1/2B:1/(a+d) C:a/(a+d) D:d/(a+d)做题结果:A 参考答案:C.a/(a+d)4、四人独立地破译一份密码,已知各人能译出的概率分别为1/5,1/4,1/3,1/6则密码最终能被译的概率为 【 】B:1/2A:1C:2/5 D:2/3做题结果:A 参考答案:D.2/35、已知P(A)=P(B)=P(C)=1/4,P(AB)=0,P(AC)=P(BC)=1/16,则事件A,B,C全不发生的概率为【】B:3/8A:1/8C:5/8 D:7/8做题结果:A 参考答案:B.3/86、设X服从[1,5]上的均匀分布,则【】B:P{3<X< 4>A:P{a<=X<=b}=(b-a)/4C:P{0<X<> D:P{-1<X<=3}=1 td < 2>做题结果:A 参考答案:D.P{-1<X<=3}=1 td < 2>7、B:P(B-A)>=0A:B未发生A可能发生C:P(A)<=P(B) D:B发生A可能不发生做题结果:A 参考答案:A.B未发生A可能发生8、B:A与B相容A:A与B不相容C:A与B不独立D:A与B独立做题结果:A 参考答案:D.A与B独立9、B:0.2A:0C:0.3 D:0.5做题结果:A 参考答案:C.0.310、设F1(x)与F2(x)分别是随机变量X与Y的分布函数,为使aF1(x)-bF2(x)是某个随机变量的分布函数,则a,b的值可取为【】B:a=2/3,b=2/3A:a=3/5,b=-2/5C:a=-1/2,b=3/2 D:a=1/2,b=-3/2做题结果:A 参考答案:A.a=3/5,b=-2/511、X为随机变量,E(X)=-1,D(X)=3,则E[3(X2)+20]= 【】B:9A:18C:30 D:32做题结果:C 参考答案:D.3212、X,Y独立,且方差均存在,则D(2X-3Y)= 【】B:4DX-9DYA:2DX-3DYC:4DX+9DY D:2DX+3DY做题结果:C 参考答案:C.4DX+9DY13、设X1,X2,……,X n是来自总体X的简单随机样本,则X1,X2,……,X n必然满足【】B:分布相同但不相互独立A:独立同分布C:独立但分布不同D:不能确定做题结果:A 参考答案:A.独立同分布14、B:0.4A:0C:0.8 D:1做题结果:A 参考答案:D.115、袋中有c个白球,d个黑球,从中任取一个,则取得白球的概率是【】B:1/(c+d)A:1/2C:c/(c+d) D:d/(c+d)做题结果:A 参考答案:C.c/(c+d)16、从标号为1,2,…,101的101个灯泡中任取一个,则取得标号为偶数的灯泡的概率为【】B:51/101A:50/101C:50/100 D:51/100做题结果:C 参考答案:A.50/10117、四人独立地破译一份密码,已知各人能译出的概率分别为1/2,1/4,1/3,1/5,则密码最终能被译的概率为【】B:1/2A:1C:4/5 D:2/3做题结果:A 参考答案:C.4/518、已知P(A)=P(B)=P(C)=1/8,P(AB)=0,P(AC)=P(BC)=1/16,则事件A,B,C全不发生的概率为【】B:3/8A:3/4C:5/8 D:7/8做题结果:C 参考答案:A.3/419、设X服从[1,5]上的均匀分布,则【】B:P{3<X< 2>A:P{a<=X<=b}=(b-a)/4C:P{0<X<> D:P{-1<X<=3}=1 td < 4>做题结果:C 参考答案:B.P{3<X< 2>20、A:0.2B:0.4C:0.8 D:1做题结果:C 参考答案:A. 0.221、设F1(x)与F2(x)分别是随机变量X与Y的分布函数,为使aF1(x)-bF2(x)是某个随机变量的分布函数,则a,b的值可取为【】A:a=3/5,b=-4/5B:a=2/3,b=2/3C:a=-1/2,b=3/2 D:a=1/2,b=-1/2做题结果:C 参考答案:D.a=1/2,b=-1/222、下列叙述中错误的是【】A:联合分布决定边缘分布B:边缘分布不能决定联合分布C:边缘分布之积即为联合分布D:两个随机变量各自的联合分布不同,但边缘分布可能相同做题结果:C 参考答案:C.边缘分布之积即为联合分布24、下列叙述中错误的是【】A:联合分布决定边缘分布B:边缘分布不能决定联合分布C:两个随机变量各自的联合分布不同,但边缘分布可能相同D:边缘分布之积即为联合分布做题结果:C 参考答案:D.边缘分布之积即为联合分布25、下列关于“统计量”的描述中,不正确的是【】A:统计量为随机变量B:统计量是样本的函数C:统计量表达式中不含有参数D:估计量是统计量做题结果:C 参考答案:C.统计量表达式中不含有参数26、已知D(X)=4,D(Y)=25,Coν(X,Y)=4,则ρXY= 【】A:0.004B:0.04C:0.4 D:4做题结果:A 参考答案:C.0.427、设X1,X2,……,X n是来自总体X的简单随机样本,则X1,X2,……,X n必然满足【】A:独立但分布不同B:分布相同但不相互独立C:独立同分布D:不能确定做题结果:C 参考答案:C.独立同分布28、X,Y独立,且方差均存在,则D(3X-4Y)= 【】B:9DX-16DYA:9DX+16DYC:3DX-4DY D:3DX+4DY做题结果:A 参考答案:A.9DX+16DY29、设事件A,B相互独立,且P(A)=1/3,P(B)>0,则P(AㄧB)= 【】B:1/5A:1/15C:4/15 D:1/3做题结果:A 参考答案:D.1/330、袋中有a个白球,d个黑球,从中任取一个,则取得白球的概率是【】B:1/(a+d)A:1/2C:a/(a+d) D:d/(a+d)做题结果:A 参考答案:C.a/(a+d)31、B:P(A)A:1C:P(B) D:P(AB)做题结果:C 参考答案:A.132、四人独立地破译一份密码,已知各人能译出的概率分别为1/5,1/4,1/7,1/6,则密码最终能被译的概率为【】B:1/2A:1C:3/7 D:4/7做题结果:A 参考答案:D.4/7已知P(A)=P(B)=P(C)=1/5,P(AB)=0,P(AC)=P(BC)=1/25则事件A,B,C全不发生的概率为【】B:12/25A:1/25C:15/25 D:13/25做题结果:A 参考答案:B.12/2534、B:0.6A:0.5C:0.66 D:0.7做题结果:A 参考答案:C.0.6635、B:1/2A:1/6C:2/3 D:1做题结果:A 参考答案:C.2/336、设随机变量X与Y独立同分布,它们取-1,1两个值的概率分别为1/4,3/4,则P{XY=-1}= 【】B:3/16C:1/4 D:3/8做题结果:A 参考答案:D.3/837、设X服从[1,5]上的均匀分布,则【】A:P{a<=X<=b}=(b-a)/4B:P{3<X< 2>C:P{0<X<> D:P{-1<X<=3}=3 td < 4>做题结果:A 参考答案:B.P{3<X< 2>38、A:0B:0.2C:0.3 D:0.5做题结果:C 参考答案:D.0.539、设F1(x)与F2(x)分别是随机变量X与Y的分布函数,为使aF1(x)-bF2(x)是某个随机变量的分布函数,则a,b的值可取为【】A:a=3/5,b=2/5B:a=2/3,b=-1/3C:a=-1/2,b=3/2 D:a=1/2,b=-3/2做题结果:A 参考答案:B.a=2/3,b=-1/340、下列叙述中错误的是【】A:联合分布决定边缘分布B:边缘分布不能决定联合分布C:两个随机变量各自的联合分布不同,但边缘分布可能相同D:边缘分布之积即为联合分布做题结果:C 参考答案:D.边缘分布之积即为联合分布41、已知随机变量X服从参数为2的指数分布,则随机变量X的期望为【】A:-1/2B:0C:1/2 D:2做题结果:C 参考答案:C.1/242、下列关于“统计量”的描述中,不正确的是【】A:统计量为随机变量B:统计量是样本的函数C:统计量表达式中不含有参数D:估计量是统计量做题结果:A 参考答案:C.统计量表达式中不含有参数43、X,Y独立,且方差均存在,则D(2X-5Y)= 【】A:2DX-5DYB:4DX-25DYC:4DX+25DY D:2DX+5DY做题结果:A 参考答案:C.4DX+25DY44、设X1,X2,……,X n是来自总体X的简单随机样本,则X1,X2,……,X n必然满足【】A:独立但分布不同B:分布相同但不相互独立C:不能确定D:独立同分布做题结果:A 参考答案:D.独立同分布58、设X~N(μ,4),则B:P{X<=0}=1/2A:(X-μ)/4~N(0,1)C:P{X-μ>2}=1-φ(1) D:μ>=0做题结果:A 参考答案:C.P{X-μ>2}=1-φ(1)59、设随机变量X的分布函数为F(X),下列结论中不一定成立的是【】B:F(-∞)=0A:F(+∞)=1C:0<=F(X)<=1 D:F(X)为连续函数做题结果:A 参考答案:D.F(X)为连续函数60、某人每次射击命中目标的概率为p(0<p<1),他向目标连续射击,则第一次未中第二次命中的概率为【】B:(1-p)(1-p)A:p*pC:1-2p D:p(1-p)做题结果:A 参考答案:D.p(1-p)61、设A与B互不相容,且P(A)>0,P(B)>0,则有【】做题结果:A 参考答案:D.P(A∪B)=P(A)+P(B)62、设A,B,C是三个相互独立的事件,且O<P(C)<1,则下列给定的四对事件中,不独立的是【】,,,做题结果:A 参考答案:C.63、设随机变量X服从参数为λ的泊松分布,且P{X=1}=P{X=2},则P{X>2}的值为e-2,,,做题结果:A 参考答案:B64、(x) ,则Y=-2X+3的密度函数设随机变量X的概率密度函数为fx为【】,,,做题结果:A 参考答案:B 65、设随机事件A与B相互独立,且P(A)>0,P(B)>0,则。
《概率论与数理统计》习题及答案
概率论与数理统计 第一部份 习题第一章 概率论基本概念一、填空题1、设A ,B ,C 为3事件,则这3事件中恰有2个事件发生可表示为 。
2、设3.0)(,1.0)(=⋃=B A P A P ,且A 与B 互不相容,则=)(B P 。
3、口袋中有4只白球,2只红球,从中随机抽取3只,则取得2只白球,1只红球的概率为 。
4、某人射击的命中率为0.7,现独立地重复射击5次,则恰有2次命中的概率为 。
5、某市有50%的住户订晚报,有60%的住户订日报,有80%的住户订这两种报纸中的一种,则同时订这两种报纸的百分比为 。
6、设A ,B 为两事件,3.0)(,7.0)(==B A P A P ,则=)(B A P 。
7、同时抛掷3枚均匀硬币,恰有1个正面的概率为 。
8、设A ,B 为两事件,2.0)(,5.0)(=-=B A P A P ,则=)(AB P 。
9、10个球中只有1个为红球,不放回地取球,每次1个,则第5次才取得红球的概率为 。
10、将一骰子独立地抛掷2次,以X 和Y 分别表示先后掷出的点数,{}10=+=Y X A{}Y X B >=,则=)|(A B P 。
11、设B A ,是两事件,则B A ,的差事件为 。
12、设C B A ,,构成一完备事件组,且,7.0)(,5.0)(==B P A P 则=)(C P ,=)(AB P 。
13、设A 与B 为互不相容的两事件,,0)(>B P 则=)|(B A P 。
14、设A 与B 为相互独立的两事件,且4.0)(,7.0)(==B P A P ,则=)(AB P 。
15、设B A ,是两事件,,36.0)(,9.0)(==AB P A P 则=)(B A P 。
16、设B A ,是两个相互独立的事件,,4.0)(,2.0)(==B P A P 则=)(B A P 。
17、设B A ,是两事件,如果B A ⊃,且2.0)(,7.0)(==B P A P ,则=)|(B A P 。
概率论与数理统计课后习题答案(非常全很详细)
概率论与数理统计复旦大学此答案非常详细非常全,可供大家在平时作业或考试前使用,预祝大家考试成功习题一1.略.见教材习题参考答案.2.设A,B,C为三个事件,试用A,B,C的运算关系式表示下列事件:(1)A发生,B,C都不发生;(2)A与B发生,C不发生;(3)A,B,C都发生;(4)A,B,C至少有一个发生;(5)A,B,C都不发生;(6)A,B,C不都发生;(7)A,B,C至多有2个发生;(8)A,B,C至少有2个发生.【解】(1)A BC(2)AB C(3)ABC(4)A∪B∪C=AB C∪A B C∪A BC∪A BC∪A B C∪AB C∪ABC=ABC(5) ABC=A B C(6) ABC(7) A BC∪A B C∪AB C∪AB C∪A BC∪A B C∪ABC=ABC=A∪B∪C(8) AB∪BC∪CA=AB C∪A B C∪A BC∪ABC3.略.见教材习题参考答案4.设A,B为随机事件,且P(A)=0.7,P(A-B)=0.3,求P(AB).【解】P(AB)=1-P(AB)=1-[P(A)-P(A-B)]=1-[0.7-0.3]=0.65.设A,B是两事件,且P(A)=0.6,P(B)=0.7,求:(1)在什么条件下P(AB)取到最大值?(2)在什么条件下P(AB)取到最小值?【解】(1) 当AB =A 时,P (AB )取到最大值为0.6.(2) 当A ∪B =Ω时,P (AB )取到最小值为0.3.6.设A ,B ,C 为三事件,且P (A )=P (B )=1/4,P (C )=1/3且P (AB )=P (BC )=0,P (AC )=1/12,求A ,B ,C 至少有一事件发生的概率.【解】 P (A ∪B ∪C )=P (A )+P (B )+P (C )-P (AB )-P (BC )-P (AC )+P (ABC ) =14+14+13-112=347.从52张扑克牌中任意取出13张,问有5张黑桃,3张红心,3张方块,2张梅花的概率是多少?【解】 p =5332131313131352C C C C /C8.对一个五人学习小组考虑生日问题:(1) 求五个人的生日都在星期日的概率; (2) 求五个人的生日都不在星期日的概率;(3) 求五个人的生日不都在星期日的概率.【解】(1) 设A 1={五个人的生日都在星期日},基本事件总数为75,有利事件仅1个,故 P (A 1)=517=(17)5 (亦可用独立性求解,下同) (2) 设A 2={五个人生日都不在星期日},有利事件数为65,故P (A 2)=5567=(67)5 (3) 设A 3={五个人的生日不都在星期日}P (A 3)=1-P (A 1)=1-(17)5 9.略.见教材习题参考答案.10.一批产品共N 件,其中M 件正品.从中随机地取出n 件(n <N ).试求其中恰有m 件(m ≤M )正品(记为A )的概率.如果:(1) n 件是同时取出的;(2) n 件是无放回逐件取出的;(3) n 件是有放回逐件取出的.【解】(1) P (A )=C C /C mn m n M N M N --(2) 由于是无放回逐件取出,可用排列法计算.样本点总数有P n N 种,n 次抽取中有m次为正品的组合数为C mn 种.对于固定的一种正品与次品的抽取次序,从M 件正品中取m 件的排列数有P m M 种,从N -M 件次品中取n -m 件的排列数为P n m N M --种,故P (A )=C P P P mm n m n M N M n N-- 由于无放回逐渐抽取也可以看成一次取出,故上述概率也可写成P (A )=C C C m n m M N M n N-- 可以看出,用第二种方法简便得多.(3) 由于是有放回的抽取,每次都有N 种取法,故所有可能的取法总数为N n 种,n次抽取中有m 次为正品的组合数为C m n 种,对于固定的一种正、次品的抽取次序,m 次取得正品,都有M 种取法,共有M m 种取法,n -m 次取得次品,每次都有N -M 种取法,共有(N -M )n -m 种取法,故()C ()/m m n m n nP A M N M N -=- 此题也可用贝努里概型,共做了n 重贝努里试验,每次取得正品的概率为M N,则取得m 件正品的概率为 ()C 1m n m mn M M P A N N -⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭11.略.见教材习题参考答案.12. 50只铆钉随机地取来用在10个部件上,其中有3个铆钉强度太弱.每个部件用3只铆钉.若将3只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱.求发生一个部件强度太弱的概率是多少?【解】设A ={发生一个部件强度太弱}133103501()C C /C 1960P A == 【解】 设A i ={甲进i 球},i =0,1,2,3,B i ={乙进i 球},i =0,1,2,3,则33312123330()(0.3)(0.4)C 0.7(0.3)C 0.6(0.4)i i i P A B ==+⨯⨯+22223333C (0.7)0.3C (0.6)0.4+(0.7)(0.6)⨯=0.3207617.从5双不同的鞋子中任取4只,求这4只鞋子中至少有两只鞋子配成一双的概率.【解】 4111152222410C C C C C 131C 21p =-= 18.某地某天下雪的概率为0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求:(1) 在下雨条件下下雪的概率;(2) 这天下雨或下雪的概率.【解】 设A ={下雨},B ={下雪}.(1) ()0.1()0.2()0.5P AB p B A P A === (2) ()()()()0.30.50.10.7p A B P A P B P AB =+-=+-=19.已知一个家庭有3个小孩,且其中一个为女孩,求至少有一个男孩的概率(小孩为男为女是等可能的).【解】 设A ={其中一个为女孩},B ={至少有一个男孩},样本点总数为23=8,故 ()6/86()()7/87P AB P B A P A === 或在缩减样本空间中求,此时样本点总数为7. 6()7P B A =20.已知5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半).【解】 设A ={此人是男人},B ={此人是色盲},则由贝叶斯公式()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.50.05200.50.050.50.002521⨯==⨯+⨯ 21.两人约定上午9∶00~10∶00在公园会面,求一人要等另一人半小时以上的概率.题21图 题22图【解】设两人到达时刻为x,y ,则0≤x ,y ≤60.事件“一人要等另一人半小时以上”等价于|x -y |>30.如图阴影部分所示.22301604P == 22.从(0,1)中随机地取两个数,求:(1) 两个数之和小于65的概率; (2) 两个数之积小于14的概率. 【解】 设两数为x ,y ,则0<x ,y <1.(1) x +y <65. 11441725510.68125p =-== (2) xy =<14. 1111244111d d ln 242x p x y ⎛⎫=-=+ ⎪⎝⎭⎰⎰ 23.设P (A )=0.3,P (B )=0.4,P (A B )=0.5,求P (B |A ∪B )【解】 ()()()()()()()()P AB P A P AB P B A B P A B P A P B P AB -==+- 0.70.510.70.60.54-==+- 24.在一个盒中装有15个乒乓球,其中有9个新球,在第一次比赛中任意取出3个球,比赛后放回原盒中;第二次比赛同样任意取出3个球,求第二次取出的3个球均为新球的概率.【解】 设A i ={第一次取出的3个球中有i 个新球},i =0,1,2,3.B ={第二次取出的3球均为新球}由全概率公式,有30()()()i i i P B P B A P A ==∑33123213336996896796333333331515151515151515C C C C C C C C C C C C C C C C C C =•+•+•+•0.089=25. 按以往概率论考试结果分析,努力学习的学生有90%的可能考试及格,不努力学习的学生有90%的可能考试不及格.据调查,学生中有80%的人是努力学习的,试问:(1)考试及格的学生有多大可能是不努力学习的人?(2)考试不及格的学生有多大可能是努力学习的人?【解】设A ={被调查学生是努力学习的},则A ={被调查学生是不努力学习的}.由题意知P(A )=0.8,P (A )=0.2,又设B ={被调查学生考试及格}.由题意知P (B |A )=0.9,P (B |A )=0.9,故由贝叶斯公式知(1)()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+0.20.110.027020.80.90.20.137⨯===⨯+⨯ 即考试及格的学生中不努力学习的学生仅占2.702% (2) ()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.80.140.30770.80.10.20.913⨯===⨯+⨯ 即考试不及格的学生中努力学习的学生占30.77%.26. 将两信息分别编码为A 和B 传递出来,接收站收到时,A 被误收作B 的概率为0.02,而B 被误收作A 的概率为0.01.信息A 与B 传递的频繁程度为2∶1.若接收站收到的信息是A ,试问原发信息是A 的概率是多少?【解】 设A ={原发信息是A },则={原发信息是B }C ={收到信息是A },则={收到信息是B }由贝叶斯公式,得()()()()()()()P A P C A P A C P A P C A P A P C A =+ 2/30.980.994922/30.981/30.01⨯==⨯+⨯ 27.在已有两个球的箱子中再放一白球,然后任意取出一球,若发现这球为白球,试求箱子中原有一白球的概率(箱中原有什么球是等可能的颜色只有黑、白两种)【解】设A i ={箱中原有i 个白球}(i =0,1,2),由题设条件知P (A i )=13,i =0,1,2.又设B ={抽出一球为白球}.由贝叶斯公式知 111120()()()()()()()i i i P B A P A P A B P A B P B P B A P A ===∑ 2/31/311/31/32/31/311/33⨯==⨯+⨯+⨯ 28.某工厂生产的产品中96%是合格品,检查产品时,一个合格品被误认为是次品的概率为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率.【解】 设A ={产品确为合格品},B ={产品被认为是合格品}由贝叶斯公式得()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+ 0.960.980.9980.960.980.040.05⨯==⨯+⨯ 29.某保险公司把被保险人分为三类:“谨慎的”,“一般的”,“冒失的”.统计资料表明,上述三种人在一年内发生事故的概率依次为0.05,0.15和0.30;如果“谨慎的”被保险人占20%,“一般的”占50%,“冒失的”占30%,现知某被保险人在一年内出了事故,则他是“谨慎的”的概率是多少?【解】 设A ={该客户是“谨慎的”},B ={该客户是“一般的”},C ={该客户是“冒失的”},D ={该客户在一年内出了事故}则由贝叶斯公式得 ()()(|)(|)()()(|)()(|)()(|)P AD P A P D A P A D P D P A P D A P B P D B P C P D C ==++ 0.20.050.0570.20.050.50.150.30.3⨯==⨯+⨯+⨯ 30.加工某一零件需要经过四道工序,设第一、二、三、四道工序的次品率分别为0.02,0.03,0.05,0.03,假定各道工序是相互独立的,求加工出来的零件的次品率.【解】设A i ={第i 道工序出次品}(i =1,2,3,4).412341()1()i i P A P A A A A ==- 12341()()()()P A P A P A P A =-10.980.970.950.970.124=-⨯⨯⨯=31.设每次射击的命中率为0.2,问至少必须进行多少次独立射击才能使至少击中一次的概率不小于0.9?【解】设必须进行n 次独立射击.1(0.8)0.9n -≥即为 (0.8)0.1n ≤故 n ≥11至少必须进行11次独立射击.32.证明:若P (A |B )=P (A |B ),则A ,B 相互独立.【证】 (|)(|)P A B P A B =即()()()()P AB P AB P B P B = 亦即 ()()()()P AB P B P AB P B =()[1()][()()]()P AB P B P A P AB P B -=-因此 ()()()P AB P A P B =故A 与B 相互独立.33.三人独立地破译一个密码,他们能破译的概率分别为15,13,14,求将此密码破译出的概率.【解】 设A i ={第i 人能破译}(i =1,2,3),则 31231231()1()1()()()i i P A P A A A P A P A P A ==-=-42310.6534=-⨯⨯= 34.甲、乙、丙三人独立地向同一飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有一人击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率.【解】设A ={飞机被击落},B i ={恰有i 人击中飞机},i =0,1,2,3由全概率公式,得30()(|)()i i i P A P A B P B ==∑=(0.4×0.5×0.3+0.6×0.5×0.3+0.6×0.5×0.7)0.2+(0.4×0.5×0.3+0.4×0.5×0.7+0.6×0.5×0.7)0.6+0.4×0.5×0.7=0.45835.已知某种疾病患者的痊愈率为25%,为试验一种新药是否有效,把它给10个病人服用,且规定若10个病人中至少有四人治好则认为这种药有效,反之则认为无效,求:(1) 虽然新药有效,且把治愈率提高到35%,但通过试验被否定的概率.(2) 新药完全无效,但通过试验被认为有效的概率.【解】(1) 3101100C(0.35)(0.65)0.5138k k k k p -===∑ (2) 10102104C(0.25)(0.75)0.2241kk k k p -===∑36.一架升降机开始时有6位乘客,并等可能地停于十层楼的每一层.试求下列事件的概率:(1) A =“某指定的一层有两位乘客离开”;(2) B =“没有两位及两位以上的乘客在同一层离开”;(3) C =“恰有两位乘客在同一层离开”;(4) D =“至少有两位乘客在同一层离开”.【解】 由于每位乘客均可在10层楼中的任一层离开,故所有可能结果为106种.(1) 2466C 9()10P A =,也可由6重贝努里模型: 224619()C ()()1010P A = (2) 6个人在十层中任意六层离开,故6106P ()10P B = (3) 由于没有规定在哪一层离开,故可在十层中的任一层离开,有110C 种可能结果,再从六人中选二人在该层离开,有26C 种离开方式.其余4人中不能再有两人同时离开的情况,因此可包含以下三种离开方式:①4人中有3个人在同一层离开,另一人在其余8层中任一层离开,共有131948C C C 种可能结果;②4人同时离开,有19C 种可能结果;③4个人都不在同一层离开,有49P 种可能结果,故1213114610694899()C C (C C C C P )/10P C =++ (4) D=B .故 6106P ()1()110P D P B =-=- 37. n 个朋友随机地围绕圆桌而坐,求下列事件的概率:(1) 甲、乙两人坐在一起,且乙坐在甲的左边的概率;(2) 甲、乙、丙三人坐在一起的概率;(3) 如果n 个人并排坐在长桌的一边,求上述事件的概率.【解】 (1) 111p n =- (2) 23!(3)!,3(1)!n p n n -=>- (3) 12(1)!13!(2)!;,3!!n n p p n n n n --''===≥ 38.将线段[0,a ]任意折成三折,试求这三折线段能构成三角形的概率【解】 设这三段长分别为x ,y ,a -x -y .则基本事件集为由0<x <a ,0<y <a ,0<a -x -y <a 所构成的图形,有利事件集为由()()x y a x y x a x y y y a x y x+>--⎡⎢+-->⎢⎢+-->⎣ 构成的图形,即02022a x a y a x y a ⎡<<⎢⎢⎢<<⎢⎢⎢<+<⎢⎣ 如图阴影部分所示,故所求概率为14p =. 39. 某人有n 把钥匙,其中只有一把能开他的门.他逐个将它们去试开(抽样是无放回的).证明试开k 次(k =1,2,…,n )才能把门打开的概率与k 无关.【证】 11P 1,1,2,,P k n k n p k n n --===40.把一个表面涂有颜色的立方体等分为一千个小立方体,在这些小立方体中,随机地取出一个,试求它有i 面涂有颜色的概率P (A i )(i =0,1,2,3).【解】 设A i ={小立方体有i 面涂有颜色},i =0,1,2,3.在1千个小立方体中,只有位于原立方体的角上的小立方体是三面有色的,这样的小立方体共有8个.只有位于原立方体的棱上(除去八个角外)的小立方体是两面涂色的,这样的小立方体共有12×8=96个.同理,原立方体的六个面上(除去棱)的小立方体是一面涂色的,共有8×8×6=384个.其余1000-(8+96+384)=512个内部的小立方体是无色的,故所求概率为01512384()0.512,()0.38410001000P A P A ====, 24968()0.096,()0.00810001000P A P A ====. 41.对任意的随机事件A ,B ,C ,试证P (AB )+P (AC )-P (BC )≤P (A ).【证】 ()[()]()P A P A B C P AB AC ≥=()()()P AB P AC P ABC =+-()()()P AB P AC P BC ≥+-42.将3个球随机地放入4个杯子中去,求杯中球的最大个数分别为1,2,3的概率.【解】 设i A ={杯中球的最大个数为i },i =1,2,3.将3个球随机放入4个杯子中,全部可能放法有43种,杯中球的最大个数为1时,每个杯中最多放一球,故3413C 3!3()48P A == 而杯中球的最大个数为3,即三个球全放入一个杯中,故1433C 1()416P A == 因此 213319()1()()181616P A P A P A =--=--= 或 12143323C C C 9()416P A == 43.将一枚均匀硬币掷2n 次,求出现正面次数多于反面次数的概率.【解】掷2n 次硬币,可能出现:A ={正面次数多于反面次数},B ={正面次数少于反面次数},C ={正面次数等于反面次数},A ,B ,C 两两互斥.可用对称性来解决.由于硬币是均匀的,故P (A )=P (B ).所以1()()2P C P A -= 由2n 重贝努里试验中正面出现n 次的概率为211()()()22n n n n P C C =故 2211()[1C ]22n n n P A =- 44.掷n 次均匀硬币,求出现正面次数多于反面次数的概率.【解】设A ={出现正面次数多于反面次数},B ={出现反面次数多于正面次数},由对称性知P (A )=P (B )(1) 当n 为奇数时,正、反面次数不会相等.由P (A )+P (B )=1得P (A )=P (B )=0.5(2) 当n 为偶数时,由上题知211()[1C ()]22nn n P A =-45.设甲掷均匀硬币n +1次,乙掷n 次,求甲掷出正面次数多于乙掷出正面次数的概率.【解】 令甲正=甲掷出的正面次数,甲反=甲掷出的反面次数.乙正=乙掷出的正面次数,乙反=乙掷出的反面次数. 显然有>正正(甲乙)=(甲正≤乙正)=(n +1-甲反≤n -乙反) =(甲反≥1+乙反)=(甲反>乙反)由对称性知P (甲正>乙正)=P (甲反>乙反) 因此P (甲正>乙正)=1246.证明“确定的原则”(Sure -thing ):若P (A |C )≥P (B |C ),P (A |C )≥P (B |C ),则P (A )≥P (B ).【证】由P (A |C )≥P (B |C ),得()(),()()P AC P BC P C P C ≥即有 ()()P AC P BC ≥ 同理由 (|)(|),P A C P B C ≥ 得 ()(),P AC P BC ≥故 ()()()()()()P A P AC P AC P BC P BC P B =+≥+= 47.一列火车共有n 节车厢,有k (k ≥n )个旅客上火车并随意地选择车厢.求每一节车厢内至少有一个旅客的概率.【解】 设A i ={第i 节车厢是空的},(i =1,…,n ),则121(1)1()(1)2()(1)1()(1)n k ki kki j ki i i n P A n nP A A n n P A A A n--==-=--=-其中i 1,i 2,…,i n -1是1,2,…,n 中的任n -1个. 显然n 节车厢全空的概率是零,于是2112111122111111123111()(1)C (1)2()C (1)1()C (1)0()(1)n n nk ki ni ki j n i j nn kn i i i n i i i nn nn i ni S P A n n n S P A A n n S P A A A nS P A S S S S --=≤<≤--≤<<≤+===-=-==--==-==-+-+-∑∑∑121121C (1)C (1)(1)C (1)kkn n kn n n n nnn--=---++--故所求概率为121121()1C (1)C (1)nk i i n ni P A n n=-=--+--+111(1)C (1)n n kn n n+----48.设随机试验中,某一事件A 出现的概率为ε>0.试证明:不论ε>0如何小,只要不断地独立地重复做此试验,则A 迟早会出现的概率为1. 【证】在前n 次试验中,A 至少出现一次的概率为1(1)1()n n ε--→→∞49.袋中装有m 只正品硬币,n 只次品硬币(次品硬币的两面均印有国徽).在袋中任取一只,将它投掷r 次,已知每次都得到国徽.试问这只硬币是正品的概率是多少? 【解】设A ={投掷硬币r 次都得到国徽}B ={这只硬币为正品} 由题知 (),()m nP B P B m n m n==++ 1(|),(|)12r P A B P A B ==则由贝叶斯公式知()()(|)(|)()()(|)()(|)P AB P B P A B P B A P A P B P A B P B P A B ==+121212rrrm m m n m nm n m n m n+==++++ 50.巴拿赫(Banach )火柴盒问题:某数学家有甲、乙两盒火柴,每盒有N 根火柴,每次用火柴时他在两盒中任取一盒并从中任取一根.试求他首次发现一盒空时另一盒恰有r 根的概率是多少?第一次用完一盒火柴时(不是发现空)而另一盒恰有r 根的概率又有多少? 【解】以B 1、B 2记火柴取自不同两盒的事件,则有121()()2P B P B ==.(1)发现一盒已空,另一盒恰剩r 根,说明已取了2n -r 次,设n 次取自B 1盒(已空),n -r 次取自B 2盒,第2n -r +1次拿起B 1,发现已空。
概率论与数理统计(第二版)课后答案
各章大体题详解习题一一、选择题1. (A )A B A B B ⊂−−→=;(B )B A A B A B B ⊂−−→⊂−−→=; (C )AB A B A B B φ=−−→⊂−−→=;(D )AB B A φ=−−→⊂ 不必然能推出A B B =(除非A B =)所以 选(D )2. ()()()()()()()P A B P AB P AB P A P B P A P B -==--++ ()()()P A P B P AB =+-所以 选(C )3. )()()()()()()()|(A P B P A P B P A P B P AB P B A P B A ≥−→−==−→−⊂所以 选(B )4. 1)(0)()()()()(==−→−==B P A P B P A P AB P A P 或 所以 选(B )5. (A )若B A =,则φ=AB ,且φ==A A B A ,即B A ,不相容(B )若φ≠⊃B A ,且Ω≠A ,则φ≠AB ,且φ≠=A B A ,即B A ,相容 (C )若φφ≠=B A ,,则φ=AB ,且φ≠=B B A ,即B A ,相容 (D )若φ≠AB ,不必然能推出φ=B A 所以 选(D )6. (A )若φ≠AB ,不必然能推出)()()(B P A P AB P =(B )若1)(=A P ,且φ≠⊃B A ,则)()()()(B P A P B P AB P ==,即A,B 独立(C )若φ=AB ,1)(0<<A P ,1)(0<<B P ,则)()()(B P A P AB P ≠ (D )若1)(=A P ,则A 与任何事件都彼此独立 所以 选(B )7. 射击n 次才命中k 次,即前1-n 次射击恰好命中1-k 次,且第n 次射击时命中目标,所以 选(C )二、填空题8. C A C A C A A C A C A C A C A )())((= C C C C A A C C A C A C ==== ))(()()( 所以 C B =9. 共有44⨯种大体事件,向后两个邮筒投信有22⨯种大体事件,故所求概率为414422=⨯⨯ 10. 设事件A 表示两数之和大于21,则 样本空间}10,10|),{(<<<<=Ωy x y x ,}10,10,21|),{(<<<<>+=y x y x y x A 872121211=⋅⋅-==ΩS S P A 11. 由1.0)(,8.0)(=-=B A P A P ,得7.0)(=AB P ,故3.0)(=AB P 12. 由4.0)(,3.0)(,2.0)(===B A P B P A P ,得1.0)(=AB P ,故2.0)()()(=-=AB P B P A B P 13. 2.0)|()()(==A B P A P AB P ,故8.0)|()()(==B A P AB P B P14. )()()()()()()()(ABC P CA P BC P AB P C P B P A P C B A P +---++=)()()()()()()()()()()()(C P B P A P A P C P C P B P B P A P C P B P A P +---++=2719=15. 由于A,B 彼此独立,可得91)()()(==B P A P B A P ,)()(B A P B A P =,于是31)()(==B P A P ,故32)(=B P 三、计算题16.(1))},,(),,,(),,,(),,,(),,,(),,,(),,,(),,,{(T T T H T T T H T H H T T T H H T H T H H H H H =Ω;(2)}3,2,1,0{=Ω;(3)}1|),{(22≤+=Ωy x y x ;(4)}5:0,5:1,5:2,5:3,5:4,4:5,3:5,2:5,1:5,0:5{=Ω 17.(1)C B A ; (2))(C B A ; (3)C B A C B A C B A ; (4)AC BC AB ; (5)C B A ; (6)C B A ; (7)ABC18. 法一,由古典概率可知,所求概率为:2016420109⋅C ;法二,由伯努利定理可知,所求概率为:1644209.01.0⋅⋅C19. 只有唯一的一个六位数号码开能打开锁。
概率论与数理统计_简答题答案
3.将3个球随机地投入4个盒子中,求下列事件的概率 (1)A ---任意3个盒子中各有一球;(2)B ---任意一个盒子中有3个球; (3)C---任意1个盒子中有2个球,其他任意1个盒子中有1个球。
解:(1)834!3)(334==C A P (2)1614)(314==C B P (3)1694)(3132314==C C C C P 三、2.一批产品共20件,其中一等品9件,二等品7件,三等品4件。
从这批产品中任取3件,求: (1) 取出的3件产品中恰有2件等级相同的概率;(2)取出的3件产品中至少有2件等级相同的概率。
解:设事件i A 表示取出的3件产品中有2件i 等品,其中i =1,2,3;(1)所求事件为事件1A 、2A 、3A 的和事件,由于这三个事件彼此互不相容,故)()()()(321321A P A P A P A A A P ++=++320116241132711129C C C C C C C ++==0.671 (2)设事件A 表示取出的3件产品中至少有2件等级相同,那么事件A 表示取出的3件产品中等级各不相同,则779.01)(1)(320141719=-=-=C C C C A P A P 2.玻璃杯成箱出售,每箱20只.假设各箱含0,1,2只残次品的概率分别为0.8, 0.1和0.1. 一顾客欲购一箱玻璃杯,在购买时,售货员任取一箱,而顾客随机的察看4只,若无残次品,则买下该箱玻璃杯,否则退还.试求顾客买下该箱的概率。
解:设=i A “每箱有i 只次品” (),2,1,0=i , =B “买下该箱” . )|()()|()()|()()(221100A B P A P A B P A P A B P A P B P ++==94.01.01.018.0420418420419≈⨯+⨯+⨯C C C C1.一个工人看管三台车床,在一小时内车床不需要工人看管的概率:第一台等于0.9,第二台等于0.8,第三台等于0.7。
概率论与数理统计答案完整版
概率论与数理统计答案 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】习题答案第1章三、解答题1.设P (AB ) = 0,则下列说法哪些是正确的 (1) A 和B 不相容; (2) A 和B 相容; (3) AB 是不可能事件; (4) AB 不一定是不可能事件; (5) P (A ) = 0或P (B ) = 0 (6) P (A – B ) = P (A ) 解:(4) (6)正确.2.设A ,B 是两事件,且P (A ) = ,P (B ) = ,问: (1) 在什么条件下P (AB )取到最大值,最大值是多少 (2) 在什么条件下P (AB )取到最小值,最小值是多少 解:因为)()()()(B A P B P A P AB P -+≤,又因为)()(B A P B P ≤即.0)()(≤-B A P B P 所以(1) 当)()(B A P B P =时P (AB )取到最大值,最大值是)()(A P AB P ==.(2) 1)(=B A P 时P (AB )取到最小值,最小值是P (AB )=+=. 3.已知事件A ,B 满足)()(B A P AB P =,记P (A ) = p ,试求P (B ).解:因为)()(B A P AB P =,即)()()(1)(1)()(AB P B P A P B A P B A P AB P +--=-== ,所以 .1)(1)(p A P B P -=-=4.已知P (A ) = ,P (A – B ) = ,试求)(AB P .解:因为P (A – B ) = ,所以P (A )– P(AB ) = , P(AB ) = P (A )– , 又因为P (A ) = ,所以P(AB ) =– =,6.0)(1)(=-=AB P AB P .5. 从5双不同的鞋子种任取4只,问这4只鞋子中至少有两只配成一双的概率是多少 解:显然总取法有410C n=种,以下求至少有两只配成一双的取法k :法一:分两种情况考虑:15C k=24C 212)(C +25C 其中:2122415)(C C C 为恰有1双配对的方法数法二:分两种情况考虑:!2161815C C C k ⋅⋅=+25C其中:!2161815C C C ⋅⋅为恰有1双配对的方法数法三:分两种情况考虑:)(142815C C C k-=+25C其中:)(142815C C C -为恰有1双配对的方法数法四:先满足有1双配对再除去重复部分:2815C C k=-25C法五:考虑对立事件:410C k=-45C 412)(C其中:45C 412)(C 为没有一双配对的方法数法六:考虑对立事件:!4141618110410C C C C C k ⋅⋅⋅-=其中:!4141618110C C C C ⋅⋅⋅为没有一双配对的方法数所求概率为.2113410==C k p6.在房间里有10个人,分别佩戴从1号到10号的纪念章,任取3人记录其纪念章的号码.求: (1) 求最小号码为5的概率; (2) 求最大号码为5的概率.解:(1) 法一:12131025==C C p ,法二:1213102513==A A C p (2) 法二:20131024==C C p ,法二:2013102413==A A C p 7.将3个球随机地放入4个杯子中去,求杯子中球的最大个数分别为1,2,3的概率. 解:设M 1, M 2, M 3表示杯子中球的最大个数分别为1,2,3的事件,则834)(3341==A M P , 1694)(324232=⨯=A C M P , 1614)(3143==C M P8.设5个产品中有3个合格品,2个不合格品,从中不返回地任取2个,求取出的2个中全是合格品,仅有一个合格品和没有合格品的概率各为多少解:设M 2, M 1, M 0分别事件表示取出的2个球全是合格品,仅有一个合格品和没有合格品,则3.0)(25232==C C M P ,6.0)(2512131==C C C M P ,1.0)(25221==C C M P 9.口袋中有5个白球,3个黑球,从中任取两个,求取到的两个球颜色相同的概率.解:设M 1=“取到两个球颜色相同”,M 1=“取到两个球均为白球”,M 2=“取到两个球均为黑球”,则φ==2121M M M M M 且.所以.2813C C C C )()()()(282328252121=+=+==M P M P M M P M P10. 若在区间(0,1)内任取两个数,求事件“两数之和小于6/5”的概率.解:这是一个几何概型问题.以x 和y 表示任取两个数,在平面上建立xOy 直角坐标系,如图. 任取两个数的所有结果构成样本空间 = {(x ,y ):0 x ,y 1} 事件A =“两数之和小于6/5”= {(x ,y ) : x + y 6/5} 因此2517154211)(2=⎪⎭⎫ ⎝⎛⨯-=Ω=的面积的面积A A P . 图11.随机地向半圆220x ax y -<<(a 为常数)内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,求原点和该点的连线与x 轴的夹角小于4π的概率. 解:这是一个几何概型问题.以x 和y 表示随机地向半圆内掷一点的坐标,表示原点和该点的连线与x 轴的夹角,在平面上建立xOy 直角坐标系,如图.随机地向半圆内掷一点的所有结果构成样本空间 ={(x ,y ):220,20x ax y a x -<<<<}事件A =“原点和该点的连线与x 轴的夹角小于4π” ={(x ,y ):40,20,202πθ<<-<<<<x ax y a x }因此211214121)(222+=+=Ω=πππa aa A A P 的面积的面积.12.已知21)(,31)(,41)(===B A P A B P A P ,求)(B A P . 解:,1213141)()()(=⨯==A B P A P AB P ,6121121)|()()(=÷==B A P AB P B P 13.设10件产品中有4件不合格品,从中任取两件,已知所取两件产品中有一件是不合格品,则另一件也是不合格品的概率是多少解:题中要求的“已知所取两件产品中有一件是不合格品,则另一件也是不合格品的概率”应理解为求“已知所取两件产品中至少有一件是不合格品,则两件均为不合格品的概率”。
概率论与数理统计答案(人民邮电版)汇编
15
15
=
2
13
9.10 张签中分别有 4 张画圈、6 张画叉。10 个人依次抽签,抽到带圈的签为中签,求每个
人的中签率。
4×3+6×4
答案:P(1)=0.4,P(2)=
10×9
=0.4,以此类推,同样可以计算出,每个人的中签率
都为 0.4。
10.(1)在单位圆内某一特定直径上取一点,求以该点为中心的弦长大于√3的概率;
答案:
(1)由加法公式得 P(A∪B)=P(A)+P(B)-P(AB)=0.5
(2) P(A∪B∪C)=P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC)
=0.625
9
̅̅̅̅̅̅̅
(3) P(̅ ∩ ̅ )=P(B
∪ C)=1-P(B∪C)=16
1
5. 设随机事件 A,B,C 的概率都是2,且 P(ABC)=P(̅ ∩ ̅ ∩ ̅ ),P(AB)=P(AC)
再从袋中任取一球。设每次取球时口袋中各个球被取到的可能性相同。求:
(1) 第一次、第二次都取到红球的概率;
(2) 第一次取到红球、第二次取到白球的概率;
(3) 两次取得的球为红、白各一的概率;
(4) 第二次取到红球的概率。
答案:设(1)
(2)
(3)
(4)事件的概率分别为 P(A)、P(B)、P(C)、P(D)
̅̅̅̅̅̅̅
(5) P(̅∩̅)=P(A
∪ B)=1-P(A∪B)0.4
2. 设 A,B 是两个事件,已知 P(A)=0.5,P(B)=0.7,P(A∪B)=0.8,试求:
(1) P(AB)
;
概率论与数理统计第一章答案
概率论与数理统计第⼀章答案习题1-21. 选择题(1) 设随机事件A ,B 满⾜关系A B ?,则下列表述正确的是( ). (A) 若A 发⽣, 则B 必发⽣. (B) A , B 同时发⽣.(C) 若A 发⽣, 则B 必不发⽣. (D) 若A 不发⽣,则B ⼀定不发⽣.解根据事件的包含关系, 考虑对⽴事件, 本题应选(D).(2) 设A 表⽰“甲种商品畅销, ⼄种商品滞销”, 其对⽴事件A 表⽰( ). (A) 甲种商品滞销, ⼄种商品畅销. (B) 甲种商品畅销, ⼄种商品畅销. (C) 甲种商品滞销, ⼄种商品滞销.(D) 甲种商品滞销, 或者⼄种商品畅销.解设B 表⽰“甲种商品畅销”,C 表⽰“⼄种商品滞销”,根据公式B C B C = , 本题应选(D).2. 写出下列各题中随机事件的样本空间:(1) ⼀袋中有5只球, 其中有3只⽩球和2只⿊球, 从袋中任意取⼀球, 观察其颜⾊; (2) 从(1)的袋中不放回任意取两次球, 每次取出⼀个, 观察其颜⾊; (3) 从(1)的袋中不放回任意取3只球, 记录取到的⿊球个数; (4) ⽣产产品直到有10件正品为⽌, 记录⽣产产品的总件数. 解 (1) {⿊球,⽩球}; (2) {⿊⿊,⿊⽩,⽩⿊,⽩⽩}; (3) {0,1,2};(4) 设在⽣产第10件正品前共⽣产了n 件不合格品,则样本空间为{10|0,1,2,n n += }.3. 设A, B, C 是三个随机事件, 试以A, B, C 的运算关系来表⽰下列各事件: (1) 仅有A 发⽣;(2) A , B , C 中⾄少有⼀个发⽣; (3) A , B , C 中恰有⼀个发⽣; (4) A , B , C 中最多有⼀个发⽣; (5) A , B , C 都不发⽣;(6) A 不发⽣, B , C 中⾄少有⼀个发⽣. 解 (1) ABC ; (2)A B C ; (3) ABC ABC ABC ;(4) ABC ABC ABC ABC ; (5) ABC ; (6) ()A B C .4. 事件A i 表⽰某射⼿第i 次(i =1, 2, 3)击中⽬标, 试⽤⽂字叙述下列事件: (1) A 1∪A 2; (2) A 1∪A 2∪A 3; (3)3; (4) A 2-A 3;(5)23A A ; (6)12A A .解 (1) 射⼿第⼀次或第⼆次击中⽬标;(2) 射⼿三次射击中⾄少击中⽬标;(3) 射⼿第三次没有击中⽬标;(4) 射⼿第⼆次击中⽬标,但是第三次没有击中⽬标;(5) 射⼿第⼆次和第三次都没有击中⽬标;(6) 射⼿第⼀次或第⼆次没有击中⽬标.习题1-31. 选择题 (1) 设A, B 为任⼆事件, 则下列关系正确的是( ).(A)()()()P A B P A P B -=-. (B)()()()P A B P A P B =+ .(C)()()()P AB P A P B =. (D)()()()P A P AB P AB =+.解由⽂⽒图易知本题应选(D).(2) 若两个事件A 和B 同时出现的概率P (AB )=0, 则下列结论正确的是 ( ).(A) A 和B 互不相容. (B) AB 是不可能事件.(C) AB 未必是不可能事件. (D) P (A )=0或P (B )=0. 解本题答案应选(C).2. 设P (AB )=P (AB ), 且P (A )=p ,求P (B ).解因()1()1()()()()P AB P A B P A P B P AB P AB =-=--+= ,故()()1P A P B +=. 于是()1.P B p =-0.4P A =,()0.3P B =,()0.4P A B = , 求()P AB .解由公式()()()()P A B P A P B P AB =+- 知()0.3P AB =. 于是()()()0.1.P AB P A P AB =-=4. 设A , B 为随机事件,()0.7P A =,()0.3P A B -=, 求()P AB .解由公式()()()P A B P A P AB -=-可知,()0.4P AB =. 于是()0.6P AB =.5. 设A , B 是两个事件, 且()0.6P A =, ()0.7P B =.问: (1) 在什么条件下()P AB 取到最⼤值, 最⼤值是多少? (2) 在什么条件下()P AB 取到最⼩值, 最⼩值是多少?解 ()()()()P AB P A P B P A B =+- =1.3()P A B - .(1) 如果A B B = , 即当A B ?时, P B A P =)( ()B =0.7, 则()P AB 有最⼤值是0.6 .(2) 如果)(B A P =1,或者A B S = 时, ()P AB 有最⼩值是0.3 .6. 已知1()()()4P A P B P C ===,()0P AB =, 1()()12P AC P BC ==, 求A , B , C 全不发⽣的概率.解因为ABCAB ?,所以0()P ABC P AB ≤≤()=0, 即有()P ABC =0.由概率⼀般加法公式得()()()()()()()()7.12P A B C P A P B P C P AB P AC P BC P ABC =++---+= 由对⽴事件的概率性质知A ,B , C 全不发⽣的概率是5()()1()12P ABC P A B C P A B C ==-=.习题1-41. 选择题在5件产品中, 有3件⼀等品和2件⼆等品. 若从中任取2件, 那么以0.7为概率的事件是( ).(A) 都不是⼀等品. (B) 恰有1件⼀等品. (C) ⾄少有1件⼀等品. (D) ⾄多有1件⼀等品.解⾄多有⼀件⼀等品包括恰有⼀件⼀等品和没有⼀等品, 其中只含有⼀件⼀等品的113225C C C ?, 没有⼀等品的概率为023225C C C ?, 将两者加起即为0.7. 答案为(D ).2. 从由45件正品、5件次品组成的产品中任取3件. 求: (1) 恰有1件次品的概率; (2) 恰有2件次品的概率; (3) ⾄少有1件次品的概率; (4) ⾄多有1件次品的概率; (5) ⾄少有2件次品的概率.解 (1) 恰有1件次品的概率是12545350C C C ;(2) 恰有2件次品的概率是21545350C C C ; (3 )⾄少有1件次品的概率是1-03545350C C C ; (4) ⾄多有1件次品的概率是03545350C C C +12545350C C C ; (5) ⾄少有2件次品的概率是21545350C C C +30545350C C C .3. 袋中有9个球, 其中有4个⽩球和5个⿊球. 现从中任取两个球. 求:(1) 两个球均为⽩球的概率;(2) 两个球中⼀个是⽩的, 另⼀个是⿊的概率; (3)⾄少有⼀个⿊球的概率.解从9个球中取出2个球的取法有29C 种,两个球都是⽩球的取法有24C 种,⼀⿊⼀⽩的取法有1154C C 种,由古典概率的公式知道(1) 两球都是⽩球的概率是2924C C ;(2)两球中⼀⿊⼀⽩的概率是115429C C C ;(3)⾄少有⼀个⿊球的概率是12924C C -.4. 在区间(0, 1)中随机地取两个数, 求下列事件的概率:(1) 两数之和⼩于6 5;(2) 两数之积⼩于14;(3) 以上两个条件同时满⾜;(4) 两数之差的绝对值⼩于12的概率.解设X , Y 为所取的两个数, 则样本空间S = {(X , Y )|0(1) P {X +Y <65}=1441172550.68125-??=≈;(2) P {XY <14}=11411111ln 40.64444dx x+=+≈?;(3) P {X +Y <65, XY <14} =0.2680.932110.2680.932516161()()5545x dx dx x dx x ?+-++-≈0.593.(4) 解设x , y 为所取的两个数, 则样本空间Ω = {(x , y )|012}. 参见图1-1.图1-1 第2题样本空间故 111123222()14AS P A S Ω-===, 其中 S A , S Ω分别表⽰A 与Ω的⾯积.习题1-51. 选择题(1) 设随机事件A , B 满⾜P (A |B )=1, 则下列结论正确的是( )(A) A 是必然事件. (B) B 是必然事件. (C) AB B =. (D)()()P AB P B =.解由条件概率定义可知选(D).(2) 设A , B 为两个随机事件, 且0()1P A <<, 则下列命题正确的是( ).(A) 若()()P AB P A =, 则A , B 互斥.(B) 若()1P BA =, 则()0P AB =. (C) 若()()1P AB P AB +=, 则A , B 为对⽴事件. (D) 若(|)1P B A =, 则B 为必然事件.解由条件概率的定义知选(B ).2. 从1,2,3,4中任取⼀个数, 记为X , 再从1,2,…,X 中任取⼀个数, 记为Y ,求P {Y =2}. 解解 P {Y =2}=P {X =1}P {Y =2|X =1}+P {X =2}P {Y =2|X =2}+P {X =3}P {Y =2|X =3}+P {X =4}P {Y =2|X =4}=41×(0+21+31+41)=4813.3. ⼝袋中有b 个⿊球、r 个红球, 从中任取⼀个, 放回后再放⼊同颜⾊的球a 个. 设B i ={第i 次取到⿊球}, 求1234()P B B B B .解⽤乘法公式得到)|()|()|()()(32142131214321B B B B P B B B P B B P B P B B B B P =.32ar b a r a r b r a r b a b r b b +++?++?+++?+=注意, a = 1和a = 0分别对应有放回和⽆放回抽样.4. 甲、⼄、丙三⼈同时对某飞机进⾏射击, 三⼈击中的概率分别为0.4, 0.5, 0.7. 飞机被⼀⼈击中⽽被击落的概率为0.2, 被两⼈击中⽽被击落的概率为0.6, 若三⼈都击中, 飞机必定被击落. 求该飞机被击落的概率.解⽬标被击落是由于三⼈射击的结果, 但它显然不能看作三⼈射击的和事件. 因此这属于全概率类型. 设A 表⽰“飞机在⼀次三⼈射击中被击落”, 则(0,1,2,3)i B i =表⽰“恰有i 发击中⽬标”.i B 为互斥的完备事件组. 于是没有击中⽬标概率为0()0.60.50.30.09P B =??=, 恰有⼀发击中⽬标概率为1()0.40.50.30.60.50.30.60.50.70.36P B =??+??+??=,恰有两发击中⽬标概率为2()0.40.50.30.60.50.70.40.50.70.41P B =??+??+??=,恰有三发击中⽬标概率为3()0.40.50.70.14P B =??=.⼜已知 0123(|)0,(|)0.2,(|)0.6,(|)1P A B P A B P A B P A B ====, 所以由全概率公式得到 3()()(|)0.360.20.410.60.1410.458.iii P A P B P A B ===?+?+?=∑5. 在三个箱⼦中, 第⼀箱装有4个⿊球, 1个⽩球; 第⼆箱装有3个⿊球, 3个⽩球; 第三箱装有3个⿊球, 5个⽩球. 现任取⼀箱, 再从该箱中任取⼀球.(1) 求取出的球是⽩球的概率;(2) 若取出的为⽩球, 求该球属于第⼆箱的概率.解 (1)以A 表⽰“取得球是⽩球”,i H 表⽰“取得球来⾄第i 个箱⼦”,i =1,2,3. 则P (i H )=13, i =1,2,3, 123115(|),(|),(|)528P A H P A H P A H ===. 由全概率公式知P (A )=112233()(|)()(|)()(|)P H P A H P H P A H P H P A H ++=12053. (2) 由贝叶斯公式知 P (2|H A )=222()()(|)20()()53P AH P H P A H P A P A ==6. 某⼚甲、⼄、丙三个车间⽣产同⼀种产品, 其产量分别占全⼚总产量的40%, 38%, 22%, 经检验知各车间的次品率分别为0.04, 0.03, 0.05. 现从该种产品中任意取⼀件进⾏检查.(1) 求这件产品是次品的概率;(2) 已知抽得的⼀件是次品, 问此产品来⾃甲、⼄、丙各车间的概率分别是多少?解设A 表⽰“取到的是⼀件次品”, i B (i =1, 2, 3)分别表⽰“所取到的产品来⾃甲、⼄、丙⼯⼚”. 易知,123,,B B B 是样本空间S 的⼀个划分, 且122()0.4,()0.38,()0.22P B P B P B ===,12(|)0.04,(|)0.03P A B P A B ==,3(|)0.05P A B =.(1) 由全概率公式可得112233()(|)()(|)()(|)()P A P A B P B P A B P B P A B P B =++0.40.040.380.030.220.0384.=?+?+?=.(2) 由贝叶斯公式可得111(|)()0.40.045(|)()0.038412P A B P B P B A P A ?===,222(|)()0.380.0319(|)()0.038464P A B P B P B A P A ?===,333(|)()0.220.0555(|)()0.0384192P A B P B P B A P A ?===.习题1-61. 选择题(1) 设随机事件A 与B 互不相容, 且有P (A )>0, P (B )>0, 则下列关系成⽴的是( ).(A) A , B 相互独⽴. (B) A , B 不相互独⽴.(C) A , B 互为对⽴事件. (D) A , B 不互为对⽴事件. 解⽤反证法, 本题应选(B).(2) 设事件A 与B 独⽴, 则下⾯的说法中错误的是( ).(A) A 与B 独⽴. (B) A 与B 独⽴. (C)()()()P AB P A P B =. (D) A 与B ⼀定互斥.解因事件A 与B 独⽴, 故A B 与,A 与B 及A 与B 也相互独⽴. 因此本题应选(D).(3) 设事件A 与 B 相互独⽴, 且0(A)(|)()P A B P A =. (B) ()()()P AB P A P B =.(C) A 与B ⼀定互斥. (D)()()()()()P A B P A P B P A P B =+- .解因事件A 与B 独⽴, 故A B 与也相互独⽴, 于是(B)是正确的. 再由条件概率及⼀般加法概率公式可知(A)和(D)也是正确的. 从⽽本题应选(C).2.设A , B 是任意两个事件, 其中A 的概率不等于0和1, 证明 P (B |A )=)(A BP 是事件A 与B 独⽴的充分必要条件.证由于A 的概率不等于0和1, 故题中两个条件概率都存在.充分性. 因事件A 与B 独⽴, 知事件A 与B 也独⽴, 因此()(),()()P B A P B P B A P B ==,从⽽()()P B A P B A =.必要性. 已知()()P BA PB A =, 由条件概率公式和对⽴事件概率公式得到()()()()()1()()P AB P AB P B P AB P A P A P A -==-,移项得[]()1()()()()(),P AB P A P A P B P A P AB -=-化简得 P (AB )=P (A )P (B ), 因此A 和B 独⽴.3. 设三事件A , B 和C 两两独⽴, 满⾜条件:,ABC =?1()()()2P A P B P C ==<, 且9()16P A B C =,求()P A .解根据⼀般加法公式有()()()()()()()()P A B C P A P B P C P AC P AB P BC P ABC =++---+ .由题设可知 A , B 和C 两两相互独⽴, ,ABC =?1()()()2P A P B P C ==<, 因此有2()()()[()],()()0,P AB P AC P BC P A P ABC P ====?=从⽽29()3()3[()]16P A B C P A P A =-=,于是3()4P A =或1()4P A =, 再根据题设1()2P A <, 故1()4P A =.4.某⼈向同⼀⽬标独⽴重复射击, 每次射击命中⽬标的概率为p (0解 “第4次射击恰好第2次命中” 表⽰4次射击中第4次命中⽬标, 前3次射击中有⼀次命中⽬标. 由独⽴重复性知所求概率为1223(1)C p p -.5. 甲、⼄两⼈各⾃向同⼀⽬标射击, 已知甲命中⽬标的概率为 0.7, ⼄命中⽬标的概率为0.8. 求:(1) 甲、⼄两⼈同时命中⽬标的概率;(2) 恰有⼀⼈命中⽬标的概率; (3) ⽬标被命中的概率.解甲、⼄两⼈各⾃向同⼀⽬标射击应看作相互独⽴事件. 于是(1) ()()()0.70.80.56;P AB P A P B ==?=(2)()()0.70.20.30.80.38;P AB P AB +=?+?=(3) ()()()()()0.70.80.560.94.P A B P A P B P A P B =+-=+-=总习题⼀1. 选择题:设,,A B C 是三个相互独⽴的随机事件, 且0()1P C <<, 则在下列给定的四对事件中不相互独⽴的是( ).(A)A B 与C . (B)AC 与C .(C) A B -与C . (D) AB 与C .解由于A , B , C 是三个相互独⽴的随机事件, 故其中任意两个事件的和、差、交、并与另⼀个事件或其逆是相互独⽴的, 根据这⼀性质知(A), (C), (D)三项中的两事件是相互独⽴的, 因⽽均为⼲扰项, 只有选项(B)正确..2. ⼀批产品由95件正品和5件次品组成, 先后从中抽取两件, 第⼀次取出后不再放回.求: (1) 第⼀次抽得正品且第⼆次抽得次品的概率; (2) 抽得⼀件为正品, ⼀件为次品的概率.解 (1) 第⼀次抽得正品且第⼆次抽得次品的概率为9551910099396?=.(1) 抽得⼀件为正品,⼀件为次品的概率为95559519.10099198+= 3. 设有⼀箱同类型的产品是由三家⼯⼚⽣产的. 已知其中有21的产品是第⼀家⼯⼚⽣产的, 其它⼆⼚各⽣产41. ⼜知第⼀、第⼆家⼯⼚⽣产的产品中有2%是次品, 第三家⼯⼚⽣产的产品中有4%是次品. 现从此箱中任取⼀件产品, 求取到的是次品的概率.解从此箱中任取⼀件产品, 必然是这三个⼚中某⼀家⼯⼚的产品. 设A ={取到的产品是次品},B i ={取到的产品属于第i 家⼯⼚⽣产}, i =1, 2, 3. 由于B i B j =?(i ≠j, i , j =1, 2, 3)且B 1∪B 2∪B 3=S , 所以B 1, B 2, B 3是S 的⼀个划分. ⼜ P (B 1)=21, P (B 2) =41, P (B 3)=41,P (A | B 1)=1002, P (A | B 2)=1002, P (A | B 3)=1004,由全概率公式得P (A )=P (B 1)P (A |B 1)+P (B 2)P (A |B 2)+P (B 3)P (A | B 3)=100441100241100221?+?+?=0.025. 4. 某⼚⾃动⽣产设备在⽣产前须进⾏调整. 假定调整良好时, 合格品为90%; 如果调整不成功,则合格品有30%. 若调整成功的概率为75%, 某⽇调整后试⽣产, 发现第⼀个产品合格. 问设备被调整好的概率是多少?解设A ={设备调整成功}, B ={产品合格}. 则全概率公式得到()()(|)()(|)0.750.90.250.30.75P B P A P B A P A P B A =+=?+?=.由贝叶斯公式可得()0.750.9(|)0.9()0.75()(|)()P AB P A B P B P A P B A P B ?====.5. 将两份信息分别编码为A 和B 传递出去. 接收站收到时, A 被误收作B 的概率为0.02,⽽B 被误收作A 的概率为0.01, 信息A 与信息B 传送的频繁程度为2:1. 若接收站收到的信息是A , 问原发信息是A 的概率是多少?解以D 表⽰事件“将信息A 传递出去”,以D 表⽰事件“将信息B 传递出去”,以R 表⽰事件“接收到信息A ”,以R 表⽰事件“接收到信息B ”.已知21()0.02,()0.01,(),()33P R D P R D P D P D ====.由贝叶斯公式知()()()196()()197()()()()P R D P D P DR P D R P R P R D P D P R D P D ===+.。
概率论与数理统计习题集及答案
第1章 概率论的基本概念§1 .8 随机事件的独立性1. 电路如图,其中A,B,C,D 为开关。
设各开关闭合与否相互独立,且每一开关闭合的概率均为p,求L 与R 为通路(用T 表示)的概率。
A B L R C D1. 甲,乙,丙三人向同一目标各射击一次,命中率分别为0.4,0.5和0.6,是否命中,相互独立, 求下列概率: (1) 恰好命中一次,(2) 至少命中一次。
第1章作业答案§1 .8. 1: 用A,B,C,D 表示开关闭合,于是 T = AB ∪CD, 从而,由概率的性质及A,B,C,D 的相互独立性P(T) = P(AB) + P(CD) - P(ABCD)= P(A)P(B) + P(C)P(D) – P(A)P(B)P(C)P(D)2: (1) 0.4(1-0.5)(1-0.6)+(1-0.4)0.5(1-0.6)+(1-0.4)(1-0.5)0.6=0.38;(2) 1-(1-0.4)(1-0.5)(1-0.6)=0.88.第2章 随机变量及其分布§2.2 10-分布和泊松分布1 某程控交换机在一分钟内接到用户的呼叫次数X 是服从λ=4的泊松分布,求(1)每分钟恰有1次呼叫的概率;(2)每分钟只少有1次呼叫的概率; (3)每分钟最多有1次呼叫的概率;2 设随机变量X 有分布律: X 23 , Y ~π(X), 试求: p 0.4 0.6(1)P(X=2,Y ≤2); (2)P(Y ≤2); (3) 已知 Y ≤2, 求X=2 的概率。
§2.3 贝努里分布2 设每次射击命中率为0.2,问至少必须进行多少次独立射击,才能使至少击中一次的概率不小于0.9 ?§2.6 均匀分布和指数分布2 假设打一次电话所用时间(单位:分)X 服从2.0=α的指数分布,如某人正好在你前面走进电话亭,试求你等待:(1)超过10分钟的概率;(2)10分钟 到20分钟的概率。
概率论与数理统计答案
习题二1.一袋中有5只乒乓球,编号为1,2,3,4,5,在其中同时取3只,以X 表示取出的3只球中的最大号码,写出随机变量X 的分布律.【解】故所求分布律为2.设在15只同类型零件中有2只为次品,在其中取3次,每次任取1只,作不放回抽样,以X 表示取出的次品个数,求:(1) X 的分布律;(2) X 的分布函数并作图;(3)133{},{1},{1},{12}222P X P X P X P X ≤<≤≤≤<<.【解】故X 的分布律为(2) 当x <0时,F (x )=P (X ≤x )=0当0≤x <1时,F (x )=P (X ≤x )=P (X =0)=2235当1≤x <2时,F (x )=P (X ≤x )=P (X =0)+P (X =1)=3435当x ≥2时,F (x )=P (X ≤x )=1故X 的分布函数(3)3.射手向目标独立地进行了3次射击,每次击中率为0.8,求3次射击中击中目标的次数的分布律及分布函数,并求3次射击中至少击中2次的概率.【解】设X 表示击中目标的次数.则X =0,1,2,3.故X 的分布律为分布函数4.(1) 设随机变量X 的分布律为P {X =k }=!k akλ,其中k =0,1,2,…,λ>0为常数,试确定常数a .(2) 设随机变量X 的分布律为P {X =k }=a/N , k =1,2,…,N ,试确定常数a .【解】(1) 由分布律的性质知故 e a λ-=(2) 由分布律的性质知即 1a =.5.甲、乙两人投篮,投中的概率分别为0.6,0.7,今各投3次,求:(1) 两人投中次数相等的概率;(2) 甲比乙投中次数多的概率.【解】分别令X 、Y 表示甲、乙投中次数,则X~b (3,0.6),Y~b (3,0.7)(1) ()(0,0)(1,1)(2,2)P X Y P X Y P X Y P X Y ====+==+==+33121233(0.4)(0.3)C 0.6(0.4)C 0.7(0.3)=++(2) ()(1,0)(2,0)(3,0)P X Y P X Y P X Y P X Y >===+==+==+=0.2436.设某机场每天有200架飞机在此降落,任一飞机在某一时刻降落的概率设为0.02,且设各飞机降落是相互独立的.试问该机场需配备多少条跑道,才能保证某一时刻飞机需立即降落而没有空闲跑道的概率小于0.01(每条跑道只能允许一架飞机降落)?【解】设X 为某一时刻需立即降落的飞机数,则X ~b (200,0.02),设机场需配备N 条跑道,则有即2002002001C (0.02)(0.98)0.01k k kk N -=+<∑利用泊松近似查表得N ≥9.故机场至少应配备9条跑道.7.有一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段出事故的概率为0.0001,在某天的该时段内有1000辆汽车通过,问出事故的次数不小于2的概率是多少(利用泊松定理)?【解】设X 表示出事故的次数,则X ~b (1000,0.0001)8.已知在五重贝努里试验中成功的次数X 满足P {X =1}=P {X =2},求概率P {X =4}.【解】设在每次试验中成功的概率为p ,则故 13p =所以 4451210(4)C ()33243P X ===. 9.设事件A 在每一次试验中发生的概率为0.3,当A 发生不少于3次时,指示灯发出信号,(1) 进行了5次独立试验,试求指示灯发出信号的概率;(2) 进行了7次独立试验,试求指示灯发出信号的概率.【解】(1) 设X 表示5次独立试验中A 发生的次数,则X ~6(5,0.3)(2) 令Y 表示7次独立试验中A 发生的次数,则Y~b (7,0.3)10.某公安局在长度为t 的时间间隔内收到的紧急呼救的次数X 服从参数为(1/2)t 的泊松分布,而与时间间隔起点无关(时间以小时计).(1) 求某一天中午12时至下午3时没收到呼救的概率;(2) 求某一天中午12时至下午5时至少收到1次呼救的概率.【解】(1)32(0)e P X -== (2) 52(1)1(0)1e P X P X -≥=-==-11.设P {X =k }=k k k p p --22)1(C , k =0,1,2 P {Y =m }=m m m p p --44)1(C , m =0,1,2,3,4分别为随机变量X ,Y 的概率分布,如果已知P {X ≥1}=59,试求P {Y ≥1}.【解】因为5(1)9P X ≥=,故4(1)9P X <=. 而 2(1)(0)(1)P X P X p <===-故得 24(1),9p -=即 1.3p =从而 465(1)1(0)1(1)0.8024781P Y P Y p ≥=-==--=≈ 12.某教科书出版了2000册,因装订等原因造成错误的概率为0.001,试求在这2000册书中恰有5册错误的概率.【解】令X 为2000册书中错误的册数,则X~b (2000,0.001).利用泊松近似计算,得 25e 2(5)0.00185!P X -=≈= 13.进行某种试验,成功的概率为34,失败的概率为14.以X 表示试验首次成功所需试验的次数,试写出X 的分布律,并计算X 取偶数的概率.【解】1,2,,,X k =L L14.有2500名同一年龄和同社会阶层的人参加了保险公司的人寿保险.在一年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交12元保险费,而在死亡时家属可从保险公司领取2000元赔偿金.求:(1) 保险公司亏本的概率;(2) 保险公司获利分别不少于10000元、20000元的概率.【解】以“年”为单位来考虑.(1) 在1月1日,保险公司总收入为2500×12=30000元.设1年中死亡人数为X ,则X~b (2500,0.002),则所求概率为由于n 很大,p 很小,λ=np =5,故用泊松近似,有(2) P (保险公司获利不少于10000)即保险公司获利不少于10000元的概率在98%以上P (保险公司获利不少于20000)(30000200020000)(5)P X P X =-≥=≤即保险公司获利不少于20000元的概率约为62%15.已知随机变量X 的密度函数为f (x )=A e ?|x |, ?∞<x <+∞,求:(1)A 值;(2)P {0<X <1}; (3) F (x ).【解】(1) 由()d 1f x x ∞-∞=⎰得故 12A =.(2) 11011(01)e d (1e )22x p X x --<<==-⎰ (3) 当x <0时,11()e d e 22xx x F x x -∞==⎰当x ≥0时,0||0111()e d e d e d 222xx x x x F x x x x ---∞-∞==+⎰⎰⎰ 故 1e ,02()11e 02xx x F x x -⎧<⎪⎪=⎨⎪-≥⎪⎩16.设某种仪器内装有三只同样的电子管,电子管使用寿命X 的密度函数为f (x )=⎪⎩⎪⎨⎧<≥.100,0,100,1002x x x求:(1) 在开始150小时内没有电子管损坏的概率;(2) 在这段时间内有一只电子管损坏的概率;(3) F (x ).【解】(1) 15021001001(150)d .3P X x x ≤==⎰(2) 1223124C ()339p == (3) 当x <100时F (x )=0当x ≥100时()()d xF x f t t -∞=⎰故 1001,100()0,0x F x xx ⎧-≥⎪=⎨⎪<⎩ 17.在区间[0,a ]上任意投掷一个质点,以X 表示这质点的坐标,设这质点落在[0,a ]中任意小区间内的概率与这小区间长度成正比例,试求X 的分布函数.【解】 由题意知X ~∪[0,a ],密度函数为故当x <0时F (x )=0当0≤x ≤a 时01()()d ()d d xxxxF x f t t f t t t a a-∞====⎰⎰⎰当x >a 时,F (x )=1即分布函数18.设随机变量X 在[2,5]上服从均匀分布.现对X 进行三次独立观测,求至少有两次的观测值大于3的概率.【解】X ~U [2,5],即故所求概率为19.设顾客在某银行的窗口等待服务的时间X (以分钟计)服从指数分布1()5E .某顾客在窗口等待服务,若超过10分钟他就离开.他一个月要到银行5次,以Y 表示一个月内他未等到服务而离开窗口的次数,试写出Y 的分布律,并求P {Y ≥1}.【解】依题意知1~()5X E ,即其密度函数为该顾客未等到服务而离开的概率为2~(5,e )Y b -,即其分布律为20.某人乘汽车去火车站乘火车,有两条路可走.第一条路程较短但交通拥挤,所需时间X服从N (40,102);第二条路程较长,但阻塞少,所需时间X 服从N (50,42).(1) 若动身时离火车开车只有1小时,问应走哪条路能乘上火车的把握大些?(2) 又若离火车开车时间只有45分钟,问应走哪条路赶上火车把握大些?【解】(1) 若走第一条路,X~N (40,102),则若走第二条路,X~N (50,42),则506050(60)(2.5)0.993844X P X P Φ--⎛⎫<=<== ⎪⎝⎭++故走第二条路乘上火车的把握大些.(2) 若X~N (40,102),则若X~N (50,42),则故走第一条路乘上火车的把握大些.21.设X ~N (3,22),(1) 求P {2<X ≤5},P {?4<X ≤10},P {|X |>2},P {X >3};(2) 确定c 使P {X >c }=P {X ≤c }.【解】(1)23353 (25)222XP X P---⎛⎫<≤=<≤⎪⎝⎭(2) c=322.由某机器生产的螺栓长度(cm)X~N(10.05,0.062),规定长度在10.05±0.12内为合格品,求一螺栓为不合格品的概率.【解】10.050.12 (|10.05|0.12)0.060.06XP X P⎛-⎫->=>⎪⎝⎭23.一工厂生产的电子管寿命X(小时)服从正态分布N(160,σ2),若要求P{120<X≤200}≥0.8,允许σ最大不超过多少?【解】120160160200160 (120200)XP X Pσσσ---⎛⎫<≤=<≤⎪⎝⎭故4031.251.29σ≤=24.设随机变量X分布函数为F(x)=e,0,(0), 00.xtA B x,xλ-⎧+≥>⎨<⎩(1)求常数A,B;(2)求P{X≤2},P{X>3};(3)求分布密度f(x).【解】(1)由00lim ()1lim ()lim ()x x x F x F x F x →+∞→+→-=⎧⎪⎨=⎪⎩得11A B =⎧⎨=-⎩(2) 2(2)(2)1e P X F λ-≤==-(3) e ,0()()0,0x x f x F x x λλ-⎧≥'==⎨<⎩25.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧<≤-<≤.,0,21,2,10,其他x x x x 求X 的分布函数F (x ),并画出f (x )及F (x ).【解】当x <0时F (x )=0当0≤x <1时0()()d ()d ()d xxF x f t t f t t f t t -∞-∞==+⎰⎰⎰当1≤x<2时()()d xF x f t t -∞=⎰当x ≥2时()()d 1xF x f t t -∞==⎰故 220,0,012()21,1221,2x x x F x x x x x <⎧⎪⎪≤<⎪=⎨⎪-+-≤<⎪⎪≥⎩26.设随机变量X 的密度函数为(1) f (x )=a e ??|x |,λ>0;(2) f (x )=⎪⎩⎪⎨⎧<≤<<.,0,21,1,10,2其他x xx bx试确定常数a ,b ,并求其分布函数F (x ).【解】(1) 由()d 1f x x ∞-∞=⎰知||21ed 2e d x x aa x a x λλλ∞∞---∞===⎰⎰故 2a λ=即密度函数为 e ,02()e 02xx x f x x λλλλ-⎧>⎪⎪=⎨⎪≤⎪⎩当x ≤0时1()()d e d e 22xxx x F x f x x x λλλ-∞-∞===⎰⎰当x >0时0()()d e d e d 22xxx x F x f x x x x λλλλ--∞-∞==+⎰⎰⎰故其分布函数(2) 由12201111()d d d 22b f x x bx x x x ∞-∞==+=+⎰⎰⎰得 b =1即X 的密度函数为当x ≤0时F (x )=0当0<x <1时0()()d ()d ()d xxF x f x x f x x f x x -∞-∞==+⎰⎰⎰当1≤x <2时012011()()d 0d d d xxF x f x x x x x x x-∞-∞==++⎰⎰⎰⎰当x ≥2时F (x )=1故其分布函数为27.求标准正态分布的上α分位点,(1)α=0.01,求z α;(2)α=0.003,求z α,/2z α.【解】(1) ()0.01P X z α>=即 1()0.01z αΦ-= 即 ()0.09z αΦ=故 2.33z α=(2) 由()0.003P X z α>=得即 ()0.997z αΦ=查表得 2.75z α=由/2()0.0015P X z α>=得即 /2()0.9985z αΦ=查表得 /2 2.96z α=28.设随机变量X的分布律为求Y=X2的分布律.【解】Y可取的值为0,1,4,9故Y的分布律为29.设P{X=k}=(12)k, k=1,2,…,令求随机变量X的函数Y的分布律.【解】(1)(2)(4)(2) P Y P X P X P X k===+=++=+L L 30.设X~N(0,1).(1)求Y=e X的概率密度;(2)求Y=2X2+1的概率密度;(3) 求Y =|X |的概率密度.【解】(1) 当y ≤0时,()()0Y F y P Y y =≤=当y >0时,()()(e )(ln )x Y F y P Y y P y P X y =≤=≤=≤故 2/2ln d ()1()(ln ),0d y Y Y x F y f y f y y y y -===> (2)2(211)1P Y X =+≥=当y ≤1时()()0Y F y P Y y =≤=当y >1时2()()(21)Y F y P Y y P X y =≤=+≤故 d ()()d Y Y XX f y F y f f y ⎤⎛==+⎥ ⎥⎝⎦(3) (0)1P Y ≥=当y ≤0时()()0Y F y P Y y =≤=当y >0时()(||)()Y F y P X y P y X y =≤=-≤≤故d()()()()d Y Y X X f y F y f y f y y==+- 31.设随机变量X ~U (0,1),试求:(1) Y =e X 的分布函数及密度函数;(2) Z =?2ln X 的分布函数及密度函数.【解】(1) (01)1P X <<=故 (1e e)1X P Y <=<=当1y ≤时()()0Y F y P Y y =≤=当1<y <e 时()(e )(ln )X Y F y P y P X y =≤=≤ 当y ≥e 时()(e )1X Y F y P y =≤=即分布函数故Y 的密度函数为(2) 由P (0<X <1)=1知当z ≤0时,()()0Z F z P Z z =≤=当z >0时,()()(2ln )Z F z P Z z P X z =≤=-≤即分布函数故Z 的密度函数为32.设随机变量X 的密度函数为f (x )=22,0π,π0,.xx ⎧<<⎪⎨⎪⎩其他试求Y =sin X 的密度函数.【解】(01)1P Y <<=当y ≤0时,()()0Y F y P Y y =≤=当0<y <1时,()()(sin )Y F y P Y y P X y =≤=≤ 当y ≥1时,()1Y F y =故Y 的密度函数为33.设随机变量X 的分布函数如下:试填上(1),(2),(3)项. 【解】由lim ()1x F x →∞=知②填1。
《概率论与数理统计》课后习题答案
习题1.1解答1. 将一枚均匀的硬币抛两次,事件C B A ,,分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。
试写出样本空间及事件C B A ,,中的样本点。
解:{=Ω(正,正),(正,反),(反,正),(反,反)}{=A (正,正),(正,反)};{=B (正,正),(反,反)}{=C (正,正),(正,反),(反,正)}2. 在掷两颗骰子的试验中,事件D C B A ,,,分别表示“点数之和为偶数”,“点数之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。
试写出样本空间及事件D C B A BC C A B A AB ---+,,,,中的样本点。
解:{})6,6(,),2,6(),1,6(,),6,2(,),2,2(),1,2(),6,1(,),2,1(),1,1( =Ω; {})1,3(),2,2(),3,1(),1,1(=AB ;{})1,2(),2,1(),6,6(),4,6(),2,6(,),5,1(),3,1(),1,1( =+B A ;Φ=C A ;{})2,2(),1,1(=BC ;{})4,6(),2,6(),1,5(),6,4(),2,4(),6,2(),4,2(),5,1(=---D C B A3. 以C B A ,,分别表示某城市居民订阅日报、晚报和体育报。
试用C B A ,,表示以下事件:(1)只订阅日报; (2)只订日报和晚报;(3)只订一种报; (4)正好订两种报;(5)至少订阅一种报; (6)不订阅任何报;(7)至多订阅一种报; (8)三种报纸都订阅;(9)三种报纸不全订阅。
解:(1)C B A ; (2)C AB ;(3)C B A C B A C B A ++; (4)BC A C B A C AB ++;(5)C B A ++; (6)C B A ; (7)C B A C B A C B A C B A +++或C B C A B A ++(8)ABC ; (9)C B A ++ 4. 甲、乙、丙三人各射击一次,事件321,,A A A 分别表示甲、乙、丙射中。
概率论与数理统计习题参考答案
概率论与数理统计参考答案(附习题)第一章 随机事件及其概率1. 写出下列随机试验的样本空间:(1)同时掷两颗骰子,记录两颗骰子的点数之和; (2)在单位圆内任意一点,记录它的坐标;(3)10件产品中有三件是次品,每次从其中取一件,取后不放回,直到三件次品都取出为止,记录抽取的次数; (4)测量一汽车通过给定点的速度.解: 所求的样本空间如下(1)S= {2,3,4,5,6,7,8,9,10,11,12} (2)S= {(x, y)| x 2+y 2<1}(3)S= {3,4,5,6,7,8,9,10} (4)S= {v |v>0}2. 设A 、B 、C 为三个事件,用A 、B 、C 的运算关系表示下列事件: (1)A 发生,B 和C 不发生;(2)A 与B 都发生,而C 不发生; (3)A 、B 、C 都发生; (4)A 、B 、C 都不发生; (5)A 、B 、C 不都发生;(6)A 、B 、C 至少有一个发生; (7)A 、B 、C 不多于一个发生; (8)A 、B 、C 至少有两个发生. 解: 所求的事件表示如下(1)(2)(3)(4)(5)(6)(7)(8)A B CA B C A B C A B CA B C AB CA B B C A CA BB CC A3.在某小学的学生中任选一名,若事件A 表示被选学生是男生,事件B 表示该生是三年级学生,事件C 表示该学生是运动员,则 (1)事件AB 表示什么?(2)在什么条件下ABC =C 成立? (3)在什么条件下关系式C B ⊂是正确的? (4)在什么条件下A B =成立?解: 所求的事件表示如下(1)事件AB 表示该生是三年级男生,但不是运动员. (2)当全校运动员都是三年级男生时,ABC =C 成立.(3)当全校运动员都是三年级学生时,关系式C B ⊂是正确的. (4)当全校女生都在三年级,并且三年级学生都是女生时,A B =成立. 4.设P (A )=0.7,P (A -B )=0.3,试求()P AB解 由于 A -B = A – AB , P (A )=0.7 所以P (A -B ) = P (A -AB ) = P (A ) -P (AB ) = 0.3, 所以 P (AB )=0.4, 故 ()P AB = 1-0.4 = 0.6.5. 对事件A 、B 和C ,已知P(A) = P(B)=P(C)=14,P(AB) = P(CB) = 0, P(AC)=18求A 、B 、C 中至少有一个发生的概率. 解 由于,()0,⊂=ABC AB P AB 故P(ABC) = 0则P(A+B+C) = P(A)+P(B)+P(C) –P(AB) –P(BC) –P(AC)+P(ABC) 1111500044488=++---+=6. 设盒中有α只红球和b 只白球,现从中随机地取出两只球,试求下列事件的概率:A ={两球颜色相同},B ={两球颜色不同}.解 由题意,基本事件总数为2a b A +,有利于A 的事件数为22a b A A +,有利于B的事件数为1111112ab b a a b A A A A A A +=, 则 2211222()()a b a ba b a bA A A A P A PB A A +++==7. 若10件产品中有件正品,3件次品,(1)不放回地每次从中任取一件,共取三次,求取到三件次品的概率; (2)每次从中任取一件,有放回地取三次,求取到三次次品的概率. 解 (1)设A={取得三件次品} 则333333101016()()120720或者====C A P A P A C A . (2)设B={取到三个次品}, 则33327()101000==P A .8. 某旅行社100名导游中有43人会讲英语,35人会讲日语,32人会讲日语和英语,9人会讲法语、英语和日语,且每人至少会讲英、日、法三种语言中的一种,求:(1)此人会讲英语和日语,但不会讲法语的概率; (2)此人只会讲法语的概率.解 设 A={此人会讲英语}, B={此人会讲日语}, C={此人会讲法语}根据题意, 可得(1) 32923()()()100100100=-=-=P ABC P AB P ABC(2) ()()()P ABC P AB P ABC =-()01()P A B P A B =+-=-+ 1()()()P A P B P AB =--+433532541100100100100=--+=9. 罐中有12颗围棋子,其中8颗白子4颗黑子,若从中任取3颗,求: (1) 取到的都是白子的概率;(2) 取到两颗白子,一颗黑子的概率;(3) 取到三颗棋子中至少有一颗黑子的概率; (4) 取到三颗棋子颜色相同的概率. 解(1) 设A={取到的都是白子} 则3831214()0.25555===C P A C .(2) 设B={取到两颗白子, 一颗黑子}2184312()0.509==C C P B C . (3) 设C={取三颗子中至少的一颗黑子} ()1()0.74=-=P C P A . (4) 设D={取到三颗子颜色相同}3384312()0.273+==C C P D C .10. (1)500人中,至少有一个的生日是7月1日的概率是多少(1年按365日计算)?(2)6个人中,恰好有个人的生日在同一个月的概率是多少? 解(1) 设A = {至少有一个人生日在7月1日}, 则500500364()1()10.746365=-=-=P A P A (2)设所求的概率为P(B)412612611()0.007312⨯⨯==C C P B11. 将C ,C ,E ,E ,I ,N ,S 7个字母随意排成一行,试求恰好排成SCIENCE的概率p.解 由于两个C ,两个E 共有2222A A 种排法,而基本事件总数为77A ,因此有2222770.000794A A p A ==12. 从5副不同的手套中任取款4只,求这4只都不配对的概率.解 要4只都不配对,我们先取出4双,再从每一双中任取一只,共有⋅4452C 中取法. 设A={4只手套都不配对},则有⋅==445410280()210C P A C13. 一实习生用一台机器接连独立地制造三只同种零件,第i 只零件是不合格的概率为=+11i p i,i=1,2,3,若以x 表示零件中合格品的个数,则P(x =2)为多少?解 设A i = {第i 个零件不合格},i=1,2,3, 则1()1i i P A p i==+ 所以 ()11i i i P A p i=-=+ 123123123(2)()()()P x P A A A P A A A P A A A ==++由于零件制造相互独立,有:123123()()()()P A A A P A P A P A =,123123()()()()P A A A P A P A P A = 123123()()()()P A A A P A P A P A =11112111311,(2)23423423424P x ==⨯⨯+⨯⨯+⨯⨯=所以14. 假设目标出现在射程之内的概率为0.7,这时射击命中目标的概率为0.6,试求两次独立射击至少有一次命中目标的概率p.解 设A={目标出现在射程内},B={射击击中目标},B i ={第i 次击中目标}, i=1,2.则 P(A)=0.7, P(B i|A)=0.6 另外 B=B 1+B 2,由全概率公式12()()()()()(|)()(()|)P B P AB P AB P AB P A P B A P A P B B A =+===+ 另外, 由于两次射击是独立的, 故P(B 1B 2|A)= P(B 1|A) P(B 2|A) = 0.36 由加法公式P((B 1+B 2)|A)= P(B 1|A)+ P(B 2|A)-P(B 1B 2|A)=0.6+0.6-0.36=0.84因此P(B)= P(A)P((B 1+B 2)|A)=0.7×0.84 = 0.58815. 设某种产品50件为一批,如果每批产品中没有次品的概率为0.35,有1,2,3,4件次品的概率分别为0.25, 0.2, 0.18, 0.02,今从某批产品中抽取10件,检查出一件次品,求该批产品中次品不超过两件的概率.解 设A i ={一批产品中有i 件次品},i=0, 1, 2, 3, 4, B={任取10件检查出一件次品},C={产品中次品不超两件}, 由题意01914911050192482105019347310501944611050(|)01(|)516(|)4939(|)98988(|)2303=========P B A C C P B A C C C P B A CC C P B A C C C P B A C由于 A 0, A 1, A 2, A 3, A 4构成了一个完备的事件组, 由全概率公式 40()()(|)0.196===∑i i i P B P A P B A 由Bayes 公式000111222()(|)(|)0()()(|)(|)0.255()()(|)(|)0.333()======P A P B A P A B P B P A P B A P A B P B P A P B A P A B P B 故20()(|)0.588===∑i i P C P A B16. 由以往记录的数据分析,某船只运输某种物品损坏2%,10%和90%的概率分别为0.8,0.15,0.05,现在从中随机地取三件,发现三件全是好的,试分析这批物品的损坏率是多少(这里设物品件数很多,取出一件后不影响下一件的概率).解 设B={三件都是好的},A 1={损坏2%}, A 2={损坏10%}, A 1={损坏90%},则A 1, A 2, A 3是两两互斥, 且A 1+ A 2 +A 3=Ω, P(A 1)=0.8, P(A 2)=0.15, P(A 2)=0.05.因此有 P(B| A 1) = 0.983, P(B| A 2) = 0.903, P(B| A 3) = 0.13, 由全概率公式31333()()(|)0.80.980.150.900.050.100.8624===⨯+⨯+⨯=∑i i i P B P A P B A由Bayes 公式, 这批货物的损坏率为2%, 10%, 90%的概率分别为313233()(|)0.80.98(|)0.8731()0.8624()(|)0.150.90(|)0.1268()0.8624()(|)0.050.10(|)0.0001()0.8624⨯===⨯===⨯===i i i i i i P A P B A P A B P B P A P B A P A B P B P A P B A P A B P B 由于P( A 1|B) 远大于P( A 3|B), P( A 2|B), 因此可以认为这批货物的损坏率为0.2.17. 验收成箱包装的玻璃器皿,每箱24只装,统计资料表明,每箱最多有两只残次品,且含0,1和2件残次品的箱各占80%,15%和5%,现在随意抽取一箱,随意检查其中4只;若未发现残次品,则通过验收,否则要逐一检验并更换残次品,试求: (1)一次通过验收的概率α;(2)通过验收的箱中确定无残次品的概率β. 解 设H i ={箱中实际有的次品数}, 0,1,2=i , A={通过验收}则 P(H 0)=0.8, P(H 1)=0.15, P(H 2)=0.05, 那么有:042314244222424(|)1,5(|),695(|)138P A H C P A H C C P A H C =====(1)由全概率公式20()()(|)0.96α====∑i i i P A P H P A H(2)由Bayes 公式 得00()(|)0.81(|)0.83()0.96β⨯====i P H P A H P H A P A18. 一建筑物内装有5台同类型的空调设备,调查表明,在任一时刻,每台设备被 使用的概率为0.1,问在同一时刻 (1)恰有两台设备被使用的概率是多少? (2)至少有三台设备被使用的概率是多少?解 设5台设备在同一时刻是否工作是相互独立的, 因此本题可以看作是5重伯努利试验. 由题意,有p=0.1, q=1-p=0.9, 故(1) 223155(2)(0.1)(0.9)0.0729===P P C (2) 2555(3)(4)(5)P P P P =++332441550555(0.1)(0.9)(0.1)(0.9)(0.1)(0.9)0.00856C C C =++=19. 甲、乙两个乒乓球运动员进行乒乓球单打比赛,如果每一局甲胜的概率为0.6,乙胜的概率为0.4,比赛时可以采用三局二胜制或五局三胜制,问在哪一种比赛制度下甲获胜的可能性较大? 解 在三局两胜时, 甲队获胜的概率为332213333(2)(3)(0.6)(0.4)(0.6)(0.4)0.648=+=+=A P P P C C在五局三胜的情况下, 甲队获胜的概率为55533244155555(3)(4)(5)(0.6)(0.4)(0.6)(0.4)(0.6)(0.4)0.682=++=++=B P P P P C C C因此,采用五局三胜制的情况下,甲获胜的可能性较大.20. 4次重复独立试验中事件A 至少出现一次的概率为6581,求在一次试验中A出现的概率.解 设在一次独立试验中A 出现一次的概率为p, 则由题意00444465(0)(1)181==-=-P C p q p 解得p=1/3.21.(87,2分)三个箱子,第一个箱子中有4只黑球1只白球,第二个箱子中有3只黑球3只白球,第三个箱子有3只黑球5只白球. 现随机地取一个箱子,再从这个箱子中取出一个球,这个球为白球的概率等于 . 已知取出的球是白球,此球属于第二个箱子的概率为解 设=B “取出白球”,=i A “球取自第i 个箱子”,.3,2,1=i 321,,A A A 是一个完全事件组,.3,2,1,3/1)(==i A P i 5/1)|(1=A B P ,2/1)|(2=A B P ,8/5)|(3=A B P ,应用全概率公式与贝叶斯公式,12053)852151(31)|()()(31=++==∑=i i i A B P A P B P.5320)()|()()|(222==B P A B P A P B A P22.(89,2分)已知随机事件A 的概率5.0)(=A P ,随机事件B 的概率6.0)(=B P 及条件概率8.0)|(=A B P ,则和事件B A ⋃的概率=⋃)(B A P 解 7.0)|()()()()()()()(=-+=-+=⋃A B P A P B P A P AB P B P A P B A P .23.(90,2分)设随机事件A ,B 及其和事件B A ⋃的概率分别是4.0,3.0和6.0. 若B 表示B 的对立事件,那么积事件B A 的概率=)(B A P解 B A 与B 互不相容,且.B B A B A ⋃=⋃ 于是.3.0)()()(=-⋃=B P B A P B A P24.(92,3分)已知41)()()(===C P B P A P ,0)(=AB P ,161)()(==BC P AC P ,则事件A ,B ,C 全不发生的概率为 解 从0)(=AB P 可知,0)(=ABC P .)()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +--++=⋃⋃.8501611*********=+---++=25.(93,3分)一批产品共有10件正品和两件次品,任意抽取两次,每次抽一件,抽出后不再放回,则第二次抽出的是次品的概率为解 设事件=i B “第i 次抽出次品”,.2,1=i 则,12/2)(1=B P 12/10)(1=B P ,.11/2)|(,11/1)|(1212==B B P B B P 应用全概率公式)|()()|()()(1211212B B P B P B B P B P B P +=.611121210111122=⨯+⨯=26.(94,3分)已知A ,B 两个事件满足条件)()(B A P AB P =,且p A P =)(,则=)(B P解 ).()()(1)()(AB P B P A P B A P B A P +--=⋃=因)()(B A P AB P =,故有.1)(1)(,1)()(p A P B P B P A P -=-==+27.(06,4分)设A ,B 为随机事件,且0)(>B P ,1)|(=B A P ,则必有( ) A .)()(A P B A P >⋃ B .)()(B P B A P >⋃ C .)()(A P B A P =⋃ D .)()(B P B A P =⋃解 选(C )28.(05,4分)从数1,2,3,4中任取一个数,记为X ,再从1,2,…,X 中任取一个数,记为Y ,则==)2(Y P 解 填.481329.(96,3分)设工厂A 和工厂B 的产品的次品率分别为%1和%2,现从由A 和B 的产品分别占%60和%40的一批产品中随机抽取一件,发现是次品,则该产品属A 生产的概率是解 设事件=C “抽取的产品是次品”,事件=D “抽取的产品是A 生产的”,则D 表示“抽取的产品是工厂B 生产的”. 依题意有.02.0)|(,01.0)|(,40.0)(,60.0)(====D C P D C P D P D P应用贝叶斯可以求得条件概率.7302.04.001.06.001.06.0)|()()|()()|()()|(=⨯+⨯⨯=+=D C P D P D C P D P D C P D P C D P30.(97,3分)袋中有50只乒乓球,其中20只是黄球,30只是白球,今有两人依次随机地从袋中各取一球,取后不放回,则第二个人取得黄球的概率是 解 设事件=i A “第i 个人取得黄球”,2,1=i . 根据题设条件可知.4920)|(,4919)|(,5030)(,5020)(121211====A A P A A P A P A P 应用全概率公式.524920503049195020)|()()|()()(1211212=⋅+⋅=+=A A P A P A A P A P A P31.(87,2分)设在一次试验中,事件A 发生的概率为p 。
概率论与数理统计(魏宗舒版)答案完整版
1.11 任取一个正数,求下列事件的概率: (1)该数的平方的末位数字是 1; (2)该数的四次方的末位数字是 1; (3)该数的立方的最后两位数字都是 1; 1 解 (1) 答案为 。 5 (2)当该数的末位数是 1、3、7、9 之一时,其四次方的末位数是 1,所以答 4 2 案为 = 10 5 (3)一个正整数的立方的最后两位数字决定于该数的最后两位数字,所以样 本空间包含 10 2 个样本点。用事件 A 表示“该数的立方的最后两位数字都是 1” , 则该数的最后一位数字必须是 1,设最后第二位数字为 a ,则该数的立方的最后 两位数字为 1 和 3 a 的个位数,要使 3 a 的个位数是 1,必须 a = 7 ,因此 A 所包 含的样本点只有 71 这一点,于是 。 1.12 一个人把 6 根草掌握在手中,仅露出它们的头和尾。然后请另一个人 把 6 个头两两相接,6 个尾也两两相接。求放开手以后 6 根草恰好连成一个环的 概率。并把上述结果推广到 2n 根草的情形。 解 (1)6 根草的情形。取定一个头,它可以与其它的 5 个头之一相接,再取 另一头,它又可以与其它未接过的 3 个之一相接,最后将剩下的两个头相接,故
− n ≤ m ≤ N −1
(3) 指 定 的 m 个 盒 中 正 好 有 j 个 球 的 概 率 为
m + j − 1 N − m + n − j − 1 m −1 n− j N + n − 1 n
,
1 ≤ m ≤ N ,0 ≤ j ≤ N .
对头而言有 5 ⋅ 3 ⋅ 1 种接法,同样对尾也有 5 ⋅ 3 ⋅ 1 种接法,所以样本点总数为 用 A 表示 “6 根草恰好连成一个环” , 这种连接, 对头而言仍有 5 ⋅ 3 ⋅ 1 种 (5 ⋅ 3 ⋅ 1) 2 。 连接法, 而对尾而言, 任取一尾, 它只能和未与它的头连接的另 4 根草的尾连接。 再取另一尾, 它只能和未与它的头连接的另 2 根草的尾连接,最后再将其余的尾 连接成环,故尾的连接法为 4 ⋅ 2 。所以 A 包含的样本点数为 (5 ⋅ 3 ⋅ 1)(4 ⋅ 2) ,于是
概率论与数理统计第一章习题参考答案
1第一章 随机事件及其概率1.解:(1){}67,5,4,3,2=S (2){} ,4,3,2=S (3){} ,,,TTH TH H S =(4){}6,5,4,3,2,1,,T T T T T T HT HH S = 2.解:81)(,21)(,41)(===AB P B P A P\)()()()(AB P B P A P B A P -+= 85812141=-+=)()()(AB P B P B A P -==838121=-= 87811)(1)(=-=-=AB P AB P)])([(AB B A P )]()[(AB B A P -=)()(AB P B A P -= )(B A AB Ì 218185=-=3.解:用A 表示事件“取到的三位数不包含数字1” 2518900998900)(191918=´´==C C C A P4、解:用A 表示事件“取到的三位数是奇数”,用B 表示事件“取到的三位数大于330330””(1)455443)(2515141413´´´´==A C C C C A P =0.482)455421452)(251514122512´´´´+´´=+=A C C C A C B P =0.485、解:用A 表示事件“表示事件“44只中恰有2只白球,只白球,11只红球,只红球,11只黑球”, 用B 表示事件“表示事件“44只中至少有2只红球”, 用C 表示事件“表示事件“44只中没有只白球”只中没有只白球” (1)412131425)(C C C C A P ==495120=338(2)4124838141)(C C C C B P +-==16567495201= 或16567)(4124418342824=++=C C C C C C B P(3)99749535)(41247===CC C P6.解:用A 表示事件“某一特定的销售点得到k 张提货单”张提货单” nkn k n MM C A P --=)1()(7、解:用A 表示事件“表示事件“33只球至少有1只配对”,用B 表示事件“没有配对”表示事件“没有配对” (1)3212313)(=´´+=A P 或321231121)(=´´´´-=A P(2)31123112)(=´´´´=B P8、解、解 1.0)(,3.0)(,5.0)(===AB P B P A P(1)313.01.0)()()(===B P AB P B A P ,515.01.0)()()(===A P AB P A B P7.01.03.05.0)()()()(=-+=-+=AB P B P A P B A P)()()()()()]([)(B A P AB P B A P AB A P B A P B A A P B A A P ===757.05.0==717.01.0)()()()])([()(====B A P AB P B A P B A AB P B A AB P1)()()()]([)(===AB P AB P AB P AB A P AB A P(2)设{}次取到白球第i A i = 4,3,2,1=i则)()()()()(32142131214321A A A A P A A A P A A P A P A A A A P =0408.020592840124135127116==´´´=9、解: 用A 表示事件表示事件“取到的两只球中至少有“取到的两只球中至少有1只红球”,用B 表示事件表示事件“两只都是红球”“两只都是红球”方法1651)(2422=-=C C A P ,61)(2422==C C B P ,61)()(==B P AB P516561)()()(===A P AB P A B P方法2 在减缩样本空间中计算在减缩样本空间中计算在减缩样本空间中计算 51)(=A B P1010、解:、解:A 表示事件“一病人以为自己得了癌症”,用B 表示事件“病人确实得了癌症”表示事件“病人确实得了癌症” 由已知得,%40)(%,10)(%,45)(%,5)(====B A P B A P B A P AB P (1)B A AB B A AB A 与,=互斥互斥5.045.005.0)()()()(=+=+==\B A P AB P B A AB P A P同理同理15.01.005.0)()()()(=+=+==B A P AB P B A AB P B P (2)1.05.005.0)()()(===A P AB P A B P(3)2.05.01.0)()()(,5.05.01)(1)(====-=-=A P B A P A B P A P A P(4)17985.045.0)()()(,85.015.01)(1)(====-=-=B P B A P B A P B P B P(5)3115.005.0)()()(===B P AB P B A P1111、解:用、解:用A 表示事件“任取6张,排列结果为ginger ginger””92401)(61113131222==A A A A A A P1212、、解:用A 表示事件“A 该种疾病具有症状”,用B 表示事件“B 该种疾病具有症状”由已知2.0)(=B A P3.0)(=B A P 1.0)(=AB P (1),B A AB B A B A S=且B A AB B A B A ,,,互斥互斥()6.01.03.02.0)()()(=++=++=\AB P B A P B A P B A P4.06.01)(1)()(=-=-==B A P B A P B A P ()()()4.0)(1=---=AB P B A P B A P B A P(2)()()()6.01.03.02.0)(=++=++=AB P B A P B A P AB B A B A P(3)B A AB B =, B A AB ,互斥互斥4.03.01.0)()()()(=+=+==B A P AB P B A AB P B P )()()(])[()(B P AB P B P B AB P B AB P ==414.01.0==1313、解:用、解:用i A 表示事件“讯号由第i 条通讯线输入”,,4,3,2,1=i B 表示“讯号无误差地被接受”接受”;2.0)(,1.0)(,3.0)(,4.0)(4321====A P A P A P A P9998.0)(1=A B P ,9999.0)(2=A B P ,,9997.0)(3=A B P 9996.0)(4=A B P 由全概率公式得由全概率公式得9996.02.09997.01.09999.03.09998.04.0)()()(41´+´+´+´==å=ii iA B P A P B P99978.0=1414、、解:用A 表示事件“确实患有关节炎的人”,用B 表示事件“检验患有关节炎的人”由已知由已知1.0)(=A P ,85.0)(=A B P ,04.0)(=A B P , 则9.0)(=A P ,85.0)(=A B P ,96.0)(=A B P , 由贝叶斯公式得由贝叶斯公式得 017.096.09.015.01.015.01.0)()()()()()()(=´+´´=+=A B P A P A B P A P A B P A P B A P1515、解:用、解:用A 表示事件“程序交与打字机A 打字”,B 表示事件“程序交与打字机B 打字”, C 表示事件“程序交与打字机C 打字”;D 表示事件“程序因计算机发生故障被打坏”坏”由已知得由已知得6.0)(=A P ,3.0)(=B P ,1.0)(=C P ; 01.0)(=A D P ,05.0)(=B D P ,04.0)(=C D P由贝叶斯公式得由贝叶斯公式得)()()()()()()()()(C D P C P B D P B P A D P A P A D P A P D A P ++=24.025604.01.005.03.001.06.001.06.0==´+´+´´=)()()()()()()()()(C D P C P B D P B P A D P A P B D P B P D B P ++=6.05304.01.005.03.001.06.005030==´+´+´´=)()()()()()()()()(C D P C P B D P B P A D P A P C D P C P D A P ++=16.025604.01.005.03.001.06.004.01.0==´+´+´´=1616、解:用、解:用A 表示事件“收到可信讯息”,B 表示事件“由密码钥匙传送讯息”表示事件“由密码钥匙传送讯息”由已知得由已知得 95.0)(=A P ,05.0)(=A P ,1)(=A B P ,001.0)(=A B P由贝叶斯公式得由贝叶斯公式得999947.0001.005.0195.0195.0)()()()()()()(»´+´´=+=A B P A P A B P A P A B P A P B A P1717、解:用、解:用A 表示事件“第一次得H ”,B 表示事件“第二次得H ”, C 表示事件“两次得同一面”表示事件“两次得同一面”则,21)(,21)(==B P A P ,21211)(2=+=C P ,4121)(2==AB P ,4121)(2==BC P ,4121)(2==AC P )()()(),()()(),()()(C P A P AC P C P B P BC P B P A P AB P ===\C B A ,,\两两独立两两独立而41)(=ABC P ,)()()()(C P B P A P ABC P ¹C B A ,,\不是相互独立的不是相互独立的1818、解:用、解:用A 表示事件“运动员A 进球”,B 表示事件“运动员B 进球”, C 表示事件“运动员C 进球”,由已知得由已知得5.0)(=A P ,7.0)(=B P ,6.0)(=C P 则5.0)(=A P ,3.0)(=B P ,4.0)(=C P (1){})(C B A C B A C B A P P =恰有一人进球)()()(C B A P C B A P C B A P ++= (C B A C B A C B A ,,互斥)互斥) )()()()()()()()()(C P B P A P C P B P A P C P B P A P ++=相互独立)C B A ,,(29.06.03.05.04.07.05.04.03.05.0=´´+´´+´´=(2){})(C B A BC A C AB P P =恰有二人进球)()()(C B A P BC A P C AB P ++= (C B A BC A C AB ,,互斥)互斥) )()()()()()()()()(C P B P A P C P B P A P C P B P A P ++= 相互独立)C B A ,,(44.06.03.05.06.07.05.04.07.05.0=´´+´´+´´= (3){})(C B A P P =至少有一人进球)(1C B A P -= )(1C B A P -=)()()(1C P B P A P -=相互独立)C B A ,,( 4.03.05.01´´-=94.0= 1919、解:用、解:用i A 表示事件“第i 个供血者具有+-RHA 血型”, ,3,2,1=iB 表示事件“病人得救”表示事件“病人得救”,4321321211A A A A A A A A A A B=4321321211,,,A A A A A A A A A A 互斥,i A ( ,3,2,1=i )相互独立)相互独立 ()()(1P A P B P +=\+)21A A )()(4321321A A A A P A A A P +8704.04.06.04.06.04.06.04.032=´+´+´+=2020、解:设、解:设i A 表示事件“可靠元件i ” i=1,2,3,4,5 ,B 表示事件“系统可靠”由已知得p A P i =)(1,2,3,4,5)(i = 54321,,,,A A A A A 相互独立相互独立法1:54321A A A A A B =)()(54321A A A A A P B P =\()()()()()()542154332154321A A A A P A A A P A A A P A A P A P A A P ---++=()54321A A A A A P +543322p p p p p p p +---++= ()相互独立54321,,,,A A A A A543222p p p p p +--+=法2:)(1)(54321A A A A A P B P -=)()()(154321A A P A P A A P -= ()相互独立54321,,,,A A A A A()()]1][1)][(1[154321A A P A P A A P ----=()()()]1][1)][()(1[154321A P A P A P A P A P ----=()相互独立54321,,,,A A A A A()()()221111pp p----=543222p p p p p +--+=2121、解:令、解:令A :“产品真含杂质”,A :“产品真不含杂质”“产品真不含杂质” 则4.0)(=A P ,6.0)(=A P2.08.0)|(223´´=C A B P 9.01.0)|(223´´=C A B P \)()|()()|()(A P A B P A P A B P B P +=6.09.01.04.02.08.0223223´´´+´´´=C C\)()|()()|()()|()()()|(A P A B P A P A B P A P A B P B P AB P B A P +==905.028325660901********.02.08.0223223223»=´´´+´´´´´´=C C C第二章习题答案 1、{}()4.04.011´-==-k k Y Pk=1,2,… 2、用个阀门开表示第i A i))()()()()(())((}0{32321321A P A P A P A P A P A A A P X P -+=== 072.0)2.02.02.02.0(2.0=´-+=23213218.02.0)04.02.02.0(8.0])([}1{´+-+===A A A A A A P X P416.0=512.08.0)(}2{3321====A A A P X P 3、()2.0,15~b X{}kkk C k X P -´==15158.02.0 k=0,1,2,……,15(1){}2501.08.02.03123315=´==C X P(2){}8329.08.02.08.02.01214115150015=´-´-=³C C X P(3){}6129.08.02.08.02.08.02.031123315132215141115=´+´+´=££C C C X P(4){}0611.08.02.01551515=´-=>å=-k kkk C X P4、用X 表示5个元件中正常工作的个数个元件中正常工作的个数9914.09.01.09.01.09.0)3(54452335=+´+´=³C C X P5、设X={}件产品的次品数8000 则X~b(8000,0.001)由于n 很大,P 很小,所以利用)8(p 近似地~X {}3134.0!8768==<å=-k k k eX P6、(1)X~p (10){}{}0487.09513.01!101151151510=-=-=£-=>\å=-k k k eX P X P (2)∵ X~p ( l ) {}{}!01010210ll --==-=>=\e X P X P{}210==\X P21=\-le7.02ln ==\l {}{}1558.08442.01!7.0111217.0=-=-=£-=³\å=-k k k eX P X P或{}{}{}2ln 2121!12ln 21110122ln -=--==-=-=³-e X P X P X P 7、)1( )2(~p X 1353.0!02}0{22====--e e X P )2( 00145.0)1()(24245=-=--eeC p)3( 52)!2(å¥=-=k kk e p8、(1) 由33)(11312k x k dx kx dx x f ====òò¥+¥- 3=\k(2){}()2713331331231====£òò¥-xdx x dx x f X P(3)64764181321412141321412=-===þýüîí죣òxdx x X P(4)271927813)(321323132232=-====þýüîíì>òò¥+xdx x dx x f X P9、方程有实根04522=-++X Xt t ,则,则 0)45(4)2(2³--=D X X 得.14£³X X 或 有实根的概率有实根的概率937.0003.0003.0}14{104212=+=£³òòdx x dx x X X P10、)1( 005.01|100}1{200110200200122»-=-==<---òeedx ex X P x x)2(=>}52{X P 0|100200525220020052222»-=-=-¥--¥òeedx exx x)3( 25158.0}20{}26{}20|26{200202002622==>>=>>--ee X P X P X X P 11、解:、解: (1){}()275271942789827194491)(12132121=+--=÷øöçèæ-=-==>òò¥+x x dx x dx x f X P(2)Y~b(10,275){}kk kC k Y P -÷øöçèæ´÷øöçèæ==10102722275k=0,1,2,……,10(3){}2998.027*******2210=÷øöçèæ´÷øöçèæ==C Y P{}{}{}1012=-=-=³Y P Y P Y P 5778.027222752722275191110100210=÷øöçèæ÷øöçèæ-÷øöçèæ´÷øöçèæ-=C C 12(1)由()()òòò++==-+¥¥-10012.02.01dy cy dy dy y f24.0)22.0(2.01201c y c y y +=++=-2.1=\c ()ïîïíì£<+£<-=\其它102.12.0012.0y yy y f ()()ïïïïîïïïïíì³+<£++<£--<==òòòòòò--¥-¥-12.12.0102.12.02.0012.010)()(100011y dyy y dy y dy y dt y dtdt t f y F y yyyYïïîïïíì³<£++<£-+-<=11102.02.06.0012.02.0102y y y y y y y{}()()25.02.05.06.05.02.02.005.05.002=-´+´+=-=££F F Y P {}()774.01.06.01.02.02.011.011.02=´-´--=-=>F Y P {}()55.05.06.05.02.02.015.015.02=´-´+-=-=>F Y P{}{}{}{}{}7106.0774.055.01.05.01.01.0,5.01.05.0==>>=>>>=>>\Y P Y P Y P Y Y P Y Y P(2) ()()ïïïîïïïíì³<£+<£<==òòòò¥-41428812081002200x x dtt dt x dt x dt t f x F xxxïïïîïïïíì³<£<£<=4142162081002x x x x xx{}()()167811691331=-=-=££F F X P{}()16933==£F X P{}{}{}9716916733131==£££=£³\X P X P X X P 13、解:{}111,-´===n nj Y i X Pn j i j i ,¼¼=¹,2,1,,{}0,===i Y i X P 当n=3时,(X ,Y )联合分布律为)联合分布律为14、)1(2.0}1,1{===Y X P ,}1,1{}0,1{}1,0{}0,0{}1,1{==+==+==+===££Y X P Y X P Y X P Y X P Y X P42.020.004.008.010.0=+++= )2( 90.010.01}0,0{1=-===-Y X P)3(}2,2{}1,1{}0,0{}{==+==+====Y X P Y X P Y X P Y X P60.030.020.010.0=++= }0,2{}1,1{}2,0{}2{==+==+====+Y X P Y X P Y X P Y X P28.002.020.006.0=++= 15、()()()88104242c ee cdxdy ce dx x f yx y x =-×-===+¥-+¥-+¥+¥+-+¥¥-òòò8=\c{}()()()4402042228,2-+¥-+¥-+¥+-+¥>=-×-===>òòòòe ee dy edxdxdy y x f X P yyxx y x xY X 1 2 31 0 1/6 1/62 1/6 0 1/6 31/6 1/6 0D :xy x ££¥<£00{}()òò>=>yx dxdy y x f Y X P ,()()dx e e dy edxx yx xy x 0402042028-+¥-+-+¥-×==òòò()ò¥++¥----=÷øöçèæ-=+-=2626323122x x xxe e dx eeD :xy x -££££101{}()dy edxY X P xyx òò-+-=<+10421081 ()()òò------=-=1422101042222dx eedx eex xx yx()()22104221----=--=e e ex x16、(1)61)2(122=-=òdx x x s , îíìÎ=其他,0),(,6),(G y x y x f(2)îíì<<==ò其他,010,36)(2222x x dy x f x xXïïïîïïíì<£-=<<-==òò其他,0121),1(66210),2(66),(12y y yY y y dx y y y dx y x f17、(1)Y X0 1 2 P{X=x i } 0 0.10 0.08 0.06 0.24 1 0.04 0.20 0.14 0.38 20.02 0.06 0.300.38 P{Y=y i } 0.16 0.34 0.501(2)D :+¥<£+¥<£y x x 0或:yx y <£+¥<£00()()ïîïíì£>==\òò+¥-¥+¥-00,x x dye dy y xf x f xy Xîíì£>=-00x x e x()()ïîïíì£>==òò-¥+¥-00,0y y dxe dx y xf y f yy Yîíì£>=--00y y ye y22、(1)Y 1 Y 2 -11-14222qq q =×()q q-124222qq q =×()q q-12()21q -()q q-1214222qq q =×()q q-124222qq q =×且{}{}{}{}1,10,01,121212121==+==+-=-===Y Y P Y Y P Y Y P Y YP()12234142222+-=+-+=q qqqq(2){}10.00,0===Y X P{}{}0384.000==×=Y P X P 又 {}0,0==Y X P {}{}00=×=¹Y P X P∴X 与Y 不相互独立不相互独立23、()1,0~U X ()ïîïíì<<=其它2108y yy f Y且X 与Y 相互独立相互独立则()()()ïîïíì<<<<=×=其它0210,108,y x yy f x f y x f Y XD :1210<£<£x y y32|)384()8(8}{21032212=-=-==>òòò>y y dy y y ydxdy Y X P yx24X-2-11 3 k p51 61 51151301112+=X Y 52 1 2 10Y 12 510k p5115161+513011即Y 12 5 10 k p5130751301125、U=|X|,当0)|(|)()(0=£=£=<y X P y Y P y F y U时,1)(2)()()()|(|)()(0-F =--=££-=£=£=³y y F y F y X y P y X P y Y P y F y X X U 时,当故ïîïíì<³==-0,00,2)(||22y y e y f X U y U p的概率概率密度函数为26、(1)X Y =,当0)()()(0=£=£=<y X P y Y P y F y Y 时,)()()()()(022y F y X P y X P y Y P y F y X Y =£=£=£=³时,当故 ïîïíì<³==-0,00,2)(2y y ye y f X Y y Y 的概率概率密度函数为(2))21(+=X Y ,当0)21()()(0=£+=£=£y X P y Y P y F y Y 时,1)(1)12()12()21()()(01=³-=-£=£+=£=>>y F y y F y X P y X P y Y P y F y Y X Y 时,当时,当故 ïîïíì>>=+=其他的概率概率密度函数为,001,21)(21y y f X Y Y(3)2X Y =,当0)()()(02=£=£=£y X P y Y P y F y Y 时,)()()()()()(02y F y F y X y P y XP y Y P y F y X X Y --=££-=£=£=>时,当故 ïîïíì£>==-0,00,21)(22y y e yy f X Y y Y p 的概率概率密度函数为27、()()ïîïíì<<+=其它201381x x x f X()()p p 4,02,02Î=ÞÎx y x 当y 0£时,()0=y F Yp 40<<y (){}þýüîí죣-=£=p p p y X yP y X P y F Y2()()òò+==-pppyyyx dx x dx x f 01381p 4³y()()113812=+=þýüîí죣-=òdx x y X yP y F Y p p时当p 4,0¹¹\y y ()()ïîïíì><<<×÷÷øöççèæ+×==pp p p 4,0040211381'y y y y yy F y f Y Y()ïîïíì<<+=\其它40161163p p p y yy f Y28、因为X 与 Y 相互独立,且服从正态分布),0(2s N2222221)()(),(sp sy x Y X ey f x f y x f +-==由知,22Y XZ+=0)(0=£z f z Z 时,当时,当0>z òò----=xxx z x z Z z F 2222)(2222221spsy x e+-dydx=2222220202121sspq p sz r zedr rd e---=òòïîïíì³=-其他,0,)()2(222z ez z f z Z ss29、ïîïíì<<-=其他,011,21)(x x f X))1arctan()1(arctan(21)1(21)()()(112--+=+=-=òò+-¥¥-z z dy y dy y f y z f z f z z Y X Z pp30、0)(0=£z f z Z时,当时当0>z2)()()(2302)(z e dy ye edy y f y z f z f zyzyz YX Zll l l l l ----¥¥-==-=òò31、îíì<<=其他,010,1)(x x f X , íì<<=其他,010,1)(y y f Y ,ïïîïïí죣-=<£==-=òòò-¥¥-其他,021,210,)()()(110z zY X Z z z dy z z dy dy y f y z f z f32 解(1)()()îíì£>=ïîïíì£>==---¥+¥-òò00030023,3203x x e x x dye dy y xf x fxxX()()ïîïí죣=ïîïí죣==òò¥+-¥+¥-其它其它20212023,03y y dx e dx y x f y f xY(2)()()îíì>-£=ïîïíì>£==--¥-òò100030303x e x x dt e x dt t f x F xx txX X()()ïïîïïíì³<£<=ïïîïïíì³<£<==òò¥-21202121202100y y yy y y dt y dt t f y F y yY Y ()(){}()()Z F Z F Z Y X P Z FY X ×=£=\,max max ()ïïîïïíì³-<£-<=--21201210033z e z z ez Z z(3)()÷øöçèæ-=þýüîíìì£<211121max max F F Z P ()21121121233×÷÷øöççèæ---=--e e 233412141--+-=ee33、(1)ïîïíì<<=其他率密度为)上服从均匀分布,概,在(,00,1)(10l x lx f X X(2)两个小段均服从上的均匀分布),0(l ,ïîïíì<<=其他,010,1)(1x lx f X),m i n (21X X Y =, 2)1(1)(ly y F Y --=ïîïíì<<-=其他,00,)(2)(2l y l y l y f Y 34、(1)U 的可能取值是0,1,2,31201}2,3{}1,3{}0,3{}3{12029}2,1{}2,0{}2,2{}1,2{}0,2{}2{32}1,1{}0,1{}1,0{}1{121}0,0{}0{===+==+=======+==+==+==+=======+==+=========Y X P Y X P Y X P U P Y X P Y X P Y X P Y X P Y X P U P Y X P Y X P y X P U P Y X P U P U 0 1 2 3 P12132120291201(2) V 的可能取值为0,1,2}2{4013}1,3{}1,2{}2,1{}1,1{}1{4027}0,3{}0,2{}0,1{}2,0{}1,0{}0,0{}0{=====+==+==+=======+==+==+==+==+====V P Y X P Y X P Y X P Y X P V P Y X P Y X P Y X P Y X P Y X P Y X P V PV 0 1 2 P40274013(3) W 的可能取值是0,1,2,3,4,5 0}5{}4{121}2,1{}1,2{}0,3{}3{125}2,0{}1,1{}0,2{}2{125}1,0{}0,1{}1{121}0,0{}0{=======+==+=======+==+=======+=========W P W P Y X P Y X P Y X P W P Y X P Y X P Y X P W P Y X P Y X P W P Y X P W PW 0 1 2 3 P121125125121概率统计第三章习题解答1、52}7{,51}6{}5{}4{========X P X P X P X P529)(=X E2、2914}7{,296}6{,295}5{,294}4{========Y P Y P Y P Y P29175)(=Y E 3、设X 为取到的电视机中包含的次品数,为取到的电视机中包含的次品数, 2,1,0,}{3123102===-k CC C k X P kkX 0 1 2 p k 221222922121)(=X E4、设X 为所得分数为所得分数 5,4,3,2,1,61}{===k k X P 12,11,10,9,8,7,361}{===k k X P1249)(=X E5、(1)由}6{}5{===X P X P ,则,则l l l l --=e e !6!565 解出6=l ,故6)(==l X E(2)由于åå¥=-¥=--=-11212211)1(66)1(k k k k kkkpp 不是绝对收敛,则)(X E 不存在。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题答案第1章三、解答题1.设P (AB ) = 0,则下列说法哪些是正确的 (1) A 和B 不相容; (2) A 和B 相容; (3) AB 是不可能事件; (4) AB 不一定是不可能事件; (5) P (A ) = 0或P (B ) = 0 (6) P (A – B ) = P (A ) 解:(4) (6)正确.2.设A ,B 是两事件,且P (A ) = ,P (B ) = ,问: (1) 在什么条件下P (AB )取到最大值,最大值是多少 (2) 在什么条件下P (AB )取到最小值,最小值是多少 解:因为)()()()(B A P B P A P AB P -+≤,又因为)()(B A P B P ≤即.0)()(≤-B A P B P 所以(1) 当)()(B A P B P =时P (AB )取到最大值,最大值是)()(A P AB P ==.(2) 1)(=B A P 时P (AB )取到最小值,最小值是P (AB )=+=. 3.已知事件A ,B 满足)()(B A P AB P =,记P (A ) = p ,试求P (B ).解:因为)()(B A P AB P =,即)()()(1)(1)()(AB P B P A P B A P B A P AB P +--=-== ,所以 .1)(1)(p A P B P -=-=4.已知P (A ) = ,P (A – B ) = ,试求)(AB P .解:因为P (A – B ) = ,所以P (A )– P(AB ) = , P(AB ) = P (A )– , 又因为P (A ) = ,所以P(AB ) =– =,6.0)(1)(=-=AB P AB P .5. 从5双不同的鞋子种任取4只,问这4只鞋子中至少有两只配成一双的概率是多少 解:显然总取法有410C n=种,以下求至少有两只配成一双的取法k :法一:分两种情况考虑:15C k=24C 212)(C +25C其中:2122415)(C C C 为恰有1双配对的方法数法二:分两种情况考虑:!2161815C C C k ⋅⋅=+25C其中:!2161815C C C ⋅⋅为恰有1双配对的方法数法三:分两种情况考虑:)(142815C C C k-=+25C其中:)(142815C C C -为恰有1双配对的方法数法四:先满足有1双配对再除去重复部分:2815C C k=-25C法五:考虑对立事件:410C k=-45C 412)(C其中:45C 412)(C 为没有一双配对的方法数法六:考虑对立事件:!4141618110410C C C C C k ⋅⋅⋅-=其中:!4141618110C C C C ⋅⋅⋅为没有一双配对的方法数所求概率为.2113410==C k p6.在房间里有10个人,分别佩戴从1号到10号的纪念章,任取3人记录其纪念章的号码.求: (1) 求最小号码为5的概率; (2) 求最大号码为5的概率.解:(1) 法一:12131025==C C p ,法二:1213102513==A A C p (2) 法二:20131024==C C p ,法二:2013102413==A A C p 7.将3个球随机地放入4个杯子中去,求杯子中球的最大个数分别为1,2,3的概率. 解:设M 1, M 2, M 3表示杯子中球的最大个数分别为1,2,3的事件,则834)(3341==A M P , 1694)(324232=⨯=A C M P , 1614)(3143==C M P8.设5个产品中有3个合格品,2个不合格品,从中不返回地任取2个,求取出的2个中全是合格品,仅有一个合格品和没有合格品的概率各为多少解:设M 2, M 1, M 0分别事件表示取出的2个球全是合格品,仅有一个合格品和没有合格品,则3.0)(25232==C C M P ,6.0)(2512131==C C C M P ,1.0)(25221==C C M P9.口袋中有5个白球,3个黑球,从中任取两个,求取到的两个球颜色相同的概率.解:设M 1=“取到两个球颜色相同”,M 1=“取到两个球均为白球”,M 2=“取到两个球均为黑球”,则φ==2121M M M M M 且.所以.2813C C C C )()()()(282328252121=+=+==M P M P M M P M P10. 若在区间(0,1)内任取两个数,求事件“两数之和小于6/5”的概率.解:这是一个几何概型问题.以x 和y 表示任取两个数,在平面上建立xOy 直角坐标系,如图. 任取两个数的所有结果构成样本空间? = {(x ,y ):0 ? x ,y ? 1} 事件A =“两数之和小于6/5”= {(x ,y ) ? ? : x + y ? 6/5} 因此2517154211)(2=⎪⎭⎫ ⎝⎛⨯-=Ω=的面积的面积A A P . 图11.随机地向半圆220x ax y -<<(a 为常数)内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,求原点和该点的连线与x 轴的夹角小于4π的概率. 解:这是一个几何概型问题.以x 和y 表示随机地向半圆内掷一点的坐标,?表示原点和该点的连线与x 轴的夹角,在平面上建立xOy 直角坐标系,如图.随机地向半圆内掷一点的所有结果构成样本空间?={(x ,y ):220,20x ax y a x -<<<<}事件A =“原点和该点的连线与x 轴的夹角小于4π” ={(x ,y ):40,20,202πθ<<-<<<<x ax y a x }因此211214121)(222+=+=Ω=πππa aa A A P 的面积的面积.12.已知21)(,31)(,41)(===B A P A B P A P ,求)(B A P . 解:,1213141)()()(=⨯==A B P A P AB P ,6121121)|()()(=÷==B A P AB P B P 13.设10件产品中有4件不合格品,从中任取两件,已知所取两件产品中有一件是不合格品,则另一件也是不合格品的概率是多少解:题中要求的“已知所取两件产品中有一件是不合格品,则另一件也是不合格品的概率”应理解为求“已知所取两件产品中至少有一件是不合格品,则两件均为不合格品的概率”。
设A =“所取两件产品中至少有一件是不合格品”,B=“两件均为不合格品”;321)(1)(21026=-=-=C C A P A P ,152)(21024==C C B P ,14.有两个箱子,第1箱子有3个白球2个红球,第2个箱子有4个白球4个红球,现从第1个箱子中随机地取1个球放到第2个箱子里,再从第2个箱子中取出一个球,此球是白球的概率是多少已知上述从第2个箱子中取出的球是白球,则从第1个箱子中取出的球是白球的概率是多少解:设A =“从第1个箱子中取出的1个球是白球”,B=“从第2个箱子中取出的1个球是白球”,则52)(,53)(1512===A P C C A P ,由全概率公式得由贝叶斯公式得15.将两信息分别编码为A 和B 传递出去,接收站收到时,A 被误收作B 的概率为,而B 被误收作A 的概率为,信息A 与信息B 传送的频繁程度为2:1,若接收站收到的信息是A ,问原发信息是A 的概率是多少 解:设M =“原发信息是A ”,N =“接收到的信息是A ”, 已知 所以由贝叶斯公式得16.三人独立地去破译一份密码,已知各人能译出的概率分别为41,31,51,问三人中至少有一人能将此密码译出的概率是多少解:设A i =“第i 个人能破译密码”,i=1,2,3. 已知,41)(,31)(,51)(321===A P A P A P 所以,43)(,32)(,54)(321===A P A P A P 至少有一人能将此密码译出的概率为17.设事件A 与B 相互独立,已知P (A ) = ,P (A ∪B ) = ,求)(A B P .解:由于A 与B 相互独立,所以P (AB )=P (A )P (B ),且P (A ∪B )=P (A )+ P (B ) - P (AB )= P (A )+ P (B ) - P (A )P (B )将P (A ) = ,P (A ∪B ) = 代入上式解得 P (B ) = ,所以 或者,由于A 与B 相互独立,所以A 与B 相互独立,所以18.甲乙两人独立地对同一目标射击一次,其命中率分别为和,现已知目标被命中,则它是甲射中的概率是多少 解:设A =“甲射击目标”,B =“乙射击目标”,M =“命中目标”, 已知P (A )=P (B )=1,,5.0)(,6.0)(==B M P A MP 所以由于甲乙两人是独立射击目标,所以19.某零件用两种工艺加工,第一种工艺有三道工序,各道工序出现不合格品的概率分别为,,;第二种工艺有两道工序,各道工序出现不合格品的概率分别为,,试问: (1) 用哪种工艺加工得到合格品的概率较大些(2) 第二种工艺两道工序出现不合格品的概率都是时,情况又如何解:设A i =“第1种工艺的第i 道工序出现合格品”,i=1,2,3; B i =“第2种工艺的第i 道工序出现合格品”,i=1,2. (1)根据题意,P (A 1)=,P (A 2)=,P (A 3)=,P (B 1)=,P (B 2)=, 第一种工艺加工得到合格品的概率为P (A 1A 2A 3)= P (A 1)P (A 2)P (A 3)=,504.09.08.07.0=⨯⨯第二种工艺加工得到合格品的概率为P (B 1B 2)= P (B 1)P (B 2)=,56.08.07.0=⨯可见第二种工艺加工得到合格品的概率大。
(2)根据题意,第一种工艺加工得到合格品的概率仍为,而P (B 1)=P (B 2)=, 第二种工艺加工得到合格品的概率为P (B 1B 2)= P (B 1)P (B 2)=.49.07.07.0=⨯可见第一种工艺加工得到合格品的概率大。
1.设两两相互独立的三事件A ,B 和C 满足条件ABC = ?,,21)()()(<==C P B P A P 且已知169)(=C B A P ,求P (A ).解:因为ABC = ?,所以P (ABC ) =0, 因为A ,B ,C 两两相互独立,),()()(C P B P A P ==所以由加法公式)()()()()()()()(ABC P AC P BC P AB P C P B P A P C B A P +---++=得169)]([3)(32=-A P A P 即 0]1)(4][3)(4[=--A P A P 考虑到,21)(<A P 得.41)(=A P 2.设事件A ,B ,C 的概率都是21,且)()(C B A P ABC P =,证明: 21)()()()(2-++=BC P AC P AB P ABC P . 证明:因为)()(C B A P ABC P =,所以)]()()()()()()([1)(1)(ABC P AC P BC P AB P C P B P A P C B A P ABC P +---++-=-= 将21)()()(===C P B P A P 代入上式得到 整理得3.设0 < P (A ) < 1,0 < P (B ) < 1,P (A |B ) +1)|(=B A P ,试证A 与B 独立.证明:因为P (A |B ) +1)|(=B AP ,所以将)()()()(AB P B P A P B A P -+= 代入上式得两边同乘非零的P (B )[1-P (B )]并整理得到 所以A 与B 独立.4.设A ,B 是任意两事件,其中A 的概率不等于0和1,证明)|()|(A B P A B P =是事件A 与B 独立的充分必要条件.证明:充分性,由于)|()|(A B P A B P =,所以,)()()()(A P B A P A P AB P =即两边同乘非零的P (A )[1-P (A )]并整理得到),()()(B P A P AB P =所以A 与B 独立.必要性:由于A 与B 独立,即),()()(B P A P AB P =且,0)(,0)(≠≠A P A P 所以一方面 另一方面 所以).|()|(A B P A B P =5.一学生接连参加同一课程的两次考试.第一次及格的概率为p ,若第一次及格则第二次及格的概率也为p ;若第一次不及格则第二次及格的概率为2p.(1) 若至少有一次及格则他能取得某种资格,求他取得该资格的概率. (2) 若已知他第二次及格了,求他第第一次及格的概率. 解:设A i =“第i 次及格”,i=1,2.已知,2)|(,)|(,)(12121p A A P p A A P p A P === 由全概率公式得(1) 他取得该资格的概率为(2) 若已知他第二次及格了,他第一次及格的概率为6.每箱产品有10件,其中次品从0到2是等可能的,开箱检验时,从中任取一件,如果检验为次品,则认为该箱产品为不合格而拒收.由于检验误差,一件正品被误判为次品的概率为2%,一件次品被误判为正品的概率为10%.求检验一箱产品能通过验收的概率.解:设A i =“一箱产品有i 件次品”,i=0,1,2.设M=“一件产品为正品”,N=“一件产品被检验为正品”. 已知,31)()()(210===A P A P A P ,1.0)|(,02.0)|(==M N P M N P由全概率公式,1011091)(1)(=-=-=M P M P 又,98.002.01)|(1)|(=-=-=M N P M N P 由全概率公式得一箱产品能通过验收的概率为7.用一种检验法检验产品中是否含有某种杂质的效果如下.若真含有杂质检验结果为含有的概率为;若真含不有杂质检验结果为不含有的概率为;据以往的资料知一产品真含有杂质或真不含有杂质的概率分别为和.今独立地对一产品进行三次检验,结果是两次检验认为含有杂质,而有一次认为不含有杂质,求此产品真含有杂质的概率. 解:A =“一产品真含有杂质”,B i =“对一产品进行第i 次检验认为含有杂质”,i=1,2,3.已知独立进行的三次检验中两次认为含有杂质,一次认为不含有杂质,不妨假设前两次检验认为含有杂质,第三次认为检验不含有杂质,即B 1,B 2发生了,而B 3未发生. 又知,9.0)|(,8.0)|(==A B P A B P i i,4.0)(=A P 所以所求概率为,)|()()|()()|()()()()|(321321321321321321A B B B P A P A B B B P A P A B B B P A P B B B P B B AB P B B B A P +==由于三次检验是独立进行的,所以8.火炮与坦克对战,假设坦克与火炮依次发射,且由火炮先射击,并允许火炮与坦克各发射2发,已知火炮与坦克每次发射的命中概率不变,它们分别等于和.我们规定只要命中就被击毁.试问 (1) 火炮与坦克被击毁的概率各等于多少 (2) 都不被击毁的概率等于多少解:设A i =“第i 次射击目标被击毁”,i=1,2,3,4. 已知,3.0)()(31==A P A P ,35.0)()(42==A P A P 所以(1) 火炮被击毁的概率为 坦克被击毁的概率为 (2) 都不被击毁的概率为9.甲、乙、丙三人进行比赛,规定每局两个人比赛,胜者与第三人比赛,依次循环,直至有一人连胜两次为止,此人即为冠军,而每次比赛双方取胜的概率都是21,现假定甲乙两人先比,试求各人得冠军的概率. 解:A i =“甲第i 局获胜”, B i =“乙第i 局获胜”,B i =“丙第i 局获胜”,i=1,2,…., 已知,...2,1,21)()()(====i C P B P A P i i i ,由于各局比赛具有独立性,所以 在甲乙先比赛,且甲先胜第一局时,丙获胜的概率为,71...212121...)(963987654321654321321=+⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛= C C A B C A B C A C C A B C A C C A P 同样,在甲乙先比赛,且乙先胜第一局时,丙获胜的概率也为,71丙得冠军的概率为,72712=⨯甲、乙得冠军的概率均为.145)721(21=-第二章2一、填空题: 1. {}x X P≤,)()(12x F x F -2. ==}{k XP k n kk np p C --)1(,k = 0,1,…,n3. 0,!}{>==-λλλe k k X P k为参数,k = 0,1,…4.λ+11 5. ⎪⎩⎪⎨⎧<<-=其它,0 ,1)(b x a a b x f 6.+∞<<-∞=--x ex f x ,21)(222)(σμσπ7. +∞<<-∞=-x e x x ,21)(22πϕ8. )()(σμσμ-Φ--Φa b9.分析:由题意,该随机变量为离散型随机变量,根据离散型随机变量的分布函数求法,可观察出随机变量的取值及概率。