复合场

合集下载

复合场知识点总结

复合场知识点总结

复合场知识点总结在物理学中,复合场是一个重要且富有挑战性的概念。

复合场通常指的是电场、磁场和重力场中的两个或多个同时存在于同一空间区域的情况。

理解和掌握复合场的相关知识,对于解决许多物理问题至关重要。

首先,让我们来了解一下电场。

电场是由电荷产生的,它对处在其中的电荷有力的作用。

电场强度是描述电场强弱和方向的物理量,用E 表示。

电场强度的定义式为 E =F / q,其中 F 是电荷所受的电场力,q 是电荷量。

磁场则是由电流或磁体产生的。

磁场对运动电荷或电流有力的作用,这个力被称为洛伦兹力或安培力。

磁感应强度 B 用来描述磁场的强弱和方向。

当电场和磁场同时存在时,就形成了电磁场。

在电磁场中,带电粒子的运动情况较为复杂。

如果带电粒子的初速度与电场和磁场的方向都垂直,那么它将做匀速圆周运动。

此时,洛伦兹力提供向心力,即qvB = mv²/ r,由此可以得出半径 r = mv /(qB) 。

重力场是我们日常生活中最为熟悉的场之一,物体在重力场中会受到重力的作用。

重力的大小 G = mg,其中 m 是物体的质量,g 是重力加速度。

在复合场中,带电粒子的运动情况取决于电场、磁场和重力场的强度、方向以及带电粒子的初速度、电荷量和质量等因素。

如果电场力和重力平衡,而磁场力不为零,带电粒子将在磁场中做匀速圆周运动。

例如,在速度选择器中,电场力和洛伦兹力平衡,只有速度满足特定条件的带电粒子才能通过。

当电场力、磁场力和重力三力平衡时,带电粒子将做匀速直线运动。

这种情况在实际问题中也较为常见。

还有一种情况是,带电粒子在复合场中的运动轨迹是复杂的曲线。

解决这类问题时,通常需要将带电粒子的运动分解为沿着电场、磁场和重力场方向的分运动,然后分别进行分析和计算。

在解决复合场问题时,我们需要熟练运用牛顿运动定律、动能定理、能量守恒定律等物理规律。

例如,当带电粒子在复合场中做非匀变速运动时,动能定理和能量守恒定律往往能发挥重要作用。

复合场解题方法

复合场解题方法

重点知识点复合场:1.复合场:同时存在电场和磁场的区域,同时存在磁场和重力场的区域,同时存在电场、磁场和重力的区域,都叫做叠加场,也称为复合场。

三种场力的特点:①重力的大小为mg,方向竖直向下。

重力做功与路径无关,其数值除与带电粒子的质量有关外,还与始、终位置的高度差有关。

②电场力的大小为qE,方向与电场强度E及带电粒子所带电荷的性质有关。

电场力做功与路径无关,其数值除与带电粒子的电荷量有关外,还与始、终位置的电势差有关。

③洛伦兹力的大小跟速度与磁场方向的夹角有关,当带电粒子的速度与磁场方向平行时,F洛=0;当带电粒子的速度与磁场方向垂直时,F洛=qvB。

洛伦兹力的方向垂直于速度v和磁感应强度B所决定的平面。

无论带电粒子做什么运动,洛伦兹力都不做功。

注:注意:电子、质子、α粒子、离子等微观粒子在叠加场中运动时,一般都不计重力。

但质量较大的质点(如带电尘粒)在叠加场中运动时,不能忽略重力。

2.带电粒子在电磁组合场中运动时的处理方法:1.电磁组合场电磁组合场是指由电场和磁场组合而成的场,在空间同一区域只有电场或只有磁场,在不同区域中有不同的场。

2.组合场中带电粒子的运动带电粒子在电场内可做加速直线运动、减速直线运动、类平抛运动、类斜抛运动,需要根据粒子进入电场时的速度方向、所受电场力,再南力和运动的关系来判定其运动形式。

粒子在匀强磁场中可以做直线运动,也可以做匀速圆周运动和螺旋运动,但在高中阶段通常涉及的是带电粒子所做的匀速圆周运动,通常需要确定粒子在磁场内做圆周运动进出磁场时的位置、圆心的位置、转过的圆心角、运动的时间等。

在电磁组合场问题中,需要通过连接点的速度将相邻区域内粒子的运动联系起来,粒子在无场区域内是做匀速直线运动的。

解决此类问题的关键之一是画好运动轨迹示意图。

3.粒子在正交电磁场中做一般曲线运动的处理方法:如图所示,一带正电的粒子从静止开始运动,所受洛伦兹力是一变力,粒子所做的运动是一变速曲线运动,若用动力学方法来处理其运动时,可将其运动进行如下分解:①初速度的分解因粒子初速度为零,可将初速度分解为水平向左和水平向右的两等大的初速度,令其大小满足②受力分析按上述方法将初速度分解后,粒子在初始状态下所受外力如图所示。

带电粒子在复合场中的运动整理

带电粒子在复合场中的运动整理

专题:带电粒子在复合场中的运动一、复合场及其特点这里所说的复合场是指电场、磁场、重力场并存,或其中某两种场并存的场.带电粒子在这些复合场中运动时,必须同时考虑电场力、洛仑兹力和重力的作用或其中某两种力的作用,因此对粒子的运动形式的分析就显得极为重要.二、带电粒子在复合场电运动的基本分析1.当带电粒子在复合场中所受的合外力为0时,粒子将做匀速直线运动或静止.2.当带电粒子所受的合外力与运动方向在同一条直线上时,粒子将做变速直线运动.3.当带电粒子所受的合外力充当向心力时,粒子将做匀速圆周运动.4.当带电粒子所受的合外力的大小、方向均是不断变化的时,粒子将做变加速运动,这类问题一般只能用能量关系处理.三、电场力和洛仑兹力的比较1.在电场中的电荷,不管其运动与否,均受到电场力的作用;而磁场仅仅对运动着的、且速度与磁场方向不平行的电荷有洛仑兹力的作用.2.电场力的大小F=Eq,与电荷的运动的速度无关;而洛仑兹力的大小f=Bqvsinα,与电荷运动的速度大小和方向均有关.3.电场力的方向与电场的方向或相同、或相反;而洛仑兹力的方向始终既和磁场垂直,又和速度方向垂直.4.电场力既可以改变电荷运动的速度大小,也可以改变电荷运动的方向,而洛仑兹力只能改变电荷运动的速度方向,不能改变速度大小5.电场力可以对电荷做功,能改变电荷的动能;洛仑兹力不能对电荷做功,不能改变电荷的动能.6.匀强电场中在电场力的作用下,运动电荷的偏转轨迹为抛物线;匀强磁场中在洛仑兹力的作用下,垂直于磁场方向运动的电荷的偏转轨迹为圆弧.四、对于重力的考虑重力考虑与否分三种情况.1对于微观粒子,如电子、质子、离子等一般不做特殊交待就可以不计其重力,因为其重力一般情况下与电场力或磁场力相比太小,可以忽略;而对于一些实际物体,如带电小球、液滴、金属块等不做特殊交待时就应当考虑其重力.2在题目中有明确交待的是否要考虑重力的,这种情况比较正规,也比较简单.3对未知名的带电粒子其重力是否忽略又没有明确时,可采用假设法判断,假设重力计或者不计,结合题给条件得出的结论若与题意相符则假设正确,否则假设错误.五、复合场中的特殊物理模型1.粒子速度选择器2.磁流体发电机3.电磁流量计.4.质谱仪5.回旋加速器1.如图所示,在x轴上方有匀强电场,场强为E;在x轴下方有匀强磁场,磁感应强度为B,方向如图,在x轴上有一点M,离O点距离为L.现有一带电量为十q的粒子,使其从静止开始释放后能经过M点.如果把此粒子放在y轴上,其坐标应满足什么关系重力忽略不计2.如图所示,在宽l的范围内有方向如图的匀强电场,场强为E,一带电粒子以速度v垂直于电场方向、也垂直于场区边界射入电场,不计重力,射出场区时,粒子速度方向偏转了θ角,去掉电场,改换成方向垂直纸面向外的匀强磁场,此粒子若原样射入磁场,它从场区的另一侧射出时,也偏转了θ角,求此磁场的磁感强度B.3.初速为零的离子经过电势差为U的电场加速后,从离子枪T中水平射出,经过一段路程后进入水平放置的两平行金属板MN和PQ之间.离子所经空间存在一磁感强度为B的匀强磁场,如图所示.不考虑重力作用,离子荷质比q/mq、m分别是离子的电量与质量在什么范围内,离子才能打在金属板上4.如图所示,M、N为两块带等量异种电荷的平行金属板,S1、S2为板上正对的小孔,N板右侧有两个宽度均为d的匀强磁场区域,磁感应强度大小均为B,方向分别垂直于纸面向里和向外,磁场区域右侧有一个荧光屏,取屏上与S1、S2共线的O点为原点,向下为正方向建立x轴.板左侧电子枪发射出的热电子经小孔S1进入两板间,电子的质量为m,电荷量为e,初速度可以忽略.求:1当两板间电势差为U0时,求从小孔S2射出的电子的速度v0;2两金属板间电势差U在什么范围内,电子不能穿过磁场区域而打到荧光屏上;3电子打到荧光屏上的位置坐标x和金属板间电势差U的函数关系.5.如图所示为一种获得高能粒子的装置,环形区域内存在垂直纸面向外.大小可调节的均匀磁场,质量为m,电量+q的粒子在环中作半径为R的圆周运动,A、B为两块中心开有小孔的极板,原来电势都为零,每当粒子飞经A板时,A板电势升高为U,B板电势仍保持为零,粒子在两板间电场中得到加速,每当粒子离开B板时,A板电势又降为零,动能不断增大,而绕行半径不变.l设t=0时粒子静止在A板小孔处,在电场作用下加速,并绕行第一圈,求粒子绕行n圈回到A板时获得的总动能E n.2为使粒子始终保持在半径为R的圆轨道上运动,磁场必须周期性递增,求粒子绕行第n圈时的磁感应强度B n.3求粒子绕行n圈所需的总时间t n设极板间距远小于R.4在2图中画出A板电势U与时间t的关系从t=0起画到粒子第四次离开B板时即可. 5在粒子绕行的整个过程中,A板电势是否可始终保持为+U为什么RAB6.如图所示,在直角坐标系的第Ⅱ象限和第Ⅳ象限中的直角三角形区域内,分布着磁感应强度均为B=×10-3T的匀强磁场,方向分别垂直纸面向外和向里.质量为m=×10-27㎏、电荷量为q =+×10-19C的α粒子不计α粒子重力,由静止开始经加速电压为U=1205V的电场图中未画出加速后,从坐标点M-4,2处平行于x轴向右运动,并先后通过两个匀强磁场区域.1请你求出α粒子在磁场中的运动半径;2你在图中画出α粒子从直线x=-4到直线x=4之间的运动轨迹,并在图中标明轨迹与直线x=4交点的坐标;3求出α粒子在两个磁场区域偏转所用的总时间.7.如图所示,竖直平面xOy内存在水平向右的匀强电场,场强大小E=10N/c,在y≥0的区域内q=+、质量还存在垂直于坐标平面向里的匀强磁场,磁感应强度大小B=一带电量0.2Cm=的小球由长0.4m0.4kgl=的细线悬挂于P点小球可视为质点,现将小球拉至水平位置A无初速释放,小球运动到悬点P正下方的坐标原点O时,悬线突然断裂,此后小球又恰好能通过O点正下方的N点.g=10m/s2,求:1小球运动到O点时的速度大小;2悬线断裂前瞬间拉力的大小;3ON间的距离8.两块平行金属板MN 、PQ 水平放置,两板间距为d 、板长为l ,在紧靠平行板右侧的正三角形区域内存在着垂直纸面的匀强磁场,三角形底边BC 与PQ 在同一水平线上,顶点A 与MN 在同一水平线上,如图所示.一个质量为m 、电量为+q 的粒子沿两板中心线以初速度v 0水平射入,若在两板间加某一恒定电压,粒子离开电场后垂直AB 边从D 点进入磁场,BD=41AB,并垂直AC 边射出不计粒子的重力.求: 1两极板间电压;2三角形区域内磁感应强度;3若两板间不加电压,三角形区域内的磁场方向垂直纸面向外.要使粒子进入磁场区域后能从AB 边射出,试求所加磁场的磁感应强度最小值.9.如图甲所示,竖直挡板MN 左侧空间有方向竖直向上的匀强电场和垂直纸面向里的水平匀强磁场,电场和磁场的范围足够大,电场强度E =40N/C,磁感应强度B 随时间t 变化的关系图象如图乙所示,选定磁场垂直纸面向里为正方向.t =0时刻,一质量m =8×10-4kg 、电荷量q =+2×10-4C 的微粒在O 点具有竖直向下的速度v =0.12m/s,O ´是挡板MN 上一点,直线OO´与挡板MN 垂直,取g =10m/s 2.求:1微粒再次经过直线OO´时与O 点的距离; 2微粒在运动过程中离开直线OO ´的最大高度;3水平移动挡板,使微粒能垂直射到挡板上,挡板与O 点间的距离应满足的条件.M O O ´ v B EO t /s B /T5π 15π 25π 35π 10π 20π 30π10.如图所示,在倾角为30°的斜面OA 的左侧有一竖直档板,其上有一小孔P ,OP=0.5m.现有一质量m =4×10-20kg,带电量q =+2×10-14C 的粒子,从小孔以速度v 0=3×104m/s 水平射向磁感应强度B =、方向垂直纸面向外的一圆形磁场区域.且在飞出磁场区域后能垂直打在OA 面上,粒子重力不计.求:1粒子在磁场中做圆周运动的半径; 2粒子在磁场中运动的时间; 3圆形磁场区域的最小半径;4若磁场区域为正三角形且磁场方向垂直向里,粒子运动过程中始终不碰到挡板,其他条件不变,求:此正三角形磁场区域的最小边长.11.如图所示,在x>0的空间中,存在沿x 轴方向的匀强电场,电场强度E=10N/C ;在x<0的空间中,存在垂直xy 平面方向的匀强磁场,磁感应强度B=.一带负电的粒子比荷q/m=160C/kg,在x=0.06m 处的d 点以8m/s 沿y 轴正方向的初速度v 0开始运动,不计带电粒子的重力.求: 1带电粒子开始运动后第一次到达y 轴时的坐标. 2带电粒子进入磁场后经多长时间会返回电场. 3带电粒子的y 方向分运动的周期. 30OP Av12.如图所示,一绝缘圆环轨道位于竖直平面内,半径为R,空心内径远小于R.以圆环圆心O为原点在环面建立平面直角坐标系xOy,在第四象限加一竖直向下的匀强电场,其他象限加垂直环面向外的匀强磁场.一带电量为+q、质量为m的小球在轨道内从b点由静止释放,小球刚好能顺时针沿圆环轨道做圆周运动.1求匀强电场的电场强度E.2若第二次到达最高点a,小球对轨道恰好无压力,求磁感应强度B.3求小球第三次到达a点时对圆环的压力.13.如图所示的区域中,左边为垂直纸面向里的匀强磁场,磁感应强度为B,右边是一个电场强度大小未知的匀强电场,其方向平行于OC且垂直于磁场方向.一个质量为m,电荷量为-q的带电粒子从P孔以初速度v0沿垂直于磁场方向进入匀强磁场中,初速度方向与边界线的夹角θ=60°,粒子恰好从C孔垂直于OC射入匀强电场,最后打在Q点,已知OQ=2OC,不计粒子的重力,求:1粒子从P运动到Q所用的时间t.2电场强度E的大小.3粒子到达Q点的动能E kQ.14.如图所示,在半径为R的绝缘圆筒内有匀强磁场,方向垂直纸面向里,圆筒正下方有小孔C与平行金属板M、N相通.两板问距离为两板与电动势为E的电源连接,一带电量为一质量为-q、质量为m的带电粒子重力忽略不计,开始时静止于C点正下方紧靠N板的A点,经电场加速后从C点进入磁场,并以最短的时间从C点射出,己知带电粒子与筒壁的碰撞无电荷量的损失,且每次碰撞时间极短,碰后以原速率返回.求:1筒内磁场的磁感应强度大小.2带电粒子从A点出发至第一次回到A点射出所经历的时间.专题二:带电粒子在复合场中的运动——参考答案1 1、解析:由于此带电粒子是从静止开始释放的,要能经过M 点,其起始位置只能在匀强电场区域.物理过程是:静止电荷位于匀强电场区域的y 轴上,受电场力作用而加速,以速度v 进入磁场,在磁场中受洛仑兹力作用作匀速圆周运动,向x 轴偏转.回转半周期过x 轴重新进入电场,在电场中经减速、加速后仍以原速率从距O 点2R 处再次超过x 轴,在磁场回转半周后又从距O点4R 处飞越x 轴如图所示图中电场与磁场均未画出故有L =2R,L =2×2R,L =3×2R 即 R =L /2n,n=1、2、3………………… ①设粒子静止于y 轴正半轴上,和原点距离为h,由能量守恒得mv 2/2=qEh ……② 对粒子在磁场中只受洛仑兹力作用而作匀速圆周运动有:R =mv /qB ………③解①②③式得:h =B 2qL 2/8n 2mE n =l 、2、3……2、解析:粒子在电场中运行的时间t = l /v ;加速度 a =qE /m ;它作类平抛的运动.有tg θ=at/v=qEl/mv 2………①粒子在磁场中作匀速圆周运动由牛顿第二定律得:qvB=mv 2/r,所以r=mv/qB 又:sin θ=l/r=lqB/mv ………② 由①②两式得:B=Ecos θ/v3、解析:离子在磁场中做匀速圆周运动,作出两条边界轨迹TP 和TQ,分别作出离子在 T 、P 、Q 三点所受的洛仑兹力,分别延长之后相交于O 1、O 2点,如图所示,O 1和O 2分别是TP 和TQ 的圆心,设 R 1和 R 2分别为相应的半径.离子经电压U 加速,由动能定理得.qU =½mv 2………①由洛仑兹力充当向心力得qvB=mv 2/R ………② 由①②式得q/m=2U/B 2R 2由图直角三角形O 1CP 和O 2CQ 可得 R 12=d 2+R 1一d/22,R 1=5d/4……④ R 22=2d 2+R 2一d/22,R 2=17d/4……⑤依题意R 1≤R ≤R 2 ……⑥ 由③④⑤⑥可解得2228932d B U ≤m q ≤222532d B U.24、解析:1根据动能定理,得20012eU mv =解得002eU v m =2欲使电子不能穿过磁场区域而打在荧光屏上,应有mv r d eB=<而212eU mv =由此即可解得222d eB U m <HPBv45°打在荧光屏上的位置坐标为x,则由轨迹图可得2222x r r d =-- 注意到mv r eB=和212eU mv =所以,电子打到荧光屏上的位置坐标x 和金属板间电势差U 的函数关系为222222(22)()2d eB x emU emU d e B U eB m =--≥35、解析:1E n =nqv2∵nqU=½mv 2n∴v n =m nqU2 Rmv n 2=qv n B n B n =mv n /qR以v n 结果代入,B n =qR m m nqU 2=R 1qnmv2 3绕行第n 圈需时n v R π2=2πR qv m 2n 1 ∴t n =2πR qv m 21+21+31+……+n14如图所示,对图的要求:越来越近的等幅脉冲5不可以,因为这样粒子在A 、B 之间飞行时电场对其做功+qv,使之加速,在A 、B 之外飞行时电场又对其做功-qv 使之减速,粒子绕行一周,电场对其作的总功为零,能量不会增大; 6、解析:1粒子在电场中被加速,由动能定理得 221mv qU =α粒子在磁场中偏转,则牛顿第二定律得rv m qvB 2=联立解得2102.312051064.62005.01211927=⨯⨯⨯⨯==--q mU B r m 2由几何关系可得,α粒子恰好垂直穿过分界线,故正确图象为3带电粒子在磁场中的运动周期qBmv r T ππ22==O M 2 -22-4 4 x /my /m -2 vB B4,2-α粒子在两个磁场中分别偏转的弧度为4π,在磁场中的运动总时间 631927105.6105102.321064.614.3241----⨯=⨯⨯⨯⨯⨯⨯===qB m T t πs 47、解:1小球从A 运到O 的过程中,根据动能定理:212mv mgl qEl =- ① 则得小球在O 点速度为:2/s v m == ② 2小球运到O 点绳子断裂前瞬间,对小球应用牛顿第二定律:2v F T mg f m l=-==向洛 ③f Bvq =洛 ④由③、④得:28.2mv T mg Bvq N l=++= ⑤ 3绳断后,小球水平方向加速度25/s x F Eq a m m===电 ⑥ 小球从O 点运动至N 点所用时间0.8t s aυ∆== ⑦ON 间距离21 3.2m 2h gt == ⑧8、 解:⑴垂直AB 边进入磁场,由几何知识得:粒子离开电场时偏转角为30°∵0.v lmd qu v y =0v v tg y=θ ∴qlmdv u 332= 由几何关系得:030cos dl AB = 在磁场中运动半径d l r AB 23431== ∴ 121r mv qv B = ︒=30cos 0v v∴qdmv B 3401=方向垂直纸面向里 ⑶当粒子刚好与BC 边相切时,磁感应强度最小,由几何知识知粒子的运动半径r 2为:42d r = ……… 2分 2202r mv qv B = ∴qd mv B 024=即:磁感应强度的最小值为qdmv 049、解:1由题意可知,微粒所受的重力 G =mg =8×10-3N电场力大小F =Eq =8×10-3N因此重力与电场力平衡微粒先在洛伦兹力作用下做匀速圆周运动,则2v qvB m R=解得 R =mvBq=0.6m 由 2RT vπ=解得T =10πs则微粒在5πs 内转过半个圆周,再次经直线OO´时与O 点的距离 l = 2R =1.2m2微粒运动半周后向上匀速运动,运动的时间为t =5πs,轨迹如图所示,位移大小 s =vt =πm=1.88m因此,微粒离开直线OO´的最大高度 h =s +R =2.48m3若微粒能垂直射到挡板上的某点P ,P 点在直线OO ´下方时,由图象可知,挡板MN 与O 点间的距离应满足L =+m n =0,1,2…若微粒能垂直射到挡板上的某点P ,P 点在直线OO ´上方时,由图象可知,挡板MN 与O 点间的距离应满足 L =+ m n =0,1,2…若两式合写成 L =+ m n =0,1,2…同样给分 510、解:1由r v m qvB 2=,vrT π2=得:m qBmvr 3.0==2画出粒子的运动轨迹如图,可知T t 65=,得:s s qB m t 551023.5103535--⨯=⨯==ππ 3由数学知识可得:︒︒+=30cos 30cos 2r r L 得:m qB mv L 99.010334)134(=+=+=11.1y=0.069m2t=3T== 12.12313.12314.12。

复合场中粒子运动问题公式

复合场中粒子运动问题公式

复合场中粒子运动问题公式在咱们学习物理的过程中,复合场中粒子运动问题的公式那可真是个“硬骨头”。

不过别怕,咱们一起来啃啃它!先来说说啥是复合场。

复合场啊,就是电场、磁场、重力场等等好几个场叠加在一块儿,这就给粒子的运动带来了各种奇妙的变化。

就拿电场和磁场来说吧,当它们同时存在时,粒子受到的力可就复杂啦。

这时候就得用到洛伦兹力公式 F = qvB,其中 q 是粒子的电荷量,v 是粒子的速度,B 是磁感应强度。

这个公式能告诉我们粒子在磁场中受到的力有多大。

还有电场力的公式 F = qE,E 是电场强度。

粒子在电场中受到的力就靠它来算。

我记得有一次在课堂上,给同学们讲复合场中粒子运动问题的时候,有个同学就迷糊了,他说:“老师,这一堆公式,我怎么知道啥时候用哪个啊?”我笑着跟他说:“别着急,咱们慢慢来。

” 然后我就拿了个例子,假设一个带正电的粒子,以一定的速度垂直进入一个同时存在匀强电场和匀强磁场的区域。

我一步一步地分析,先根据粒子的速度和磁场强度算出洛伦兹力,再根据电场强度算出电场力。

然后看这两个力的大小和方向关系,就能判断粒子的运动轨迹啦。

咱们再来说说重力场。

如果粒子还受到重力作用,那可别忘了重力G = mg,m 是粒子的质量,g 是重力加速度。

在解决复合场中粒子运动问题时,通常还会用到动能定理和能量守恒定律。

动能定理说的是合外力对物体做功等于物体动能的变化,表达式是 W 合= ΔEk 。

比如说有一个带电粒子在复合场中运动,电场力做正功,洛伦兹力不做功,重力做负功,那我们就能根据这些力做功的情况,用动能定理来求出粒子速度的变化。

能量守恒定律就更厉害了,它告诉我们在一个封闭系统中,能量的总量是不变的。

粒子在复合场中的各种能量相互转化,但是总的能量始终保持不变。

还记得我当年自己学习这部分内容的时候,也是费了好大的劲。

做了好多好多的题目,不停地总结归纳,才慢慢搞清楚这些公式的用法。

总之啊,复合场中粒子运动问题的公式虽然看起来有点复杂,但只要咱们多练习、多思考,掌握了其中的规律,就一定能把这些难题拿下!相信大家都能在物理的世界里畅游,探索更多的奥秘!。

高中物理人教版选修3-1分类题型5:等效场-重力与电场的复合场

高中物理人教版选修3-1分类题型5:等效场-重力与电场的复合场

高中物理选修3-1题型5(等效场-重力与电场复合场)1、复合场物体仅在重力场中的运动时最常见、最基本的运动,但是对处在匀强电场中的宏观物体而言,它的周围不仅有重力场,还有匀强电场,同时研究这两种场对物体运动的影响,问题就会变得复杂一些。

此时,可以将重力场与电场合二为一,用“复合场”来代替两个分立的场。

形象的把这个复合场叫做等效场或等效重力场。

2、处理思路(1)受力分析,计算等效重力(重力与电场力的合力)的大小和方向;(2)在复合场中找出等效最低点、最高点。

过圆心做等效重力的平行线与圆相交。

(3)根据圆周运动供需平衡结合动能定理列方程处理。

1、如图所示,在竖直向上的匀强电场中,一根不可伸长的绝缘细绳的一端系着一个带电小球,另一端固定于O点,小球在竖直平面内做匀速圆周运动,最高点为a,最低点为b.不计空气阻力,则(B)A.小球带负电B.电场力跟重力平衡C.小球在从a点运动到b点的过程中,电势能减小D.小球在运动过程中机械能守恒2、如图所示,竖直放置的光滑绝缘圆环上套有一带正电的小球,圆心O处固定有一带负电的点电荷,匀强电场场强方向水平向右,小球绕O点做圆周运动,那么以下说法错误的是(D)A.在A点小球有最大的电势能B.在B点小球有最大的重力势能C.在C点小球有最大的机械能D.在D点小球有最大的动能3、如图所示,水平向左的匀强电场场强大小为E,一根不可伸长的绝缘细线长度为L,细线一端拴一个质量为m、电荷量为q的带负电小球,另一端固定在O点。

把小球拉到使细线水平的位置A,然后由静止释放,小球沿弧线运动到细线与水平方向成角θ=60°的位置B时速度为零。

以下说法中正确的是(B)A.A点电势低于的B点的电势B.小球受到的重力与电场力的关系是C.小球在B时,细线拉力为T=2mgD.小球从A运动到B过程中,电场力对其做的功为4、如图所示,竖直平面内有一固定的光滑椭圆大环,其长轴长BD=4L、短轴长AC=2L。

高中物理人教版第十章-磁场 第七课时 带电粒子(质点)在复合场中的运动

高中物理人教版第十章-磁场 第七课时  带电粒子(质点)在复合场中的运动

a F合 qvB 2g
mm
y 1 at2,x vt,tan y
2
x
解得:t 3v,x 3v2
g
g
x
B o A θ F电
mg
B z
y
则A、B之间的距离为:L x 2 3v2 cos 60 g
电场力做功:W=EqL=6mv2
例4:如图所示,虚线上方有场强为E1=6×104 N/C的匀强 电场,方向竖直向上,虚线下方有场强为E2的匀强电场 (电场线用实线表示),另外在虚线上、下方均有匀强磁 场,磁感应强度相等,方向垂直纸面向里.ab是一根长为 L=0.3 m的绝缘细杆,沿E1电场线方向放置在虚线上方的 电磁场中,b端在虚线上.现将套在ab杆上的电荷量为q= -5×10−8 C的带电小环从a端由静止开始释放后,小环先 做加速运动后做匀速运动到达b端,小环与杆间的动摩擦 因数为μ=0.25,不计小环的重力,小环脱离ab杆后在虚线 下方仍沿原方向做匀速直线运动.
(1)求虚线下方的电场强度E2方向以及a 大E小1 ;
Bb
(2)若小环到达b点时立即撤去虚线下方的磁场,其他
条件不变,测得小环进入虚线下方区域后运动轨迹上一点
P到b点的水平距离为 L ,竖直距离为 L ,则小环从a
2
3
到b的运动过程中克服摩擦力做的功为多少?
解析:(1)小环脱离ab杆后
a E1
向下方向做匀速直线运动,受力
U qvB E电q d q
U
F电
F洛
v
v
即:E U Bvd
F洛
F电
3.电磁流量计
如图所示为原理图。一圆形导管直径为d,用非
磁性材料制成,其中有可以导电的液体向右流动。导

带电粒子在复合场中的运动

带电粒子在复合场中的运动

带电粒子在复合场中的运动基础知识归纳1.复合场复合场是指 电场 、 磁场 和 重力场 并存,或其中两场并存,或分区域存在,分析方法和力学问题的分析方法基本相同,不同之处是多了电场力和磁场力,分析方法除了力学三大观点(动力学、动量、能量)外,还应注意:(1) 洛伦兹力 永不做功.(2) 重力 和 电场力 做功与路径 无关 ,只由初末位置决定.还有因洛伦兹力随速度而变化,洛伦兹力的变化导致粒子所受 合力 变化,从而加速度变化,使粒子做 变加速 运动.2.带电粒子在复合场中无约束情况下的运动性质(1)当带电粒子所受合外力为零时,将 做匀速直线运动 或处于 静止 ,合外力恒定且与初速度同向时做匀变速直线运动,常见情况有:①洛伦兹力为零(v 与B 平行),重力与电场力平衡,做匀速直线运动,或重力与电场力合力恒定,做匀变速直线运动.②洛伦兹力与速度垂直,且与重力和电场力的合力平衡,做匀速直线运动.(2)当带电粒子所受合外力充当向心力,带电粒子做 匀速圆周运动 时,由于通常情况下,重力和电场力为恒力,故不能充当向心力,所以一般情况下是重力恰好与电场力相平衡,洛伦兹力充当向心力.(3)当带电粒子所受合外力的大小、方向均不断变化时,粒子将做非匀变速的 曲线运动 .3.带电粒子在复合场中有约束情况下的运动带电粒子所受约束,通常有面、杆、绳、圆轨道等,常见的运动形式有 直线运动 和圆周运动 ,此类问题应注意分析洛伦兹力所起的作用.4.带电粒子在交变场中的运动带电粒子在不同场中的运动性质可能不同,可分别进行讨论.粒子在不同场中的运动的联系点是速度,因为速度不能突变,在前一个场中运动的末速度,就是后一个场中运动的初速度.5.带电粒子在复合场中运动的实际应用(1)质谱仪①用途:质谱仪是一种测量带电粒子质量和分离同位素的仪器.②原理:如图所示,离子源S 产生质量为m ,电荷量为q 的正离子(重力不计),离子出来时速度很小(可忽略不计),经过电压为U 的电场加速后进入磁感应强度为B 的匀强磁场中做匀速圆周运动,经过半个周期而达到记录它的照相底片P 上,测得它在P 上的位置到入口处的距离为L ,则qU =21mv 2-0;q B v =m r v 2;L =2r 联立求解得m =UL qB 822,因此,只要知道q 、B 、L 与U ,就可计算出带电粒子的质量m ,若q 也未知,则228L B U m q 又因m ∝L 2,不同质量的同位素从不同处可得到分离,故质谱仪又是分离同位素的重要仪器.(2)回旋加速器①组成:两个D 形盒、大型电磁铁、高频振荡交变电压,D 型盒间可形成电压U .②作用:加速微观带电粒子.③原理:a .电场加速qU =ΔE kb .磁场约束偏转qBv =m rv 2,r =qB mv ∝v c .加速条件,高频电源的周期与带电粒子在D 形盒中运动的周期相同,即T 电场=T 回旋=qBm π2 带电粒子在D 形盒内沿螺旋线轨道逐渐趋于盒的边缘,达到预期的速率后,用特殊装置把它们引出.④要点深化a .将带电粒子在两盒狭缝之间的运动首尾相连起来可等效为一个初速度为零的匀加速直线运动.b .带电粒子每经电场加速一次,回旋半径就增大一次,所以各回旋半径之比为1∶2∶3∶…c .对于同一回旋加速器,其粒子回旋的最大半径是相同的.d .若已知最大能量为E km ,则回旋次数n =qUE 2k m e .最大动能:E km =mr B q 22m 22 f .粒子在回旋加速器内的运动时间:t =UBr 2π2m (3)速度选择器①原理:如图所示,由于所受重力可忽略不计,运动方向相同而速率不同的正粒子组成的粒子束射入相互正交的匀强电场和匀强磁场所组成的场区中,已知电场强度为B ,方向垂直于纸面向里,若粒子运动轨迹不发生偏转(重力不计),必须满足平衡条件:qBv =qE ,故v =BE ,这样就把满足v =BE 的粒子从速度选择器中选择出来了. ②特点:a .速度选择器只选择速度(大小、方向)而不选择粒子的质量和电荷量,如上图中若从右侧入射则不能穿过场区.b .速度选择器B 、E 、v 三个物理量的大小、方向互相约束,以保证粒子受到的电场力和洛伦兹力等大、反向,如上图中只改变磁场B 的方向,粒子将向下偏转.c .v ′>v =B E 时,则qBv ′>qE ,粒子向上偏转;当v ′<v =BE 时,qBv ′<qE ,粒子向下偏转. ③要点深化a .从力的角度看,电场力和洛伦兹力平衡qE =qvB ;b .从速度角度看,v =BE ; c .从功能角度看,洛伦兹力永不做功.(4)电磁流量计①如图所示,一圆形导管直径为d ,用非磁性材料制成,其中有可以导电的液体流过导管.②原理:导电液体中的自由电荷(正、负离子)在洛伦兹力作用下横向偏转,a 、b 间出现电势差,形成电场.当自由电荷所受电场力和洛伦兹力平衡时,a 、b 间的电势差就保持稳定.由Bqv =Eq =dU q ,可得v =Bd U 液体流量Q =Sv =4π2d ·Bd U =BdU 4π (5)霍尔效应如图所示,高为h 、宽为d 的导体置于匀强磁场B 中,当电流通过导体时,在导体板的上表面A 和下表面A ′之间产生电势差,这种现象称为霍尔效应,此电压称为霍尔电压.设霍尔导体中自由电荷(载流子)是自由电子.图中电流方向向右,则电子受洛伦兹力 向上 ,在上表面A 积聚电子,则qvB =qE ,E =Bv ,电势差U =Eh =Bhv .又I =nqSv导体的横截面积S =hd得v =nqhdI 所以U =Bhv =dBI k nqd BI k=nq1,称霍尔系数.重点难点突破一、解决复合场类问题的基本思路1.正确的受力分析.除重力、弹力、摩擦力外,要特别注意电场力和磁场力的分析.2.正确分析物体的运动状态.找出物体的速度、位置及其变化特点,分析运动过程,如果出现临界状态,要分析临界条件.3.恰当灵活地运用动力学三大方法解决问题.(1)用动力学观点分析,包括牛顿运动定律与运动学公式.(2)用动量观点分析,包括动量定理与动量守恒定律.(3)用能量观点分析,包括动能定理和机械能(或能量)守恒定律.针对不同的问题灵活地选用,但必须弄清各种规律的成立条件与适用范围.二、复合场类问题中重力考虑与否分三种情况1.对于微观粒子,如电子、质子、离子等一般不做特殊交待就可以不计其重力,因为其重力一般情况下与电场力或磁场力相比太小,可以忽略;而对于一些实际物体,如带电小球、液滴、金属块等不做特殊交待时就应考虑其重力.2.在题目中有明确交待是否要考虑重力的,这种情况比较正规,也比较简单.3.直接看不出是否要考虑重力的,在进行受力分析与运动分析时,要由分析结果,先进行定性确定是否要考虑重力.典例精析1.带电粒子在复合场中做直线运动的处理方法【例1】如图所示,足够长的光滑绝缘斜面与水平面间的夹角为α(sin α=0.6),放在水平方向的匀强电场和匀强磁场中,电场强度E =50 V/m ,方向水平向左,磁场方向垂直纸面向外.一个电荷量q =+4.0×10-2 C 、质量m =0.40 kg 的光滑小球,以初速度v 0=20 m/s 从斜面底端向上滑,然后又下滑,共经过3 s 脱离斜面.求磁场的磁感应强度(g 取10 m/s 2).【解析】小球沿斜面向上运动的过程中受力分析如图所示.由牛顿第二定律,得qE cos α+mg sin α=ma 1,故a 1=g sin α+mqE α cos =10×0.6 m/s 2+40.08.050100.42⨯⨯⨯- m/s 2=10 m/s 2,向上运动时间t 1=100a v --=2 s 小球在下滑过程中的受力分析如图所示.小球在离开斜面前做匀加速直线运动,a 2=10 m/s 2运动时间t 2=t -t 1=1 s脱离斜面时的速度v =a 2t 2=10 m/s在垂直于斜面方向上有:qvB +qE sin α=mg cos α故B =T 106.050-T 10100.48.01040.0 sin cos 2⨯⨯⨯⨯⨯=--v E qv mg αα=5 T 【思维提升】(1)知道洛伦兹力是变力,其大小随速度变化而变化,其方向随运动方向的反向而反向.能从运动过程及受力分析入手,分析可能存在的最大速度、最大加速度、最大位移等.(2)明确小球脱离斜面的条件是F N =0.【拓展1】如图所示,套在足够长的绝缘粗糙直棒上的带正电小球,其质量为m ,带电荷量为q ,小球可在棒上滑动,现将此棒竖直放入沿水平方向且互相垂直的匀强磁场和匀强电场中.设小球电荷量不变,小球由静止下滑的过程中( BD )A.小球加速度一直增大B.小球速度一直增大,直到最后匀速C.杆对小球的弹力一直减小D.小球所受洛伦兹力一直增大,直到最后不变【解析】小球由静止加速下滑,f 洛=Bqv 在不断增大,开始一段,如图(a):f 洛<F 电,水平方向有f 洛+F N =F 电,加速度a =mf mg -,其中f =μF N ,随着速度的增大,f 洛增大,F N 减小,加速度也增大,当f 洛=F 电时,a 达到最大;以后如图(b):f 洛>F 电,水平方向有f 洛=F 电+F N ,随着速度的增大,F N 也增大,f 也增大,a =mf mg -减小,当f =mg 时,a =0,此后做匀速运动,故a 先增大后减小,A 错,B 对,弹力先减小后增大,C 错,由f 洛=Bqv 知D 对.2.灵活运用动力学方法解决带电粒子在复合场中的运动问题【例2】如图所示,水平放置的M 、N 两金属板之间,有水平向里的匀强磁场,磁感应强度B =0.5 T.质量为m 1=9.995×10-7 kg 、电荷量为q =-1.0×10-8 C 的带电微粒,静止在N 板附近.在M 、N 两板间突然加上电压(M 板电势高于N 板电势)时,微粒开始运动,经一段时间后,该微粒水平匀速地碰撞原来静止的质量为m 2的中性微粒,并粘合在一起,然后共同沿一段圆弧做匀速圆周运动,最终落在N 板上.若两板间的电场强度E =1.0×103 V/m ,求:(1)两微粒碰撞前,质量为m 1的微粒的速度大小;(2)被碰撞微粒的质量m 2;(3)两微粒粘合后沿圆弧运动的轨道半径.【解析】(1)碰撞前,质量为m 1的微粒已沿水平方向做匀速运动,根据平衡条件有m 1g +qvB =qE解得碰撞前质量m 1的微粒的速度大小为v =5.0100.11010995.9100.1100.187381⨯⨯⨯⨯-⨯⨯⨯=----qB g m qE m/s =1 m/s (2)由于两微粒碰撞后一起做匀速圆周运动,说明两微粒所受的电场力与它们的重力相平衡,洛伦兹力提供做匀速圆周运动的向心力,故有(m 1+m 2)g =qE解得m 2=g qE 1m -=)10995.910100.1100.1(738--⨯-⨯⨯⨯ kg =5×10-10 kg (3)设两微粒一起做匀速圆周运动的速度大小为v ′,轨道半径为R ,根据牛顿第二定律有qv ′B =(m 1+m 2)Rv 2' 研究两微粒的碰撞过程,根据动量守恒定律有m 1v =(m 1+m 2)v ′以上两式联立解得R =5.0100.1110995.9)(87121⨯⨯⨯⨯=='+--qB v m qB v m m m≈200 m 【思维提升】(1)全面正确地进行受力分析和运动状态分析,f洛随速度的变化而变化导致运动状态发生新的变化.(2)若mg 、f 洛、F 电三力合力为零,粒子做匀速直线运动.(3)若F 电与重力平衡,则f 洛提供向心力,粒子做匀速圆周运动.(4)根据受力特点与运动特点,选择牛顿第二定律、动量定理、动能定理及动量守恒定律列方程求解.【拓展2】如图所示,在相互垂直的匀强磁场和匀强电场中,有一倾角为θ的足够长的光滑绝缘斜面.磁感应强度为B ,方向水平向外;电场强度为E ,方向竖直向上.有一质量为m 、带电荷量为+q 的小滑块静止在斜面顶端时对斜面的正压力恰好为零.(1)如果迅速把电场方向转为竖直向下,求小滑块能在斜面上连续滑行的最远距离L 和所用时间t ;(2)如果在距A 端L /4处的C 点放入一个质量与滑块相同但不带电的小物体,当滑块从A点静止下滑到C 点时两物体相碰并黏在一起.求此黏合体在斜面上还能再滑行多长时间和距离?【解析】(1)由题意知qE =mg场强转为竖直向下时,设滑块要离开斜面时的速度为v ,由动能定理有(mg +qE )L sin θ=221mv ,即2mgL sin θ=221mv 当滑块刚要离开斜面时由平衡条件有qvB =(mg +qE )cos θ,即v =qBmg θ cos 2 由以上两式解得L =θθ sin cos 2222B q g m 根据动量定理有t =θθ cot sin 2qBm mg mv = (2)两物体先后运动,设在C 点处碰撞前滑块的速度为v C ,则2mg ·4L sin θ=21mv 2 设碰后两物体速度为u ,碰撞前后由动量守恒有mv C =2mu设黏合体将要离开斜面时的速度为v ′,由平衡条件有qv ′B =(2mg +qE )cos θ=3mg cos θ由动能定理知,碰后两物体共同下滑的过程中有3mg sin θ·s =21·2mv ′2-21·2mu 2 联立以上几式解得s =12sin cos 32222L B q g m -θθ 将L 结果代入上式得s =θθ sin 12cos 352222B q g m 碰后两物体在斜面上还能滑行的时间可由动量定理求得t ′=qBm mg mu v m 35 sin 322=-'θcot θ【例3】在平面直角坐标系xOy 中,第Ⅰ象限存在沿y 轴负方向的匀强电场,第Ⅳ象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B .一质量为m 、电荷量为q 的带正电粒子从y 轴正半轴上的M 点以速度v 0垂直于y 轴射入电场,经x 轴上的N 点与x 轴正方向成θ=60°角射入磁场,最后从y 轴负半轴上的P 点垂直于y 轴射出磁场,如图所示.不计重力,求:(1)M 、N 两点间的电势差U MN ;(2)粒子在磁场中运动的轨道半径r ;(3)粒子从M 点运动到P 点的总时间t .【解析】(1)设粒子过N 点时的速度为v ,有v v 0=cos θ ① v =2v 0 ②粒子从M 点运动到N 点的过程,有qU MN =2022121mv mv - ③ U MN =3mv 20/2q ④(2)粒子在磁场中以O ′为圆心做匀速圆周运动,半径为O ′N ,有qvB =rmv 2⑤ r =qBmv 02 ⑥ (3)由几何关系得ON =r sin θ⑦ 设粒子在电场中运动的时间为t 1,有ON =v 0t 1 ⑧ t 1=qB m 3 ⑨粒子在磁场中做匀速圆周运动的周期T =qB m π2 ⑩设粒子在磁场中运动的时间为t 2,有t 2=2ππθ-T ⑪ t 2=qB m 32π ⑫t =t 1+t 2=qBm 3π)233(+ 【思维提升】注重受力分析,尤其是运动过程分析以及圆心的确定,画好示意图,根据运动学规律及动能观点求解.【拓展3】如图所示,真空室内存在宽度为s =8 cm的匀强磁场区域,磁感应强度B =0.332 T ,磁场方向垂直于纸面向里.紧靠边界ab 放一点状α粒子放射源S ,可沿纸面向各个方向放射速率相同的α粒子.α粒子质量为m=6.64×10-27 kg ,电荷量为q =+3.2×10-19 C ,速率为v=3.2×106 m/s.磁场边界ab 、cd 足够长,cd 为厚度不计的金箔,金箔右侧cd 与MN 之间有一宽度为L =12.8 cm 的无场区域.MN 右侧为固定在O 点的电荷量为Q =-2.0×10-6 C 的点电荷形成的电场区域(点电荷左侧的电场分布以MN 为边界).不计α粒子的重力,静电力常量k =9.0×109 N·m 2/C 2,(取sin 37°=0.6,cos 37°=0.8)求:(1)金箔cd 被α粒子射中区域的长度y ;(2)打在金箔d 端离cd 中心最远的粒子沿直线穿出金箔,经过无场区进入电场就开始以O 点为圆心做匀速圆周运动,垂直打在放置于中心线上的荧光屏FH 上的E 点(未画出),计算OE 的长度;(3)计算此α粒子从金箔上穿出时损失的动能.【解析】(1)粒子在匀强磁场中做匀速圆周运动,洛伦兹力提供向心力,有qvB =m Rv 2,得R =Bqmv =0.2 m如图所示,当α粒子运动的圆轨迹与cd 相切时,上端偏离O ′最远,由几何关系得O ′P =22)(s R R --=0.16 m 当α粒子沿Sb 方向射入时,下端偏离O ′最远,由几何关系得O ′Q =)(2s R R --=0.16 m故金箔cd 被α粒子射中区域的长度为y =O ′Q +O ′P =0.32 m(2)如上图所示,OE 即为α粒子绕O 点做圆周运动的半径r .α粒子在无场区域做匀速直线运动与MN 相交,下偏距离为y ′,则 tan 37°=43,y ′=L tan 37°=0.096 m 所以,圆周运动的半径为r =︒'+'37 cos Q O y =0.32 m (3)设α粒子穿出金箔时的速度为v ′,由牛顿第二定律有k r v m rQq 22'= α粒子从金箔上穿出时损失的动能为ΔE k =21mv 2-21mv ′2=2.5×10-14 J3.带电体在变力作用下的运动【例4】竖直的平行金属平板A 、B 相距为d ,板长为L ,板间的电压为U ,垂直于纸面向里、磁感应强度为B 的磁场只分布在两板之间,如图所示.带电荷量为+q 、质量为m 的油滴从正上方下落并在两板中央进入板内空间.已知刚进入时电场力大小等于磁场力大小,最后油滴从板的下端点离开,求油滴离开场区时速度的大小.【错解】由题设条件有Bqv =qE =qdU ,v =Bd U ;油滴离开场区时,水平方向有Bqv +qE =ma ,v 2x =2a ·mqU d 22= 竖直方向有v 2y =v 2+2gL 离开时的速度v ′=m qU dB U gL v v y x 2222222++=+ 【错因】洛伦兹力会随速度的改变而改变,对全程而言,带电体是在变力作用下的一个较为复杂的运动,对这样的运动不能用牛顿第二定律求解,只能用其他方法求解.【正解】由动能定理有mgL +qE 212122-'=v m d mv 2 由题设条件油滴进入磁场区域时有Bqv =qE ,E =U /d由此可以得到离开磁场区域时的速度v ′=m qU dB U gL ++2222 【思维提升】解题时应该注意物理过程和物理情景的把握,时刻注意情况的变化,然后结合物理过程中的受力特点和运动特点,利用适当的解题规律解决问题,遇到变力问题,特别要注意与能量有关规律的运用.【例5】回旋加速器是用来加速带电粒子的装置,如图所示。

复合场

复合场

向上的摩擦力f,因为mg>μqE,所以小球加速下滑.
小球运动后,出现向左的洛伦兹力f洛=qvB,小球受力
如图甲所示,则有
水平方向 FN+qvB=qE
竖直方向 mg-μFN=ma v↑→f洛↑→FN↓→f↓→F合↑→a↑


解得 a=(mg+μqvB-μqE)/m ③
可见小球做加速度增加的加速运动,在f=0,即FN=0
匀速圆周运动的条件: F合=F向 qE=mg
F合=f=qvB=F向 转动方向为顺时针 m=qE/g
qvB=mv2/R
v=qBR/m
v=BRg/E
二、带电粒子在复合场中运动的分类
1、静止或匀速直线运动 特点(重力、电场力、洛伦兹力)合力为零 2、匀速圆周运动 特点:重力与电场力等大反向,带电粒子在洛伦兹力作用下, 在垂直与磁场的平面内做匀速圆周运动、 3、较复杂的曲线运动 特点:合力大小方向均变化,且与初速不共线,粒子做非匀 变速曲线运动,其轨迹不是圆弧,也不是抛物线
三、带电粒子在组合场中运动的分类(一般不 考虑重力) 1、先进入磁场再进入电场 2、先进入电场再进入磁场 3、在电场与磁场中交替运动,呈周期性变化。 特点:一般在磁场中做匀速圆周运动,在电场中 做匀加(减)速直线运动或垂直电场进入做类 平抛运动。
题型探究
题型一:带电粒子在复合场中的直线运动问题
例1:如图所示,在xoy平面内,匀强电场的方向沿x 轴正方向,匀强磁场的方向垂直于xoy平面向里, 一电子在xoy平面内运动时,速度方向保持不变, 则电子的运动方向沿( ) A x轴正方向 B x轴负方向 C y轴正方向 D y轴负方向
一、复合场 1.什么样的场称为复合场 ? 复合场是指电场、磁场和重力场并存或 者其中两种场并存的情况。 带电粒子在复合场中运动时要考虑电场 力、洛仑兹力和重力的作用。

高中物理知识点复合场

高中物理知识点复合场

高中物理知识点复合场复合场是指重力场、电场、磁场并存,或其中两场并存。

分布方式或同一区域同时存在,或分区域存在。

复合场是高中物理中力学、电磁学综合综合型问题的沃苏什卡。

既体现了运动情况说明受力情况、受力情况决定运动情况的思想,又能考查电磁学中的关键环节重点知识,因此,近年来这类题备受青睐。

通过上表可以推断出,由于复合场的综合性弱,覆盖考点较多,预计在2021年高考(微博)中仍是一个热点。

复合场的考查方式:复合场可以图文形式直接出题,也可以与各种仪器(质谱仪,回旋加速器,速度选择器等)相结合考查。

一、重力场、电场、磁场分区域存在(例如质谱仪,回旋加速器)此种出题方式要求熟练掌握平抛运动、类平抛运动、圆周运动的基本公式及解决这种方式。

重力场:平抛运动电场:1.加速场:动能定理2.偏转场:类平绞运动或动能定理磁场:圆周运动二、重力场、电场、磁场同区域存在(例如速度选择器)带电粒子在复合场做什么运动取决于带电粒子所受合力及初速度,因此,把带电粒子的运动情况和变形情况结合是分析起来解决此类问题的关键。

(一)若带电粒子在复合场中做匀速直线运动时应根据平衡条件解题,例如速度选择器。

则有Eq=qVB(二)当带电粒子在复合场中做圆周运动时,则有Eq=mgqVB=mv2/R(2021年天津10题)如图所示,直角坐标系xOy位于竖直平面内,在水平的x轴下方存存在匀强磁场和匀强电场,磁场的磁感应为B,方向垂直xOy平面向里,电场线平行于y轴。

一质量为m、电荷量为q的带正电的小球,从y轴上的A点水平向右抛出,经x轴上的M 点位进入电场和磁场,恰能做匀速圆周运动,从x轴上的N点第一次离开引力场和磁场,MN之间的距离为L,小球过M点时的速度方向与x 轴的方向夹角为θ。

不计空气阻力,重力加速度为g,求(1)电场强度E的大小和方向;(2)小球从A点抛出时初速度v0的大小;(3)A点到x轴的高度h。

解析:本题考查平挥运动和带电小球在复合场中的运动。

配速法在复合场问题中的应用

配速法在复合场问题中的应用

配速法在复合场问题中的应用在物理学中,复合场问题一直是一个重点和难点。

复合场通常是指电场、磁场和重力场中的两个或三个同时存在的情况。

解决这类问题需要我们综合运用多种物理知识和方法,而配速法就是其中一种非常有效的解题技巧。

配速法的基本思想是将复杂的运动分解为几个简单的分运动,通过给物体配上一个虚拟的速度,使得问题变得更加清晰和易于处理。

下面我们通过几个具体的例子来看看配速法在复合场问题中的应用。

首先,考虑一个带电粒子在匀强电场和匀强磁场共存的区域中运动的问题。

假设电场强度为 E,方向水平向右;磁场强度为 B,方向垂直纸面向里。

带电粒子的电荷量为 q,质量为 m,初速度为 v₀,方向与电场和磁场的方向都成一定的夹角。

如果我们直接用常规方法来分析这个问题,会发现运动轨迹非常复杂,难以求解。

但是,如果我们使用配速法,情况就会大不一样。

我们可以将初速度 v₀分解为两个分速度:一个是沿电场方向的速度 v₁,另一个是与电场方向垂直的速度 v₂。

v₁= v₀cosθ,v₂=v₀sinθ,其中θ 是初速度与电场方向的夹角。

对于 v₁,它在电场中做匀加速直线运动,加速度 a₁= qE/m。

对于 v₂,它在磁场中做匀速圆周运动,洛伦兹力提供向心力,即 qv₂B = mv₂²/r,其中 r 是圆周运动的半径。

通过这种配速分解,我们将复杂的曲线运动转化为了一个直线运动和一个圆周运动的叠加,大大简化了问题的分析和计算。

再来看一个例子,一个带电小球在重力场和匀强电场中运动。

电场强度 E 竖直向上,重力加速度为 g。

如果小球的初速度为水平方向,我们可以给小球配上一个竖直向上的速度 v',使得 v'满足 qE = mg。

这样,小球在竖直方向上就处于平衡状态,我们只需要考虑它在水平方向上的匀速直线运动即可。

这种配速的方法,巧妙地利用了电场力和重力的平衡关系,将问题简化为了一个单一方向的运动。

配速法的关键在于合理地选择配速的方向和大小,使得问题能够被有效地分解和简化。

高三物理复合场练习题

高三物理复合场练习题

高三物理复合场练习题1. 题目描述:一个质点受到一个复合场的影响,该复合场由均匀磁场和均匀电场组成。

假设质点带电量为q,质量为m,在磁场的作用下,质点受到的磁力为Fm,电场的作用下受到的电力为Fe。

在该复合场中,质点受到的合力为F,合力的方向与合力的大小有关的变量为x。

2. 题目一:若磁场B与电场E垂直且大小相等,推导出合力F与x的关系式。

解答:由磁场B与电场E垂直且大小相等可得:Fm=qvBsinθ=qvBFe=qE其中,v为质点的速度,θ为速度与磁场方向的夹角。

根据合力的定义,有:F= Fm+Fe=qvB+qE根据叉乘向量性质,可将合力F写成向量形式:F=q(vBsinθ+E)由此可得合力F与变量x的关系式为:F=q(vBsinθ+E)x3. 题目二:若磁场B与电场E的方向相同,推导出合力F与x的关系式。

解答:由磁场B与电场E的方向相同可得:Fm=qvBsinθ=qvBFe=qE根据合力的定义,有:F= Fm+Fe=qvB+qE根据变量x的定义,有:x=vt其中,t为质点运动时间。

代入F=q(vBsinθ+E)x,得:F=q(vBsinθ+Et)综上所述,当磁场B与电场E的方向相同时,合力F与变量x的关系式为:F=q(vBsinθ+Et)4. 题目三:若质点的速度v与弦的夹角θ随时间t的变化规律为:v=a+bt,θ=ωt,推导出合力F与x的关系式。

解答:由题可知:v=a+bt,θ=ωt其中,a和b为常量,ω为角速度。

根据合力的定义,有:Fm=qvBsinθ=qvBsin(ωt)根据合力的定义,有:Fm=qvBsinθ=qvBsin(ωt)根据变量x的定义,有:x=vt即x=(a+bt)t=at+bt²代入F=q(vBsinθ+E)x,得:F=q(vBsinθ+E)(at+bt²)综上所述,当质点的速度v与弦的夹角θ随时间t的变化规律为v=a+bt、θ=ωt时,合力F与变量x的关系式为:F=q(vBsinθ+E)(at+bt²)通过以上练习题,我们能够更好地理解复合场的概念和其对质点受力的影响。

复合场总结

复合场总结

复合场总结引言在现代科技发展的背景下,复合场已经成为了一个重要的研究领域。

复合场是指由两种或多种物理场相互耦合而形成的场,如电磁场、声场、热场等。

复合场的研究对于理解和优化一些物理现象和过程具有重要意义。

本文将对复合场的相关内容进行总结和概述。

复合场的定义复合场是由多个物理场相互耦合形成的场。

这些物理场可以是不同的性质,也可以是同一性质的不同种类。

复合场的耦合可以是线性的,也可以是非线性的。

复合场的研究涉及到多个领域的知识,需要借助物理学、数学和计算机科学等多个学科的方法和工具。

复合场的应用复合场的研究和应用广泛存在于各个领域。

以下是一些典型的复合场应用领域的例子:1. 电磁场与热场的耦合在电子器件设计中,电磁场与热场的耦合是一个重要的问题。

通过研究电磁场和热场的相互作用,可以优化电子器件的性能和热管理,提高其可靠性和耐久性。

2. 声场与热场的耦合在航空航天领域,声场与热场的耦合对于飞机和火箭的设计和运行有着重要的影响。

研究声场和热场的耦合可以帮助优化气动声学性能和热传输效率,提高飞行器的安全性和效能。

3. 磁场与电磁场的耦合在电力系统和电机设计中,磁场与电磁场的耦合是一个重要的问题。

通过研究磁场和电磁场的相互作用,可以优化电力系统的稳定性和电机的效能,提高能源利用率和减少能源浪费。

复合场的数学模型和求解方法复合场的研究需要借助数学模型和求解方法。

复合场的数学模型可以是线性的也可以是非线性的,根据具体问题的特点选择合适的数学模型进行建立。

常见的数学方法包括有限元法、边界元法、谱方法等。

求解复合场的问题需要借助计算机技术和数值计算方法,通过数值模拟和仿真来获得复合场的解。

复合场的研究发展趋势随着科学技术的不断进步和需求的不断增加,复合场的研究也在不断发展和演进。

未来的复合场研究可能围绕以下几个方向进行:1.多物理场的耦合和多尺度问题的研究:随着多物理场问题的复杂性和尺度的不断增加,研究多物理场之间的相互作用和多尺度问题成为了一个重要的课题。

复合场知识点总结

复合场知识点总结

带电粒子在复合场中的运动是近几年高考重点和热点,准确分析受力和运动情况,并由几何知识画出轨迹是关键。

两种基本模型:速度选择器(电磁场正交)和回旋加速器(电磁场相邻)考点 1. 带电粒子在复合场中的运动1.带电粒子在电场、磁场和重力场等共存的复合场中的运动,其受力情况和运动图景都比较复杂,但其本质是力学问题,应按力学的基本思路,运用力学的基本规律研究和解决此类问题。

2.分析带电粒子在复合场中的受力时,要注意各力的特点。

如带电粒子无论运动与否,在重力场中所受重力及在匀强电场中所受的电场力均为恒力,它们的做功只与始末位置在重力场中的高度差或在电场中的电势差有关,而与运动路径无关。

而带电粒子在磁场中只有运动 (且速度不与磁场平行)时才会受到洛仑兹力 , 力的大小随速度大小而变 , 方向始终与速度垂直,故洛仑兹力对运动电荷不做功 .3.带电微粒在重力、电场力、磁场力共同作用下的运动(电场、磁场均为匀强场)⑴带电微粒在三个场共同作用下做匀速圆周运动 :必然是电场力和重力平衡,而洛伦兹力充当向心力 .⑵带电微粒在三个场共同作用下做直线运动 :重力和电场力是恒力,它们的合力也是恒力。

当带电微粒的速度平行于磁场时,不受洛伦兹力,因此可能做匀速运动也可能做匀变速运动;当带电微粒的速度垂直于磁场时,一定做匀速运动。

⑶与力学紧密结合的综合题,要认真分析受力情况和运动情况(包括速度和加速度) 。

必要时加以讨论考点 2.带电粒子在复合场中的运动实例运动的带电粒子在磁场中的应用:速度选择器、磁流体发电机、质谱仪、回旋加速器、电磁流量计、霍尔元件等1 .速度选择器两平行金属板(平行金属板足够长) 间有电场和磁场,一个带电的粒子(重力忽略不计)垂直于电、磁场的方向射入复合场,具有不同速度的带电粒子受力不同,射入后发生偏转的情况不同。

如果能满足所受到的洛仑兹力等于电场力,那这一粒子将沿直线飞出。

这种装置能把具有某一定速度(必须满足 V=E/B )的粒子选择出来,所以叫做速度选择器。

复合场问题

复合场问题

习题精讲
(3)设 21H 在电场中沿 x 轴正方向射出的速度大小为 v2,在电场中的加速度大小为 a2,由题给条件得
12(2m)v22

1 2
mv12

由牛顿第二定律有
qE 2ma2 ⑪
设 21H 第一次射入磁场时的速度大小为 v2 ,速度的方向与 x 轴正方向夹角为 2 ,入射点到原点的距离为 s v1t1 ①
h

1 2
a1t12

由题给条件,11H 进入磁场时速度的方向与 x 轴正方向夹角1 60 。11H 进入磁场时速度 y 分量的大
小为
联立以上各式得
a1t1 v1 tan1 ③
s1

23 3
h

习题精讲
(2) 11H 在电场中运动时,由牛顿第二定律有
qE ma1 ⑤
功.
(2)电场力的大小为 qE,方向与电场强度 E 的方向及带电粒子所带电荷的性质有关.电场
力做功与路径无关,其数值除与带电粒子的电荷量有关外,还与其始末位置的电势差有关.
(3)重力的大小为 mg,方向竖直向下.重力做功与路径无关,其数值除与带电粒子的质量
有关外,还与其始末位置的高度差有关. 注意:①微观粒子(如电子、质子、离子)一般都不计重力;②对带电小球、液滴、金属块
等实际的物体没有特殊交代时,应当考虑其重力;③对未知名的、题中又未明确交代的带电粒 子,是否考虑其重力,则应根据题给的物理过程及隐含条件具体分析后作出符合实际的决定.
知识点导读
4.带电粒子在复合场中的运动的分析方法 (1)当带电粒子在复合场中做匀速运动时,应根据平衡条件列方程求解. (2)当带电粒子在复合场中做匀速圆周运动时,往往应用牛顿第二定律和平衡条件列方程 联立求解. (3)当带电粒子在复合场中做非匀速曲线运动时,应选用动能定理或动量守恒定律列方程 求解. 注意:如果涉及两个带电粒子的碰撞问题,要根据动量守恒定律列方程,再与其他方程联 立求解. 由于带电粒子在复合场中的受力情况复杂,运动情况多变,往往出现临界问题,这时应以 题目中的“恰好”、“最大”、“最高”、“至少”等词语为突破口,挖掘隐含条件,并根据 临界条件列出辅助方程,再与其他方程联立求解.

物理人教版(2019)选择性必修第二册1

物理人教版(2019)选择性必修第二册1
三、带电粒子在复合场中运动的处理方法
1、分阶段处理: 将粒子运动的过程划分为几个阶段,对不同的阶段选取不同的规律处理.2、找关键: 准确求出带电粒子穿越场区边界的衔接速度(V大小和方向)是问题的关键.3、画运动轨迹: 根据受力和运动分析,画出运动轨迹图,有利于形象、直观地解决问题.
题型探究
专题 带电粒子在复合场中的运动
第一章 安培力与洛伦兹力
一、复合场
专题导析
复合场是指电场、磁场和重力场在某一区域并存;或其中某两场并存、或分区域存在
二、带电粒子在复合场中运动的分类
1、静止或匀速直线运动 特点:(重力、电场力、洛伦兹力)合力为零2、匀速圆周运动 特点:重力与电场力等大反向,带电粒子在洛伦兹力作用下,在垂直于匀强磁场的平面内做匀速圆周运动3、较复杂的曲线运动 特点:合力大小方向均变化,且与初速不共线,粒子做非匀变速曲线运动,其轨迹不是圆弧,也不是抛物线
【例题3】如图所示,在水平地面上方有一范围足够大的互相正交的匀强电场和匀强磁场区域,磁场的磁感应强度为B,方向水平并垂直纸面向里。一质量为m,带电荷量为q的带正电微粒在此区域内沿竖直平面(垂直于磁场方向的平面)做速度大小为v的匀速圆周运 动,重力加速度为g.求:
(2)若某时刻微粒在电场中运动到p点 时,速度与水平方向夹角为600,且已知p点与水平地面之间的距离等于其做圆周运动的半径。求该微粒运动到最高点时与水平地面之间的距离。
(1)此区域内电场强度的大小和方向
解析(1)由于带电微粒在电场、磁场和重力场共存区域 沿竖直面内做匀速圆周运动,表明带电粒子所受 的电场力和重力等大反向,因此电场强度方向竖 直向上设电场强度为E,则有

题型三: 带电粒子在复合场中做匀速圆周运动
(2)粒子在 M 点的初速度 v0 的大小;

复合场

复合场

一、复合场复合场是指电场、磁场和重力场并存,或其中某两场并存,或分区域存在.从场的复合形式上一般可分为如下四种情况:①相邻场;②重叠场;③交替场;④交变场.二、分析带电粒子在复合场中运动情况的一般思路1.弄清复合场的组成.一般有磁场、电场的复合,磁场、重力场的复合,磁场、电场、重力场三者的复合.2.正确进行受力分析,除重力、弹力、摩擦力外要特别注意静电力和磁场力的分析.3.确定带电粒子的运动状态,注意运动过程分析和受力分析的结合.4.对于粒子连续通过几个不同的复合场的问题,要分阶段进行处理.5.画出粒子运动轨迹,根据条件灵活选择不同的运动学规律进行求解.(1)当带电粒子在复合场中做匀速直线运动时,根据受力平衡列方程求解.(2)当带电粒子在复合场中做匀速圆周运动时,应用牛顿定律结合圆周运动规律求解.(3)当带电粒子做复杂曲线运动时,一般用动能定理或能量守恒定律求解.(4)对于临界问题,注意挖掘隐含条件.特别提醒:(1)电子、质子、α粒子等微观粒子在复合场中运动时一般不计重力,带电小球、尘埃、液滴等带电颗粒一般要考虑重力的作用.(2)注意重力、电场力做功与路径无关,洛伦兹力始终与运动方向垂直、永不做功的特点.二、带电粒子在复合场中的运动分类1.静止或匀速直线运动当带电粒子在复合场中所受合外力为零时,将处于静止状态或做匀速直线运动.2.匀速圆周运动当带电粒子所受的重力与电场力大小相等,方向相反时,带电粒子在洛伦兹力的作用下,在垂直于匀强磁场的平面内做匀速圆周运动.3.较复杂的曲线运动当带电粒子所受合外力的大小和方向均变化,且与初速度方向不在同一条直线上,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线.4.分阶段运动1.电视显像管电视显像管是应用电子束磁偏转(填“电偏转”或“磁偏转”)的原理来工作的,使电子束偏转的磁场(填“电场”或“磁场”)是由两对偏转线圈产生的.显像管工作时,由阴极发射电子束,利用磁场来使电子束偏转,实现电视技术中的扫描,使整个荧光屏都在发光.2.质谱仪(1)构造:如图11-3-1所示,由粒子源、加速电场、偏转磁场和照相底片等构成.(2)原理:粒子由静止被加速电场加速,根据动能定理可得关系式12mv2=qU . ① 粒子在磁场中受洛伦兹力作用而偏转,做匀速圆周运动,根据牛顿第二定律得关系式q v B =m v 2r. ② 由①②两式可得出需要研究的物理量,如粒子轨道半径、粒子质量、比荷.r =1B 2mU q ,m =qr 2B 22U ,q m =2U B 2r 2. 回旋加速器(1)构造:如图11-3-2所示,D 1、D 2是半圆金属盒,D 形盒的缝隙处接交流电源.D 形盒处于匀强磁场中. (2)原理:交流电的周期和粒子做圆周运动的周期相等,粒子在圆周运动的过程中一次一次地经过D 形盒缝隙,两盒间的电势差一次一次地反向,粒子就会被一次一次地加速.由q vB =m v 2R ,得E km =q 2B 2R 22m,可见粒子获得的最大动能由磁感应强度B 和D 形盒 半径R 决定,与加速电压无关.四、电场磁场同区域并存应用实例1.速度选择器如图11-3-3所示,平行板中电场强度E 的方向和磁感应强度B 的方向互相垂直.这种装置能把具有一定速度的粒子选择出来,所以叫做速度选择器.带电粒子能够匀速沿直线通过速度选择器的条件是:qE =q v B ,即v =E B . 2.磁流体发电机根据左手定则,如图11-3-4中的B 板是发电机的正极.磁流体发电机两极板间的距离为d ,等离子体速度为v ,磁场磁感应强度为B ,则两极板间能达到的最大电势差U =q v B .3.电磁流量计如图11-3-5所示,圆形导管直径为d ,用非磁性材料制成,导电液体在管中向左流动,导电液体中的自由电荷(正、负离子)在洛伦兹力的作用下横向偏转,a 、b 间出现电势差,形成电场.当自由电荷所受的电场力和洛伦兹力平衡时,a 、b 间的电势差就保持稳定.即q v B =qE =q U d ,所以v =U dB, 因此液体流量Q =S v =πd 24·U Bd =πdU 4B. 4.霍尔效应:在匀强磁场中放置一个矩形截面的载流导体,当磁场方向与电流方向垂直时,导体在与磁场、电流方向都垂直的方向上出现了 电势差,这个现象称为霍尔效应.所产生的电势差称为霍尔电势差,其原理如图11-3-6所示.匀强磁场,磁场方向垂直纸面向里.如果微粒做匀速直线运动,则下列说法正确的是( )A .微粒受电场力、洛伦兹力、重力三个力作用B .微粒受电场力、洛伦兹力两个力作用C .匀强电场的电场强度E =2mg qD .匀强磁场的磁感应强度B =mg q v解析:因为微粒做匀速直线运动,所以微粒所受合力为零,受力分析如图所示,微粒在重力、电场力和洛伦兹力作用下处于平衡状态,可知,qE =mg ,q v B =2mg ,得电场强度E =mg q,磁感应强度B = 2mg q v,因此A 正确. 答案:A有一个带电荷量为+q、重为G的小球,从两竖直的带电平行板上方h处自由落下,两极板间另有匀强磁场,磁感应强度为B,方向如图11-3-27所示,则带电小球通过有电场和磁场的空间时,下列说法错误的是()A.一定作曲线运动B.不可能做曲线运动C.有可能做匀加速运动D.有可能做匀速运动解析:由于小球的速度变化时,洛伦兹力会变化,小球所受合力变化,小球不可能做匀速或匀加速运动,B、C、D错.答案:BCD如图所示,带正电小球从光滑轨道上由静止释放,滑下后从D点水平飞进混合电、磁场中,场区的匀强电场方向竖直向上,匀强磁场方向垂直于纸面向里,小球带电量保持不变.若从A点释放,小球刚好沿水平直线运动到P点飞出场区,则( )A.若从B释放,小球可能从M飞出场区,从D到M动能减少B.若从C释放,小球可能从N飞出场区,从D到N动能增加C.若从B释放,小球可能从N飞出场区,从D到N动能减少D.若从C释放,小球可能从M飞出场区,从D到M动能减少【解析】选A、B.小球从A点释放后进入复合场区做直线运动,即mg=Eq+Bqv,若从B点释放,进入复合场区的速度v增大,合力方向向上,球向上偏,因洛伦兹力不做功,而重力和电场力的合力做负功,由动能定理知,其动能减少;若从C点释放,进入复合场区的速度减小,合外力方向向下,球向下偏,动能增加,故A、B正确.如图所示,虚线之间的空间存在由匀强电场E和匀强磁场B组成的正交或平行的电场和磁场,有一个带正电小球(电荷量为+q、质量为m)从正交或平行的电磁复合场上方的某一高度自由落下.那么,带电小球可能沿直线通过下列的哪个电磁复合场( )【解析】选C、D.带电小球在下落过程中,小球做匀速直线运动或做匀加速直线运动.A选项小球下落过程中重力和电场力做正功,小球的速度不断增大,洛伦兹力不断增大,合力不可能一直沿竖直方向,故A错.B判断方法同A,可知B错.C选项中小球进入复合场,合力可能为零,小球可能做匀速直线运动,C对.D选项中小球在下落过程中不受洛伦兹力的作用,小球做直线运动,D对.如图所示,粗糙的足够长的竖直木杆上套有一个带电的小球,整个装置处在由水平匀强电场和垂直纸面向外的匀强磁场组成的足够大的复合场中,小球由静止开始下滑,在整个运动过程中小球的v-t图像如图所示,其中正确的是( )【解析】选C.小球下滑过程中,qE 与qvB 反向,开始下落时qE>qvB,所以a= ,随下落速度v 的增大a 逐渐增大;当qE <qvB 之后,a= ,随下落速度v 的增大a 逐渐减小;最后a=0小球匀速下落,故图C 正确,A 、B 、D 错误.如图11-3-30所示,在一绝缘、粗糙且足够长的水平管道中有一带电量为q 、质量为m 的带电球体,管道半径略大于球体半径.整个管道处于磁感应强度为B 的水平匀强磁场中,磁感应强度方向与管道垂直.现给带电球体一个水平速度v 0,则在整个运动过程中,带电球体克服摩擦力所做的功可能为 ( )A .0 B.12m ⎝⎛⎭⎫mg qB 2C.12m v 20D.12m ⎣⎡⎦⎤v 20-⎝⎛⎭⎫mg qB 2 解析:若带电球体所受的洛伦兹力q v 0B =mg ,带电球体与管道间没有弹力,也不存在摩擦力,故带电球体克服摩擦力做的功为0,A 正确;若q v 0B <mg ,则带电球体在摩擦力的作用下最终停止,故克服摩擦力做的功为12m v 20,C 正确;若q v 0B >mg ,则带电球体开始时受摩擦力的作用而减速,当速度达到v =mg qB时,带电球体不再受摩擦力的作用,所以克服摩擦力做的功为12m ⎣⎡⎦⎤v 20-⎝⎛⎭⎫mg qB 2,D 正确. 答案:ACD(2009广东)如图所示,表面粗糙的斜面固定于地面上,并处于方向垂直纸面向外、强度为B 的匀强磁场中.质量为m 、带电量为+Q 的小滑块从斜面顶端由静止下滑.在滑块下滑的过程中,下列判断正确的是 ( )A .滑块受到的摩擦力不变B .滑块到达地面时的动能与B 的大小无关C .滑块受到的洛伦兹力方向垂直斜面向下D .B 很大时,滑块可能静止于斜面上【解析】 本题考查洛伦兹力.意在考查考生对带电物体在磁场中运动的受力分析.滑块受重力、支持力、洛伦兹力、摩擦力,解析:如图所示,由左手定则知C 正确.而F =μF N =μ(mg cos θ+BQ v )要随速度增加而变大,A错误.若滑块滑到底端已达到匀速运动状态,应有F =mg sin θ,可得v =mg BQ (sin θμ-cos θ),可看到 v 随B 的增大而减小.若在滑块滑到底端时还处于加速运动状态,则在B 越强时,F越大,滑块克服阻力做功越多,到达斜面底端的速度越小,B 错误.当滑块能静止于斜面上时应有mg sin θ=μmg cos θ,即μ=tan θ,与B 的大小无关,D 错误.【答案】 C质量为m 、带电量为q 的小物块,从倾角为θ的光滑绝缘斜面上由静止下滑,整个斜面置于方向水平向里的匀强磁场中,磁感应强度为B ,如图所示.若带电小物块下滑后某时刻对斜面的作用力恰好为零,下面说法中正确的是( )A .小物块一定带正电荷B .小物块在斜面上运动时做匀加速直线运动C .小物块在斜面上运动时做加速度增大,而速度也增大的变加速直线运动D .小物块在斜面上下滑过程中,当小球对斜面压力为零时的速率为mg cos θBq解析:小物块沿斜面下滑对斜面作用力为零时受力分析如图所示,小物块受到重力G 和垂直于斜面向上的洛伦兹力F ,故小物块带负电荷,A 选项错误;小物块在斜面上运动时合力等于mg sin θ保持不变,做匀加速直线运动,B 选项正确,C 选项错误;小物块在斜面上下滑过程中,当小物块对斜面压力为零时有q v B =mg cos θ,则有v =mg cos θBq,D 选项正确. 答案:BD足够长的光滑绝缘槽,与水平方向的夹角分别为α和β(α<β),如图所示,加垂直于纸面向里的磁场,分别将质量相等,带等量正、负电荷的小球a 和b ,依次从两斜面的顶端由静止释放,关于两球在槽上的运动,下列说法中正确的是:ACDA .在槽上a 、b 两球都做匀加速直线运动,a a >a bB .在槽上a 、b 两球都做变加速直线运动,但总有a a >a bC .a 、b 两球沿直线运动的最大位移分别为S a 、S b ,则S a <S bD .a 、b 两球沿槽运动的时间分别为t a 、t b ,则t a <t b.(2009·北京,19)如图11-3-10所示的虚线区域内,充满垂直于纸面向里的匀强磁场和竖直向下的匀强电场.一带电粒子a (不计重力)以一定的初速度由左边界的O 点射入磁场、电场区域,恰好沿直线由区域右边界的O ′点(图中未标出)穿出.若撤去该区域内的磁场而保留电场不变,另一个同样的粒子b (不计重力)仍以相同初速度由O 点射入,从区域右边界穿出,则粒子b ( )A .穿出位置一定在O ′点下方B .穿出位置一定在O ′点上方C .运动时,在电场中的电势能一定减小D .在电场中运动时,动能一定减小解析:带电粒子的电性可正也可负,当只有电场作用时,粒子穿出位置可能在O ′点上方,也可能在O ′点下方.电场力一定对粒子做正功,粒子的电势能减小,动能一定增加.答案:C.如图11-3-25所示的空间中存在着正交的匀强电场和匀强磁场,从A 点沿AB 、AC 方向绝缘地抛出两带电小球,关于小球的运动情况,下列说法中正确的是 ( )A .从AB 、AC 抛出的小球都可能做直线运动B .只有沿AB 抛出的小球才可能做直线运动C .做直线运动的小球带正电,而且一定是做匀速直线运动D .做直线运动的小球机械能守恒 解析:小球运动过程中受重力、电场力、洛伦兹力作用,注意小球做直线运动一定为匀速直线运动;正电荷沿AB 才可能做直线运动,做直线运动时电场力做正功,机械能增加,B 、C 正确.答案:BC 如图11-3-31所示,一个带电小球穿在一根绝缘的粗糙直杆上,杆与水平方向成θ角,整个空间存在着竖直向上的匀强电场和垂直于杆方向斜向上的匀强磁场.小球从a 点由静止开始沿杆向下运动,在c 点时速度为 4 m/s ,b 是a 、c 的中点,在这个运动过程中( )A .小球通过b 点时的速度小于2 m/sB .小球在ab 段克服摩擦力做的功与在bc 段克服摩擦力做的功相等C .小球的电势能一定增加D .小球从b 到c 重力与电场力做的功可能等于克服阻力做的功解析:无论小球带正电还是负电,速度增大,摩擦力逐渐增大,加速度减小,都是做加速度逐渐减小的加速运动,最终受力平衡匀速运动,可知A 、B 、C 错,D 对,选D ,本题中等难度.答案:D 如图11-3-28所示,ABC 为竖直平面内的光滑绝缘轨道,其中AB 为倾斜直轨道,BC 为与AB 相切的圆形轨道,并且圆形轨道处在匀强磁场中,磁场方向垂直纸面向里.质量相同的甲、乙、丙三个小球中,甲球带正电、乙球带负电、丙球不带电.现将三个小球在轨道AB 上分别从不同高度处由静止释放,都恰好通过圆形轨道的最高点,则( )A .经过最高点时,三个小球的速度相等B .经过最高点时,甲球的速度最小C .甲球的释放位置比乙球的高D .运动过程中三个小球的机械能均保持不变 解析:三个小球在运动过程中机械能守恒,对甲有q v 1B +mg =m v 21r,对乙有mg -q v 2B =m v 22r ,对丙有mg =m v 23r,可判断A 、B 错,C 、D 对;选C 、D.本题中等难度.答案:CD如图30所示,质量为m 、电荷量为q 的带电液滴从h 高处自由下落,进入一个互相垂直的匀强电场和匀强磁场区域,磁场方向垂直于纸面,磁感应强度为B ,电场强度为E 已知液滴在此区域中做匀速圆周运动,则圆周运动的半径 r 为( ) A.EB 2h gB.B E 2h gC.m qB 2ghD.qB m2gh图30解析:液滴进入电磁场的速度v =2gh ,液滴在重力、电场力、洛伦兹力作用下做匀速圆周运动,满足mg =qE ,q v B =m v 2r,可得A 、C 选项正确. 答案:AC如图2所示,在匀强电场和匀强磁场共存的区域内,电场的场强为E ,方向竖直向下,磁场的磁感应强度为B ,方向垂直于纸面向里,一质量为m 的带电粒子,在场区内的一竖直平面内做匀速圆周运动,则图2可判断该带电质点 ( )A .带有电荷量为mg E 的正电荷B .沿圆周逆时针运动C .运动的角速度为Bg ED .运动的速率为E B解析:带电粒子在竖直平面内做匀速圆周运动,有mg =qE ,求得电荷量q =mg E,根据电场强度方向和电场力方向判断出粒子带负电,A 错.由左手定则可判断粒子沿顺时针方向运动,B 错.由q v B =m v ω得ω=qB m =mgB Em =gB E,C 正确.在速度选择器装置中才有v =E B,故D 错. 答案:C如图所示,在某空间同时存在着相互正交的匀强电场E 和匀强磁场B ,电场方向竖直向下,有质量分别为m 1、m 2的a 、b 两带负电的微粒,a 的电量为q 1,恰能静止于场中空间的c 点,b 的电量为q 2,在过c 点的竖直平面内做半径为r 的匀速圆周运动,在c 点a 、b 相碰并粘在一起后做匀速圆周运动,则(D )A .a 、b 粘在一起后在竖直平面内以速率B q q m m r ()1212++做匀速圆周运动 B .a 、b 粘在一起后仍在竖直平面内做半径为r 的匀速圆周运动C .a 、b 粘在一起后在竖直平面内做半径大于r 的匀速圆周运动D .a 、b 粘在一起后在竖直平面内做半径为q q q r 212+的匀速圆周运动设空间存在竖直向下的匀强电场和垂直纸面向里的匀强磁场,如图11-3-24所示,已知一离子在电场力和洛伦兹力的作用下,从静止开始自A 点沿曲线ACB 运动,到达B 点时速度为零,C 点是运动的最低点,忽略重力,以下说法正确的是 ( ) 图11-3-24A .该离子必带正电荷B .A 点和B 点位于同一高度C .离子在C 点时速度最大D .离子到达B 点时,将沿原曲线返回A 点错因分析:选项D 不正确,某些考生可能受“振动”现象 的影响,误认为根据振动的往复性,离子到达B 点后,将沿原曲线返回A 点,实际上离子从B 点开始运动后的受力情况与从A 点运动至B 点的受力情况相同,离子以后的运动应是如图所示由B 点经C ′点到B ′点.正确解析:对A 项,电场方向竖直向下,离子由A 点静止释放后在电场力的作用下向下运动,可见电场力的方向一定向下,所以离子必带正电荷,A 正确.对B 项,离子具有速度后,它就在竖直向下的电场力F 及总与速度方向垂直并不断改变方向的洛伦兹力f 的作用下沿ACB 曲线运动,因洛伦兹力不做功,电场力做功等于动能的变化,而离子到达B 点时的速度为零,所以离子从A 点到B 点电场力所做正功与负功加起来为零,这说明离子在电场中的B 点与A 点的电势能相等,即B 点与A 点位于同一高度,B 正确.对C 项,因C 点为轨迹最低点,离子从A 点运动到C 点电场力做功最多,在C 点具有的动能最多,所以离子在C 点速度最大,C 正确.对D 项,只要将离子在B 点的状态与在A 点的状态进行比较,就可以发现它们的状态(速度为零,电势能相等)相同,如果右侧仍有同样的电场和磁场的叠加区域,离子将在B 点的右侧重复前面的曲线运动,因此,离子是不可能沿原曲线返回A 点的. 答案:ABC如图所示,一带电小球质量为m ,用丝线悬挂于O 点,在竖直面内摆动,最大摆角为60°,水平磁场垂直于小球摆动的平面,当小球自左方摆到最低点时,悬线上的张力恰为零,则小球自右方摆到最低点时悬线上的张力为 ( )A .0B .2mgC .4mgD .6mg 【解析】 若没有磁场,则到达最低点绳子的张力为F ,则F -mg =m v 2l①由能量守恒得:mgl (1-cos60°)=12m v 2②联立①②得F =2mg .当有磁场存在时,由于洛伦兹力不做功,在最低点悬线张力为零 则F 洛=2mg当小球自右方摆到最低点时洛伦兹力大小不变,方向必向下,由公式得F ′-F 洛-mg =m v 2l∴此时绳中的张力F ′=4mg . 【答案】 C 如图11-3-32所示,水平地面上固定一个光滑的绝缘斜面ABC ,斜面的倾角θ=37°,空间存在匀强电场和匀强磁场,电场方向竖直向下,磁场方向垂直纸面向里,电场和磁场都可以随意加上、撤除或改变.一带正电荷的粒子(不计重力)从O 点以一定的速度水平向右抛出,O 点到斜面左边缘的水平距离为d ,若同时存在电场和磁场,粒子恰好做直线运动.现在以原速抛出时只加电场,粒子刚好运动到斜面顶点A ,且速度与斜面平行;当粒子运动到A 点时立即加上磁场,保持原磁场方向不变并将磁感应强度变为原来的815,经过一段时间粒子将离开斜面,若运动中粒子的电荷量不发生变化,粒子可视为质点,斜面足够长,求粒子在斜面上运动的位移大小s .(取sin 37°=35,cos 37°=45)解析:设电场强度为E ,磁感应强度为B ,粒子的电荷量为q ,质量为m 、初速度为v 0,粒子运动到A 点时的速度为v 1,离开斜面时的速度为v 2,粒子从抛出到A 点的时间为t ,当只有电场存在时,粒子做类平抛运动,则有 d =v 0t ① v 1cos θ=v 0②v 1sin θ=qEm t ③由②解得:v 1=54v 0④当电场和磁场同时存在,粒子做匀速直线运动, 有q v 0B =qE ⑤粒子离开斜面时对斜面的压力为零, 则815Bq v 2=qE cos θ⑥ 联立⑤⑥解得:v 2=32v 0⑦粒子在斜面上做匀加速直线运动,则v 22-v 21=2qEms sin θ⑧ 联立①③④⑦⑧解得:s =5572d答案:5572d(2009·天津高考)如图12所示,直角坐标系xOy 位于竖直平面内,在水平的x 轴下方存在匀强磁场和匀强电场,磁场的磁感应强度为B ,方向垂直xOy 平面向里,电场线平行于y 轴.一质量为m 、电荷量为q 的带正电的小球,从y 轴上的A 点水平向右抛出,经x 轴上的M 点进入电场和磁场,恰能做匀速圆周运动,从x 轴上的N 点第一次离开电场和磁场,MN 之间的距离为L ,小球过M 点时的速度方向与x 轴正方向夹角为θ.不计空气阻力,重力加速度为g ,求:(1)电场强度E 的大小和方向;(2)小球从A 点抛出时初速度v 0的大小; (3)A 点到x 轴的高度h .解析:(1)小球在电场、磁场中恰能做匀速圆周运动,其所受电场力必须与重力平衡,有qE =mg ① E =mgq②重力的方向是竖直向下的,电场力的方向则应为竖直向上,由于小球带正电,所以电场强度方向竖直向上.(2)小球做匀速圆周运动,O ′为圆心,MN 为弦长, ∠MO ′P =θ,如图所示.设半径为r ,由几何关系知L2r=sin θ ③ 小球做匀速圆周运动的向心力由洛伦兹力提供,设小球做圆周运动的速率为v ,有 q v B =m v 2r ④由速度的合成与分解知v 0v =cos θ ⑤ 由③④⑤式得v 0=qBL 2m cot θ. ⑥(3)设小球到M 点时的竖直分速度为v y ,它与水平分速度的关系为 v y =v 0tan θ ⑦ 由匀变速直线运动规律知v 2y =2gh ⑧ 由⑥⑦⑧式得h =q 2B 2L 28m 2g.答案:(1)mg q 方向竖直向上 (2)qBL2m cot θ(3)q 2B 2L 28m 2g(04年全国理综卷二)如图3所示,在y >0的空间中存在匀强电场,场强沿y 轴负方向;在y <0的空间中,存在匀强磁场,磁场方向垂直xy 平面(纸面)向外。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

带电粒子在复合场中的运动专题练习1.如图所示,界面PQ 与水平地面之间有一个正交的匀强磁场B 和匀强电场E ,在PQ 上方有一个带正电的小球A 自O 静止开始下落,穿过电场和磁场到达地面.设空气阻力不计,下列说法中正确的是( ) A .在复合场中,小球做匀变速曲线运动 B .在复合场中,小球下落过程中的电势能减小C .小球从静止开始下落到水平地面时的动能等于其电势能和重力势能的减少量总和D .若其他条件不变,仅增大磁感应强度,小球从原来位置下落到水平地面时的动能不变2.如图绝缘直棒上的小球,其质量为m 、带电荷量是+q ,小球可在棒上滑动.将此棒竖直放在互相垂直且在水平方向的匀强电场和匀强磁场中,电场强度是E ,磁感应强度是B ,小球与棒间的动摩擦因数为 ,求小球由静止沿棒下滑的最大加速度和最大速度(小球带电荷量不变)3.如图所示,竖直平面xOy 内存在水平向右的匀强电场,场强大小E =10 N/C ,在y ≥0的区域内还存在垂直于坐标平面向里的匀强磁场,磁感应强度大小B =0.5 T 。

一电荷量为q =+0.2 C 、质量为m =0.4 kg 的小球由长L =0.4 m 的细线悬挂于P 点,小球可视为质点,现将小球拉至水平位置A 无初速度释放,小球运动到悬点P正下方的坐标原点O 时,悬线突然断裂,此后小球又恰好能通过O点正下方的N 点。

(g =10 m/s2)求: (1)小球运动到O 点时的速度大小; (2)悬线断裂前瞬间拉力的大小; (3)ON 间的距离。

4.如图所示,两块水平放置、相距为d 的长金属板接在电压可调的电源上。

两板之间的右侧区域存在方向垂直纸面向里的匀强磁场。

将喷墨打印机的喷口靠近上板下表面,从喷口连续不断喷出质量均为m 、水平速度均为v 0、带相等电荷量的墨滴。

调节电源电压至U ,墨滴在电场区域恰能沿水平向右做匀速直线运动;进入电场、磁场共存区域后,最终垂直打在下板的M 点。

(1)判断墨滴所带电荷的种类,并求其电荷量; (2)求磁感应强度B 的值; (3)现保持喷口方向不变,使其竖直下移到两板中间的位置。

为了使墨滴仍能到达下板M 点,应将磁感应强度调至B ′,则B ′的大小为多少?5. 如图所示,离子源A产生的初速度为零、带电荷量均为e、质量不同的正离子被电压为U0的加速电场加速后匀速通过准直管,垂直射入匀强偏转电场,偏转后通过极板HM上的小孔S离开电场,经过一段匀速直线运动,垂直于边界MN进入磁感应强度为B的匀强磁场.已知HO=d,HS=2d,∠MNQ=90°.(忽略离子所受重力)(1)求偏转电场场强E0的大小以及HM与MN的夹角φ;(2)求质量为4m的离子在磁场中做圆周运动的半径;(3)若质量为4m的离子垂直打在NQ的中点S1处,质量为16m的离子打在S2处,S1和S2之间的距离以及能打在NQ 上的正离子的质量范围.6.如图所示,M、N为两块带等量异种电荷的平行金属板,S1、S2为板上正对的小孔,N板右侧有两个宽度均为d的匀强磁场区域,磁感应强度大小均为B,方向分别垂直于纸面向里和向外,磁场区域右侧有一个荧光屏,取屏上与S1、S2共线的O点为原点,向下为正方向建立x轴.板左侧电子枪发射出的热电子经小孔S1进入两板间,电子的质量为m,电荷量为e,初速度可以忽略.求:(1)当两板间电势差为U0时,求从小孔S2射出的电子的速度v0;(2)两金属板间电势差U在什么范围内,电子不能穿过磁场区域而打到荧光屏上;(3)电子打到荧光屏上的位置坐标x和金属板间电势差U的函数关系.7.如图所示,在xOy坐标系中有虚线OA,OA与x轴的夹角θ=30°,OA与y轴之间的区域有垂直纸面向外的匀强磁场,OA与x轴之间的区域有沿x轴正方向的匀强电场,已知匀强磁场的磁感应强度B=0.25 T,匀强电场的电场强度E=5×105 N/C. 现从y轴上的P点沿与y轴正方向夹角60°的方向以初速度v0=5×105 m/s射入一个质量m=8×10-26 kg、电荷量q=+8×10-19 C的带电粒子,粒子经过磁场、电场后最终打在x轴上的Q点,已知P点到O的距离为35m(带电粒子的重力忽略不计)。

求:(1)粒子在磁场中做圆周运动的半径;(2)粒子从P点运动到Q点的时间;(3)Q点的坐标。

8.扭摆器是同步辐射装置中的插入件,能使粒子的运动轨迹发生扭摆.其简化模型如下图:Ⅰ、Ⅱ两处的条形匀强磁场区边界竖直,相距为L,磁场方向相反且垂直于纸面.一质量为m、电量为-q、重力不计的粒子,从靠近平行板电容器MN板处由静止释放,极板间电压为U,粒子经电场加速后平行于纸面射入Ⅰ区,射入时速度与水平方向夹角θ=30°.(1)当Ⅰ区宽度L1=L、磁感应强度大小B1=B0时,粒子从Ⅰ区右边界射出时速度与水平方向夹角也为30°,求B0及粒子在Ⅰ区运动的时间t.(2)若Ⅱ区宽度L2=L1=L、磁感应强度大小B2=B1=B0,求粒子在Ⅰ区的最高点与Ⅱ区的最低点之间的高度差h.(3)若L2=L1=L、B1=B0,为使粒子能返回Ⅰ区,求B2应满足的条件.(4)若B1≠B2,L1≠L2,且已保证了粒子能从Ⅱ区右边界射出.为使粒子从Ⅱ区右边界射出的方向与从Ⅰ区左边界射入的方向总相同,求B1、B2、L1、L2之间应满足的关系式.9.如图所示,一质量为m、电荷量为q、重力不计的微粒,从倾斜放置的平行电容器Ⅰ的A板处由静止释放,A、B 间电压为U1。

微粒经加速后,从D板左边缘进入一水平放置的平行板电容器Ⅱ,由C板右边缘且平行于极板方向射出,已知电容器Ⅱ的板长为板间距离的2倍。

电容器右侧竖直面MN与PO之间的足够大空间中存在着水平向右的匀强磁场(图中未画出),MN与PQ之间的距离为L,磁感应强度大小为B。

在微粒的运动路径上有一厚度不计的窄塑料板(垂直纸面方向的宽度很小),斜放在MN与PQ之间,α=45°。

求:(1)微粒从电容器I加速后的速度大小;(2)电容器Ⅱ两极板C、D间的电压;(3)假设粒子与塑料板碰撞后,电荷量和速度大小不变、方向变化遵循光的反射定律,碰撞时间极短忽略不计,求微粒在MN与PQ之间运动的时间和路程。

10.如图所示,一质量为m ,带电荷量为+q 的粒子以速度v 0从O 点沿y 轴正方向射入磁感应强度为B 的圆形匀强磁场区域,磁场方向垂直纸面向外,粒子飞出磁场区域后,从点b 处穿过x 轴,速度方向与x 轴正方向的夹角为30°,同时进入场强为E 、方向沿x 轴负方向成60°角斜向下的匀强电场中,通过了b 点正下方的c 点,如图所示。

粒子的重力不计,试求:(1)圆形匀强磁场的最小面积。

(2)c 点到b 点的距离s 。

11.水平放置的平行金属板M 、N 之间存在竖直向上的匀强电场和垂直纸面的交变磁场如图甲所示,垂直纸面向里为正),磁感应强度B 0=100T 。

已知两板间距离d =0.3 m ,电场强度E =50 V/m ,M 板上有一小孔P ,在P 正上方h =5 cm 处的O 点,一带电油滴自由下落,穿过小孔后进入两板间,最后落在N 板上的Q 点如图乙所示。

如果油滴的质量m =10-4 kg ,带电荷量|q |=2×10-5 C 。

(不计空气阻力,重力加速度g 取10 m/s2)(1)在P 点的速度v 为多少? (2)若油滴在t =0时刻进入两板间,最后恰好垂直向下落在N 板上的Q 点,油滴的电性及交变磁场的变化周期T 。

(3)Q 、O 两点的水平距离。

12.如图甲所示,相隔一定距离的竖直边界两侧为相同的匀强磁场区,磁场方向垂直纸面向里,在边界上固定两长为L 的平行金属极板MN 和PQ ,两极板中心各有一小孔S 1、S 2,两极板间电压的变化规律如图乙所示,正反向电压的大小均为U 0,周期为T 0。

在t =0时刻将一个质量为m 、电量为-q (q >0)的粒子由S 1静止释放,粒子在电场力的作用下向右运动,在t =T 02时刻通过S 2垂直于边界进入右侧磁场区。

(不计粒子重力,不考虑极板外的电场)(1)求粒子到达S 2时的速度大小v 和极板间距d 。

(2)为使粒子不与极板相撞,求磁感应强度的大小应满足的条件。

(3)若已保证了粒子未与极板相撞,为使粒子在t =3T 0时刻再次到达S 2,且速度恰好为零,求该过程中粒子在磁场内运动的时间和磁感应强度的大小。

13.如图1所示,与纸面垂直的竖直面MN 的左侧空间中存在竖直向上场强大小为E =2.5×102N/C 的匀强电场(上、下及左侧无界)。

一个质量为m =0.5kg 、电荷量为q =2.0×10-2C 的可视为质点的带正电小球,在t =0时刻以大小为v 0的水平初速度向右通过电场中的一点P ,当t =t 1时刻在电场所在空间中加上一如图2所示随时间周期性变化的磁场,使得小球能竖直向下通过D 点,D 为电场中小球初速度方向上的一点,PD 间距为L ,D 到竖直面MN 的距离DQ 为Lπ。

设磁感应强度垂直纸面向里为正。

(取g =10m/s 2)(1)如果磁感应强度B 0为已知量,使得小球能竖直向下通过D 点,求磁场每一次作用时间t 0的最小值(用题中所给物理量的符号表示);(2)如果磁感应强度B 0为已知量,试推出满足条件的时刻t 1的表达式(用题中所给物理量的符号表示);(3)若小球能始终在电磁场所在空间做周期性运动,则当小球运动的周期最大时,求出磁感应强度B 0及运动的最大周期T 的大小(用题中所给物理量的符号表示)。

14.在图所示的坐标系中,x 轴水平,y轴垂直,x 轴上方空间只存在重力场,第Ⅲ象限存在沿y 轴正方向的匀强电场和垂直xy 平面向里的匀强磁场,在第Ⅳ象限由沿x 轴负方向的匀强电场,场强大小与第Ⅲ象限存在的电场的场强大小相等。

一质量为m ,带电荷量大小为q的质点a ,从y 轴上y h =处的1P 点以一定的水平速度沿x 轴负方向抛出,它经过2x h =-处的2P 点进入第Ⅲ象限,恰好做匀速圆周运动,又经过y 轴上方2y h =-的3P 点进入第Ⅳ象限,试求:(1)质点a 到达2P 点时速度的大小和方向;(2)第Ⅲ象限中匀强电场的电场强度和匀强磁场的磁感应强度的大小; (3)质点a 进入第Ⅳ象限且速度减为零时的位置坐标15. 如图所示,竖直平面坐标系xOy 的第一象限,有垂直xOy 面向外的水平匀强磁场和竖直向上的匀强电场,大小分别为B 和E ;第四象限有垂直xOy 面向里的水平匀强电场,大小也为E ;第三象限内有一绝缘光滑竖直放置的半径为R 的半圆轨道,轨道最高点与坐标原点O 相切,最低点与绝缘光滑水平面相切于N .一质量为m 的带电小球从y 轴上(y >0)的P 点沿x 轴正方向进入第一象限后做圆周运动,恰好通过坐标原点O ,且水平切入半圆轨道并沿轨道内侧运动,过N 点水平进入第四象限,并在电场中运动(已知重力加速度为g ). (1)判断小球的带电性质并求出其所带电荷量; (2)P 点距坐标原点O 至少多高;(3)若该小球以满足(2)中OP 最小值的位置和对应速度进入第一象限,通过N 点开始计时,经时间t =2 Rg 小球距坐标原点O 的距离s 为多远?【参考答案】【1】:BC 【2】mqEga m μ= ; BE qB mg v m μ=【3】(1)2 m/s (2)8.2 N (3)3.2 m 【4】(1)负电荷 mgdU (2)v 0U gd 2(3)4v 0U5gd 2 【5】(1)45° (2)2 mU 0eB 2(3)4(3-1) mU 0eB 2 m <m x <25m 【6】(1)0v =(2)222d eB U m <(3) 222)2d eB x U eB m=≥ 【7】(1)0.2 m (3)1.19×10-6s (3)x =0.6 m【8】【9】 (1)2qU 1m (2)U 12 (3)L qU 1m qU 1+2πm qB +L +2πqB qmU 1 【10】(1)S=2220243Bq v m π (2)Eq mv d /3420= 【11】(1)1 m/s (2)正 0.05π s (3)0.3 m 【12】 (1)2qU 0m T 042qU 0m (2)B <4L2mU 0q (3)74T 0 8πm7qT 0【13】 (1)3πm 2qB 0 (2)t 1=L v 0+mqB 0 (3)2πm v 0qL 6L v 0【14】(1)v ∴=,其方向与x 轴负向夹角45θ= (2)mg E q=B =(),h h - 【15】(1)正电 mg E (2)2m Rg qB (3)27R。

相关文档
最新文档