高中物理高分突破复合场物理大题

合集下载

高考物理二轮复习专题突破练习 带电粒子在复合场中的运动

高考物理二轮复习专题突破练习 带电粒子在复合场中的运动

带电粒子在复合场中的运动1.(多选)(2021辽宁高三一模)劳伦斯和利文斯设计的回旋加速器如图所示,高真空中的两个D形金属盒间留有平行的狭缝,粒子通过狭缝的时间可忽略。

匀强磁场与盒面垂直,加速器接在交流电源上,若A处粒子源产生的质子可在盒间被正常加速。

下列说法正确的是()A.虽然逐渐被加速,质子每运动半周的时间不变B.只增大交流电压,质子在盒中运行总时间变短C.只增大磁感应强度,仍可能使质子被正常加速D.只增大交流电压,质子可获得更大的出口速度2.(2021四川成都高三二模)如图,在第一、第四象限的y≤0.8 m区域内存在沿y轴正方向的匀强电场,电场强度大小E=4×103N/C;在第一象限的0.8 m<y≤1.0 m区域内存在垂直坐标平面向外的匀强磁场。

一个质量m=1×10-10 kg、电荷量q=1×10-6C的带正电粒子,以v0=6×103m/s的速率从坐标原点O沿x轴正方向进入电场。

不计粒子的重力。

已知sin 37°=0.6,cos 37°=0.8。

(1)求粒子第一次离开电场时的速度;(2)为使粒子能再次进入电场,求磁感应强度B的最小值。

3.(2021河南高三二模)如图所示,在平面直角坐标系xOy内有一直角三角形,其顶点坐标分别为(0,0)、d、(d,0),三角形区域内有垂直于纸面向里的匀强磁场,磁感应强度大小为B,x轴下方有沿着y 0,√33轴负方向的匀强电场,电场强度大小为E。

一质量为m、电荷量为-q的粒子从y轴上的某点M由静止释放,粒子第一次进入磁场后恰好不能从直角三角形的斜边射出,不计粒子重力。

(1)求M点到O点的距离;(2)改变粒子在y轴上的释放点,使粒子由N点静止释放后能沿垂直于直角三角形斜边的方向射出磁场,求N点到O点的距离;(3)在(2)过程中,求粒子从N点由静止释放到射出磁场的运动时间。

4.(2021福建福州高三二模)如图所示,在xOy平面直角坐标系中的第一、二象限内有一个矩形区域MNQP,区域内存在垂直纸面向里、磁感应强度大小为B的匀强磁场,MN在x轴上,MO=ON=3d,MP=NQ=d。

(高中物理)物理高考能力突破83带电粒子在复合场中的运动B

(高中物理)物理高考能力突破83带电粒子在复合场中的运动B

(40分钟 100分)一、单项选择题(此题共4小题,每题7分,共28分,每题只有一个选项符合题意)1.(易错题)利用霍尔效应制作的霍尔元件,广泛应用于测量和自动控制等领域.如图是霍尔元件的工作原理示意图,磁感应强度B垂直于霍尔元件的工作面向下,通入图示方向的电流I,C、D两侧面会形成电势差U CD,以下说法中正确的选项是( )CD仅与材料有关B.假设霍尔元件的载流子是自由电子,那么电势差U CD>0C.仅增大磁感应强度时,电势差U CD变大D.在测定地球赤道上方的地磁场强弱时,元件的工作面应保持水平2.(预测题)如图,空间某一区域内存在着相互垂直的匀强电场和匀强磁场,一个带电粒子以某一初速度由A点进入这个区域沿直线运动,从C点离开区域;如果这个区域只有电场,那么粒子从B点离开场区;如果这个区域只有磁场,那么粒子从D点离开场区;设粒子在上述三种情况下,从A到B点、A到C点和A到D点所用的时间分别是t1、t2和t3,比较t1、t2和t3的大小,那么有(粒子重力忽略不计)( )1=t2=t3 2<t1<t31=t2<t3 1=t3>t23.(·模拟)如下列图,从S处发出的热电子经加速电压U加速后垂直进入相互垂直的匀强电场和匀强磁场中,发现电子流向上极板偏转.设两极板间电场强度为E,磁感应强度为B.欲使电子沿直线从电场和磁场区域通过,只采取以下措施,其中可行的是( )4.(·模拟)如下列图,质量为m,带电荷量为-q的微粒以速度v与水平方向成45°角进入匀强电场和匀强磁场,磁场方向垂直纸面向里.如果微粒做匀速直线运动,那么以下说法正确的选项是( )A.微粒受电场力、洛伦兹力、重力三个力作用力、洛伦兹力两个力作用二、不定项选择题(此题共3小题,每题7分,共21分,每题至少一个选项符合题意)5.在某地上空同时存在着匀强的电场与磁场,一质量为m的带正电小球,在该区域内沿水平方向向右做直线运动,如下列图.关于场的分布情况可能的是( )B.电场竖直向上,磁场垂直纸面向里C.电场斜向里侧上方,磁场斜向外侧上方,均与v垂直D.电场水平向右,磁场垂直纸面向里6.(创新题)如下列图,空间存在正交的匀强电场和匀强磁场,匀强电场方向竖直向上,匀强磁场的方向垂直纸面向里.有一内壁光滑、底部有带正电小球的试管.在水平拉力F 作用下,试管向右匀速运动,带电小球能从试管口处飞出.小球质量为m ,带电量为q ,场强大小为mg E q=.关于带电小球及其在离开试管前的运动,以下说法中正确的选项是( )功7.(易错题)质谱仪是测带电粒子的质量和分析同位素的一种仪器,它的工作原理是带电粒子(不计重力)经同一电场加速后,垂直进入同一匀强磁场做圆周运动,然后利用相关规律计算出带电粒子质量,其工作原理如下列图,虚线为某粒子运动轨迹,由图可知( )2比上极板S 1电势高 C.假设只增大加速电压U 值,那么半径r 变大D.假设只增大入射粒子的质量,那么半径r 变小三、计算题(本大题共3小题,共51分,要有必要的文字说明和解题步骤,有数值计算的要注明单位) 0从两极板中间,沿垂直于电场、磁场的方向射入场中,无偏转地通过场区,如下列图,板长10 cm =l ,两板间距d=3.0 cm,两板间电势差U=150 V,v 0×107 m/s.(1)求磁感应强度B 的大小;(2)假设撤去磁场,求电子穿过电场时偏离入射方向的距离,以及电子通过场区后动能的增加量(电子所带电量的大小与其质量之比11 e 1.7610C /kg m=⨯×10-19 C). 9.(·模拟)(18分)如下列图,在一底边长为2L,θ=45°的等腰三角形区域内(O 为底边中点)有垂直纸面向外的匀强磁场,现在一质量为m ,电量为q 的带正电粒子从静止开始经过电势差为U 的电场加速后,从O 点垂直于AB 进入磁场,不计重力与空气阻力的影响.(1)求粒子经电场加速射入磁场时的速度.(2)磁感应强度B 为多少时,粒子能以最大的圆周半径偏转后打到OA 板?(3)增加磁感应强度的大小,可以再延长粒子在磁场中的运动时间,求粒子在磁场中运动的极限时间.(不计粒子与AB 板碰撞的作用时间,设粒子与AB 板碰撞前后,电量保持不变并以相同的速率反弹)10.(·模拟)(18分)如下列图,PO y 区域内有沿y 轴正方向的匀强电场,POx 区域内有垂直纸面向里的匀强磁场,OP 与x 轴成θ角.不计重力的负电荷,质量为m 、电量为q,从y 轴上某点以初速度v 0垂直电场方向进入,经电场偏转后垂直OP 进入磁场,又垂直x 轴离开磁场.求:(1)电荷进入磁场时的速度大小.(2)电场力对电荷做的功.(3)电场强度E 与磁感应强度B 的比值.答案解析 1. U q d =qBv,得U=Bdv,所以电势差U CD 取决于B 、d 、v ,故A 错误,C 正确.电子带负电,根据左手定那么,可确定B 错误.赤道上方地磁场磁感线方向是水平的,而霍尔元件的工作面需要和磁场方向垂直,故工作面应竖直放置,D 错误.2.【解析】选C.在复合场中沿直线运动时,带电粒子速度大小和方向都不变,只有电场时,粒子沿初速度方向的分速度不变,故t 1=t 21=t 2<t 3,C 正确.【变式备选】(·模拟)质量为m 的带电小球在正交的匀强电场、匀强磁场中做匀速圆周运动,轨道平面在竖直平面内,电场方向竖直向下,磁场方向垂直圆周所在平面向里,如下列图,由此可知( )A.小球带正电,沿顺时针方向运动B.小球带负电,沿顺时针方向运动C.小球带正电,沿逆时针方向运动D.小球带负电,沿逆时针方向运动【解析】选B.带电小球在复合场中做匀速圆周运动的条件是电场力和重力平衡,故电场力应竖直向上,那么小球带负电,洛伦兹力提供向心力,再根据左手定那么可以确定小球沿顺时针方向运动,故B 正确.3.【解析】选A.欲使电子沿直线从电场和磁场区域通过,那么qE=qvB,而电子流向上极板偏转,那么qE >qvB ,故应减小E 或增大B 、v.故A 正确,B 、C 、D 错误.4.【解析】选A.因为微粒做匀速直线运动,所以微粒所受合力为零,受力分析如下列图,微粒在重力、电场力和洛伦兹力作用下处于平衡状态,可知qE=mg,qvB 2mg =,得电场强度mg E q =,磁感应强度2mg B qv=,因此A 正确.5.【解析】选A 、B 、C.带电小球在复合场中运动一定受重力和电场力,是否受洛伦兹力需具体分析.A 选项中假设电场、磁场方向与速度方向垂直,那么洛伦兹力与电场力垂直,如果与重力的合力为零就会做直线运动.B 选项中电场力、洛伦兹力都向上,假设与重力合力为零,小球也会做直线运动.C 选项电场力斜向里侧上方,洛伦兹力向外侧下方,假设与重力合力为零,就会做直线运动.D 选项三个力合力不可能为零,因此此题选A 、B 、C.6.【解题指南】(1)求洛伦兹力时是求小球运动的合速度.(2)判定运动轨迹可用速度的合成与分解.(3)与F 平衡的力是洛伦兹力的分力.【解析】选A 、C 、D.洛伦兹力方向始终与小球运动速度方向垂直,不做功,故A 正确,B 错误;小球在竖直方向受向上的电场力与向下的重力,二者大小相等,试管向右匀速运动,小球的水平速度保持不变,那么竖直向上的洛伦兹力分量大小不变,小球竖直向上做加速运动,即小球做类平抛运动,故C 正确;小球竖直分速度增大,受水平向左的洛伦兹力分量增大,为维持试管匀速运动拉力F 应逐渐增大,D 正确. 3子在S 1和S 2两板间加速,那么要求场强的方向向下,那么S 1板的电势高于S 2板的电势.粒子在电场中加速,由动能定理有21mv qU 2=,在磁场中偏转,那么有mv r qB =,联立两式解得22Um r qB=,由此式可以看出只增大U 或只增大m 时,粒子的轨道半径都变大.8.【解析】(1)电子进入正交的电、磁场不发生偏转,那么满足400U U Bev e,B 2.510 T d v d-===⨯ (5分) (2)设电子通过场区偏转的距离为y 122 2 12011eU y at 1.110m 22md v -===⨯l (5分) 18k 11U E eEy ey 8.810 J 55 eV d -∆===⨯= (5分)×10-4×10-2 m 55 eV 9.【解析】(1)依题意,粒子经电场加速射入磁场时的速度为v,由21qU mv 2=①(2分) 得2qU v m=②(2分) (2)要使圆周半径最大,那么粒子的圆周轨迹应与AC 边相切,设圆周半径为R,由图中几何关系有R R L sin +=θ③(2分) 由洛伦兹力提供向心力,那么2v qvB m R=④(2分) 联立②③④解得(12)2Uqm B qL+=⑤(2分) (3)设粒子运动圆周半径为r,mv r qB =,当r 越小,最后一次打到AB 板的点越靠近A 端点,在磁场中圆周运动累积路程越大,时间越长.当r 为无穷小,经过n 个半圆运动,最后一次打到A 点.有: L n 2r =⑥(2分) 圆周运动周期:2r T vπ=⑦(2分) 最长的极限时间m T t n 2=⑧(2分) 由⑥⑦⑧式得:m L m t 22qUπ= (2分) 答案:(1)2qU m (2)(12)2Uqm qL +(3)L m 22qU π【总结提升】带电粒子在组合场中运动的分析方法(1)弄清组合场的情况,将粒子的运动分为不同的阶段,准确画出粒子的轨迹. (2)确定粒子在不同区域运动的规律.如电场中的加速类平抛运动、磁场中的圆周运动等,应用动能定理、运动的合成与分解、洛伦兹力提供向心力等规律列出各阶段方程.(3)将各阶段的运动联立起来,第一阶段的末速度就是第二阶段的初速度,根据各方程之间的关系求出问题的答案.10. 【解析】(1)设电荷到达OP 进入磁场前的瞬时速度为v,有:v=0v sin θ①(3分) (2)由动能定理,电场力做的功为:W E =222002mv 11mv mv 222tan -=θ②(4分) (3)设电荷在磁场中运动的半径为R ,由牛顿运动定律:qBv=2mv R③(1分) 依题意:OD =R ④(2分)有几何关系:CD OD = cos θ⑤(2分)有CD =v 0t⑥(1分) 又:v y =0v tan θ⑦(1分) 在y 方向:v y =qE t m ⑧(2分)联立可得:E B=v 0⑨(2分) 答案:(1)0v sin θ (2)202mv 2tan θ (3)v 0。

高三物理总复习复合场专题练习及答案

高三物理总复习复合场专题练习及答案

高三物理总复习:复合场参考答案与试题解析一、选择题1.(3分)如图所示,空间存在着由匀强磁场B和匀强电场E组成的正交电磁场,电场方向水平向左,磁场方向垂直纸面向里.有一带负电荷的小球P,从正交电磁场上方的某处自由落下,那么带电小球在通过正交电磁场时()A.一定作曲线运动B.不可能作曲线运动C.可能作匀速直线运动D.可能作匀加速直线运动考点:带电粒子在混合场中的运动.专题:共点力作用下物体平衡专题.分析:对小球受力分析后,得到合力的方向,根据曲线运动的条件进行判断.解答:解:小球进入两个极板之间时,受到向下的重力,水平向右的电场力和水平向左的洛伦兹力,若电场力与洛伦兹力受力平衡,由于重力的作用,小球向下加速,速度变大,洛伦兹力变大,洛伦兹力不会一直与电场力平衡,故合力一定会与速度不共线,故小球一定做曲线运动;故A正确,B错误;在下落过程中,重力与电场力不变,但洛伦兹力变化,导致合力也变化,则做变加速曲线运动.故CD均错误;故选A.点评:本题关键要明确洛伦兹力会随速度的变化而变化,故合力会与速度方向不共线,粒子一定做曲线运动.2.(3分)如图所示,在某空间同时存在着相互正交的匀强电场E匀强磁场B电场方向竖直向下,有质量分别为m1,m2的a,b两带负电的微粒,a电量为q1,恰能静止于场中空间的c点,b电量为q2,在过C点的竖直平面内做半径为r匀速圆周运动,在c点a、b相碰并粘在一起后做匀速圆周运动,则()A.a、b粘在一起后在竖直平面内以速率做匀速圆周运动B.a、b粘在一起后仍在竖直平面内做半径为r匀速圆周运动C.a、b粘在一起后在竖直平面内做半径大于r匀速圆周运动D.a、b粘在一起后在竖直平面内做半径为的匀速圆周运动考点:带电粒子在混合场中的运动;牛顿第二定律;向心力.专题:带电粒子在复合场中的运动专题.分析:粒子a、b受到的电场力都与其受到的重力平衡;碰撞后整体受到的重力依然和电场力平衡,洛伦兹力提供向心力,根据牛顿第二定律列式,再结合动量守恒定律列式求解.解答:解:粒子b受到的洛伦兹力提供向心力,有解得两个电荷碰撞过程,系统总动量守恒,有m2v=(m1+m2)v′解得整体做匀速圆周运动,有故选D.点评:本题关键是明确两个粒子的运动情况,根据动量守恒定律和牛顿第二定律列式分析计算.3.(3分)设空间存在竖直向下的匀强电场和垂直纸面向里的匀强磁场,如图所示,已知一离子在电场力和洛仑兹力的作用下,从静止开始自A点沿曲线ACB运动,到达B点时速度为零,C点是运动的最低点,忽略重力,以下说法正确的是()A.这离子必带正电荷B.A点和B点位于同一高度C.离子在C点时速度最大D.离子到达B点时,将沿原曲线返回A点考点:带电粒子在混合场中的运动.专题:带电粒子在复合场中的运动专题.分析:(1)由离子从静止开始运动的方向可知离子必带正电荷;(2)在运动过程中,洛伦兹力永不做功,只有电场力做功根据动能定理即可判断BC;(3)达B点时速度为零,将重复刚才ACB的运动.解答:解:A.离子从静止开始运动的方向向下,电场强度方向也向下,所以离子必带正电荷,A正确;B.因为洛伦兹力不做功,只有静电力做功,A、B两点速度都为0,根据动能定理可知,离子从A到B运动过程中,电场力不做功,故A、B位于同一高度,B正确;C.C点是最低点,从A到C运动过程中电场力做正功做大,根据动能定理可知离子在C点时速度最大,C 正确;D.到达B点时速度为零,将重复刚才ACB的运动,向右运动,不会返回,故D错误.故选:ABC.点评:本题主要考查了带电粒子在混合场中运动的问题,要求同学们能正确分析粒子的受力情况,再通过受力情况分析粒子的运动情况,要注意洛伦兹力永不做功,难度适中.4.(3分)回旋加速器是用来加速带电粒子的装置,如图所示.如果用同一回旋加速器分别加速氚核()和α粒子()比较它们所加的高频交流电源的周期和获得的最大动能的大小,有()A.加速氚核的交流电源的周期较大,氚核获得的最大动能也较大B.加速氚核的交流电源的周期较大,氚核获得的最大动能较小C.加速氚核的交流电源的周期较小,氚核获得的最大动能也较小D.加速氚核的交流电源的周期较小,氚核获得的最大动能较大考点:质谱仪和回旋加速器的工作原理.专题:带电粒子在磁场中的运动专题.分析:回旋加速器是通过电场进行加速,磁场进行偏转来加速带电粒子.带电粒子在磁场中运动的周期与交流电源的周期相同,根据T=比较周期.当粒子最后离开回旋加速器时的速度最大,根据qvB=m求出粒子的最大速度,从而得出最大动能的大小关系.解答:解:带电粒子在磁场中运动的周期与交流电源的周期相同,根据T=,知氚核(13H)的质量与电量的比值大于α粒子(24He),所以氚核在磁场中运动的周期大,则加速氚核的交流电源的周期较大.根据qvB=m得,最大速度v=,则最大动能E Km=mv2=,氚核的质量是α粒子的倍,氚核的电量是倍,则氚核的最大动能是α粒子的倍,即氚核的最大动能较小.故B正确,A、C、D错误.故选:B.点评:解决本题的关键知道带电粒子在磁场中运动的周期与交流电源的周期相同,以及会根据qvB=m求出粒子的最大速度.5.(3分)(2013•重庆)如图所示,一段长方体形导电材料,左右两端面的边长都为a和b,内有带电量为q的某种自由运动电荷.导电材料置于方向垂直于其前表面向里的匀强磁场中,内部磁感应强度大小为B.当通以从左到右的稳恒电流I时,测得导电材料上、下表面之间的电压为U,且上表面的电势比下表面的低.由此可得该导电材料单位体积内自由运动电荷数及自由运动电荷的正负分别为()A.,负B.,正C.,负D.,正考点:霍尔效应及其应用.专题:压轴题.分析:上表面的电势比下表面的低.知上表面带负电,下表面带正电,根据左手定则判断自由运动电荷的电性.抓住电荷所受的洛伦兹力和电场力平衡求出电荷的移动速度,从而得出单位体积内自由运动的电荷数.解答:解:因为上表面的电势比下表面的低,根据左手定则,知道移动的电荷为负电荷.因为qvB=q,解得v=,因为电流I=nqvs=nqvab,解得n=.故C正确,A、B、D错误.故选C.点评:解决本题的关键掌握左手定则判断洛伦兹力的方向,以及知道最终电荷在电场力和洛伦兹力作用下处于平衡.二、解答题6.在同时存在匀强电场和匀强磁场的空间中,取正交坐标系O﹣xyz(z轴正方向竖直向上)如图所示,已知电场方向沿z轴正方向,大小为E;磁场方向沿y轴正方向,磁感应强度大小为B.重力加速度为g,问:一质量为m、带电量为+q的质点从原点出发能否在坐标轴(x、y、z )上以速度v做匀速运动?若能,m、q、E、B、v及g应满什么关系?若不能,说明理由.考点:带电粒子在混合场中的运动.专题:带电粒子在复合场中的运动专题.分析:根据正电荷受到的电场力与电场线方向相同,受到洛伦兹力与磁场方向相垂直,结合受力平衡条件,即可求解.解答:解:已知带电质点受电场力的方向沿z轴正方向,大小为qE;质点受重力的方向沿z轴负方向,大小为mg (1)若质点在x轴上做匀速运动,则它受到的洛仑兹力必沿x轴正方向或负方向,即有:qvB+qE=mg 或qE=mg+qvB(2)若质点在y轴上做匀速运动,则它受到的洛仑兹力必为零,即有:qE=mg(3)若质点在z轴上做匀速运动,则它受到的洛仑兹力必平行于x轴,而电场力和重力都平行于z轴,三力的合力不可能为零,即质点不可能在z轴上做匀速运动.答:理由如上.点评:考查正电荷受到的电场力与洛伦兹力的方向,掌握左手定则的应用,注意与右手定则的区别.同时理解受力平衡条件的应用.7.如图(甲)所示为电视机中显像管的原理示意图,电子枪中的灯丝加热阴极而逸出电子,这些电子再经加速电场加速后,从O点进入偏转磁场中,经过偏转磁场后打到荧光屏MN上,使荧光屏发出荧光形成图象,不计逸出电子的初速度和重力.已知电子的质量为m、电荷量为e,加速电场的电压为U,偏转线圈产生的磁场分布在边长为l的正方形abcd区域内,磁场方向垂直纸面,且磁感应强度随时间的变化规律如图乙所示.在每个周期内磁感应强度都是从﹣B0均匀变化到B0.磁场区域的左边界的中点与O点重合,ab边与OO′平行,右边界bc与荧光屏之间的距离为s.由于磁场区域较小,且电子运动的速度很大,所以在每个电子通过磁场区域的过程中,可认为磁感应强度不变,即为匀强磁场,不计电子之间的相互作用.(1)求电子射出加速电场时的速度大小(2)为使所有的电子都能从磁场的bc边射出,求偏转线圈产生磁场的磁感应强度的最大值B0(3)荧光屏上亮线的最大长度是多少.考点:带电粒子在匀强电场中的运动;动能定理的应用.专题:压轴题;带电粒子在电场中的运动专题.分析:(1)根据动能定理求出电子射出加速电场时的速度大小.(2)根据几何关系求出临界状态下的半径的大小,结合洛伦兹力提供向心力求出磁感应强度的最大值.(3)粒子在磁场中做匀速圆周运动,出磁场做匀速直线运动,通过最大的偏转角,结合几何关系求出荧光屏上亮线的最大长度.解答:解:(1)设电子射出电场的速度为v,则根据动能定理,对电子加速过程有解得(2)当磁感应强度为B0或﹣B0时(垂直于纸面向外为正方向),电子刚好从b点或c点射出,设此时圆周的半径为R1.如图所示,根据几何关系有:R2=l2+(R﹣)2解得R=电子在磁场中运动,洛仑兹力提供向心力,因此有:,解得(3)根据几何关系可知,设电子打在荧光屏上离O′点的最大距离为d,则由于偏转磁场的方向随时间变化,根据对称性可知,荧光屏上的亮线最大长度为答:(1)电子射出加速电场时的速度大小为.(2)偏转线圈产生磁场的磁感应强度的最大值.(3)荧光屏上亮线的最大长度是.点评:考查电子受电场力做功,应用动能定理;电子在磁场中,做匀速圆周运动,运用牛顿第二定律求出半径表达式;同时运用几何关系来确定半径与已知长度的关系.8.(2009•重庆)如图,离子源A产生的初速为零、带电量均为e、质量不同的正离子被电压为U0的加速电场加速后匀速通过准直管,垂直射入匀强偏转电场,偏转后通过极板HM上的小孔S离开电场,经过一段匀速直线运动,垂直于边界MN进入磁感应强度为B的匀强磁场.已知HO=d,HS=2d,∠MNQ=90°.(忽略粒子所受重力)(1)求偏转电场场强E0的大小以及HM与MN的夹角φ;(2)求质量为m的离子在磁场中做圆周运动的半径;(3)若质量为4m的离子垂直打在NQ的中点S1处,质量为16m的离子打在S2处.求S1和S2之间的距离以及能打在NQ上的正离子的质量范围.考点:动能定理的应用;平抛运动;运动的合成和分解;带电粒子在匀强磁场中的运动.专题:压轴题.分析:(1)正离子被电压为U0的加速电场加速后的速度可以通过动能定理求出,而正离子垂直射入匀强偏转电场后,作类平抛运动,最终过极板HM上的小孔S离开电场,根据平抛运动的公式及几何关系即可求出电场场强E0,φ可以通过末速度沿场强方向和垂直电场方向的速度比求得正切值求解;(2)正离子进入磁场后在匀强磁场中作匀速圆周运动,由洛仑兹力提供向心力,根据向心力公式即可求得半径;(3)根据离子垂直打在NQ的位置及向心力公式分别求出运动的半径R1、R2,再根据几何关系求出S1和S2之间的距离,能打在NQ上的临界条件是,半径最大时打在Q上,最小时打在N点上,根据向心力公式和几何关系即可求出正离子的质量范围.解答:解:(1)正离子被电压为U0的加速电场加速后速度设为V1,则对正离子,应用动能定理有eU0=mV12,正离子垂直射入匀强偏转电场,作类平抛运动受到电场力F=qE0、产生的加速度为a=,即a=,垂直电场方向匀速运动,有2d=V1t,沿场强方向:Y=at2,联立解得E0=又tanφ=,解得φ=45°;(2)正离子进入磁场时的速度大小为V2,解得V2=正离子在匀强磁场中作匀速圆周运动,由洛仑兹力提供向心力,qV2B=,解得离子在磁场中做圆周运动的半径R=2;(3)根据R=2可知,质量为4m的离子在磁场中的运动打在S1,运动半径为R1=2,质量为16m的离子在磁场中的运动打在S2,运动半径为R2=2,又ON=R2﹣R1,由几何关系可知S1和S2之间的距离△S=﹣R1,联立解得△S=4(﹣1);由R′2=(2 R1)2+(R′﹣R1)2解得R′=R1,再根据R1<R<R1,解得m<m x<25m.答:(1)偏转电场场强E0的大小为,HM与MN的夹角φ为45°;(2)质量为m的离子在磁场中做圆周运动的半径为2;(3)S1和S2之间的距离为4(﹣1),能打在NQ上的正离子的质量范围为m<m x<25m.点评:本题第(1)问考查了带电粒子在电场中加速和偏转的知识(即电偏转问题),加速过程用动能定理求解,偏转过程用运动的合成与分解知识结合牛顿第二定律和运动学公式求解;第(2)问考查磁偏转知识,先求进入磁场时的合速度v,再由洛伦兹力提供向心力求解R;第(3)问考查用几何知识解决物理问题的能力.该题综合性强,难度大.9.(2009•中山市模拟)如图所示,虚线上方有场强为E的匀强电场,方向竖直向下,虚线上下有磁感应强度相同的匀强磁场,方向垂直纸面向外,ab是一根长为l的绝缘细杆,沿电场线放置在虚线上方的场中,b端在虚线上,将一套在杆上的带正电的小球从a端由静止释放后,小球先作加速运动,后作匀速运动到达b端,已知小球与绝缘杆间的动摩擦系数μ=0.3,小球重力忽略不计,当小球脱离杆进入虚线下方后,运动轨迹是半圆,圆的半径是,求带电小球从a到b运动过程中克服摩擦力所做的功与电场力所做功的比值.考点:带电粒子在匀强磁场中的运动;牛顿第二定律;向心力;带电粒子在匀强电场中的运动;带电粒子在混合场中的运动.专题:带电粒子在磁场中的运动专题.分析:根据对研究对象的受力分析,结合受力平衡条件,再根据牛顿第二定律,由洛伦兹力提供向心力,及几何关系,可求出小球在b处的速度,并由动能定理,即可求解.解答:解:小球在沿杆向下运动时,受力情况如图,向左的洛仑兹力F,向右的弹力N,向下的电场力qE,向上的摩擦力fF=Bqv,N=F=Bqv∴f=μN=μBqv当小球作匀速运动时,qE=f=μBqV b小球在磁场中作匀速圆周运动时又R=,∴v b=小球从a运动到b过程中,由动能定理得所以答:带电小球从a到b运动过程中克服摩擦力所做的功与电场力所做功的比值为.点评:考查牛顿第二定律、动能定理等规律的应用,学会受力分析,理解洛伦兹力提供向心力.10.(2009•武汉模拟)如图,两个共轴的圆筒形金属电极,外电极接地,其上均匀分布着平行于轴线的四条狭缝a、b、c和d,外筒的外半径为r.在圆筒之外的足够大区域中有平行于轴线方向的均匀磁场,磁感应强度的大小为B.在两极间加上电压,使两圆筒之间的区域内有沿半径向外的电场.一质量为m、带电量为+q的粒子,从紧靠内筒且正对狭缝a的S点出发,初速为零.如果该粒子经过一段时间的运动之后恰好又回到出发点S,则两电极之间的电压U应是多少?(不计重力,整个装置在真空中)考点:带电粒子在匀强磁场中的运动;带电粒子在匀强电场中的运动.专题:带电粒子在磁场中的运动专题.分析:带电粒子从S点出发,在两筒之间的电场作用下加速,沿径向穿过狭缝a而进入磁场区,在洛伦兹力作用下做匀速圆周运动.粒子再回到S点的条件是能沿径向穿过狭缝d.只要穿过了d,粒子就会在电场力作用下先减速,再反向加速,经d重新进入磁场区,然后粒子以同样方式经过c、b,再回到S点.解答:解:如图所示,设粒子进入磁场区的速度大小为V,根据动能定理,有Uq=mv2;设粒子做匀速圆周运动的半径为R,由洛伦兹力公式和牛顿第二定律,有:Bqv=m由上面分析可知,要回到S点,粒子从a到d必经过圆周,所以半径R必定等于筒的外半径r,即R=r.由以上各式解得:U=;答:两极间的电压为.点评:本题看似较为复杂,实则简单;带电粒子在磁场运动解决的关键在于要先明确粒子可能的运动轨迹,只要能确定圆心和半径即可由牛顿第二定律及向心力公式求得结果.11.(2004•江苏)汤姆生用来测定电子的比荷(电子的电荷量与质量之比)的实验装置如图所示,真空管内的阴极K发出的电子(不计初速、重力和电子间的相互作用)经加速电压加速后,穿过A′中心的小孔沿中心轴O1O的方向进入到两块水平正对放置的平行极板P和P′间的区域.当极板间不加偏转电压时,电子束打在荧光屏的中心O点处,形成了一个亮点;加上偏转电压U后,亮点偏离到O′点,(O′与O点的竖直间距为d,水平间距可忽略不计.此时,在P和P′间的区域,再加上一个方向垂直于纸面向里的匀强磁场.调节磁场的强弱,当磁感应强度的大小为B 时,亮点重新回到O点.已知极板水平方向的长度为L1,极板间距为b,极板右端到荧光屏的距离为L2(如图所示).(1)求打在荧光屏O点的电子速度的大小.(2)推导出电子的比荷的表达式.考点:带电粒子在混合场中的运动;牛顿第二定律;向心力;带电粒子在匀强电场中的运动.专题:计算题;压轴题;带电粒子在电场中的运动专题.分析:当电子受到电场力与洛伦兹力平衡时,做匀速直线运动,因此由电压、磁感应强度可求出运动速度.电子在电场中做类平抛运动,将运动分解成沿电场强度方向与垂直电场强度方向,然后由运动学公式求解.电子离开电场后,做匀速直线运动,从而可以求出偏转距离.解答:(1)当电子受到的电场力与洛沦兹力平衡时,电子做匀速直线运动,亮点重新回复到中心O点,设电子的速度为v,则evB=eE得即(2)当极板间仅有偏转电场时,电子以速度v进入后,竖直方向作匀加速运动,加速度为电子在水平方向作匀速运动,在电场内的运动时间为这样,电子在电场中,竖直向上偏转的距离为离开电场时竖直向上的分速度为电子离开电场后做匀速直线运动,经t2时间到达荧光屏t2时间内向上运动的距离为这样,电子向上的总偏转距离为可解得.点评:考查平抛运动处理规律:将运动分解成相互垂直的两方向运动,因此将一个复杂的曲线运动分解成两个简单的直线运动,并用运动学公式来求解.12.如图所示,M、N为两块带等量异种电荷的平行金属板,S1、S2为板上正对的小孔,N板右侧有两个宽度均为d的匀强磁场区域,磁感应强度大小均为B,方向分别垂直于纸面向里和向外,磁场区域右侧有一个荧光屏,取屏上与S1、S2共线的O点为原点,向下为正方向建立x轴.板左侧电子枪发射出的热电子经小孔S1进入两板间,电子的质量为m,电荷量为e,初速度可以忽略.求:(1)当两板间电势差为U0时,求从小孔S2射出的电子的速度v0;(2)两金属板间电势差U在什么范围内,电子不能穿过磁场区域而打到荧光屏上;(3)电子打到荧光屏上的位置坐标x和金属板间电势差U的函数关系.考点:带电粒子在匀强磁场中的运动;电势差;带电粒子在匀强电场中的运动.专题:带电粒子在磁场中的运动专题.分析:带电粒子在电场中被直线加速,由动能定理可求出粒子被加速后的速度大小,当进入匀强磁场中在洛伦兹力作用下做匀速圆周运动,要使粒子能打在荧光屏上离O点最远,则粒子必须从磁场中垂直射出,由于粒子已是垂直射入磁场,所以由磁感应强度大小相等,方向相反且宽度相同得粒子在两种磁场中运动轨迹是对称的,在磁场中正好完成半个周期,则运动圆弧的半径等于磁场宽度.若不能打到荧光屏,则半径须小于磁场宽度,粒子就不可能通过左边的磁场,也就不会打到荧光屏.所以运动圆弧的半径大于或等于磁场宽度是粒子打到荧光屏的前提条件.可设任一圆弧轨道半径,由几何关系可列出与磁场宽度的关系式,再由半径公式与加速公式可得出打到荧光屏上的位置坐标x和金属板间电势差U的函数关系.解答:解:(1)根据动能定理,得:解得:(2)欲使电子不能穿过磁场区域而打在荧光屏上,应有r<d而:,由此即可解得:(3)若电子在磁场区域做圆周运动的轨道半径为r,穿过磁场区域打在荧光屏上的位置坐标为x,则由轨迹图可得:,注意到:和:所以,电子打到荧光屏上的位置坐标x和金属板间电势差U的函数关系为:答:(1)当两板间电势差为U0时,求从小孔S2射出的电子的速度v0为;(2)两金属板间电势差U在范围内,电子不能穿过磁场区域而打到荧光屏上;(3)电子打到荧光屏上的位置坐标x和金属板间电势差U的函数关系为.点评:题中隐含条件是:粒子能打到荧光屏离O点最远的即为圆弧轨道半径与磁场宽度相等时的粒子.13.如图所示,在地面附近有一范围足够大的互相正交的匀强电场和匀强磁场.匀强磁场的磁感应强度为B,方向水平并垂直纸面向外,电场沿水平方向,一个质量为m、带电量为﹣q的带电微粒在此区域沿与水平方向成45°斜向上做匀速直线运动,如图所示(重力加速度为g).求:(1)电场强度的大小和方向及带电微粒的速度大小;(2)若某时刻微粒运动到场中距地面高度为H的P点时,将电场方向改成竖直向下,微粒至少须经多长时间运动到距地面最高点?(3)微粒运动P点时,突然撤去磁场,电场强度不变,则该微粒运动中距地面的最大高度是多少?考点:带电粒子在匀强磁场中的运动.专题:带电粒子在磁场中的运动专题.分析:(1)带电粒子在电场和磁场及重力场能做匀速直线运动,则有三力合力为零,从而根据平衡条件可确定电场强度的大小与方向;(2)由粒子所受洛伦兹力提供向心力,从而求出运动圆弧的半径与周期,再根据几何关系来确定圆弧最高点与地面的高度及运动时间;(3)当撤去磁场时,粒子受到重力与电场力作用,从而做曲线运动.因此此运动可看成竖直方向与水平方向两个分运动,运用动能定理可求出竖直的高度,最终可算出结果.解答:解:(1)微粒受力分析如图,根据平衡条件可知电场力方向向右,电场力大小为:qE=mg则E=,方向水平向左;qvB=mg则有:v=;。

高二物理【磁场】复合场练习题 带解析

高二物理【磁场】复合场练习题 带解析

班级姓名学号高二物理第三章《磁场》复合场练习题一、选择题:1、一个带正电荷的微粒(重力不计)穿过图中匀强电场和匀强磁场区域时,恰能沿直线运动,则欲使电荷向下偏转,应采用的办法是()A.增大电荷质量.B.增大电荷电量.C.减少入射速度.D.增大磁感应强度.2、如图所示,在真空中匀强电场的方向竖直向下,匀强磁场的方向垂直纸面向里,三个油滴a、b、c带有等量同种电荷,其中a静止,b向右做匀速运动,c向左做匀速运动.比较它们的重力G a、G b、G c的关系,正确的是( )A.G a最大B.G b最大C.G c最大D.G c最小3、如图所示,空间的某一区域内存在着相互垂直的匀强电场和匀强磁场,一个带电粒子以某一初速度由A点进入这个区域并沿直线运动,从C点离开场区;如果这个场区只有电场,则粒子从B点离开场区;如果这个区域只有磁场,则这个粒子从D点离开场区。

设粒子在上述三种情况下,从A到B、从A到C和从A到D所用的时间分别是t1、t2和t3,比较t1、t2、和t3的大小,则()A、t1=t2=t3B、t1=t2<t3C、t1<t2=t3D、t1<t2<t34、在图中虚线所示的区域存在匀强电场和匀强磁场。

取坐标如图。

一带电粒子沿x 轴正方向进入此区域,在穿过此区域的过程中运动方向始终不发生偏转。

不计重力的影响,电场强度E 和磁感强度B 的方向可能是( )A . E 和B 都沿x 轴正方向 B . E 沿y 轴正向,B 沿z 轴正向C . E 沿x 轴正向,B 沿y 轴正向D .E 、B 都沿z 轴正向5、一长方形金属块放在匀强磁场中,将金属块通以电流,磁场方向和电流方向如图所示,则金属块两表面M 、N 的电势高低情况是( ) A .N M ϕϕ<. B .N M ϕϕ=. C .N M ϕϕ>. D .无法比较.6、设空间存在竖直向下的匀强电场和垂直纸面向里的匀强磁场,如图所示,已知一离子在电场力和洛伦兹力的作用下,从静止开始自A 点沿曲线ACB 运动,到达B 点时速度为零,C 点是运动的最低点,忽略重力,以下说法中正确的是( ) A .这离子必带正电荷.B .A 点和B 点位于同一高度.C .离子在C 点时速度最大.D .离子到达B 点后,将沿原曲线返回A 点.二、填空题:7、一个带电微粒在图示的正交匀强电场和匀强磁场中在竖直面内做匀速圆周运动。

高二物理专题练习-带电粒子在复合场中的运动大题专题(详细解答)

高二物理专题练习-带电粒子在复合场中的运动大题专题(详细解答)

专题二:带电粒子在复合场中的运动(1)姓名______________1.如图所示,在x轴上方有匀强电场,场强为E;在x轴下方有匀强磁场,磁感应强度为B,方向如图,在x轴上有一点M,离O点距离为L.现有一带电量为十q的粒子,使其从静止开始释放后能经过M点.如果把此粒子放在y轴上,其坐标应满足什么关系?(重力忽略不计)2.如图所示,在宽l的范围内有方向如图的匀强电场,场强为E,一带电粒子以速度v垂直于电场方向、也垂直于场区边界射入电场,不计重力,射出场区时,粒子速度方向偏转了θ角,去掉电场,改换成方向垂直纸面向外的匀强磁场,此粒子若原样射入磁场,它从场区的另一侧射出时,也偏转了θ角,求此磁场的磁感强度B.3.如图所示,在直角坐标系的第Ⅱ象限和第Ⅳ象限中的直角三角形区域内,分布着磁感应强度均为B=5.0×10-3T的匀强磁场,方向分别垂直纸面向外和向里.质量为m=6.64×10-27㎏、电荷量为q=+3.2×10-19C的α粒子(不计α粒子重力),由静止开始经加速电压为U=1205V的电场(图中未画出)加速后,从坐标点M(-4,2)处平行于x轴向右运动,并先后通过两个匀强磁场区域.(1)请你求出α粒子在磁场中的运动半径;(2)你在图中画出α粒子从直线x=-4到直线x=4之间的运动轨迹,并在图中标明轨迹与直线x=4交点的坐标;(3)求出α粒子在两个磁场区域偏转所用的总时间.专题二:带电粒子在复合场中的运动(4)姓名______________1.如图所示,竖直平面xOy 内存在水平向右的匀强电场,场强大小E=10N/c ,在y ≥0的区域内还存在垂直于坐标平面向里的匀强磁场,磁感应强度大小B=0.5T 一带电量0.2C q =+、质量0.4kg m =的小球由长0.4m l =的细线悬挂于P 点小球可视为质点,现将小球拉至水平位置A 无初速释放,小球运动到悬点P 正下方的坐标原点O 时,悬线突然断裂,此后小球又恰好能通过O 点正下方的N 点.(g=10m /s 2),求: (1)小球运动到O 点时的速度大小;(2)悬线断裂前瞬间拉力的大小; (3)ON 间的距离2.两块平行金属板MN 、PQ 水平放置,两板间距为d 、板长为l ,在紧靠平行板右侧的正三角形区域内存在着垂直纸面的匀强磁场,三角形底边BC 与PQ 在同一水平线上,顶点A 与MN 在同一水平线上,如图所示.一个质量为m 、电量为+q 的粒子沿两板中心线以初速度v 0水平射入,若在两板间加某一恒定电压,粒子离开电场后垂直AB 边从D 点进入磁场,BD=41AB ,并垂直AC 边射出(不计粒子的重力).求: (1)两极板间电压;(2)三角形区域内磁感应强度; (3)若两板间不加电压,三角形区域内的磁场方向垂直纸面向外.要使粒子进入磁场区域后能从AB 边射出,试求所加磁场的磁感应强度最小值.专题二:带电粒子在复合场中的运动——参考答案(1)1、解析:由于此带电粒子是从静止开始释放的,要能经过M点,其起始位置只能在匀强电场区域.物理过程是:静止电荷位于匀强电场区域的y轴上,受电场力作用而加速,以速度v进入磁场,在磁场中受洛仑兹力作用作匀速圆周运动,向x轴偏转.回转半周期过x轴重新进入电场,在电场中经减速、加速后仍以原速率从距O点2R处再次超过x轴,在磁场回转半周后又从距O点4R处飞越x轴如图所示(图中电场与磁场均未画出)故有L=2R,L=2×2R,L=3×2R即 R=L/2n,(n=1、2、3……)……………①设粒子静止于y轴正半轴上,和原点距离为h,由能量守恒得mv2/2=qEh……②对粒子在磁场中只受洛仑兹力作用而作匀速圆周运动有:R=mv/qB………③解①②③式得:h=B2qL2/8n2mE (n=l、2、3……)2、解析:粒子在电场中运行的时间t= l/v;加速度 a=qE/m;它作类平抛的运动.有tgθ=at/v=qEl/mv2………①粒子在磁场中作匀速圆周运动由牛顿第二定律得:qvB=mv2/r,所以r=mv/qB 又:sinθ=l/r=lqB/mv………②由①②两式得:B=Ecosθ/v 3、解析:(1)粒子在电场中被加速,由动能定理得221mvqU=α粒子在磁场中偏转,则牛顿第二定律得rvmqvB2=联立解得2102.312051064.62005.01211927=⨯⨯⨯⨯==--qmUBr(m)(2)由几何关系可得,α粒子恰好垂直穿过分界线,故正确图象为(3)带电粒子在磁场中的运动周期qBmvrTππ22==α粒子在两个磁场中分别偏转的弧度为4π,在磁场中的运动总时间631927105.6105102.321064.614.3241----⨯=⨯⨯⨯⨯⨯⨯===qBmTtπ(s)OM2-22-4 4 x/my/m-2vBB (4,2-)(4) 1、解:(1)小球从A 运到O 的过程中,根据动能定理:212mv mgl qEl =- ① 则得小球在O 点速度为:2/s v m == ② (2)小球运到O 点绳子断裂前瞬间,对小球应用牛顿第二定律:2v F T mg f m l=-==向洛 ③f Bvq =洛 ④由③、④得:28.2mv T mg Bvq N l=++= ⑤ (3)绳断后,小球水平方向加速度25/s x F Eq a m m===电 ⑥ 小球从O 点运动至N 点所用时间0.8t s aυ∆== ⑦ON 间距离21 3.2m 2h gt == ⑧2、 解:⑴垂直AB 边进入磁场,由几何知识得:粒子离开电场时偏转角为30°∵0.v lmd qu v y =0v v tg y=θ ∴qlmdv u 332= 由几何关系得:030cos dl AB =在磁场中运动半径d l r AB 23431==∴ 121r mv qv B = ︒=30cos 0v v∴qdmv B 3401= 方向垂直纸面向里⑶当粒子刚好与BC 边相切时,磁感应强度最小,由几何知识知粒子的运动半径r 2为:42d r = ………( 2分 ) 2202r mv qv B = ∴qd mv B 024=即:磁感应强度的最小值为qdmv 0422(12分)如图所示的坐标系,x轴沿水平方向,y轴沿竖直方向。

高中物理带电粒子在复合场中的运动题20套(带答案)及解析

高中物理带电粒子在复合场中的运动题20套(带答案)及解析

一、带电粒子在复合场中的运动专项训练1.下图为某种离子加速器的设计方案.两个半圆形金属盒内存在相同的垂直于纸面向外的匀强磁场.其中MN 和M N ''是间距为h 的两平行极板,其上分别有正对的两个小孔O 和O ',O N ON d ''==,P 为靶点,O P kd '=(k 为大于1的整数)。

极板间存在方向向上的匀强电场,两极板间电压为U 。

质量为m 、带电量为q 的正离子从O 点由静止开始加速,经O '进入磁场区域.当离子打到极板上O N ''区域(含N '点)或外壳上时将会被吸收。

两虚线之间的区域无电场和磁场存在,离子可匀速穿过。

忽略相对论效应和离子所受的重力。

求:(1)离子经过电场仅加速一次后能打到P 点所需的磁感应强度大小; (2)能使离子打到P 点的磁感应强度的所有可能值;(3)打到P 点的能量最大的离子在磁场中运动的时间和在电场中运动的时间。

【来源】2015年全国普通高等学校招生统一考试物理(重庆卷带解析) 【答案】(1)22qUm B =(2)22nqUm B =,2(1,2,3,,1)n k =-L (3)2222(1)t qum k -磁,22(1)=k m t h qU-电 【解析】 【分析】带电粒子在电场和磁场中的运动、牛顿第二定律、运动学公式。

【详解】(1)离子经电场加速,由动能定理:212qU mv =可得2qUv m=磁场中做匀速圆周运动:2v qvB m r=刚好打在P 点,轨迹为半圆,由几何关系可知:2kd r =联立解得B =; (2)若磁感应强度较大,设离子经过一次加速后若速度较小,圆周运动半径较小,不能直接打在P 点,而做圆周运动到达N '右端,再匀速直线到下端磁场,将重新回到O 点重新加速,直到打在P 点。

设共加速了n 次,有:212n nqU mv =2nn nv qv B m r =且:2n kd r =解得:B =,要求离子第一次加速后不能打在板上,有12d r >且:2112qU mv =2111v qv B m r =解得:2n k <,故加速次数n 为正整数最大取21n k =- 即:B =2(1,2,3,,1)n k =-L ;(3)加速次数最多的离子速度最大,取21n k =-,离子在磁场中做n -1个完整的匀速圆周运动和半个圆周打到P 点。

【物理】高考必刷题物理带电粒子在复合场中的运动题

【物理】高考必刷题物理带电粒子在复合场中的运动题

一、带电粒子在复合场中的运动专项训练1.两块足够大的平行金属极板水平放置,极板间加有空间分布均匀、大小随时间周期性变化的电场和磁场,变化规律分别如图1、图2所示(规定垂直纸面向里为磁感应强度的正方向)。

在t=0时刻由负极板释放一个初速度为零的带负电的粒子(不计重力),若电场强度E0、磁感应强度B0、粒子的比荷qm均已知,且2mtqBπ=,两板间距2210mEhqBπ=。

(1)求粒子在0~t0时间内的位移大小与极板间距h的比值。

(2)求粒子在板板间做圆周运动的最大半径(用h表示)。

(3)若板间电场强度E随时间的变化仍如图1所示,磁场的变化改为如图3所示,试画出粒子在板间运动的轨迹图(不必写计算过程)。

【来源】带电粒子的偏转【答案】(1)粒子在0~t0时间内的位移大小与极板间距h的比值115sh=(2)粒子在极板间做圆周运动的最大半径225hRπ=(3)粒子在板间运动的轨迹如图:【解析】【分析】【详解】(1)设粒子在0~t0时间内运动的位移大小为s121012s at =① 0qEa m=②又已知200200102,mE m t h qB qB ππ== 联立解得:115s h = (2)解法一粒子在t 0~2t 0时间内只受洛伦兹力作用,且速度与磁场方向垂直,所以粒子做匀速圆周运动。

设运动速度大小为v 1,轨道半径为R 1,周期为T ,则10v at =21101mv qv B R =联立解得:15h R π= 又002mT t qB π== 即粒子在t 0~2t 0时间内恰好完成一个周期的圆周运动。

在2t 0~3t 0时间内,粒子做初速度为v 1的匀加速直线运动,设位移大小为s 22210012s v t at =+解得:235s h =由于s 1+s 2<h ,所以粒子在3t 0~4t 0时间内继续做匀速圆周运动,设速度大小为v 2,半径为R 2,有:210v v at =+22202mv qv B R =解得225h R π=由于s 1+s 2+R 2<h ,粒子恰好又完成一个周期的圆周运动。

高中物理高分突破 复合场 物理大题

高中物理高分突破 复合场 物理大题

08高考最新模拟试题汇编之复合场1.如图所示,光滑绝缘、相互垂直的固定挡板PO 、OQ 竖直放置于匀强电场E 中,场强方向水平向左且垂直于挡板PO .图中A 、B 两球(可视为质点)质量相同且带同种正电荷.当A 球受竖直向下推力F 作用时,A 、B 两球均紧靠挡板处于静止状态,这时两球之间的距离为L .若使小球A 在推力F 作用下沿挡板PO 向O 点移动一小段距离后,小球A 与B 重新处于静止状态.在此过程中(AC ) A.A 球对B 球作用的静电力减小 B.A 球对B 球作用的静电力增大 C.墙壁PO 对A 球的弹力不变 D.两球之间的距离减小则F 增大2.如图所示,一束电子以大小不同的速率沿图示方向飞入横截面一正方形的匀强磁场区,下列判断正确的是:( .B )A.电子在磁场中运动时间越长,其轨迹线越长B.电子在磁场中运动时间越长,其轨迹线所对应的圆心角越大C.在磁场中运动时间相同的电子,其轨迹线一定重合D.电子的速率不同,它们在磁场中运动时间一定不相同3.如图所示,空间的虚线框内有匀强电场,AA /、BB /、CC /是该电场的三个等势面,相邻等势面间的距离为0.5cm,其中BB /为零势能面.一个质量为m ,带电量为+q 的粒子沿AA /方向以初动能E k ,自图中的P 点进入电场,刚好从C /点离开电场。

已知PA /=2cm 。

粒子的重力忽略不计。

下列说法中正确的是:(A )A.该粒子到达C /点时的动能是2E k , B.该粒子通过等势面BB /时的动能是1.25E k , C.该粒子在P 点时的电势能是E k , D.该粒子到达C /点时的电势能是0.5E k ,4.一带电粒子射入点电荷+Q 的电场中,仅在电场力作用下, 运动轨迹如图所示,则下列说法中正确的是 CDA .运动粒子可能带正电B .运动粒子一定是从A 运动到BC .粒子在A 、B 间运动过程中加速度先变大后变小D .粒子在A 、B 间运动过程中电势能先变小后变大5.不考虑重力作用,从t =0时刻开始,下列各种随时间变化的电场中哪些能使原来静止的带电粒子做单向直线运动(A 、C ,)6.如图所示,光滑的水平桌面放在方向竖直向下的匀强磁场中,桌面上平放着一根一端开口、内壁光滑的试管,试管底部有一P QFABOEA /B /C / C B Av v 0PBF带电小球.在水平拉力F作用下,试管向右匀速运动,带电小球能从试管口处飞出,关于带电小球及其在离开试管前的运动,下列说法中正确的是(ABD )A.小球带正电B.小球运动的轨迹是抛物线C.洛伦兹力对小球做正功D.维持试管匀速运动的拉力F应逐渐增大7.如图所示为某电场中的一条电场线,一带电q、质量为m粒子仅在电场力的作用下,以初速度v沿ab方向从a点运动到b点,到达b点时速度为2v。

高二物理复合场试题

高二物理复合场试题

高二物理复合场试题1.(12分)如图所示,匀强电场场强E=4V/m,方向水平向左,匀强磁场的磁感应强度B=2T,方向垂直纸面向里。

质量m=1kg的带正电小物体A,从M点沿粗糙、绝缘的竖直墙壁无初速下滑,它滑行h=0.8m到N点时脱离墙壁做曲线运动,在通过P点瞬时,A受力平衡,此时其速度与水平方向成θ=45°角,且P点与M点的高度差为H=1.6m,当地重力加速度g取10m/s2。

求:;(1)A沿墙壁下滑时,克服摩擦力做的功Wf(2)P点与M点的水平距离s。

=-6J,(2) s=0.6m【答案】(1)Wf【解析】,由题意分析物体受力情况,物体在N点恰脱离墙面,有:(1)设物体滑到N点时速度为v1①M→N过程,由动能定理有:②联解①②并代入数据得:=-6J,即克服摩擦力做功6J。

③Wf(2)设物体运动到P点时速度为v,由题意和左手定则知物体在P点受力平衡,有:2④⑤N→P过程,由动能定理知:⑥联解④⑤⑥并代入数据得:s=0.6m ⑦评分参考意见:本题满分12分,其中①②④⑤⑥式各2分,③⑦式各1分;若有其他合理解法且答案正确,可同样给分。

【考点】带电物体在复合场中的运动和动能定理2.如图所示,在x<0且y<0的区域内存在匀强磁场,磁场方向垂直于xy平面向里.磁感应强度大小为B,在x>0且y<0的区域内存在沿y轴正方向的匀强电场. 一质量为m、电荷量为q的带电粒子从x轴上的M点沿y轴负方向垂直射入磁场,结果带电粒子从y轴的N点射出磁场而进入匀强电场,经电场偏转后打到x轴上的P点,已知===l。

不计带电粒子所受重力,求:(1)带电粒子进入匀强磁场时速度的大小;(2)带电粒子从射入匀强磁场到射出匀强电场所用的时间;(3)匀强电场的场强大小.【答案】(1)(2)(3)【解析】(1)设带电粒子射入磁场时的速度大小为v,由带电粒子射入匀强磁场的方向和几何关系可知,带电粒子在磁场中做圆周运动,圆心位于坐标原点,半径为l。

高考必做大题03:带电粒子与复合场

高考必做大题03:带电粒子与复合场

高考必做大题03:带电粒子与复合场一、综合题1.如图所示,大量的同种粒子从静止经电压U1加速后。

沿虚线方向射入正交的电磁场之中,恰好做直线运动,电场强度方向竖直向下,磁感应强度B1=0.2T。

方向垂直纸面向里,两平行板之间的距离d=6cm。

平行板右侧有一圆形磁场区域,圆心O在虚线上、半径r=10cm,圆内有垂直纸面向里的磁场B,B的大小可以调控。

边界上有磁场。

圆形区域的上方安装有荧光屏,荧光屏与虚线平行。

与O的距离l=20√3cm,M、N是荧光屏上两点,MO连线与屏垂直,N到M点之间的距离L=20cm。

已知加在平行板间的电压U2=1.2×104V,粒子的比荷为q m=108C/kg。

不计重力的影响,求:(1)加速电场U1大小;(2)要使粒子打到荧光屏上MN之间,圆形区域内的磁场B范围。

2.如图,在Oxy平面的ABCD区域内,存在两个场强大小均为E的匀强电场I和Ⅱ,两电场的边界均是边长为L的正方形,图中OEFG区域也为边长为L的正方形且无电场。

已知电子的质量为m,电荷量为e,不计电子所受重力。

求:(1)在该区域AB边的中点处由静止释放电子,求电子离开ABCD区域的位置坐标(x,y);(2)在电场I区域内适当位置由静止释放电子,电子恰能从ABCD区域左下角D处离开,求所有释放点的位置坐标x、y间满足的关系;(3)若将左侧电场Ⅱ整体水平向右移动L3,仍使电子从ABCD区域左下角D处离开(D不随电场移动),求在电场I区域内由静止释放电子的所有位置x、y满足的关系。

3.如图所示,一水平分界线KL把足够长的竖直边界NS和MT之间的空间分为上下两部分,KL上方区域存在竖直向下的匀强电场,KL下方区域存在垂直纸面向外的匀强磁场。

在NS和MT边界上,距KL高ℎ处分别有P、Q两点。

一电荷量为q、质量为m的带正电的粒子(重力不计)以初速度v0从P点垂直于边界NS进入匀强电场,经偏转后从边界KL进入匀强磁场,并恰好不从边界NS射出。

物理复合场试题及答案

物理复合场试题及答案

物理复合场试题及答案一、选择题(每题3分,共30分)1. 在复合场中,一个带电粒子受到的电场力和磁场力的方向关系是()。

A. 相反B. 垂直C. 相同D. 无法确定2. 一个带正电的粒子在垂直于磁场方向的电场中做匀速圆周运动,以下说法正确的是()。

A. 粒子受到的电场力提供向心力B. 粒子受到的磁场力提供向心力C. 粒子受到的电场力和磁场力的合力提供向心力D. 粒子受到的力相互抵消3. 在复合场中,一个带电粒子做螺旋运动,其轨迹半径与哪些因素有关?()A. 粒子的电荷量B. 粒子的质量C. 磁场的强度D. 所有以上因素4. 一个带电粒子在复合场中的运动轨迹是直线,可以推断出()。

A. 粒子只受到电场力作用B. 粒子只受到磁场力作用C. 粒子受到的电场力和磁场力相互抵消D. 粒子受到的电场力和磁场力方向相反5. 在复合场中,一个带电粒子受到的电场力和磁场力大小相等,其运动状态可能是()。

A. 静止B. 匀速直线运动C. 匀速圆周运动D. 螺旋运动6. 一个带电粒子在复合场中做匀速圆周运动,其速度大小保持不变,这是因为()。

A. 电场力做功B. 磁场力不做功C. 电场力和磁场力大小相等D. 粒子的动能不变7. 在复合场中,一个带电粒子的轨迹是抛物线,可以推断出()。

A. 粒子只受到电场力作用B. 粒子只受到磁场力作用C. 粒子受到的电场力和磁场力方向相反D. 粒子受到的电场力和磁场力方向相同8. 一个带电粒子在复合场中做匀速直线运动,以下说法错误的是()。

A. 粒子受到的电场力和磁场力相互抵消B. 粒子受到的电场力和磁场力大小相等C. 粒子受到的电场力和磁场力方向相反D. 粒子受到的电场力和磁场力方向相同9. 在复合场中,一个带电粒子受到的电场力和磁场力的合力为零,其运动状态可能是()。

A. 静止B. 匀速直线运动C. 匀速圆周运动D. 加速运动10. 一个带电粒子在复合场中的运动轨迹是椭圆,可以推断出()。

高三物理复合场练习题

高三物理复合场练习题

高三物理复合场练习题1. 题目描述:一个质点受到一个复合场的影响,该复合场由均匀磁场和均匀电场组成。

假设质点带电量为q,质量为m,在磁场的作用下,质点受到的磁力为Fm,电场的作用下受到的电力为Fe。

在该复合场中,质点受到的合力为F,合力的方向与合力的大小有关的变量为x。

2. 题目一:若磁场B与电场E垂直且大小相等,推导出合力F与x的关系式。

解答:由磁场B与电场E垂直且大小相等可得:Fm=qvBsinθ=qvBFe=qE其中,v为质点的速度,θ为速度与磁场方向的夹角。

根据合力的定义,有:F= Fm+Fe=qvB+qE根据叉乘向量性质,可将合力F写成向量形式:F=q(vBsinθ+E)由此可得合力F与变量x的关系式为:F=q(vBsinθ+E)x3. 题目二:若磁场B与电场E的方向相同,推导出合力F与x的关系式。

解答:由磁场B与电场E的方向相同可得:Fm=qvBsinθ=qvBFe=qE根据合力的定义,有:F= Fm+Fe=qvB+qE根据变量x的定义,有:x=vt其中,t为质点运动时间。

代入F=q(vBsinθ+E)x,得:F=q(vBsinθ+Et)综上所述,当磁场B与电场E的方向相同时,合力F与变量x的关系式为:F=q(vBsinθ+Et)4. 题目三:若质点的速度v与弦的夹角θ随时间t的变化规律为:v=a+bt,θ=ωt,推导出合力F与x的关系式。

解答:由题可知:v=a+bt,θ=ωt其中,a和b为常量,ω为角速度。

根据合力的定义,有:Fm=qvBsinθ=qvBsin(ωt)根据合力的定义,有:Fm=qvBsinθ=qvBsin(ωt)根据变量x的定义,有:x=vt即x=(a+bt)t=at+bt²代入F=q(vBsinθ+E)x,得:F=q(vBsinθ+E)(at+bt²)综上所述,当质点的速度v与弦的夹角θ随时间t的变化规律为v=a+bt、θ=ωt时,合力F与变量x的关系式为:F=q(vBsinθ+E)(at+bt²)通过以上练习题,我们能够更好地理解复合场的概念和其对质点受力的影响。

高一物理复合场试题

高一物理复合场试题

高一物理复合场试题射入一水平方向的匀强电场中,质点运动到B点1.一带电质点从图中的A点竖直向上以速度v时,速度方向变为水平,已知质点质量为m,带电荷量为q,A、B间距离为L,且AB连线与水平方向成θ=37°角,质点到达B后继续运动可到达与A点在同一水平面上的C点(未画出),则()A.质点在B点的速度大小为vB.匀强电场的电场强度大小为C.从A到C的过程中,带电质点的电势能减小了mvD.质点在C点的加速度大小为g【答案】AB【解析】本题考查的是对带电粒子在电场中运动的相关问题的计算,根据动能定理,竖直方向:,水平方向:;解得E=,,从A到C的过程中,电场力对带电质点做功为mv则电势能减小了mv;质点在C点的加速度大小为;AB正确;CD错误;2.(16分)如图所示,矩形区域MNPQ内有水平向右的匀强电场,虚线框外为真空区域;半径为R、内壁光滑、内径很小的绝缘半圆管ADB固定在竖直平面内,直径AB垂直于水平虚线MN,圆心O恰在MN的中点,半圆管的一半处于电场中。

一质量为m,可视为质点的带正电小球从半圆管的A点由静止开始滑入管内,小球从B点穿出后,能够通过B点正下方的C点。

重力加速度为g,小球在C点处的加速度大小为5g/3。

求:(1)小球所受电场力的大小;(2)小球在B点时,对半圆轨道的压力大小;(3)虚线框MNPQ的宽度和高度满足的条件。

【答案】(16分)(1)(2)(3),【解析】略3.(20分)质谱分析技术已广泛应用于各前沿科学领域。

汤姆孙发现电子的质谱装置示意如图,M、N为两块水平放置的平行金属极板,板长为L,板右端到屏的距离为D,且D远大于L,为垂直于屏的中心轴线,不计离子重力和离子在板间偏离的距离。

以屏中心O为原点建立直角坐标系,其中x轴沿水平方向,y轴沿竖直方向。

(1)设一个质量为、电荷量为的正离子以速度沿的方向从点射入,板间不加电场和磁场时,离子打在屏上O点。

若在两极板间加一沿方向场强为E的匀强电场,求离子射到屏上时偏离O点的距离;(2)假设你利用该装置探究未知离子,试依照以下实验结果计算未知离子的质量数。

高考物理三轮冲刺大题提分大题精做带电粒子在复合场中运动.docx

高考物理三轮冲刺大题提分大题精做带电粒子在复合场中运动.docx

大题精做十二 带电粒子在复合场中运动1.【龙岩质量检测】如图所示,在xOy 坐标平面内,x <0的区域存在沿y 轴负方向的匀强电场,在第四象限内存在垂直纸面向里的匀强磁场。

一质量为m ,带电量为q 粒子在电场中的P 点以初速度v 0沿x 轴正方向射出,恰好经过坐标原点O 进入匀强磁场。

已知P 点坐标为(-L ),磁场的磁感应强度0mv B qL =,不计粒子重力。

求:(1)匀强电场的场强大小;(2)粒子在O 点时速度的大小和方向; (3)粒子从磁场射出时的橫坐标x 。

【解析】(1) 粒子在电场中做类平抛运动,水平方向:L =v 0t212qE t m =,y qEv t m=解得:E =0y v =。

(2) 粒子经过O 点时的速度:02v v =设速度方向与x 轴正方向间夹角为θ,则0tan y v v θ==所以θ=60°即粒子在O 点的速度大小为2v 0,方向与x 正向成60°角斜向下。

(3) 粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力,由牛顿第二定律得: 2v qvB m r=解得:r =2L粒子从磁场射出时的横坐标:x =2r sin θ=。

2.【河南九师联盟质检】如图所示,竖直平面内有一直角坐标系xOy ,x 轴沿水平方向。

第二、三象限有垂直于坐标平面向里的匀强磁场,与x 轴成θ=30°角的绝缘细杆固定在二、三象限;第四象限同时存在着竖直向上的匀强电场和垂直于坐标平面向里磁感应强度大小为B 的匀强磁场,一质量为m ,电荷量为q 带电小球a 穿在细杆上沿细杆匀速下滑,在N 点脱离细杆恰能沿圆周轨道运动到x 轴上的A 点,且速度方向垂直于x 轴。

已知A 点到坐标原点O 的距离为32l ,小球a 与绝缘细杆的动摩擦因数μ=,B =g ,空气阻力忽略不计。

求:(1)带电小球的电性及电场强度的大小E ; (2)第二、三象限里的磁场的磁感应强度大小B 1;(3)当带电小球a 刚离开N 点时,从y 轴正半轴距原点O 为20π3lh =的P 点(图中未画出)以某一初速度水平向右平抛一个不带电的绝缘小球b ,b 球刚好运动到x 轴时与向上运动的a 球相碰,则b 球的初速度为多大? 【解析】(1)由带电小球a 在第四象限内做匀速圆周运动可得,带电小球a 带正电,且mg =qE 解得:E =mgq(2)带电小球a 从N 点运动到Q 点的过程中,设运动半径为R ,有: qvB =mv2R由几何关系有R+Rsin θ=32l联立解得v =qlBm =5πgl6带电小球a 在杆上匀速运动时,由平衡条件有 mgsin θ=μ(qvB 1-mgcos θ) 解得B1=7mqg10πl(3)带电小球a 在第四象限内做匀速圆周运动的周期T =2πRv =24πl5g 带电小球a 第一次在第一象限竖直上下运动的总时间为t0=2vg =10πl3 绝缘小球b 平抛运动至x 轴上的时间为t =2hg =210πl3g 两球相碰有t =T3+nt0+T2 联立解得n =1设绝缘小球b 平抛的初速度为v 0,则72l =v0t 解得v0=147gl160π。

专题强化二 带电粒子在电场(复合场)运动的各类问题-2022学年高二物理精讲与精练高分突破考点专题

专题强化二 带电粒子在电场(复合场)运动的各类问题-2022学年高二物理精讲与精练高分突破考点专题

变化。下列分析错.误.的是( )
A. P 点电势比 Q 点低 B.微粒在 P 点速度比 Q 点大 C.微粒在 P 点具有的电势能比 Q 点大 D.仅减小收集器 A 与电离器 B 间的距离,除尘效果将提高
1
3.某空间存在着竖直向下的匀强电场,在电场中有一虚线,在虚线上 P 点先后将完全相同的带电小球以 v0、 2v0 的水平速度抛出,二者先后经过虚线上 Q、N 两点。不计二者间相互作用力及小球对匀强电场的影响。 则 PQ∶QN 的值为( )
C.电子在 R 点处电势能小于在 Q 点处电势能
D.电子从 P 至 R 的运动过程中,动能先减小后增加
5.如图所示,一个电荷量为 q 的油滴,从 O 点以速度 v0 竖直向上射入匀强电场中,经过一段时间到达 P 点
(图中未标出),速度大小仍为 v0
。若
E
mg q
,下列说法正确的是(

2
A. P 点在 O 点正上方的右侧
3
D.将负电荷放在 A,B 两点具有的电势能 EpA EpB 8.如图所示,匀强电场方向水平向右,场强大小为 E。g 带电量为+q 的粒子在外力 F 和电场力共同作用下 从 A 点沿图中实线轨迹匀速率运动至 B 点。已知 A、B 两点间直线距离为 l,不计粒子重力。下列说法正确 的是( )
A.外力 F 与电场力是一对平衡力 B.电场力做功为 Eql C.粒子从 A 点运动至 B 点的过程中电势能减小 D.外力 F 对粒子做正功 9.等量异种电荷 Q 、 Q 的等势线分布如图所示,相邻的等势线间电势差均相等,点 a 、 b 、 c 连线与两 电荷的连线平行,且 ab bc 。一带负电的点电荷 M 仅在电场力的作用下经过 a 点时速度方向如图,经过 b 所 在等势线到达 c 所在等势线,取无穷远处电势为零。下列说法正确的是( )

高考物理-电磁学-复合场专题练习(含答案)(一)

高考物理-电磁学-复合场专题练习(含答案)(一)

高考物理电磁学-复合场专题练习(含答案)(一)一、单选题1.如图所示,足够长的两平行金属板正对着竖直放置,它们通过导线与电源E、定值电阻R、开关S相连.闭合开关后,与两极板上边缘等高处有两个带负电小球A和B,它们均从两极板正中央由静止开始释放,两小球最终均打在极板上,(不考虑小球间的相互作用及对电场的影响)下列说法中正确的是()A.两小球在两板间运动的轨迹都是一条抛物线B.两板间电压越大,小球在板间运动的时间越短C.它们的运动时间一定相同D.若两者的比荷相同,它们的运动轨迹可能相同2.一个带电小球,用细线悬挂在水平方向的匀强电场中,当小球静止后把细线烧断,在小球将(假设电场足够大)()A.做自由落体运动B.做曲线运动C.做匀加速直线运动D.做变加速直线运动3.质量为m,带电量为+q的小球,在匀强电场中由静止释放,小球沿着与竖直向下夹30°的方向作匀加速直线运动,当场强大小为E=mg/2 时、E所有可能的方向可以构成()A.一条线 B.一个平面 C.一个球面 D.一个圆锥面4.场强为E的匀强电场和磁感强度为B的匀强磁场正交.如图质量为m的带电粒子在垂直于磁场方向的竖直平面内,做半径为R的匀速圆周运动,设重力加速度为g,则下列结论不正确的是()A.粒子带负电,且q=B.粒子顺时针方向转动C.粒子速度大小v=D.粒子的机械能守恒5.如图所示,一个质量为m、带正电荷量为q的小带电体处于可移动的匀强磁场中,磁场的方向垂直纸面向里,磁感应强度为B,为了使它对水平绝缘面刚好无压力,应该()A.使磁感应强度B的数值增大B.使磁场以速率v= 向上移动C.使磁场以速率v= 向右移动D.使磁场以速率v= 向左移动6.在赤道处,将一小球向东水平抛出,落地点为A;给小球带上电荷后,仍以原来的速度抛出,考虑地磁场的影响,下列说法正确的是()A.无论小球带何种电荷,小球仍会落在A点B.无论小球带何种电荷,小球下落时间都会延长C.若小球带负电荷,小球会落在更远的B点D.若小球带正电荷,小球会落在更远的B点7.如图所示,某空间存在正交的匀强磁场和匀强电场,电场方向水平向右,磁场方向垂直于纸面向里,一个带电微粒由a点进入电磁场并刚好能沿ab直线向上运动,下列说法正确的是()A.微粒可能带负电,可能带正电B.微粒的机械能一定增加C.微粒的电势能一定增加D.微粒动能一定减小8.如图所示,一电子束垂直于电场线与磁感线方向入射后偏向A极板,为了使电子束沿射入方向做直线运动,可采用的方法是()A.将变阻器滑动头P向右滑动B.将变阻器滑动头P向左滑动C.将极板间距离适当减小D.将极板间距离适当增大9.如图所示为“滤速器”装置示意图.a、b为水平放置的平行金属板,其电容为C,板间距离为d,平行板内存在垂直纸面向里的匀强磁场,磁感应强度为B,a、b板带上电量,可在平行板内产生匀强电场,且电场方向和磁场方向互相垂直.一带电粒子以速度v0经小孔进入正交电磁场可沿直线OO′运动,由O′射出,粒子所受重力不计,则a板所带电量情况是()A.带正电,其电量为B.带正电,其电量为CBdv0C.带负电,其电量为D.带负电,其电量为10.如图所示,在真空中,匀强电场的方向竖直向下,匀强磁场的方向垂直纸面向里.三个油滴a、b、c带有等量的同种电荷,已知a静止,b向右匀速运动,c向左匀速运动.比较它们的质量应有()A.a油滴质量最大B.b油滴质量最大C.c油滴质量最大D.a、b、c的质量一样二、综合题11.竖直放置的两块足够长的带电平行金属板间有匀强电场,其电场强度为E,在该匀强电场中,用丝线悬挂质量为m的带正电小球,当丝线跟竖直方向成θ角小球与板距离为b时,小球恰好平衡,如图所示.(重力加速度为g)求:(1)小球带电量q是多少?(2)若剪断丝线,小球碰到金属板需多长时间?12.以竖直向上为轴正方向的平面直角系,如图所示,在第一、四象限内存在沿轴负方向的匀强电场,在第二、三象限内存在着沿轴正方向的匀强电场和垂直于平面向外的匀强磁场,现有一质量为、电荷量为的带正电小球从坐标原点O以初速度沿与轴正方向成角的方向射出,已知两电场的电场强度,磁场的磁感应强度为B,重力加速度为。

高考物理带电粒子在复合场中的运动压轴题提高题专题及答案解析

高考物理带电粒子在复合场中的运动压轴题提高题专题及答案解析

高考物理带电粒子在复合场中的运动压轴题提高题专题及答案解析一、带电粒子在复合场中的运动压轴题1.如图所示,直径分别为D 和2D 的同心圆处于同一竖直面内,O 为圆心,GH 为大圆的水平直径。

两圆之间的环形区域(Ⅰ区)和小圆内部(Ⅱ区)均存在垂直圆面向里的匀强磁场.间距为d 的两平行金属极板间有一匀强电场,上极板开有一小孔.一质量为m 、电量为+q的粒子由小孔下方2d处静止释放,加速后粒子以竖直向上的速度v 射出电场,由H 点紧靠大圆内侧射入磁场。

不计粒子的重力。

(1)求极板间电场强度的大小;(2)若粒子运动轨迹与小圆相切,求Ⅰ区磁感应强度的大小; (3)若Ⅰ区、Ⅱ区磁感应强度的大小分别为2mv qD 、4mvqD,粒子运动一段时间后再次经过H 点,求这段时间粒子运动的路程.【来源】2015年全国普通高等学校招生统一考试物理(山东卷带解析)【答案】(1)2mv qd(2)4mv qD 或43mv qD (3)5.5πD【解析】 【分析】 【详解】(1)粒子在电场中,根据动能定理2122d Eq mv ⋅=,解得2mv E qd=(2)若粒子的运动轨迹与小圆相切,则当内切时,半径为/2ER 由211v qvB m r =,解得4mv B qD =则当外切时,半径为e R由212v qvB m r =,解得43mv B qD =(2)若Ⅰ区域的磁感应强度为220932qB L m U =,则粒子运动的半径为0010016819U U U ≤≤;Ⅱ区域的磁感应强度为2012qU mv =,则粒子运动的半径为2v qvB m r=;设粒子在Ⅰ区和Ⅱ区做圆周运动的周期分别为T 1、T 2,由运动公式可得:1112R T v π=;034r L =据题意分析,粒子两次与大圆相切的时间间隔内,运动轨迹如图所示,根据对称性可知,Ⅰ区两段圆弧所对的圆心角相同,设为1θ,Ⅱ区内圆弧所对圆心角为2θ,圆弧和大圆的两个切点与圆心O 连线间的夹角设为α,由几何关系可得:1120θ=;2180θ=;60α=粒子重复上述交替运动回到H 点,轨迹如图所示,设粒子在Ⅰ区和Ⅱ区做圆周运动的时间分别为t 1、t 2,可得:r U ∝;1056U LU L =设粒子运动的路程为s ,由运动公式可知:s=v(t 1+t 2) 联立上述各式可得:s=5.5πD2.如图甲所示,空间存在一范围足够大的垂直于xOy 平面向外的匀强磁场,磁感应强度大小为B .让质量为m ,电荷量为q (q >0)的粒子从坐标原点O 沿xOy 平面以不同的初速度大小和方向入射到磁场中.不计重力和粒子间的影响.(1)若粒子以初速度v 1沿y 轴正向入射,恰好能经过x 轴上的A (a ,0)点,求v 1的大小;(2)已知一粒子的初速度大小为v (v >v 1),为使该粒子能经过A (a ,0)点,其入射角θ(粒子初速度与x 轴正向的夹角)有几个?并求出对应的sin θ值;(3)如图乙,若在此空间再加入沿y 轴正向、大小为E 的匀强电场,一粒子从O 点以初速度v 0沿y 轴正向发射.研究表明:粒子在xOy 平面内做周期性运动,且在任一时刻,粒子速度的x 分量v x 与其所在位置的y 坐标成正比,比例系数与场强大小E 无关.求该粒子运动过程中的最大速度值v m .【来源】2013年全国普通高等学校招生统一考试理科综合能力测试物理(福建卷带解析) 【答案】⑴;⑵两个 sin θ=;⑶+.【解析】试题分析:(1)当粒子沿y 轴正向入射,转过半个圆周至A 点,半径R 1=a/2由运动定律有2111v Bqv m R =解得12Bqav m=(2)如右图所示,O 、A 两点处于同一圆周上,且圆心在 x =2a的直线上,半径为R ,当给定一个初速率v 时, 有2个入射角,分别在第1、2象限. 即 sinθ′=sinθ=2a R另有2v Bqv m R=解得 sinθ′=sinθ=2aqBmv(3)粒子在运动过程中仅电场力做功,因而在轨道的最高点处速率最大,用y m 表示其y 坐标,由动能定理有 qEy m =12mv 2m -12mv 20 由题知 v m =ky m若E =0时,粒子以初速度v 0沿y 轴正向入射,有 qv 0B =m 20v R在最高处有 v 0=kR 0联立解得22()m E E v v B B=++考点:带电粒子在符合场中的运动;动能定理.3.如图所不,在x 轴的上方存在垂直纸面向里,磁感应强度大小为B 0的匀强磁场.位于x 轴下方的离子源C 发射质量为m 、电荷量为g 的一束负离子,其初速度大小范围0〜,这束离子经电势差的电场加速后,从小孔O (坐标原点)垂直x 轴并垂直磁场射入磁场区域,最后打到x 轴上.在x 轴上2a 〜3a 区间水平固定放置一探测板(),假设每秒射入磁场的离子总数为N 0,打到x 轴上的离子数均匀分布(离子重力不计).(1)求离子束从小孔O 射入磁场后打到x 轴的区间;(2)调整磁感应强度的大小,可使速度最大的离子恰好打在探测板右端,求此时的磁感应强度大小B 1;(3)保持磁感应强度B 1不变,求每秒打在探测板上的离子数N ;若打在板上的离子80%被吸收,20%被反向弹回,弹回速度大小为打板前速度大小的0.6倍,求探测板受到的作用力大小.【来源】浙江省2018版选考物理考前特训(2017年10月)加试30分特训:特训7 带电粒子在场中的运动试题【答案】(1);(2)(3)【解析】(1)对于初速度为0的离子,根据动能定理::qU=mv在磁场中洛仑兹力提供向心力:,所以半径:r1==a恰好打在x=2a的位置;对于初速度为v0的离子,qU=mv-m(v0)2r2==2a,恰好打在x=4a的位置故离子束从小孔O射入磁场打在x轴上的区间为[2a,4a](2)由动能定理qU=mv-m(v0)2r3=r3=a解得B1=B0(3)对速度为0的离子qU=mvr4==a2r4=1.5a离子打在x轴上的区间为[1.5a,3a]N=N0=N0对打在x=2a处的离子qv3B1=对打在x=3a处的离子qv4B1=打到x轴上的离子均匀分布,所以=由动量定理-Ft=-0.8Nm+0.2N(-0.6m-m)解得F=N0mv0.【名师点睛】初速度不同的粒子被同一加速电场加速后,进入磁场的速度也不同,做匀速圆周运动的半径不同,转半圈后打在x轴上的位置不同.分别求出最大和最小速度,从而求出最大半径和最小半径,也就知道打在x 轴上的区间;打在探测板最右端的粒子其做匀速圆周运动的半径为1.5a ,由半径公式也就能求出磁感应强度;取时间t=1s ,分两部分据动量定理求作用力.两者之和就是探测板受到的作用力.4.如图所示,一半径为R 的光滑绝缘半球面开口向下,固定在水平面上.整个空间存在磁感应强度为B 、方向竖直向下的匀强磁场.一电荷量为q (q >0)、质量为m 的小球P 在球面上做水平的匀速圆周运动,圆心为O ′.球心O 到该圆周上任一点的连线与竖直方向的夹角为θ(02πθ<<).为了使小球能够在该圆周上运动,求磁感应强度B 的最小值及小球P相应的速率.(已知重力加速度为g )【来源】带电粒子在磁场中的运动 【答案】min 2cos m g B q R θ=cos gRv θθ=【解析】 【分析】 【详解】据题意,小球P 在球面上做水平的匀速圆周运动,该圆周的圆心为O’.P 受到向下的重力mg 、球面对它沿OP 方向的支持力N 和磁场的洛仑兹力f =qvB ①式中v 为小球运动的速率.洛仑兹力f 的方向指向O’.根据牛顿第二定律cos 0N mg θ-= ②2sin sin v f N mR θθ-= ③ 由①②③式得22sin sin 0cos qBR qR v v m θθθ-+=④由于v 是实数,必须满足222sin 4sin ()0cos qBR qR m θθθ∆=-≥ ⑤由此得2cos m gB q R θ≥⑥可见,为了使小球能够在该圆周上运动,磁感应强度大小的最小值为min 2cosm gBq Rθ=⑦此时,带电小球做匀速圆周运动的速率为minsin2qB Rvmθ=⑧由⑦⑧式得sincosgRvθθ=⑨5.利用电场和磁场,可以将比荷不同的离子分开,这种方法在化学分析和原子核技术等领域有重要的应用.如图所示的矩形区域ACDG(AC边足够长)中存在垂直于纸面的匀强磁场,A处有一狭缝.离子源产生的离子,经静电场加速后穿过狭缝沿垂直于GA边且垂直于磁场的方向射入磁场,运动到GA边,被相应的收集器收集.整个装置内部为真空.已知被加速的两种正离子的质量分别是m1和m2(m1>m2),电荷量均为q.加速电场的电势差为U,离子进入电场时的初速度可以忽略.不计重力,也不考虑离子间的相互作用.(1)求质量为m1的离子进入磁场时的速率v1;(2)当磁感应强度的大小为B时,求两种离子在GA边落点的间距s;(3)在前面的讨论中忽略了狭缝宽度的影响,实际装置中狭缝具有一定宽度.若狭缝过宽,可能使两束离子在GA边上的落点区域交叠,导致两种离子无法完全分离.设磁感应强度大小可调,GA边长为定值L,狭缝宽度为d,狭缝右边缘在A处.离子可以从狭缝各处射入磁场,入射方向仍垂直于GA边且垂直于磁场.为保证上述两种离子能落在GA边上并被完全分离,求狭缝的最大宽度.【来源】2011年普通高等学校招生全国统一考试物理卷(北京)【答案】(112qUm21228Um mqB(3)d m12122m mm m--L【解析】(1)动能定理Uq=12m1v12得:v 1=12qUm…① (2)由牛顿第二定律和轨道半径有:qvB =2mv R,R = mv qB 利用①式得离子在磁场中的轨道半径为别为(如图一所示):R 1=122mU qB ,R 2=222 m U qB …② 两种离子在GA 上落点的间距s =2(R 1−R 2)=1228()Um m qB- …③ (3)质量为m 1的离子,在GA 边上的落点都在其入射点左侧2R 1处,由于狭缝的宽度为d ,因此落点区域的宽度也是d (如图二中的粗线所示).同理,质量为m 2的离子在GA 边上落点区域的宽度也是d (如图二中的细线所示).为保证两种离子能完全分离,两个区域应无交叠,条件为2(R 1-R 2)>d…④ 利用②式,代入④式得:2R 1(1−21m m >d R 1的最大值满足:2R 1m =L-d 得:(L −d )(1−21m m >d 求得最大值:d m 12122m m m m --L6.如图所示,在平面直角坐标系xOy 中的第一象限内存在磁感应强度大小为B 、方向垂直于坐标平面向里的有界矩形匀强磁场区域(图中未画出);在第二象限内存在沿x 轴负方向的匀强电场。

2024年高考物理二轮复习专题分层突破训练9带电粒子在复合场中的运动

2024年高考物理二轮复习专题分层突破训练9带电粒子在复合场中的运动

专题分层突破练9带电粒子在复合场中的运动A组基础巩固练1.(多选)(2022广东卷)如图所示,磁控管内局部区域分布有水平向右的匀强电场和垂直纸面向里的匀强磁场。

电子从M点由静止释放,沿图中所示轨迹依次经过N、P两点。

已知M、P在同一等势面上,下列说法正确的有()A.电子从N到P,静电力做正功B.N点的电势高于P点的电势C.电子从M到N,洛伦兹力不做功D.电子在M点所受的合力大于在P点所受的合力2.(2023全国新课标卷)一电子和一α粒子从铅盒上的小孔O竖直向上射出后,打到铅盒上方水平放置的屏幕P上的a和b两点,a点在小孔O的正上方,b点在a点的右侧,如图所示。

已知α粒子的速度约为电子速度的110,铅盒与屏幕之间存在匀强电场和匀强磁场,则电场和磁场方向可能为()A.电场方向水平向左、磁场方向垂直纸面向里B.电场方向水平向左、磁场方向垂直纸面向外C.电场方向水平向右、磁场方向垂直纸面向里D.电场方向水平向右、磁场方向垂直纸面向外3.(2023浙江6月选考)某带电粒子转向器的横截面如图所示,转向器中有辐向电场。

粒子从M点射入,沿着由半径分别为R1和R2的圆弧平滑连接成的虚线(等势线)运动,并从虚线上的N点射出,虚线处电场强度大小分别为E1和E2,则R1、R2和E1、E2应满足()A.E1E2=R2R1B.E1E2=R12R22C.E1E2=R1R2D.E1E2=R22R124.(多选)(2023湖南九师联盟联考)回旋加速器的主要部件示意图如图甲所示,回旋加速器D形盒的俯视图如图乙所示,两盒间的狭缝很小,粒子穿过的时间忽略不计,已知垂直盒面的匀强磁场的磁感应强度为B,D形盒的半径为r,高频电源的频率为f,最大电压为U,若A处的粒子源产生一个电荷量为q、速率为零的粒子经过电场加速后进入磁场,能一直被回旋加速最后从D形盒出口飞出,下列说法正确的是()A.被加速的粒子的比荷为πfBB.粒子从D形盒出口飞出时的速度为2πfrC.粒子在D形盒中加速的次数为πfBr 2UD.当磁感应强度变为原来的12,同时改变频率f,该粒子从D形盒出口飞出时的动能为πfqBr25.(多选)(2023湖北武汉模拟)电磁流量计可以测量导电流体的流量(单位时间内流过某一横截面的流体体积)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

08高考最新模拟试题汇编之复合场1.如图所示,光滑绝缘、相互垂直的固定挡板PO 、OQ 竖直放置于匀强电场E 中,场强方向水平向左且垂直于挡板PO .图中A 、B 两球(可视为质点)质量相同且带同种正电荷.当A 球受竖直向下推力F 作用时,A 、B 两球均紧靠挡板处于静止状态,这时两球之间的距离为L .若使小球A 在推力F 作用下沿挡板PO 向O 点移动一小段距离后,小球A 与B 重新处于静止状态.在此过程中(AC ) A.A 球对B 球作用的静电力减小 B.A 球对B 球作用的静电力增大 C.墙壁PO 对A 球的弹力不变 D.两球之间的距离减小则F 增大2.如图所示,一束电子以大小不同的速率沿图示方向飞入横截面一正方形的匀强磁场区,下列判断正确的是:( .B )A.电子在磁场中运动时间越长,其轨迹线越长B.电子在磁场中运动时间越长,其轨迹线所对应的圆心角越大C.在磁场中运动时间相同的电子,其轨迹线一定重合D.电子的速率不同,它们在磁场中运动时间一定不相同3.如图所示,空间的虚线框内有匀强电场,AA /、BB /、CC /是该电场的三个等势面,相邻等势面间的距离为0.5cm,其中BB /为零势能面.一个质量为m ,带电量为+q 的粒子沿AA /方向以初动能E k ,自图中的P 点进入电场,刚好从C /点离开电场。

已知PA /=2cm 。

粒子的重力忽略不计。

下列说法中正确的是:(A )A.该粒子到达C /点时的动能是2E k , B.该粒子通过等势面BB /时的动能是1.25E k , C.该粒子在P 点时的电势能是E k , D.该粒子到达C /点时的电势能是0.5E k ,4.一带电粒子射入点电荷+Q 的电场中,仅在电场力作用下, 运动轨迹如图所示,则下列说法中正确的是 CDA .运动粒子可能带正电B .运动粒子一定是从A 运动到BC .粒子在A 、B 间运动过程中加速度先变大后变小D .粒子在A 、B 间运动过程中电势能先变小后变大5.不考虑重力作用,从t =0时刻开始,下列各种随时间变化的电场中哪些能使原来静止的带电粒子做单向直线运动(A 、C ,)6.如图所示,光滑的水平桌面放在方向竖直向下的匀强磁场中,桌面上平放着一根一端开口、内壁光滑的试管,试管底部有一P QFABOEA /B /C / C B Av v 0PBF带电小球.在水平拉力F作用下,试管向右匀速运动,带电小球能从试管口处飞出,关于带电小球及其在离开试管前的运动,下列说法中正确的是(ABD )A.小球带正电B.小球运动的轨迹是抛物线C.洛伦兹力对小球做正功D.维持试管匀速运动的拉力F应逐渐增大7.如图所示为某电场中的一条电场线,一带电q、质量为m粒子仅在电场力的作用下,以初速度v沿ab方向从a点运动到b点,到达b点时速度为2v。

已知ab间距离为l,则关于电场和粒子运动下列说法正确的是ABD ()A.电场中ab两点间电势差为3mv2/2qB.粒子在ab两点的加速度可能相等C.粒子在ab两点间运动时速度可能是先减少后增加D.粒子在ab两点间运动时电势能一直是减少的8.如图所示,平行金属板M、N之间的距离为d,其中匀强磁场的磁感应强度为B,方向垂直于纸面向外,有带电量相同的正负离子组成的等离子束,以速度v沿着水平方向由左端连续射入,电容器的电容为C,当S闭合且平行金属板M、N之间的内阻为r。

电路达到稳定状态后,关于电容器的充电电荷量Q说法正确的是(BC )Q>A.当S断开时,CBdvQ=B.当S断开时,CBdvQ<C.当S闭合时,CBdvQ>D.当S闭合时,CBdv9.如图,电源电动势为E,内阻为r,滑动变阻器电阻为R,开关S闭合。

两平行极板间有匀强磁场,一带电粒子正好以速度v匀速穿过两板,以下说法正确的是(AB )A.保持开关S闭合,将滑片P向上滑动一点,粒子将可能从下极板边缘射出B.保持开关S闭合,将滑片P向下滑动一点,粒子将可能从下极板边缘射出C.保持开关S闭合,将a极板向下移动一点,粒子将继续沿直线穿出D.如果将开关S断开,粒子将继续沿直线穿出10.空气中的负离子对人的健康极为有益. 人工产生负离子的最常见方法是电晕放电法.如图所示,一排针状负极和环形正极之间加上直流高压电,电压达5000 V左右,使空气发生电离,从而产生负一价氧离子排出,使空气清新化,针状负极与环形正极间距为5mm ,且视为匀强电场,电场强度为E ,电场对负氧离子的作用力为F ,则 ( D ) A .E =103N/C ,F =1.6×10—16NB .E =106 N/C ,F =1.6×10—16NC .E =103 N/C ,F =1. 6×10—13N D .E =106N/C ,F =1. 6×10—13N11.如图所示,电源电动势为E ,内阻为r ,滑动变阻器电阻为R ,开关闭合。

两平行极板间有匀强磁场,一带电粒子(不计重力)正好以速度v 匀速穿过两板。

以下说法正确的是:A A. 保持开关闭合,将滑片p 向上滑动一点,粒子将可能从下极板边缘射出 B. 保持开关闭合,将滑片p 向下滑动一点,粒子将不可能从下极板边缘射出 C. 保持开关闭合,将a 极板向下移动一点,粒子将继续沿直线穿出 D. 如果将开关断开,粒子将继续沿直线穿出12.如图所示,MN 是负点电荷产生的电场中的一条电场线。

当一个带正电的粒子(不计重力)从a 到b 穿越这条电场线的轨迹如图中的虚线所示。

那么下列表述正确的是 DA .负点电荷一定位于M 点的右侧B .带电粒子在a 点的加速度小于在b 点的加速度C .带电粒子在a 点时的电势能大于在b 点时的电势能D .带电粒子从a 到b 的过程中,动量逐渐减小13..如图所示,在屏MN 的上方有磁感应强度为B 的匀强磁场,磁场的方向垂直纸面向里.P 为屏上的一个小孔.PC 与MN 垂直.一群质量为m 、带电量为-q 的粒子(不计重力),以相同的速率v ,从P 处沿垂直于磁场的方向射入磁场区域.粒子入射方向在与磁场B 垂直的平面内,且散开在与PC 夹角为θ的范围内,则在屏MN 上被粒子打中的区域的长度为 C A .qB mv2 B .qBmv θcos 2 C.qB mv )cos 1(2θ-D.qBmv )sin 1(2θ-14.如图2所示,带有等量异种电荷的两块很大的平行金属板M 、N 水平正对放置,两板间有一带电微粒以速度v 0沿直线运动,当微粒运动到P 点时,迅速将M 板上移一小段距离,则此后微粒的可能运动情况是 CA .沿轨迹①做曲线运动B .方向改变沿轨迹②做直线运动C .方向不变沿轨迹③做直线运动D .沿轨迹④做曲线运动15.如图所示,在两个水平放置的平行金属板之间有竖直向下的匀强电场,电场强度为E.在两板之间及右侧有垂直纸面向里的匀强磁场,磁感应强度均为B .现有两个带电粒子在同MN① ④ ② ③ 图2P ab MN一竖直平面内,分别从端以水平速度射入两平行板之间,恰好都做匀速直线运动,射入点相距22mE d eB=(已知e 为元电荷的电荷量,m 为质子质量, 21H 、42He 的质量分别为2m ,4m ,不计重力和粒子间的作用力).要使两粒子离开平行金属板之间的区域后能够相遇,求两粒子射入平行板的时间差t ∆.解:(1)如图所示,,则有: qvB qE =(4分) E v B = (1,两粒子离开平行板后均做匀速圆周运动,轨迹如图所示.2v qvB M r= (4分)Mvr qB=(1分) 故有1222mv mEr d eB eB === (1分) 22422mv mE r d eB eB=== (1分) 因为r 1=r 2=d ,所以必相遇在A 点,因为12O O A ∆为等边三角形,所以21H 粒子在磁场中转过1200角,42He 粒子在磁场中转过600角。

由2MT qBπ=得: 21H 的周期:14mT eBπ=(2分) 42He 的周期:2842m m T eB eBππ== (2分) 所以1211223663T T T mt t t eBπ∆=-=-== (4分)16.(本题14分)如图(a )所示,在真空中,半径为b 的虚线所围的圆形区域内存在匀强磁场,磁场方向与纸面垂直.在磁场右侧有一对平行金属板M 和N ,两板间距离也为b ,板长为2b ,两板的中心线O 1O 2与磁场区域的圆心O 在同一直线上,两板左端与O 1也在同一直线上.有一电荷量为+q 、质量为m 的带电粒子,以速率v 0从圆周上的P 点沿垂直于半径OO 1并指向圆心O 的方向进入磁场,当从圆周上的O 1点飞出磁场时,给M 、N 板加上如图21×××××××××××××××× ×××××××× ×××××××× ×××××××× ×××××××××××××××× ××××××××42(b )所示电压u .最后粒子刚好以平行于N 板的速度,从N 板的边缘飞出.不计平行金属板两端的边缘效应及粒子所受的重力. (1)求磁场的磁感应强度B ;(2)求交变电压的周期T 和电压U 0的值;(3)若t = T2 时,将该粒子从MN 板右侧沿板的中心线O 2O 1,仍以速率v 0射入M 、N 之间,求粒子从磁场中射出的点到P 点的距离.(1)粒子自P 点进入磁场,从O 1点水平飞出磁场,运动的半径必为分)B qv 20 ………………………………………………………………(1分) 解得 bqB 0=(1分) 由左手定则可知,磁场方向垂直纸面向外………………………………………(1分) (2)粒子自O 1点进入电场,最后恰好从N 板的边缘平行飞出,设运动时间为t ,则2b = v 0t ……………………………………………………………………………(1分)2022122⎪⎭⎫⎝⎛⋅⋅=T mb qU n b …………………………………………………………(1分)t = nT (n =1,2,…) ……………………………………………………………(1分)解得 02nv bT =(n =1,2,…) ………………………………………………(1分) qnmv U 220= (n =1,2,…) …………………………………………………(1分)(3)当t = T2粒子以速度v 0沿O 2O 1射入电场时,则该粒子恰好从M 板边缘以平行于极板的速度射入磁场,且进入磁场的速度仍为v 0,运动的轨道半径仍为b . (2)17.(13分)如图所示,在光滑绝缘的水平面上,用长为2L 的绝缘轻杆连接两个质量均为m 的带电小球A 和B ,A 球的电荷量为+2q ,B 球的电荷量为-3q ,组成一静止的带电系统。

相关文档
最新文档