2020年湖北省恩施州中考数学试卷 (解析版)
2020年湖北省恩施州中考数学试卷
2020年湖北省恩施州中考数学试卷一、选择题(本大题共有12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择项前的字母代号填涂在答题卷相应位置上)1.(3分)5的绝对值是( )A .5B .5-C .15D .15- 2.(3分)茶中精品“恩施绿”“利川红”享誉世界.去年恩施州茶叶产量约为120000吨,将数120000用科学记数法表示为( )A .41210⨯B .51.210⨯C .61.210⨯D .60.1210⨯3.(3分)下列交通标识,既是中心对称图形,又是轴对称图形的是( )A .B .C .D .4.(3分)下列计算正确的是( )A .236a a a =B .2(1)a a a a +=+C .222()a b a b -=-D .235a b ab += 5.(3分)函数1x y +=的自变量的取值范围是( ) A .1x - B .1x -且0x ≠ C .0x > D .1x >-且0x ≠6.(3分)“彩缕碧筠粽,香粳白玉团”.端午佳节,小明妈妈准备了豆沙粽2个、红枣粽4个、腊肉粽3个、白米粽2个,其中豆沙粽和红枣粽是甜粽.小明任意选取一个,选到甜粽的概率是( )A .211B .411C .511D .6117.(3分)在实数范围内定义运算“☆”:a ☆1b a b =+-,例如:2☆32314=+-=.如果2☆1x =,则x 的值是( )A .1-B .1C .0D .28.(3分)我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”.意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒x 斛,1个小桶盛酒y 斛,下列方程组正确的是( )A .5352x y x y +=⎧⎨+=⎩B .5253x y x y +=⎧⎨+=⎩C .53125x y x y +=⎧⎨+=⎩D .35251x y x y +=⎧⎨+=⎩9.(3分)如图是由四个相同的小正方体组成的立体图形,它的主视图为( )A .B .C .D .10.(3分)甲乙两车从A 城出发前往B 城,在整个行程中,汽车离开A 城的距离y 与时刻t 的对应关系如图所示,则下列结论错误的是( )A .甲车的平均速度为60/km hB .乙车的平均速度为100/km hC .乙车比甲车先到B 城D .乙车比甲车先出发1h11.(3分)如图,正方形ABCD 的边长为4,点E 在AB 上且1BE =,F 为对角线AC 上一动点,则BFE ∆周长的最小值为( )A .5B .6C .7D .812.(3分)如图,已知二次函数2y ax bx c =++的图象与x 轴相交于(2,0)A -、(1,0)B 两点.则以下结论:①0ac >;②二次函数2y ax bx c =++的图象的对称轴为1x =-;③20a c +=;④0a b c -+>.其中正确的有( )个.A .0B .1C .2D .3二、填空题(本大题共有4小题,每小题3分,共12分.不要求写出解答过程,请把答案直接填写在答题卷相应位置上)13.(3分)9的算术平方根是 .14.(3分)如图,直线12//l l ,点A 在直线1l 上,点B 在直线2l 上,AB BC =,30C ∠=︒,180∠=︒,则2∠= .15.(3分)如图,已知半圆的直径4AB =,点C 在半圆上,以点A 为圆心,AC 为半径画弧交AB 于点D ,连接BC .若60ABC ∠=︒,则图中阴影部分的面积为 .(结果不取近似值16.(3分)如图,在平面直角坐标系中,ABC ∆的顶点坐标分别为:(2,0)A -,(1,2)B ,(1,2)C -.已知(1,0)N -,作点N 关于点A 的对称点1N ,点1N 关于点B 的对称点2N ,点2N 关于点C 的对称点3N ,点3N 关于点A 的对称点4N ,点4N 关于点B 的对称点5N ,⋯,依此类推,则点2020N的坐标为.三、解答题(本大题共有8个小题,共72分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤).17.(8分)先化简,再求值:22293()6933m mm m m m--÷-+--,其中2m=.18.(8分)如图,//AE BF,BD平分ABC∠交AE于点D,点C在BF上且BC AB=,连接CD.求证:四边形ABCD是菱形.19.(8分)某中学为了解九年级学生对新冠肺炎防控知识的掌握情况,从全校九年级学生中随机抽取部分学生进行调查.调查结果分为四类:A类--非常了解;B类--比较了解;C类--般了解;D类--不了解.现将调查结果绘制成如图不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次共调查了名学生;(2)补全条形统计图;(3)D类所对应扇形的圆心角的大小为;(4)若该校九年级学生共有500名,根据以上抽样结果,估计该校九年级学生对新冠肺炎防控知识非常了解的约有 名.20.(8分)如图,一艘轮船以每小时30海里的速度自东向西航行,在A 处测得小岛P 位于其西北方向(北偏西45︒方向),2小时后轮船到达B 处,在B 处测得小岛P 位于其北偏东60︒方向.求此时船与小岛P 的距离(结果保留整数,参考数据:2 1.414≈,3 1.732)≈.21.(8分)如图,在平面直角坐标系中,直线3(0)y ax a a =-≠与x 轴、y 轴分别相交于A 、B 两点,与双曲线(0)k y x x =>的一个交点为C ,且12BC AC =. (1)求点A 的坐标;(2)当3AOC S ∆=时,求a 和k 的值.22.(10分)某校足球队需购买A 、B 两种品牌的足球.已知A 品牌足球的单价比B 品牌足球的单价高20元,且用900元购买A 品牌足球的数量用720元购买B 品牌足球的数量相等.(1)求A 、B 两种品牌足球的单价;(2)若足球队计划购买A 、B 两种品牌的足球共90个,且A 品牌足球的数量不小于B 品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.设购买A 品牌足球m 个,总费用为W 元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?23.(10分)如图1,AB 是O 的直径,直线AM 与O 相切于点A ,直线BN 与O 相切于点B ,点C (异于点)A 在AM 上,点D 在O 上,且CD CA =,延长CD 与BN 相交于点E ,连接AD 并延长交BN 于点F .(1)求证:CE 是O 的切线;(2)求证:BE EF =;(3)如图2,连接EO 并延长与O 分别相交于点G 、H ,连接BH .若6AB =,4AC =,求tan BHE ∠.24.(12分)如图1,抛物线214y x bx c =-++经过点(6,0)C ,顶点为B ,对称轴2x =与x 轴相交于点A ,D 为线段BC 的中点.(1)求抛物线的解析式;(2)P 为线段BC 上任意一点,M 为x 轴上一动点,连接MP ,以点M 为中心,将MPC ∆逆时针旋转90︒,记点P 的对应点为E ,点C 的对应点为F .当直线EF 与抛物线214y x bx c =-++只有一个交点时,求点M 的坐标. (3)MPC ∆在(2)的旋转变换下,若2PC =(如图2).①求证:EA ED =.②当点E 在(1)所求的抛物线上时,求线段CM 的长.2020年湖北省恩施州中考数学试卷参考答案与试题解析一、选择题(本大题共有12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择项前的字母代号填涂在答题卷相应位置上)1.(3分)5的绝对值是( )A .5B .5-C .15D .15- 【分析】根据绝对值的意义:数轴上一个数所对应的点与原点(O 点)的距离叫做该数的绝对值,绝对值只能为非负数; 即可得解.【解答】解:在数轴上,数5所表示的点到原点0的距离是5;故选:A .2.(3分)茶中精品“恩施绿”“利川红”享誉世界.去年恩施州茶叶产量约为120000吨,将数120000用科学记数法表示为( )A .41210⨯B .51.210⨯C .61.210⨯D .60.1210⨯【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10时,n 是正数;当原数的绝对值1<时,n 是负数.【解答】解:5120000 1.210=⨯,故选:B .3.(3分)下列交通标识,既是中心对称图形,又是轴对称图形的是( )A .B .C .D .【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:根据轴对称图形与中心对称图形的概念,知:A 、不是轴对称图形,也不是中心对称图形;B 、不是轴对称图形,也不是中心对称图形;C 、是轴对称图形,但不是中心对称图形;D 、既是中心对称图形,又是轴对称图形.故选:D .4.(3分)下列计算正确的是( )A .236a a a =B .2(1)a a a a +=+C .222()a b a b -=-D .235a b ab +=【分析】利用同底数幂的乘法运算法则、单项式乘多项式的运算法则、完全平方公式、合并同类项法则计算求出答案即可判断.【解答】解:A 、235a a a =,原计算错误,故此选项不符合题意;B 、2(1)a a a a +=+,原计算正确,故此选项符合题意;C 、222()2a b a ab b -=-+,原计算错误,故此选项不符合题意;D 、2a 与3b 不是同类项,不能合并,原计算错误,故此选项不符合题意;故选:B .5.(3分)函数y =的自变量的取值范围是( ) A .1x - B .1x -且0x ≠ C .0x > D .1x >-且0x ≠【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:根据题意得,10x +且0x ≠,解得1x -且0x ≠.故选:B .6.(3分)“彩缕碧筠粽,香粳白玉团”.端午佳节,小明妈妈准备了豆沙粽2个、红枣粽4个、腊肉粽3个、白米粽2个,其中豆沙粽和红枣粽是甜粽.小明任意选取一个,选到甜粽的概率是( )A .211B .411C .511D .611【分析】粽子总共有11个,其中甜粽有6个,根据概率公式即可求出答案.【解答】解:由题意可得:粽子总数为11个,其中6个为甜粽, 所以选到甜粽的概率为:611, 故选:D .7.(3分)在实数范围内定义运算“☆”:a ☆1b a b =+-,例如:2☆32314=+-=.如果2☆1x =,则x 的值是( )A .1-B .1C .0D .2 【分析】已知等式利用题中的新定义化简,计算即可求出x 的值.【解答】解:由题意知:2☆211x x x=+-=+,又2☆1x=,11x∴+=,x∴=.故选:C.8.(3分)我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”.意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒x斛,1个小桶盛酒y斛,下列方程组正确的是( )A.5352x yx y+=⎧⎨+=⎩B.5253x yx y+=⎧⎨+=⎩C.53125x yx y+=⎧⎨+=⎩D.35251x yx y+=⎧⎨+=⎩【分析】根据“5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛”,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:依题意,得:5352x yx y+=⎧⎨+=⎩.故选:A.9.(3分)如图是由四个相同的小正方体组成的立体图形,它的主视图为()A.B.C.D.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一列有2个正方形,第二列底层有1个正方形.故选:A.10.(3分)甲乙两车从A城出发前往B城,在整个行程中,汽车离开A城的距离y与时刻t 的对应关系如图所示,则下列结论错误的是()A.甲车的平均速度为60/km h B.乙车的平均速度为100/km h C.乙车比甲车先到B城D.乙车比甲车先出发1h【分析】根据图象逐项分析判断即可.【解答】解:由图象知:A.甲车的平均速度为30060/105km h=-,故A选项不合题意;B.乙车的平均速度为300100/96km h=-,故B选项不合题意;C.甲10时到达B城,乙9时到达B城,所以乙比甲先到B城,故C选项不合题意;D.甲5时出发,乙6时出发,所以乙比甲晚出发1h,故此选项错误,故选:D.11.(3分)如图,正方形ABCD的边长为4,点E在AB上且1BE=,F为对角线AC上一动点,则BFE∆周长的最小值为()A.5B.6C.7D.8【分析】连接ED交AC于一点F,连接BF,根据正方形的对称性得到此时BFE∆的周长最小,利用勾股定理求出DE即可得到答案.【解答】解:如图,连接ED交AC于一点F,连接BF,四边形ABCD是正方形,∴点B与点D关于AC对称,BF DF ∴=,BFE ∴∆的周长BF EF BE DE BE =++=+,此时BEF ∆的周长最小,正方形ABCD 的边长为4,4AD AB ∴==,90DAB ∠=︒,点E 在AB 上且1BE =, 3AE ∴=,225DE AD AE ∴=+=,BFE ∴∆的周长516=+=,故选:B .12.(3分)如图,已知二次函数2y ax bx c =++的图象与x 轴相交于(2,0)A -、(1,0)B 两点.则以下结论:①0ac >;②二次函数2y ax bx c =++的图象的对称轴为1x =-;③20a c +=;④0a b c -+>.其中正确的有( )个.A .0B .1C .2D .3【分析】根据抛物线的开口方向、对称轴、顶点坐标、增减性以及过特殊点时系数a 、b 、c 满足的关系综合判断即可.【解答】解:对于①:二次函数开口向下,故0a <,与y 轴的交点在y 的正半轴,故0c >,故0ac <,因此①错误;对于②:二次函数的图象与x 轴相交于(2,0)A -、(1,0)B ,由对称性可知,其对称轴为:21122x -+==-,因此②错误; 对于③:设二次函数2y ax bx c =++的交点式为2(2)(1)2y a x x ax ax a =+-=+-,比较一般式与交点式的系数可知:b a =,2c a =-,故20a c +=,因此③正确;对于④:当1x =-时对应的y a b c =-+,观察图象可知1x =-时对应的函数图象的y 值在x 轴上方,故0a b c -+>,因此④正确.∴只有③④是正确的.故选:C .二、填空题(本大题共有4小题,每小题3分,共12分.不要求写出解答过程,请把答案直接填写在答题卷相应位置上) 13.(3分)9的算术平方根是 3 .【分析】9的平方根为3±,算术平方根为非负,从而得出结论. 【解答】解:2(3)9±=, 9∴的算术平方根是|3|3±=.故答案为:3.14.(3分)如图,直线12//l l ,点A 在直线1l 上,点B 在直线2l 上,AB BC =,30C ∠=︒,180∠=︒,则2∠= 40︒ .【分析】利用等腰三角形的性质得到430C ∠=∠=︒,利用平行线的性质得到1380∠=∠=︒,再根据三角形内角和定理即可求解. 【解答】解:如图,延长CB 交2l 于点D , AB BC =,30C ∠=︒, 430C ∴∠=∠=︒, 12//l l ,180∠=︒,1380∴∠=∠=︒,324180C ∠+∠+∠+∠=︒,即3080230180︒+︒+∠+︒=︒, 240∴∠=︒.故答案为:40︒.15.(3分)如图,已知半圆的直径4AB =,点C 在半圆上,以点A 为圆心,AC 为半径画弧交AB 于点D ,连接BC .若60ABC ∠=︒,则图中阴影部分的面积为 23π- .(结果不取近似值【分析】根据60︒特殊角求出AC 和BC ,再算出ABC ∆的面积,根据扇形面积公式求出扇形CAD 的面积,再用三角形的面积减去扇形面积即可. 【解答】解:AB 是直径,90ACB ∴∠=︒, 60ABC ∠=︒, 30CAB ∴∠=︒, 122BC AB ∴==,23AC = ∴112322322ABC S AC BC ∆===, 30CAB ∠=︒,∴扇形ACD 的面积22301(23)36012AC πππ===, ∴阴影部分的面积为23π.故答案为:23π.16.(3分)如图,在平面直角坐标系中,ABC ∆的顶点坐标分别为:(2,0)A -,(1,2)B ,(1,2)C -.已知(1,0)N -,作点N 关于点A 的对称点1N ,点1N 关于点B 的对称点2N ,点2N 关于点C 的对称点3N ,点3N 关于点A 的对称点4N ,点4N 关于点B 的对称点5N ,⋯,依此类推,则点2020N 的坐标为 (1,8)- .【分析】先求出1N 至6N 点的坐标,找出其循环的规律为每6个点循环一次即可求解. 【解答】解:由题意得,作出如下图形:N 点坐标为(1,0)-,N 点关于A 点对称的1N 点的坐标为(3,0)-, 1N 点关于B 点对称的2N 点的坐标为(5,4), 2N 点关于C 点对称的3N 点的坐标为(3,8)-, 3N 点关于A 点对称的4N 点的坐标为(1,8)-,4N 点关于B 点对称的5N 点的坐标为(3,4)-,5N 点关于C 点对称的6N 点的坐标为(1,0)-,此时刚好回到最开始的点N 处,∴其每6个点循环一次,202063364∴÷=⋯⋯,即循环了336次后余下4,故2020N 的坐标与4N 点的坐标相同,其坐标为(1,8)-. 故答案为:(1,8)-.三、解答题(本大题共有8个小题,共72分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤).17.(8分)先化简,再求值:22293()6933m m m m m m --÷-+--,其中2m =. 【分析】根据分式的混合运算法则,先化简括号内的,将除法运算转化为乘法运算,再化简成最简分式,代入m 值求解即可.【解答】解:22293()6933m m m m m m --÷-+-- 22(3)(3)33[](3)3m m m m m m +--=--- 2333()33m m m m m +-=--- 233m m m m -=-1m=; 当2m =时, 原式1222==. 18.(8分)如图,//AE BF ,BD 平分ABC ∠交AE 于点D ,点C 在BF 上且BC AB =,连接CD .求证:四边形ABCD 是菱形.【分析】由//AE BF ,BD 平分ABC ∠得到ABD ADB ∠=∠,得到AB AD =,再由BC AB =,得到对边AD BC =,进而得到四边形ABCD 为平行四边形,再由邻边相等即可证明四边形ABCD 为菱形.【解答】证明://AE BF ,ADB DBC ∴∠=∠,BD 平分ABC ∠,DBC ABD ∴∠=∠,ADB ABD ∴∠=∠, AB AD ∴=,又AB BC =,AD BC ∴=,//AE BF ,即//AD BC ,∴四边形ABCD 为平行四边形,又AB AD =,∴四边形ABCD 为菱形.19.(8分)某中学为了解九年级学生对新冠肺炎防控知识的掌握情况,从全校九年级学生中随机抽取部分学生进行调查.调查结果分为四类:A 类--非常了解;B 类--比较了解;C 类--般了解;D 类--不了解.现将调查结果绘制成如图不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次共调查了 50 名学生; (2)补全条形统计图;(3)D 类所对应扇形的圆心角的大小为 ;(4)若该校九年级学生共有500名,根据以上抽样结果,估计该校九年级学生对新冠肺炎防控知识非常了解的约有 名.【分析】(1)根据条形图和扇形图得出B类人数为20名,占40%,即可得出总数;(2)根据总人数减去A,B,D的人数即可得出C的人数;(3)用360︒乘以D类部分所占百分比即可得出圆心角的度数;(4)用500乘以非常了解的部分所占百分比即可得出答案.【解答】解:(1)本次共调查的学生数为:2040%50÷=(名).故答案为:50;(2)C类学生人数为:501520510---=(名),条形图如下:(3)D类所对应扇形的圆心角为:53603650︒⨯=︒.故答案为:36︒;(4)该校九年级学生对新冠肺炎防控知识非常了解的人数为:1550015050⨯=(名).故答案为:150.20.(8分)如图,一艘轮船以每小时30海里的速度自东向西航行,在A处测得小岛P位于其西北方向(北偏西45︒方向),2小时后轮船到达B处,在B处测得小岛P位于其北偏东60︒方向.求此时船与小岛P的距离(结果保留整数,参考数据:2 1.414≈,3 1.732)≈.【分析】过P作PH AB⊥,设PH x=,由已知分别求PB、BH、AH,然后根据锐角三角函数求出x 值即可求解.【解答】解:如图,过P 作PH AB ⊥,设PH x =,由题意得:30260AB =⨯=,906030PBH ∠=︒-︒=︒,904545PAH ∠=︒-︒=︒, 则PHA ∆是等腰直角三角形,AH PH ∴=,在Rt PHA ∆中,设AH PH x ==,在Rt PBH ∆中,22PB PH x ==,60BH AB AH x =-=-, 3tan tan303PH PBH BH ∴∠=︒==, ∴3360xx=-, 解得:30(31)x =-,260(31)44PB x ∴==-≈(海里),答:此时船与小岛P 的距离约为44海里.21.(8分)如图,在平面直角坐标系中,直线3(0)y ax a a =-≠与x 轴、y 轴分别相交于A 、B 两点,与双曲线(0)k y x x =>的一个交点为C ,且12BC AC =.(1)求点A 的坐标;(2)当3AOC S ∆=时,求a 和k 的值.【分析】(1)令3(0)y ax a a =-≠中0y =即可求出点A 的坐标;(2)过C 点作y 轴的垂线交y 轴于M 点,作x 轴的垂线交x 轴于N 点,证明BCM BAO ∆∆∽,利用12BC AC =和3OA =进而求出CM 的长,再由3AOC S ∆=求出CN 的长,进而求出点C 坐标即可求解.【解答】解:(1)由题意得:令3(0)y ax a a =-≠中0y =, 即30ax a -=,解得3x =,∴点A 的坐标为(3,0),故答案为(3,0).(2)过C 点作y 轴的垂线交y 轴于M 点,作x 轴的垂线交x 轴于N 点,如下图所示:显然,//CM OA ,BCM BAO ∴∠=∠,且ABO CBO ∠=∠, BCM BAO ∴∆∆∽,∴BC CM BA AO =,即:133CM=, 1CM ∴=,又132AOC S OA CN ∆==即:1332CN ⨯⨯=,2CN ∴=,C ∴点的坐标为(1,2),故反比例函数的122k =⨯=,再将点(1,2)C 代入一次函数3(0)y ax a a =-≠中, 即23a a =-,解得1a =-, 故答案为:1a =-,2k =.22.(10分)某校足球队需购买A 、B 两种品牌的足球.已知A 品牌足球的单价比B 品牌足球的单价高20元,且用900元购买A 品牌足球的数量用720元购买B 品牌足球的数量相等.(1)求A、B两种品牌足球的单价;(2)若足球队计划购买A、B两种品牌的足球共90个,且A品牌足球的数量不小于B品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.设购买A品牌足球m个,总费用为W元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?【分析】(1)设购买A品牌足球的单价为x元,则购买B品牌足球的单价为(20)x-元,根据用900元购买A品牌足球的数量用720元购买B品牌足球的数量相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买m个A品牌足球,则购买(90)m-个B品牌足球,根据总价=单价⨯数量,结合总价不超过8500元,以及A品牌足球的数量不小于B品牌足球数量的2倍,即可得出关于m的一元一次不等式组,解之取其中的最小整数值即可得出结论.【解答】解:(1)设购买A品牌足球的单价为x元,则购买B品牌足球的单价为(20)x-元,根据题意,得90072020x x=-,解得:100x=,经检验100x=是原方程的解,2080x-=,答:购买A品牌足球的单价为100元,则购买B品牌足球的单价为80元;(2)设购买m个A品牌足球,则购买(90)m-个B品牌足球,则10080(90)207200W m m m=+-=+,A品牌足球的数量不小于B品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元,∴10080(90)85002(90)m mm m+-⎧⎨-⎩,解不等式组得:6065m,所以,m的值为:60,61,62,63,64,65,即该队共有6种购买方案,当60m=时,W最小,60m=时,206072008400W=⨯+=(元),答:该队共有6种购买方案,购买60个A品牌30个B品牌的总费用最低,最低费用是8400元.23.(10分)如图1,AB是O的直径,直线AM与O相切于点A,直线BN与O相切于点B,点C(异于点)A在AM上,点D在O上,且CD CA=,延长CD与BN相交于点E,连接AD并延长交BN于点F.(1)求证:CE是O的切线;(2)求证:BE EF=;(3)如图2,连接EO并延长与O分别相交于点G、H,连接BH.若6AC=,AB=,4求tan BHE∠.【分析】(1)连接OD,根据等边对等角可知:CAD CDA∠=∠,再根据∠=∠,OAD ODA切线的性质可知90∠=∠+∠=∠+∠=︒=∠,由切线的判定定CAO CAD OAD CDA ODA ODC理可得结论;(2)连接BD,根据等边对等角可知ODB OBD∠=∠,再根据切线的性质可知∠=∠,再根据等角对等边得到∠=∠=︒,由等量减等量差相等得EDB EBDODE OBE90∠=∠,推出DE EF=,由=,然后根据平行线的性质及对顶角相等可得EDF EFDED EB此得出结论;(3)过E点作EL AM⊥于L,根据勾股定理可求出BE的长,即可求出tan BOE∠的值,再利用倍角公式即可求出tan BHE∠的值.【解答】解:(1)如图1中,连接OD,CD CA=,∴∠=∠,CAD CDA=OA OD∴∠=∠,OAD ODA直线AM与O相切于点A,∴∠=∠+∠=︒,CAO CAD OAD9090ODC CDA ODA∴∠=∠+∠=︒,CE∴是O的切线.(2)如图2中,连接BD,OD OB=,ODB OBD∴∠=∠,CE是O的切线,BF是O的切线,90OBD ODE∴∠=∠=︒,EDB EBD∴∠=∠,ED EB∴=,AM AB⊥,BN AB⊥,//AM BN∴,CAD BFD∴∠=∠,CAD CDA EDF∠=∠=∠,BFD EDF∴∠=∠,EF ED∴=,BE EF∴=.(3)如图2中,过E点作EL AM⊥于L,则四边形ABEL是矩形,设BE x=,则4CL x=-,4CE x=+,222(4)(4)6x x∴+=-+,解得:94x=,∴934tan 34BE BOE OB ∠===, 2BOE BHE ∠=∠,∴22tan 3tan 1tan 4BHE BOE BHE ∠∠==-∠, 解得:1tan 3BHE ∠=或3(3--不合题意舍去), 1tan 3BHE ∴∠=. 补充方法:如图2中,作HJ EB ⊥交EB 的延长线于J .34BE tab BOE OB ∠==, ∴可以假设3BE k =,4OB k =,则5OE k =,//OB HJ ,∴OB OE EB HJ EH EJ ==, ∴4539k k k HJ k EJ==, 365HJ k ∴=,275EJ k =, 2712355BJ EJ BE k k k ∴=-=-= 1tan 3BJ BHJ HJ ∴∠==, BHE OBE BHJ ∠=∠=∠,1tan 3BHE ∴∠=.24.(12分)如图1,抛物线214y x bx c =-++经过点(6,0)C ,顶点为B ,对称轴2x =与x 轴相交于点A ,D 为线段BC 的中点.(1)求抛物线的解析式;(2)P 为线段BC 上任意一点,M 为x 轴上一动点,连接MP ,以点M 为中心,将MPC ∆逆时针旋转90︒,记点P 的对应点为E ,点C 的对应点为F .当直线EF 与抛物线214y x bx c =-++只有一个交点时,求点M 的坐标. (3)MPC ∆在(2)的旋转变换下,若2PC =(如图2). ①求证:EA ED =.②当点E 在(1)所求的抛物线上时,求线段CM 的长.【分析】(1)根据点C 在抛物线上和已知对称轴的条件可求出解析式;(2)根据抛物线的解析式求出点B 及已知点C 的坐标,证明ABC ∆是等腰直角三角形,根据旋转的性质推出直线EF 与x 轴的夹角为45︒,因此设直线EF 的解析式为y x b =+,设点M 的坐标为(,0)m ,推出点(,6)F m m -,直线EF 与抛物线2134y x x =-++只有一个交点,联立两个解析式,得到关于x 的一元二次方程,根据根的判别式为0得到关于m 的方程,解方程得点M 的坐标.注意有两种情况,均需讨论.(3)①过点P 作PG x ⊥轴于点G ,过点E 作EH x ⊥轴于点H ,设点M 的坐标为(,0)m ,由2PC =EHM MGP ∆≅∆,得到点E 的坐标为(1,5)m m --,再根据两点距离公式证明EA ED =,注意分两种情况,均需讨论;②把(1,5)E m m --代入抛物线解析式,解出m 的值,进而求出CM 的长.【解答】解:(1)点(6,0)C 在抛物线上, ∴103664b c =-⨯++, 得到69b c +=,又对称轴2x =, ∴2122()4b b x a =-=-=⨯-, 解得1b =,3c ∴=,∴二次函数的解析式为2134y x x =-++; (2)当点M 在点C 的左侧时,如图21-中:抛物线的解析式为2134y x x =-++,对称轴为2x =,(6,0)C ∴点(2,0)A ,顶点(2,4)B ,4AB AC ∴==,ABC ∴∆是等腰直角三角形,145∴∠=︒;将MPC ∆逆时针旋转90︒得到MEF ∆,FM CM ∴=,2145∠=∠=︒,设点M 的坐标为(,0)m ,∴点(,6)F m m -,又245∠=︒,∴直线EF 与x 轴的夹角为45︒,∴设直线EF 的解析式为y x b =+,把点(,6)F m m -代入得:6m m b -=+,解得:62b m =-, 直线EF 的解析式为62y x m =+-,直线EF 与抛物线2134y x x =-++只有一个交点, ∴262134y x m y x x =+-⎧⎪⎨=-++⎪⎩, 整理得:213204x m +-=, ∴△240b ac =-=,解得32m =, 点M 的坐标为3(2,0). 当点M 在点C 的右侧时,如下图:由图可知,直线EF 与x 轴的夹角仍是45︒,因此直线EF 与抛物线2134y x x =-++不可能只有一个交点.综上,点M 的坐标为3(2,0). (3)①当点M 在点C 的左侧时,如下图,过点P 作PG x ⊥轴于点G ,过点E 作EH x ⊥轴于点H ,2PC=,由(2)知45BCA∠=︒,1PG GC∴==,∴点(5,0)G,设点M的坐标为(,0)m,将MPC∆逆时针旋转90︒得到MEF∆,EM PM∴=,90HEM EMH GMP EMH∠+∠=∠+∠=︒,HEM GMP∴∠=∠,在EHM∆和MGP∆中,EHM MGPHEM GMPEM MP∠=∠⎧⎪∠=∠⎨⎪=⎩,()EHM MGP AAS∴∆≅∆,5EH MG m∴==-,1HM PG==,∴点(1,0)H m-,∴点E的坐标为(1,5)m m--;222(12)(50)21634 EA m m m m∴=--+--=-+,又D为线段BC的中点,(2,4)B,(6,0)C,∴点(4,2)D,222(14)(52)21634 ED m m m m∴=--+--=-+,EA ED∴=.当点M在点C的右侧时,如下图:同理,点E 的坐标仍为(1,5)m m --,因此EA ED =.②当点E 在(1)所求的抛物线2134y x x =-++上时, 把(1,5)E m m --代入,整理得:210130m m -+=,解得:5m =+5m =-,1CM ∴=或1CM =+.。
2020湖北省恩施州中考数学试卷
2020年湖北省恩施州中考数学试卷一、选择题(本大题共有12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择项前的字母代号填涂在答题卷相应位置上)1.(3分)(2020•恩施州)5的绝对值是( )A .5B .﹣5C .15D .−152.(3分)(2020•恩施州)茶中精品“恩施绿”“利川红”享誉世界.去年恩施州茶叶产量约为120000吨,将数120000用科学记数法表示为( )A .12×104B .1.2×105C .1.2×106D .0.12×1063.(3分)(2020•恩施州)下列交通标识,既是中心对称图形,又是轴对称图形的是( )A .B .C .D .4.(3分)(2020•恩施州)下列计算正确的是( )A .a 2•a 3=a 6B .a (a +1)=a 2+aC .(a ﹣b )2=a 2﹣b 2D .2a +3b =5ab 5.(3分)(2020•恩施州)函数y =√x+1x 的自变量的取值范围是( ) A .x ≥﹣1 B .x ≥﹣1且x ≠0C .x >0D .x >﹣1且x ≠0 6.(3分)(2020•恩施州)“彩缕碧筠粽,香粳白玉团”.端午佳节,小明妈妈准备了豆沙粽2个、红枣粽4个、腊肉粽3个、白米粽2个,其中豆沙粽和红枣粽是甜粽.小明任意选取一个,选到甜粽的概率是( )A .211B .411C .511D .6117.(3分)(2020•恩施州)在实数范围内定义运算“☆”:a ☆b =a +b ﹣1,例如:2☆3=2+3﹣1=4.如果2☆x =1,则x 的值是( )A .﹣1B .1C .0D .28.(3分)(2020•恩施州)我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”.意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒x 斛,1个小桶盛酒y 斛,下列方程组正确的是( )A .{5x +y =3x +5y =2B .{5x +y =2x +5y =3C .{5x +3y =1x +2y =5D .{3x +y =52x +5y =19.(3分)(2020•恩施州)如图是由四个相同的小正方体组成的立体图形,它的主视图为( )A .B .C .D .10.(3分)(2020•恩施州)甲乙两车从A 城出发前往B 城,在整个行程中,汽车离开A 城的距离y 与时刻t 的对应关系如图所示,则下列结论错误的是( )A .甲车的平均速度为60km /hB .乙车的平均速度为100km /hC .乙车比甲车先到B 城D .乙车比甲车先出发1h11.(3分)(2020•恩施州)如图,正方形ABCD 的边长为4,点E 在AB 上且BE =1,F 为对角线AC 上一动点,则△BFE 周长的最小值为( )A .5B .6C .7D .812.(3分)(2020•恩施州)如图,已知二次函数y =ax 2+bx +c 的图象与x 轴相交于A (﹣2,0)、B(1,0)两点.则以下结论:①ac>0;②二次函数y=ax2+bx+c的图象的对称轴为x=﹣1;③2a+c=0;④a﹣b+c>0.其中正确的有()个.A.0B.1C.2D.3二、填空题(本大题共有4小题,每小题3分,共12分.不要求写出解答过程,请把答案直接填写在答题卷相应位置上)13.(3分)(2020•恩施州)9的算术平方根是.14.(3分)(2020•恩施州)如图,直线l1∥l2,点A在直线l1上,点B在直线l2上,AB=BC,∠C=30°,∠1=80°,则∠2=.15.(3分)(2020•恩施州)如图,已知半圆的直径AB=4,点C在半圆上,以点A为圆心,AC为半径画弧交AB于点D,连接BC.若∠ABC=60°,则图中阴影部分的面积为.(结果不取近似值16.(3分)(2020•恩施州)如图,在平面直角坐标系中,△ABC的顶点坐标分别为:A(﹣2,0),B(1,2),C(1,﹣2).已知N(﹣1,0),作点N关于点A的对称点N1,点N1关于点B的对称点N2,点N2关于点C的对称点N3,点N3关于点A的对称点N4,点N4关于点B的对称点N5,…,依此类推,则点N2020的坐标为.三、解答题(本大题共有8个小题,共72分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤).17.(8分)(2020•恩施州)先化简,再求值:(m2−9m2−6m+9−3m−3)÷m2m−3,其中m=√2.18.(8分)(2020•恩施州)如图,AE∥BF,BD平分∠ABC交AE于点D,点C在BF上且BC=AB,连接CD.求证:四边形ABCD是菱形.19.(8分)(2020•恩施州)某中学为了解九年级学生对新冠肺炎防控知识的掌握情况,从全校九年级学生中随机抽取部分学生进行调查.调查结果分为四类:A类﹣﹣非常了解;B类﹣﹣比较了解;C类﹣﹣般了解;D类﹣﹣不了解.现将调查结果绘制成如图不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次共调查了名学生;(2)补全条形统计图;(3)D类所对应扇形的圆心角的大小为;(4)若该校九年级学生共有500名,根据以上抽样结果,估计该校九年级学生对新冠肺炎防控知识非常了解的约有名.20.(8分)(2020•恩施州)如图,一艘轮船以每小时30海里的速度自东向西航行,在A处测得小岛P位于其西北方向(北偏西45°方向),2小时后轮船到达B处,在B处测得小岛P位于其北偏东60°方向.求此时船与小岛P的距离(结果保留整数,参考数据:√2≈1.414,√3≈1.732).21.(8分)(2020•恩施州)如图,在平面直角坐标系中,直线y=ax﹣3a(a≠0)与x轴、y轴分别相交于A、B两点,与双曲线y=kx(x>0)的一个交点为C,且BC=12AC.(1)求点A的坐标;(2)当S△AOC=3时,求a和k的值.22.(10分)(2020•恩施州)某校足球队需购买A、B两种品牌的足球.已知A品牌足球的单价比B品牌足球的单价高20元,且用900元购买A品牌足球的数量用720元购买B 品牌足球的数量相等.(1)求A、B两种品牌足球的单价;(2)若足球队计划购买A、B两种品牌的足球共90个,且A品牌足球的数量不小于B 品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.设购买A品牌足球m 个,总费用为W元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?23.(10分)(2020•恩施州)如图1,AB是⊙O的直径,直线AM与⊙O相切于点A,直线BN与⊙O相切于点B,点C(异于点A)在AM上,点D在⊙O上,且CD=CA,延长CD与BN相交于点E,连接AD并延长交BN于点F.(1)求证:CE是⊙O的切线;(2)求证:BE=EF;(3)如图2,连接EO并延长与⊙O分别相交于点G、H,连接BH.若AB=6,AC=4,求tan∠BHE.24.(12分)(2020•恩施州)如图1,抛物线y=−14x2+bx+c经过点C(6,0),顶点为B,对称轴x=2与x轴相交于点A,D为线段BC的中点.(1)求抛物线的解析式;(2)P为线段BC上任意一点,M为x轴上一动点,连接MP,以点M为中心,将△MPC 逆时针旋转90°,记点P的对应点为E,点C的对应点为F.当直线EF与抛物线y=−14x2+bx+c只有一个交点时,求点M的坐标.(3)△MPC在(2)的旋转变换下,若PC=√2(如图2).①求证:EA=ED.②当点E在(1)所求的抛物线上时,求线段CM的长.2020年湖北省恩施州中考数学试卷参考答案与试题解析一、选择题(本大题共有12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择项前的字母代号填涂在答题卷相应位置上)1.(3分)(2020•恩施州)5的绝对值是( )A .5B .﹣5C .15D .−15 【解答】解:在数轴上,数5所表示的点到原点0的距离是5;故选:A .2.(3分)(2020•恩施州)茶中精品“恩施绿”“利川红”享誉世界.去年恩施州茶叶产量约为120000吨,将数120000用科学记数法表示为( )A .12×104B .1.2×105C .1.2×106D .0.12×106【解答】解:120000=1.2×105,故选:B .3.(3分)(2020•恩施州)下列交通标识,既是中心对称图形,又是轴对称图形的是( )A .B .C .D .【解答】解:根据轴对称图形与中心对称图形的概念,知:A 、不是轴对称图形,也不是中心对称图形;B 、不是轴对称图形,也不是中心对称图形;C 、是轴对称图形,但不是中心对称图形;D 、既是中心对称图形,又是轴对称图形.故选:D .4.(3分)(2020•恩施州)下列计算正确的是( )A .a 2•a 3=a 6B .a (a +1)=a 2+aC .(a ﹣b )2=a 2﹣b 2D .2a +3b =5ab【解答】解:A 、a 2•a 3=a 5,原计算错误,故此选项不符合题意;B 、a (a +1)=a 2+a ,原计算正确,故此选项符合题意;C 、(a ﹣b )2=a 2﹣2ab +b 2,原计算错误,故此选项不符合题意;D 、2a 与3b 不是同类项,不能合并,原计算错误,故此选项不符合题意;故选:B .5.(3分)(2020•恩施州)函数y =√x+1x 的自变量的取值范围是( ) A .x ≥﹣1 B .x ≥﹣1且x ≠0C .x >0D .x >﹣1且x ≠0 【解答】解:根据题意得,x +1≥0且x ≠0,解得x ≥﹣1且x ≠0.故选:B .6.(3分)(2020•恩施州)“彩缕碧筠粽,香粳白玉团”.端午佳节,小明妈妈准备了豆沙粽2个、红枣粽4个、腊肉粽3个、白米粽2个,其中豆沙粽和红枣粽是甜粽.小明任意选取一个,选到甜粽的概率是( )A .211B .411C .511D .611【解答】解:由题意可得:粽子总数为11个,其中6个为甜粽,所以选到甜粽的概率为:611,故选:D .7.(3分)(2020•恩施州)在实数范围内定义运算“☆”:a ☆b =a +b ﹣1,例如:2☆3=2+3﹣1=4.如果2☆x =1,则x 的值是( )A .﹣1B .1C .0D .2 【解答】解:由题意知:2☆x =2+x ﹣1=1+x ,又2☆x =1,∴1+x =1,∴x =0.故选:C .8.(3分)(2020•恩施州)我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”.意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒x 斛,1个小桶盛酒y 斛,下列方程组正确的是( )A .{5x +y =3x +5y =2B .{5x +y =2x +5y =3C .{5x +3y =1x +2y =5D .{3x +y =52x +5y =1【解答】解:依题意,得:{5x +y =3x +5y =2. 故选:A . 9.(3分)(2020•恩施州)如图是由四个相同的小正方体组成的立体图形,它的主视图为( )A .B .C .D .【解答】解:从正面看易得第一列有2个正方形,第二列底层有1个正方形.故选:A .10.(3分)(2020•恩施州)甲乙两车从A 城出发前往B 城,在整个行程中,汽车离开A 城的距离y 与时刻t 的对应关系如图所示,则下列结论错误的是( )A .甲车的平均速度为60km /hB .乙车的平均速度为100km /hC .乙车比甲车先到B 城D .乙车比甲车先出发1h【解答】解:由图象知:A .甲车的平均速度为30010−5=60km /h ,故A 选项不合题意; B .乙车的平均速度为3009−6=100km /h ,故B 选项不合题意;C .甲10时到达B 城,乙9时到达B 城,所以乙比甲先到B 城,故C 选项不合题意;D.甲5时出发,乙6时出发,所以乙比甲晚出发1h,故此选项错误,故选:D.11.(3分)(2020•恩施州)如图,正方形ABCD的边长为4,点E在AB上且BE=1,F为对角线AC上一动点,则△BFE周长的最小值为()A.5B.6C.7D.8【解答】解:如图,连接ED交AC于一点F,连接BF,∵四边形ABCD是正方形,∴点B与点D关于AC对称,∴BF=DF,∴△BFE的周长=BF+EF+BE=DE+BE,此时△BEF的周长最小,∵正方形ABCD的边长为4,∴AD=AB=4,∠DAB=90°,∵点E在AB上且BE=1,∴AE=3,∴DE=√AD2+AE2=5,∴△BFE的周长=5+1=6,故选:B.12.(3分)(2020•恩施州)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣2,0)、B(1,0)两点.则以下结论:①ac>0;②二次函数y=ax2+bx+c的图象的对称轴为x=﹣1;③2a+c=0;④a﹣b+c>0.其中正确的有()个.A.0B.1C.2D.3【解答】解:对于①:二次函数开口向下,故a<0,与y轴的交点在y的正半轴,故c >0,故ac<0,因此①错误;对于②:二次函数的图象与x轴相交于A(﹣2,0)、B(1,0),由对称性可知,其对称轴为:x=−2+12=−12,因此②错误;对于③:设二次函数y=ax2+bx+c的交点式为y=a(x+2)(x﹣1)=ax2+ax﹣2a,比较一般式与交点式的系数可知:b=a,c=﹣2a,故2a+c=0,因此③正确;对于④:当x=﹣1时对应的y=a﹣b+c,观察图象可知x=﹣1时对应的函数图象的y 值在x轴上方,故a﹣b+c>0,因此④正确.∴只有③④是正确的.故选:C.二、填空题(本大题共有4小题,每小题3分,共12分.不要求写出解答过程,请把答案直接填写在答题卷相应位置上)13.(3分)(2020•恩施州)9的算术平方根是3.【解答】解:∵(±3)2=9,∴9的算术平方根是|±3|=3.故答案为:3.14.(3分)(2020•恩施州)如图,直线l1∥l2,点A在直线l1上,点B在直线l2上,AB=BC,∠C=30°,∠1=80°,则∠2=40°.【解答】解:如图,延长CB交l2于点D,∵AB=BC,∠C=30°,∴∠C=∠4=30°,∵l1∥l2,∠1=80°,∴∠1=∠3=80°,∵∠C+∠3+∠2+∠4=180°,即30°+80°+∠2+30°=180°,∴∠2=40°.故答案为:40°.15.(3分)(2020•恩施州)如图,已知半圆的直径AB=4,点C在半圆上,以点A为圆心,AC为半径画弧交AB于点D,连接BC.若∠ABC=60°,则图中阴影部分的面积为2√3−π.(结果不取近似值【解答】解:∵AB是直径,∴∠ACB=90°,∵∠ABC=60°,∴∠CAB=30°,∴BC=12AB=2,AC=2√3,∴S△ABC=12⋅AC⋅BC=12⋅2√3⋅2=2√3,∵∠CAB=30°,∴扇形ACD的面积=30360π⋅AC2=112π⋅(2√3)2=π,∴阴影部分的面积为2√3−π.故答案为:2√3−π.16.(3分)(2020•恩施州)如图,在平面直角坐标系中,△ABC的顶点坐标分别为:A(﹣2,0),B(1,2),C(1,﹣2).已知N(﹣1,0),作点N关于点A的对称点N1,点N1关于点B的对称点N2,点N2关于点C的对称点N3,点N3关于点A的对称点N4,点N4关于点B的对称点N5,…,依此类推,则点N2020的坐标为(﹣1,8).【解答】解:由题意得,作出如下图形:N点坐标为(﹣1,0),N点关于A点对称的N1点的坐标为(﹣3,0),N1点关于B点对称的N2点的坐标为(5,4),N2点关于C点对称的N3点的坐标为(﹣3,8),N3点关于A点对称的N4点的坐标为(﹣1,8),N4点关于B点对称的N5点的坐标为(3,﹣4),N5点关于C点对称的N6点的坐标为(﹣1,0),此时刚好回到最开始的点N处,∴其每6个点循环一次,∴2020÷6=336……4,即循环了336次后余下4,故N2020的坐标与N4点的坐标相同,其坐标为(﹣1,8).故答案为:(﹣1,8).三、解答题(本大题共有8个小题,共72分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤).17.(8分)(2020•恩施州)先化简,再求值:(m2−9m2−6m+9−3m−3)÷m2m−3,其中m=√2.【解答】解:(m2−9m2−6m+9−3m−3)÷m2m−3=[(m+3)(m−3)(m−3)2−3m−3]⋅m−3m2=(m+3m−3−3m−3)⋅m−3m2=m m−3⋅m−3 m2=1m;当m=√2时,原式=2=√22.18.(8分)(2020•恩施州)如图,AE∥BF,BD平分∠ABC交AE于点D,点C在BF上且BC=AB,连接CD.求证:四边形ABCD是菱形.【解答】证明:∵AE∥BF,∴∠ADB=∠DBC,∵BD平分∠ABC,∴∠DBC=∠ABD,∴∠ADB=∠ABD,∴AB=AD,又∵AB=BC,∴AD=BC,∵AE∥BF,即AD∥BC,∴四边形ABCD为平行四边形,又∵AB=AD,∴四边形ABCD为菱形.19.(8分)(2020•恩施州)某中学为了解九年级学生对新冠肺炎防控知识的掌握情况,从全校九年级学生中随机抽取部分学生进行调查.调查结果分为四类:A类﹣﹣非常了解;B类﹣﹣比较了解;C类﹣﹣般了解;D类﹣﹣不了解.现将调查结果绘制成如图不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次共调查了50名学生;(2)补全条形统计图;(3)D类所对应扇形的圆心角的大小为36°;(4)若该校九年级学生共有500名,根据以上抽样结果,估计该校九年级学生对新冠肺炎防控知识非常了解的约有150名.【解答】解:(1)本次共调查的学生数为:20÷40%=50(名).故答案为:50;(2)C类学生人数为:50﹣15﹣20﹣5=10(名),条形图如下:(3)D类所对应扇形的圆心角为:360°×550=36°.故答案为:36°;(4)该校九年级学生对新冠肺炎防控知识非常了解的人数为:500×1550=150(名).故答案为:150.20.(8分)(2020•恩施州)如图,一艘轮船以每小时30海里的速度自东向西航行,在A处测得小岛P位于其西北方向(北偏西45°方向),2小时后轮船到达B处,在B处测得小岛P位于其北偏东60°方向.求此时船与小岛P的距离(结果保留整数,参考数据:√2≈1.414,√3≈1.732).【解答】解:如图,过P作PH⊥AB,设PH=x,由题意得:AB=30×2=60,∠PBH=90°﹣60°=30°,∠PAH=90°﹣45°=45°,则△PHA是等腰直角三角形,∴AH=PH,在Rt△PHA中,设AH=PH=x,在Rt△PBH中,PB=2PH=2x,BH=AB﹣AH=60﹣x,∴tan∠PBH=tan30°=PHBH=√33,∴√33=x 60−x, 解得:x =30(√3−1),∴PB =2x =60(√3−1)≈44(海里),答:此时船与小岛P 的距离约为44海里.21.(8分)(2020•恩施州)如图,在平面直角坐标系中,直线y =ax ﹣3a (a ≠0)与x 轴、y 轴分别相交于A 、B 两点,与双曲线y =k x (x >0)的一个交点为C ,且BC =12AC .(1)求点A 的坐标;(2)当S △AOC =3时,求a 和k 的值.【解答】解:(1)由题意得:令y =ax ﹣3a (a ≠0)中y =0,即ax ﹣3a =0,解得x =3,∴点A 的坐标为(3,0),故答案为(3,0).(2)过C 点作y 轴的垂线交y 轴于M 点,作x 轴的垂线交x 轴于N 点,如下图所示:显然,CM ∥OA ,∴∠BCM =∠BAO ,且∠ABO =∠CBO ,∴△BCM ∽△BAO ,∴BC BA =CM AO ,即:13=CM 3,∴CM =1,又S △AOC =12OA ⋅CN =3即:12×3×CN =3, ∴CN =2,∴C 点的坐标为(1,2),故反比例函数的k =1×2=2,再将点C (1,2)代入一次函数y =ax ﹣3a (a ≠0)中,即2=a ﹣3a ,解得a =﹣1,故答案为:a =﹣1,k =2.22.(10分)(2020•恩施州)某校足球队需购买A 、B 两种品牌的足球.已知A 品牌足球的单价比B 品牌足球的单价高20元,且用900元购买A 品牌足球的数量用720元购买B 品牌足球的数量相等.(1)求A 、B 两种品牌足球的单价;(2)若足球队计划购买A 、B 两种品牌的足球共90个,且A 品牌足球的数量不小于B 品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.设购买A 品牌足球m 个,总费用为W 元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?【解答】解:(1)设购买A 品牌足球的单价为x 元,则购买B 品牌足球的单价为(x ﹣20)元,根据题意,得900x =720x−20,解得:x =100,经检验x =100是原方程的解,x ﹣20=80,答:购买A 品牌足球的单价为100元,则购买B 品牌足球的单价为80元;(2)设购买m 个A 品牌足球,则购买(90﹣m )个B 品牌足球,则W =100m +80(90﹣m )=20m +7200,∵A 品牌足球的数量不小于B 品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元,∴{100m +80(90−m)≤8500m ≥2(90−m), 解不等式组得:60≤m ≤65,所以,m 的值为:60,61,62,63,64,65,即该队共有6种购买方案,当m =60时,W 最小,m =60时,W =20×60+7200=8400(元),答:该队共有6种购买方案,购买60个A 品牌30个B 品牌的总费用最低,最低费用是8400元.23.(10分)(2020•恩施州)如图1,AB 是⊙O 的直径,直线AM 与⊙O 相切于点A ,直线BN 与⊙O 相切于点B ,点C (异于点A )在AM 上,点D 在⊙O 上,且CD =CA ,延长CD 与BN 相交于点E ,连接AD 并延长交BN 于点F .(1)求证:CE 是⊙O 的切线;(2)求证:BE =EF ;(3)如图2,连接EO 并延长与⊙O 分别相交于点G 、H ,连接BH .若AB =6,AC =4,求tan ∠BHE .【解答】解:(1)如图1中,连接OD ,∵CD =CA ,∴∠CAD =∠CDA ,∵OA =OD∴∠OAD =∠ODA ,∵直线AM与⊙O相切于点A,∴∠CAO=∠CAD+∠OAD=90°,∴∠ODC=∠CDA+∠ODA=90°,∴CE是⊙O的切线.(2)如图2中,连接BD,∵OD=OB,∴∠ODB=∠OBD,∵CE是⊙O的切线,BF是⊙O的切线,∴∠OBD=∠ODE=90°,∴∠EDB=∠EBD,∴ED=EB,∵AM⊥AB,BN⊥AB,∴AM∥BN,∴∠CAD=∠BFD,∵∠CAD=∠CDA=∠EDF,∴∠BFD=∠EDF,∴EF=ED,∴BE=EF.(3)如图2中,过E点作EL⊥AM于L,则四边形ABEL是矩形,设BE=x,则CL=4﹣x,CE=4+x,∴(4+x)2=(4﹣x)2+62,解得:x =94,∴tan ∠BOE =BE OB =943=34, ∵∠BOE =2∠BHE ,∴tan ∠BOE =2tan∠BHE 1−tan 2∠BHE =34, 解得:tan ∠BHE =13或﹣3(﹣3不合题意舍去),∴tan ∠BHE =13.补充方法:如图2中,作HJ ⊥EB 交EB 的延长线于J .∵tab ∠BOE =BE OB =34, ∴可以假设BE =3k ,OB =4k ,则OE =5k ,∵OB ∥HJ ,∴OB HJ =OE EH =EB EJ , ∴4k HJ =5k 9k =3k EJ ,∴HJ =365k ,EJ =275k , ∴BJ =EJ ﹣BE =275k ﹣3k =125k∴tan ∠BHJ =BJ HJ =13, ∵∠BHE =∠OBE =∠BHJ ,∴tan ∠BHE =13.24.(12分)(2020•恩施州)如图1,抛物线y =−14x 2+bx +c 经过点C (6,0),顶点为B ,对称轴x =2与x 轴相交于点A ,D 为线段BC 的中点.(1)求抛物线的解析式;(2)P为线段BC上任意一点,M为x轴上一动点,连接MP,以点M为中心,将△MPC 逆时针旋转90°,记点P的对应点为E,点C的对应点为F.当直线EF与抛物线y=−14x2+bx+c只有一个交点时,求点M的坐标.(3)△MPC在(2)的旋转变换下,若PC=√2(如图2).①求证:EA=ED.②当点E在(1)所求的抛物线上时,求线段CM的长.【解答】解:(1)∵点C(6,0)在抛物线上,∴0=−14×36+6b+c,得到6b+c=9,又∵对称轴x=2,∴x=−b2a=−b2×(−14)=2,解得b=1,∴c=3,∴二次函数的解析式为y=−14x2+x+3;(2)当点M在点C的左侧时,如图2﹣1中:∵抛物线的解析式为y =−14x 2+x +3,对称轴为x =2,C (6,0)∴点A (2,0),顶点B (2,4),∴AB =AC =4,∴△ABC 是等腰直角三角形,∴∠1=45°;∵将△MPC 逆时针旋转90°得到△MEF ,∴FM =CM ,∠2=∠1=45°,设点M 的坐标为(m ,0),∴点F (m ,6﹣m ),又∵∠2=45°,∴直线EF 与x 轴的夹角为45°,∴设直线EF 的解析式为y =x +b ,把点F (m ,6﹣m )代入得:6﹣m =m +b ,解得:b =6﹣2m ,直线EF 的解析式为y =x +6﹣2m ,∵直线EF 与抛物线y =−14x 2+x +3只有一个交点,∴{y =x +6−2my =−14x 2+x +3, 整理得:14x 2+3−2m =0,∴△=b 2﹣4ac =0,解得m =32,点M 的坐标为(32,0).当点M 在点C 的右侧时,如下图:由图可知,直线EF 与x 轴的夹角仍是45°,因此直线EF 与抛物线y =−14x 2+x +3不可能只有一个交点.综上,点M 的坐标为(32,0). (3)①当点M 在点C 的左侧时,如下图,过点P 作PG ⊥x 轴于点G ,过点E 作EH ⊥x 轴于点H ,∵PC =√2,由(2)知∠BCA =45°,∴PG =GC =1,∴点G (5,0),设点M 的坐标为(m ,0),∵将△MPC 逆时针旋转90°得到△MEF ,∴EM =PM ,∵∠HEM +∠EMH =∠GMP +∠EMH =90°,∴∠HEM =∠GMP ,在△EHM 和△MGP 中,{∠EHM =∠MGP∠HEM =∠GMP EM =MP,∴△EHM ≌△MGP (AAS ),∴EH =MG =5﹣m ,HM =PG =1,∴点H (m ﹣1,0),∴点E 的坐标为(m ﹣1,5﹣m );∴EA =√(m −1−2)2+(5−m −0)2=√2m 2−16m +34, 又∵D 为线段BC 的中点,B (2,4),C (6,0), ∴点D (4,2),∴ED =√(m 2+(5−m −2)2=√2m 2−16m +34, ∴EA =ED .当点M 在点C 的右侧时,如下图:同理,点E 的坐标仍为(m ﹣1,5﹣m ),因此EA =ED . ②当点E 在(1)所求的抛物线y =−14x 2+x +3上时, 把E (m ﹣1,5﹣m )代入,整理得:m 2﹣10m +13=0, 解得:m =5+2√3或m =5−2√3,∴CM =2√3−1或CM =1+2√3.。
2020年湖北省恩施州中考数学试卷(后附答案及详尽解析)
2020年湖北省恩施州中考数学试卷一、选择题(本大题共有12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择项前的字母代号填涂在答题卷相应位置上)1.(3分)(2020•恩施州)5的绝对值是( )A .5B .﹣5C .15D .−152.(3分)(2020•恩施州)茶中精品“恩施绿”“利川红”享誉世界.去年恩施州茶叶产量约为120000吨,将数120000用科学记数法表示为( )A .12×104B .1.2×105C .1.2×106D .0.12×1063.(3分)(2020•恩施州)下列交通标识,既是中心对称图形,又是轴对称图形的是( )A .B .C .D .4.(3分)(2020•恩施州)下列计算正确的是( )A .a 2•a 3=a 6B .a (a +1)=a 2+aC .(a ﹣b )2=a 2﹣b 2D .2a +3b =5ab 5.(3分)(2020•恩施州)函数y =√x+1x 的自变量的取值范围是( ) A .x ≥﹣1 B .x ≥﹣1且x ≠0C .x >0D .x >﹣1且x ≠0 6.(3分)(2020•恩施州)“彩缕碧筠粽,香粳白玉团”.端午佳节,小明妈妈准备了豆沙粽2个、红枣粽4个、腊肉粽3个、白米粽2个,其中豆沙粽和红枣粽是甜粽.小明任意选取一个,选到甜粽的概率是( )A .211B .411C .511D .6117.(3分)(2020•恩施州)在实数范围内定义运算“☆”:a ☆b =a +b ﹣1,例如:2☆3=2+3﹣1=4.如果2☆x =1,则x 的值是( )A .﹣1B .1C .0D .28.(3分)(2020•恩施州)我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”.意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒x 斛,1个小桶盛酒y 斛,下列方程组正确的是( )A .{5x +y =3x +5y =2B .{5x +y =2x +5y =3C .{5x +3y =1x +2y =5D .{3x +y =52x +5y =19.(3分)(2020•恩施州)如图是由四个相同的小正方体组成的立体图形,它的主视图为( )A .B .C .D .10.(3分)(2020•恩施州)甲乙两车从A 城出发前往B 城,在整个行程中,汽车离开A 城的距离y 与时刻t 的对应关系如图所示,则下列结论错误的是( )A .甲车的平均速度为60km /hB .乙车的平均速度为100km /hC .乙车比甲车先到B 城D .乙车比甲车先出发1h11.(3分)(2020•恩施州)如图,正方形ABCD 的边长为4,点E 在AB 上且BE =1,F 为对角线AC 上一动点,则△BFE 周长的最小值为( )A .5B .6C .7D .812.(3分)(2020•恩施州)如图,已知二次函数y =ax 2+bx +c 的图象与x 轴相交于A (﹣2,0)、B(1,0)两点.则以下结论:①ac>0;②二次函数y=ax2+bx+c的图象的对称轴为x=﹣1;③2a+c=0;④a﹣b+c>0.其中正确的有()个.A.0B.1C.2D.3二、填空题(本大题共有4小题,每小题3分,共12分.不要求写出解答过程,请把答案直接填写在答题卷相应位置上)13.(3分)(2020•恩施州)9的算术平方根是.14.(3分)(2020•恩施州)如图,直线l1∥l2,点A在直线l1上,点B在直线l2上,AB=BC,∠C=30°,∠1=80°,则∠2=.15.(3分)(2020•恩施州)如图,已知半圆的直径AB=4,点C在半圆上,以点A为圆心,AC为半径画弧交AB于点D,连接BC.若∠ABC=60°,则图中阴影部分的面积为.(结果不取近似值16.(3分)(2020•恩施州)如图,在平面直角坐标系中,△ABC的顶点坐标分别为:A(﹣2,0),B(1,2),C(1,﹣2).已知N(﹣1,0),作点N关于点A的对称点N1,点N1关于点B的对称点N2,点N2关于点C的对称点N3,点N3关于点A的对称点N4,点N4关于点B的对称点N5,…,依此类推,则点N2020的坐标为.三、解答题(本大题共有8个小题,共72分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤).17.(8分)(2020•恩施州)先化简,再求值:(m2−9m2−6m+9−3m−3)÷m2m−3,其中m=√2.18.(8分)(2020•恩施州)如图,AE∥BF,BD平分∠ABC交AE于点D,点C在BF上且BC=AB,连接CD.求证:四边形ABCD是菱形.19.(8分)(2020•恩施州)某中学为了解九年级学生对新冠肺炎防控知识的掌握情况,从全校九年级学生中随机抽取部分学生进行调查.调查结果分为四类:A类﹣﹣非常了解;B类﹣﹣比较了解;C类﹣﹣般了解;D类﹣﹣不了解.现将调查结果绘制成如图不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次共调查了名学生;(2)补全条形统计图;(3)D类所对应扇形的圆心角的大小为;(4)若该校九年级学生共有500名,根据以上抽样结果,估计该校九年级学生对新冠肺炎防控知识非常了解的约有名.20.(8分)(2020•恩施州)如图,一艘轮船以每小时30海里的速度自东向西航行,在A处测得小岛P位于其西北方向(北偏西45°方向),2小时后轮船到达B处,在B处测得小岛P位于其北偏东60°方向.求此时船与小岛P的距离(结果保留整数,参考数据:√2≈1.414,√3≈1.732).21.(8分)(2020•恩施州)如图,在平面直角坐标系中,直线y=ax﹣3a(a≠0)与x轴、y轴分别相交于A、B两点,与双曲线y=kx(x>0)的一个交点为C,且BC=12AC.(1)求点A的坐标;(2)当S△AOC=3时,求a和k的值.22.(10分)(2020•恩施州)某校足球队需购买A、B两种品牌的足球.已知A品牌足球的单价比B品牌足球的单价高20元,且用900元购买A品牌足球的数量用720元购买B 品牌足球的数量相等.(1)求A、B两种品牌足球的单价;(2)若足球队计划购买A、B两种品牌的足球共90个,且A品牌足球的数量不小于B 品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.设购买A品牌足球m 个,总费用为W元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?23.(10分)(2020•恩施州)如图1,AB是⊙O的直径,直线AM与⊙O相切于点A,直线BN与⊙O相切于点B,点C(异于点A)在AM上,点D在⊙O上,且CD=CA,延长CD与BN相交于点E,连接AD并延长交BN于点F.(1)求证:CE是⊙O的切线;(2)求证:BE=EF;(3)如图2,连接EO并延长与⊙O分别相交于点G、H,连接BH.若AB=6,AC=4,求tan∠BHE.24.(12分)(2020•恩施州)如图1,抛物线y=−14x2+bx+c经过点C(6,0),顶点为B,对称轴x=2与x轴相交于点A,D为线段BC的中点.(1)求抛物线的解析式;(2)P为线段BC上任意一点,M为x轴上一动点,连接MP,以点M为中心,将△MPC 逆时针旋转90°,记点P的对应点为E,点C的对应点为F.当直线EF与抛物线y=−14x2+bx+c只有一个交点时,求点M的坐标.(3)△MPC在(2)的旋转变换下,若PC=√2(如图2).①求证:EA=ED.②当点E在(1)所求的抛物线上时,求线段CM的长.2020年湖北省恩施州中考数学试卷参考答案与试题解析一、选择题(本大题共有12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择项前的字母代号填涂在答题卷相应位置上)1.(3分)(2020•恩施州)5的绝对值是( )A .5B .﹣5C .15D .−15 【解答】解:在数轴上,数5所表示的点到原点0的距离是5;故选:A .2.(3分)(2020•恩施州)茶中精品“恩施绿”“利川红”享誉世界.去年恩施州茶叶产量约为120000吨,将数120000用科学记数法表示为( )A .12×104B .1.2×105C .1.2×106D .0.12×106【解答】解:120000=1.2×105,故选:B .3.(3分)(2020•恩施州)下列交通标识,既是中心对称图形,又是轴对称图形的是( )A .B .C .D .【解答】解:根据轴对称图形与中心对称图形的概念,知:A 、不是轴对称图形,也不是中心对称图形;B 、不是轴对称图形,也不是中心对称图形;C 、是轴对称图形,但不是中心对称图形;D 、既是中心对称图形,又是轴对称图形.故选:D .4.(3分)(2020•恩施州)下列计算正确的是( )A .a 2•a 3=a 6B .a (a +1)=a 2+aC .(a ﹣b )2=a 2﹣b 2D .2a +3b =5ab【解答】解:A 、a 2•a 3=a 5,原计算错误,故此选项不符合题意;B 、a (a +1)=a 2+a ,原计算正确,故此选项符合题意;C 、(a ﹣b )2=a 2﹣2ab +b 2,原计算错误,故此选项不符合题意;D 、2a 与3b 不是同类项,不能合并,原计算错误,故此选项不符合题意;故选:B .5.(3分)(2020•恩施州)函数y =√x+1x 的自变量的取值范围是( ) A .x ≥﹣1 B .x ≥﹣1且x ≠0C .x >0D .x >﹣1且x ≠0 【解答】解:根据题意得,x +1≥0且x ≠0,解得x ≥﹣1且x ≠0.故选:B .6.(3分)(2020•恩施州)“彩缕碧筠粽,香粳白玉团”.端午佳节,小明妈妈准备了豆沙粽2个、红枣粽4个、腊肉粽3个、白米粽2个,其中豆沙粽和红枣粽是甜粽.小明任意选取一个,选到甜粽的概率是( )A .211B .411C .511D .611【解答】解:由题意可得:粽子总数为11个,其中6个为甜粽,所以选到甜粽的概率为:611,故选:D .7.(3分)(2020•恩施州)在实数范围内定义运算“☆”:a ☆b =a +b ﹣1,例如:2☆3=2+3﹣1=4.如果2☆x =1,则x 的值是( )A .﹣1B .1C .0D .2 【解答】解:由题意知:2☆x =2+x ﹣1=1+x ,又2☆x =1,∴1+x =1,∴x =0.故选:C .8.(3分)(2020•恩施州)我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”.意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒x 斛,1个小桶盛酒y 斛,下列方程组正确的是( )A .{5x +y =3x +5y =2B .{5x +y =2x +5y =3C .{5x +3y =1x +2y =5D .{3x +y =52x +5y =1【解答】解:依题意,得:{5x +y =3x +5y =2. 故选:A . 9.(3分)(2020•恩施州)如图是由四个相同的小正方体组成的立体图形,它的主视图为( )A .B .C .D .【解答】解:从正面看易得第一列有2个正方形,第二列底层有1个正方形.故选:A .10.(3分)(2020•恩施州)甲乙两车从A 城出发前往B 城,在整个行程中,汽车离开A 城的距离y 与时刻t 的对应关系如图所示,则下列结论错误的是( )A .甲车的平均速度为60km /hB .乙车的平均速度为100km /hC .乙车比甲车先到B 城D .乙车比甲车先出发1h【解答】解:由图象知:A .甲车的平均速度为30010−5=60km /h ,故A 选项不合题意; B .乙车的平均速度为3009−6=100km /h ,故B 选项不合题意;C .甲10时到达B 城,乙9时到达B 城,所以乙比甲先到B 城,故C 选项不合题意;D.甲5时出发,乙6时出发,所以乙比甲晚出发1h,故此选项错误,故选:D.11.(3分)(2020•恩施州)如图,正方形ABCD的边长为4,点E在AB上且BE=1,F为对角线AC上一动点,则△BFE周长的最小值为()A.5B.6C.7D.8【解答】解:如图,连接ED交AC于一点F,连接BF,∵四边形ABCD是正方形,∴点B与点D关于AC对称,∴BF=DF,∴△BFE的周长=BF+EF+BE=DE+BE,此时△BEF的周长最小,∵正方形ABCD的边长为4,∴AD=AB=4,∠DAB=90°,∵点E在AB上且BE=1,∴AE=3,∴DE=√AD2+AE2=5,∴△BFE的周长=5+1=6,故选:B.12.(3分)(2020•恩施州)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣2,0)、B(1,0)两点.则以下结论:①ac>0;②二次函数y=ax2+bx+c的图象的对称轴为x=﹣1;③2a+c=0;④a﹣b+c>0.其中正确的有()个.A.0B.1C.2D.3【解答】解:对于①:二次函数开口向下,故a<0,与y轴的交点在y的正半轴,故c >0,故ac<0,因此①错误;对于②:二次函数的图象与x轴相交于A(﹣2,0)、B(1,0),由对称性可知,其对称轴为:x=−2+12=−12,因此②错误;对于③:设二次函数y=ax2+bx+c的交点式为y=a(x+2)(x﹣1)=ax2+ax﹣2a,比较一般式与交点式的系数可知:b=a,c=﹣2a,故2a+c=0,因此③正确;对于④:当x=﹣1时对应的y=a﹣b+c,观察图象可知x=﹣1时对应的函数图象的y 值在x轴上方,故a﹣b+c>0,因此④正确.∴只有③④是正确的.故选:C.二、填空题(本大题共有4小题,每小题3分,共12分.不要求写出解答过程,请把答案直接填写在答题卷相应位置上)13.(3分)(2020•恩施州)9的算术平方根是3.【解答】解:∵(±3)2=9,∴9的算术平方根是|±3|=3.故答案为:3.14.(3分)(2020•恩施州)如图,直线l1∥l2,点A在直线l1上,点B在直线l2上,AB=BC,∠C=30°,∠1=80°,则∠2=40°.【解答】解:如图,延长CB交l2于点D,∵AB=BC,∠C=30°,∴∠C=∠4=30°,∵l1∥l2,∠1=80°,∴∠1=∠3=80°,∵∠C+∠3+∠2+∠4=180°,即30°+80°+∠2+30°=180°,∴∠2=40°.故答案为:40°.15.(3分)(2020•恩施州)如图,已知半圆的直径AB=4,点C在半圆上,以点A为圆心,AC为半径画弧交AB于点D,连接BC.若∠ABC=60°,则图中阴影部分的面积为2√3−π.(结果不取近似值【解答】解:∵AB是直径,∴∠ACB=90°,∵∠ABC=60°,∴∠CAB=30°,∴BC=12AB=2,AC=2√3,∴S△ABC=12⋅AC⋅BC=12⋅2√3⋅2=2√3,∵∠CAB=30°,∴扇形ACD的面积=30360π⋅AC2=112π⋅(2√3)2=π,∴阴影部分的面积为2√3−π.故答案为:2√3−π.16.(3分)(2020•恩施州)如图,在平面直角坐标系中,△ABC的顶点坐标分别为:A(﹣2,0),B(1,2),C(1,﹣2).已知N(﹣1,0),作点N关于点A的对称点N1,点N1关于点B的对称点N2,点N2关于点C的对称点N3,点N3关于点A的对称点N4,点N4关于点B的对称点N5,…,依此类推,则点N2020的坐标为(﹣1,8).【解答】解:由题意得,作出如下图形:N点坐标为(﹣1,0),N点关于A点对称的N1点的坐标为(﹣3,0),N1点关于B点对称的N2点的坐标为(5,4),N2点关于C点对称的N3点的坐标为(﹣3,8),N3点关于A点对称的N4点的坐标为(﹣1,8),N4点关于B点对称的N5点的坐标为(3,﹣4),N5点关于C点对称的N6点的坐标为(﹣1,0),此时刚好回到最开始的点N处,∴其每6个点循环一次,∴2020÷6=336……4,即循环了336次后余下4,故N2020的坐标与N4点的坐标相同,其坐标为(﹣1,8).故答案为:(﹣1,8).三、解答题(本大题共有8个小题,共72分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤).17.(8分)(2020•恩施州)先化简,再求值:(m2−9m2−6m+9−3m−3)÷m2m−3,其中m=√2.【解答】解:(m2−9m2−6m+9−3m−3)÷m2m−3=[(m+3)(m−3)(m−3)2−3m−3]⋅m−3m2=(m+3m−3−3m−3)⋅m−3m2=m m−3⋅m−3 m2=1m;当m=√2时,原式=2=√22.18.(8分)(2020•恩施州)如图,AE∥BF,BD平分∠ABC交AE于点D,点C在BF上且BC=AB,连接CD.求证:四边形ABCD是菱形.【解答】证明:∵AE∥BF,∴∠ADB=∠DBC,∵BD平分∠ABC,∴∠DBC=∠ABD,∴∠ADB=∠ABD,∴AB=AD,又∵AB=BC,∴AD=BC,∵AE∥BF,即AD∥BC,∴四边形ABCD为平行四边形,又∵AB=AD,∴四边形ABCD为菱形.19.(8分)(2020•恩施州)某中学为了解九年级学生对新冠肺炎防控知识的掌握情况,从全校九年级学生中随机抽取部分学生进行调查.调查结果分为四类:A类﹣﹣非常了解;B类﹣﹣比较了解;C类﹣﹣般了解;D类﹣﹣不了解.现将调查结果绘制成如图不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次共调查了50名学生;(2)补全条形统计图;(3)D类所对应扇形的圆心角的大小为36°;(4)若该校九年级学生共有500名,根据以上抽样结果,估计该校九年级学生对新冠肺炎防控知识非常了解的约有150名.【解答】解:(1)本次共调查的学生数为:20÷40%=50(名).故答案为:50;(2)C类学生人数为:50﹣15﹣20﹣5=10(名),条形图如下:(3)D类所对应扇形的圆心角为:360°×550=36°.故答案为:36°;(4)该校九年级学生对新冠肺炎防控知识非常了解的人数为:500×1550=150(名).故答案为:150.20.(8分)(2020•恩施州)如图,一艘轮船以每小时30海里的速度自东向西航行,在A处测得小岛P位于其西北方向(北偏西45°方向),2小时后轮船到达B处,在B处测得小岛P位于其北偏东60°方向.求此时船与小岛P的距离(结果保留整数,参考数据:√2≈1.414,√3≈1.732).【解答】解:如图,过P作PH⊥AB,设PH=x,由题意得:AB=30×2=60,∠PBH=90°﹣60°=30°,∠PAH=90°﹣45°=45°,则△PHA是等腰直角三角形,∴AH=PH,在Rt△PHA中,设AH=PH=x,在Rt△PBH中,PB=2PH=2x,BH=AB﹣AH=60﹣x,∴tan∠PBH=tan30°=PHBH=√33,∴√33=x 60−x, 解得:x =30(√3−1),∴PB =2x =60(√3−1)≈44(海里),答:此时船与小岛P 的距离约为44海里.21.(8分)(2020•恩施州)如图,在平面直角坐标系中,直线y =ax ﹣3a (a ≠0)与x 轴、y 轴分别相交于A 、B 两点,与双曲线y =k x (x >0)的一个交点为C ,且BC =12AC .(1)求点A 的坐标;(2)当S △AOC =3时,求a 和k 的值.【解答】解:(1)由题意得:令y =ax ﹣3a (a ≠0)中y =0,即ax ﹣3a =0,解得x =3,∴点A 的坐标为(3,0),故答案为(3,0).(2)过C 点作y 轴的垂线交y 轴于M 点,作x 轴的垂线交x 轴于N 点,如下图所示:显然,CM ∥OA ,∴∠BCM =∠BAO ,且∠ABO =∠CBO ,∴△BCM ∽△BAO ,∴BC BA =CM AO ,即:13=CM 3,∴CM =1,又S △AOC =12OA ⋅CN =3即:12×3×CN =3, ∴CN =2,∴C 点的坐标为(1,2),故反比例函数的k =1×2=2,再将点C (1,2)代入一次函数y =ax ﹣3a (a ≠0)中,即2=a ﹣3a ,解得a =﹣1,故答案为:a =﹣1,k =2.22.(10分)(2020•恩施州)某校足球队需购买A 、B 两种品牌的足球.已知A 品牌足球的单价比B 品牌足球的单价高20元,且用900元购买A 品牌足球的数量用720元购买B 品牌足球的数量相等.(1)求A 、B 两种品牌足球的单价;(2)若足球队计划购买A 、B 两种品牌的足球共90个,且A 品牌足球的数量不小于B 品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.设购买A 品牌足球m 个,总费用为W 元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?【解答】解:(1)设购买A 品牌足球的单价为x 元,则购买B 品牌足球的单价为(x ﹣20)元,根据题意,得900x =720x−20,解得:x =100,经检验x =100是原方程的解,x ﹣20=80,答:购买A 品牌足球的单价为100元,则购买B 品牌足球的单价为80元;(2)设购买m 个A 品牌足球,则购买(90﹣m )个B 品牌足球,则W =100m +80(90﹣m )=20m +7200,∵A 品牌足球的数量不小于B 品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元,∴{100m +80(90−m)≤8500m ≥2(90−m), 解不等式组得:60≤m ≤65,所以,m 的值为:60,61,62,63,64,65,即该队共有6种购买方案,当m =60时,W 最小,m =60时,W =20×60+7200=8400(元),答:该队共有6种购买方案,购买60个A 品牌30个B 品牌的总费用最低,最低费用是8400元.23.(10分)(2020•恩施州)如图1,AB 是⊙O 的直径,直线AM 与⊙O 相切于点A ,直线BN 与⊙O 相切于点B ,点C (异于点A )在AM 上,点D 在⊙O 上,且CD =CA ,延长CD 与BN 相交于点E ,连接AD 并延长交BN 于点F .(1)求证:CE 是⊙O 的切线;(2)求证:BE =EF ;(3)如图2,连接EO 并延长与⊙O 分别相交于点G 、H ,连接BH .若AB =6,AC =4,求tan ∠BHE .【解答】解:(1)如图1中,连接OD ,∵CD =CA ,∴∠CAD =∠CDA ,∵OA =OD∴∠OAD =∠ODA ,∵直线AM与⊙O相切于点A,∴∠CAO=∠CAD+∠OAD=90°,∴∠ODC=∠CDA+∠ODA=90°,∴CE是⊙O的切线.(2)如图2中,连接BD,∵OD=OB,∴∠ODB=∠OBD,∵CE是⊙O的切线,BF是⊙O的切线,∴∠OBD=∠ODE=90°,∴∠EDB=∠EBD,∴ED=EB,∵AM⊥AB,BN⊥AB,∴AM∥BN,∴∠CAD=∠BFD,∵∠CAD=∠CDA=∠EDF,∴∠BFD=∠EDF,∴EF=ED,∴BE=EF.(3)如图2中,过E点作EL⊥AM于L,则四边形ABEL是矩形,设BE=x,则CL=4﹣x,CE=4+x,∴(4+x)2=(4﹣x)2+62,解得:x =94,∴tan ∠BOE =BE OB =943=34, ∵∠BOE =2∠BHE ,∴tan ∠BOE =2tan∠BHE 1−tan 2∠BHE =34, 解得:tan ∠BHE =13或﹣3(﹣3不合题意舍去),∴tan ∠BHE =13.补充方法:如图2中,作HJ ⊥EB 交EB 的延长线于J .∵tab ∠BOE =BE OB =34, ∴可以假设BE =3k ,OB =4k ,则OE =5k ,∵OB ∥HJ ,∴OB HJ =OE EH =EB EJ , ∴4k HJ =5k 9k =3k EJ ,∴HJ =365k ,EJ =275k , ∴BJ =EJ ﹣BE =275k ﹣3k =125k∴tan ∠BHJ =BJ HJ =13, ∵∠BHE =∠OBE =∠BHJ ,∴tan ∠BHE =13.24.(12分)(2020•恩施州)如图1,抛物线y =−14x 2+bx +c 经过点C (6,0),顶点为B ,对称轴x =2与x 轴相交于点A ,D 为线段BC 的中点.(1)求抛物线的解析式;(2)P为线段BC上任意一点,M为x轴上一动点,连接MP,以点M为中心,将△MPC 逆时针旋转90°,记点P的对应点为E,点C的对应点为F.当直线EF与抛物线y=−14x2+bx+c只有一个交点时,求点M的坐标.(3)△MPC在(2)的旋转变换下,若PC=√2(如图2).①求证:EA=ED.②当点E在(1)所求的抛物线上时,求线段CM的长.【解答】解:(1)∵点C(6,0)在抛物线上,∴0=−14×36+6b+c,得到6b+c=9,又∵对称轴x=2,∴x=−b2a=−b2×(−14)=2,解得b=1,∴c=3,∴二次函数的解析式为y=−14x2+x+3;(2)当点M在点C的左侧时,如图2﹣1中:∵抛物线的解析式为y =−14x 2+x +3,对称轴为x =2,C (6,0)∴点A (2,0),顶点B (2,4),∴AB =AC =4,∴△ABC 是等腰直角三角形,∴∠1=45°;∵将△MPC 逆时针旋转90°得到△MEF ,∴FM =CM ,∠2=∠1=45°,设点M 的坐标为(m ,0),∴点F (m ,6﹣m ),又∵∠2=45°,∴直线EF 与x 轴的夹角为45°,∴设直线EF 的解析式为y =x +b ,把点F (m ,6﹣m )代入得:6﹣m =m +b ,解得:b =6﹣2m ,直线EF 的解析式为y =x +6﹣2m ,∵直线EF 与抛物线y =−14x 2+x +3只有一个交点,∴{y =x +6−2my =−14x 2+x +3, 整理得:14x 2+3−2m =0,∴△=b 2﹣4ac =0,解得m =32,点M 的坐标为(32,0).当点M 在点C 的右侧时,如下图:由图可知,直线EF 与x 轴的夹角仍是45°,因此直线EF 与抛物线y =−14x 2+x +3不可能只有一个交点.综上,点M 的坐标为(32,0). (3)①当点M 在点C 的左侧时,如下图,过点P 作PG ⊥x 轴于点G ,过点E 作EH ⊥x 轴于点H ,∵PC =√2,由(2)知∠BCA =45°,∴PG =GC =1,∴点G (5,0),设点M 的坐标为(m ,0),∵将△MPC 逆时针旋转90°得到△MEF ,∴EM =PM ,∵∠HEM +∠EMH =∠GMP +∠EMH =90°,∴∠HEM =∠GMP ,在△EHM 和△MGP 中,{∠EHM =∠MGP∠HEM =∠GMP EM =MP,∴△EHM ≌△MGP (AAS ),∴EH =MG =5﹣m ,HM =PG =1,∴点H (m ﹣1,0),∴点E 的坐标为(m ﹣1,5﹣m );∴EA =√(m −1−2)2+(5−m −0)2=√2m 2−16m +34, 又∵D 为线段BC 的中点,B (2,4),C (6,0), ∴点D (4,2),∴ED =√(m 2+(5−m −2)2=√2m 2−16m +34, ∴EA =ED .当点M 在点C 的右侧时,如下图:同理,点E 的坐标仍为(m ﹣1,5﹣m ),因此EA =ED . ②当点E 在(1)所求的抛物线y =−14x 2+x +3上时, 把E (m ﹣1,5﹣m )代入,整理得:m 2﹣10m +13=0, 解得:m =5+2√3或m =5−2√3,∴CM =2√3−1或CM =1+2√3.。
2020年湖北省恩施州中考数学模拟试卷解析版
中考数学模拟试卷题号一二三总分得分一、选择题(本大题共12小题,共36.0分)1.-的相反数是( )A. 3B. -3C.D.2.下列计算正确的是( )A. a5-a3=a2B. a4•a3=a12C. (-3a3)2=9a6D. a8÷a2=a43.下列图形中是轴对称图形的是( )A. B. C. D.4.中国的领水面积约为370000km2,将数370000用科学记数法表示为( )A. 37×104B. 3.7×104C. 0.37×106D. 3.7×1055.从1、2、3、4这四个数中任取两个不同的数,则这两个数之和小于6的概率为( )A. B. C. D.6.如图所示,直线m∥n,∠1=63°,∠2=34°,则∠BAC的大小是( )A. 73oB. 83oC. 77oD. 87o7.函数的自变量x的取值范围是( )A. x>2B. 2<x≤4C. x<4且x≠2D. x≤4且x≠28.已知不等式组的解集是x≥2,则实数a的取值范围是( )A. a>2B. a≥2C. a<2D. a≤29.如图是一个几何体的三视图,则这个几何体的侧面积是( )A.πcm2 B. 2πcm2 C. 6πcm2 D. 3πcm210.某商品原价为a元,因需求量大,经营者连续两次提价,每次提价10%,后因市场物价调整,又一次降价20%,降价后这种商品的价格是( )A. 1.08a元B. 0.88a元C. 0.968a元D. a元11.如图所示,在△ABC中,D为线段AB的中点,AE=3EC,延长DE交BC的延长线于F,则为( )A. 2:1B. 3:1C. 3:2D. 4:312.已知二次函数y=ax2+bx+c(a≠0)的图象如图,下列结论:①abc>0;②2a+b<0;③4a-2b+c<0;④a+c>0.其中正确的有( )A. 4个B. 3个C. 2个D. 1个二、填空题(本大题共4小题,共12.0分)13.125的立方根是______.14.分解因式:a3+ab2-2a2b= ______ .15.如图,已知∠AOB=60°,OC是∠AOB的内角平分线,OM=4,P点是射线OC上的一动点,过P作PN⊥OA于N点,则PM+PN的最小值为______.16.有一个7级台阶,小明每一步走1级台阶或者是2级台阶,则小明走完7级台阶一共有______种不同的走法.三、解答题(本大题共8小题,共72.0分)17.先化简,再求值:÷(x-),其中x=2+3.18.如图,在△ABC中,∠BAC=70°,∠ABC和∠ACB的角平分线交于D点,E、F、G、H分别是线段AB、AC、BD、CD的中点.(1)求∠BDC的度数;(2)证明:四边形EGHF为平行四边形.19.某中学为了解七年级400名学生读书情况,随机调查了七年级50名学生读书的册数.统计数据如下表所示:册数01234人数31316171(1)求这50个样本数据的平均救,众数和中位数;(2)根据样本数据,估计该校七年级400名学生在本次活动中读书多于3册的人数.20.如图所示,为测量河岸两灯塔A、B之间的距离,小明在河对岸C处测得灯塔A在北偏东15o方向上,灯塔B在东北方向上,小明沿河岸行走100米至D处,测得此时灯塔A在北偏西30o方向上,已知河两岸AB∥CD,求灯塔A、B之间的距离.(结果精确到1米,参考数据:,,)21.如图所示,已知A点的横坐标为2,将A点向右平移2个单位,再向下平移2个单位得到B点,且A、B两点均在双曲线上.(1)求反比例函数的解析式.(2)若直线OB于反比例函数的另一交点为B',求△OAB'的面积.22.为节能减排,某公交公司计划购买A型和B型两种环保节能公交车共10辆,若购买A型公交车2辆,B型公交车3辆,共需650万元;若购买A型公交车3辆,B 型公交车2辆,共需600万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该线路上A型和B型公交车每辆年均载客量分别为80万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于830万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?23.如图所示,线段AC是⊙O的直径,过A点作直线BF交⊙O于A、B两点,过A点作∠FAC的角平分线交⊙O于D,过D作AF的垂线交AF于E.(1)证明DE是⊙O的切线;(2)证明AD2=2AE•OA;(3)若⊙O的直径为10,DE+AE=4,求AB.24.将抛物线向左平移2个单位,再向上平移4个单位得到一个新的抛物线.(1)求新的抛物线的解析式.(2)过M(2,0)作直线l,使得直线l与新的抛物线仅有一个公共点,求直线l 的解析式及相应公共点的坐标.(3)请猜想在新的抛物线上是否有且仅有四个点P1、P2、P3、P4使得P1、P2、P3、P4分别与(2)中的所有公共点所围成的图形的面积均为S?若有,请求出S并直接写出P1、P2、P3、P4的坐标,若不存在,请说明理由.答案和解析1.【答案】D【解析】解:-的相反数是,故选:D.根据只有符号不同的两个数互为相反数,可得答案.本题考查了相反数,关键是掌握在一个数的前面加上负号就是这个数的相反数.2.【答案】C【解析】解:∵a5-a3≠a2,∴选项A不符合题意;∵a4•a3=a7,∴选项B不符合题意;∵(-3a3)2=9a6,∴选项C符合题意;∵a8÷a2=a6,∴选项D不符合题意.故选:C.根据同底数幂的除法的运算方法,幂的乘方与积的乘方的运算方法,合并同类项的方法,以及同底数幂的乘法的运算方法,逐项判断即可.此题主要考查了同底数幂的除法的运算方法,幂的乘方与积的乘方的运算方法,合并同类项的方法,以及同底数幂的乘法的运算方法,要熟练掌握.3.【答案】A【解析】解:A、是轴对称图形;B、不是轴对称图形;C、不是轴对称图形;D、不是轴对称图形;故选:A.根据轴对称图形的概念判断.本题考查的是轴对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.4.【答案】D【解析】分析:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:370000=3.7×105,故选:D.5.【答案】C【解析】解:画树状图得:∵共有12种等可能的结果,任取两个不同的数,则这两个数之和小于6的结果有8种,∴则这两个数之和小于6的概率为=;故选:C.画树状图得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.6.【答案】B【解析】解:∵直线m∥n,∴∠3=∠2=34°.∵∠1+∠BAC+∠3=180°,∠1=63°,∠3=34°,∴∠BAC=180°-63°-34°=83°.故选:B.由直线m∥n,利用“两直线平行,内错角相等”可求出∠3的度数,再结合∠1+∠BAC+∠3=180°,即可求出∠BAC的度数.本题考查了平行线的性质,利用“两直线平行,内错角相等”求出∠3的度数是解题的关键.7.【答案】D【解析】解:由题意得:8-2x≥0,且x-2≠0.解得:x≤4且x≠2.故选:D.根据二次根式被开方数大于等于0和分式的分母不为0回答即可.本题主要考查了函数自变量的取值范围问题,明确二次根式被开方数大于等于0和分式的分母不为0是解题的关键.8.【答案】C【解析】解:,∵解不等式①得:x≥2,解不等式②得:x>a,又∵不等式组的解集是x≥2,∴a<2故选:C.解不等式①可得出x≥2,解不等式②得:x>a,结合不等式组的解集为x≥2即可得出a<2,此题得解.本题考查了解一元一次不等式组,熟练掌握解一元一次不等式组的方法及步骤是解题的关键.9.【答案】A【解析】解:此几何体为圆锥;∵半径为1cm,高为3cm,∴圆锥母线长为cm,∴侧面积=2πrR÷2=πcm2;故选:A.俯视图为圆的只有圆锥,圆柱,球,根据主视图和左视图都是三角形可得到此几何体为圆锥,那么侧面积=底面周长×母线长÷2.本题考查了圆锥的计算,该三视图中的数据确定圆锥的底面直径和高是解本题的关键;本题体现了数形结合的数学思想,注意圆锥的高,母线长,底面半径组成直角三角形.10.【答案】C【解析】解:可先求第一次提价后为(1+10%)a元,第二次提价后为a(1+10%)2元,降价后为a(1+10%)2(1-20%)=0.968a元.故选C.降价后这种商品的价格=两次提价后的价格×(1-20%).解决问题的关键是读懂题意,找到所求的量的等量关系.11.【答案】A【解析】解:作CH∥AB交DF于点H,∴△CEH∽△AED,∴==,∵D为线段AB的中点,∴AD=DB,∴=,∵CH∥AB,∴△FHC∽△FDB,∴==,∴=2:1,故选:A.作CH∥AB交DF于点H,根据相似三角形的性质得到==,根据线段中点的定义得到=,证明△FHC∽△FDB,根据相似三角形的性质计算即可.本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.12.【答案】C【解析】解:①:∵抛物线的开口方向向下,∴a<0,∵抛物线与y轴的交点为在y轴的正半轴上,∴c>0,∵抛物线对称轴在y轴右侧,∴对称轴为x=>0,又∵a<0,∴b>0,故abc<0;故本选项错误;②∵对称轴为x==1>0,a<0,∴-b>2a,∴2a+b<0;故本选项正确;③根据图示知,当x=-2时,y<0,即4a-2b+c<0;故本选项正确;④由图可知当x =-1 时,y=a-b+c<0,∴a+c<b>0,即不确定a+c<0;故本选项错误;综上所述,②③共有2个正确.故选:C.由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.本题主要考查了二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴和、抛物线与y轴的交点、抛物线与x轴交点的个数确定.13.【答案】5【解析】解:∵53=125,∴125的立方根是5,故答案为5.找到立方等于125的数即可.考查求某个数的立方根,用到的知识点为:开立方和立方是互逆运算.14.【答案】a(a-b)2【解析】解:a3+ab2-2a2b,=a(a2+b2-2ab),=a(a-b)2.可先提取公因式a,再运用完全平方公式继续进行因式分解.完全平方公式:a2±2ab+b2=(a±b)2.本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.15.【答案】2【解析】解:∵OC是∠AOB的内角平分线,∴作M关于OC的对称点Q,则点Q在OB上,过Q作QN⊥OA于N交OC于P,则此时,PM+PN的值最小且PM+PN的最小值=QN,∵M关于OC的对称点Q,∴OQ=OM=4,∵∠AOB=60°,∠ONQ=90°,∴QN=2,∴PM+PN的最小值为2,故答案为:2.作M关于OC的对称点Q,则点Q在OB上,过Q作QN⊥OA于N交OC于P,则此时,PM+PN的值最小且PM+PN的最小值=QN,解直角三角形即可得到结论.本题考查了轴对称-最短路线问题,解直角三角形,正确的找到点P的位置是解题的关键.16.【答案】21【解析】解:1级有:1种;2级有:2种;3级有:3种,分别是111,12,21;1+2=3;4级有:5种,分别是1111,112,121,211,22;2+3=5;发现:从第3级开始,每一级都等于它前两级的方法的和,故5级有:8种,3+5=8;6级有:13种,5+8=13;7级有:21种,8+13=21,则小明走完7级台阶一共有21种不同的走法.故答案为:21我们可以从1级,2级,3级,4级,…,研究找出规律,即从第3级开始,每一级都等于它前两级的方法的和,依此类推,以后的每一级的方法数都是前两级方法的和,直到7级,每一级的方法数都求出,因此求解.此题考查了排列与组合问题,解题的关键是:在方法上,要从个别现象研究得出一般规律,即从第3级开始,每一级都等于它前两级的方法的和.17.【答案】解:原式=••=,当时,原式=.【解析】先根据分式的混合运算顺序和运算法则化简原式,再选取分式有意义的x的值代入计算可得.本题主要考查分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则.18.【答案】解:(1)∵∠BAC=70°,∴∠ABC+∠ACB=110°∵BD、CD分别平分∠ABC和∠ACB,∴,,∴∴∠BDC=180°-(∠DBC+∠DCB)=125°;(2)证明:∵E、F、G、H分别是AB、AC、BD、CD的中点,∴EF,GH分别为△ABC和△DBC的中位线∴EF∥BC,GH∥BC,且EF=BC,GH=BC,∴EF∥GH,EF=GH∴四边形EGHF为平行四边形.【解析】(1)根据三角形的内角和得到∠ABC+∠ACB=110°根据角平分线的定义即可得到结论;(2)根据三角形中位线的定理得到EF∥BC,GH∥BC,且EF=BC,GH=BC,根据平行四边形的判定定理即可得到结论.本题考查了平行四边形的判定与性质,三角形的中位线定理,勾股定理的应用;熟记三角形的中位线平行于第三边并且等于第三边的一半是解题的关键.19.【答案】解:(1)∵这组样本数据中,3出现了17次,出现的次数最多,∴这组数据的众数是3.∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,∴这组数据的中位数为2;(2)∵在50名学生中,读书多于3册的学生有1名,有400×=8.∴根据样本数据,可以估计该校八年级400名学生在本次活动中读书多于3册的约有8名.【解析】(1)先根据表格提示的数据50名学生读书的册数,然后除以50即可求出平均数,在这组样本数据中,3出现的次数最多,所以求出了众数,将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,从而求出中位数是2;(2)用总人数乘以读书多于3册所占的比例即可.本题考查的知识点有:用样本估计总体、众数以及中位数的知识,解题的关键是牢记概念及公式.20.【答案】解:过点C作CM⊥AD于M,过点A作AN⊥BC于N,由题意可知∠ACD=75°,∠ADC=60°,∠CAM=180°-75°-60°=45°,在△CDM中,∠MCD=90°-∠ADC=30°∴DM=,又∵Rt△ACM中,∠CAM=45°,∴,在Rt△ACN中,∠ACN=45°-15°=30°,∴,在Rt△ABN中,∠ABC=∠BCD=45°,则≈87米;答:灯塔A、B之间的距离约为87米.【解析】过点C作CM⊥AD于M,过点A作AN⊥BC于N,由题意可知∠ACD=75°,∠ADC=60°,∠CAM=180°-75°-60°=45°,在△CDM中,∠MCD=90°-∠ADC=30°,得出DM=,Rt△ACM中,∠CAM=45°,得出,在Rt△ACN中,∠ACN=45°-15°=30°,得出,在Rt△ABN中,∠ABC=∠BCD=45°,由等腰直角三角形的性质即可得出答案.本题考查了解直角三角形的应用;作出辅助线,正确解直角三角形是解题的关键.21.【答案】解:(1)设A点坐标为(2,m),则点B的坐标为(4,m-2),∵点A、B均在反比例函数y=的图象上,∴2m=4(m-2)=k,∴m=4,k=8,∴反比例函数的关系式为y=;(2)如图:由(1)得:A(2,4),B(4,2),由题意可知点B'与点B关于原点对称,∴点B'坐标为(-4,-2)因此设直线AB′为y=mx+b,将A(2,4)和B'(-4,-2)代入得,解得,;∴直线AB′的解析式为y=x+2,因此直线AB'与y轴交于点M∴M(0,2),即:OM=2∴S△AOB′=S△AOM+S△B′OM=×2×2+×2×4=6.【解析】(1)设出点A的坐标,表示出点B坐标,分别代入反比例函数的关系式,求出k的值即可;(2)得出点A、B的坐标,根据中心对称得出点B′的坐标,进而求出直线AB′的关系式,求出与y轴交点坐标,进而可求△AOB′的面积.考查反比例函数图象上点的坐标特征,把点的坐标代入关系式是常用的方法.22.【答案】解(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得:,解得,∴A型公交车每辆需100万元,B型公交车每辆需150万元;(2)设购买A型m辆,购买B型(10-m)辆,得,∴,且m为自然数,∴m=6或7或8,所以共有三种采购方案;方案一:采购A型6台,采购B型4台方案二:采购A型7台,采购B型3台方案三:采购A型8台,采购B型2台设总费用为W元,则有W=100m+150(10-m),即且m为正整数)∵W随m的增大而减小,∴当采购A型8辆,采购B型2辆时,费用最低.最低费用为:-50×8+1500=1100万元.【解析】(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,根据“购买A型公交车2辆,B型公交车3辆,共需650万元;若购买A型公交车3辆,B型公交车2辆,共需600万元”可列出二元一次方程组解决问题;(2)设购买A型公交车m辆,则B型公交车(10-m)辆,由“购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于830万人次”可列出不等式组探讨得出答案即可得到购车方案,利用一次函数的性质可求最少总费用.此题考查二元一次方程组和一元一次不等式组的应用,注意理解题意,找出题目蕴含的数量关系,列出方程组或不等式组解决问题.23.【答案】(1)证明:连接OD,∴DE为⊙O切线;(2)证明:连接CD.∵AC为⊙O的直径,DE⊥AF∴∠ADC=90°,∠DEA=90°,∴∠ADC=∠AED,∴在△ACD和△ADE中,∠DAC=∠EAD,∠ADC=∠AED,∴△ACD∽△ADE,∴.∴AD2=AE•AC.∵AC=2OA,∴AD2=2AE•OA;(3)解:过点O作OM⊥AB于点M,则四边形ODEM为矩形,设DE=OM=x,则AE=4-x ,∴AM=5-(4-x)=1+x,在Rt△AMO中,OA2=AM2+OM2,即:(1+x)2+x2=52解得:x1=3,x2=-4(舍去).∴AM=4.∵OM⊥AB,由垂径定理得:AB=2AM=8.【解析】(1)连接OD,欲证明DE是⊙O的切线,只需推知DE⊥OD即可;(2)连接CD.构造相似三角形△ACD∽△ADE,由此得到比例式,结合AC=2OA,推知结论AD2=2AE•OA;(3)过点O作OM⊥AB于点M,则四边形ODEM为矩形,设DE=OM=x,则AE=4-x,AM=5-(4-x)=1+x,在Rt△AMO中,利用勾股定理列出方程(1+x)2+x2=52,易得AM=4.所以由垂径定理得:AB=2AM=8.本题综合考查了切线的判定与性质、圆周角定理、勾股定理、相似三角形的判定与性质等知识;熟练掌握切线的判定与性质和勾股定理是解题的关键.24.【答案】解:(1)由y=,向左平移2个单位,向上平移4个单位后抛物线的顶点为(0,3),∴;(2)解:设直线l的解析式为:y=kx+b,将M(2,0)代入得:∴2k+b=0,∴.∴.∴,即x2+2bx+12-4b=0中△=(2b)2-4×(12-4b)=0解得:b1=2,b2=-6.当b=2时,直线l为y=-x+2,由得,即点A的坐标是(-2,4),当b=6时,直线l为y=3x-6,由得,即点B的坐标是(6,12),如图1,过点M(2,0)作直线l⊥x轴,交抛物线于点C,则直线l为:x=2,公共点C 为(2,4)综上所述:直线y=-x+2与抛物线有唯一公共点A(-2,4)直线y=3x-6与抛物线有唯一公共点B(6,12)直线x=2 与抛物线有唯一公共点C(2,4);(3)答:在新的抛物线上有且仅有四个点P1、P2、P3、P4使其分别与(2)中的所有公共点A、B、C所围成的四边形面积均为S.解:AB、BC、AC将抛物线分为三个部分,对于任意S在AB上方的抛物线上必存在两个P点.①当P在AC下方的抛物线上时,∵AC∥x轴,∴当P为(0,3)时,.②当P在BC下方的抛物线上时设P为由待定系数法得直线BC解析式为:y=2x作PD∥y轴交BC于D,则D为(t,2t),∴.∴∵它是一个开口向下,顶点为(4,2)的抛物线,∴当P为(4,7)时,S△PBC最大值=2.∴S△PAC最大值=S△PBC最大值.∴此时,P1(0,3),P2(4,7);∵AB为y=x+6,A、B两点的横坐标之差的绝对值为8,A、C两点的横坐标之差的绝对值为4,P到AC的距离为1.∴将直线AB向上平移个单位得l交抛物线于P3和P4两点,由,得,,此时P3(2+3,+3),P4(2-3,-3);综上所述,S=18,P1(0,3),P2(4,7),P3(2+3,+3),P4(2-3,-3).【解析】(1)根据平移规律得到平移后抛物线的顶点坐标,根据该顶点坐标写出新抛物线解析式即可.(2)设.则,解得:b1=2,b2=-6.利用b的值,求得两条直线l,由直线与抛物线解析式联立方程组求得交点坐标;另外过点M且平行于y轴的直线也与抛物线有一个交点;(3)在新的抛物线上有且仅有四个点P1、P2、P3、P4使其分别与(2)中的所有公共点A、B、C所围成的四边形面积均为S.需要分类讨论:①当P在AC下方的抛物线上时,由于AC∥x轴,则当P为(0,3)时,.②当P在BC下方的抛物线上时,设P,由待定系数法得直线BC解析式为:y=2x.根据,所以根据二次函数最值的求法知S△PAC最大值=S△PBC最大值.此时,故此时,P1(0,3),P2(4,7);由于直线AB为y=x+6,A、B两点的横坐标之差的绝对值为8,A、C两点的横坐标之差的绝对值为4,P到AC的距离为1.所以将直线AB向上平移个单位得l交抛物线于P3和P4两点,由直线与抛物线交点的求法求得于P3和P4两点坐标.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。
2020年湖北省恩施州中考数学试卷
2020年湖北省恩施州中考数学试卷一、选择题(本大题共有12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择项前的字母代号填涂在答题卷相应位置上)1. 5的绝对值是()A.5B.−5C.15D.−15【答案】A【考点】绝对值【解析】根据绝对值的意义:数轴上一个数所对应的点与原点(O点)的距离叫做该数的绝对值,绝对值只能为非负数;即可得解.【解答】在数轴上,数5所表示的点到原点0的距离是5;2. 茶中精品“恩施绿”“利川红”享誉世界.去年恩施州茶叶产量约为120000吨,将数120000用科学记数法表示为()A.12×104B.1.2×105C.1.2×106D.0.12×106【答案】B【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】120000=1.2×105,3. 下列交通标识,既是中心对称图形,又是轴对称图形的是()A. B. C. D.【答案】D【考点】中心对称图形轴对称图形【解析】根据轴对称图形与中心对称图形的概念求解.【解答】根据轴对称图形与中心对称图形的概念,知:A、不是轴对称图形,也不是中心对称图形;B、不是轴对称图形,也不是中心对称图形;C、是轴对称图形,但不是中心对称图形;D、既是中心对称图形,又是轴对称图形.4. 下列计算正确的是()A.a2⋅a3=a6B.a(a+1)=a2+aC.(a−b)2=a2−b2D.2a+3b=5ab【答案】B【考点】合并同类项同底数幂的乘法完全平方公式单项式乘多项式【解析】利用同底数幂的乘法运算法则、单项式乘多项式的运算法则、完全平方公式、合并同类项法则计算求出答案即可判断.【解答】A、a2⋅a3=a5,原计算错误,故此选项不符合题意;B、a(a+1)=a2+a,原计算正确,故此选项符合题意;C、(a−b)2=a2−2ab+b2,原计算错误,故此选项不符合题意;D、2a与3b不是同类项,不能合并,原计算错误,故此选项不符合题意;5. 函数y=√x+1x的自变量的取值范围是()A.x≥−1B.x≥−1且x≠0C.x>0D.x>−1且x≠0【答案】B【考点】函数自变量的取值范围【解析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】根据题意得,x+1≥0且x≠0,解得x≥−1且x≠0.6. “彩缕碧筠粽,香粳白玉团”.端午佳节,小明妈妈准备了豆沙粽2个、红枣粽4个、腊肉粽3个、白米粽2个,其中豆沙粽和红枣粽是甜粽.小明任意选取一个,选到甜粽的概率是()A.2 11B.411C.511D.611【答案】D【考点】概率公式【解析】粽子总共有11个,其中甜粽有6个,根据概率公式即可求出答案.【解答】由题意可得:粽子总数为11个,其中6个为甜粽,所以选到甜粽的概率为:611,7. 在实数范围内定义运算“☆”:a ☆b =a +b −1,例如:2☆3=2+3−1=4.如果2☆x =1,则x 的值是( )A.−1B.1C.0D.2 【答案】C【考点】解一元一次方程实数的运算【解析】已知等式利用题中的新定义化简,计算即可求出x 的值.【解答】由题意知:2☆x =2+x −1=1+x ,又2☆x =1,∴ 1+x =1,∴ x =0.8. 我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”.意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒x 斛,1个小桶盛酒y 斛,下列方程组正确的是( )A.{5x +y =3x +5y =2B.{5x +y =2x +5y =3C.{5x +3y =1x +2y =5D.{3x +y =52x +5y =1【答案】A【考点】数学常识由实际问题抽象出二元一次方程组【解析】根据“5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛”,即可得出关于x ,y 的二元一次方程组,此题得解.【解答】依题意,得:{5x +y =3x +5y =2.9. 如图是由四个相同的小正方体组成的立体图形,它的主视图为( )A. B. C. D.【答案】A【考点】简单组合体的三视图【解析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】从正面看易得第一列有2个正方形,第二列底层有1个正方形.10. 甲乙两车从A 城出发前往B 城,在整个行程中,汽车离开A 城的距离y 与时刻t 的对应关系如图所示,则下列结论错误的是( )A.甲车的平均速度为60km/ℎB.乙车的平均速度为100km/ℎC.乙车比甲车先到B 城D.乙车比甲车先出发1ℎ【答案】D【考点】一次函数的应用【解析】根据图象逐项分析判断即可.【解答】由图象知:=60km/ℎ,故A选项不合题意;A.甲车的平均速度为30010−5=100km/ℎ,故B选项不合题意;B.乙车的平均速度为3009−6C.甲10时到达B城,乙9时到达B城,所以乙比甲先到B城,故C选项不合题意;D.甲5时出发,乙6时出发,所以乙比甲晚出发1ℎ,故此选项错误,11. 如图,正方形ABCD的边长为4,点E在AB上且BE=1,F为对角线AC上一动点,则△BFE周长的最小值为()A.5B.6C.7D.8【答案】B【考点】勾股定理正方形的性质轴对称——最短路线问题【解析】连接ED交AC于一点F,连接BF,根据正方形的对称性得到此时△BFE的周长最小,利用勾股定理求出DE即可得到答案.【解答】如图,连接ED交AC于一点F,连接BF,∵四边形ABCD是正方形,∴点B与点D关于AC对称,∴BF=DF,∴△BFE的周长=BF+EF+BE=DE+BE,此时△BEF的周长最小,∵正方形ABCD的边长为4,∴AD=AB=4,∠DAB=90∘,∵点E在AB上且BE=1,∴AE=3,∴DE=√AD2+AE2=5,∴△BFE的周长=5+1=6,12. 如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(−2, 0)、B(1, 0)两点.则以下结论:①ac>0;②二次函数y=ax2+bx+c的图象的对称轴为x=−1;③2a+c=0;④a−b+c>0.其中正确的有()个.A.0B.1C.2D.3【答案】C【考点】二次函数图象与系数的关系抛物线与x轴的交点【解析】根据抛物线的开口方向、对称轴、顶点坐标、增减性以及过特殊点时系数a、b、c满足的关系综合判断即可.【解答】对于①:二次函数开口向下,故a<0,与y轴的交点在y的正半轴,故c>0,故ac< 0,因此①错误;对于②:二次函数的图象与x轴相交于A(−2, 0)、B(1, 0),由对称性可知,其对称轴为:x=−2+12=−12,因此②错误;对于③:设二次函数y=ax2+bx+c的交点式为y=a(x+2)(x−1)=ax2+ax−2a,比较一般式与交点式的系数可知:b=a,c=−2a,故2a+c=0,因此③正确;对于④:当x=−1时对应的y=a−b+c,观察图象可知x=−1时对应的函数图象的y值在x轴上方,故a−b+c>0,因此④正确.∴只有③④是正确的.二、填空题(本大题共有4小题,每小题3分,共12分.不要求写出解答过程,请把答案直接填写在答题卷相应位置上)9的算术平方根是________.【答案】3【考点】算术平方根【解析】9的平方根为±3,算术平方根为非负,从而得出结论.【解答】解:∵(±3)2=9,∴9的算术平方根是|±3|=3.故答案为:3.如图,直线l1 // l2,点A在直线l1上,点B在直线l2上,AB=BC,∠C=30∘,∠1=80∘,则∠2=________.【答案】40∘【考点】平行线的性质等腰三角形的性质【解析】利用等腰三角形的性质得到∠C=∠4=30∘,利用平行线的性质得到∠1=∠3=80∘,再根据三角形内角和定理即可求解.【解答】如图,延长CB交l2于点D,∵AB=BC,∠C=30∘,∴∠C=∠4=30∘,∵l1 // l2,∠1=80∘,∴∠1=∠3=80∘,∵∠C+∠3+∠2+∠4=180∘,即30∘+80∘+∠2+30∘=180∘,∴∠2=40∘.如图,已知半圆的直径AB=4,点C在半圆上,以点A为圆心,AC为半径画弧交AB于点D,连接BC.若∠ABC=60∘,则图中阴影部分的面积为________.(结果不取近似值【答案】2√3−π【考点】扇形面积的计算近似数和有效数字【解析】根据60∘特殊角求出AC和BC,再算出△ABC的面积,根据扇形面积公式求出扇形CAD 的面积,再用三角形的面积减去扇形面积即可.【解答】∵AB是直径,∴∠ACB=90∘,∵∠ABC=60∘,∴∠CAB=30∘,∴BC=12AB=2,AC=2√3,∴S△ABC=12⋅AC⋅BC=12⋅2√3⋅2=2√3,∵∠CAB=30∘,∴扇形ACD的面积=30360π⋅AC2=112π⋅(2√3)2=π,∴阴影部分的面积为2√3−π.如图,在平面直角坐标系中,△ABC的顶点坐标分别为:A(−2, 0),B(1, 2),C(1, −2).已知N(−1, 0),作点N关于点A的对称点N1,点N1关于点B的对称点N2,点N2关于点C的对称点N3,点N3关于点A的对称点N4,点N4关于点B的对称点N5,…,依此类推,则点N2020的坐标为________.【答案】(−1, 8)【考点】坐标与图形变化-旋转关于x轴、y轴对称的点的坐标规律型:点的坐标规律型:图形的变化类规律型:数字的变化类【解析】先求出N1至N6点的坐标,找出其循环的规律为每6个点循环一次即可求解.【解答】由题意得,作出如下图形:N点坐标为(−1, 0),N点关于A点对称的N1点的坐标为(−3, 0),N1点关于B点对称的N2点的坐标为(5, 4),N2点关于C点对称的N3点的坐标为(−3, 8),N3点关于A点对称的N4点的坐标为(−1, 8),N4点关于B点对称的N5点的坐标为(3, −4),N5点关于C点对称的N6点的坐标为(−1, 0),此时刚好回到最开始的点N处,∴其每6个点循环一次,∴2020÷6=336……4,即循环了336次后余下4,故N2020的坐标与N4点的坐标相同,其坐标为(−1, 8).三、解答题(本大题共有8个小题,共72分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤).先化简,再求值:(m2−9m2−6m+9−3m−3)÷m2m−3,其中m=√2.【答案】(m2−9m2−6m+9−3m−3)÷m2m−3=[(m+3)(m−3)(m−3)2−3m−3]⋅m−3m2=(m+3m−3−3m−3)⋅m−3m2=mm−3⋅m−3m2=1m;当m=√2时,原式=√2=√22.【考点】分式的化简求值【解析】根据分式的混合运算法则,先化简括号内的,将除法运算转化为乘法运算,再化简成最简分式,代入m值求解即可.【解答】(m2−92−3)÷m2=[(m+3)(m−3)(m−3)2−3m−3]⋅m−3m2=(m+3m−3−3m−3)⋅m−3m2=mm−3⋅m−3m2=1m;当m=√2时,原式=√2=√22.如图,AE // BF,BD平分∠ABC交AE于点D,点C在BF上且BC=AB,连接CD.求证:四边形ABCD是菱形.【答案】证明:∵AE // BF,∴∠ADB=∠DBC,∵BD平分∠ABC,∴∠DBC=∠ABD,∴∠ADB=∠ABD,∴AB=AD,又∵AB=BC,∴AD=BC,∵AE // BF,即AD // BC,∴四边形ABCD为平行四边形,又∵AB=AD,∴四边形ABCD为菱形.【考点】菱形的判定全等三角形的性质与判定【解析】由AE // BF,BD平分∠ABC得到∠ABD=∠ADB,得到AB=AD,再由BC=AB,得到对边AD=BC,进而得到四边形ABCD为平行四边形,再由邻边相等即可证明四边形ABCD为菱形.【解答】证明:∵AE // BF,∴∠ADB=∠DBC,∵BD平分∠ABC,∴∠DBC=∠ABD,∴∠ADB=∠ABD,∴AB=AD,又∵AB=BC,∴AD=BC,∵AE // BF,即AD // BC,∴四边形ABCD为平行四边形,又∵AB=AD,∴四边形ABCD为菱形.某中学为了解九年级学生对新冠肺炎防控知识的掌握情况,从全校九年级学生中随机抽取部分学生进行调查.调查结果分为四类:A类--非常了解;B类--比较了解;C类--般了解;D类--不了解.现将调查结果绘制成如图不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次共调查了________名学生;(2)补全条形统计图;(3)D类所对应扇形的圆心角的大小为________;(4)若该校九年级学生共有500名,根据以上抽样结果,估计该校九年级学生对新冠肺炎防控知识非常了解的约有________名.【答案】50C类学生人数为:50−15−20−5=10(名),条形图如下:36∘150【考点】条形统计图扇形统计图用样本估计总体【解析】(1)根据条形图和扇形图得出B类人数为20名,占40%,即可得出总数;(2)根据总人数减去A,B,D的人数即可得出C的人数;(3)用360∘乘以D类部分所占百分比即可得出圆心角的度数;(4)用500乘以非常了解的部分所占百分比即可得出答案.【解答】本次共调查的学生数为:20÷40%=50(名).故答案为:50;C类学生人数为:50−15−20−5=10(名),条形图如下:D类所对应扇形的圆心角为:360×5=36.50故答案为:36∘;=150(名).该校九年级学生对新冠肺炎防控知识非常了解的人数为:500×1550故答案为:150.如图,一艘轮船以每小时30海里的速度自东向西航行,在A处测得小岛P位于其西北方向(北偏西45∘方向),2小时后轮船到达B处,在B处测得小岛P位于其北偏东60∘方向.求此时船与小岛P的距离(结果保留整数,参考数据:√2≈1.414,√3≈1.732).【答案】此时船与小岛P的距离约为44海里.【考点】解直角三角形的应用-方向角问题【解析】过P作PH⊥AB,设PH=x,由已知分别求PB、BH、AH,然后根据锐角三角函数求出x值即可求解.【解答】如图,过P作PH⊥AB,设PH=x,由题意得:AB=30×2=60,∠PBH=90∘−60∘=30∘,∠PAH=90∘−45∘=45∘,则△PHA是等腰直角三角形,∴AH=PH,在Rt△PHA中,设AH=PH=x,在Rt△PBH中,PB=2PH=2x,BH=AB−AH=60−x,∴tan∠PBH=tan30∘=PHBH =√33,∴√33=x60−x,解得:x=30(√3−1),∴PB=2x=60(√3−1)≈44(海里),如图,在平面直角坐标系中,直线y=ax−3a(a≠0)与x轴、y轴分别相交于A、B两点,与双曲线y=kx (x>0)的一个交点为C,且BC=12AC.(1)求点A的坐标;(2)当S△AOC=3时,求a和k的值.【答案】(3, 0)a=−1,k=2【考点】反比例函数与一次函数的综合【解析】(1)令y=ax−3a(a≠0)中y=0即可求出点A的坐标;(2)过C点作y轴的垂线交y轴于M点,作x轴的垂线交x轴于N点,证明△BCM∽△BAO,利用BC=12AC和OA=3进而求出CM的长,再由S△AOC=3求出CN的长,进而求出点C坐标即可求解.【解答】由题意得:令y=ax−3a(a≠0)中y=0,即ax−3a=0,解得x=3,∴点A的坐标为(3, 0),故答案为(3, 0).过C点作y轴的垂线交y轴于M点,作x轴的垂线交x轴于N点,如下图所示:显然,CM // OA,∴∠BCM=∠BAO,且∠ABO=∠CBO,∴△BCM∽△BAO,∴BCBA =CMAO,即:13=CM3,∴CM=1,又S△AOC=12OA⋅CN=3即:12×3×CN=3,∴CN=2,∴C点的坐标为(1, 2),故反比例函数的k=1×2=2,再将点C(1, 2)代入一次函数y=ax−3a(a≠0)中,即2=a−3a,解得a=−1,故答案为:a=−1,k=2.某校足球队需购买A、B两种品牌的足球.已知A品牌足球的单价比B品牌足球的单价高20元,且用900元购买A品牌足球的数量用720元购买B品牌足球的数量相等.(1)求A、B两种品牌足球的单价;(2)若足球队计划购买A、B两种品牌的足球共90个,且A品牌足球的数量不小于B品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.设购买A品牌足球m个,总费用为W元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?【答案】购买A品牌足球的单价为100元,则购买B品牌足球的单价为80元;该队共有6种购买方案,购买60个A品牌30个B品牌的总费用最低,最低费用是8400元【考点】分式方程的应用一元一次不等式组的应用一次函数的应用【解析】(1)设购买A品牌足球的单价为x元,则购买B品牌足球的单价为(x−20)元,根据用900元购买A品牌足球的数量用720元购买B品牌足球的数量相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买m个A品牌足球,则购买(90−m)个B品牌足球,根据总价=单价×数量,结合总价不超过8500元,以及A品牌足球的数量不小于B品牌足球数量的2倍,即可得出关于m的一元一次不等式组,解之取其中的最小整数值即可得出结论.【解答】设购买A品牌足球的单价为x元,则购买B品牌足球的单价为(x−20)元,根据题意,得900x =720x−20,解得:x=100,经检验x=100是原方程的解,x−20=80,答:购买A品牌足球的单价为100元,则购买B品牌足球的单价为80元;设购买m个A品牌足球,则购买(90−m)个B品牌足球,则W=100m+80(90−m)=20m+7200,∵A品牌足球的数量不小于B品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元,∴{100m+80(90−m)≤8500m≥2(90−m),解不等式组得:60≤m≤65,所以,m的值为:60,61,62,63,64,65,即该队共有6种购买方案,当m=60时,W最小,m=60时,W=20×60+7200=8400(元),答:该队共有6种购买方案,购买60个A品牌30个B品牌的总费用最低,最低费用是8400元.如图1,AB是⊙O的直径,直线AM与⊙O相切于点A,直线BN与⊙O相切于点B,点C(异于点A)在AM上,点D在⊙O上,且CD=CA,延长CD与BN相交于点E,连接AD并延长交BN于点F.(1)求证:CE是⊙O的切线;(2)求证:BE=EF;(3)如图2,连接EO并延长与⊙O分别相交于点G、H,连接BH.若AB=6,AC=4,求tan∠BHE.【答案】如图1中,连接OD,∵CD=CA,∴∠CAD=∠CDA,∵OA=OD∴∠OAD=∠ODA,∵直线AM与⊙O相切于点A,∴∠CAO=∠CAD+∠OAD=90∘,∴∠ODC=∠CDA+∠ODA=90∘,∴CE是⊙O的切线.如图2中,连接BD,∵OD=OB,∴∠ODB=∠OBD,∵CE是⊙O的切线,BF是⊙O的切线,∴∠OBD=∠ODE=90∘,∴∠EDB=∠EBD,∴ED=EB,∵AM⊥AB,BN⊥AB,∴AM // BN,∴∠CAD=∠BFD,∵∠CAD=∠CDA=∠EDF,∴∠BFD=∠EDF,∴EF=ED,∴BE=EF.如图2中,过E点作EL⊥AM于L,则四边形ABEL是矩形,设BE=x,则CL=4−x,CE=4+x,∴(4+x)2=(4−x)2+62,解得:x=94,∴tan∠BOE=BEOB =943=34,∵∠BOE=2∠BHE,∴tan∠BOE=2tan∠BHE1−tan2∠BHE =34,解得:tan∠BHE=13或−3(−3不合题意舍去),∴tan∠BHE=13.补充方法:如图2中,作HJ⊥EB交EB的延长线于J.∵tab∠BOE=BEOB =34,∴可以假设BE=3k,OB=4k,则OE=5k,∵OB // HJ,∴OBHJ =OEEH=EBEJ,∴4kHJ =5k9k=3kEJ,∴HJ=365k,EJ=275k,∴BJ=EJ−BE=275k−3k=125k∴tan∠BHJ=BJHJ =13,∵∠BHE=∠OBE=∠BHJ,∴tan∠BHE=13.【考点】圆的综合题【解析】(1)连接OD,根据等边对等角可知:∠CAD=∠CDA,∠OAD=∠ODA,再根据切线的性质可知∠CAO=∠CAD+∠OAD=∠CDA+∠ODA=90∘=∠ODC,由切线的判定定理可得结论;(2)连接BD,根据等边对等角可知∠ODB=∠OBD,再根据切线的性质可知∠ODE=∠OBE=90∘,由等量减等量差相等得∠EDB=∠EBD,再根据等角对等边得到ED=EB,然后根据平行线的性质及对顶角相等可得∠EDF=∠EFD,推出DE=EF,由此得出结论;(3)过E点作EL⊥AM于L,根据勾股定理可求出BE的长,即可求出tan∠BOE的值,再利用倍角公式即可求出tan∠BHE的值.【解答】如图1中,连接OD,∵CD=CA,∴∠CAD=∠CDA,∵OA=OD∴∠OAD=∠ODA,∵直线AM与⊙O相切于点A,∴∠CAO=∠CAD+∠OAD=90∘,∴∠ODC=∠CDA+∠ODA=90∘,∴CE是⊙O的切线.如图2中,连接BD,∵OD=OB,∴∠ODB=∠OBD,∵CE是⊙O的切线,BF是⊙O的切线,∴∠OBD=∠ODE=90∘,∴∠EDB=∠EBD,∴ED=EB,∵AM⊥AB,BN⊥AB,∴AM // BN,∴∠CAD=∠BFD,∵∠CAD=∠CDA=∠EDF,∴∠BFD=∠EDF,∴EF=ED,∴BE=EF.如图2中,过E点作EL⊥AM于L,则四边形ABEL是矩形,设BE=x,则CL=4−x,CE=4+x,∴(4+x)2=(4−x)2+62,解得:x=94,∴tan∠BOE=BEOB =943=34,∵∠BOE=2∠BHE,∴tan∠BOE=2tan∠BHE1−tan2∠BHE =34,解得:tan∠BHE=13或−3(−3不合题意舍去),∴tan∠BHE=13.补充方法:如图2中,作HJ⊥EB交EB的延长线于J.∵tab∠BOE=BEOB =34,∴可以假设BE=3k,OB=4k,则OE=5k,∵OB // HJ,∴OBHJ =OEEH=EBEJ,∴4kHJ =5k9k=3kEJ,∴HJ=365k,EJ=275k,∴BJ=EJ−BE=275k−3k=125k∴tan∠BHJ=BJHJ =13,∵∠BHE=∠OBE=∠BHJ,∴tan∠BHE=13.如图1,抛物线y=−14x2+bx+c经过点C(6, 0),顶点为B,对称轴x=2与x轴相交于点A,D为线段BC的中点.(1)求抛物线的解析式;(2)P为线段BC上任意一点,M为x轴上一动点,连接MP,以点M为中心,将△MPC 逆时针旋转90∘,记点P的对应点为E,点C的对应点为F.当直线EF与抛物线y=−14x2+bx+c只有一个交点时,求点M的坐标.(3)△MPC在(2)的旋转变换下,若PC=√2(如图2).①求证:EA=ED.②当点E在(1)所求的抛物线上时,求线段CM的长.【答案】∵点C(6, 0)在抛物线上,∴0=−14×36+6b+c,得到6b+c=9,又∵对称轴x=2,∴x=−b2a =−b2×(−14)=2,解得b=1,∴c=3,∴二次函数的解析式为y=−14x2+x+3;当点M在点C的左侧时,如图2−1中:∵抛物线的解析式为y=−14x2+x+3,对称轴为x=2,C(6, 0)∴点A(2, 0),顶点B(2, 4),∴AB=AC=4,∴△ABC是等腰直角三角形,∴∠1=45∘;∵将△MPC逆时针旋转90∘得到△MEF,∴FM=CM,∠2=∠1=45∘,设点M的坐标为(m, 0),∴点F(m, 6−m),又∵∠2=45∘,∴直线EF与x轴的夹角为45∘,∴设直线EF的解析式为y=x+b,把点F(m, 6−m)代入得:6−m=m+b,解得:b=6−2m,直线EF的解析式为y=x+6−2m,∵直线EF与抛物线y=−14x2+x+3只有一个交点,∴{y=x+6−2my=−14x2+x+3,整理得:14x2+3−2m=0,∴△=b2−4ac=0,解得m=32,点M的坐标为(32, 0).当点M在点C的右侧时,如下图:由图可知,直线EF与x轴的夹角仍是45∘,因此直线EF与抛物线y=−14x2+x+3不可能只有一个交点.综上,点M的坐标为(32, 0).①当点M在点C的左侧时,如下图,过点P作PG⊥x轴于点G,过点E作EH⊥x轴于点H,∵PC=√2,由(2)知∠BCA=45∘,∴PG=GC=1,∴点G(5, 0),设点M的坐标为(m, 0),∵将△MPC逆时针旋转90∘得到△MEF,∴EM=PM,∵∠HEM+∠EMH=∠GMP+∠EMH=90∘,∴∠HEM=∠GMP,在△EHM和△MGP中,{∠EHM=∠MGP ∠HEM=∠GMPEM=MP,∴△EHM≅△MGP(AAS),∴EH=MG=5−m,HM=PG=1,∴点H(m−1, 0),∴点E的坐标为(m−1, 5−m);∴EA=√(m−1−2)2+(5−m−0)2=√2m2−16m+34,又∵D为线段BC的中点,B(2, 4),C(6, 0),∴点D(4, 2),∴ED=√(m−1−4)2+(5−m−2)2=√2m2−16m+34,∴EA=ED.当点M在点C的右侧时,如下图:同理,点E的坐标仍为(m−1, 5−m),因此EA=ED.②当点E在(1)所求的抛物线y=−14x2+x+3上时,把E(m−1, 5−m)代入,整理得:m2−10m+13=0,解得:m=5+2√3或m=5−2√3,∴CM=2√3−1或CM=1+2√3.【考点】二次函数综合题【解析】(1)根据点C在抛物线上和已知对称轴的条件可求出解析式;(2)根据抛物线的解析式求出点B及已知点C的坐标,证明△ABC是等腰直角三角形,根据旋转的性质推出直线EF与x轴的夹角为45∘,因此设直线EF的解析式为y=x+b,设点M的坐标为(m, 0),推出点F(m, 6−m),直线EF与抛物线y=−14x2+x+3只有一个交点,联立两个解析式,得到关于x的一元二次方程,根据根的判别式为0得到关于m的方程,解方程得点M的坐标.注意有两种情况,均需讨论.(3)①过点P作PG⊥x轴于点G,过点E作EH⊥x轴于点H,设点M的坐标为(m, 0),由PC=√2及旋转的性质,证明△EHM≅△MGP,得到点E的坐标为(m−1, 5−m),再根据两点距离公式证明EA=ED,注意分两种情况,均需讨论;②把E(m−1, 5−m)代入抛物线解析式,解出m的值,进而求出CM的长.【解答】∵点C(6, 0)在抛物线上,∴0=−14×36+6b+c,得到6b+c=9,又∵对称轴x=2,∴x=−b2a =−b2×(−14)=2,解得b=1,∴c=3,∴二次函数的解析式为y=−14x2+x+3;当点M在点C的左侧时,如图2−1中:∵抛物线的解析式为y=−14x2+x+3,对称轴为x=2,C(6, 0)∴点A(2, 0),顶点B(2, 4),∴AB=AC=4,∴△ABC是等腰直角三角形,∴∠1=45∘;∵将△MPC逆时针旋转90∘得到△MEF,∴FM=CM,∠2=∠1=45∘,设点M的坐标为(m, 0),∴点F(m, 6−m),又∵∠2=45∘,∴直线EF与x轴的夹角为45∘,∴设直线EF的解析式为y=x+b,把点F(m, 6−m)代入得:6−m=m+b,解得:b=6−2m,直线EF的解析式为y=x+6−2m,∵直线EF与抛物线y=−14x2+x+3只有一个交点,∴{y=x+6−2my=−14x2+x+3,整理得:14x2+3−2m=0,∴△=b2−4ac=0,解得m=32,点M的坐标为(32, 0).当点M在点C的右侧时,如下图:由图可知,直线EF与x轴的夹角仍是45∘,因此直线EF与抛物线y=−14x2+x+3不可能只有一个交点.综上,点M的坐标为(32, 0).①当点M在点C的左侧时,如下图,过点P作PG⊥x轴于点G,过点E作EH⊥x轴于点H,∵PC=√2,由(2)知∠BCA=45∘,∴PG=GC=1,∴点G(5, 0),设点M的坐标为(m, 0),∵将△MPC逆时针旋转90∘得到△MEF,∴EM=PM,∵∠HEM+∠EMH=∠GMP+∠EMH=90∘,∴∠HEM=∠GMP,在△EHM和△MGP中,{∠EHM=∠MGP ∠HEM=∠GMPEM=MP,∴△EHM≅△MGP(AAS),∴EH=MG=5−m,HM=PG=1,∴点H(m−1, 0),∴点E的坐标为(m−1, 5−m);∴EA=√(m−1−2)2+(5−m−0)2=√2m2−16m+34,又∵D为线段BC的中点,B(2, 4),C(6, 0),∴点D(4, 2),∴ED=√(m−1−4)2+(5−m−2)2=√2m2−16m+34,∴EA=ED.当点M在点C的右侧时,如下图:同理,点E的坐标仍为(m−1, 5−m),因此EA=ED.x2+x+3上时,②当点E在(1)所求的抛物线y=−14把E(m−1, 5−m)代入,整理得:m2−10m+13=0,解得:m=5+2√3或m=5−2√3,∴CM=2√3−1或CM=1+2√3.。
2020学年湖北省恩施州中考数学试题(含答案)
湖北省恩施州2020年中考数学试题一、选择题(本大题共12个小题,每小题3分,共36分。
在每小题给出的四个选项中,恰有一项是符合要求的。
)1.(3分)(2013•恩施州)的相反数是()A.B.﹣C.3D.﹣3解答:解:﹣的相反数是.故选A.2.(3分)(2013•恩施州)今年参加恩施州初中毕业学业考试的考试约有39360人,请将数39360用科学记数法表示为(保留三位有效数字)()A.3.93×104B.3.94×104C.0.39×105D.394×102解答:解:39360=3.936×104≈3.94×104.故选:B.3.(3分)(2013•恩施州)如图所示,∠1+∠2=180°,∠3=100°,则∠4等于()A.70°B.80°C.90°D.100°解答:解:∵∠1+∠5=180°,∠1+∠2=180°,∴∠2=∠5,∴a∥b,∴∠3=∠6=100°,∴∠4=100°.故选:D.4.(3分)(2013•恩施州)把x2y﹣2y2x+y3分解因式正确的是()A.y(x2﹣2xy+y2)B.x2y﹣y2(2x﹣y)C.y(x﹣y)2D.y(x+y)2解答:解:x2y﹣2y2x+y3=y(x2﹣2yx+y2)=y(x﹣y)2.故选:C.5.(3分)(2013•恩施州)下列运算正确的是()A.x3•x2=x6B.3a2+2a2=5a2C.a(a﹣1)=a2﹣1 D.(a3)4=a7解答:解:A、x3•x2=x5,故本选项错误;B、3a2+2a2=5a2,故本选项正确;C、a(a﹣1)=a2﹣a,故本选项错误;D、(a3)4=a12,故本选项错误;故选B.6.(3分)(2013•恩施州)如图所示,下列四个选项中,不是正方体表面展开图的是()A.B.C.D.解答:解:选项A,B,D折叠后都可以围成正方体;而C折叠后折叠后第一行两个面无法折起来,而且下边没有面,不能折成正方体.故选C.7.(3分)(2013•恩施州)下列命题正确的是()A.若a>b,b<c,则a>c B.若a>b,则ac>bc C.若a>b,则ac2>bc2D.若ac2>bc2,则a>b解答:解:A、可设a=4,b=3,c=4,则a=c.故本选项错误;B、当c=0或c<0时,不等式ac>bc不成立.故本选项错误;C、当c=0时,不等式ac2>bc2不成立.故本选项错误;D、由题意知,c2>0,则在不等式ac2>bc2的两边同时除以c2,不等式仍成立,即ac2>bc2,故本选项正确.故选D.8.(3分)(2013•恩施州)如图所示,在平行四边形纸片上作随机扎针实验,针头扎在阴影区域内的概率为()A.B.C.D.解答:解:∵四边形是平行四边形,∴对角线把平行四边形分成面积相等的四部分,观察发现:图中阴影部分面积=S四边形,∴针头扎在阴影区域内的概率为,故选:B.9.(3分)(2013•恩施州)把抛物线先向右平移1个单位,再向下平移2个单位,得到的抛物线的解析式为()A.B.C.D.解答:解:抛物线y=x2﹣1的顶点坐标为(0,﹣1),∵向右平移一个单位,再向下平移2个单位,∴平移后的抛物线的顶点坐标为(1,﹣3),∴得到的抛物线的解析式为y=(x﹣1)2﹣3.故选B.10.(3分)(2013•恩施州)如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则DF:FC=()A.1:4 B.1:3 C.2:3 D.1:2解答:解:在平行四边形ABCD中,AB∥DC,则△DFE∽△BAE,∴=,∵O为对角线的交点,∴DO=BO,又∵E为OD的中点,∴DE=DB,则DE:EB=1:3,∴DF:AB=1:3,∵DC=AB,∴DF:DC=1:3,∴DF:FC=1:2.故选D.11.(3分)(2013•恩施州)如甲、乙两图所示,恩施州统计局对2009年恩施州各县市的固定资产投资情况进行了统计,并绘成了以下图表,请根据相关信息解答下列问题:2009年恩施州各县市的固定资产投资情况表:(单位:亿元)单位恩施市利川县建始县巴东县宜恩县咸丰县来凤县鹤峰县州直投资额60 28 24 23 14 16 15 5下列结论不正确的是()A.2009年恩施州固定资产投资总额为200亿元B.2009年恩施州各单位固定资产投资额的中位数是16亿元C.2009年来凤县固定资产投资额为15亿元D.2009年固定资产投资扇形统计图中表示恩施市的扇形的圆心角为110°解答:解:A、24÷12%=200(亿元),故此选项不合题意;B、来凤投资额:200﹣60﹣28﹣25﹣23﹣14﹣16﹣15﹣5=15(亿元),把所有的数据从小到大排列:60,28,24,23,16,15,15,14,5,位置处于中间的数是16,故此选项不合题意;C、来凤投资额:200﹣60﹣28﹣25﹣23﹣14﹣16﹣15﹣5=15(亿元),故此选项不合题意;D、360°×=108°,故此选项符合题意;故选:D.12.(3分)(2013•恩施州)如图所示,在直角坐标系中放置一个边长为1的正方形ABCD,将正方形ABCD 沿x轴的正方向无滑动的在x轴上滚动,当点A离开原点后第一次落在x轴上时,点A运动的路径线与x 轴围成的面积为()A.B.C.π+1 D.解答:解:如图所示:点A运动的路径线与x轴围成的面积=S1+S2+S3+2a=+++2×(×1×1)=π+1.故选C.二、填空题(本大题共有4小题,每小题3分,共12分。
2020届湖北省恩施州中考数学模拟试题(含解析1)(加精)
湖北省恩施州中考数学真题试题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.7的绝对值是( ) A.7-B.7C.17D.17-【答案】B .试题分析:根据正数的绝对值是其本身,可得|7|=7,故选 B . 考点:绝对值.2.大美山水“硒都·恩施”是一张亮丽的名片,八方游客慕名而来,今年“五·一”期间,恩施州共接待游客1450000人,将1450000用科学记数法表示为( ) A.60.14510´B.514.510´C.51.4510´D.61.4510´【答案】D .考点:科学记数法. 3.下列计算正确的是( ) A.()21a a a a -=-B.()347a a = C.437a a a += D.5322a a a ?【答案】A.试题分析:选项A ,原式=a 2﹣a ;选项B ,原式=a 12;选项C ,原式不能合并;选项D ,原式=2a 2,故选A. 考点:整式的运算.4.下列图标是轴对称图形的是( )ABCD【答案】C .考点:轴对称图形.5.小明和他的爸爸妈妈共3人站成一排拍照,他的爸爸妈妈相邻的概率是( ) A.16B.13C.12D.23【答案】D .试题分析:设小明为A ,爸爸为B ,妈妈为C ,则所有的等可能结果是:(ABC ),(ACB ),(BAC ),(BCA ),(CAB ),(CBA ),所以他的爸爸妈妈相邻的概率是4263,故选D . 考点:用列举法求概率.6.如图1,若180A ABC +=∠∠°,则下列结论正确的是( )A.12=∠∠B.23=∠∠C.13=∠∠D.24=∠∠【答案】D .试题分析:由∠A+∠ABC=180°,可得AD ∥BC ,所以∠2=∠4.故选D . 考点:平行线的判定及性质. 7.函数113y x x =+--的自变量x 的取值范围是( ) A.1x ³B.1x ³且3x ¹C.3x ¹D.13x #【答案】B .试题分析: 根据被开方数是非负数,分母不能为零,可得x ﹣1≥0且x ﹣3≠0,解得x ≥1且x ≠3,故选B . 考点:函数自变量的取值范围.8.关于x 的不等式组()03121x m x x ì-<ïí->-ïî无解,那么m 的取值范围为( )A.1m ?B.1m <-C.10m -<?D.10m -?【答案】A.试题分析:解不等式x ﹣m <0,得x <m ,解不等式3x ﹣1>2(x ﹣1),得x >﹣1,由不等式组无解,可得m ≤﹣1,故选A.考点:解一元一次不等式组.9.中国讲究五谷丰登,六畜兴旺,如图2是一个正方体展开图,图中的六个正方形内分别标有六畜:“猪”、“牛”、“羊”、“马”、“鸡”、“狗”.将其围成一个正方体后,则与“牛”相对的是( )A.羊B.马C.鸡D.狗【答案】C .考点:正方体相对两个面上的文字.10.某服装进货价80元/件,标价为200元/件,商店将此服装打x 折销售后仍获利50%,则x 为( ) A.5B.6C.7D.8【答案】B .试题分析:根据利润=售价﹣进价,即可得200×10x﹣80=80×50%,解得:x=6.故选B . 考点:一元一次方程的应用.11.如图3,在ABC △中,DE BC ∥,ADE EFC =∠∠,:5:3AD BD =,6CF =,则DE 的长为( )A.6B.8C.10D.12【答案】C .试题分析:∵DE ∥BC , ∴∠ADE=∠B . ∵∠ADE=∠EFC , ∴∠B=∠EFC , ∴BD ∥EF , ∵DE ∥BF ,故选C .考点:相似三角形的判定与性质.12.如图4,在平面直角坐标系中2条直线为1:33l y x=-+,2:39l y x=-+,直线1l交x轴于点A,交y轴于点B,直线2l交x轴于点D,过点B作x轴的平行线交2l于点C,点A、E关于y轴对称,抛物线2y ax bx c=++过E、B、C三点,下列判断中:①0a b c-+=;②25a b c++=;③抛物线关于直线1x=对称;④抛物线过点(),b c;⑤5ABCDS=四边形,其中正确的个数有( )A.5B.4C.3D.2【答案】C.∴3423a b cca b c++=⎧⎪=⎨⎪++=⎩,解得123abc=-⎧⎪=⎨⎪=⎩,∴y=﹣x2+2x+3.①∵抛物线y=ax2+bx+c过E(﹣1,0),∴a ﹣b+c=0,故①正确; ②∵a=﹣1,b=2,c=3,∴2a+b+c=﹣2+2+3=3≠5,故②错误; ③∵抛物线过B (0,3),C (2,3)两点, ∴对称轴是直线x=1,∴抛物线关于直线x=1对称,故③正确;考点:抛物线与x 轴的交点;一次函数图象上点的坐标特征;二次函数图象上点的坐标特征. 二、填空题(每题3分,满分12分,将答案填在答题纸上) 13.16的平方根是 . 【答案】±4.试题分析:由(±4)2=16,可得16的平方根是±4. 考点:平方根.14.因式分解:22363ax axy ay -+= . 【答案】3a (x ﹣y )2.试题分析:先提取公因式3a ,再对余下的多项式利用完全平方公式继续分解,即3ax 2﹣6axy+3ay 2=3a (x 2﹣2xy+y 2)=3a (x ﹣y )2。
2020年湖北省恩施州中考数学试卷和答案解析
2020年湖北省恩施州中考数学试卷和答案解析一、选择题(本大题共有12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择项前的字母代号填涂在答题卷相应位置上)1.(3分)5的绝对值是()A.5B.﹣5C.D.﹣解析:根据绝对值的意义:数轴上一个数所对应的点与原点(O点)的距离叫做该数的绝对值,绝对值只能为非负数;即可得解.参考答案:解:在数轴上,数5所表示的点到原点0的距离是5,所以5的绝对值是5,故选:A.点拨:本题考查了绝对值,解决本题的关键是一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.2.(3分)茶中精品“恩施绿”“利川红”享誉世界.去年恩施州茶叶产量约为120000吨,将数120000用科学记数法表示为()A.12×104B.1.2×105C.1.2×106D.0.12×106解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.参考答案:解:120000=1.2×105,故选:B.点拨:本题考查科学记数法,注意n的值的确定方法,当原数大于10时,n等于原数的整数数位减1,按此方法即可正确求解.3.(3分)下列交通标识,既是中心对称图形,又是轴对称图形的是()A.B.C.D.解析:根据轴对称图形与中心对称图形的概念求解.参考答案:解:根据轴对称图形与中心对称图形的概念,知:A、不是轴对称图形,也不是中心对称图形;B、不是轴对称图形,也不是中心对称图形;C、是轴对称图形,但不是中心对称图形;D、既是中心对称图形,又是轴对称图形.故选:D.点拨:本题考查中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,折叠后对称轴两旁的部分可重合;中心对称图形是要寻找对称中心,旋转180°后会与原图重合.4.(3分)下列计算正确的是()A.a2•a3=a6B.a(a+1)=a2+aC.(a﹣b)2=a2﹣b2D.2a+3b=5ab解析:利用同底数幂的乘法运算法则、单项式乘多项式的运算法则、完全平方公式、合并同类项法则计算求出答案即可判断.参考答案:解:A、a2•a3=a5,原计算错误,故此选项不符合题意;B、a(a+1)=a2+a,原计算正确,故此选项符合题意;C、(a﹣b)2=a2﹣2ab+b2,原计算错误,故此选项不符合题意;D、2a与3b不是同类项,不能合并,原计算错误,故此选项不符合题意;故选:B.点拨:本题考查了同底数幂的乘法,单项式乘多项式,完全平方公式以及合并同类项,解此题的关键在于熟练掌握其知识点.5.(3分)函数y=的自变量的取值范围是()A.x≥﹣1B.x≥﹣1且x≠0C.x>0D.x >﹣1且x≠0解析:根据被开方数大于等于0,分母不等于0列式计算即可得解.参考答案:解:根据题意得,x+1≥0且x≠0,解得x≥﹣1且x≠0.故选:B.点拨:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.6.(3分)“彩缕碧筠粽,香粳白玉团”.端午佳节,小明妈妈准备了豆沙粽2个、红枣粽4个、腊肉粽3个、白米粽2个,其中豆沙粽和红枣粽是甜粽.小明任意选取一个,选到甜粽的概率是()A.B.C.D.解析:粽子总共有11个,其中甜粽有6个,根据概率公式即可求出答案.参考答案:解:由题意可得:粽子总数为11个,其中6个为甜粽,所以选到甜粽的概率为:,故选:D.点拨:本题考查了概率的基本运算,熟练掌握概率公式是解题的关键.7.(3分)在实数范围内定义运算“☆”:a☆b=a+b﹣1,例如:2☆3=2+3﹣1=4.如果2☆x=1,则x的值是()A.﹣1B.1C.0D.2解析:已知等式利用题中的新定义化简,计算即可求出x的值.参考答案:解:由题意知:2☆x=2+x﹣1=1+x,又2☆x=1,∴1+x=1,∴x=0.故选:C.点拨:本题考查了实数的计算,一元一次方程的解法,本题的关键是能看明白题目意思,根据新定义的运算规则求解.8.(3分)我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”.意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒x斛,1个小桶盛酒y斛,下列方程组正确的是()A.B.C.D.解析:根据“5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛”,即可得出关于x,y的二元一次方程组,此题得解.参考答案:解:依题意,得:.故选:A.点拨:本题考查了由实际问题抽象出二元一次方程组以及数学常识,找准等量关系,正确列出二元一次方程组是解题的关键.9.(3分)如图是由四个相同的小正方体组成的立体图形,它的主视图为()A.B.C.D.解析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.参考答案:解:从正面看易得第一列有2个正方形,第二列底层有1个正方形.故选:A.点拨:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.10.(3分)甲乙两车从A城出发前往B城,在整个行程中,汽车离开A城的距离y与时刻t的对应关系如图所示,则下列结论错误的是()A.甲车的平均速度为60km/hB.乙车的平均速度为100km/hC.乙车比甲车先到B城D.乙车比甲车先出发1h解析:根据图象逐项分析判断即可.参考答案:解:由图象知:A.甲车的平均速度为=60km/h,故A选项不合题意;B.乙车的平均速度为=100km/h,故B选项不合题意;C.甲10时到达B城,乙9时到达B城,所以乙比甲先到B城,故C选项不合题意;D.甲5时出发,乙6时出发,所以乙比甲晚出发1h,故此选项错误,点拨:本题考查了一次函数的应用,函数的图象,正确识别图象并能提取相关信息是解答的关键.11.(3分)如图,正方形ABCD的边长为4,点E在AB上且BE=1,F为对角线AC上一动点,则△BFE周长的最小值为()A.5B.6C.7D.8解析:连接ED交AC于一点F,连接BF,根据正方形的对称性得到此时△BFE的周长最小,利用勾股定理求出DE即可得到答案.参考答案:解:如图,连接ED交AC于一点F,连接BF,∵四边形ABCD是正方形,∴点B与点D关于AC对称,∴BF=DF,∴△BFE的周长=BF+EF+BE=DE+BE,此时△BEF的周长最小,∵正方形ABCD的边长为4,∴AD=AB=4,∠DAB=90°,∵点E在AB上且BE=1,∴AE=3,∴DE=,∴△BFE的周长=5+1=6,点拨:此题考查正方形的性质:四条边都相等,四个角都是直角以及正方形的对称性质,还考查了勾股定理的计算.依据正方形的对称性,连接DE交AC于点F时△BFE的周长有最小值,这是解题的关键.12.(3分)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A (﹣2,0)、B(1,0)两点.则以下结论:①ac>0;②二次函数y=ax2+bx+c的图象的对称轴为x=﹣1;③2a+c=0;④a﹣b+c >0.其中正确的有()个.A.0B.1C.2D.3解析:根据抛物线的开口方向、对称轴、顶点坐标、增减性以及过特殊点时系数a、b、c满足的关系综合判断即可.参考答案:解:对于①:二次函数开口向下,故a<0,与y轴的交点在y的正半轴,故c>0,故ac<0,因此①错误;对于②:二次函数的图象与x轴相交于A(﹣2,0)、B(1,0),由对称性可知,其对称轴为:,因此②错误;对于③:设二次函数y=ax2+bx+c的交点式为y=a(x+2)(x﹣1)=ax2+ax﹣2a,比较一般式与交点式的系数可知:b=a,c=﹣2a,故2a+c=0,因此③正确;对于④:当x=﹣1时对应的y=a﹣b+c,观察图象可知x=﹣1时对应的函数图象的y值在x轴上方,故a﹣b+c>0,因此④正确.∴只有③④是正确的.故选:C.点拨:本题考查了二次函数的图象与其系数的关系及二次函数的对称性,熟练掌握二次函数的图象性质是解决此类题的关键.二、填空题(本大题共有4小题,每小题3分,共12分.不要求写出解答过程,请把答案直接填写在答题卷相应位置上)13.(3分)9的算术平方根是3.解析:9的平方根为±3,算术平方根为非负,从而得出结论.参考答案:解:∵(±3)2=9,∴9的算术平方根是3.故答案为:3.点拨:本题考查了数的算术平方根,解题的关键是牢记算术平方根为非负.14.(3分)如图,直线l1∥l2,点A在直线l1上,点B在直线l2上,AB=BC,∠C=30°,∠1=80°,则∠2=40°.解析:利用等腰三角形的性质得到∠C=∠4=30°,利用平行线的性质得到∠1=∠3=80°,再根据三角形内角和定理即可求解.参考答案:解:如图,延长CB交l2于点D,∵AB=BC,∠C=30°,∴∠C=∠4=30°,∵l1∥l2,∠1=80°,∴∠1=∠3=80°,∵∠C+∠3+∠2+∠4=180°,即30°+80°+∠2+30°=180°,∴∠2=40°.故答案为:40°.点拨:本题考查了等腰三角形的性质,平行线的性质以及三角形内角和定理的应用,解决问题的关键是辅助线的作法,注意运用两直线平行,同位角相等.15.(3分)如图,已知半圆的直径AB=4,点C在半圆上,以点A 为圆心,AC为半径画弧交AB于点D,连接BC.若∠ABC=60°,则图中阴影部分的面积为2﹣π.(结果不取近似值)解析:根据60°特殊角求出AC和BC,再算出△ABC的面积,根据扇形面积公式求出扇形CAD的面积,再用三角形的面积减去扇形面积即可.参考答案:解:∵AB是直径,∴∠ACB=90°,∵∠ABC=60°,∴∠CAB=30°,∴BC=,AC=,∴,∵∠CAB=30°,∴扇形ACD的面积=,∴阴影部分的面积为.故答案为:.点拨:本题考查了圆周角定理,解直角三角形,扇形面积的计算,关键在于利用圆周角的性质找到直角三角形并结合扇形面积公式解出.16.(3分)如图,在平面直角坐标系中,△ABC的顶点坐标分别为:A(﹣2,0),B(1,2),C(1,﹣2).已知N(﹣1,0),作点N关于点A的对称点N1,点N1关于点B的对称点N2,点N2关于点C的对称点N3,点N3关于点A的对称点N4,点N4关于点B 的对称点N5,…,依此类推,则点N2020的坐标为(﹣1,8).解析:先求出N1至N6点的坐标,找出其循环的规律为每6个点循环一次即可求解.参考答案:解:由题意得,作出如下图形:N点坐标为(﹣1,0),N点关于A点对称的N1点的坐标为(﹣3,0),N1点关于B点对称的N2点的坐标为(5,4),N2点关于C点对称的N3点的坐标为(﹣3,8),N3点关于A点对称的N4点的坐标为(﹣1,8),N4点关于B点对称的N5点的坐标为(3,﹣4),N5点关于C点对称的N6点的坐标为(﹣1,0),此时刚好回到最开始的点N处,∴其每6个点循环一次,∴2020÷6=336……4,即循环了336次后余下4,故N2020的坐标与N4点的坐标相同,其坐标为(﹣1,8).故答案为:(﹣1,8).点拨:本题考查了平面直角坐标系内点的对称规律问题,本题需要先去验算前面一部分点的坐标,进而找到其循环的规律后即可求解.三、解答题(本大题共有8个小题,共72分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤).17.(8分)先化简,再求值:(﹣)÷,其中m=.解析:根据分式的混合运算法则,先化简括号内的,将除法运算转化为乘法运算,再化简成最简分式,代入m值求解即可.参考答案:解:====;当时,原式=.点拨:本题主要考查了分式的化简求值以及二次根式的化简,熟练掌握分式的混合运算法则是解答的关键.18.(8分)如图,AE∥BF,BD平分∠ABC交AE于点D,点C在BF上且BC=AB,连接CD.求证:四边形ABCD是菱形.解析:由AE∥BF,BD平分∠ABC得到∠ABD=∠ADB,得到AB =AD,再由BC=AB,得到对边AD=BC,进而得到四边形ABCD 为平行四边形,再由邻边相等即可证明四边形ABCD为菱形.参考答案:证明:∵AE∥BF,∴∠ADB=∠DBC,∵BD平分∠ABC,∴∠DBC=∠ABD,∴∠ADB=∠ABD,∴AB=AD,又∵AB=BC,∴AD=BC,∵AE∥BF,即AD∥BC,∴四边形ABCD为平行四边形,又∵AB=AD,∴四边形ABCD为菱形.点拨:本题考了菱形的判定、平行四边形的判定与性质、等腰三角形的判定、角平分线性质、平行线的性质等知识;熟练掌握平行四边形判定及性质和等腰三角形的判定是解决此题的关键.19.(8分)某中学为了解九年级学生对新冠肺炎防控知识的掌握情况,从全校九年级学生中随机抽取部分学生进行调查.调查结果分为四类:A类﹣﹣非常了解;B类﹣﹣比较了解;C类﹣﹣般了解;D类﹣﹣不了解.现将调查结果绘制成如图不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次共调查了50名学生;(2)补全条形统计图;(3)D类所对应扇形的圆心角的大小为36°;(4)若该校九年级学生共有500名,根据以上抽样结果,估计该校九年级学生对新冠肺炎防控知识非常了解的约有150名.解析:(1)根据条形图和扇形图得出B类人数为20名,占40%,即可得出总数;(2)根据总人数减去A,B,D的人数即可得出C的人数;(3)用360°乘以D类部分所占百分比即可得出圆心角的度数;(4)用500乘以非常了解的部分所占百分比即可得出答案.参考答案:解:(1)本次共调查的学生数为:20÷40%=50(名).故答案为:50;(2)C类学生人数为:50﹣15﹣20﹣5=10(名),条形图如下:(3)D类所对应扇形的圆心角为:.故答案为:36°;(4)该校九年级学生对新冠肺炎防控知识非常了解的人数为:(名).故答案为:150.点拨:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了利用样本估计总体.20.(8分)如图,一艘轮船以每小时30海里的速度自东向西航行,在A处测得小岛P位于其西北方向(北偏西45°方向),2小时后轮船到达B处,在B处测得小岛P位于其北偏东60°方向.求此时船与小岛P的距离(结果保留整数,参考数据:≈1.414,≈1.732).解析:过P作PH⊥AB,设PH=x,由已知分别求PB、BH、AH,然后根据锐角三角函数求出x值即可求解.参考答案:解:如图,过点P作PH⊥AB,设PH=x,由题意得:AB=30×2=60,∠PBH=90°﹣60°=30°,∠PAH=90°﹣45°=45°,则△PHA是等腰直角三角形,∴AH=PH,在Rt△PHA中,设AH=PH=x,在Rt△PBH中,PB=2PH=2x,BH=AB﹣AH=60﹣x,∴tan∠PBH=tan30°==,∴,解得:,∴PB=2x=≈44(海里),答:此时船与小岛P的距离约为44海里.点拨:本题考查了直角三角形的应用﹣方向角问题,掌握方向角的概念和解直角三角形的知识是解答本题的关键.21.(8分)如图,在平面直角坐标系中,直线y=ax﹣3a(a≠0)与x轴、y轴分别相交于A、B两点,与双曲线y=(x>0)的一个交点为C,且BC=AC.(1)求点A的坐标;(2)当S△AOC=3时,求a和k的值.解析:(1)令y=ax﹣3a(a≠0)中y=0即可求出点A的坐标;(2)过C点作y轴的垂线交y轴于M点,作x轴的垂线交x轴于N点,证明△BCM∽△BAO,利用和OA=3进而求出CM的长,再由S△AOC=3求出CN的长,进而求出点C坐标即可求解.参考答案:解:(1)由题意得:令y=ax﹣3a(a≠0)中y=0,即ax﹣3a=0,解得x=3,∴点A的坐标为(3,0),故答案为(3,0).(2)过C点作y轴的垂线交y轴于M点,作x轴的垂线交x轴于N点,如下图所示:显然,CM∥OA,∴∠BCM=∠BAO,且∠ABO=∠CBO,∴△BCM∽△BAO,∴,即:,∴CM=1,又即:,∴CN=2,∴C点的坐标为(1,2),故反比例函数的k=1×2=2,再将点C(1,2)代入一次函数y=ax﹣3a(a≠0)中,即2=a﹣3a,解得a=﹣1,∴当S△AOC=3时,a=﹣1,k=2.点拨:本题考查了反比例函数与一次函数的图象及性质,相似三角形的判定和性质等,熟练掌握其图象性质是解决此题的关键.22.(10分)某校足球队需购买A、B两种品牌的足球.已知A品牌足球的单价比B品牌足球的单价高20元,且用900元购买A品牌足球的数量用720元购买B品牌足球的数量相等.(1)求A、B两种品牌足球的单价;(2)若足球队计划购买A、B两种品牌的足球共90个,且A品牌足球的数量不小于B品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.设购买A品牌足球m个,总费用为W元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?解析:(1)设购买A品牌足球的单价为x元,则购买B品牌足球的单价为(x﹣20)元,根据用900元购买A品牌足球的数量用720元购买B品牌足球的数量相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买m个A品牌足球,则购买(90﹣m)个B品牌足球,根据总价=单价×数量,结合总价不超过8500元,以及A品牌足球的数量不小于B品牌足球数量的2倍,即可得出关于m的一元一次不等式组,解之取其中的最小整数值即可得出结论.参考答案:解:(1)设购买A品牌足球的单价为x元,则购买B 品牌足球的单价为(x﹣20)元,根据题意,得,解得:x=100,经检验x=100是原方程的解,x﹣20=80,答:购买A品牌足球的单价为100元,则购买B品牌足球的单价为80元;(2)设购买m个A品牌足球,则购买(90﹣m)个B品牌足球,则W=100m+80(90﹣m)=20m+7200,∵A品牌足球的数量不小于B品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元,∴,解不等式组得:60≤m≤65,所以,m的值为:60,61,62,63,64,65,即该队共有6种购买方案,当m=60时,W最小,m=60时,W=20×60+7200=8400(元),答:该队共有6种购买方案,购买60个A品牌30个B品牌的总费用最低,最低费用是8400元.点拨:本题考查了分式方程的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式组.23.(10分)如图1,AB是⊙O的直径,直线AM与⊙O相切于点A,直线BN与⊙O相切于点B,点C(异于点A)在AM上,点D 在⊙O上,且CD=CA,延长CD与BN相交于点E,连接AD并延长交BN于点F.(1)求证:CE是⊙O的切线;(2)求证:BE=EF;(3)如图2,连接EO并延长与⊙O分别相交于点G、H,连接BH.若AB=6,AC=4,求tan∠BHE.解析:(1)连接OD,根据等边对等角可知:∠CAD=∠CDA,∠OAD=∠ODA,再根据切线的性质可知∠CAO=∠CAD+∠OAD=∠CDA+∠ODA=90°=∠ODC,由切线的判定定理可得结论;(2)连接BD,根据等边对等角可知∠ODB=∠OBD,再根据切线的性质可知∠ODE=∠OBE=90°,由等量减等量差相等得∠EDB=∠EBD,再根据等角对等边得到ED=EB,然后根据平行线的性质及对顶角相等可得∠EDF=∠EFD,推出DE=EF,由此得出结论;(3)过E点作EL⊥AM于L,根据勾股定理可求出BE的长,即可求出tan∠BOE的值,再利用倍角公式即可求出tan∠BHE的值.参考答案:解:(1)如图1中,连接OD,∵CD=CA,∴∠CAD=∠CDA,∵OA=OD∴∠OAD=∠ODA,∵直线AM与⊙O相切于点A,∴∠CAO=∠CAD+∠OAD=90°,∴∠ODC=∠CDA+∠ODA=90°,∴CE是⊙O的切线.(2)如图2中,连接BD,∵OD=OB,∴∠ODB=∠OBD,∵CE是⊙O的切线,BF是⊙O的切线,∴∠OBD=∠ODE=90°,∴∠EDB=∠EBD,∴ED=EB,∵AM⊥AB,BN⊥AB,∴AM∥BN,∴∠CAD=∠BFD,∵∠CAD=∠CDA=∠EDF,∴∠BFD=∠EDF,∴EF=ED,∴BE=EF.(3)如图2中,过E点作EL⊥AM于L,则四边形ABEL是矩形,设BE=x,则CL=4﹣x,CE=4+x,∴(4+x)2=(4﹣x)2+62,解得:x=,∴,∵∠BOE=2∠BHE,∴,解得:tan∠BHE=或﹣3(﹣3不合题意舍去),∴tan∠BHE=.补充方法:如图2中,作HJ⊥EB交EB的延长线于J.∵tab∠BOE==,∴可以假设BE=3k,OB=4k,则OE=5k,∵OB∥HJ,∴==,∴==,∴HJ=k,EJ=k,∴BJ=EJ﹣BE=k﹣3k=k∴tan∠BHJ==,∵∠BHE=∠OBE=∠BHJ,∴tan∠BHE=.点拨:本题主要考查了切线的判定和性质,等腰三角形的判定和性质,平行线的判定和性质,三角函数/,勾股定理等知识,熟练掌握这些知识点并能熟练应用是解题的关键.24.(12分)如图1,抛物线y=﹣x2+bx+c经过点C(6,0),顶点为B,对称轴x=2与x轴相交于点A,D为线段BC的中点.(1)求抛物线的解析式;(2)P为线段BC上任意一点,M为x轴上一动点,连接MP,以点M为中心,将△MPC逆时针旋转90°,记点P的对应点为E,点C的对应点为F.当直线EF与抛物线y=﹣x2+bx+c只有一个交点时,求点M的坐标.(3)△MPC在(2)的旋转变换下,若PC=(如图2).①求证:EA=ED.②当点E在(1)所求的抛物线上时,求线段CM的长.解析:(1)根据点C在抛物线上和已知对称轴的条件可求出解析式;(2)根据抛物线的解析式求出点B及已知点C的坐标,证明△ABC 是等腰直角三角形,根据旋转的性质推出直线EF与x轴的夹角为45°,因此设直线EF的解析式为y=x+b,设点M的坐标为(m,0),推出点F(m,6﹣m),直线EF与抛物线只有一个交点,联立两个解析式,得到关于x的一元二次方程,根据根的判别式为0得到关于m的方程,解方程得点M的坐标.注意有两种情况,均需讨论.(3)①过点P作PG⊥x轴于点G,过点E作EH⊥x轴于点H,设点M的坐标为(m,0),由及旋转的性质,证明△EHM≌△MGP,得到点E的坐标为(m﹣1,5﹣m),再根据两点距离公式证明EA=ED,注意分两种情况,均需讨论;②把E(m﹣1,5﹣m)代入抛物线解析式,解出m的值,进而求出CM的长.参考答案:解:(1)∵点C(6,0)在抛物线上,∴,得到6b+c=9,又∵对称轴为x=2,∴,解得b=1,∴c=3,∴二次函数的解析式为;(2)当点M在点C的左侧时,如图2﹣1中:∵抛物线的解析式为,对称轴为x=2,C(6,0)∴点A(2,0),顶点B(2,4),∴AB=AC=4,∴△ABC是等腰直角三角形,∴∠1=45°;∵将△MPC逆时针旋转90°得到△MEF,∴FM=CM,∠2=∠1=45°,设点M的坐标为(m,0),∴点F(m,6﹣m),又∵∠2=45°,∴直线EF与x轴的夹角为45°,∴设直线EF的解析式为y=x+b,把点F(m,6﹣m)代入得:6﹣m=m+b,解得:b=6﹣2m,直线EF的解析式为y=x+6﹣2m,∵直线EF与抛物线只有一个交点,∴,整理得:,∴△=b2﹣4ac=0,解得m=,点M的坐标为(,0).当点M在点C的右侧时,如下图:由图可知,直线EF与x轴的夹角仍是45°,因此直线EF与抛物线不可能只有一个交点.综上,点M的坐标为(,0).(3)①当点M在点C的左侧时,如下图,过点P作PG⊥x轴于点G,过点E作EH⊥x轴于点H,∵,由(2)知∠BCA=45°,∴PG=GC=1,∴点G(5,0),设点M的坐标为(m,0),∵将△MPC逆时针旋转90°得到△MEF,∴EM=PM,∵∠HEM+∠EMH=∠GMP+∠EMH=90°,∴∠HEM=∠GMP,在△EHM和△MGP中,,∴△EHM≌△MGP(AAS),∴EH=MG=5﹣m,HM=PG=1,∴点H(m﹣1,0),∴点E的坐标为(m﹣1,5﹣m);∴EA==,又∵D为线段BC的中点,B(2,4),C(6,0),∴点D(4,2),∴ED==,∴EA=ED.当点M在点C的右侧时,如下图:同理,点E的坐标仍为(m﹣1,5﹣m),因此EA=ED.②当点E在(1)所求的抛物线上时,把E(m﹣1,5﹣m)代入,整理得:m2﹣10m+13=0,解得:m =或m =,∴CM =或CM =.点拨:本题属于二次函数综合题,考查了二次函数的图象和性质,旋转的性质,一次函数的性质,全等三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想解决问题,学会利用参数构建方程解决问题,属于中考压轴题.第31页(共31页)。
2020年湖北省恩施州中考数学试卷
2020年湖北省恩施州中考数学试卷一、选择题(本大题共有12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择项前的字母代号填涂在答题卷相应位置上)1.(3分)(2020•恩施州)5的绝对值是( )A .5B .﹣5C .15D .−152.(3分)(2020•恩施州)茶中精品“恩施绿”“利川红”享誉世界.去年恩施州茶叶产量约为120000吨,将数120000用科学记数法表示为( )A .12×104B .1.2×105C .1.2×106D .0.12×1063.(3分)(2020•恩施州)下列交通标识,既是中心对称图形,又是轴对称图形的是( )A .B .C .D .4.(3分)(2020•恩施州)下列计算正确的是( )A .a 2•a 3=a 6B .a (a +1)=a 2+aC .(a ﹣b )2=a 2﹣b 2D .2a +3b =5ab 5.(3分)(2020•恩施州)函数y =√x+1x 的自变量的取值范围是( ) A .x ≥﹣1 B .x ≥﹣1且x ≠0C .x >0D .x >﹣1且x ≠0 6.(3分)(2020•恩施州)“彩缕碧筠粽,香粳白玉团”.端午佳节,小明妈妈准备了豆沙粽2个、红枣粽4个、腊肉粽3个、白米粽2个,其中豆沙粽和红枣粽是甜粽.小明任意选取一个,选到甜粽的概率是( )A .211B .411C .511D .6117.(3分)(2020•恩施州)在实数范围内定义运算“☆”:a ☆b =a +b ﹣1,例如:2☆3=2+3﹣1=4.如果2☆x =1,则x 的值是( )A .﹣1B .1C .0D .28.(3分)(2020•恩施州)我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”.意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒x 斛,1个小桶盛酒y 斛,下列方程组正确的是( )A .{5x +y =3x +5y =2B .{5x +y =2x +5y =3C .{5x +3y =1x +2y =5D .{3x +y =52x +5y =19.(3分)(2020•恩施州)如图是由四个相同的小正方体组成的立体图形,它的主视图为( )A .B .C .D .10.(3分)(2020•恩施州)甲乙两车从A 城出发前往B 城,在整个行程中,汽车离开A 城的距离y 与时刻t 的对应关系如图所示,则下列结论错误的是( )A .甲车的平均速度为60km /hB .乙车的平均速度为100km /hC .乙车比甲车先到B 城D .乙车比甲车先出发1h11.(3分)(2020•恩施州)如图,正方形ABCD 的边长为4,点E 在AB 上且BE =1,F 为对角线AC 上一动点,则△BFE 周长的最小值为( )A .5B .6C .7D .812.(3分)(2020•恩施州)如图,已知二次函数y =ax 2+bx +c 的图象与x 轴相交于A (﹣2,0)、B(1,0)两点.则以下结论:①ac>0;②二次函数y=ax2+bx+c的图象的对称轴为x=﹣1;③2a+c=0;④a﹣b+c>0.其中正确的有()个.A.0B.1C.2D.3二、填空题(本大题共有4小题,每小题3分,共12分.不要求写出解答过程,请把答案直接填写在答题卷相应位置上)13.(3分)(2020•恩施州)9的算术平方根是.14.(3分)(2020•恩施州)如图,直线l1∥l2,点A在直线l1上,点B在直线l2上,AB=BC,∠C=30°,∠1=80°,则∠2=.15.(3分)(2020•恩施州)如图,已知半圆的直径AB=4,点C在半圆上,以点A为圆心,AC为半径画弧交AB于点D,连接BC.若∠ABC=60°,则图中阴影部分的面积为.(结果不取近似值16.(3分)(2020•恩施州)如图,在平面直角坐标系中,△ABC的顶点坐标分别为:A(﹣2,0),B(1,2),C(1,﹣2).已知N(﹣1,0),作点N关于点A的对称点N1,点N1关于点B的对称点N2,点N2关于点C的对称点N3,点N3关于点A的对称点N4,点N4关于点B的对称点N5,…,依此类推,则点N2020的坐标为.三、解答题(本大题共有8个小题,共72分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤).17.(8分)(2020•恩施州)先化简,再求值:(m2−9m2−6m+9−3m−3)÷m2m−3,其中m=√2.18.(8分)(2020•恩施州)如图,AE∥BF,BD平分∠ABC交AE于点D,点C在BF上且BC=AB,连接CD.求证:四边形ABCD是菱形.19.(8分)(2020•恩施州)某中学为了解九年级学生对新冠肺炎防控知识的掌握情况,从全校九年级学生中随机抽取部分学生进行调查.调查结果分为四类:A类﹣﹣非常了解;B类﹣﹣比较了解;C类﹣﹣般了解;D类﹣﹣不了解.现将调查结果绘制成如图不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次共调查了名学生;(2)补全条形统计图;(3)D类所对应扇形的圆心角的大小为;(4)若该校九年级学生共有500名,根据以上抽样结果,估计该校九年级学生对新冠肺炎防控知识非常了解的约有名.20.(8分)(2020•恩施州)如图,一艘轮船以每小时30海里的速度自东向西航行,在A处测得小岛P位于其西北方向(北偏西45°方向),2小时后轮船到达B处,在B处测得小岛P位于其北偏东60°方向.求此时船与小岛P的距离(结果保留整数,参考数据:√2≈1.414,√3≈1.732).21.(8分)(2020•恩施州)如图,在平面直角坐标系中,直线y=ax﹣3a(a≠0)与x轴、y轴分别相交于A、B两点,与双曲线y=kx(x>0)的一个交点为C,且BC=12AC.(1)求点A的坐标;(2)当S△AOC=3时,求a和k的值.22.(10分)(2020•恩施州)某校足球队需购买A、B两种品牌的足球.已知A品牌足球的单价比B品牌足球的单价高20元,且用900元购买A品牌足球的数量用720元购买B 品牌足球的数量相等.(1)求A、B两种品牌足球的单价;(2)若足球队计划购买A、B两种品牌的足球共90个,且A品牌足球的数量不小于B 品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.设购买A品牌足球m 个,总费用为W元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?23.(10分)(2020•恩施州)如图1,AB是⊙O的直径,直线AM与⊙O相切于点A,直线BN与⊙O相切于点B,点C(异于点A)在AM上,点D在⊙O上,且CD=CA,延长CD与BN相交于点E,连接AD并延长交BN于点F.(1)求证:CE是⊙O的切线;(2)求证:BE=EF;(3)如图2,连接EO并延长与⊙O分别相交于点G、H,连接BH.若AB=6,AC=4,求tan∠BHE.24.(12分)(2020•恩施州)如图1,抛物线y=−14x2+bx+c经过点C(6,0),顶点为B,对称轴x=2与x轴相交于点A,D为线段BC的中点.(1)求抛物线的解析式;(2)P为线段BC上任意一点,M为x轴上一动点,连接MP,以点M为中心,将△MPC 逆时针旋转90°,记点P的对应点为E,点C的对应点为F.当直线EF与抛物线y=−14x2+bx+c只有一个交点时,求点M的坐标.(3)△MPC在(2)的旋转变换下,若PC=√2(如图2).①求证:EA=ED.②当点E在(1)所求的抛物线上时,求线段CM的长.2020年湖北省恩施州中考数学试卷参考答案与试题解析一、选择题(本大题共有12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择项前的字母代号填涂在答题卷相应位置上)1.(3分)(2020•恩施州)5的绝对值是( )A .5B .﹣5C .15D .−15 【解答】解:在数轴上,数5所表示的点到原点0的距离是5;故选:A .2.(3分)(2020•恩施州)茶中精品“恩施绿”“利川红”享誉世界.去年恩施州茶叶产量约为120000吨,将数120000用科学记数法表示为( )A .12×104B .1.2×105C .1.2×106D .0.12×106【解答】解:120000=1.2×105,故选:B .3.(3分)(2020•恩施州)下列交通标识,既是中心对称图形,又是轴对称图形的是( )A .B .C .D .【解答】解:根据轴对称图形与中心对称图形的概念,知:A 、不是轴对称图形,也不是中心对称图形;B 、不是轴对称图形,也不是中心对称图形;C 、是轴对称图形,但不是中心对称图形;D 、既是中心对称图形,又是轴对称图形.故选:D .4.(3分)(2020•恩施州)下列计算正确的是( )A .a 2•a 3=a 6B .a (a +1)=a 2+aC .(a ﹣b )2=a 2﹣b 2D .2a +3b =5ab【解答】解:A 、a 2•a 3=a 5,原计算错误,故此选项不符合题意;B 、a (a +1)=a 2+a ,原计算正确,故此选项符合题意;C 、(a ﹣b )2=a 2﹣2ab +b 2,原计算错误,故此选项不符合题意;D 、2a 与3b 不是同类项,不能合并,原计算错误,故此选项不符合题意;故选:B .5.(3分)(2020•恩施州)函数y =√x+1x 的自变量的取值范围是( ) A .x ≥﹣1 B .x ≥﹣1且x ≠0C .x >0D .x >﹣1且x ≠0 【解答】解:根据题意得,x +1≥0且x ≠0,解得x ≥﹣1且x ≠0.故选:B .6.(3分)(2020•恩施州)“彩缕碧筠粽,香粳白玉团”.端午佳节,小明妈妈准备了豆沙粽2个、红枣粽4个、腊肉粽3个、白米粽2个,其中豆沙粽和红枣粽是甜粽.小明任意选取一个,选到甜粽的概率是( )A .211B .411C .511D .611【解答】解:由题意可得:粽子总数为11个,其中6个为甜粽,所以选到甜粽的概率为:611,故选:D .7.(3分)(2020•恩施州)在实数范围内定义运算“☆”:a ☆b =a +b ﹣1,例如:2☆3=2+3﹣1=4.如果2☆x =1,则x 的值是( )A .﹣1B .1C .0D .2 【解答】解:由题意知:2☆x =2+x ﹣1=1+x ,又2☆x =1,∴1+x =1,∴x =0.故选:C .8.(3分)(2020•恩施州)我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”.意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒x 斛,1个小桶盛酒y 斛,下列方程组正确的是( )A .{5x +y =3x +5y =2B .{5x +y =2x +5y =3C .{5x +3y =1x +2y =5D .{3x +y =52x +5y =1【解答】解:依题意,得:{5x +y =3x +5y =2. 故选:A . 9.(3分)(2020•恩施州)如图是由四个相同的小正方体组成的立体图形,它的主视图为( )A .B .C .D .【解答】解:从正面看易得第一列有2个正方形,第二列底层有1个正方形.故选:A .10.(3分)(2020•恩施州)甲乙两车从A 城出发前往B 城,在整个行程中,汽车离开A 城的距离y 与时刻t 的对应关系如图所示,则下列结论错误的是( )A .甲车的平均速度为60km /hB .乙车的平均速度为100km /hC .乙车比甲车先到B 城D .乙车比甲车先出发1h【解答】解:由图象知:A .甲车的平均速度为30010−5=60km /h ,故A 选项不合题意; B .乙车的平均速度为3009−6=100km /h ,故B 选项不合题意;C .甲10时到达B 城,乙9时到达B 城,所以乙比甲先到B 城,故C 选项不合题意;D.甲5时出发,乙6时出发,所以乙比甲晚出发1h,故此选项错误,故选:D.11.(3分)(2020•恩施州)如图,正方形ABCD的边长为4,点E在AB上且BE=1,F为对角线AC上一动点,则△BFE周长的最小值为()A.5B.6C.7D.8【解答】解:如图,连接ED交AC于一点F,连接BF,∵四边形ABCD是正方形,∴点B与点D关于AC对称,∴BF=DF,∴△BFE的周长=BF+EF+BE=DE+BE,此时△BEF的周长最小,∵正方形ABCD的边长为4,∴AD=AB=4,∠DAB=90°,∵点E在AB上且BE=1,∴AE=3,∴DE=√AD2+AE2=5,∴△BFE的周长=5+1=6,故选:B.12.(3分)(2020•恩施州)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣2,0)、B(1,0)两点.则以下结论:①ac>0;②二次函数y=ax2+bx+c的图象的对称轴为x=﹣1;③2a+c=0;④a﹣b+c>0.其中正确的有()个.A.0B.1C.2D.3【解答】解:对于①:二次函数开口向下,故a<0,与y轴的交点在y的正半轴,故c >0,故ac<0,因此①错误;对于②:二次函数的图象与x轴相交于A(﹣2,0)、B(1,0),由对称性可知,其对称轴为:x=−2+12=−12,因此②错误;对于③:设二次函数y=ax2+bx+c的交点式为y=a(x+2)(x﹣1)=ax2+ax﹣2a,比较一般式与交点式的系数可知:b=a,c=﹣2a,故2a+c=0,因此③正确;对于④:当x=﹣1时对应的y=a﹣b+c,观察图象可知x=﹣1时对应的函数图象的y 值在x轴上方,故a﹣b+c>0,因此④正确.∴只有③④是正确的.故选:C.二、填空题(本大题共有4小题,每小题3分,共12分.不要求写出解答过程,请把答案直接填写在答题卷相应位置上)13.(3分)(2020•恩施州)9的算术平方根是3.【解答】解:∵(±3)2=9,∴9的算术平方根是|±3|=3.故答案为:3.14.(3分)(2020•恩施州)如图,直线l1∥l2,点A在直线l1上,点B在直线l2上,AB=BC,∠C=30°,∠1=80°,则∠2=40°.【解答】解:如图,延长CB交l2于点D,∵AB=BC,∠C=30°,∴∠C=∠4=30°,∵l1∥l2,∠1=80°,∴∠1=∠3=80°,∵∠C+∠3+∠2+∠4=180°,即30°+80°+∠2+30°=180°,∴∠2=40°.故答案为:40°.15.(3分)(2020•恩施州)如图,已知半圆的直径AB=4,点C在半圆上,以点A为圆心,AC为半径画弧交AB于点D,连接BC.若∠ABC=60°,则图中阴影部分的面积为2√3−π.(结果不取近似值【解答】解:∵AB是直径,∴∠ACB=90°,∵∠ABC=60°,∴∠CAB=30°,∴BC=12AB=2,AC=2√3,∴S△ABC=12⋅AC⋅BC=12⋅2√3⋅2=2√3,∵∠CAB=30°,∴扇形ACD的面积=30360π⋅AC2=112π⋅(2√3)2=π,∴阴影部分的面积为2√3−π.故答案为:2√3−π.16.(3分)(2020•恩施州)如图,在平面直角坐标系中,△ABC的顶点坐标分别为:A(﹣2,0),B(1,2),C(1,﹣2).已知N(﹣1,0),作点N关于点A的对称点N1,点N1关于点B的对称点N2,点N2关于点C的对称点N3,点N3关于点A的对称点N4,点N4关于点B的对称点N5,…,依此类推,则点N2020的坐标为(﹣1,8).【解答】解:由题意得,作出如下图形:N点坐标为(﹣1,0),N点关于A点对称的N1点的坐标为(﹣3,0),N1点关于B点对称的N2点的坐标为(5,4),N2点关于C点对称的N3点的坐标为(﹣3,8),N3点关于A点对称的N4点的坐标为(﹣1,8),N4点关于B点对称的N5点的坐标为(3,﹣4),N5点关于C点对称的N6点的坐标为(﹣1,0),此时刚好回到最开始的点N处,∴其每6个点循环一次,∴2020÷6=336……4,即循环了336次后余下4,故N2020的坐标与N4点的坐标相同,其坐标为(﹣1,8).故答案为:(﹣1,8).三、解答题(本大题共有8个小题,共72分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤).17.(8分)(2020•恩施州)先化简,再求值:(m2−9m2−6m+9−3m−3)÷m2m−3,其中m=√2.【解答】解:(m2−9m2−6m+9−3m−3)÷m2m−3=[(m+3)(m−3)(m−3)2−3m−3]⋅m−3m2=(m+3m−3−3m−3)⋅m−3m2=m m−3⋅m−3 m2=1m;当m=√2时,原式=2=√22.18.(8分)(2020•恩施州)如图,AE∥BF,BD平分∠ABC交AE于点D,点C在BF上且BC=AB,连接CD.求证:四边形ABCD是菱形.【解答】证明:∵AE∥BF,∴∠ADB=∠DBC,∵BD平分∠ABC,∴∠DBC=∠ABD,∴∠ADB=∠ABD,∴AB=AD,又∵AB=BC,∴AD=BC,∵AE∥BF,即AD∥BC,∴四边形ABCD为平行四边形,又∵AB=AD,∴四边形ABCD为菱形.19.(8分)(2020•恩施州)某中学为了解九年级学生对新冠肺炎防控知识的掌握情况,从全校九年级学生中随机抽取部分学生进行调查.调查结果分为四类:A类﹣﹣非常了解;B类﹣﹣比较了解;C类﹣﹣般了解;D类﹣﹣不了解.现将调查结果绘制成如图不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次共调查了50名学生;(2)补全条形统计图;(3)D类所对应扇形的圆心角的大小为36°;(4)若该校九年级学生共有500名,根据以上抽样结果,估计该校九年级学生对新冠肺炎防控知识非常了解的约有150名.【解答】解:(1)本次共调查的学生数为:20÷40%=50(名).故答案为:50;(2)C类学生人数为:50﹣15﹣20﹣5=10(名),条形图如下:(3)D类所对应扇形的圆心角为:360°×550=36°.故答案为:36°;(4)该校九年级学生对新冠肺炎防控知识非常了解的人数为:500×1550=150(名).故答案为:150.20.(8分)(2020•恩施州)如图,一艘轮船以每小时30海里的速度自东向西航行,在A处测得小岛P位于其西北方向(北偏西45°方向),2小时后轮船到达B处,在B处测得小岛P位于其北偏东60°方向.求此时船与小岛P的距离(结果保留整数,参考数据:√2≈1.414,√3≈1.732).【解答】解:如图,过P作PH⊥AB,设PH=x,由题意得:AB=30×2=60,∠PBH=90°﹣60°=30°,∠PAH=90°﹣45°=45°,则△PHA是等腰直角三角形,∴AH=PH,在Rt△PHA中,设AH=PH=x,在Rt△PBH中,PB=2PH=2x,BH=AB﹣AH=60﹣x,∴tan∠PBH=tan30°=PHBH=√33,∴√33=x 60−x, 解得:x =30(√3−1),∴PB =2x =60(√3−1)≈44(海里),答:此时船与小岛P 的距离约为44海里.21.(8分)(2020•恩施州)如图,在平面直角坐标系中,直线y =ax ﹣3a (a ≠0)与x 轴、y 轴分别相交于A 、B 两点,与双曲线y =k x (x >0)的一个交点为C ,且BC =12AC .(1)求点A 的坐标;(2)当S △AOC =3时,求a 和k 的值.【解答】解:(1)由题意得:令y =ax ﹣3a (a ≠0)中y =0,即ax ﹣3a =0,解得x =3,∴点A 的坐标为(3,0),故答案为(3,0).(2)过C 点作y 轴的垂线交y 轴于M 点,作x 轴的垂线交x 轴于N 点,如下图所示:显然,CM ∥OA ,∴∠BCM =∠BAO ,且∠ABO =∠CBO ,∴△BCM ∽△BAO ,∴BC BA =CM AO ,即:13=CM 3,∴CM =1,又S △AOC =12OA ⋅CN =3即:12×3×CN =3, ∴CN =2,∴C 点的坐标为(1,2),故反比例函数的k =1×2=2,再将点C (1,2)代入一次函数y =ax ﹣3a (a ≠0)中,即2=a ﹣3a ,解得a =﹣1,故答案为:a =﹣1,k =2.22.(10分)(2020•恩施州)某校足球队需购买A 、B 两种品牌的足球.已知A 品牌足球的单价比B 品牌足球的单价高20元,且用900元购买A 品牌足球的数量用720元购买B 品牌足球的数量相等.(1)求A 、B 两种品牌足球的单价;(2)若足球队计划购买A 、B 两种品牌的足球共90个,且A 品牌足球的数量不小于B 品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.设购买A 品牌足球m 个,总费用为W 元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?【解答】解:(1)设购买A 品牌足球的单价为x 元,则购买B 品牌足球的单价为(x ﹣20)元,根据题意,得900x =720x−20,解得:x =100,经检验x =100是原方程的解,x ﹣20=80,答:购买A 品牌足球的单价为100元,则购买B 品牌足球的单价为80元;(2)设购买m 个A 品牌足球,则购买(90﹣m )个B 品牌足球,则W =100m +80(90﹣m )=20m +7200,∵A 品牌足球的数量不小于B 品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元,∴{100m +80(90−m)≤8500m ≥2(90−m), 解不等式组得:60≤m ≤65,所以,m 的值为:60,61,62,63,64,65,即该队共有6种购买方案,当m =60时,W 最小,m =60时,W =20×60+7200=8400(元),答:该队共有6种购买方案,购买60个A 品牌30个B 品牌的总费用最低,最低费用是8400元.23.(10分)(2020•恩施州)如图1,AB 是⊙O 的直径,直线AM 与⊙O 相切于点A ,直线BN 与⊙O 相切于点B ,点C (异于点A )在AM 上,点D 在⊙O 上,且CD =CA ,延长CD 与BN 相交于点E ,连接AD 并延长交BN 于点F .(1)求证:CE 是⊙O 的切线;(2)求证:BE =EF ;(3)如图2,连接EO 并延长与⊙O 分别相交于点G 、H ,连接BH .若AB =6,AC =4,求tan ∠BHE .【解答】解:(1)如图1中,连接OD ,∵CD =CA ,∴∠CAD =∠CDA ,∵OA =OD∴∠OAD =∠ODA ,∵直线AM与⊙O相切于点A,∴∠CAO=∠CAD+∠OAD=90°,∴∠ODC=∠CDA+∠ODA=90°,∴CE是⊙O的切线.(2)如图2中,连接BD,∵OD=OB,∴∠ODB=∠OBD,∵CE是⊙O的切线,BF是⊙O的切线,∴∠OBD=∠ODE=90°,∴∠EDB=∠EBD,∴ED=EB,∵AM⊥AB,BN⊥AB,∴AM∥BN,∴∠CAD=∠BFD,∵∠CAD=∠CDA=∠EDF,∴∠BFD=∠EDF,∴EF=ED,∴BE=EF.(3)如图2中,过E点作EL⊥AM于L,则四边形ABEL是矩形,设BE=x,则CL=4﹣x,CE=4+x,∴(4+x)2=(4﹣x)2+62,解得:x =94,∴tan ∠BOE =BE OB =943=34, ∵∠BOE =2∠BHE ,∴tan ∠BOE =2tan∠BHE 1−tan 2∠BHE =34, 解得:tan ∠BHE =13或﹣3(﹣3不合题意舍去),∴tan ∠BHE =13.补充方法:如图2中,作HJ ⊥EB 交EB 的延长线于J .∵tab ∠BOE =BE OB =34, ∴可以假设BE =3k ,OB =4k ,则OE =5k ,∵OB ∥HJ ,∴OB HJ =OE EH =EB EJ , ∴4k HJ =5k 9k =3k EJ ,∴HJ =365k ,EJ =275k , ∴BJ =EJ ﹣BE =275k ﹣3k =125k∴tan ∠BHJ =BJ HJ =13, ∵∠BHE =∠OBE =∠BHJ ,∴tan ∠BHE =13.24.(12分)(2020•恩施州)如图1,抛物线y =−14x 2+bx +c 经过点C (6,0),顶点为B ,对称轴x =2与x 轴相交于点A ,D 为线段BC 的中点.(1)求抛物线的解析式;(2)P为线段BC上任意一点,M为x轴上一动点,连接MP,以点M为中心,将△MPC 逆时针旋转90°,记点P的对应点为E,点C的对应点为F.当直线EF与抛物线y=−14x2+bx+c只有一个交点时,求点M的坐标.(3)△MPC在(2)的旋转变换下,若PC=√2(如图2).①求证:EA=ED.②当点E在(1)所求的抛物线上时,求线段CM的长.【解答】解:(1)∵点C(6,0)在抛物线上,∴0=−14×36+6b+c,得到6b+c=9,又∵对称轴x=2,∴x=−b2a=−b2×(−14)=2,解得b=1,∴c=3,∴二次函数的解析式为y=−14x2+x+3;(2)当点M在点C的左侧时,如图2﹣1中:∵抛物线的解析式为y =−14x 2+x +3,对称轴为x =2,C (6,0)∴点A (2,0),顶点B (2,4),∴AB =AC =4,∴△ABC 是等腰直角三角形,∴∠1=45°;∵将△MPC 逆时针旋转90°得到△MEF ,∴FM =CM ,∠2=∠1=45°,设点M 的坐标为(m ,0),∴点F (m ,6﹣m ),又∵∠2=45°,∴直线EF 与x 轴的夹角为45°,∴设直线EF 的解析式为y =x +b ,把点F (m ,6﹣m )代入得:6﹣m =m +b ,解得:b =6﹣2m ,直线EF 的解析式为y =x +6﹣2m ,∵直线EF 与抛物线y =−14x 2+x +3只有一个交点,∴{y =x +6−2my =−14x 2+x +3, 整理得:14x 2+3−2m =0,∴△=b 2﹣4ac =0,解得m =32,点M 的坐标为(32,0).当点M 在点C 的右侧时,如下图:由图可知,直线EF 与x 轴的夹角仍是45°,因此直线EF 与抛物线y =−14x 2+x +3不可能只有一个交点.综上,点M 的坐标为(32,0). (3)①当点M 在点C 的左侧时,如下图,过点P 作PG ⊥x 轴于点G ,过点E 作EH ⊥x 轴于点H ,∵PC =√2,由(2)知∠BCA =45°,∴PG =GC =1,∴点G (5,0),设点M 的坐标为(m ,0),∵将△MPC 逆时针旋转90°得到△MEF ,∴EM =PM ,∵∠HEM +∠EMH =∠GMP +∠EMH =90°,∴∠HEM =∠GMP ,在△EHM 和△MGP 中,{∠EHM =∠MGP∠HEM =∠GMP EM =MP,∴△EHM ≌△MGP (AAS ),∴EH =MG =5﹣m ,HM =PG =1,∴点H (m ﹣1,0),∴点E 的坐标为(m ﹣1,5﹣m );∴EA =√(m −1−2)2+(5−m −0)2=√2m 2−16m +34, 又∵D 为线段BC 的中点,B (2,4),C (6,0), ∴点D (4,2),∴ED =√(m 2+(5−m −2)2=√2m 2−16m +34, ∴EA =ED .当点M 在点C 的右侧时,如下图:同理,点E 的坐标仍为(m ﹣1,5﹣m ),因此EA =ED . ②当点E 在(1)所求的抛物线y =−14x 2+x +3上时, 把E (m ﹣1,5﹣m )代入,整理得:m 2﹣10m +13=0, 解得:m =5+2√3或m =5−2√3,∴CM =2√3−1或CM =1+2√3.。
[2020届湖北省恩施州中考数学试卷(有答案)(Word版)]中考数学必考点
[2020届湖北省恩施州中考数学试卷(有答案)(Word版)]中考数学必考点湖北省恩施州中考数学试卷(解析版)一、选择题(本大题共有12个小题,每小题3分,共36分)1.9的相反数是()A.﹣9 B.9 C.D.2.恩施州2013年建筑业生产总值为__万元,将数__用科学记数法表示为()A.3.69×105B.36.9×104C.3.69×104D.0.369×105 3.下列图标中是轴对称图形的是()A.B.C.D.4.下列计算正确的是()A.2a3+3a3=5a6B.(x5)3=x8C.﹣2m(m﹣3)=﹣2m2﹣6m D.(﹣3a﹣2)(﹣3a+2)=9a2﹣45.已知∠AOB=70°,以O为端点作射线OC,使∠AOC=42°,则∠BOC的度数为()A.28°B.112°C.28°或112°D.68°6.函数y=的自变量x的取值范围是()A.x≥﹣1 B.x≥﹣1且x≠2 C.x≠±2 D.x>﹣1且x≠27.有6张看上去无差别的卡片,上面分别写着1,2,3,4,5,6,随机抽取一张后,放回并混在一起,再随机抽取一张,两次抽取的数字的积为奇数的概率是()A.B.C.D.8.在广场的电子屏幕上有一个旋转的正方体,正方体的六个面上分别标有“恩施六城同创”六个字.如图是小明在三个不同时刻所观察到的图形,请你帮小明确定与“创”相对的面上的字是()A.恩B.施C.城D.同9.关于x的不等式组恰有四个整数解,那么m的取值范围为()A.m≥﹣1 B.m<0 C.﹣1≤m<0 D.﹣1<m<010.某商品的售价为100元,连续两次降价x%后售价降低了36元,则x为()A.8 B.20 C.36 D.1811.如图,在△ABC中,DE是AC的垂直平分线,△ABC的周长为19cm,△ABD的周长为13cm,则AE的长为()A.3cm B.6cm C.12cm D.16cm12.抛物线y1=ax2+bx+c与直线y2=mx+n的图象如图所示,下列判断中:①abc<0;②a+b+c>0;③5a﹣c=0;④当x <或x>6时,y1>y2,其中正确的个数有()A.1 B.2 C.3 D.4二、填空题(本题共有4个小题,每小题3分,共12分)13.因式分解:a2b﹣10ab+25b=.14.已知一元二次方程2x2﹣5x+1=0的两根为m,n,则m2+n2=.15.如图,平面内有16个格点,每个格点小正方形的边长为1,则图中阴影部分的面积为.16.观察下列等式:1+2+3+4+。
2020湖北省恩施州中考数学试卷及答案解析
2020年湖北省恩施州中考数学试卷一、选择题(本大题共有12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择项前的字母代号填涂在答题卷相应位置上) 1.(3分)5的绝对值是( ) A .5B .﹣5C .15D .−152.(3分)茶中精品“恩施绿”“利川红”享誉世界.去年恩施州茶叶产量约为120000吨,将数120000用科学记数法表示为( ) A .12×104B .1.2×105C .1.2×106D .0.12×1063.(3分)下列交通标识,既是中心对称图形,又是轴对称图形的是( )A .B .C .D .4.(3分)下列计算正确的是( ) A .a 2•a 3=a 6 B .a (a +1)=a 2+a C .(a ﹣b )2=a 2﹣b 2 D .2a +3b =5ab5.(3分)函数y =√x+1x的自变量的取值范围是( ) A .x ≥﹣1B .x ≥﹣1且x ≠0C .x >0D .x >﹣1且x ≠06.(3分)“彩缕碧筠粽,香粳白玉团”.端午佳节,小明妈妈准备了豆沙粽2个、红枣粽4个、腊肉粽3个、白米粽2个,其中豆沙粽和红枣粽是甜粽.小明任意选取一个,选到甜粽的概率是( ) A .211B .411C .511D .6117.(3分)在实数范围内定义运算“☆”:a ☆b =a +b ﹣1,例如:2☆3=2+3﹣1=4.如果2☆x =1,则x 的值是( ) A .﹣1B .1C .0D .28.(3分)我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”.意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒x 斛,1个小桶盛酒y 斛,下列方程组正确的是( )A .{5x +y =3x +5y =2B .{5x +y =2x +5y =3C .{5x +3y =1x +2y =5D .{3x +y =52x +5y =19.(3分)如图是由四个相同的小正方体组成的立体图形,它的主视图为( )A .B .C .D .10.(3分)甲乙两车从A 城出发前往B 城,在整个行程中,汽车离开A 城的距离y 与时刻t 的对应关系如图所示,则下列结论错误的是( )A .甲车的平均速度为60km /hB .乙车的平均速度为100km /hC .乙车比甲车先到B 城D .乙车比甲车先出发1h11.(3分)如图,正方形ABCD 的边长为4,点E 在AB 上且BE =1,F 为对角线AC 上一动点,则△BFE 周长的最小值为( )A .5B .6C .7D .812.(3分)如图,已知二次函数y =ax 2+bx +c 的图象与x 轴相交于A (﹣2,0)、B (1,0)两点.则以下结论:①ac>0;②二次函数y=ax2+bx+c的图象的对称轴为x=﹣1;③2a+c =0;④a﹣b+c>0.其中正确的有()个.A.0B.1C.2D.3二、填空题(本大题共有4小题,每小题3分,共12分.不要求写出解答过程,请把答案直接填写在答题卷相应位置上)13.(3分)9的算术平方根是.14.(3分)如图,直线l1∥l2,点A在直线l1上,点B在直线l2上,AB=BC,∠C=30°,∠1=80°,则∠2=.15.(3分)如图,已知半圆的直径AB=4,点C在半圆上,以点A为圆心,AC为半径画弧交AB于点D,连接BC.若∠ABC=60°,则图中阴影部分的面积为.(结果不取近似值16.(3分)如图,在平面直角坐标系中,△ABC的顶点坐标分别为:A(﹣2,0),B(1,2),C(1,﹣2).已知N(﹣1,0),作点N关于点A的对称点N1,点N1关于点B的对称点N2,点N2关于点C的对称点N3,点N3关于点A的对称点N4,点N4关于点B 的对称点N5,…,依此类推,则点N2020的坐标为.三、解答题(本大题共有8个小题,共72分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤).17.(8分)先化简,再求值:(m2−9m2−6m+9−3m−3)÷m2m−3,其中m=√2.18.(8分)如图,AE∥BF,BD平分∠ABC交AE于点D,点C在BF上且BC=AB,连接CD.求证:四边形ABCD是菱形.19.(8分)某中学为了解九年级学生对新冠肺炎防控知识的掌握情况,从全校九年级学生中随机抽取部分学生进行调查.调查结果分为四类:A类﹣﹣非常了解;B类﹣﹣比较了解;C类﹣﹣般了解;D类﹣﹣不了解.现将调查结果绘制成如图不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次共调查了名学生;(2)补全条形统计图;(3)D类所对应扇形的圆心角的大小为;(4)若该校九年级学生共有500名,根据以上抽样结果,估计该校九年级学生对新冠肺炎防控知识非常了解的约有名.20.(8分)如图,一艘轮船以每小时30海里的速度自东向西航行,在A处测得小岛P位于其西北方向(北偏西45°方向),2小时后轮船到达B处,在B处测得小岛P位于其北偏东60°方向.求此时船与小岛P的距离(结果保留整数,参考数据:√2≈1.414,√3≈1.732).21.(8分)如图,在平面直角坐标系中,直线y=ax﹣3a(a≠0)与x轴、y轴分别相交于A、B两点,与双曲线y=kx(x>0)的一个交点为C,且BC=12AC.(1)求点A的坐标;(2)当S△AOC=3时,求a和k的值.22.(10分)某校足球队需购买A、B两种品牌的足球.已知A品牌足球的单价比B品牌足球的单价高20元,且用900元购买A品牌足球的数量用720元购买B品牌足球的数量相等.(1)求A、B两种品牌足球的单价;(2)若足球队计划购买A、B两种品牌的足球共90个,且A品牌足球的数量不小于B 品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.设购买A品牌足球m 个,总费用为W元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?23.(10分)如图1,AB是⊙O的直径,直线AM与⊙O相切于点A,直线BN与⊙O相切于点B,点C(异于点A)在AM上,点D在⊙O上,且CD=CA,延长CD与BN相交于点E,连接AD并延长交BN于点F.(1)求证:CE是⊙O的切线;(2)求证:BE=EF;(3)如图2,连接EO并延长与⊙O分别相交于点G、H,连接BH.若AB=6,AC=4,求tan∠BHE.24.(12分)如图1,抛物线y=−14x2+bx+c经过点C(6,0),顶点为B,对称轴x=2与x轴相交于点A,D为线段BC的中点.(1)求抛物线的解析式;(2)P为线段BC上任意一点,M为x轴上一动点,连接MP,以点M为中心,将△MPC 逆时针旋转90°,记点P的对应点为E,点C的对应点为F.当直线EF与抛物线y=−14x2+bx+c只有一个交点时,求点M的坐标.(3)△MPC在(2)的旋转变换下,若PC=√2(如图2).①求证:EA=ED.②当点E在(1)所求的抛物线上时,求线段CM的长.2020年湖北省恩施州中考数学试卷参考答案与试题解析一、选择题(本大题共有12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择项前的字母代号填涂在答题卷相应位置上) 1.(3分)5的绝对值是( ) A .5B .﹣5C .15D .−15【解答】解:在数轴上,数5所表示的点到原点0的距离是5; 故选:A .2.(3分)茶中精品“恩施绿”“利川红”享誉世界.去年恩施州茶叶产量约为120000吨,将数120000用科学记数法表示为( ) A .12×104B .1.2×105C .1.2×106D .0.12×106【解答】解:120000=1.2×105, 故选:B .3.(3分)下列交通标识,既是中心对称图形,又是轴对称图形的是( )A .B .C .D .【解答】解:根据轴对称图形与中心对称图形的概念,知: A 、不是轴对称图形,也不是中心对称图形; B 、不是轴对称图形,也不是中心对称图形; C 、是轴对称图形,但不是中心对称图形; D 、既是中心对称图形,又是轴对称图形. 故选:D .4.(3分)下列计算正确的是( ) A .a 2•a 3=a 6 B .a (a +1)=a 2+a C .(a ﹣b )2=a 2﹣b 2D .2a +3b =5ab【解答】解:A 、a 2•a 3=a 5,原计算错误,故此选项不符合题意; B 、a (a +1)=a 2+a ,原计算正确,故此选项符合题意; C 、(a ﹣b )2=a 2﹣2ab +b 2,原计算错误,故此选项不符合题意;D 、2a 与3b 不是同类项,不能合并,原计算错误,故此选项不符合题意; 故选:B . 5.(3分)函数y =√x+1x的自变量的取值范围是( ) A .x ≥﹣1B .x ≥﹣1且x ≠0C .x >0D .x >﹣1且x ≠0【解答】解:根据题意得,x +1≥0且x ≠0, 解得x ≥﹣1且x ≠0. 故选:B .6.(3分)“彩缕碧筠粽,香粳白玉团”.端午佳节,小明妈妈准备了豆沙粽2个、红枣粽4个、腊肉粽3个、白米粽2个,其中豆沙粽和红枣粽是甜粽.小明任意选取一个,选到甜粽的概率是( ) A .211B .411C .511D .611【解答】解:由题意可得:粽子总数为11个,其中6个为甜粽, 所以选到甜粽的概率为:611,故选:D .7.(3分)在实数范围内定义运算“☆”:a ☆b =a +b ﹣1,例如:2☆3=2+3﹣1=4.如果2☆x =1,则x 的值是( ) A .﹣1B .1C .0D .2【解答】解:由题意知:2☆x =2+x ﹣1=1+x , 又2☆x =1, ∴1+x =1, ∴x =0. 故选:C .8.(3分)我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”.意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒x 斛,1个小桶盛酒y 斛,下列方程组正确的是( ) A .{5x +y =3x +5y =2B .{5x +y =2x +5y =3C .{5x +3y =1x +2y =5D .{3x +y =52x +5y =1【解答】解:依题意,得:{5x +y =3x +5y =2.故选:A .9.(3分)如图是由四个相同的小正方体组成的立体图形,它的主视图为( )A .B .C .D .【解答】解:从正面看易得第一列有2个正方形,第二列底层有1个正方形. 故选:A .10.(3分)甲乙两车从A 城出发前往B 城,在整个行程中,汽车离开A 城的距离y 与时刻t 的对应关系如图所示,则下列结论错误的是( )A .甲车的平均速度为60km /hB .乙车的平均速度为100km /hC .乙车比甲车先到B 城D .乙车比甲车先出发1h 【解答】解:由图象知: A .甲车的平均速度为30010−5=60km /h ,故A 选项不合题意;B .乙车的平均速度为3009−6=100km /h ,故B 选项不合题意;C .甲10时到达B 城,乙9时到达B 城,所以乙比甲先到B 城,故C 选项不合题意;D.甲5时出发,乙6时出发,所以乙比甲晚出发1h,故此选项错误,故选:D.11.(3分)如图,正方形ABCD的边长为4,点E在AB上且BE=1,F为对角线AC上一动点,则△BFE周长的最小值为()A.5B.6C.7D.8【解答】解:如图,连接ED交AC于一点F,连接BF,∵四边形ABCD是正方形,∴点B与点D关于AC对称,∴BF=DF,∴△BFE的周长=BF+EF+BE=DE+BE,此时△BEF的周长最小,∵正方形ABCD的边长为4,∴AD=AB=4,∠DAB=90°,∵点E在AB上且BE=1,∴AE=3,∴DE=√AD2+AE2=5,∴△BFE的周长=5+1=6,故选:B.12.(3分)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣2,0)、B(1,0)两点.则以下结论:①ac>0;②二次函数y=ax2+bx+c的图象的对称轴为x=﹣1;③2a+c =0;④a﹣b+c>0.其中正确的有()个.A.0B.1C.2D.3【解答】解:对于①:二次函数开口向下,故a<0,与y轴的交点在y的正半轴,故c >0,故ac<0,因此①错误;对于②:二次函数的图象与x轴相交于A(﹣2,0)、B(1,0),由对称性可知,其对称轴为:x=−2+12=−12,因此②错误;对于③:设二次函数y=ax2+bx+c的交点式为y=a(x+2)(x﹣1)=ax2+ax﹣2a,比较一般式与交点式的系数可知:b=a,c=﹣2a,故2a+c=0,因此③正确;对于④:当x=﹣1时对应的y=a﹣b+c,观察图象可知x=﹣1时对应的函数图象的y 值在x轴上方,故a﹣b+c>0,因此④正确.∴只有③④是正确的.故选:C.二、填空题(本大题共有4小题,每小题3分,共12分.不要求写出解答过程,请把答案直接填写在答题卷相应位置上)13.(3分)9的算术平方根是3.【解答】解:∵(±3)2=9,∴9的算术平方根是|±3|=3.故答案为:3.14.(3分)如图,直线l1∥l2,点A在直线l1上,点B在直线l2上,AB=BC,∠C=30°,∠1=80°,则∠2=40°.【解答】解:如图,延长CB交l2于点D,∵AB=BC,∠C=30°,∴∠C=∠4=30°,∵l1∥l2,∠1=80°,∴∠1=∠3=80°,∵∠C+∠3+∠2+∠4=180°,即30°+80°+∠2+30°=180°,∴∠2=40°.故答案为:40°.15.(3分)如图,已知半圆的直径AB=4,点C在半圆上,以点A为圆心,AC为半径画弧交AB于点D,连接BC.若∠ABC=60°,则图中阴影部分的面积为2√3−π.(结果不取近似值【解答】解:∵AB是直径,∴∠ACB=90°,∵∠ABC=60°,∴∠CAB=30°,∴BC=12AB=2,AC=2√3,∴S△ABC=12⋅AC⋅BC=12⋅2√3⋅2=2√3,∵∠CAB=30°,∴扇形ACD的面积=30360π⋅AC2=112π⋅(2√3)2=π,∴阴影部分的面积为2√3−π.故答案为:2√3−π.16.(3分)如图,在平面直角坐标系中,△ABC的顶点坐标分别为:A(﹣2,0),B(1,2),C(1,﹣2).已知N(﹣1,0),作点N关于点A的对称点N1,点N1关于点B的对称点N2,点N2关于点C的对称点N3,点N3关于点A的对称点N4,点N4关于点B 的对称点N5,…,依此类推,则点N2020的坐标为(﹣1,8).【解答】解:由题意得,作出如下图形:N点坐标为(﹣1,0),N点关于A点对称的N1点的坐标为(﹣3,0),N1点关于B点对称的N2点的坐标为(5,4),N2点关于C点对称的N3点的坐标为(﹣3,8),N3点关于A点对称的N4点的坐标为(﹣1,8),N4点关于B点对称的N5点的坐标为(3,﹣4),N5点关于C点对称的N6点的坐标为(﹣1,0),此时刚好回到最开始的点N处,∴其每6个点循环一次,∴2020÷6=336……4,即循环了336次后余下4,故N2020的坐标与N4点的坐标相同,其坐标为(﹣1,8).故答案为:(﹣1,8).三、解答题(本大题共有8个小题,共72分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤).17.(8分)先化简,再求值:(m2−9m2−6m+9−3m−3)÷m2m−3,其中m=√2.【解答】解:(m2−9m2−6m+9−3m−3)÷m2m−3=[(m+3)(m−3)(m−3)2−3m−3]⋅m−3m2=(m+3m−3−3m−3)⋅m−3m2=m m−3⋅m−3 m2=1m;当m=√2时,原式=2=√22.18.(8分)如图,AE∥BF,BD平分∠ABC交AE于点D,点C在BF上且BC=AB,连接CD.求证:四边形ABCD是菱形.【解答】证明:∵AE∥BF,∴∠ADB=∠DBC,∵BD平分∠ABC,∴∠DBC=∠ABD,∴∠ADB=∠ABD,∴AB=AD,又∵AB=BC,∴AD=BC,∵AE∥BF,即AD∥BC,∴四边形ABCD为平行四边形,又∵AB=AD,∴四边形ABCD为菱形.19.(8分)某中学为了解九年级学生对新冠肺炎防控知识的掌握情况,从全校九年级学生中随机抽取部分学生进行调查.调查结果分为四类:A类﹣﹣非常了解;B类﹣﹣比较了解;C类﹣﹣般了解;D类﹣﹣不了解.现将调查结果绘制成如图不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次共调查了50名学生;(2)补全条形统计图;(3)D类所对应扇形的圆心角的大小为36°;(4)若该校九年级学生共有500名,根据以上抽样结果,估计该校九年级学生对新冠肺炎防控知识非常了解的约有150名.【解答】解:(1)本次共调查的学生数为:20÷40%=50(名).故答案为:50;(2)C类学生人数为:50﹣15﹣20﹣5=10(名),条形图如下:(3)D类所对应扇形的圆心角为:360°×550=36°.故答案为:36°;(4)该校九年级学生对新冠肺炎防控知识非常了解的人数为:500×1550=150(名).故答案为:150.20.(8分)如图,一艘轮船以每小时30海里的速度自东向西航行,在A处测得小岛P位于其西北方向(北偏西45°方向),2小时后轮船到达B处,在B处测得小岛P位于其北偏东60°方向.求此时船与小岛P的距离(结果保留整数,参考数据:√2≈1.414,√3≈1.732).【解答】解:如图,过P作PH⊥AB,设PH=x,由题意得:AB=30×2=60,∠PBH=90°﹣60°=30°,∠PAH=90°﹣45°=45°,则△PHA是等腰直角三角形,∴AH=PH,在Rt△PHA中,设AH=PH=x,在Rt△PBH中,PB=2PH=2x,BH=AB﹣AH=60﹣x,∴tan∠PBH=tan30°=PHBH=√33,∴√33=x 60−x, 解得:x =30(√3−1),∴PB =2x =60(√3−1)≈44(海里),答:此时船与小岛P 的距离约为44海里.21.(8分)如图,在平面直角坐标系中,直线y =ax ﹣3a (a ≠0)与x 轴、y 轴分别相交于A 、B 两点,与双曲线y =k x (x >0)的一个交点为C ,且BC =12AC .(1)求点A 的坐标;(2)当S △AOC =3时,求a 和k 的值.【解答】解:(1)由题意得:令y =ax ﹣3a (a ≠0)中y =0,即ax ﹣3a =0,解得x =3,∴点A 的坐标为(3,0),故答案为(3,0).(2)过C 点作y 轴的垂线交y 轴于M 点,作x 轴的垂线交x 轴于N 点,如下图所示:显然,CM ∥OA ,∴∠BCM =∠BAO ,且∠ABO =∠CBO ,∴△BCM ∽△BAO ,∴BC BA =CM AO ,即:13=CM 3,∴CM =1,又S △AOC =12OA ⋅CN =3即:12×3×CN =3, ∴CN =2,∴C 点的坐标为(1,2),故反比例函数的k =1×2=2,再将点C (1,2)代入一次函数y =ax ﹣3a (a ≠0)中,即2=a ﹣3a ,解得a =﹣1,故答案为:a =﹣1,k =2.22.(10分)某校足球队需购买A 、B 两种品牌的足球.已知A 品牌足球的单价比B 品牌足球的单价高20元,且用900元购买A 品牌足球的数量用720元购买B 品牌足球的数量相等.(1)求A 、B 两种品牌足球的单价;(2)若足球队计划购买A 、B 两种品牌的足球共90个,且A 品牌足球的数量不小于B 品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.设购买A 品牌足球m 个,总费用为W 元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?【解答】解:(1)设购买A 品牌足球的单价为x 元,则购买B 品牌足球的单价为(x ﹣20)元,根据题意,得900x =720x−20,解得:x =100,经检验x =100是原方程的解,x ﹣20=80,答:购买A 品牌足球的单价为100元,则购买B 品牌足球的单价为80元;(2)设购买m 个A 品牌足球,则购买(90﹣m )个B 品牌足球,则W =100m +80(90﹣m )=20m +7200,∵A 品牌足球的数量不小于B 品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元,∴{100m +80(90−m)≤8500m ≥2(90−m), 解不等式组得:60≤m ≤65,所以,m 的值为:60,61,62,63,64,65,即该队共有6种购买方案,当m =60时,W 最小,m =60时,W =20×60+7200=8400(元),答:该队共有6种购买方案,购买60个A 品牌30个B 品牌的总费用最低,最低费用是8400元.23.(10分)如图1,AB 是⊙O 的直径,直线AM 与⊙O 相切于点A ,直线BN 与⊙O 相切于点B ,点C (异于点A )在AM 上,点D 在⊙O 上,且CD =CA ,延长CD 与BN 相交于点E ,连接AD 并延长交BN 于点F .(1)求证:CE 是⊙O 的切线;(2)求证:BE =EF ;(3)如图2,连接EO 并延长与⊙O 分别相交于点G 、H ,连接BH .若AB =6,AC =4,求tan ∠BHE .【解答】解:(1)如图1中,连接OD ,∵CD =CA ,∴∠CAD =∠CDA ,∵OA =OD∴∠OAD =∠ODA ,∵直线AM与⊙O相切于点A,∴∠CAO=∠CAD+∠OAD=90°,∴∠ODC=∠CDA+∠ODA=90°,∴CE是⊙O的切线.(2)如图2中,连接BD,∵OD=OB,∴∠ODB=∠OBD,∵CE是⊙O的切线,BF是⊙O的切线,∴∠OBD=∠ODE=90°,∴∠EDB=∠EBD,∴ED=EB,∵AM⊥AB,BN⊥AB,∴AM∥BN,∴∠CAD=∠BFD,∵∠CAD=∠CDA=∠EDF,∴∠BFD=∠EDF,∴EF=ED,∴BE=EF.(3)如图2中,过E点作EL⊥AM于L,则四边形ABEL是矩形,设BE=x,则CL=4﹣x,CE=4+x,∴(4+x)2=(4﹣x)2+62,解得:x =94,∴tan ∠BOE =BE OB =943=34, ∵∠BOE =2∠BHE ,∴tan ∠BOE =2tan∠BHE 1−tan 2∠BHE =34, 解得:tan ∠BHE =13或﹣3(﹣3不合题意舍去),∴tan ∠BHE =13.补充方法:如图2中,作HJ ⊥EB 交EB 的延长线于J .∵tab ∠BOE =BE OB =34, ∴可以假设BE =3k ,OB =4k ,则OE =5k ,∵OB ∥HJ ,∴OB HJ =OE EH =EB EJ , ∴4k HJ =5k 9k =3k EJ ,∴HJ =365k ,EJ =275k , ∴BJ =EJ ﹣BE =275k ﹣3k =125k∴tan ∠BHJ =BJ HJ =13, ∵∠BHE =∠OBE =∠BHJ ,∴tan ∠BHE =13.24.(12分)如图1,抛物线y =−14x 2+bx +c 经过点C (6,0),顶点为B ,对称轴x =2与x轴相交于点A ,D 为线段BC 的中点.(1)求抛物线的解析式;(2)P为线段BC上任意一点,M为x轴上一动点,连接MP,以点M为中心,将△MPC 逆时针旋转90°,记点P的对应点为E,点C的对应点为F.当直线EF与抛物线y=−14x2+bx+c只有一个交点时,求点M的坐标.(3)△MPC在(2)的旋转变换下,若PC=√2(如图2).①求证:EA=ED.②当点E在(1)所求的抛物线上时,求线段CM的长.【解答】解:(1)∵点C(6,0)在抛物线上,∴0=−14×36+6b+c,得到6b+c=9,又∵对称轴x=2,∴x=−b2a=−b2×(−14)=2,解得b=1,∴c=3,∴二次函数的解析式为y=−14x2+x+3;(2)当点M在点C的左侧时,如图2﹣1中:∵抛物线的解析式为y =−14x 2+x +3,对称轴为x =2,C (6,0)∴点A (2,0),顶点B (2,4),∴AB =AC =4,∴△ABC 是等腰直角三角形,∴∠1=45°;∵将△MPC 逆时针旋转90°得到△MEF ,∴FM =CM ,∠2=∠1=45°,设点M 的坐标为(m ,0),∴点F (m ,6﹣m ),又∵∠2=45°,∴直线EF 与x 轴的夹角为45°,∴设直线EF 的解析式为y =x +b ,把点F (m ,6﹣m )代入得:6﹣m =m +b ,解得:b =6﹣2m ,直线EF 的解析式为y =x +6﹣2m ,∵直线EF 与抛物线y =−14x 2+x +3只有一个交点,∴{y =x +6−2my =−14x 2+x +3, 整理得:14x 2+3−2m =0,∴△=b 2﹣4ac =0,解得m =32,点M 的坐标为(32,0).当点M 在点C 的右侧时,如下图:由图可知,直线EF 与x 轴的夹角仍是45°,因此直线EF 与抛物线y =−14x 2+x +3不可能只有一个交点.综上,点M 的坐标为(32,0). (3)①当点M 在点C 的左侧时,如下图,过点P 作PG ⊥x 轴于点G ,过点E 作EH ⊥x 轴于点H ,∵PC =√2,由(2)知∠BCA =45°,∴PG =GC =1,∴点G (5,0),设点M 的坐标为(m ,0),∵将△MPC 逆时针旋转90°得到△MEF ,∴EM =PM ,∵∠HEM +∠EMH =∠GMP +∠EMH =90°,∴∠HEM =∠GMP ,在△EHM 和△MGP 中,{∠EHM =∠MGP∠HEM =∠GMP EM =MP,∴△EHM ≌△MGP (AAS ),∴EH =MG =5﹣m ,HM =PG =1,∴点H (m ﹣1,0),∴点E 的坐标为(m ﹣1,5﹣m );∴EA =√(m −1−2)2+(5−m −0)2=√2m 2−16m +34, 又∵D 为线段BC 的中点,B (2,4),C (6,0), ∴点D (4,2),∴ED =√(m 2+(5−m −2)2=√2m 2−16m +34, ∴EA =ED .当点M 在点C 的右侧时,如下图:同理,点E 的坐标仍为(m ﹣1,5﹣m ),因此EA =ED . ②当点E 在(1)所求的抛物线y =−14x 2+x +3上时, 把E (m ﹣1,5﹣m )代入,整理得:m 2﹣10m +13=0, 解得:m =5+2√3或m =5−2√3,∴CM =2√3−1或CM =1+2√3.。
最新2020年湖北省恩施州中考数学试卷及答案
C .53125x y x y +=⎧⎨+=⎩D .35251x y x y +=⎧⎨+=⎩9.(3分)如图是由四个相同的小正方体组成的立体图形,它的主视图为( )A .B .C .D .10.(3分)甲乙两车从A 城出发前往B 城,在整个行程中,汽车离开A 城的距离y 与时刻t 的对应关系如图所示,则下列结论错误的是( )A .甲车的平均速度为60/km hB .乙车的平均速度为100/km hC .乙车比甲车先到B 城D .乙车比甲车先出发1h11.(3分)如图,正方形ABCD 的边长为4,点E 在AB 上且1BE =,F 为对角线AC 上一动点,则BFE ∆周长的最小值为( )A .5B .6C .7D .812.(3分)如图,已知二次函数2y ax bx c =++的图象与x 轴相交于(2,0)A -、(1,0)B 两点.则以下结论:①0ac >;②二次函数2y ax bx c =++的图象的对称轴为1x =-;③20a c +=;④0a b c -+>.其中正确的有( )个.A .0B .1C .2D .3二、填空题(本大题共有4小题,每小题3分,共12分.不要求写出解答过程,请把答案直接填写在答题卷相应位置上)13.(3分)9的算术平方根是 .14.(3分)如图,直线12//l l ,点A 在直线1l 上,点B 在直线2l 上,AB BC =,30C ∠=︒,180∠=︒,则2∠= .15.(3分)如图,已知半圆的直径4AB =,点C 在半圆上,以点A 为圆心,AC 为半径画弧交AB 于点D ,连接BC .若60ABC ∠=︒,则图中阴影部分的面积为 .(结果不取近似值16.(3分)如图,在平面直角坐标系中,ABC ∆的顶点坐标分别为:(2,0)A -,(1,2)B ,(1,2)C -.已知(1,0)N -,作点N 关于点A 的对称点1N ,点1N 关于点B 的对称点2N ,点2N 关于点C 的对称点3N ,点3N 关于点A 的对称点4N ,点4N 关于点B 的对称点5N ,⋯,依此类推,则点2020N 的坐标为 .三、解答题(本大题共有8个小题,共72分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤).17.(8分)先化简,再求值:22293()6933m mm m m m--÷-+--,其中2m=.18.(8分)如图,//AE BF,BD平分ABC∠交AE于点D,点C在BF上且BC AB=,连接CD.求证:四边形ABCD是菱形.19.(8分)某中学为了解九年级学生对新冠肺炎防控知识的掌握情况,从全校九年级学生中随机抽取部分学生进行调查.调查结果分为四类:A类--非常了解;B类--比较了解;C类--般了解;D类--不了解.现将调查结果绘制成如图不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次共调查了名学生;(2)补全条形统计图;(3)D类所对应扇形的圆心角的大小为;(4)若该校九年级学生共有500名,根据以上抽样结果,估计该校九年级学生对新冠肺炎防控知识非常了解的约有名.20.(8分)如图,一艘轮船以每小时30海里的速度自东向西航行,在A处测得小岛P位于其西北方向(北偏西45︒方向),2小时后轮船到达B 处,在B 处测得小岛P 位于其北偏东60︒方向.求此时船与小岛P 的距离(结果保留整数,参考数据:2 1.414≈,3 1.732)≈.21.(8分)如图,在平面直角坐标系中,直线3(0)y ax a a =-≠与x 轴、y 轴分别相交于A 、B 两点,与双曲线(0)k y x x =>的一个交点为C ,且12BC AC =.(1)求点A 的坐标;(2)当3AOC S ∆=时,求a 和k 的值.22.(10分)某校足球队需购买A 、B 两种品牌的足球.已知A 品牌足球的单价比B 品牌足球的单价高20元,且用900元购买A 品牌足球的数量用720元购买B 品牌足球的数量相等. (1)求A 、B 两种品牌足球的单价;(2)若足球队计划购买A 、B 两种品牌的足球共90个,且A 品牌足球的数量不小于B 品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.设购买A 品牌足球m 个,总费用为W 元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?23.(10分)如图1,AB 是O 的直径,直线AM 与O 相切于点A ,直线BN 与O 相切于点B ,点C (异于点)A 在AM 上,点D 在O 上,且CD CA =,延长CD 与BN 相交于点E ,连接AD 并延长交BN 于点F .(1)求证:CE 是O 的切线; (2)求证:BE EF =;(3)如图2,连接EO 并延长与O 分别相交于点G 、H ,连接BH .若6AB =,4AC =,求tan BHE ∠. 24.(12分)如图1,抛物线214y x bx c =-++经过点(6,0)C ,顶点为B ,对称轴2x =与x 轴相交于点A ,D 为线段BC 的中点.(1)求抛物线的解析式;(2)P 为线段BC 上任意一点,M 为x 轴上一动点,连接MP ,以点M 为中心,将MPC ∆逆时针旋转90︒,记点P 的对应点为E ,点C 的对应点为F .当直线EF 与抛物线214y x bx c =-++只有一个交点时,求点M的坐标.(3)MPC ∆在(2)的旋转变换下,若2PC =(如图2). ①求证:EA ED =.②当点E 在(1)所求的抛物线上时,求线段CM 的长.2020年湖北省恩施州中考数学试卷参考答案与试题解析一、选择题(本大题共有12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择项前的字母代号填涂在答题卷相应位置上) 1.(3分)5的绝对值是( ) A .5B .5-C .15D .15-【分析】根据绝对值的意义:数轴上一个数所对应的点与原点(O 点)的距离叫做该数的绝对值,绝对值只能为非负数; 即可得解.【解答】解:在数轴上,数5所表示的点到原点0的距离是5; 故选:A .2.(3分)茶中精品“恩施绿”“利川红”享誉世界.去年恩施州茶叶产量约为120000吨,将数120000用科学记数法表示为( ) A .41210⨯B .51.210⨯C .61.210⨯D .60.1210⨯【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10时,n 是正数;当原数的绝对值1<时,n 是负数. 【解答】解:5120000 1.210=⨯, 故选:B .3.(3分)下列交通标识,既是中心对称图形,又是轴对称图形的是( )A .B .C .D .【分析】根据轴对称图形与中心对称图形的概念求解. 【解答】解:根据轴对称图形与中心对称图形的概念,知:A 、不是轴对称图形,也不是中心对称图形;B 、不是轴对称图形,也不是中心对称图形;C 、是轴对称图形,但不是中心对称图形;D 、既是中心对称图形,又是轴对称图形.4.(3分)下列计算正确的是( ) A .236a a a =B .2(1)a a a a +=+C .222()a b a b -=-D .235a b ab +=【分析】利用同底数幂的乘法运算法则、单项式乘多项式的运算法则、完全平方公式、合并同类项法则计算求出答案即可判断.【解答】解:A 、235a a a =,原计算错误,故此选项不符合题意;B 、2(1)a a a a +=+,原计算正确,故此选项符合题意;C 、222()2a b a ab b -=-+,原计算错误,故此选项不符合题意;D 、2a 与3b 不是同类项,不能合并,原计算错误,故此选项不符合题意;故选:B .5.(3分)函数y =的自变量的取值范围是( ) A .1x -B .1x -且0x ≠C .0x >D .1x >-且0x ≠【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解. 【解答】解:根据题意得,10x +且0x ≠, 解得1x -且0x ≠. 故选:B .6.(3分)“彩缕碧筠粽,香粳白玉团”.端午佳节,小明妈妈准备了豆沙粽2个、红枣粽4个、腊肉粽3个、白米粽2个,其中豆沙粽和红枣粽是甜粽.小明任意选取一个,选到甜粽的概率是( ) A .211B .411C .511D .611【分析】粽子总共有11个,其中甜粽有6个,根据概率公式即可求出答案. 【解答】解:由题意可得:粽子总数为11个,其中6个为甜粽, 所以选到甜粽的概率为:611, 故选:D .7.(3分)在实数范围内定义运算“☆”:a ☆1b a b =+-,例如:2☆32314=+-=.如果2☆1x =,则x 的值是( ) A .1-B .1C .0D .2【分析】已知等式利用题中的新定义化简,计算即可求出x 的值. 【解答】解:由题意知:2☆211x x x =+-=+,11x∴+=,x∴=.故选:C.8.(3分)我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”.意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒x斛,1个小桶盛酒y斛,下列方程组正确的是()A.5352x yx y+=⎧⎨+=⎩B.5253x yx y+=⎧⎨+=⎩C.53125x yx y+=⎧⎨+=⎩D.35251x yx y+=⎧⎨+=⎩【分析】根据“5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛”,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:依题意,得:5352x yx y+=⎧⎨+=⎩.故选:A.9.(3分)如图是由四个相同的小正方体组成的立体图形,它的主视图为()A.B.C.D.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一列有2个正方形,第二列底层有1个正方形.故选:A.10.(3分)甲乙两车从A城出发前往B城,在整个行程中,汽车离开A城的距离y与时刻t的对应关系如图所示,则下列结论错误的是()A.甲车的平均速度为60/km h B.乙车的平均速度为100/km h C.乙车比甲车先到B城D.乙车比甲车先出发1h【分析】根据图象逐项分析判断即可.【解答】解:由图象知:A.甲车的平均速度为30060/105km h=-,故A选项不合题意;B.乙车的平均速度为300100/96km h=-,故B选项不合题意;C.甲10时到达B城,乙9时到达B城,所以乙比甲先到B城,故C选项不合题意;D.甲5时出发,乙6时出发,所以乙比甲晚出发1h,故此选项错误,故选:D.11.(3分)如图,正方形ABCD的边长为4,点E在AB上且1BE=,F为对角线AC上一动点,则BFE∆周长的最小值为()A.5 B.6 C.7 D.8【分析】连接ED交AC于一点F,连接BF,根据正方形的对称性得到此时BFE∆的周长最小,利用勾股定理求出DE即可得到答案.【解答】解:如图,连接ED交AC于一点F,连接BF,四边形ABCD是正方形,∴点B与点D关于AC对称,BF DF∴=,BFE∴∆的周长BF EF BE DE BE=++=+,此时BEF∆的周长最小,正方形ABCD 的边长为4,4AD AB ∴==,90DAB ∠=︒,点E 在AB 上且1BE =,3AE ∴=, 225DE AD AE ∴=+=,BFE ∴∆的周长516=+=,故选:B .12.(3分)如图,已知二次函数2y ax bx c =++的图象与x 轴相交于(2,0)A -、(1,0)B 两点.则以下结论:①0ac >;②二次函数2y ax bx c =++的图象的对称轴为1x =-;③20a c +=;④0a b c -+>.其中正确的有( )个.A .0B .1C .2D .3【分析】根据抛物线的开口方向、对称轴、顶点坐标、增减性以及过特殊点时系数a 、b 、c 满足的关系综合判断即可.【解答】解:对于①:二次函数开口向下,故0a <,与y 轴的交点在y 的正半轴,故0c >,故0ac <,因此①错误;对于②:二次函数的图象与x 轴相交于(2,0)A -、(1,0)B ,由对称性可知,其对称轴为:21122x -+==-,因此②错误;对于③:设二次函数2y ax bx c =++的交点式为2(2)(1)2y a x x ax ax a =+-=+-,比较一般式与交点式的系数可知:b a =,2c a =-,故20a c +=,因此③正确;对于④:当1x =-时对应的y a b c =-+,观察图象可知1x =-时对应的函数图象的y 值在x 轴上方,故0a b c -+>,因此④正确.∴只有③④是正确的.故选:C .二、填空题(本大题共有4小题,每小题3分,共12分.不要求写出解答过程,请把答案直接填写在答题卷相应位置上)13.(3分)9的算术平方根是 3 .【分析】9的平方根为3±,算术平方根为非负,从而得出结论.【解答】解:2(3)9±=,9∴的算术平方根是|3|3±=.故答案为:3.14.(3分)如图,直线12//l l ,点A 在直线1l 上,点B 在直线2l 上,AB BC =,30C ∠=︒,180∠=︒,则2∠=40︒ .【分析】利用等腰三角形的性质得到430C ∠=∠=︒,利用平行线的性质得到1380∠=∠=︒,再根据三角形内角和定理即可求解.【解答】解:如图,延长CB 交2l 于点D ,AB BC =,30C ∠=︒,430C ∴∠=∠=︒,12//l l ,180∠=︒,1380∴∠=∠=︒,324180C ∠+∠+∠+∠=︒,即3080230180︒+︒+∠+︒=︒,240∴∠=︒.故答案为:40︒.15.(3分)如图,已知半圆的直径4AB =,点C 在半圆上,以点A 为圆心,AC 为半径画弧交AB 于点D ,连接BC .若60ABC ∠=︒,则图中阴影部分的面积为 23π- .(结果不取近似值【分析】根据60︒特殊角求出AC 和BC ,再算出ABC ∆的面积,根据扇形面积公式求出扇形CAD 的面积,再用三角形的面积减去扇形面积即可. 【解答】解:AB 是直径,90ACB ∴∠=︒,60ABC ∠=︒,30CAB ∴∠=︒,122BC AB ∴==,23AC = ∴112322322ABC S AC BC ∆===, 30CAB ∠=︒,∴扇形ACD 的面积22301(23)36012AC πππ===, ∴阴影部分的面积为23π.故答案为:23π.16.(3分)如图,在平面直角坐标系中,ABC ∆的顶点坐标分别为:(2,0)A -,(1,2)B ,(1,2)C -.已知(1,0)N -,作点N 关于点A 的对称点1N ,点1N 关于点B 的对称点2N ,点2N 关于点C 的对称点3N ,点3N 关于点A 的对称点4N ,点4N 关于点B 的对称点5N ,⋯,依此类推,则点2020N 的坐标为 (1,8)- .【分析】先求出1N 至6N 点的坐标,找出其循环的规律为每6个点循环一次即可求解.【解答】解:由题意得,作出如下图形:N 点坐标为(1,0)-,N 点关于A 点对称的1N 点的坐标为(3,0)-,1N 点关于B 点对称的2N 点的坐标为(5,4),2N 点关于C 点对称的3N 点的坐标为(3,8)-,3N 点关于A 点对称的4N 点的坐标为(1,8)-,4N 点关于B 点对称的5N 点的坐标为(3,4)-,5N 点关于C 点对称的6N 点的坐标为(1,0)-,此时刚好回到最开始的点N 处,∴其每6个点循环一次,202063364∴÷=⋯⋯,即循环了336次后余下4,故2020N 的坐标与4N 点的坐标相同,其坐标为(1,8)-.故答案为:(1,8)-.三、解答题(本大题共有8个小题,共72分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤).17.(8分)先化简,再求值:22293()6933m m m m m m --÷-+--,其中2m =. 【分析】根据分式的混合运算法则,先化简括号内的,将除法运算转化为乘法运算,再化简成最简分式,代入m 值求解即可.【解答】解:22293()6933m m m m m m --÷-+-- 22(3)(3)33[](3)3m m m m m m +--=--- 2333()33m m m m m +-=--- 233m m m m -=- 1m=; 当2m =时,原式22==. 18.(8分)如图,//AE BF ,BD 平分ABC ∠交AE 于点D ,点C 在BF 上且BC AB =,连接CD .求证:四边形ABCD 是菱形.【分析】由//AE BF ,BD 平分ABC ∠得到ABD ADB ∠=∠,得到AB AD =,再由BC AB =,得到对边AD BC =,进而得到四边形ABCD 为平行四边形,再由邻边相等即可证明四边形ABCD 为菱形.【解答】证明://AE BF ,ADB DBC ∴∠=∠,BD平分ABC∠,∴∠=∠,DBC ABD∴∠=∠,ADB ABD∴=,AB AD又AB BC=,∴=,AD BCAD BC,//AE BF,即//∴四边形ABCD为平行四边形,又AB AD=,∴四边形ABCD为菱形.19.(8分)某中学为了解九年级学生对新冠肺炎防控知识的掌握情况,从全校九年级学生中随机抽取部分学生进行调查.调查结果分为四类:A类--非常了解;B类--比较了解;C类--般了解;D类--不了解.现将调查结果绘制成如图不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次共调查了50 名学生;(2)补全条形统计图;(3)D类所对应扇形的圆心角的大小为;(4)若该校九年级学生共有500名,根据以上抽样结果,估计该校九年级学生对新冠肺炎防控知识非常了解的约有名.【分析】(1)根据条形图和扇形图得出B类人数为20名,占40%,即可得出总数;(2)根据总人数减去A,B,D的人数即可得出C的人数;(3)用360︒乘以D类部分所占百分比即可得出圆心角的度数;(4)用500乘以非常了解的部分所占百分比即可得出答案.【解答】解:(1)本次共调查的学生数为:2040%50÷=(名).故答案为:50;(2)C类学生人数为:501520510---=(名),条形图如下:(3)D类所对应扇形的圆心角为:53603650︒⨯=︒.故答案为:36︒;(4)该校九年级学生对新冠肺炎防控知识非常了解的人数为:1550015050⨯=(名).故答案为:150.20.(8分)如图,一艘轮船以每小时30海里的速度自东向西航行,在A处测得小岛P位于其西北方向(北偏西45︒方向),2小时后轮船到达B处,在B处测得小岛P位于其北偏东60︒方向.求此时船与小岛P的距离(结果保留整数,参考数据:2 1.414≈,3 1.732)≈.【分析】过P作PH AB⊥,设PH x=,由已知分别求PB、BH、AH,然后根据锐角三角函数求出x值即可求解.【解答】解:如图,过P作PH AB⊥,设PH x=,由题意得:30260AB=⨯=,906030PBH∠=︒-︒=︒,904545PAH∠=︒-︒=︒,则PHA∆是等腰直角三角形,AH PH∴=,在Rt PHA∆中,设AH PH x==,在Rt PBH ∆中,22PB PH x ==,60BH AB AH x =-=-, 3tan tan303PH PBH BH ∴∠=︒==, ∴3360x x=-, 解得:30(31)x =-,260(31)44PB x ∴==-≈(海里),答:此时船与小岛P 的距离约为44海里.21.(8分)如图,在平面直角坐标系中,直线3(0)y ax a a =-≠与x 轴、y 轴分别相交于A 、B 两点,与双曲线(0)k y x x =>的一个交点为C ,且12BC AC =. (1)求点A 的坐标;(2)当3AOC S ∆=时,求a 和k 的值.【分析】(1)令3(0)y ax a a =-≠中0y =即可求出点A 的坐标;(2)过C 点作y 轴的垂线交y 轴于M 点,作x 轴的垂线交x 轴于N 点,证明BCM BAO ∆∆∽,利用12BC AC =和3OA =进而求出CM 的长,再由3AOC S ∆=求出CN 的长,进而求出点C 坐标即可求解.【解答】解:(1)由题意得:令3(0)y ax a a =-≠中0y =,即30ax a -=,解得3x =,∴点A 的坐标为(3,0), 故答案为(3,0).(2)过C 点作y 轴的垂线交y 轴于M 点,作x 轴的垂线交x 轴于N 点,如下图所示:显然,//CM OA ,BCM BAO ∴∠=∠,且ABO CBO ∠=∠,BCM BAO ∴∆∆∽, ∴BC CM BA AO =,即:133CM =, 1CM ∴=, 又132AOC S OA CN ∆== 即:1332CN ⨯⨯=, 2CN ∴=,C ∴点的坐标为(1,2),故反比例函数的122k =⨯=,再将点(1,2)C 代入一次函数3(0)y ax a a =-≠中,即23a a =-,解得1a =-,故答案为:1a =-,2k =.22.(10分)某校足球队需购买A 、B 两种品牌的足球.已知A 品牌足球的单价比B 品牌足球的单价高20元,且用900元购买A 品牌足球的数量用720元购买B 品牌足球的数量相等.(1)求A 、B 两种品牌足球的单价;(2)若足球队计划购买A 、B 两种品牌的足球共90个,且A 品牌足球的数量不小于B 品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.设购买A 品牌足球m 个,总费用为W 元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?【分析】(1)设购买A 品牌足球的单价为x 元,则购买B 品牌足球的单价为(20)x -元,根据用900元购买A 品牌足球的数量用720元购买B 品牌足球的数量相等,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设购买m个A品牌足球,则购买(90)m-个B品牌足球,根据总价=单价⨯数量,结合总价不超过8500元,以及A品牌足球的数量不小于B品牌足球数量的2倍,即可得出关于m的一元一次不等式组,解之取其中的最小整数值即可得出结论.【解答】解:(1)设购买A品牌足球的单价为x元,则购买B品牌足球的单价为(20)x-元,根据题意,得90072020x x=-,解得:100x=,经检验100x=是原方程的解,2080x-=,答:购买A品牌足球的单价为100元,则购买B品牌足球的单价为80元;(2)设购买m个A品牌足球,则购买(90)m-个B品牌足球,则10080(90)207200W m m m=+-=+,A品牌足球的数量不小于B品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元,∴10080(90)85002(90)m mm m+-⎧⎨-⎩,解不等式组得:6065m,所以,m的值为:60,61,62,63,64,65,即该队共有6种购买方案,当60m=时,W最小,60m=时,206072008400W=⨯+=(元),答:该队共有6种购买方案,购买60个A品牌30个B品牌的总费用最低,最低费用是8400元.23.(10分)如图1,AB是O的直径,直线AM与O相切于点A,直线BN与O相切于点B,点C(异于点)A在AM上,点D在O上,且CD CA=,延长CD与BN相交于点E,连接AD并延长交BN于点F.(1)求证:CE是O的切线;(2)求证:BE EF=;(3)如图2,连接EO并延长与O分别相交于点G、H,连接BH.若6∠.AC=,求tan BHEAB=,4【分析】(1)连接OD,根据等边对等角可知:CAD CDA∠=∠,OAD ODA∠=∠,再根据切线的性质可知∠=∠+∠=∠+∠=︒=∠,由切线的判定定理可得结论;CAO CAD OAD CDA ODA ODC90(2)连接BD,根据等边对等角可知ODB OBDODE OBE∠=∠=︒,由等∠=∠,再根据切线的性质可知90量减等量差相等得EDB EBD=,然后根据平行线的性质及对顶角相等∠=∠,再根据等角对等边得到ED EB可得EDF EFD=,由此得出结论;∠=∠,推出DE EF(3)过E点作EL AM⊥于L,根据勾股定理可求出BE的长,即可求出tan BOE∠的值,再利用倍角公式即可求出tan BHE∠的值.【解答】解:(1)如图1中,连接OD,CD CA=,∴∠=∠,CAD CDA=OA OD∴∠=∠,OAD ODA直线AM与O相切于点A,∴∠=∠+∠=︒,CAO CAD OAD90∴∠=∠+∠=︒,ODC CDA ODA90∴是O的切线.CE(2)如图2中,连接BD,OD OB=,∴∠=∠,ODB OBDCE是O的切线,BF是O的切线,90∴∠=∠=︒,OBD ODE∴∠=∠,EDB EBD∴=,ED EB⊥,BN ABAM AB⊥,AM BN∴,//∴∠=∠,CAD BFD∠=∠=∠,CAD CDA EDFBFD EDF ∴∠=∠,EF ED ∴=,BE EF ∴=.(3)如图2中,过E 点作EL AM ⊥于L ,则四边形ABEL 是矩形,设BE x =,则4CL x =-,4CE x =+,222(4)(4)6x x ∴+=-+, 解得:94x =, ∴934tan 34BE BOE OB ∠===, 2BOE BHE ∠=∠, ∴22tan 3tan 1tan 4BHE BOE BHE ∠∠==-∠, 解得:1tan 3BHE ∠=或3(3--不合题意舍去), 1tan 3BHE ∴∠=. 补充方法:如图2中,作HJ EB ⊥交EB 的延长线于J . 34BE tab BOE OB ∠==, ∴可以假设3BE k =,4OB k =,则5OE k =,//OB HJ , ∴OB OE EB HJ EH EJ ==, ∴4539k k k HJ k EJ==,365HJ k ∴=,275EJ k =, 2712355BJ EJ BE k k k ∴=-=-= 1tan 3BJ BHJ HJ ∴∠==, BHE OBE BHJ ∠=∠=∠,1tan 3BHE ∴∠=.24.(12分)如图1,抛物线214y x bx c =-++经过点(6,0)C ,顶点为B ,对称轴2x =与x 轴相交于点A ,D 为线段BC 的中点.(1)求抛物线的解析式;(2)P 为线段BC 上任意一点,M 为x 轴上一动点,连接MP ,以点M 为中心,将MPC ∆逆时针旋转90︒,记点P 的对应点为E ,点C 的对应点为F .当直线EF 与抛物线214y x bx c =-++只有一个交点时,求点M 的坐标.(3)MPC ∆在(2)的旋转变换下,若2PC =(如图2). ①求证:EA ED =.②当点E 在(1)所求的抛物线上时,求线段CM 的长.【分析】(1)根据点C 在抛物线上和已知对称轴的条件可求出解析式;(2)根据抛物线的解析式求出点B 及已知点C 的坐标,证明ABC ∆是等腰直角三角形,根据旋转的性质推出直线EF 与x 轴的夹角为45︒,因此设直线EF 的解析式为y x b =+,设点M 的坐标为(,0)m ,推出点(,6)F m m -,直线EF 与抛物线2134y x x =-++只有一个交点,联立两个解析式,得到关于x 的一元二次方程,根据根的判别式为0得到关于m 的方程,解方程得点M 的坐标.注意有两种情况,均需讨论.(3)①过点P 作PG x ⊥轴于点G ,过点E 作EH x ⊥轴于点H ,设点M 的坐标为(,0)m ,由2PC =及旋转的性质,证明EHM MGP ∆≅∆,得到点E 的坐标为(1,5)m m --,再根据两点距离公式证明EA ED =,注意分两种情况,均需讨论;②把(1,5)E m m --代入抛物线解析式,解出m 的值,进而求出CM 的长.【解答】解:(1)点(6,0)C 在抛物线上,∴103664b c =-⨯++, 得到69b c +=,又对称轴2x =,∴2122()4b b x a =-=-=⨯-, 解得1b =,3c ∴=,∴二次函数的解析式为2134y x x =-++; (2)当点M 在点C 的左侧时,如图21-中:抛物线的解析式为2134y x x =-++,对称轴为2x =,(6,0)C ∴点(2,0)A ,顶点(2,4)B ,4AB AC ∴==,ABC ∴∆是等腰直角三角形,145∴∠=︒;将MPC ∆逆时针旋转90︒得到MEF ∆,FM CM ∴=,2145∠=∠=︒,设点M 的坐标为(,0)m ,∴点(,6)F m m -,又245∠=︒,∴直线EF 与x 轴的夹角为45︒,∴设直线EF 的解析式为y x b =+,把点(,6)F m m -代入得:6m m b -=+,解得:62b m =-, 直线EF 的解析式为62y x m =+-,直线EF 与抛物线2134y xx =-++只有一个交点, ∴262134y x m y x x =+-⎧⎪⎨=-++⎪⎩, 整理得:213204x m +-=, ∴△240b ac =-=,解得32m =, 点M 的坐标为3(2,0). 当点M 在点C 的右侧时,如下图:由图可知,直线EF 与x 轴的夹角仍是45︒,因此直线EF 与抛物线2134y x x =-++不可能只有一个交点.综上,点M 的坐标为3(2,0). (3)①当点M 在点C 的左侧时,如下图,过点P 作PG x ⊥轴于点G ,过点E 作EH x ⊥轴于点H ,2PC ,由(2)知45BCA ∠=︒,1PG GC ∴==,∴点(5,0)G ,设点M 的坐标为(,0)m , 将MPC ∆逆时针旋转90︒得到MEF ∆,EM PM ∴=,90HEM EMH GMP EMH ∠+∠=∠+∠=︒,HEM GMP ∴∠=∠,在EHM ∆和MGP ∆中,EHM MGP HEM GMP EM MP ∠=∠⎧⎪∠=∠⎨⎪=⎩,()EHM MGP AAS ∴∆≅∆,5EH MG m ∴==-,1HM PG ==,∴点(1,0)H m -,∴点E 的坐标为(1,5)m m --;222(12)(50)21634EA m m m m ∴--+---+,又D 为线段BC 的中点,(2,4)B ,(6,0)C ,∴点(4,2)D ,222(14)(52)21634ED m m m m ∴--+---+,EA ED ∴=.当点M 在点C 的右侧时,如下图:同理,点E 的坐标仍为(1,5)m m --,因此EA ED =.②当点E 在(1)所求的抛物线2134y x x =-++上时, 把(1,5)E m m --代入,整理得:210130m m -+=, 解得:523m =+523m =-, 231CM ∴=或123CM =+.。
湖北省恩施州2020年中考数学试题
本题考查了绝对值,解决本题的关键是一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.
2.B
【解析】
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
∴x+5y=2,
∴得到方程组 ,
故选:A.
【点睛】
此题考查二元一次方程组的实际应用,正确理解题意是解题的关键.
9.A
【解析】
【分析】
根据几何体的三视图解答即可.
【详解】
根据立体图形得到:
主视图为: ,
左视图为: ,
俯视图为: ,
故答案为:A.
【点睛】
此题考查小正方体组成的几何体的三视图,解题的关键是掌握三视图的视图角度及三视图的画法.
对于④:当 时对应的 ,观察图像可知 时对应的函数图像的 值在 轴上方,故 ,故④正确.
∴只有③④是正确的.
故选:C.
【点睛】
本题考查了二次函数的图像与其系数的关系及二次函数的对称性,熟练掌握二次函数的图像性质是解决此类题的关键.
13.3.
【解析】
【分析】
根据一个正数的算术平方根就是其正的平方根即可得出.
∴∠C=∠4= ,
∵ ,∠1= ,
∴∠1=∠3= ,
∵∠C +∠3+∠2+∠4 = ,即
∴
故答案为: .
【点睛】
本题考查了等腰三角形的性质,平行线的性质以及三角形内角和定理的应用,解决问题的关键是辅助线的作法,注意运用两直线平行,同位角相等.
2020年湖北省恩施州中考数学试卷
2020年湖北省恩施州中考数学试卷一、选择题(本大题共有12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择项前的字母代号填涂在答题卷相应位置上)1.(3分)(2020•恩施州)5的绝对值是( )A .5B .﹣5C .15D .−152.(3分)(2020•恩施州)茶中精品“恩施绿”“利川红”享誉世界.去年恩施州茶叶产量约为120000吨,将数120000用科学记数法表示为( )A .12×104B .1.2×105C .1.2×106D .0.12×1063.(3分)(2020•恩施州)下列交通标识,既是中心对称图形,又是轴对称图形的是( )A .B .C .D .4.(3分)(2020•恩施州)下列计算正确的是( )A .a 2•a 3=a 6B .a (a +1)=a 2+aC .(a ﹣b )2=a 2﹣b 2D .2a +3b =5ab 5.(3分)(2020•恩施州)函数y =√x+1x 的自变量的取值范围是( ) A .x ≥﹣1 B .x ≥﹣1且x ≠0C .x >0D .x >﹣1且x ≠0 6.(3分)(2020•恩施州)“彩缕碧筠粽,香粳白玉团”.端午佳节,小明妈妈准备了豆沙粽2个、红枣粽4个、腊肉粽3个、白米粽2个,其中豆沙粽和红枣粽是甜粽.小明任意选取一个,选到甜粽的概率是( )A .211B .411C .511D .6117.(3分)(2020•恩施州)在实数范围内定义运算“☆”:a ☆b =a +b ﹣1,例如:2☆3=2+3﹣1=4.如果2☆x =1,则x 的值是( )A .﹣1B .1C .0D .28.(3分)(2020•恩施州)我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”.意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒x 斛,1个小桶盛酒y 斛,下列方程组正确的是( )A .{5x +y =3x +5y =2B .{5x +y =2x +5y =3C .{5x +3y =1x +2y =5D .{3x +y =52x +5y =19.(3分)(2020•恩施州)如图是由四个相同的小正方体组成的立体图形,它的主视图为( )A .B .C .D .10.(3分)(2020•恩施州)甲乙两车从A 城出发前往B 城,在整个行程中,汽车离开A 城的距离y 与时刻t 的对应关系如图所示,则下列结论错误的是( )A .甲车的平均速度为60km /hB .乙车的平均速度为100km /hC .乙车比甲车先到B 城D .乙车比甲车先出发1h11.(3分)(2020•恩施州)如图,正方形ABCD 的边长为4,点E 在AB 上且BE =1,F 为对角线AC 上一动点,则△BFE 周长的最小值为( )A .5B .6C .7D .812.(3分)(2020•恩施州)如图,已知二次函数y =ax 2+bx +c 的图象与x 轴相交于A (﹣2,0)、B(1,0)两点.则以下结论:①ac>0;②二次函数y=ax2+bx+c的图象的对称轴为x=﹣1;③2a+c=0;④a﹣b+c>0.其中正确的有()个.A.0B.1C.2D.3二、填空题(本大题共有4小题,每小题3分,共12分.不要求写出解答过程,请把答案直接填写在答题卷相应位置上)13.(3分)(2020•恩施州)9的算术平方根是.14.(3分)(2020•恩施州)如图,直线l1∥l2,点A在直线l1上,点B在直线l2上,AB=BC,∠C=30°,∠1=80°,则∠2=.15.(3分)(2020•恩施州)如图,已知半圆的直径AB=4,点C在半圆上,以点A为圆心,AC为半径画弧交AB于点D,连接BC.若∠ABC=60°,则图中阴影部分的面积为.(结果不取近似值16.(3分)(2020•恩施州)如图,在平面直角坐标系中,△ABC的顶点坐标分别为:A(﹣2,0),B(1,2),C(1,﹣2).已知N(﹣1,0),作点N关于点A的对称点N1,点N1关于点B的对称点N2,点N2关于点C的对称点N3,点N3关于点A的对称点N4,点N4关于点B的对称点N5,…,依此类推,则点N2020的坐标为.三、解答题(本大题共有8个小题,共72分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤).17.(8分)(2020•恩施州)先化简,再求值:(m2−9m2−6m+9−3m−3)÷m2m−3,其中m=√2.18.(8分)(2020•恩施州)如图,AE∥BF,BD平分∠ABC交AE于点D,点C在BF上且BC=AB,连接CD.求证:四边形ABCD是菱形.19.(8分)(2020•恩施州)某中学为了解九年级学生对新冠肺炎防控知识的掌握情况,从全校九年级学生中随机抽取部分学生进行调查.调查结果分为四类:A类﹣﹣非常了解;B类﹣﹣比较了解;C类﹣﹣般了解;D类﹣﹣不了解.现将调查结果绘制成如图不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次共调查了名学生;(2)补全条形统计图;(3)D类所对应扇形的圆心角的大小为;(4)若该校九年级学生共有500名,根据以上抽样结果,估计该校九年级学生对新冠肺炎防控知识非常了解的约有名.20.(8分)(2020•恩施州)如图,一艘轮船以每小时30海里的速度自东向西航行,在A处测得小岛P位于其西北方向(北偏西45°方向),2小时后轮船到达B处,在B处测得小岛P位于其北偏东60°方向.求此时船与小岛P的距离(结果保留整数,参考数据:√2≈1.414,√3≈1.732).21.(8分)(2020•恩施州)如图,在平面直角坐标系中,直线y=ax﹣3a(a≠0)与x轴、y轴分别相交于A、B两点,与双曲线y=kx(x>0)的一个交点为C,且BC=12AC.(1)求点A的坐标;(2)当S△AOC=3时,求a和k的值.22.(10分)(2020•恩施州)某校足球队需购买A、B两种品牌的足球.已知A品牌足球的单价比B品牌足球的单价高20元,且用900元购买A品牌足球的数量用720元购买B 品牌足球的数量相等.(1)求A、B两种品牌足球的单价;(2)若足球队计划购买A、B两种品牌的足球共90个,且A品牌足球的数量不小于B 品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.设购买A品牌足球m 个,总费用为W元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?23.(10分)(2020•恩施州)如图1,AB是⊙O的直径,直线AM与⊙O相切于点A,直线BN与⊙O相切于点B,点C(异于点A)在AM上,点D在⊙O上,且CD=CA,延长CD与BN相交于点E,连接AD并延长交BN于点F.(1)求证:CE是⊙O的切线;(2)求证:BE=EF;(3)如图2,连接EO并延长与⊙O分别相交于点G、H,连接BH.若AB=6,AC=4,求tan∠BHE.24.(12分)(2020•恩施州)如图1,抛物线y=−14x2+bx+c经过点C(6,0),顶点为B,对称轴x=2与x轴相交于点A,D为线段BC的中点.(1)求抛物线的解析式;(2)P为线段BC上任意一点,M为x轴上一动点,连接MP,以点M为中心,将△MPC 逆时针旋转90°,记点P的对应点为E,点C的对应点为F.当直线EF与抛物线y=−14x2+bx+c只有一个交点时,求点M的坐标.(3)△MPC在(2)的旋转变换下,若PC=√2(如图2).①求证:EA=ED.②当点E在(1)所求的抛物线上时,求线段CM的长.2020年湖北省恩施州中考数学试卷参考答案与试题解析一、选择题(本大题共有12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择项前的字母代号填涂在答题卷相应位置上)1.(3分)(2020•恩施州)5的绝对值是( )A .5B .﹣5C .15D .−15 【解答】解:在数轴上,数5所表示的点到原点0的距离是5;故选:A .2.(3分)(2020•恩施州)茶中精品“恩施绿”“利川红”享誉世界.去年恩施州茶叶产量约为120000吨,将数120000用科学记数法表示为( )A .12×104B .1.2×105C .1.2×106D .0.12×106【解答】解:120000=1.2×105,故选:B .3.(3分)(2020•恩施州)下列交通标识,既是中心对称图形,又是轴对称图形的是( )A .B .C .D .【解答】解:根据轴对称图形与中心对称图形的概念,知:A 、不是轴对称图形,也不是中心对称图形;B 、不是轴对称图形,也不是中心对称图形;C 、是轴对称图形,但不是中心对称图形;D 、既是中心对称图形,又是轴对称图形.故选:D .4.(3分)(2020•恩施州)下列计算正确的是( )A .a 2•a 3=a 6B .a (a +1)=a 2+aC .(a ﹣b )2=a 2﹣b 2D .2a +3b =5ab【解答】解:A 、a 2•a 3=a 5,原计算错误,故此选项不符合题意;B 、a (a +1)=a 2+a ,原计算正确,故此选项符合题意;C 、(a ﹣b )2=a 2﹣2ab +b 2,原计算错误,故此选项不符合题意;D 、2a 与3b 不是同类项,不能合并,原计算错误,故此选项不符合题意;故选:B .5.(3分)(2020•恩施州)函数y =√x+1x 的自变量的取值范围是( ) A .x ≥﹣1 B .x ≥﹣1且x ≠0C .x >0D .x >﹣1且x ≠0 【解答】解:根据题意得,x +1≥0且x ≠0,解得x ≥﹣1且x ≠0.故选:B .6.(3分)(2020•恩施州)“彩缕碧筠粽,香粳白玉团”.端午佳节,小明妈妈准备了豆沙粽2个、红枣粽4个、腊肉粽3个、白米粽2个,其中豆沙粽和红枣粽是甜粽.小明任意选取一个,选到甜粽的概率是( )A .211B .411C .511D .611【解答】解:由题意可得:粽子总数为11个,其中6个为甜粽,所以选到甜粽的概率为:611,故选:D .7.(3分)(2020•恩施州)在实数范围内定义运算“☆”:a ☆b =a +b ﹣1,例如:2☆3=2+3﹣1=4.如果2☆x =1,则x 的值是( )A .﹣1B .1C .0D .2 【解答】解:由题意知:2☆x =2+x ﹣1=1+x ,又2☆x =1,∴1+x =1,∴x =0.故选:C .8.(3分)(2020•恩施州)我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”.意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒x 斛,1个小桶盛酒y 斛,下列方程组正确的是( )A .{5x +y =3x +5y =2B .{5x +y =2x +5y =3C .{5x +3y =1x +2y =5D .{3x +y =52x +5y =1【解答】解:依题意,得:{5x +y =3x +5y =2. 故选:A . 9.(3分)(2020•恩施州)如图是由四个相同的小正方体组成的立体图形,它的主视图为( )A .B .C .D .【解答】解:从正面看易得第一列有2个正方形,第二列底层有1个正方形.故选:A .10.(3分)(2020•恩施州)甲乙两车从A 城出发前往B 城,在整个行程中,汽车离开A 城的距离y 与时刻t 的对应关系如图所示,则下列结论错误的是( )A .甲车的平均速度为60km /hB .乙车的平均速度为100km /hC .乙车比甲车先到B 城D .乙车比甲车先出发1h【解答】解:由图象知:A .甲车的平均速度为30010−5=60km /h ,故A 选项不合题意; B .乙车的平均速度为3009−6=100km /h ,故B 选项不合题意;C .甲10时到达B 城,乙9时到达B 城,所以乙比甲先到B 城,故C 选项不合题意;D.甲5时出发,乙6时出发,所以乙比甲晚出发1h,故此选项错误,故选:D.11.(3分)(2020•恩施州)如图,正方形ABCD的边长为4,点E在AB上且BE=1,F为对角线AC上一动点,则△BFE周长的最小值为()A.5B.6C.7D.8【解答】解:如图,连接ED交AC于一点F,连接BF,∵四边形ABCD是正方形,∴点B与点D关于AC对称,∴BF=DF,∴△BFE的周长=BF+EF+BE=DE+BE,此时△BEF的周长最小,∵正方形ABCD的边长为4,∴AD=AB=4,∠DAB=90°,∵点E在AB上且BE=1,∴AE=3,∴DE=√AD2+AE2=5,∴△BFE的周长=5+1=6,故选:B.12.(3分)(2020•恩施州)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣2,0)、B(1,0)两点.则以下结论:①ac>0;②二次函数y=ax2+bx+c的图象的对称轴为x=﹣1;③2a+c=0;④a﹣b+c>0.其中正确的有()个.A.0B.1C.2D.3【解答】解:对于①:二次函数开口向下,故a<0,与y轴的交点在y的正半轴,故c >0,故ac<0,因此①错误;对于②:二次函数的图象与x轴相交于A(﹣2,0)、B(1,0),由对称性可知,其对称轴为:x=−2+12=−12,因此②错误;对于③:设二次函数y=ax2+bx+c的交点式为y=a(x+2)(x﹣1)=ax2+ax﹣2a,比较一般式与交点式的系数可知:b=a,c=﹣2a,故2a+c=0,因此③正确;对于④:当x=﹣1时对应的y=a﹣b+c,观察图象可知x=﹣1时对应的函数图象的y 值在x轴上方,故a﹣b+c>0,因此④正确.∴只有③④是正确的.故选:C.二、填空题(本大题共有4小题,每小题3分,共12分.不要求写出解答过程,请把答案直接填写在答题卷相应位置上)13.(3分)(2020•恩施州)9的算术平方根是3.【解答】解:∵(±3)2=9,∴9的算术平方根是|±3|=3.故答案为:3.14.(3分)(2020•恩施州)如图,直线l1∥l2,点A在直线l1上,点B在直线l2上,AB=BC,∠C=30°,∠1=80°,则∠2=40°.【解答】解:如图,延长CB交l2于点D,∵AB=BC,∠C=30°,∴∠C=∠4=30°,∵l1∥l2,∠1=80°,∴∠1=∠3=80°,∵∠C+∠3+∠2+∠4=180°,即30°+80°+∠2+30°=180°,∴∠2=40°.故答案为:40°.15.(3分)(2020•恩施州)如图,已知半圆的直径AB=4,点C在半圆上,以点A为圆心,AC为半径画弧交AB于点D,连接BC.若∠ABC=60°,则图中阴影部分的面积为2√3−π.(结果不取近似值【解答】解:∵AB是直径,∴∠ACB=90°,∵∠ABC=60°,∴∠CAB=30°,∴BC=12AB=2,AC=2√3,∴S△ABC=12⋅AC⋅BC=12⋅2√3⋅2=2√3,∵∠CAB=30°,∴扇形ACD的面积=30360π⋅AC2=112π⋅(2√3)2=π,∴阴影部分的面积为2√3−π.故答案为:2√3−π.16.(3分)(2020•恩施州)如图,在平面直角坐标系中,△ABC的顶点坐标分别为:A(﹣2,0),B(1,2),C(1,﹣2).已知N(﹣1,0),作点N关于点A的对称点N1,点N1关于点B的对称点N2,点N2关于点C的对称点N3,点N3关于点A的对称点N4,点N4关于点B的对称点N5,…,依此类推,则点N2020的坐标为(﹣1,8).【解答】解:由题意得,作出如下图形:N点坐标为(﹣1,0),N点关于A点对称的N1点的坐标为(﹣3,0),N1点关于B点对称的N2点的坐标为(5,4),N2点关于C点对称的N3点的坐标为(﹣3,8),N3点关于A点对称的N4点的坐标为(﹣1,8),N4点关于B点对称的N5点的坐标为(3,﹣4),N5点关于C点对称的N6点的坐标为(﹣1,0),此时刚好回到最开始的点N处,∴其每6个点循环一次,∴2020÷6=336……4,即循环了336次后余下4,故N2020的坐标与N4点的坐标相同,其坐标为(﹣1,8).故答案为:(﹣1,8).三、解答题(本大题共有8个小题,共72分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤).17.(8分)(2020•恩施州)先化简,再求值:(m2−9m2−6m+9−3m−3)÷m2m−3,其中m=√2.【解答】解:(m2−9m2−6m+9−3m−3)÷m2m−3=[(m+3)(m−3)(m−3)2−3m−3]⋅m−3m2=(m+3m−3−3m−3)⋅m−3m2=m m−3⋅m−3 m2=1m;当m=√2时,原式=2=√22.18.(8分)(2020•恩施州)如图,AE∥BF,BD平分∠ABC交AE于点D,点C在BF上且BC=AB,连接CD.求证:四边形ABCD是菱形.【解答】证明:∵AE∥BF,∴∠ADB=∠DBC,∵BD平分∠ABC,∴∠DBC=∠ABD,∴∠ADB=∠ABD,∴AB=AD,又∵AB=BC,∴AD=BC,∵AE∥BF,即AD∥BC,∴四边形ABCD为平行四边形,又∵AB=AD,∴四边形ABCD为菱形.19.(8分)(2020•恩施州)某中学为了解九年级学生对新冠肺炎防控知识的掌握情况,从全校九年级学生中随机抽取部分学生进行调查.调查结果分为四类:A类﹣﹣非常了解;B类﹣﹣比较了解;C类﹣﹣般了解;D类﹣﹣不了解.现将调查结果绘制成如图不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次共调查了50名学生;(2)补全条形统计图;(3)D类所对应扇形的圆心角的大小为36°;(4)若该校九年级学生共有500名,根据以上抽样结果,估计该校九年级学生对新冠肺炎防控知识非常了解的约有150名.【解答】解:(1)本次共调查的学生数为:20÷40%=50(名).故答案为:50;(2)C类学生人数为:50﹣15﹣20﹣5=10(名),条形图如下:(3)D类所对应扇形的圆心角为:360°×550=36°.故答案为:36°;(4)该校九年级学生对新冠肺炎防控知识非常了解的人数为:500×1550=150(名).故答案为:150.20.(8分)(2020•恩施州)如图,一艘轮船以每小时30海里的速度自东向西航行,在A处测得小岛P位于其西北方向(北偏西45°方向),2小时后轮船到达B处,在B处测得小岛P位于其北偏东60°方向.求此时船与小岛P的距离(结果保留整数,参考数据:√2≈1.414,√3≈1.732).【解答】解:如图,过P作PH⊥AB,设PH=x,由题意得:AB=30×2=60,∠PBH=90°﹣60°=30°,∠PAH=90°﹣45°=45°,则△PHA是等腰直角三角形,∴AH=PH,在Rt△PHA中,设AH=PH=x,在Rt△PBH中,PB=2PH=2x,BH=AB﹣AH=60﹣x,∴tan∠PBH=tan30°=PHBH=√33,∴√33=x 60−x, 解得:x =30(√3−1),∴PB =2x =60(√3−1)≈44(海里),答:此时船与小岛P 的距离约为44海里.21.(8分)(2020•恩施州)如图,在平面直角坐标系中,直线y =ax ﹣3a (a ≠0)与x 轴、y 轴分别相交于A 、B 两点,与双曲线y =k x (x >0)的一个交点为C ,且BC =12AC .(1)求点A 的坐标;(2)当S △AOC =3时,求a 和k 的值.【解答】解:(1)由题意得:令y =ax ﹣3a (a ≠0)中y =0,即ax ﹣3a =0,解得x =3,∴点A 的坐标为(3,0),故答案为(3,0).(2)过C 点作y 轴的垂线交y 轴于M 点,作x 轴的垂线交x 轴于N 点,如下图所示:显然,CM ∥OA ,∴∠BCM =∠BAO ,且∠ABO =∠CBO ,∴△BCM ∽△BAO ,∴BC BA =CM AO ,即:13=CM 3,∴CM =1,又S △AOC =12OA ⋅CN =3即:12×3×CN =3, ∴CN =2,∴C 点的坐标为(1,2),故反比例函数的k =1×2=2,再将点C (1,2)代入一次函数y =ax ﹣3a (a ≠0)中,即2=a ﹣3a ,解得a =﹣1,故答案为:a =﹣1,k =2.22.(10分)(2020•恩施州)某校足球队需购买A 、B 两种品牌的足球.已知A 品牌足球的单价比B 品牌足球的单价高20元,且用900元购买A 品牌足球的数量用720元购买B 品牌足球的数量相等.(1)求A 、B 两种品牌足球的单价;(2)若足球队计划购买A 、B 两种品牌的足球共90个,且A 品牌足球的数量不小于B 品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.设购买A 品牌足球m 个,总费用为W 元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?【解答】解:(1)设购买A 品牌足球的单价为x 元,则购买B 品牌足球的单价为(x ﹣20)元,根据题意,得900x =720x−20,解得:x =100,经检验x =100是原方程的解,x ﹣20=80,答:购买A 品牌足球的单价为100元,则购买B 品牌足球的单价为80元;(2)设购买m 个A 品牌足球,则购买(90﹣m )个B 品牌足球,则W =100m +80(90﹣m )=20m +7200,∵A 品牌足球的数量不小于B 品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元,∴{100m +80(90−m)≤8500m ≥2(90−m), 解不等式组得:60≤m ≤65,所以,m 的值为:60,61,62,63,64,65,即该队共有6种购买方案,当m =60时,W 最小,m =60时,W =20×60+7200=8400(元),答:该队共有6种购买方案,购买60个A 品牌30个B 品牌的总费用最低,最低费用是8400元.23.(10分)(2020•恩施州)如图1,AB 是⊙O 的直径,直线AM 与⊙O 相切于点A ,直线BN 与⊙O 相切于点B ,点C (异于点A )在AM 上,点D 在⊙O 上,且CD =CA ,延长CD 与BN 相交于点E ,连接AD 并延长交BN 于点F .(1)求证:CE 是⊙O 的切线;(2)求证:BE =EF ;(3)如图2,连接EO 并延长与⊙O 分别相交于点G 、H ,连接BH .若AB =6,AC =4,求tan ∠BHE .【解答】解:(1)如图1中,连接OD ,∵CD =CA ,∴∠CAD =∠CDA ,∵OA =OD∴∠OAD =∠ODA ,∵直线AM与⊙O相切于点A,∴∠CAO=∠CAD+∠OAD=90°,∴∠ODC=∠CDA+∠ODA=90°,∴CE是⊙O的切线.(2)如图2中,连接BD,∵OD=OB,∴∠ODB=∠OBD,∵CE是⊙O的切线,BF是⊙O的切线,∴∠OBD=∠ODE=90°,∴∠EDB=∠EBD,∴ED=EB,∵AM⊥AB,BN⊥AB,∴AM∥BN,∴∠CAD=∠BFD,∵∠CAD=∠CDA=∠EDF,∴∠BFD=∠EDF,∴EF=ED,∴BE=EF.(3)如图2中,过E点作EL⊥AM于L,则四边形ABEL是矩形,设BE=x,则CL=4﹣x,CE=4+x,∴(4+x)2=(4﹣x)2+62,解得:x =94,∴tan ∠BOE =BE OB =943=34, ∵∠BOE =2∠BHE ,∴tan ∠BOE =2tan∠BHE 1−tan 2∠BHE =34, 解得:tan ∠BHE =13或﹣3(﹣3不合题意舍去),∴tan ∠BHE =13.补充方法:如图2中,作HJ ⊥EB 交EB 的延长线于J .∵tab ∠BOE =BE OB =34, ∴可以假设BE =3k ,OB =4k ,则OE =5k ,∵OB ∥HJ ,∴OB HJ =OE EH =EB EJ , ∴4k HJ =5k 9k =3k EJ ,∴HJ =365k ,EJ =275k , ∴BJ =EJ ﹣BE =275k ﹣3k =125k∴tan ∠BHJ =BJ HJ =13, ∵∠BHE =∠OBE =∠BHJ ,∴tan ∠BHE =13.24.(12分)(2020•恩施州)如图1,抛物线y =−14x 2+bx +c 经过点C (6,0),顶点为B ,对称轴x =2与x 轴相交于点A ,D 为线段BC 的中点.(1)求抛物线的解析式;(2)P为线段BC上任意一点,M为x轴上一动点,连接MP,以点M为中心,将△MPC 逆时针旋转90°,记点P的对应点为E,点C的对应点为F.当直线EF与抛物线y=−14x2+bx+c只有一个交点时,求点M的坐标.(3)△MPC在(2)的旋转变换下,若PC=√2(如图2).①求证:EA=ED.②当点E在(1)所求的抛物线上时,求线段CM的长.【解答】解:(1)∵点C(6,0)在抛物线上,∴0=−14×36+6b+c,得到6b+c=9,又∵对称轴x=2,∴x=−b2a=−b2×(−14)=2,解得b=1,∴c=3,∴二次函数的解析式为y=−14x2+x+3;(2)当点M在点C的左侧时,如图2﹣1中:∵抛物线的解析式为y =−14x 2+x +3,对称轴为x =2,C (6,0)∴点A (2,0),顶点B (2,4),∴AB =AC =4,∴△ABC 是等腰直角三角形,∴∠1=45°;∵将△MPC 逆时针旋转90°得到△MEF ,∴FM =CM ,∠2=∠1=45°,设点M 的坐标为(m ,0),∴点F (m ,6﹣m ),又∵∠2=45°,∴直线EF 与x 轴的夹角为45°,∴设直线EF 的解析式为y =x +b ,把点F (m ,6﹣m )代入得:6﹣m =m +b ,解得:b =6﹣2m ,直线EF 的解析式为y =x +6﹣2m ,∵直线EF 与抛物线y =−14x 2+x +3只有一个交点,∴{y =x +6−2my =−14x 2+x +3, 整理得:14x 2+3−2m =0,∴△=b 2﹣4ac =0,解得m =32,点M 的坐标为(32,0).当点M 在点C 的右侧时,如下图:由图可知,直线EF 与x 轴的夹角仍是45°,因此直线EF 与抛物线y =−14x 2+x +3不可能只有一个交点.综上,点M 的坐标为(32,0). (3)①当点M 在点C 的左侧时,如下图,过点P 作PG ⊥x 轴于点G ,过点E 作EH ⊥x 轴于点H ,∵PC =√2,由(2)知∠BCA =45°,∴PG =GC =1,∴点G (5,0),设点M 的坐标为(m ,0),∵将△MPC 逆时针旋转90°得到△MEF ,∴EM =PM ,∵∠HEM +∠EMH =∠GMP +∠EMH =90°,∴∠HEM =∠GMP ,在△EHM 和△MGP 中,{∠EHM =∠MGP∠HEM =∠GMP EM =MP,∴△EHM ≌△MGP (AAS ),∴EH =MG =5﹣m ,HM =PG =1,∴点H (m ﹣1,0),∴点E 的坐标为(m ﹣1,5﹣m );∴EA =√(m −1−2)2+(5−m −0)2=√2m 2−16m +34, 又∵D 为线段BC 的中点,B (2,4),C (6,0), ∴点D (4,2),∴ED =√(m 2+(5−m −2)2=√2m 2−16m +34, ∴EA =ED .当点M 在点C 的右侧时,如下图:同理,点E 的坐标仍为(m ﹣1,5﹣m ),因此EA =ED . ②当点E 在(1)所求的抛物线y =−14x 2+x +3上时, 把E (m ﹣1,5﹣m )代入,整理得:m 2﹣10m +13=0, 解得:m =5+2√3或m =5−2√3,∴CM =2√3−1或CM =1+2√3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年湖北省恩施州中考数学试卷一、选择题(共12小题).1.5的绝对值是()A.5B.﹣5C.D.﹣2.茶中精品“恩施绿”“利川红”享誉世界.去年恩施州茶叶产量约为120000吨,将数120000用科学记数法表示为()A.12×104B.1.2×105C.1.2×106D.0.12×1063.下列交通标识,既是中心对称图形,又是轴对称图形的是()A.B.C.D.4.下列计算正确的是()A.a2•a3=a6B.a(a+1)=a2+aC.(a﹣b)2=a2﹣b2D.2a+3b=5ab5.函数y=的自变量的取值范围是()A.x≥﹣1B.x≥﹣1且x≠0C.x>0D.x>﹣1且x≠0 6.“彩缕碧筠粽,香粳白玉团”.端午佳节,小明妈妈准备了豆沙粽2个、红枣粽4个、腊肉粽3个、白米粽2个,其中豆沙粽和红枣粽是甜粽.小明任意选取一个,选到甜粽的概率是()A.B.C.D.7.在实数范围内定义运算“☆”:a☆b=a+b﹣1,例如:2☆3=2+3﹣1=4.如果2☆x=1,则x的值是()A.﹣1B.1C.0D.28.我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”.意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒x斛,1个小桶盛酒y斛,下列方程组正确的是()A.B.C.D.9.如图是由四个相同的小正方体组成的立体图形,它的主视图为()A.B.C.D.10.甲乙两车从A城出发前往B城,在整个行程中,汽车离开A城的距离y与时刻t的对应关系如图所示,则下列结论错误的是()A.甲车的平均速度为60km/hB.乙车的平均速度为100km/hC.乙车比甲车先到B城D.乙车比甲车先出发1h11.如图,正方形ABCD的边长为4,点E在AB上且BE=1,F为对角线AC上一动点,则△BFE周长的最小值为()A.5B.6C.7D.812.如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣2,0)、B(1,0)两点.则以下结论:①ac>0;②二次函数y=ax2+bx+c的图象的对称轴为x=﹣1;③2a+c=0;④a﹣b+c>0.其中正确的有()个.A.0B.1C.2D.3二、填空题(本大题共有4小题,每小题3分,共12分.不要求写出解答过程,请把答案直接填写在答题卷相应位置上)13.9的算术平方根是.14.如图,直线l1∥l2,点A在直线l1上,点B在直线l2上,AB=BC,∠C=30°,∠1=80°,则∠2=.15.如图,已知半圆的直径AB=4,点C在半圆上,以点A为圆心,AC为半径画弧交AB 于点D,连接BC.若∠ABC=60°,则图中阴影部分的面积为.(结果不取近似值)16.如图,在平面直角坐标系中,△ABC的顶点坐标分别为:A(﹣2,0),B(1,2),C(1,﹣2).已知N(﹣1,0),作点N关于点A的对称点N1,点N1关于点B的对称点N2,点N2关于点C的对称点N3,点N3关于点A的对称点N4,点N4关于点B的对称点N5,…,依此类推,则点N2020的坐标为.三、解答题(本大题共有8个小题,共72分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤).17.先化简,再求值:(﹣)÷,其中m=.18.如图,AE∥BF,BD平分∠ABC交AE于点D,点C在BF上且BC=AB,连接CD.求证:四边形ABCD是菱形.19.某中学为了解九年级学生对新冠肺炎防控知识的掌握情况,从全校九年级学生中随机抽取部分学生进行调查.调查结果分为四类:A类﹣﹣非常了解;B类﹣﹣比较了解;C 类﹣﹣般了解;D类﹣﹣不了解.现将调查结果绘制成如图不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次共调查了名学生;(2)补全条形统计图;(3)D类所对应扇形的圆心角的大小为;(4)若该校九年级学生共有500名,根据以上抽样结果,估计该校九年级学生对新冠肺炎防控知识非常了解的约有名.20.如图,一艘轮船以每小时30海里的速度自东向西航行,在A处测得小岛P位于其西北方向(北偏西45°方向),2小时后轮船到达B处,在B处测得小岛P位于其北偏东60°方向.求此时船与小岛P的距离(结果保留整数,参考数据:≈1.414,≈1.732).21.如图,在平面直角坐标系中,直线y=ax﹣3a(a≠0)与x轴、y轴分别相交于A、B 两点,与双曲线y=(x>0)的一个交点为C,且BC=AC.(1)求点A的坐标;(2)当S△AOC=3时,求a和k的值.22.某校足球队需购买A、B两种品牌的足球.已知A品牌足球的单价比B品牌足球的单价高20元,且用900元购买A品牌足球的数量用720元购买B品牌足球的数量相等.(1)求A、B两种品牌足球的单价;(2)若足球队计划购买A、B两种品牌的足球共90个,且A品牌足球的数量不小于B 品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.设购买A品牌足球m 个,总费用为W元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?23.如图1,AB是⊙O的直径,直线AM与⊙O相切于点A,直线BN与⊙O相切于点B,点C(异于点A)在AM上,点D在⊙O上,且CD=CA,延长CD与BN相交于点E,连接AD并延长交BN于点F.(1)求证:CE是⊙O的切线;(2)求证:BE=EF;(3)如图2,连接EO并延长与⊙O分别相交于点G、H,连接BH.若AB=6,AC=4,求tan∠BHE.24.如图1,抛物线y=﹣x2+bx+c经过点C(6,0),顶点为B,对称轴x=2与x轴相交于点A,D为线段BC的中点.(1)求抛物线的解析式;(2)P为线段BC上任意一点,M为x轴上一动点,连接MP,以点M为中心,将△MPC逆时针旋转90°,记点P的对应点为E,点C的对应点为F.当直线EF与抛物线y=﹣x2+bx+c只有一个交点时,求点M的坐标.(3)△MPC在(2)的旋转变换下,若PC=(如图2).①求证:EA=ED.②当点E在(1)所求的抛物线上时,求线段CM的长.参考答案一、选择题(本大题共有12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择项前的字母代号填涂在答题卷相应位置上)1.5的绝对值是()A.5B.﹣5C.D.﹣解:在数轴上,数5所表示的点到原点0的距离是5;故选:A.2.茶中精品“恩施绿”“利川红”享誉世界.去年恩施州茶叶产量约为120000吨,将数120000用科学记数法表示为()A.12×104B.1.2×105C.1.2×106D.0.12×106解:120000=1.2×105,故选:B.3.下列交通标识,既是中心对称图形,又是轴对称图形的是()A.B.C.D.解:根据轴对称图形与中心对称图形的概念,知:A、不是轴对称图形,也不是中心对称图形;B、不是轴对称图形,也不是中心对称图形;C、是轴对称图形,但不是中心对称图形;D、既是中心对称图形,又是轴对称图形.故选:D.4.下列计算正确的是()A.a2•a3=a6B.a(a+1)=a2+aC.(a﹣b)2=a2﹣b2D.2a+3b=5ab解:A、a2•a3=a5,原计算错误,故此选项不符合题意;B、a(a+1)=a2+a,原计算正确,故此选项符合题意;C、(a﹣b)2=a2﹣2ab+b2,原计算错误,故此选项不符合题意;D、2a与3b不是同类项,不能合并,原计算错误,故此选项不符合题意;故选:B.5.函数y=的自变量的取值范围是()A.x≥﹣1B.x≥﹣1且x≠0C.x>0D.x>﹣1且x≠0解:根据题意得,x+1≥0且x≠0,解得x≥﹣1且x≠0.故选:B.6.“彩缕碧筠粽,香粳白玉团”.端午佳节,小明妈妈准备了豆沙粽2个、红枣粽4个、腊肉粽3个、白米粽2个,其中豆沙粽和红枣粽是甜粽.小明任意选取一个,选到甜粽的概率是()A.B.C.D.解:由题意可得:粽子总数为11个,其中6个为甜粽,所以选到甜粽的概率为:,故选:D.7.在实数范围内定义运算“☆”:a☆b=a+b﹣1,例如:2☆3=2+3﹣1=4.如果2☆x=1,则x的值是()A.﹣1B.1C.0D.2解:由题意知:2☆x=2+x﹣1=1+x,又2☆x=1,∴1+x=1,∴x=0.故选:C.8.我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”.意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒x斛,1个小桶盛酒y斛,下列方程组正确的是()A.B.C.D.解:依题意,得:.故选:A.9.如图是由四个相同的小正方体组成的立体图形,它的主视图为()A.B.C.D.解:从正面看易得第一列有2个正方形,第二列底层有1个正方形.故选:A.10.甲乙两车从A城出发前往B城,在整个行程中,汽车离开A城的距离y与时刻t的对应关系如图所示,则下列结论错误的是()A.甲车的平均速度为60km/hB.乙车的平均速度为100km/hC.乙车比甲车先到B城D.乙车比甲车先出发1h解:由图象知:A.甲车的平均速度为=60km/h,故A选项不合题意;B.乙车的平均速度为=100km/h,故B选项不合题意;C.甲10时到达B城,乙9时到达B城,所以乙比甲先到B城,故C选项不合题意;D.甲5时出发,乙6时出发,所以乙比甲晚出发1h,故此选项错误,故选:D.11.如图,正方形ABCD的边长为4,点E在AB上且BE=1,F为对角线AC上一动点,则△BFE周长的最小值为()A.5B.6C.7D.8解:如图,连接ED交AC于一点F,连接BF,∵四边形ABCD是正方形,∴点B与点D关于AC对称,∴BF=DF,∴△BFE的周长=BF+EF+BE=DE+BE,此时△BEF的周长最小,∵正方形ABCD的边长为4,∴AD=AB=4,∠DAB=90°,∵点E在AB上且BE=1,∴AE=3,∴DE=,∴△BFE的周长=5+1=6,故选:B.12.如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣2,0)、B(1,0)两点.则以下结论:①ac>0;②二次函数y=ax2+bx+c的图象的对称轴为x=﹣1;③2a+c=0;④a﹣b+c>0.其中正确的有()个.A.0B.1C.2D.3解:对于①:二次函数开口向下,故a<0,与y轴的交点在y的正半轴,故c>0,故ac<0,因此①错误;对于②:二次函数的图象与x轴相交于A(﹣2,0)、B(1,0),由对称性可知,其对称轴为:,因此②错误;对于③:设二次函数y=ax2+bx+c的交点式为y=a(x+2)(x﹣1)=ax2+ax﹣2a,比较一般式与交点式的系数可知:b=a,c=﹣2a,故2a+c=0,因此③正确;对于④:当x=﹣1时对应的y=a﹣b+c,观察图象可知x=﹣1时对应的函数图象的y 值在x轴上方,故a﹣b+c>0,因此④正确.∴只有③④是正确的.故选:C.二、填空题(本大题共有4小题,每小题3分,共12分.不要求写出解答过程,请把答案直接填写在答题卷相应位置上)13.9的算术平方根是3.解:∵(±3)2=9,∴9的算术平方根是|±3|=3.故答案为:3.14.如图,直线l1∥l2,点A在直线l1上,点B在直线l2上,AB=BC,∠C=30°,∠1=80°,则∠2=40°.解:如图,延长CB交l2于点D,∵AB=BC,∠C=30°,∴∠C=∠4=30°,∵l1∥l2,∠1=80°,∴∠1=∠3=80°,∵∠C+∠3+∠2+∠4=180°,即30°+80°+∠2+30°=180°,∴∠2=40°.故答案为:40°.15.如图,已知半圆的直径AB=4,点C在半圆上,以点A为圆心,AC为半径画弧交AB 于点D,连接BC.若∠ABC=60°,则图中阴影部分的面积为2﹣π.(结果不取近似值)解:∵AB是直径,∴∠ACB=90°,∵∠ABC=60°,∴∠CAB=30°,∴BC=,AC=,∴,∵∠CAB=30°,∴扇形ACD的面积=,∴阴影部分的面积为.故答案为:.16.如图,在平面直角坐标系中,△ABC的顶点坐标分别为:A(﹣2,0),B(1,2),C(1,﹣2).已知N(﹣1,0),作点N关于点A的对称点N1,点N1关于点B的对称点N2,点N2关于点C的对称点N3,点N3关于点A的对称点N4,点N4关于点B的对称点N5,…,依此类推,则点N2020的坐标为(﹣1,8).解:由题意得,作出如下图形:N点坐标为(﹣1,0),N点关于A点对称的N1点的坐标为(﹣3,0),N1点关于B点对称的N2点的坐标为(5,4),N2点关于C点对称的N3点的坐标为(﹣3,8),N3点关于A点对称的N4点的坐标为(﹣1,8),N4点关于B点对称的N5点的坐标为(3,﹣4),N5点关于C点对称的N6点的坐标为(﹣1,0),此时刚好回到最开始的点N处,∴其每6个点循环一次,∴2020÷6=336……4,即循环了336次后余下4,故N2020的坐标与N4点的坐标相同,其坐标为(﹣1,8).故答案为:(﹣1,8).三、解答题(本大题共有8个小题,共72分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤).17.先化简,再求值:(﹣)÷,其中m=.解:====;当时,原式=.18.如图,AE∥BF,BD平分∠ABC交AE于点D,点C在BF上且BC=AB,连接CD.求证:四边形ABCD是菱形.【解答】证明:∵AE∥BF,∴∠ADB=∠DBC,∵BD平分∠ABC,∴∠DBC=∠ABD,∴∠ADB=∠ABD,∴AB=AD,又∵AB=BC,∴AD=BC,∵AE∥BF,即AD∥BC,∴四边形ABCD为平行四边形,又∵AB=AD,∴四边形ABCD为菱形.19.某中学为了解九年级学生对新冠肺炎防控知识的掌握情况,从全校九年级学生中随机抽取部分学生进行调查.调查结果分为四类:A类﹣﹣非常了解;B类﹣﹣比较了解;C 类﹣﹣般了解;D类﹣﹣不了解.现将调查结果绘制成如图不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次共调查了50名学生;(2)补全条形统计图;(3)D类所对应扇形的圆心角的大小为36°;(4)若该校九年级学生共有500名,根据以上抽样结果,估计该校九年级学生对新冠肺炎防控知识非常了解的约有150名.解:(1)本次共调查的学生数为:20÷40%=50(名).故答案为:50;(2)C类学生人数为:50﹣15﹣20﹣5=10(名),条形图如下:(3)D类所对应扇形的圆心角为:.故答案为:36°;(4)该校九年级学生对新冠肺炎防控知识非常了解的人数为:(名).故答案为:150.20.如图,一艘轮船以每小时30海里的速度自东向西航行,在A处测得小岛P位于其西北方向(北偏西45°方向),2小时后轮船到达B处,在B处测得小岛P位于其北偏东60°方向.求此时船与小岛P的距离(结果保留整数,参考数据:≈1.414,≈1.732).解:如图,过P作PH⊥AB,设PH=x,由题意得:AB=30×2=60,∠PBH=90°﹣60°=30°,∠PAH=90°﹣45°=45°,则△PHA是等腰直角三角形,∴AH=PH,在Rt△PHA中,设AH=PH=x,在Rt△PBH中,PB=2PH=2x,BH=AB﹣AH=60﹣x,∴tan∠PBH=tan30°==,∴,解得:,∴PB=2x=≈44(海里),答:此时船与小岛P的距离约为44海里.21.如图,在平面直角坐标系中,直线y=ax﹣3a(a≠0)与x轴、y轴分别相交于A、B 两点,与双曲线y=(x>0)的一个交点为C,且BC=AC.(1)求点A的坐标;(2)当S△AOC=3时,求a和k的值.解:(1)由题意得:令y=ax﹣3a(a≠0)中y=0,即ax﹣3a=0,解得x=3,∴点A的坐标为(3,0),故答案为(3,0).(2)过C点作y轴的垂线交y轴于M点,作x轴的垂线交x轴于N点,如下图所示:显然,CM∥OA,∴∠BCM=∠BAO,且∠ABO=∠CBO,∴△BCM∽△BAO,∴,即:,∴CM=1,又即:,∴CN=2,∴C点的坐标为(1,2),故反比例函数的k=1×2=2,再将点C(1,2)代入一次函数y=ax﹣3a(a≠0)中,即2=a﹣3a,解得a=﹣1,故答案为:a=﹣1,k=2.22.某校足球队需购买A、B两种品牌的足球.已知A品牌足球的单价比B品牌足球的单价高20元,且用900元购买A品牌足球的数量用720元购买B品牌足球的数量相等.(1)求A、B两种品牌足球的单价;(2)若足球队计划购买A、B两种品牌的足球共90个,且A品牌足球的数量不小于B 品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元.设购买A品牌足球m 个,总费用为W元,则该队共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?解:(1)设购买A品牌足球的单价为x元,则购买B品牌足球的单价为(x﹣20)元,根据题意,得,解得:x=100,经检验x=100是原方程的解,x﹣20=80,答:购买A品牌足球的单价为100元,则购买B品牌足球的单价为80元;(2)设购买m个A品牌足球,则购买(90﹣m)个B品牌足球,则W=100m+80(90﹣m)=20m+7200,∵A品牌足球的数量不小于B品牌足球数量的2倍,购买两种品牌足球的总费用不超过8500元,∴,解不等式组得:60≤m≤65,所以,m的值为:60,61,62,63,64,65,即该队共有6种购买方案,当m=60时,W最小,m=60时,W=20×60+7200=8400(元),答:该队共有6种购买方案,购买60个A品牌30个B品牌的总费用最低,最低费用是8400元.23.如图1,AB是⊙O的直径,直线AM与⊙O相切于点A,直线BN与⊙O相切于点B,点C(异于点A)在AM上,点D在⊙O上,且CD=CA,延长CD与BN相交于点E,连接AD并延长交BN于点F.(1)求证:CE是⊙O的切线;(2)求证:BE=EF;(3)如图2,连接EO并延长与⊙O分别相交于点G、H,连接BH.若AB=6,AC=4,求tan∠BHE.解:(1)如图1中,连接OD,∵CD=CA,∴∠CAD=∠CDA,∵OA=OD∴∠OAD=∠ODA,∵直线AM与⊙O相切于点A,∴∠CAO=∠CAD+∠OAD=90°,∴∠ODC=∠CDA+∠ODA=90°,∴CE是⊙O的切线.(2)如图2中,连接BD,∵OD=OB,∴∠ODB=∠OBD,∵CE是⊙O的切线,BF是⊙O的切线,∴∠OBD=∠ODE=90°,∴∠EDB=∠EBD,∴ED=EB,∵AM⊥AB,BN⊥AB,∴AM∥BN,∴∠CAD=∠BFD,∵∠CAD=∠CDA=∠EDF,∴∠BFD=∠EDF,∴EF=ED,∴BE=EF.(3)如图2中,过E点作EL⊥AM于L,则四边形ABEL是矩形,设BE=x,则CL=4﹣x,CE=4+x,∴(4+x)2=(4﹣x)2+62,解得:x=,∴,∵∠BOE=2∠BHE,∴,解得:tan∠BHE=或﹣3(﹣3不合题意舍去),∴tan∠BHE=.补充方法:如图2中,作HJ⊥EB交EB的延长线于J.∵tab∠BOE==,∴可以假设BE=3k,OB=4k,则OE=5k,∵OB∥HJ,∴==,∴==,∴HJ=k,EJ=k,∴BJ=EJ﹣BE=k﹣3k=k∴tan∠BHJ==,∵∠BHE=∠OBE=∠BHJ,∴tan∠BHE=.24.如图1,抛物线y=﹣x2+bx+c经过点C(6,0),顶点为B,对称轴x=2与x轴相交于点A,D为线段BC的中点.(1)求抛物线的解析式;(2)P为线段BC上任意一点,M为x轴上一动点,连接MP,以点M为中心,将△MPC逆时针旋转90°,记点P的对应点为E,点C的对应点为F.当直线EF与抛物线y=﹣x2+bx+c只有一个交点时,求点M的坐标.(3)△MPC在(2)的旋转变换下,若PC=(如图2).①求证:EA=ED.②当点E在(1)所求的抛物线上时,求线段CM的长.解:(1)∵点C(6,0)在抛物线上,∴,得到6b+c=9,又∵对称轴x=2,∴,解得b=1,∴c=3,∴二次函数的解析式为;(2)当点M在点C的左侧时,如图2﹣1中:∵抛物线的解析式为,对称轴为x=2,C(6,0)∴点A(2,0),顶点B(2,4),∴AB=AC=4,∴△ABC是等腰直角三角形,∴∠1=45°;∵将△MPC逆时针旋转90°得到△MEF,∴FM=CM,∠2=∠1=45°,设点M的坐标为(m,0),∴点F(m,6﹣m),又∵∠2=45°,∴直线EF与x轴的夹角为45°,∴设直线EF的解析式为y=x+b,把点F(m,6﹣m)代入得:6﹣m=m+b,解得:b=6﹣2m,直线EF的解析式为y=x+6﹣2m,∵直线EF与抛物线只有一个交点,∴,整理得:,∴△=b2﹣4ac=0,解得m=,点M的坐标为(,0).当点M在点C的右侧时,如下图:由图可知,直线EF与x轴的夹角仍是45°,因此直线EF与抛物线不可能只有一个交点.综上,点M的坐标为(,0).(3)①当点M在点C的左侧时,如下图,过点P作PG⊥x轴于点G,过点E作EH ⊥x轴于点H,∵,由(2)知∠BCA=45°,∴PG=GC=1,∴点G(5,0),设点M的坐标为(m,0),∵将△MPC逆时针旋转90°得到△MEF,∴EM=PM,∵∠HEM+∠EMH=∠GMP+∠EMH=90°,∴∠HEM=∠GMP,在△EHM和△MGP中,,∴△EHM≌△MGP(AAS),∴EH=MG=5﹣m,HM=PG=1,∴点H(m﹣1,0),∴点E的坐标为(m﹣1,5﹣m);∴EA==,又∵D为线段BC的中点,B(2,4),C(6,0),∴点D(4,2),∴ED==,∴EA=ED.当点M在点C的右侧时,如下图:同理,点E的坐标仍为(m﹣1,5﹣m),因此EA=ED.②当点E在(1)所求的抛物线上时,把E(m﹣1,5﹣m)代入,整理得:m2﹣10m+13=0,解得:m=或m=,∴CM=或CM=.。