机械原理第5章-连杆机构设计
机械原理 平面连杆机构及设计

机械原理平面连杆机构及设计平面连杆机构是机械原理中最经典也是最重要的一种机构类型之一。
这种机构由多个刚性杆件组成,每个杆件都能在平面内移动,它们通过连接点(铰链/球头)相互连接。
平面连杆机构在机械工程领域中有着广泛的应用,能够实现很多不同的机械运动和工作原理。
平面连杆机构中最重要的构件是连杆,也就是连接各个零件的关键杆件,如果连杆设计不合适可能导致机构性能的下降。
因此,平面连杆机构的设计要受到重视,需要考虑以下几个因素。
一、长度比例连杆不同长度比例的设置,对整个机构的运动特性和反应速度有着很大的影响。
在设计平面连杆机构时,需要根据机构所要完成的任务,选择恰当的连杆长度比例,保证机构的平衡性和可靠性,以及使机构的工作效率更高。
二、铰链/球头的位置铰链/球头是平面连杆机构中的关键组成部分。
在设计平面连杆机构时,需要合理选择铰链/球头的位置,以达到机构所要完成的特定任务。
如果铰链/球头设置不当,或者位置过分集中,会使机构不平衡或失效。
因此,设计者需要考虑连杆的长度、位置、形状和角度等因素。
三、材质选择平面连杆机构的设计材料非常重要,它将直接影响到机构的质量和强度。
不同材料的连接部分,对于平面连杆机构的工作效率和稳定性有着非凡的意义。
因此,在设计时,应本着安全、可靠、实用的原则,选用优质、耐用的材料,确保机构长期稳定、可靠的工作。
以汽车减震器为例,汽车减震器中使用的是多连杆机构原理,作为一种基于平面连杆机构的机构类型,它通过几个连杆的特定结构和布局,使得整个减震器能够更好地适应路况,缓解车辆的震动和冲击。
汽车减震器的设计考虑了多个因素,包括结构的稳定性和可靠性,杆件的材质和尺寸比例等。
总结来说,平面连杆机构是机械原理中非常重要的一种机构类型,广泛应用于机械和工程领域,需要经过仔细的设计和考虑,才能达到最好的运转效果。
设计者需要从多个维度进行考虑,包括长度比例、铰链/球头的位置、材质选择等等。
这些因素的合理应用,能够使平面连杆机构能够更好地适应不同的任务需求,达到最高的技术性能和质量水平。
机械原理第五章 连杆机构设计

4. 曲柄滑块机构存在曲柄的条件
根据曲柄摇杆机构的演化过程及曲柄摇杆机构曲柄存在的 条件,机架为无穷大+偏距e,则有: 偏置曲柄滑块机构有曲柄的条件:
a
b
① a+e≤b; ② a为最短杆。
若偏距=0,则得对心曲柄滑块机构有曲柄的条件:
① a≤b; ② a为最短杆。
例5-1 图示铰链四杆机构,lBC=50mm,lCD=35mm, lAD=30mm,AD为机架,若为曲柄摇杆机构, 试讨论lAB的取值范围。
机械原理 第五章 平面连杆机构及其设计
§5-1 平面连杆机构的应用及传动特点
§5-2 平面四杆机构的类型和应用
§5-3 平面四杆机构的一些共性问题 §5-4 平面四杆机构的设计
§5-1 平面连杆机构的应用及传动特点
应用举例 如:四足机器人(图片、动画)、内燃机中的曲柄滑块机构、 汽车刮水器、缝纫机踏板机构、仪表指示机构等。
锻压机肘杆机构
可变行程滑块机构
汽车空气泵
单侧曲线槽导杆机构
3)可用于远距离操纵、重载机构,如:自行车手闸机构,挖掘 机等。 4)连杆曲线丰富,可实现特定的轨迹要求,如:搅拌机构, 鹤式起重机等。
挖掘机
搅拌机构
鹤式起重机
二、平面连杆机构的缺点 1)运动副中的间隙会造成较大累积误差,运动精度较低。 2)多杆机构设计复杂,效率低。 3)多数构件作变速运动,其惯性力难以平衡,不适用于高速。 多杆机构大都是四杆机构组合或扩展的结果。 六杆机构及六杆机构的实际应用 本章介绍四杆机构的分析和设计。
1)最短杆长度+最长杆长度≤其余两杆长度之和;(杆长条件) 2)组成该周转副的两杆中必有一杆为最短杆。 2. 铰链四杆机构存在曲柄的条件
1)各杆长度应满足杆长条件; 2)最短杆为连架杆或机架。
机械原理课程设计 连杆机构的设计及运动分析

机械原理课程设计编程说明书一设计任务-------------------------------2二设计过程-------------------------------22.1设计思想-------------------------------22.2参数的定义-----------------------------22.3数学模型-------------------------------32.4程序流程图-----------------------------42.5源程序设计-----------------------------5三设计结果--------------------------------123.1 连杆运动示意图-----------------------123.2 连杆参数的计算结果-------------------123.3 位移、角速度、加速度曲线绘制---------16 四课程设计总结------------------------17五参考文献---------------------------18一设计任务任务:连杆机构的设计及运动分析已知:中心距X1=70mm,X2=190mm,Y=330mm。
构件3的上、下极限Φ=60、Φ=120,滑块的冲程H=220mm,比值CE/CD=1/2,EF/DE=1/4,各构件S重心的位置,曲柄每分钟转速N1=120r/min。
要求:1)建立数学模型;2)用C语言编写计算程序、并运行;3)绘制从动件运动规律线图,并进行连杆机构的动态显示;4)用计算机打印出计算说明;二设计过程2.1 设计思想根据主动杆AB的转角变化和DE杆的极限位置的确定得出其它各杆件的运动规律。
确定初始角度通过循环模拟连杆的运动过程。
数学模型的建立运用矢量方程解析法。
2.2参数的定义theta-------转角omga-----角速度epsl------角加速度2.3 数学模型04321=--+ZZ Z Z (1)按复数式可以写成)sin (cos )sin (cos )sin (cos )sin (cos 44332211=+-+-+++θθθθθθθθi d i c i b i a 由于04 =θ,上式可简化为0)sin (cos )sin (cos )sin (cos 332211=-+-+++d i c i b i a θθθθθθ (2)根据(2)式中实部、虚部分别相等得0cos cos cos 321=--+d c b a θθθ (3)0sin sin sin 321=-+θθθc b a (4)由(3)、(4)式联立消去θ2得)cos 2(sin )sin 2(cos )2cos 2(122223131θθθθθad ac cd ac b d c a --++=+- (5) 令:θθθ1222211111cos 2,sin 2,2cos 2ad ac cd ac b d c a N M L --++==-=,则(5)式可简化为N M L 13131s i n c o s =+θθ(6)解得之ML LML N21211212113a r c s i na r c s i n +-+=θ(7)同理,根据(3)、(4)式消去θ3可解得ML LML N22222222222arcsinarcsin+-+=θ (8)其中:θθθ1222221212cos 2,sin 2,2cos 2ad ab bd ab b d a c N M L +---==-=)sin()cos()cos()sin(2)sin()cos()cos()sin()sin()sin(,)sin()sin(43873232232221212113232323223121311212321313213223θθθθωωθθωθθεεθθωθθωθθωθθεεωθθθθωωθθθθωθθ--+-----=---+-+-=--=--=c c b a a b c b a a c a b ad c ,求解得)式对时间求二介导数将()式对时间求导,得)、(为简便,将(都是时间的函数,、杆的角位移方程。
机械原理平面连杆机构及设计

机械原理平面连杆机构及设计平面连杆机构是一种最为基本的机械结构,由于其结构简单、运动可靠等特点,被广泛应用于各种机械设备中。
本文将对平面连杆机构进行介绍,并探讨其设计原理。
平面连杆机构是由至少一个定点和至少三个连杆组成的机构。
定点为固定参考点,连杆是由铰链连接的刚性杆件。
连杆可以分为连杆和曲柄,连杆连接在定点上,曲柄则旋转。
平面连杆机构的运动由这些连杆的位置和相互连接方式决定。
平面连杆机构的设计原理基于以下几个方面:1.运动分析:在设计平面连杆机构之前,首先需要进行运动分析,确定所需的运动类型。
运动类型可以是旋转、平移、摆动、滑动等。
通过运动分析,可以确定连杆的长度和相互连接的方式。
2.运动性能:平面连杆机构的优点是运动可靠,但运动性能也是需要考虑的重要因素。
例如,设计中需要考虑速度、加速度、力和力矩等参数,以满足机构的运动要求。
3.静力学分析:平面连杆机构在工作过程中可能会受到外力的作用,因此需要进行静力学分析。
静力学分析可以确定机构的力矩和应力,从而确定设计的合理性。
4.运动合成:在进行平面连杆机构的设计过程中,需要进行连杆的运动合成。
运动合成是指通过选择适当的连杆长度和连接方式,实现所需的运动类型。
5.运动分解:运动分解是指将合成的运动分解为各个连杆的运动。
通过运动分解,可以确定每个连杆的运动规律,从而进行设计。
当以上原理得到了充分的了解和运用后,可以进行平面连杆机构的具体设计。
具体的设计包括以下几个步骤:1.确定所需的运动类型:根据机械设备的需求,确定所需的运动类型,例如旋转、平移、摆动等。
2.运动分析:对机构进行运动分析,确定连杆的位置和连接方式。
根据机构的运动要求和外力作用,确定连杆的长度。
3.动力学分析:进行动力学分析,确定机构运动时的力学参数,如速度、加速度、力和力矩等。
4.运动合成与分解:根据所需的运动类型,进行运动合成和分解,确定连杆的运动规律。
5.结构设计:根据上述分析和计算结果,进行结构设计。
机械原理课程设计图解法设计平面连杆机构

工程技术学院课程设计题目:图解法设计平面连杆机构摘要设计内容:设计曲柄摇杆机构。
已知摇杆长度l,摆角ψ,摇杆3的行程速比系数K,要求摇杆CD靠近曲柄回转中心A一侧的极限位置与机架间的夹角为∠CDA,试用图解法设计其余三杆的长度,并计算机构的最小传动角γ。
设计方法:在设计时首先需计算极位夹角θ,再绘制机架位置线及摇杆的两个极限位置,然后确定曲柄回转中心和各杆长度最后验算最小传动角 。
最后根据已知数据和所计算的数据进行图解,画出平面四杆机构图。
平面连杆机构是由若干构件用平面低副(转动副和移动副)联接而成的平面机构,用以实现运动的传递、变换和传送动力。
平面连杆机构的使用很广泛,它被广泛地使用在各种机器、仪表及操纵装置中。
例如内燃机、牛头刨、钢窗启闭机构、碎石机等等,这些机构都有一个共同的特点:其机构都是通过低副连接而成,故此这些机构又称低副机构低副机构低副机构低副机构。
关键词:机械设计基础机械设计基础课程设计平面四杆机构图解法极位夹角云南农业大学工程技术学院目录1题目 (3)1.1原始数据及要求 (3)1.2 工作量 (3)1.3 制图说明 (3)1.4 设计计算说明书包括的内容 (3)2 设计方案的讨论 (4)3 设计过程 (5)3.1 各杆长度的确定 (5)3.2 盐酸最小传动角 (6)4 小结 (7)5 参考文献 (8)1、题目1.1原始数据及要求:设计曲柄摇杆机构。
已知摇杆长度l,摆角ψ,3摇杆的行程速比系数K,要求摇杆CD靠近曲柄回转中心A一侧的极限位置与机架间的夹角为∠CDA,试用图解法设计其余三杆的长度,并计算机构的最小传动角γ。
1.2工作量:1.平面连杆机构图解法设计图纸一张。
2.计算说明书一份。
1.3制图说明:1.用3号图纸作图。
2.标注尺寸。
3.辅助线用细实线。
4.杆的一个极限位置用粗实线,另一个极限位置用虚线。
1.4设计计算说明书包括的内容:1.设计任务书2.目录3.设计过程3.1.计算极位夹角θ3.2.绘制机架位置线及摇杆的两个极限位置3.3.确定曲柄回转中心3.4.确定各杆长度3.5.验算最小传动角γ参考文献2、设计方案的讨论平面连杆机构是将各构件用转动副或移动副联接而成的平面机构。
机械原理-平面连杆机构的运动分析和设计

平面连杆机构的设计流程和方法
在这个部分中,我们将深入探讨平面连杆机构的设计,介绍流程和方法,提供实际案例分析,帮助您了解如何设 计成功的机械。
1.
需求分析
将客户的需求转化为机械设计
目标。
2.
构思和设计
基于机械原理构思和设计机械
装备支撑结构,并采用 CAD 软
件实施初始的草图或模型。
3.
材料选择
选择合适的材料和工艺,确保
结构和类型
平面连杆机构通常由零件精细制 造而成,以满足工业和商业目的 的要求。
工程应用
机械工程师们可以使用平面连杆 机构来完成各种复杂的任务,如 发动机和自动化流水线等。
日常应用
平面连杆机构可以进一步应用在 日常用品中,如钟表、洗衣机和 自动售货机等。
平面连杆机构的运动分析方法
在这个部分中,我们将探索平面连杆机构的运动学和动力学,介绍运动方程和速度方程,以及如何用数学 公式计算不同零件的运动和速度。
1 平衡条件
平衡是指物理系统中所有力和运动之间所需达到的状态,这是机械工程师需要考虑的重 要问题。
2 稳定性
稳定性是一个重要的物理学概念,涉及动量、速度和质量,能够帮助工程师在设计平面 连杆机构时考虑不同零件的状态和取向。
3 应用场景
平面连杆机构无处不在,具有开发良好设计的潜力,是自动化流水线的核心,也是钟表、 汽车和机器人的重要部分。
1
运动学
运动学研究物体运动的规律和运动参数,如位移、速度、加速度等。
2
动力学
动力学研究物体的运动状态和运动参数之间的关系,如动量、力和功等。
3
数值模拟
数字计算能够预测机械零件的运动,利用计算机模拟机械过程,提高设计效率。
机械原理大作业-连杆机构

设计内容
结论
1. 机构结构分析 1)计算机构自由度,确定机构是否有确定运动。
机构自度 F=1
本机构中,n= 5 , pL= 7
,pH = 0
则有:F=3n-2PL –PH= 3*5-2*7=1
是否有确定
机构确定运动判断: 因 F= 1 ,原动件个数= 1 ,可知: 自由度等于原动件数,机构有确定 的运动。
➢ 求解速度 vB 、角速度 2 : 矢量方程:
大小 ? √ ? 方向 ⊥BD ⊥OA ⊥AB
逆时针方向 ➢ 求解速度 vC 、2 杆质心 S2 的速度 vs2 :
vB =1.57m/s 2 =0.36rad/s, 逆时针方向
vC =1.56m/s vs2 =1.53m/s
-3-
➢ 求解速度 vE 、角速度 4 : 矢量方程:
动态静力学参数:m2=20 kg , JS2 = 1.1 kg m2 ,m5=50 kg
表 2 阻抗力参数表
班级序号 1
2
3
4
5
6
7
8
9
10
Fr /N
500 600 700
800
900
1000 1100 1200 1300 1400
-1-
机械原理模块训练一
二、 训练要求
通过对干草压缩机六杆机构进行结构分析、运动分析和力分析,对该设备的运动性能做出 定量的计算,为新设备的设计与评价提供依据。 机构结构分析:了解机构组成,学会对机构工作原理简图表达,判断机构的结构组成是否可行。 机构运动分析:已知原动件运动参数情况下,学会求解机构输出端和机构中关键点的运动参数。 机构动态静力分析:当已知工作阻力时,需要给机器配置动力,通过平衡力求解可以获得;当 机器安装时需要知道支座的反力,可通过动态静力分析获得。
机械原理+阶段练习二及答案(5-6)

华东理工大学网络教育学院机械原理课程阶段练习二(第5-6章)第五章平面连杆机构及其设计一:选择题1、铰链四杆机构存在曲柄的必要条件是最短杆与最长杆长度之和( A )其他两杆长度之和。
A <=;B >=;C > 。
2、当行程速度变化系数k B时,机构就具有急回特性。
A <1;B >1;C =1。
3、当四杆机构处于死点位置时,机构的压力角( B ).A.为0o;B.为90o;C.与构件尺寸有关.4、对于双摇杆机构,最短构件与最长构件长度之和( A )大于其余两构件长度之和.A.一定;B.不一定;C.一定不.5、若将一曲柄摇杆机构转化为双曲柄机构,可将( B ).A.原机构曲柄为机构;B.原机构连杆为机架;C.原机构摇杆为机架.6、曲柄摇杆机构处于死点位置时( B )等于零度.A.压力角;B.传动角;C.极位角.7、偏置曲柄滑动机构中,从动件滑动的行程速度变化系数K( A )1.A.大于;B.小于;C.等于.8、曲柄为原动件的曲柄摇杆机构, 若知摇杆的行程速比系数K=1.5,那么极位角等于( C ).A.18;B.-18;C.36;D.72.9、曲柄滑块机构的死点只能发生在( B ).A.曲柄主动时;B.滑块主动时;C.连杆与曲柄共线时.10、当曲柄为主动件时,曲柄摇杆机构的最小传动角 min总是出现在( C ).A.连杆与曲柄成一条直线;B.连杆与机架成一条直线时;C.曲柄与机架成一条直线.11、四杆机构的急回特性是针对主动件作( A )而言的.A.等速运动;B.等速移动;C.与构件尺寸有关.12、平面连杆机构的行程速比系数K值的可能取值范围是( C ).A 0≤ K≤1B 0≤ K≤2C 1≤ K≤3D 1≤ K≤213、摆动导杆机构,当导杆处于极限位置时,导杆( A )与曲柄垂直.A.一定;B.不一定;C.一定不.14、曲柄为原动件的偏置曲柄滑动机构,当滑块上的传动角最小时,则( B ).A.曲柄与导路平行;B.曲柄与导路垂直;C.曲柄与连杆共线;D.曲柄与连杆垂直.15、在曲柄摇杆机构中,若增大曲柄长度,则摇杆摆角将( A )A.加大;B.减小;C.不变;D.加大或不变.16、铰链四杆机构有曲柄存在的必要条件是( A )A.最短杆与最长杆长度之和小于或等于其他两杆长度之和B.最短杆与最长杆长度之和大于其他两杆长度之和C.以最短杆为机架或以最短杆相邻的杆为机架二:填空题1、平面四杆机构有无急回特性取决于极位夹角θ的大小.2、曲柄滑快机构,当以滑块为原动件时,可能出现死点。
机械原理-连杆机构设计图解法_一_

连杆机构设计(图解法)
按给定连杆位置设计四杆机构 按给定两连架杆对应的角位移设计四杆机构
按给定的急回要求设计四杆机构
按给定连杆位置设计四杆机构
按给定连杆位置设计四杆机构
给定连杆三个位置,设计四杆机构
B1
A1
E1
A
2
E2
A3
B2
A0
B0
E3
B3
A0 A1 B1 B0就是所求机构的第一个位置。
m12
N1 M2
n12
M1 M0
动平面上任选两个参考点 M、N——动铰链
N2
12 12
P12
N0
m12上任选M0—定铰链
n12上任选N0—定铰链
引导平面由E1到E2的位置的 四杆机构有无数
两连架杆上动铰链和定铰链与极连线的夹角 相等∠M1 P12 M0= ∠N1 P12 N0= θ 12/2
方法:半角转动法
方法:半角转动法
原理
N1 M1 M2 E1 E2 N2
动平面由E1到E2的位置过程中,动 平面上任意一点都可以视为绕某点 P12转θ 12
P12——转动极(极)
θ 12——有向转动角
E1、E2两个位置一经确定,P12、 θ 12就确定与选择的参考点无关
12
P12
转动极P12 的求法
m12
N1 M2
n12
M1
连接P12M1和P12M2,所夹 的角即为转动角θ 12
N2
12 12
P12
连接P12 N1和P12 N2 ,所 夹的角也为转动角θ 12 ∠M1 P12 M2= ∠N1 P12 N2= θ 12
动平面由E1到E2的位置可由四杆机构实现
机械原理习题及答案:第5章--连杆

B
31 1
2
32
θ
B1 1 1 4
A
12
ω
B2
2
21
2
C
(b)
5-12 如图为开槽机上用的急回机构。原动件 BC 匀速转动,已知 a = 80mm , b = 200mm ,
l AD = 100mm , l DF = 400mm 。
(1) 确定滑块 F 的上、下极限位置; (2) 确定机构的极位夹角; (3) 欲使极位夹角增大,杆长 BC 应当如何调整?
5-21 设计一个偏心曲柄滑块机构。已知滑块两极限位置之间的距离 C1C 2 =50 ㎜,导路的偏 距 e=20 ㎜,机构的行程速比系数 K=1.5。试确定曲柄和连杆的长度 l AB , l BC 。
B A C2 C1
题图 5-21 解:行程速比系数 K=1.5,则机构的极位夹角为
e
θ = 180°
C B A D
5-10 图中的四杆闭运动链中,已知 a = 150mm , b = 500mm , c = 300mm , d = 400mm 。欲设计一个铰链四杆机构,机构的输入运动为单向连续转动,确定在下列 情况下,应取哪一个构件为机架?①输出运动为往复摆动;②输出运动也为单向连续转动。
解:① 当输出运动为往复摆动时,机构应为曲柄摇杆机构,此时应取四杆中最短杆的相邻 杆,即 b 或 d 作为机架。 ② 当输出运动也为单向连续转动时, 机构应为双曲柄机构, 此时应取四杆中的最短杆, 即 a 作为机架。 5-11 在图 a、b 中, (1) 说明如何从一个曲柄摇杆机构演化为图 a 的曲柄滑块机构、再演化为图 b 的摆 动导杆机构; (2) 确定构件 AB 为曲柄的条件; (3) 当图 a 为偏置曲柄滑块机构,而图 b 为摆动导杆机构时,画出构件 3 的极限位
机械原理连杆

机械原理连杆
连杆是机械原理中的一个重要组成部分,它通常是由两个或多个杆件组成的。
连杆可以将旋转运动转化为直线运动,或者将直线运动转化为旋转运动。
它在许多机械装置中被广泛应用,如发动机、发电机、汽车零部件等。
连杆的工作原理是基于杆件的运动约束,其运动能够满足特定的几何关系。
一般来说,连杆可以分为滑动连杆和转动连杆两种类型。
滑动连杆是指其中至少有一个杆件进行直线滑动运动的连杆。
在滑动连杆中,一端通常是固定的,而另一端可以在轴承的支持下做直线滑动。
通过改变杆件的长度或角度,可以实现连杆的运动控制。
转动连杆是指其中所有杆件都进行旋转运动的连杆。
在转动连杆中,两个杆件通过一个固定的转轴连接,从而实现转动运动。
通过改变杆件的长度或角度,可以实现连杆的运动控制。
连杆具有很多的应用,其中最常见的是作为曲柄连杆机构。
曲柄连杆机构是一种将旋转运动转化为直线运动的装置,广泛应用于发动机、泵、压缩机等领域。
在曲柄连杆机构中,连杆的长度和角度决定了输入转动运动的幅度和速度。
此外,连杆还可以用于构建机械传动系统,如齿轮传动、皮带传动等。
连杆在这些传动系统中起到了传递运动和力量的作用,实现了机械装置的正常工作。
总而言之,连杆是机械装置中非常重要的一个部件,它可以将旋转运动转化为直线运动,或者将直线运动转化为旋转运动。
通过改变连杆的长度和角度,可以实现连杆的运动控制,从而实现机械装置的正常工作。
机械原理与设计之平面连杆机构

机械原理与设计之平面连杆机构引言平面连杆机构是一种常见的机械装置,用于将旋转运动转化为直线运动或者将直线运动转化为旋转运动。
在机器设计中,平面连杆机构被广泛应用于各种机械装置,如发动机、机械手臂和汽车悬挂系统等。
本文将介绍平面连杆机构的基本原理、设计方法以及一些常见的平面连杆机构。
基本原理平面连杆机构由多个连杆组成,其中至少一个连杆可以旋转。
连杆通过连接处的铰链相互连接,形成一个闭合的链条。
其中一个连杆称为曲柄杆,用于提供旋转驱动力,而其他连杆则用于将驱动力传递给要执行的任务。
平面连杆机构的运动分析主要基于几何学原理和运动学原理。
平面连杆机构的运动是由各个连杆的长度、角度和运动速度决定的。
通过对各个连杆的长度和角度进行合理设计,可以实现所需的运动轨迹和速度。
平面连杆机构的设计必须考虑到各个连杆的运动约束、力学平衡以及运动的精确性和可靠性。
设计方法设计一个平面连杆机构需要经过以下几个步骤:1.确定设计需求:首先需要明确所需的运动特性和任务要求。
例如,是需要将旋转运动转化为直线运动还是将直线运动转化为旋转运动,还需要考虑到运动的速度、力量和精确性等因素。
2.确定连杆的长度和角度:通过几何学原理和运动学原理,可以根据设计需求确定各个连杆的长度和角度。
连杆的长度和角度直接影响着机构的运动轨迹和速度。
3.确定连杆的连接位置:在设计过程中,还需要确定各个连杆的连接位置,即铰链的位置。
铰链的位置直接决定了连杆之间的运动关系。
4.分析运动特性:通过运动学分析,可以计算出机构的运动特性,如连杆的位移、速度和加速度等。
这些数据可以用于评估机构的性能和合理性。
5.进行力学分析:在设计过程中,还需要进行力学分析,以确保机构的稳定性和可靠性。
力学分析可以确定机构的最大负载和各个连杆之间的力传递情况。
6.优化设计:根据运动特性和力学分析的结果,可以对设计进行优化。
通过调整连杆的长度、角度和连接位置等参数,可以改进机构的性能和可靠性。
机械原理连杆机构的应用

机械原理连杆机构的应用1. 引言机械原理是工程学中的一门基础课程,它研究的是机械工程中各种机械部件运动与力学性能的基本原理和方法。
连杆机构是机械原理中的一个重要内容,它由多个刚体连接而成,用于将旋转运动转化为直线运动或者将直线运动转化为旋转运动。
本文将探讨连杆机构的应用领域及其在一些具体行业中的运用。
2. 连杆机构的基本原理连杆机构由连杆和连杆的连接副构成,常见的连杆有曲柄、摇杆、滑块等。
连杆机构的运动特点主要包括以下几个方面: - 连杆的长度和角度决定了机构的运动轨迹; - 连杆可以传递和转换动力; - 连杆的长度和角度对机构的性能和运动速度有影响; - 通过改变连杆的连接方式和结构,可以实现不同的运动规律和功能。
3. 连杆机构的应用领域连杆机构作为一种基本的运动转换机构,在工程学中有广泛的应用。
以下是一些常见的应用领域:3.1 汽车工业连杆机构在汽车工业中起着关键作用,主要应用于发动机和悬挂系统。
在发动机中,连杆机构将活塞的上下运动转化为曲轴的旋转运动,从而驱动汽车前进。
而在悬挂系统中,连杆机构用于连接车轮和车身,通过调节连杆的长度和角度来实现车身的稳定性和操控性。
3.2 机械制造在机械制造领域,连杆机构常常用于实现复杂的运动转换和工艺操作。
例如,在机床加工中,连杆机构能够将旋转运动转化为直线运动,实现工件的切削加工。
此外,连杆机构还被广泛运用于起重机械、输送设备等工程机械的设计和制造过程中。
3.3 机器人领域机器人是现代工业生产中不可或缺的一部分,而连杆机构在机器人的运动机构中占有很重要的地位。
机器人的各种关节和手臂动作都是通过引入连杆机构实现的,使得机器人能够具备多自由度的灵活运动,从而适应不同的工作环境和任务。
3.4 传输系统连杆机构在传输系统中也有广泛的应用。
比如,在工业生产中,连杆机构可以用来传输物料,实现物料的输送、分拣和定位等功能。
此外,连杆机构还可以应用于流水线装配系统、飞行器起落架等领域。
机械原理各章指导(南京航天)

第1章绪论本章讲述了机械原理研究的对象与内容、机械原理课程的重要性与学习方法、机械原理学科的发展概况,主要内容如下:1.“机械”是“机器”和“机构”的总称。
机器具有三个特点,即(1)都是人为的实体组合;(2)在工作中,其中各实体具有确定的运动;(3)在生产劳动中,能实现能的转换、代替或减轻人类的劳动以完成有用的功。
机构具有机器的前两个特点。
2.本课程是研究机器和机构理论的一门科学,主要内容有:各种机构共同的基本问题、几种常用机构所特有的问题、机器动力学问题、机械系统运动方案的设计。
3.本课程在专业教学计划中占有十分重要的地位,在发展国民经济方面也具有重要意义;机械原理是一门技术基础课程,为以后学习机械设计和有关专业课程,以及掌握机械方面的最新成就打下理论基础。
复习思考题1.什么叫机构? 什么叫机器? 什么叫机械? 它们之间有何联系? 试举例说明之。
2.机械原理的课程内容是什么? 学习本课程应注意哪些方面?第2章平面机构的结构分析本章讨论平面机构的结构分析的有关问题,主要内容如下:1.从运动的角度来看,机构是由具有确定的相对运动的构件组成的,而构件之间是通过运动副联接的。
根据运动副元素是面、点或线,有低副、高副之分。
两个以上的构件通过运动副的联接而构成的系统称为运动链,机构可以看作具有机架和原动件且有确定的相对运动的运动链。
2.机构运动简图是用简单的线条和规定的符号表示构件和运动副,并按一定比例表示出各运动副相对位置的简单图形。
运动副的符号和常用机构的运动简图都有规定画法。
机构运动简图要表示出机构中构件的相对运动关系。
3.机构具有确定的相对运动的条件是机构自由度等于原动件数目。
自由度F的基本计算公式为:F=3n-2PL-PH在利用机构运动简图计算机构自由度时要注意复合铰链、局部自由度及虚约束等问题。
4.引入基本杆组的概念后,机构是由原动件、机架和若干基本杆组所组成。
常用的基本杆组有Ⅱ级杆组、Ⅲ级杆组和Ⅳ级杆组。
机械原理与设计平面连杆机构

机械原理与设计平面连杆机构引言连杆机构是机械工程中非常重要的一类机构,广泛应用于各种机械装置中。
平面连杆机构是其中最简单、常见的一种连杆机构。
本文将介绍机械原理与设计平面连杆机构的基本概念、工作原理及设计要点。
一、连杆机构的基本概念连杆机构是指由刚性杆件连接而成的机械系统,它具有一定的自由度和特定的运动特性。
平面连杆机构是指所有杆件均在同一平面内运动的连杆机构。
平面连杆机构由连杆、铰链和主动副组成。
连杆:连杆是连接其他杆件的刚性杆件,具有一定的长度和形状。
铰链:铰链是连接连杆的关节,它允许连杆相对旋转,保持一定的约束。
主动副:主动副是指能够驱动整个机构运动的关节,通常由电机或气动装置驱动。
二、平面连杆机构的工作原理平面连杆机构的工作原理是利用连杆的长度、角度和铰链的位置来实现特定的运动。
在平面连杆机构中,主要有以下几种常见的运动形式:1.顺序运动:当主动副驱动时,各个连杆按照一定的顺序依次运动。
这种运动形式常见于内燃机的活塞连杆机构。
2.并联运动:当多个连杆同时受到主动副驱动时,它们以同步的方式进行运动。
这种运动形式可以用来实现机械手臂等装置的运动。
3.逆运动:当主动副驱动时,连杆和铰链的位置发生变化,使机构实现逆向运动。
这种运动形式常见于一些特殊装置的设计。
平面连杆机构的工作原理和运动形式可以通过机械原理的分析和运动学的计算来实现。
其中,机械原理用来推导连杆运动的基本方程,而运动学则用来分析连杆机构的运动特性和运动关系。
三、平面连杆机构的设计要点在设计平面连杆机构时,需要考虑以下几个要点:1.运动要求:根据具体的工作要求,确定机构需要实现的运动形式和工作速度等指标。
2.运动范围:根据工作空间和杆件的长度等约束条件,确定连杆机构的运动范围。
3.结构强度:根据承载力和杆件的材料等因素,设计连杆机构的结构强度和刚度,以确保机构的正常工作。
4.运动平稳性:通过运动学计算和动力学分析,确定机构的运动是否平稳,以及如何减小振动和冲击力。
机械原理第三版部分答案魏兵、喻全余

60
50
B C y
BC
18 32
y
50
第5章 平面连杆机构及其设计
B
C A y
BC
18 32
D y
60
95.74
第5章 平面连杆机构及其设计
5-13 设计一曲柄滑块机构,已知滑块的行程s=60mm,偏距 e=20mm,行程速比系数K=1.25,试求:(1)曲柄AB的长度lAB 和连杆BC的长度lBC。(2)若滑块由左向右为工作行程,要使 机构具有急回运动特性,原动曲柄应沿哪个方向转动?(3)以 曲柄为原动件时,在图中标出γmin。(4)以滑块为原动件时, 机构有无死点位置?若有,在图中标出。
VED 0.5827m/s
pБайду номын сангаас
4
VED d
0.5827 0.54
1.0791s-1
pe 22.52mm
e
VE 0.2252m/s
第5章 平面连杆机构及其设计
5-11 如图所示为用 铰链四杆机构控 制的加热炉门启 闭机构,加热时 炉门能关闭紧密, 炉门开启后能处 于水平位置。炉 门上两铰链的中 心距为50mm,与 固定件连接的铰 链点A和D装在yy 轴线上,其相互 位置的尺寸如图 所示,试设计此
7-18 有一对渐开线外啮合标准直齿圆柱齿轮啮合,已知z1=19, z2=42,m=5mm,试求:
(1)两轮的几何尺寸和标准中心距a以及重合度εα; (2)按比例作图,画出理论啮合线N1N2,在其上标出实际啮合线
B1B2,并标出单齿啮合区和双齿啮合区以及节点的位置。
第7章 齿轮机构及其设计
解:(1)两轮的几何尺寸和标准中心距a计算见下表。
B
pb 100mm
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.3 多杆机构
缺点:行程大小的调节是通 过改变曲柄长度a的大小。 因此,改变行程的同时必然
改变了机构的急回特性。
a
m
2arcsina() b
k1 180m 2 180m
(1) 要求机构有较大行程的往复移动,且有显著的急回特性时
B ①
①
①
θ
C
A
①
对心曲柄滑块机构
a
+
a
回转导杆机构
A B
调节行程的大小只须改变AB的长度,而不改变机构的急回特性。 插床利用了回转导杆机构的变速转动性质。
a 1 ,b c d 2 的 一 族 连 杆 曲 线
5.2.2 曲柄滑块机构
B
B
C C
A A
D B
C A
转动副D的同性异形演化。
曲柄滑块机构可看作 由曲柄摇杆机构演化 而得。
e = 0, 对心曲柄滑块机构 e 0 , 偏置曲柄滑块机构
对心曲柄滑块机构
对心曲柄滑块机构
曲柄回转中心A在过C点导路延长线上,称对心曲柄滑块机构
MC1C290
2. 以M为圆心,MC1为半径 画圆,则圆上圆弧 C 1 C 2 所对应的圆心角
C1MC2 2
3. 则在此圆上任选一点A, 都满足圆上圆弧 C 1 C 2
4. 所对应的圆周角
C1AC2
不要忘记检验机构中是否存在曲柄!
C2
C1
90
b MM
A a B1
D
B2
M
AC1 ba
AC2 ba
+
B ①
①
θ
A
① C
①
A1
+
2 3
4
B
连杆AB中点的轨迹为圆,其余点轨迹为椭圆 1. 椭圆仪机构
2) 椭圆仪机构的演化机构 十字滑槽联轴器
教材P78图5.17谁是投影面?
A1
2 3
4
B
变换机架
1 4 3
2
1
4 3
+
2
转动的主动件+RPP杆组而成 1 3
3) 正弦机构
A
B
y
可用于小型冲压机
若 lAB 取 单位:长 ys度 in
C2 ——C1,构件1
转动 2 构件3
转 180°ω3>ω1
1
C p12
p14 B
1
2
p23
p13
Hale Waihona Puke 243∞p13
∞ C2
A p34
C1
∞
当摆动导杆机构中 a > b 时,曲柄整周转动也能带动导杆整周转 动,机构称为回转导杆机构。
5.2.4 几种其他类型的四杆机构
Ⅱ级杆组共有5种类型,将他们分别与主动件和机架相连接组 成四杆机构:
C2
C1
β1
β2
e
α1 b θ
s
aA
α2
B2
k 1 2
—极位夹角
B1
1
arcsin
b
e
a
2
arcsin
b
e
a
12 s2a2b22b2a2cos
A B
C 1) 曲柄滑块机构 2) 定块机构 3)摆块机构 4) 导杆机构
A B
5.2.3 导杆机构
A B
A B
C
变换机架 曲柄滑块
就 是 如 此 , 几度风 雨几春 秋。
插床工作机构 连续转动→往复移动
叉车的举升机构 引导一个构件按给定序列位置运动
平面连杆机构的应用
传送装置的主体机构 使构件上指定点按预期轨迹运动
平面连杆机构的应用
5.2 四杆机构的运动变换功能和性能指标
5.2.1 铰接四杆机构:四个构件以四个转动副连接 而成的平面机构。
m 45
3. 求极位夹角
k 1 180 k 1
1 . 2 1 180 1 .2 1
16 . 36
可见,只需在固定平面上找到一点A,使 C1AC2 ,A点即
为曲柄转动中心,进而可以求出曲柄摇杆机构。
C2
C1
90
M
A
D
M
1. 连接C1C2,做中垂线, 在其上找到一点M,使
1 B M
所用时间为 t 2 ,对应 2
1、传动性能好,压力角 0
2、有显著的急回特性
A2
b 2a
A1
m
2arcsina() b
1180m
M
C
2180m
急回系数: k1 180m 2 180m
匀速转动 往复摆动
m
k1180 k1
摆动导杆机构的特点:
1 B
1
a
A2
b 2
A1
M
3
A1 A2 往行程
第5章 平面连杆机构及其设计
本章目录
§5.1 平面连杆机构的特点及应用 §5.2 四杆机构的运动变换功能和性能指标 §5.3 多杆机构 §5.4 连杆机构设计概论 §5.5 连杆机构设计—解析法 §5.6 连杆机构设计—图解法
§ 5.1 平面连杆机构的特点及应用
连杆机构:全部构件都以低副联结而成的机构。
D C2
死点的利弊—克服坏处
1. 利用惯性来渡过死点 2. 利用错位排列的方法克服死点
死点的利弊—利用益处 利用死点,防止起落架收回
死点的利弊—利用益处 利用死点,夹紧机构
5.2.1.4 连杆曲线
连杆曲线:平面连杆机构中的连杆作平面复杂运动,其上任一 点在运动过程的中轨迹称为连杆曲线。
铰接四杆机构的连杆曲线一般是六次代数曲线。
平面连杆机构的特点
连续转动 往复摆动
优点: 连续转动 往复移动 1 能够实现多种形式的运动变换
2 低副连接承载能力强,易加工 连续转动 连续转动
3 运动副保证构件接触,不需外力锁合
缺点:
1 连杆机构平衡困难,尤其对于高速运转的机构
平面连杆机构中最基本的、最常用的是四杆机构
平面连杆机构的应用
死点: 机 构 处 于 9 0 ( 或 0 ) 的 位 置 称 为 死 点 位 置
对于铰接四杆机构来说,死点是连杆与从动件共线的位置。
B1
A B2
如图曲柄摇杆机构: 当曲柄为主动件时,不会出现死点位置;
当摇杆为主动件时,会出现两个死点位置。
C1 当机构处于死点位置时,无论主动件上施加 多大的力也不会使机构运动。
C1
c1 c 2 工作行程
C2
所用时间为 t 1 ,对应 1
1
B1
A
2
B2
M D
c2 c1 回程
所用时间为 t 2 ,对应 2
M -摇杆摆角范围
-极位夹角
极位夹角:在从动件处于两个极限位置时,对应
连杆位置的夹角θ 被称为极位夹角。
K -急回系数
从 动 件 快 行 程 速 度 从 动 件 慢 行 程 时 间 k从 动 件 慢 行 程 速 度 从 动 件 快 行 程 时 间 1
岁 月 像 极 了一 根盘根 交错的 藤,茂 密而坚 韧,即 使曲曲 折折, 须子却 扎的很 深 。 翻 一 翻 墙 角的日 历,好 像只是 一眨眼 ,大半 年便过 去了, 我一直 偏爱这 老 式 的 日 历 ,过一 天翻一 张,日 子久了 ,翻过 去的纸 张,侵 着微微 的黄晕 ,夹杂 着 丝 丝 缕 缕 的烟火 味。这 样的细 数时光 ,让生 活更多 了回味 与盼头 。 我 总 是 怀 念 起 年 轻 的时候 ,走过 的路, 去过的 城市。 那份所 到之处 都会带 给我年 轻的朝 气 与 豪 迈 的 热血与 激情。 走 过 了 那 么多的 路,不 禁感慨 ,年轻 人如果 条件允 许 , 尽 可 能 的要多 迈开腿 ,走出 去多看 看,如 果青春 没那么 多一往 无前, 老了又 有 多 少 回 忆 可做为 茶余饭 后的谈 资? 无 数 次 在午 夜梦回 间,我 仿佛再 一次骑 着 俊 马 驰 骋 于草原 ,再一 次轻摇 浆板, 放眼云 烟于水 墨江南 。再一 次领略 西藏的 神 秘 雄 伟 , 再一次 亲吻梦 里的胡 杨。我 想在我 美好的 青春年 华里, 只要一 抬腿就 可 以 去 自 己 想去的 地方。 待到暮 年,我 可以翻 一翻老 照片, 寻找下 自己年 轻的影 子 。 生 活 里 那 些布满 青色苔 藓的日 子,终 归会被 一丝暖 阳所照 耀,人 生的路
曲柄摇杆机构
C B
非整周转动副
整周转动副
A
D
非整周转动副
C
C
C
B
B
B
A
D
(a)
双曲柄机构
A
D
(b)
曲柄摇杆机构
A
D
(c)
双摇杆机构
5.2.1.1
C2
铰
接
四
B
C b
C1
c
杆
a
机
A
构
B1
中
D
B2
曲
柄
存
d
在
条
件
令a < d、 c<b
bc
ad
BD max
bc
d
a
BD min
a d b c b c d a
B
a
b
B1
A
B2 C1
M
C
C2 S=2a
(1) 显然,曲柄存在条件为:a ≤ b 即动铰链B能通过M点。
(2) 曲柄与连杆(机架)两次共线位置对应滑块两个极限位置。
(3) 曲柄为主动件,滑块行程 S = 2a,显然无急回特性。
曲柄为主动件时,压力角 为保证传力性能好,推荐
=aBC1A~显1然,,[m]a= x =19 a. rc5sin~(2 ba3 ).5