【步步高】高中数学 2.1.3分层抽样基础过关训练 新人教A版必修3

合集下载

高中数学2.1.3分层抽样课时分层作业含解析人教A版必修3.doc

高中数学2.1.3分层抽样课时分层作业含解析人教A版必修3.doc

课时分层作业(十一) 分层抽样(建议用时:60分钟)一、选择题1.某校共有160名教职工,其中一般教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的意见,用分层抽样抽取一个容量为20的样本,则应抽取的后勤人员人数是( )A .3B .2C .15D .4A [因为160人抽取20人,所以抽取的比例为20160=18,因为后勤人数为24,所以应抽取24×18=3.故选A.] 2.某中学高二年级共有学生2 400人,为了解他们的身体状况,用分层抽样的方法从中抽取一个容量为80的样本,若样本中共有男生42人,则该校高二年级共有女生( )A .1 260B .1 230C .1 200D .1 140D [设女生总人数为x 人,由分层抽样的方法,可得抽取女生人数为80-42=38(人),所以802 400=38x,解得x =1 140.故选D.] 3.一批灯泡400只,其中20 W 、40 W 、60 W 的数目之比是4∶3∶1,现用分层抽样的方法产生一个容量为40的样本,三种灯泡依次抽取的个数为( )A .20,15,5B .4,3,1C .16,12,4D .8,6,2A [40×48=20.40×38=15,40×18=5.] 4.对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p 1,p 2,p 3,则( )A .p 1=p 2<p 3B .p 2=p 3<p 1C .p 1=p 3<p 2D .p 1=p 2=p 3D [不管是简单随机抽样、系统抽样还是分层抽样,它们都是等可能抽样,每个个体被抽中的概率均为n N.]5.某校做了一次关于“感恩父母”的问卷调查,从8~10岁,11~12岁,13~14岁,15~16岁四个年龄段回收的问卷依次为:120份,180份,240份,x 份.因调查需要,从回收的问卷中按年龄段分层抽取容量为300的样本,其中在11~12岁学生问卷中抽取60份,则在15~16岁学生中抽取的问卷份数为( )A .60B .80C .120D .180C [11~12岁回收180份,其中在11~12岁学生问卷中抽取60份,抽样比为13,因为分层抽取样本的容量为300,故回收问卷总数为30013=900份,故x =900-120-180-240=360份,360×13=120份.] 二、填空题6.在120个零件中,一级品24个,二级品36个,三级品60个,用分层抽样的方法从中抽取容量为20的样本,则每个个体被抽取的可能性是________.16 [在分层抽样中,每个个体被抽取的可能性相等,且为样本容量总体容量.所以每个个体被抽取的可能性是20120=16.] 7.我国古代数学算经十书之一的《九章算术》中有一“衰分”问题:“今有北乡八千七百五十人,西乡七千二百五十人,南乡八千三百五十人,凡三乡,发役四百八十七人,则西乡遣________人”.145 [今有北乡八千七百五十人,西乡七千二百五十人,南乡八千三百五十人,凡三乡,发役四百八十七人,则西乡遣487×7 2508 750+7 250+8 350=145(人).] 8.下列问题中,采用怎样的抽样方法较为合理?(1)从10台电冰箱中抽取3台进行质量检查;(2)某学校有160名教职工,其中教师120名,行政人员16名,后勤人员24名,为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本;(3)体育彩票000 001~100 000编号中,凡彩票号码最后三位数为345的中一等奖.(1)________ (2)________ (3)________.(1)抽签法 (2)分层抽样 (3)系统抽样9.某单位有2 000名职工,老年、中年、青年分布在管理、技术开发、营销、生产各部门中,如下表所示:(2)若要开一个25人的讨论单位发展与薪金调整方面的座谈会,则应怎样抽选出席人?[解] (1)按老年、中年、青年分层抽样,抽取比例为402 000=150. 故老年人,中年人,青年人各抽取4人,12人,24人,(2)按管理、技术开发、营销、生产进行分层,用分层抽样,抽取比例为252 000=180, 故管理,技术开发,营销,生产各抽取2人,4人,6人,13人.10.为了考察某校的教学水平,抽查了该学校高三年级部分学生的本年度考试成绩.为了全面地反映实际情况,采取以下三种考察方式(已知该校高三年级共有14个教学班,并且每个班内的学生都已经按随机方式编好了学号,假定该校每班人数都相同).①从全年级14个班中任意抽取一个班,再从该班中任意抽取14人,考察他们的学习成绩;②每个班都抽取1人,共计14人,考察这14个学生的成绩;③把该校高三年级的学生按成绩分成优秀,良好,普通三个级别,从中抽取100名学生进行考查(已知若按成绩分,该校高三学生中优秀学生有105名,良好学生有420名,普通学生有175名).根据上面的叙述,试回答下列问题:(1)上面三种抽取方式中,其总体、个体、样本分别指什么?每一种抽取方式抽取的样本中,其样本容量分别是多少?(2)上面三种抽取方式各自采用何种抽取样本的方法?(3)试分别写出上面三种抽取方法各自抽取样本的步骤.[解] (1)这三种抽取方式中,其总体都是指该校高三全体学生本年度的考试成绩,个体都是指高三年级每个学生本年度的考试成绩.其中第一种抽取方式中样本为所抽取的14名学生本年度的考试成绩,样本容量为14;第二种抽取方式中样本为所抽取的14名学生本年度的考试成绩,样本容量为14;第三种抽取方式中样本为所抽取的100名学生本年度的考试成绩,样本容量为100.(2)第一种方式采用的方法是简单随机抽样法;第二种方式采用的方法是系统抽样法和简单随机抽样法;第三种方式采用的方法是分层抽样法和简单随机抽样法.(3)第一种方式抽样的步骤如下:第一步:在这14个班中用抽签法任意抽取一个班;第二步:从这个班中按学号用随机数表法或抽签法抽取14名学生,考察其考试成绩. 第二种方式抽样的步骤如下:第一步:在第一个班中,用简单随机抽样法任意抽取某一学生,记其学号为x ;第二步:在其余的13个班中,选取学号为x +50k (1≤k ≤12,k ∈Z )的学生,共计14人. 第三种方式抽样的步骤如下:第一步:分层,因为若按成绩分,其中优秀生共105人,良好生共420人,普通生共175人,所以在抽取样本中,应该把全体学生分成三个层次;第二步:确定各个层次抽取的人数,因为样本容量与总体数的比为100∶700=1∶7,所以在每个层抽取的个体数依次为1057,4207,1757,即15,60,25; 第三步:按层分别抽取,在优秀生中用简单随机抽样法抽取15人,在良好生中用简单随机抽样法抽取60人,在普通生中用简单随机抽样法抽取25人.第四步:将所抽取的个体组合在一起构成样本.1.已知某地区中小学生人数和近视情况分别如图①和图②所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为( )A .200,20B .100,20C .200,10D .100,10A [该地区中小学生总人数为3 500+2 000+4 500=10 000人,则样本容量为10 000×2%=200人,其中抽取的高中生近视人数为2 000×2%×50%=20.]2.某初级中学共有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人进行某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案.使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为001,002,003,…,270;使用系统抽样时,将学生统一随机编号为001,002,003,…,270,并将整个编号平均分为10段.如果抽得的号码有下列四种情况:①007,034,061,088,115,142,169,196,223,250;②005,009,100,107,111,121,180,195,200,265;③011,038,065,092,119,146,173,200,227,254;④036,062,088,114,140,166,192,218,244,270.关于上述样本的下列结论中,正确的是( )A .②③都不能为系统抽样B .②④都不能为分层抽样C .①④都可能为系统抽样D .①③都可能为分层抽样D [系统抽样又称为“等距抽样”,做到等距的有①③④,但只做到等距还不一定是系统抽样,还应做到10段中每段要抽1个,检查这一点只需看第一个元素是否在001~027范围内,结果发现④不符合,同时,若为系统抽样,则分段间隔k =27010=27,④也不符合这一要求,所以可能是系统抽样的为①③,因此排除A ,C ;若采用分层抽样,一、二、三年级的人数比例为4∶3∶3,由于共抽取10人,所以三个年级应分别抽取4人、3人、3人,即在001~108范围内要有4个编号,在109~189和190~270范围内要分别有3个编号,符合此要求的有①②③,即它们都可能为分层抽样(其中①③在每一层内采用了系统抽样,②在每一层内采用了简单随机抽样),所以排除B.]3.某高中针对学生发展要求,开设了富有地方特色的“泥塑”与“剪纸”两个社团,已知报名参加这两个社团的学生共有800人,按照要求每人只能参加一个社团,各年级参加社团的人数情况如下表:其中x ∶y ∶z =5∶3∶2,且“泥塑”社团的人数占两个社团总人数的5,为了了解学生对两个社团活动的满意程度,从中抽取一个50人的样本进行调查,则从高二年级“剪纸”社团的学生中应抽取________人.6 [因为“泥塑”社团的人数占总人数的35,故“剪纸”社团的人数占总人数的25,所以“剪纸”社团的人数为800×25=320.因为“剪纸”社团中高二年级人数比例为y x +y +z=32+3+5=310,所以“剪纸”社团中高二年级人数为320×310=96.由题意知,抽样比为50800=116,所以从高二年级“剪纸”社团中抽取的人数为96×116=6.] 4.某机关老年、中年、青年的人数分别为18,12,6,现从中抽取一个容量为n 的样本,若采用系统抽样和分层抽样,则不用剔除个体.当样本容量增加1时,若采用系统抽样,需在总体中剔除1个个体,则样本容量n =________.6 [当样本容量为n 时,因为采用系统抽样时不用剔除个体,所以n 是18+12+6=36的约数,n 可能为1,2,3,4,6,9,12,18,36.因为采用分层抽样时不用剔除个体,所以n 36×18=n 2,n 36×12=n 3,n 36×6=n 6均是整数,所以n 可能为6,12,18,36.又因为当样本容量增加1时,需要剔除1个个体,才能用系统抽样,所以n +1是35的约数,而n +1可能为7,13,19,37,所以n +1=7,所以n =6.]5.某中学举行了为期3天的新世纪体育运动会,同时进行全校精神文明擂台赛.为了解这次活动在全校师生中产生的影响,分别在全校500名教职员工、3 000名初中生、4 000名高中生中作问卷调查,如果要在所有答卷中抽出120份用于评估.(1)应如何抽取才能得到比较客观的评价结论?(2)要从3 000份初中生的答卷中抽取一个容量为48的样本,如果采用简单随机抽样,应如何操作?(3)为了从4 000份高中生的答卷中抽取一个容量为64的样本,如何使用系统抽样抽取到所需的样本?[解] (1)由于这次活动对教职员工、初中生和高中生产生的影响不会相同,所以应当采取分层抽样的方法进行抽样.因为样本容量为120,总体个数为500+3 000+4 000=7 500,则抽样比:1207 500=2125, 所以有500×2125=8,3 000×2125=48, 4 000×2125=64,所以在教职员工、初中生、高中生中抽取的个体数分别是8,48,64. 分层抽样的步骤是①分层:分为教职员工、初中生、高中生,共三层.②确定每层抽取个体的个数:在教职员工、初中生、高中生中抽取的个体数分别是8,48,64.③各层分别按简单随机抽样或系统抽样的方法抽取样本.④综合每层抽样,组成样本.这样便完成了整个抽样过程,就能得到比较客观的评价结论.(2)由于简单随机抽样有两种方法:抽签法和随机数法.如果用抽签法,要作3 000个号签,费时费力,因此采用随机数法抽取样本,步骤是①编号:将3 000份答卷都编上号码:0 001,0 002,0 003,…,3 000.②在随机数表上随机选取一个起始位置.③规定读数方向:向右连续取数字,以4个数为一组,如果读取的4位数大于3 000,则去掉,如果遇到相同号码则只取一个,这样一直到取满48个号码为止.(3)由于4 000÷64=62.5不是整数,则应先使用简单随机抽样从4 000名学生中随机剔除32个个体,再将剩余的3 968个个体进行编号:1,2,…,3 968,然后将整体分为64个部分,其中每个部分中含有62个个体,如第1部分个体的编号为1,2,…,62.从中随机抽取一个号码,若抽取的是23,则从第23号开始,每隔62个抽取一个,这样得到容量为64的样本:23,85,147,209,271,333,395,457,…,3 929.。

人教A高中数学必修3 2.1.3分层抽样同步训练【含答案】

人教A高中数学必修3 2.1.3分层抽样同步训练【含答案】

人教A 高中数学必修32.1.3分层抽样同步训练1.某校高三年级有男生500人,女生400人.为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查.这种抽样方法是( )A .系统抽样法B .抽签法C .随机数法D .分层抽样法解析:选D.500400=2520,根据定义知为分层抽样,故选D.2.一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本.则从上述各层中依次抽取的人数分别是( )A .12,24,15,9B .9,12,12,7C .8,15,12,5D .8,16,10,6解析:选D.由题意,各种职称的人数比为160∶320∶200∶120=4∶8∶5∶3,所以抽取的具有高、中、初级职称的人数和其他人员的人数分别为40×420=8,40×820=16,40×520=10,40×320=6.3.某单位共有老、中、青职工430人,其中有青年职工160人,中年职工人数是老年职工人数的2倍.为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为( )A .9B .18C .27D .36解析:选B.设老年职工有x 人,则中年职工有2x 人,所以160+x +2x =430,得x =90.由题意老年职工抽取人数为90×32160=18,故选B.4.某学校共有师生2400人,现用分层抽样的方法从所有师生中抽取一个容量为160的样本,已知学生中抽取的人数为150,那么该学校教师的人数是________.解析:抽样比为:1602400=115,教师抽取的人数为160-150=10.∴教师人数为10÷115=150.答案:1501.某校现有高一学生210人,高二学生270人,高三学生300人,学校学生会用分层抽样的方法从这三个年级的学生中随机抽取数名学生进行问卷调查.如果已知从高一学生中抽取的人数为7,那么从高三学生中抽取的人数应为( )A .10B .9C .8D .7解析:选A.7210×300=10.2.已知某单位有职工120人,男职工有90人,现采用分层抽样(按男、女分层)抽取一个样本,若已知样本中有27名男职工,则样本容量为( )A .30B .36C .40D .没法确定解析:选B.抽取比例为2790=310,故样本容量为:310×120=36.3.某城区有农民、工人、知识分子家庭共计2000家,其中农民家庭1800户,工人家庭100户.现要从中抽取容量为40的样本,调查家庭收入情况,则在整个抽样过程中,用到的抽样方法有( )①简单随机抽样 ②系统抽样 ③分层抽样A .②③B .①③C .③D .①②③解析:选 D.由于各类家庭有明显差异,所以首先应用分层抽样的方法分别从三类家庭中抽出若干户.又由于农民家庭户数较多,那么在农民家庭这一层宜采用系统抽样;而工人、知识分子家庭户数较少,宜采用简单随机抽样.故整个抽样过程要用到①②③三种抽样方法.4.下列抽样方式中,是系统抽样的有( )①某单位从老年、中年、青年职工中按2∶5∶3的比例选取职工代表;②搞市场调查,规定在商店门口随机地抽一些人进行询问,直到调查到规定的人数为止;③3D 福利彩票的中将号码用摇奖机摇奖;④规定凡购买到的明信片的最后的四位号码是“6637”的人获三等奖;⑤从参加模拟考试的1200名高中生按优、中、差抽取100人分析试题的作答情况.A .1个B .2个C .3个D .4个解析:选 A.①⑤有明显的层次,不宜采用系统抽样;对于②,由于事先不知道总体,抽样方法不能保证每个个体等可能地入样,故②不是系统抽样;③是简单随机抽样;④是系统抽样.5.某初级中学有学生270人,其中一年级108人,二、三年级各81人.现要从中抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案.使用分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用简单随机抽样和系统抽样时,将学生统一随机编号为1,2,…,270.如果抽得的号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270.则关于上述样本的下列结论中,正确的是( )A .②③都不能为系统抽样B .②④都不能为分层抽样C .①④都可能为系统抽样D .①③都可能为分层抽样解析:选D.因为③可能为系统抽样,所以答案A 不对;因为②为分层抽样,所以答案B 不对;因为④不为系统抽样,所以答案C 不对.故选D.6.奶粉添加三聚氰胺问题引起全社会关注,某市质量监督局为了保障人民的饮食安全,要对超市中奶粉的质量进行专项抽查.已知该市超市中各种类型奶粉的分布情况如下:老年人专用奶粉300种,普通奶粉240种,婴幼儿奶粉360种.现采用分层抽样的方法抽取150种进行检验,则这三种型号的奶粉依次应抽取( )A .56种,45种,49种B .45种,36种,69种C .50种,40种,60种D .32种,34种,84种解析:选C.抽样比为150300+240+360=16, ∴300×16=50,240×16=40,360×16=60.7.将一个总体分为A 、B 、C 三层,其个体数之比为5∶3∶2,若用分层抽样方法抽取容量为100的样本,则应从C 中抽取________个个体.解析:25+3+2×100=20. 答案:208.某校高一年级有x 名学生,高二年级有y 名学生,高三年级有z 名学生,采用分层抽样抽取一个容量为45的样本,高一年级被抽取20人,高二年级被抽取10人,高三年级共有学生300人,则此学校共有学生________人.解析:高三年级被抽取了45-20-10=15(人),设此学校共有学生N 人,则45N =15300,解得N =900.答案:9009.某桔子园有平地和山地共120亩,现在要估计平均亩产量,按一定的比例用分层抽样的方法共抽取10亩进行调查.如果所抽山地是平地的2倍多1亩,则这个桔子园的平地与山地的亩数分别为________、________.解析:设所抽平地的亩数为x ,则抽取山地的亩数为2x +1.∴x +2x +1=10,x =3.∴3÷(10÷120)=36,(10-3)÷(10÷120)=84.答案:36 8410.某校高一年级500名学生中,血型为O 的有200人,血型为A 的有125人,B 型的有125人,AB 型的有50人.为了研究血型与色弱的关系,要从中抽取一个容量为40的样本,应如何抽样?写出AB 型的抽样过程.解:因为40÷500=225,所以应用分层抽样法抽取血型为O 型的225×200=16(人),A 型的225×125=10(人),B 型的225×125=10(人),AB 型的225×50=4(人).AB 型的4人可以这样抽取:第一步:将50人随机编号,编号为1,2, (50)第二步:把以上50人的编号分别写在大小相同的一张小纸片上,揉成小球,制成号签.第三步:把得到的号签放入一个不透明的袋子中,充分搅拌均匀. 第四步:从袋子中逐个抽取4个号签,并记录上面的编号.第五步:根据所得编号找出对应的4人即可得到样本.11.设有120件产品,其中一级品有24件,二级品有36件,三级品有60件,用分层抽样法从中抽取一个容量为20的样本.试说明这种抽样方法是公平的.解:由于一级、二级、三级产品的数量之比为24∶36∶60=2∶3∶5,所以应分别从一级、二级、三级产品中抽取:20×210=4(件),20×310=6(件),20×510=10(件).所以每个个体被抽到的可能性分别为424=16,636=16,1060=16,显然都相等.所以这种抽样方法是公平的.12.选择合适的抽样方法抽样,并写出抽样过程.(1)有甲厂生产的30个篮球,其中一箱21个,另一箱9个,抽取3个;(2)有30个篮球,其中甲厂生产的有21个,乙厂生产的有9个,抽取10个;(3)有甲厂生产的300个篮球,抽取10个;(4)有甲厂生产的300个篮球,抽取30个.解:(1)总体容量较小,用抽签法.①将30个篮球编号,编号为00,01, (29)②将以上30个编号分别写在完全一样的一张小纸条上,揉成小球,制成号签;③把号签放入一个不透明的袋子中,充分搅拌;④从袋子中逐个抽取3个号签,并记录上面的号码;⑤找出和所得号码对应的篮球即可得到样本.(2)总体由差异明显的两个层次组成,需选用分层抽样法.①确定抽取个数,因为样本容量与总体的个数比为10∶30=1∶3,所以甲厂生产的应抽取213=7(个),乙厂生产的应抽取93=3(个);②用抽签法分别抽取甲厂生产的篮球7个,乙厂生产的篮球3个.这些篮球便组成了我们要抽取的样本.(3)总体容量较大,样本容量较小,宜用随机数表法.①将300个篮球用随机方式编号,编号为001,002,…,300; ②在随机数表中随机地确定一个数作为开始,如第8行第29列的数“7”开始.任选一个方向作为读数方向,比如向右读;③从数“7”开始向右读,每次读三位,凡不在001~300中的数跳过去不读,遇到已经读过的数也跳过去不读,便可依次得到10个号码,这就是所要抽取的10个样本个体的号码.(4)总体容量较大,样本容量也较大,宜用系统抽样法.①将300个篮球用随机方式编号,编号为000,001,002, (299)并分成30段,其中每一段包含30030=10个个体;②在第一段000,001,002,…,009这10个编号中用简单随机抽样抽出一个(如002)作为起始号码;③将编号为002,012,022,…,292的个体抽出,组成了所要抽取的样本.。

2021年高中数学 2.1.3分层抽样练习新人教A版必修3

2021年高中数学 2.1.3分层抽样练习新人教A版必修3

A组:1、一个单位共有职工200人,其中不超过45岁的有120人,超过45岁的有80人。

为了调查职工的健康状况,用分层抽样的方法从全体职工中抽取一个容量为25的样本,应抽取超过45岁的职工______人。

2、(xx浙江高考)某校有学生xx人,其中高三学生500人。

为了了解学生的身体素质情况,采用按年级分层抽样的方法,从该校学生中抽取一个200人的样本。

则样本中高三学生的人数为3、某校有500名学生,其中O型血的有200人,A型血的人有125人,B型血的有125人,AB型血的有50人,为了研究血型与色弱的关系,要从中抽取一个20人的样本,按分层抽样,O型血应抽取的人数为人,A型血应抽取的人数为人,B 型血应抽取的人数为人,AB型血应抽取的人数为人。

4、某公司生产三种型号的轿车,产量分别是1200辆、6000辆和xx辆,为检验公司的产品质量,现用分层抽样的方法抽取46辆进行检验,这三种型号的轿车依次应抽取、、辆。

5、某中学高一年级有学生600人,高二年级有学生450人,高三年级有学生750人,每个学生被抽到的可能性均为0.2,若该校取一个容量为n的样本,则n= 。

公司为了调查产品销售情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务等情况,记这项调查为②,则完成①、②这两项调查宜采用的抽样方法依次是( ).A.分层抽样法,系统抽样法B.分层抽样法,简单随机抽样法C.系统抽样法,分层抽样法D.简单随机抽样法,分层抽样法7、某公司有1 000名员工,其中高层管理人员占5%,属于高收入者;中层管理人员占15%,属于中等收入者;一般员工占80%,属于低收入者,要对这个公司员工的收入情况进行调查,欲抽取100名员工,采用分层抽样法,则抽取高层管理人员名,中层管理人员名,一般员工名8、某城市有210家百货商店,其中大型商店20家,中型商店40家,小型商店150家.为了掌握各商店的营业情况,计划抽取一个容量为21的样本,按照分层抽样方法抽取时,各种百货商店分别要抽取多少家?写出抽样过程.实用文档B组: 9、某城区有农民、工人、知识分子家庭共计xx家,其中农民家庭1800户,工人家庭100户。

高中数学 2.1.3 分层抽样配套训练 新人教A版必修3

高中数学 2.1.3 分层抽样配套训练 新人教A版必修3

2.1.3 分层抽样1.在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本.方法1:采用简单随机抽样的方法,将零件编号为00,01,…,99,用抽签法抽取20个.方法2:采用系统抽样的方法,将所有零件分为20组,每组5个,然后从每组中随机抽取1个.方法3:采用分层抽样的方法,从一级品中随机抽取4个,从二级品中随机抽取6个,从三级品中随机抽取10个.对于上述问题,下列说法中正确的是( )①不论采用哪种抽样方法,这100个零件中每一个零件被抽到的可能性都是;②采用不同的方法,这100个零件中每一个零件被抽到的可能性各不相同;③在上述三种抽样方法中,方法3抽到的样本比方法1和方法2抽到的样本更能反映总体的特征;④在上述抽样方法中,方法2抽到的样本比方法1和方法3抽到的样本更能反映总体的特征.A.①②B.①③C.①④D.②③解析:根据三种抽样方法的定义可知,方法3抽到的样本更能准确地反映总体的特征.故应选B.答案:B2.(2012浙江高考,文11)某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为.解析:根据分层抽样的特点,此样本中男生人数为×280=160.答案:1603.某公司生产三种型号的轿车,产量分别是1 200辆,6 000辆和2 000辆,为检验该公司的轿车质量,现用分层抽样的方法抽取46辆进行检验,这三种型号的轿车依次应抽取辆、辆、辆.解析:三种型号的轿车共9 200辆,抽取样本为46辆,则按的比例抽样,所以依次应抽取1200×=6(辆),6 000×=30(辆),2 000×=10(辆).答案:6 30 104.(2012江苏高考,2)某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取名学生.解析:根据分层抽样的特点,可得高二年级学生人数占学生总人数的,因此在样本中,高二年级的学生所占比例也应该为,故应从高二年级抽取50×=15(名)学生.答案:155.某学校共有师生2 400人,现用分层抽样的方法,从所有师生中抽取一个容量为160的样本,已知从学生中抽取的人数为150,那么该校的教师人数是多少?解法一:样本中教师人数是10,而入样概率为,设总体中教师人数为x,则,解得x=150.所以该校的教师人数为150.解法二:由于入样概率为,从学生中抽取了150人,所以学生总数为150÷=2 250(人),故教师人数为2 400-2 250=150.6.某校有教师200人,男学生1 200人,女学生1 000人,现用分层抽样的方法从所有师生中抽取一个容量为n的样本,已知从女学生中抽取的人数为80,求n的值.解:每个个体被抽到的概率为.∵从女学生中抽取的人数为80,∴×1 000=80,解得n=192.7.某初级中学有学生270人,其中一年级108人,二、三年级各81人.现要抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号为1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270.关于上述样本的下列结论中,正确的是( )A.②③都不能为系统抽样B.②④都不能为分层抽样C.①④都可能为系统抽样D.①③都可能为分层抽样解析:由定义可知,①③可能为分层抽样,也可能为系统抽样;②不是系统抽样,但有可能是分层抽样;④不是系统抽样,也不是分层抽样.答案:D8.(2012湖北高考,文11)一支田径运动队有男运动员56人,女运动员42人.现用分层抽样的方法抽取若干人,若抽取的男运动员有8人,则抽取的女运动员有人.解析:设抽取的女运动员有x人,由题意可得,,解之,得x=6.答案:69.某学校共有教师490人,其中不到40岁的有350人,40岁及以上的有140人.为了解普通话在该校教师中的推广普及情况,用分层抽样的方法,从全体教师中抽取一个容量为70人的样本进行普通话水平测试.求在不到40岁的教师中应抽取的人数.解:按照分层抽样的方法步骤,先计算出抽样比,再与350相乘即可,即在不到40岁的教师中应抽取的人数为350×=50.10.某初级中学共有学生2 000名,各年级男、女生人数如下表:初一年级初二年级初三年级女生373 x y男生377 370 z已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19.(1)求x的值;(2)现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名?解:(1)由题意,得=0.19,解得x=380.(2)初三年级人数为y+z=2 000-(373+377+380+370)=500.现用分层抽样的方法在全校抽取48名学生,应在初三年级抽取的人数为×500=12.11.一个地区共有5个乡镇,人口3万人,其中人口比例为3∶2∶5∶2∶3,从3万人中抽取一个300人的样本,分析某种疾病的发病率,已知这种疾病与不同的地理位置及水土有关,问应采取什么样的抽样方法?并写出具体过程.解:因为疾病与地理位置和水土均有关系,所以不同乡镇的发病情况差异明显,因而采用分层抽样的方法,具体过程如下:(1)将3万人分为5层,其中一个乡镇为一层.(2)按照样本容量的比例随机抽取各乡镇应抽取的样本.300×=60(人),300×=40(人),300×=100(人),300×=40(人),300×=60(人),因此各乡镇抽取人数分别为60、40、100、40、60.(3)将抽取的300人组到一起,即得到一个300人的样本.12.选择合适的抽样方法抽样,写出抽样过程:(1)30个篮球,其中甲厂生产的有21个,乙厂生产的有9个,抽取10个入样;(2)有甲厂生产的两箱篮球,其中一箱21个,另一箱9个,抽取3个入样;(3)有甲厂生产的300个篮球,抽取10个入样;(4)有甲厂生产的300个篮球,抽取30个入样.解:(1)总体由差异明显的几个层次组成,需选用分层抽样法.第一步,确定抽取个数,=3,所以甲厂生产的篮球应抽取=7(个),乙厂生产的篮球应抽取=3(个);第二步,用抽签法分别抽取甲厂生产的篮球7个,乙厂生产的篮球3个.这些篮球便组成了我们要抽取的样本.(2)总体容量较小,用抽签法.第一步,将30个篮球编号,编号为00,01, (29)第二步,将以上30个编号分别写在形状、大小相同的一张小纸条上,揉成小球,制成号签;第三步,把号签放入一个不透明的袋子中,充分搅匀;第四步,从袋子中逐个抽取3个号签,并记录上面的号码;第五步,找出和所得号码对应的篮球组成样本.(3)总体容量较大,样本容量较小,宜用随机数表法.第一步,将300个篮球用随机方式编号,编号为000,001,002, (299)第二步,在随机数表中随机地确定一个数作为开始,如第8行第29列的数“7”开始,任选一个方向作为读数方向,比如向右读;第三步,从数“7”开始向右读,每次读三位,凡不在000~299中的数跳过去不读,遇到已经读过的数也跳过去,便可依次得到286,211,234,297,207,013,027,086,284,281这10个号码,这就是所要抽取的10个样本个体的号码.(4)总体容量较大,样本容量也较大,宜用系统抽样法.第一步,将300个篮球用随机方式编号,编号为000,001,002,…,299,并分成30段;第二步,在第一段000,001,002,…,009这十个编号中用简单随机抽样抽出一个(如002)作为起始号码;第三步,将编号为002,012,022,…,292的个体抽出,组成样本.。

人教A版高中数学必修三 第二章2.1.3分层抽样 同步训练C卷(精编)

人教A版高中数学必修三 第二章2.1.3分层抽样 同步训练C卷(精编)

人教A版高中数学必修三第二章2.1.3分层抽样同步训练C卷(精编)姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分) (2016高二上·襄阳期中) 某校数学教研组为了解学生学习数学的情况,采用分层抽样的方法从高一600人、高二780人、高三n人中,抽取35人进行问卷调查,已知高二被抽取的人数为13人,则n等于()A . 660B . 720C . 780D . 8002. (2分)一个单位有职工800人,其中具有高级职称的有160人,具有中级职称的有320人,具有初级职称的有200人,其余人员有120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本.则从上述各层中依次抽取的人数分别是()A . 12,24,15,9B . 9,12,12,7C . 8,15,12,5D . 8,16,10,63. (2分)(2020·葫芦岛模拟) 某地区甲、乙、丙、丁四所高中分别有120,150,180,150名高三学生参加某次数学调研考试,为了解学生能力水平,现制定以下两种卷面分析方案:方案①;从这600名学生的试卷中抽取一个容量为200的样本进行分析:方案②:丙校参加调研考试的学生中有30名数学培优生,从这些培优生的试卷中抽取10份试看进行分析.完成这两种方案宜采用的抽样方法依次是()A . 分层抽样法、系统抽样法B . 分层抽样法、简单随机抽样法C . 系统抽样法、分层抽样法D . 简单随机抽样法、分层抽样法4. (2分) (2020高二上·玉林期末) 某校有学生800人,其中女生有350人,为了解该校学生的体育锻炼情况,按男、女学生采用分层抽样法抽取容量为80的样本,则男生抽取的人数是()A . 35B . 40C . 45D . 605. (2分) (2020高二下·太和开学考) 已知某团队有老年人28人,中年人56人,青年人84人,若按老年人,中年人,青年人用分层抽样的方法从中抽取一个容量为12的样本,则从中年人中应抽取()A . 2人B . 3人C . 5人D . 4人6. (2分) (2016高一下·唐山期末) 某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=()A . 9B . 10C . 12D . 13二、填空题 (共4题;共4分)7. (1分) (2018高二下·泰州月考) 某学校共有教师100人,男学生400人,女学生300人,现用分层抽样的方法从所有师生中抽取一个容量为的样本,已知从男学生中抽取的人数为100人,则 ________.8. (1分) (2018高二上·武邑月考) 某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取________名学生.9. (1分)(2017·江苏) 某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________件.10. (1分) (2020高二上·赣县期中) 雷神山医院从开始设计到建成完工,历时仅十天.完工后,新华社记者要对部分参与人员采访,决定从600名机械车操控人员,320名管理人员和n名工人中按照分层抽样的方法抽取35人,若从工人中抽取的人数为7人,则 ________.三、解答题 (共3题;共30分)11. (15分) (2020高二下·太和开学考) 某高级中学今年高一年级招收“国际班”学生720人,学校为这些学生开辟了直升海外一流大学的绿色通道,为了逐步提高这些学生与国际教育接轨的能力,将这720人分为三个批次参加国际教育研修培训,在这三个批次的学生中男、女学生人数如下表:第一批次第二批次第三批次女72男180132已知在这720名学生中随机抽取1名,抽到第一批次、第二批次中女学生的概率分别是 .(1)求的值;(2)为了检验研修的效果,现从三个批次中按分层抽样的方法抽取名同学问卷调查,则三个批次被选取的人数分别是多少?(3)若从第(2)小问选取的学生中随机选出两名学生进行访谈,求“参加访谈的两名同学至少有一个人来自第一批次”的概率.12. (10分) (2018高二下·青铜峡期末) 已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(1)应从甲、乙、丙三个部门的员工中分别抽取多少人?(2)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.用X 表示抽取的3人中睡眠不足的员工人数,求随机变量X的分布列与数学期望;13. (5分)某电视台举行颁奖典礼,邀请20名港台、内地艺人演出,其中从30名内地艺人中随机选出10人,从18名香港艺人中随机挑选6人,从10名台湾艺人中随机挑选4人.试用抽签法确定选中的艺人,并确定他们的表演顺序.参考答案一、单选题 (共6题;共12分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:二、填空题 (共4题;共4分)答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:三、解答题 (共3题;共30分)答案:11-1、答案:11-2、答案:11-3、考点:解析:答案:12-1、答案:12-2、考点:解析:答案:13-1、考点:解析:。

【人教A版】必修3《2.1.3分层抽样》课时提升作业含解析

【人教A版】必修3《2.1.3分层抽样》课时提升作业含解析

【人教A版】必修3《2分层抽样(25分钟60分)一、选择题(每小题5分,共25分)1.(2015·石家庄高一检测)为了解某地区中小学生的视力情形,拟从该地区的中小学生中抽取部分学生进行调查,事先差不多了解到该地区小学、初中、高中三个学段学生的视力情形有较大差异,而男女生视力情形差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单随机抽样B.按性不分层抽样C.按学段分层抽样D.系统抽样【解析】选C.结合三种抽样的特点及抽样要求求解.由于三个学段学生的视力情形差不较大,故需按学段分层抽样.【补偿训练】某公司在甲、乙、丙、丁四个地区分不有150个、120个、180个、150个销售点.公司为了调查产品销售的情形,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区有10个特大型销售点,要从中抽取7个销售点调查其销售收入和售后服务等情形,记这项调查为②,则完成①②这两项调查宜采纳的抽样方法依次为()A.分层抽样法,系统抽样法B.分层抽样法,简单随机抽样法C.系统抽样法,分层抽样法D.简单随机抽样法,分层抽样法【解析】选B.由调查①可知个体差异明显,故宜用分层抽样;调查②中个体较少,故宜用简单随机抽样.2.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情形,用分层抽样的方法从中抽取样本.若样本中的青年职工为7人,则样本容量为()A.7B.15C.25D.35【解析】选B.青年职工、中年职工、老年职工三层之比为7∶5∶3,因此样本容量为7÷=15(人).3.简单随机抽样、系统抽样、分层抽样三者的共同特点是()A.将总体分成几部分,按预先设定的规则在各部分抽取B.抽样过程中每个个体被抽到的机会均等C.将总体分成几层,然后分层按照比例抽取D.没有共同点【解析】选B.由定义知,三种抽样方法都必须保证每个个体被抽到的机会相等.4.(2015·北京高考)某校老年、中年和青年教师的人数见下表,采纳分层抽样的方法调查教师的躯体状况,在抽取样本中,青年教师有320人,则该样本的老年教师人数为()A.90类不人数老年教师900中年教师1800青年教师1600合计4300【解题指南】分层抽样总体与样本中各层的比相同.【解析】选C.设样本中老年教师人数为n人,=,解得n=180.【补偿训练】(2014·重庆高考)某中学有高中生3 500人,初中生1 5 00人.为了解学生的学习情形,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽70人,则n为()A.100B.150C.200D.250【解题指南】直截了当按照分层抽样的定义列出关于n的等式求解即可.【解析】选A.由分层抽样的定义可知=,解得n=100.5.(2015·沧州高一检测)某橘子园有平地和山地共120亩,现在要估量平均亩产量,按一定的比例用分层抽样的方法共抽取10亩进行调查,如果所抽山地的亩数是平地亩数的2倍多1,则那个橘子园的平地与山地的亩数分不为()A.45,75B.40,80C.36,84D.30,90【解析】选C.本题考查分层抽样方法.按照条件知所抽山地的亩数为7,所抽平地的亩数为3,则橘子园中山地的亩数为84,平地的亩数为36.二、填空题(每小题5分,共15分)6.一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为.【解析】设抽取男运动员人数为n,则=,解之得n=12.答案:127.(2015·福建高考)某校高一年级有900名学生,其中女生400名.按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为.【解题指南】第一运算出男生人数,再运算出男女比例,从而确定抽取男生人数.【解析】由题意知,男生人数=900-400=500,因此抽取比例为男生︰女生=500∶400=5∶4,样本容量为45,因此抽取的男生人数为45×= 25.答案:25【补偿训练】某地有居民100 000户,其中一般家庭99 000户,高收入家庭1 000户.从一般家庭中以简单随机抽样方式抽取990户,从高收入家庭中以简单随机抽样方式抽取100户进行调查,发觉共有120户家庭拥有3套或3套以上住房,其中一般家庭50户,高收入家庭70户.依据这些数据并结合所把握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估量是.【解析】该地拥有3套或3套以上住房的家庭能够估量有99 000×+1 000×=5 700(户),因此所占比例的合理估量是5 700÷100 000=5. 7%.答案:5.7%8.某学校共有教师490人,其中不到40岁的有350人,40岁及以上的有140人,为了调查一般话在该校教师中的推广普及情形,现用分层抽样的方法,从全体教师中抽取一个容量为70的样本进行一般话水平测试,其中在不到40岁的教师中应抽取的人数是.【解析】由题意得×350=50(人).答案:50三、解答题(每小题10分,共20分)9.(2015·乐山高一检测)某市的3个区共有高中学生20 000人,且3个区的高中学生人数之比为2∶3∶5,现要从所有学生中抽取一个容量为2 00的样本,调查该市高中学生的视力情形,试写出抽样过程.【解题指南】本题要紧考查数理统计中一些差不多的概念和差不多方法.做这种题目时,应该注意叙述的完整性和条理性.【解析】(1)由于该市高中学生的视力有差异,按3个区分成三层,用分层抽样来抽取样本.(2)确定每层抽取个体的个数,在3个区分不抽取的学生人数之比也是2∶3∶5,因此抽取的学生人数分不是200×=40;200×=60;200×=100.(3)在各层分不按系统抽样法抽取样本.(4)综合每层抽样,组成容量为200的样本.10.选择合适的抽样方法抽样,写出抽样过程.(1)有甲厂生产的30个篮球,其中一箱21个,另一箱9个,抽取3个.(2)有30个篮球,其中甲厂生产的有21个,乙厂生产的有9个,抽取10个.(3)有甲厂生产的300个篮球,抽取10个.(4)有甲厂生产的300个篮球,抽取30个.【解题指南】应结合三种抽样方法的使用范畴和实际情形灵活使用各种抽样方法解决咨询题.【解析】(1)总体容量较小,用抽签法.①将30个篮球编号,编号为00,01, (29)②将以上30个编号分不写在完全一样的小纸条上,揉成小球,制成号签;③把号签放入一个不透亮的袋子中,充分搅拌;④从袋子中不放回地逐个抽取3个号签,并记录上面的号码;⑤找出和所得号码对应的篮球即可得到样本.(2)总体由差异明显的两个层次组成,需选用分层抽样.①确定抽取个数.因为=3,因此甲厂生产的应抽取=7(个),乙厂生产的应抽取=3(个);②用抽签法分不抽取甲厂生产的篮球7个,乙厂生产的篮球3个,这些篮球便组成了我们要抽取的样本.(3)总体容量较大,样本容量较小,宜用随机数表法.①将300个篮球用随机方式编号,编号为001,002, (300)②在随机数表中随机的确定一个数作为开始,如第8行第29列的数“7”开始,任选一个方向作为读数方向,例如向右读;③从数“7”开始向右读,每次读三位,凡不在001~300中的数跃过去不读,遇到差不多读过的数也跃过去不读,依次得到10个号码,这确实是所要抽取的10个样本个体的号码.(4)总体容量较大,样本容量也较大,宜用系统抽样.①将300个篮球用随机方式编号,编号为000,001,002, (299)并分成30段,其中每一段包含=10(个)个体;②在第一段000,001,002,…,009这十个编号中用简单随机抽样抽出一个(如002)作为起始号码;③将编号为002,012,022,…,292的个体抽出,即可组成所要求的样本.(20分钟40分)一、选择题(每小题5分,共10分)1.(2015·四川高考)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在明显差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A.抽签法B.系统抽样法C.分层抽样法D.随机数法【解析】选C.因为题干中总体是由差异明显的三个部分组成的,因此选择分层抽样法.【补偿训练】某学院有四个饲养房,分不养有18,54,24,48只白鼠供试验用,某项试验需抽取24只白鼠,你认为最合适的抽样方法为()A.在每个饲养房中各抽取6只B.把所有白鼠都加上编有不同号码的颈圈,用随机抽样的方法确定24只C.在四个饲养房分不随机抽取3,9,4,8只D.先确定在这四个饲养房应分不抽取3,9,4,8只,再由各饲养房自己加号码颈圈,用简单随机抽样法确定各自要抽取的对象【解析】选D.依据公平性原则,按照实际情形确定适当的取样方法是本题的灵魂.A中对四个饲养房平均摊派,但由于各饲养房所养数量不一,反而造成了各个个体被入选几率的不均衡,是错误的方法;B中保证了各个个体被入选几率的相等,但由于没有注意到处在四个不同环境中会产生不同差异,不如采取分层抽样可靠性高,且统一编号统一选择加大了工作量;C中总体采纳了分层抽样,但在每个层次中没有考虑到个体的抽取情形.故选D.2.(2015·佛山高一检测)某校共有学生2 000名,各年级男、女生人数如下表所示:现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为()A.24B.18C.16D.12【解析】选C.一年级的学生人数为373+377=750,二年级的学生人数为380+370=750,因此三年级的学生人数为2 000-750-750=500,那么三年级应抽取的人数为500×=16(人).二、填空题(每小题5分,共10分)3.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分不有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采纳分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是.【解析】抽样比为=,则抽取的植物油类种数是10×= 2,则抽取的果蔬类食品种数是20×=4,因此抽取的植物油类与果蔬类食品种数之和是2+4=6(种).答案:6【补偿训练】某校有学生2 000人,其中高三学生500人.为了解学生的躯体素养情形,采纳按年级分层抽样的方法,从该校学生中抽取一个20 0人的样本,则样本中高三学生的人数为.【解析】抽样比为=,样本中高三学生的人数为500×=50(人).答案:504.(2015·十堰高一检测)某单位200名职工的年龄分布情形如图所示,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1~20 0编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是.若用分层抽样方法,则40岁以下年龄段应抽取人.【解析】由分组可知,抽号的间隔为5,又因为第5组抽出的号码为2 2,因此第8组抽出的号码为22+(8-5)×5=37.40岁以下年龄段的职工数为200×0.5=100,则应抽取的人数为×100=20(人).答案:3720三、解答题(每小题10分,共20分)5.某都市有210家百货商店,其中大型商店20家,中型商店40家,小型商店150家,为了把握各商店的营业情形,打算抽取一个容量为21的样本,按照分层抽样方法抽取时,各种百货商店分不要抽取多少家?并写出抽样过程.【解题指南】解答本题应按分层抽样的步骤抽取,第一算出抽样比例,然后求出各层抽样的样本数,最后在各层抽取得到样本.【解析】(1)样本容量与总体的个体数的比为=.(2)确定各种商店要抽取的数目:大型:20×=2(家),中型:40×=4(家),小型:150×=15(家).(3)采纳简单随机抽样在各层中抽取大型2家,中型4家,小型15家.如此便得到了所要抽取的样本.6.(2015·益阳高一检测)为了对某课题进行讨论研究,用分层抽样的方法从三所高校A,B,C的有关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人)高校有关人数抽取人数A x 1B 36 yC 54 3(1)求x,y.(2)若从高校B有关的人中选2人作专题发言,应采纳什么抽样法,请写出合理的抽样过程.【解析】(1)分层抽样是按各层有关人数和抽取人数的比例进行的,因此有:=⇒x=18,=⇒y=2,故x=18,y=2.(2)总体容量和样本容量较小,因此应采纳抽签法,过程如下:第一步,将36人随机编号,号码为1,2,3, (36)第二步,将号码分不写在相同的纸片上,揉成团,制成号签;第三步,将号签放入一个不透亮的容器中,充分搅匀,依次不放回地抽取2个号码,并记录上面的编号;第四步,把与号码相对应的人抽出,即可得到所要的样本.。

11-12学年高中数学 2.1.3 分层抽样同步学案 新人教A版必修3

11-12学年高中数学 2.1.3 分层抽样同步学案 新人教A版必修3

因为中、青、老年职工的比例是5:3:2,所以应抽取中年职工为
400 5 200(人); 青年职工为 10
3 400 120(人); 老年职工为 10 2 400 80(人). 10
规律技巧:分层抽样在日常生活中应用广泛,其抽取样本的步 骤尤为重要,应牢记按照相应的比例去抽取.
方法2:将160人从1至160编号,按编号顺序分成20组,每组8 人,1~8号为第一组,9~16号为第二组,…,153~160号为第20组, 先从第1组中用抽签方法抽到一个为k号(1≤k≤8),其余组的 (k+8n)号(n=1,2,…,19)如此抽取到20人. 方法3:按20:160=1:8的比例,从业务人员中抽取12人,从管理 人员中抽取5人,从后勤人员中抽取3人,都用随机数法从各类 人员中抽取需要的人数,他们合在一起恰好抽到20人.
上述三种抽样方法,按简单随机抽样、分层抽样、系统抽样的 顺序是( )
A.方法1、方法2、方法3 B.方法2、方法1、方法3 C.方法1、方法3、方法2 D.方法3、方法1、方法2 解析:由三种抽样方法的定义和特点可知. 答案:C
题型二 分层抽样的应用 例2:某企业共有3200名职工,其中,中、青、老职工的比例为5 :3:2,从所有职工中抽取一个样本容量为400人的样本,应采 用哪种抽样方法更合理?且中、青、老年职工应分别抽取多少 人? 解:因为总体由三类差异明显的个体(中、青、老年)组成,所以 应采用分层抽样的方法进行抽取.
3.分层抽样的特点 (1)适用于总体由差异明显的几个部分组成的情况; (2)更充分的反映了总体的情况;
n . (3)等可能抽样,每个个体被抽到的可能性都是 N
4.三种抽样方法的比较
类别 简单 随机 抽样 系统 抽样 抽样过程中 每个个体被 抽取的可能 性相等 共同点 各自特点 从总体中逐 个抽取 将总体均匀 分成几部分, 按事先确定 的规则在各 部分抽取 将总体分成 几层,分层进 行抽取 相互联系 最基本的抽 样方法 适用范围 总体中的个体 数较少

高中数学《2.1.3分层抽样》练习 必修3

高中数学《2.1.3分层抽样》练习 必修3

2.1.3 分层抽样双基达标 限时20分钟1.某校现有高一学生210人,高二学生270人,高三学生300人,学校学生会用分层抽样的方法从这三个年级的学生中随机抽取几名学生进行问卷调查,如果已知从高一学生中抽取的人数为7,那么从高三学生中抽取的人数应为 ( ).A .10B .9C .8D .7解析 2107=300x,得x =10. 答案 A2.为了保证分层抽样时每个个体等可能地被抽取,必须要求 ( ).A .每层不等可能抽样B .每层抽取的个体数相等C .每层抽取的个体可以不一样多,但必须满足抽取n i =n N i N (i =1,2,…,k )个个体.(其中k 是层数,n 是抽取的样本容量,N i 是第i 层中个体的个数,N 是总体的容量)D .只要抽取的样本容量一定,每层抽取的个体数没有限制解析 A 不正确.B 中由于每层的容量不一定相等,每层抽同样多的个体数,显然从整个总体来看,各层之间的个体被抽取的可能性就不一样了,因此B 也不正确.C 中对于第i 层的每个个体,它被抽到的可能性与层数无关,即对于每个个体来说,被抽取的可能性是相同的,故C 正确.D 不正确.答案 C3.某工厂生产A 、B 、C 三种不同型号的产品,产品的数量之比依次为3∶4∶7,现在用分层抽样的方法抽出容量为n 的样本,样本中A 型号产品有15件,那么样本容量n 为( ).A .50B .60C .70D .80解析 由分层抽样方法得:33+4+7×n =15.解得n =70. 答案 C4.某农场在三种地上种玉米,其中平地210亩,河沟地120亩,山坡地180亩,估计产量时要从中抽取17亩作为样本,则平地、河沟地、山坡地应抽取的亩数分别是________.解析 应抽取的亩数分别为210×17510=7,120×17510=4,180×17510=6. 答案 7,4,65.将一个总体分为A 、B 、C 三层,其个体数之比为5∶3∶2.若用分层抽样方法抽取容量为100的样本,则应从C中抽取________个个体.解析由题意可设A、B、C中个体数分别为5k,3k,2k,所以C中抽取个体数为2k5k+3k+2k ×100=20.答案206.某市的3个区共有高中学生20 000人,且3个区的高中学生人数之比为2∶3∶5,现要从所有学生中抽取一个容量为200的样本,调查该市高中学生的视力情况,试写出抽样过程.解用分层抽样来抽取样本,步骤是:(1)分层:按区将20 000名高中生分成三层;(2)确定每层抽取个体的个数.在这3个区抽取的学生数目分别是40、60、100.(3)在各层分别按随机数法抽取样本;(4)综合每层抽样,组成样本.综合提高限时25分钟7.某单位共有老、中、青职工430人,其中青年职工160人,中年职工人数是老年职工人数的2倍.为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为 ( ).A.9 B.18 C.27 D.36解析设老、中、青职工分别为x人,y人,z人,则{x+y+z=430,z=160,y=2x,解得{x=90,y=180,z=160,由比例可得该单位老年职工共有90人,用分层抽样的比例应抽取18人.答案 B8.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点,公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务等情况,记这项调查为②.完成①②这两项调查采用的抽样方法依次为( ).A.分层抽样法、系统抽样法B.分层抽样法、简单随机抽样法C.系统抽样法、分层抽样法D.简单随机抽样法、分层抽样法解析在①中,销售情况差异较大,应采用分层抽样,在②中,由于个体数量不多,故采用简单随机抽样法.答案 B9.某学校有教师300人,其中高级教师90人,中级教师150人,初级教师60人,为了了解教师健康状况,从中抽取40人进行体检.用分层抽样方法抽取高级、中级、初级教师人数分别为________.解析 抽取比例为40300=215,故分别抽取人数为90×215=12,150×215=20,60×215=8. 答案 12,20,810.一个总体分为A ,B 两层,用分层抽样方法从总体中抽取一个容量为10的样本.已知B层中每个个体被抽到的概率都为112,则总体中的个体数为________. 解析 设总体中的个体数为x ,则10x =112⇒x =120. 答案 12011.在120个零件中,一级品24个,二级品36个,三级品60个,从中抽取容量为20的样本,分别用三种方法计算总体中每个个体被抽到的可能性.解 法一 简单随机抽样法:因为总体中的个体数N =120,样本容量n =20,故每个个体被抽到的可能性均为16. 法二 系统抽样法:将120个零件分组,k =12020=6,即6个零件一组,每组取1个,显然每个个体被抽到的可能性均为16. 法三 分层抽样法:一、二、三级品的个数之比为2∶3∶5,20×210=4,20×310=6,20×510=10,故分别从一、二、三级品中抽取4个、6个、10个,每个个体被抽到的可能性分别为424、636、1060,即都是16. 12.(创新拓展)某校有在校高中生共1600人,其中高一年级学生520人,高二年级学生500人,高三年级学生580人.如果想通过抽查其中的80人来调查学生的消费情况,考虑到不同年级学生的消费情况有明显差别,而同一年级内消费情况差异较小,问应采用怎样的抽样方法?高三年级学生中应抽查多少人?解 因不同年级的学生消费情况有明显差别,所以应采用分层抽样.因为520∶500∶580=26∶25∶29,于是将80分成比例为26∶25∶29的三部分.设三部分各抽个体数分别为26x,25x,29x ,由26x +25x +29x =80,得x =1.所以高三年级学生中应抽查29人.。

高中数学 2.1.3 分层抽样基础达标(含解析)新人教A版必修3

高中数学 2.1.3 分层抽样基础达标(含解析)新人教A版必修3

【优化方案】2013-2014学年高中数学 2.1.3 分层抽样基础达标(含解析)新人教A 版必修31.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点,公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务等情况,记这项调查为②.完成①②这两项调查采用的抽样方法依次为( )A .分层抽样法、系统抽样法B .分层抽样法、简单随机抽样法C .系统抽样法、分层抽样法D .简单随机抽样法、分层抽样法解析:选B.在①中,由于不同地区的产品销售情况差异较大,为了抽样的公平性,应采用分层抽样;在②中,总体中个体的差异不大,个体数量也不大,故采用简单随机抽样.2.已知某单位有职工120人,其中男职工90人,现采用分层抽样的方法(按男、女分层)抽取一个样本,若已知样本中有27名男职工,则样本容量为( )A .30B .36C .40D .无法确定解析:选B.分层抽样中抽样比一定相同,设样本容量为n ,由题意得,n 120=2790,解得n =36.3.(2013·聊城高一检测)某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种.现从中抽取一个容量为20的样本进行食品安全检测,若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是( )A .4B .5C .6D .7解析:选C.食品共有100种,抽取容量为20的样本,各抽取15,故抽取植物油类与果蔬类食品种数之和为2+4=6.故选C.4.某初级中学有学生270人,其中七年级108人,八、九年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案.使用简单随机抽样和分层抽样时,将学生按七、八、九年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号为1,2,…,270,并将整个编号依次分为10段,如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,60,90,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270.其中可能是分层抽样得到,而不可能是由系统抽样得到的一组号码为( )A .①②B .②③C .①③D .①④解析:选B.先考虑哪种情况为分层抽样,分层抽样需按年级分三层,七年级抽取4人,八、九年级各抽3人,也即1到108号抽4人,109到189号抽3人,190到270号抽3人.可判断①②③可能是分层抽样.再判断①②③中哪几个是系统抽样,系统抽样需把1到270号分成均匀的10部分.每部分按事先约定好的方法抽取1个,则①为系统抽样.故选B.5.(2013·潍坊高一检测)某学校在校学生2 000人,为了学生的“德、智、体”全面发展,学校举行了跑步和登山比赛活动,每人都参加而且只参与其中一项比赛,各年级参与比赛的人数情况如下表: 高一年级 高二年级 高三年级跑步人数 a b c登山人数 x y z其中a ∶b ∶c =2∶5∶3,全校参与登山的人数占总人数的14.为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则高三年级参与跑步的学生中应抽取( )A .15人B .30人C .40人D .45人解析:选D.全校参与登山的人数是2 000×14=500,所以参与跑步的人数是1 500,应抽取1 5002 000×200=150,C =150×310=45(人). 6.(2012·高考江苏卷)某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.解析:高二年级学生人数占总人数的310,样本容量为50,则50×310=15. 答案:157.(2012·高考天津卷)某地区有小学150所,中学75所,大学25所.现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取________所学校,中学中抽取________所学校.解析:由题意,样本抽取的比例为325,故应从小学、中学中抽取的学校数为150×325=18,75×325=9. 答案:18 98.某企业三月中旬生产A 、B 、C 三种产品共3 000件,根据分层抽样的结果,企业统产品类别 A B C产品数量(件) 1 300样本容量 130A 产品的样本容量比C 产品的样本容量多10,根据以上信息,可得C 产品的数量是________件.解析:设样本容量为x ,则x 3 000×1 300=130. ∴x =300.∴A 产品和C 产品在样本中共有300-130=170(件).设C 产品的样本容量为y ,则y +y +10=170,∴y =80.∴C 产品的数量为3 000300×80=800(件). 答案:8009.某校高一年级500名学生中,血型为O 的有200人,血型为A 的有125人,B 型的有125人,AB 型的有50人.为了研究血型与色弱的关系,要从中抽取一个容量为40的样本,应如何抽样?写出血型为AB 型的抽样过程.解:因为40÷500=225,所以应用分层抽样法抽取血型为O 型的225×200=16(人),A 型的225×125=10(人),B 型的225×125=10(人),AB 型的225×50=4(人). AB 型的4人可以这样抽取:第一步:将50人随机编号,编号为1,2, (50)第二步:把以上50人的编号分别写在大小相同的小纸片上,揉成小球,制成号签. 第三步:把得到的号签放入一个不透明的袋子中,充分搅拌均匀.第四步:从袋子中逐个抽取4个号签,并记录上面的编号.第五步:根据所得编号找出对应的4人即可得到样本.10.某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工至多参加其中一组.在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%.登山组的职工占参加活动总人数的14,且该组中青年人占50%,中年人占40%,老年人占10%.为了了解各组不同的年龄层次的职工对本次活动的满意程度,现用分层抽样的方法从参加活动的全体职工中抽取一个容量为200的样本.试确定:(1)游泳组中,青年人、中年人、老年人分别所占的比例;(2)游泳组中,青年人、中年人、老年人分别应抽取的人数.解:(1)设登山组人数为x ,游泳组中,青年人、中年人、老年人所占比例分别为a ,b ,c ,则有x ·40%+3xb 4x =47.5%,x ·10%+3xc 4x=10%, 解得b =50%,c =10%,故a =100%-50%-10%=40%,即游泳组中,青年人、中年人、老年人所占比例分别为40%,50%,10%.(2)游泳组中,抽取的青年人人数为200×34×40%=60(人); 抽取的中年人人数为200×34×50%=75(人); 抽取的老年人人数为200×34×10%=15(人). 即游泳组中,青年人、中年人、老年人分别应抽取的人数为60人,75人,15人.。

高二数学 2.1.3分层抽样练习 新人教A版必修3

高二数学   2.1.3分层抽样练习 新人教A版必修3

高中数学 2.1.3分层抽样练习新人教A版必修3一、选择题1.分层抽样适合的总体是( )A.总体容量较多B.样本容量较多C.总体中个体有差异D.任何总体[答案] C2.某学院有四个饲养房,分别养有18、54、24、48只白鼠供试验用,某项试验需抽取24只白鼠,你认为最合适的抽样方法为( )A.在每个饲养房中各抽取6只B.把所有白鼠都加上编有不同号码的颈圈,用随机抽样的方法确定24只C.在四个饲养房分别随手抽取3、9、4、8只D.先确定在这四个饲养房应分别抽取3、9、4、8只,再由各饲养房自己加号码颈圈,用简单随机抽样法确定各自要抽取的对象[答案] D[解析] 依据公平性原则,根据实际情况确定适当的取样方法是本题的灵魂.A中对四个饲养房平均摊派,但由于各饲养房所养数量不一,反而造成了各个个体被入选几率的不均衡,是错误的方法;B中保证了各个个体被入选几率的相等,但由于没有注意到在四个不同环境中会产生不同差异,不如采取分层抽样可靠性高,且统一编号统一选择加大了工作量;C中总体采用了分层抽样,但在每个层次中没有考虑到个体的差异(如健壮程度,灵活程度),貌似随机,实则各个个体被抽取到的几率不等,故选D.3.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本.若样本中的青年职工为7人,则样本容量为( )A.7 B.15 C.25 D.35[答案] B[解析] 由题意知,青年职工人数中年职工人数老年职工人数=350250150=75 3.由样本中的青年职工为7人,得样本容量为15.4.某橘子园有平地和山地共120亩,现在要估计平均亩产量,按一定的比例用分层抽样的方法共抽取10亩进行调查,如果所抽山地的亩数是平地亩数的2倍多1,则这个橘子园的平地与山地的亩数分别为( )A.45,75 B.40,80 C.36,84 D.30,90[答案] C[解析] 本题考查分层抽样方法.根据条件知所抽山地的亩数为7,所抽平地的亩数为3,则橘子园中山地的亩数为84,平地的亩数为36,故选C.5.问题:①有1 000个乒乓球分别装在3个箱子内,其中红色箱子内有500个,蓝色箱子内有200个,黄色箱子内有300个,现从中抽取一个容量为100的样本;②从20名学生中选出3名参加座谈会.方法:Ⅰ.简单随机抽样;Ⅱ.系统抽样;Ⅲ.分层抽样.其中问题与方法能配对的是( ) A .①Ⅰ,②Ⅱ B .①Ⅲ,②Ⅰ C .①Ⅱ,②Ⅲ D .①Ⅲ,②Ⅱ [答案] B[解析] 对于①,由于箱子颜色差异较为明显,可采用分层抽样法抽取样本;对于②,由于总体容量、样本容量都较小,宜采用简单随机抽样.6.某商场有四类食品,其中粮食类、植物油类、肉食品类、果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是( )A .4B .5C .6 D. 7[答案] C[解析] 四类食品的比例为4132,则抽取的植物油类的数量为20×110=2,抽取的果蔬类的数量为20×210=4,二者之和为6,故选C.二、填空题7.防疫站对学生进行身体健康调查.红星中学共有学生1 600名,采用分层抽样法抽取一个容量为200的样本.已知女生比男生少抽了10人,则该校的女生人数应是________.[答案] 760[解析] 设该校的女生人数是x ,则男生人数是 1 600-x ,抽样比是2001 600=18,则18x=18(1 600-x )-10,解得x =760. 8.某地有居民100000户,其中普通家庭99 000户,高收入家庭1 000户.从普通家庭中以简单随机抽样方式抽取990户,从高收入家庭中以简单随机抽样方式抽取100户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收入家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是________.[答案] 5.7%[解析] 该地拥有3套或3套以上住房的家庭可以估计有99 000×50990+1 000×70100=5 700户,所以所占比例的合理估计是5 700÷100 000=5.7%.三、解答题9.一个地区共有5个乡镇,人口3万人,其中人口比例为32523,从3万人中抽取一个300人的样本,分析某种疾病的发病率,已知这种疾病与不同的地理位置及水土有关,问应采取什么样的方法?并写出具体过程.[探究] 采用分层抽样的方法.[解析] 因为疾病与地理位置和水土均有关系,所以不同乡镇的发病情况差异明显,因而应采用分层抽样的方法.具体过程如下:(1)将3万人分成5层,一个乡镇为一层. (2)按照各乡镇的人口比例随机抽取各乡镇的样本: 300×315=60(人),300×215=40(人),300×515=100(人),300×215=40(人),300×315=60(人).各乡镇分别用分层抽样抽取的人数分别为60,40,100,40,60. (3)将抽取的这300人组到一起,即得到一个样本.10.为了对某课题进行讨论研究,用分层抽样的方法从三所高校A 、B 、C 的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人)高校相关人数抽取人数A x1B 36 yC543(1)求x ,y ;(2)若从高校B 相关的人中选2人作专题发言,应采用什么抽样法,请写出合理的抽样过程.[解析] (1)分层抽样是按各层相关人数和抽取人数的比例进行的,所以有:x 54=13⇒x=18,3654=y3⇒y =2,故x =18,y =2.(2)总体容量和样本容量较小,所以应采用抽签法,过程如下: 第一步,将36人随机的编号,号码为1,2,3,…,36; 第二步,将号码分别写在相同的纸片上,揉成团,制成号签;第三步,将号签放入一个不透明的容器中,充分搅匀,依次抽取2个号码,并记录上面的编号;第四步,把与号码相对应的人抽出,即可得到所要的样本.能力提升一、选择题1.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点.公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区有10个特大型销售点,要从中抽取7个销售点调查其销售收入和售后服务等情况,记这项调查为②,则完成①②这两项调查宜采用的抽样方法依次为( ) A.分层抽样法,系统抽样法B.分层抽样法,简单随机抽样法C.系统抽样法,分层抽样法D.简单随机抽样法,分层抽样法[答案] B[解析] 由调查①可知个体差异明显,故宜用分层抽样;调查②中个体较少,故宜用简单随机抽样.2.某校共有学生2000名,各年级男、女生人数如下表所示:( ) A.24 B.18 C.16 D.12[答案] C[解析] 一年级的学生人数为373+377=750,二年级的学生人数为380+270=750,于是三年级的学生人数为2000-750-750=500,那么三年级应抽取的人数为500×64 2000=16.3.某初级中学有270人,其中七年级108人,八、九年级各81人.现在要抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,将学生按年级从低到高的顺序依次统一编号为1,2,…,270.如果抽得的号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270.则下列结论正确的是( )A.②③都不可能为系统抽样 B.②④都不可能为分层抽样C.①④都可能为系统抽样 D.①③都能为分层抽样[答案] D[解析] 因为一、二、三年级的人数之比为1088181=433,又因为共抽取10人,根据系统抽样和分层抽样的特点可知,①②③都可能为分层抽样,②④不可能为系统抽样,①③可能为系统抽样,故选D.4.在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本.①采用随机抽样法,将零件编号为00,01,…,99,抽签取出20个;②采用系统抽样法,将所有零件分成20组,每组5个,然后每组中随机抽取1个; ③采用分层抽样法,从一级品中随机抽取4个,从二级品中随机抽取6个.从三级品中随机抽取10个,对于上述抽样方式,下面说法正确的是( )A .不论哪一种抽样方法,这100个零件中每一个个体被抽到的概率都是15B .①②两种抽样方法中,这100个零件每一个个体被抽到的概率为15.③并非如此C .①③两种抽样方法中,这100个零件中每一个个体被抽到的概率为15,②并非如此D .采用不同的抽样方法,这100个零件中每一个个体被抽到的概率是不同的 [答案] A[解析] 虽然三抽样方式、方法不同,但最终每个个体被抽取的机会是均等的,这正说明了三种抽样方法的科学性和可行性.二、填空题5.某单位200名职工的年龄分布情况如图所示,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是________.若用分层抽样方法,则40岁以下年龄段应抽取________人.[答案] 37 20[解析] 由分组可知,抽号的间隔为5,又因为第5组抽出的号码为22,所以第8组抽出的号码为22+(8-5)×5=37.40岁以下年龄段的职工数为200×0.5=100,则应抽取的人数为40200×100=20人.6.一工厂生产了某种产品16 800件,它们来自甲、乙、丙3条生产线.为检查这批产品的质量,决定采用分层抽样的方法进行抽样.已知从甲、乙、丙3条生产线抽取的个体数分别是a ,b ,c ,且2b =a +c ,则乙生产线生产了________件产品.[答案] 5600[解析] 设甲、乙、丙3条生产线各生产了T 甲、T 乙、T 丙件产品,则ab c =T 甲T乙T 丙,即a T 甲=b T 乙=cT 丙=k .又因为2b =a +c ,所以⎩⎪⎨⎪⎧T 甲+T 丙=2T 乙,T 甲+T 乙+T 丙=16800,所以T 乙=168003=5600.三、解答题7.某单位有2000名职工,老年、中年、青年分布在管理、技术开发、营销、生产各部门中,如下表所示:人数 管理 技术开发 营销 生产 小计 老年 40 40 40 80 200 中年 80 120 160 240 600 青年 40 160 280 720 1200 小计16032048010402000(1)(2)若要开一个25人的讨论单位发展与薪金调整方面的座谈会,则应怎样抽选出席人? (3)若要抽20人调查对巴西世界杯筹备情况的了解,则应怎样抽样?[解析] (1)因为身体状况主要与年龄段有关,所以应按老年、中年、青年分层,采用分层抽样法进行抽样,要抽取40人,应在老年、中年、青年职工中分别抽取4,12,24人.(2)因为出席这样的座谈会的人员应该代表各个部门,所以应按部门分层,采用分层抽样的方法进行抽样,要抽取25人,应在管理、技术开发、营销、生产各部门的职工中分别随机抽取2,4,6,13人.(3)对巴西世界杯筹备情况的了解与年龄、部门关系不大,可以用系统抽样或简单随机抽样进行.8.为了考察某校的教学水平,将对这个学校高三年级的部分学生的本学年考试成绩进行考察,为了全面地反映实际情况,采取以下三种方式进行抽查:(已知该校高三年级共有20个教学班,并且每个班内的学生已经按随机方式编好了学号,假定该校每班学生人数都相同)(1)从全年级20个班中任意抽取一个班,再从该班中任意抽取20人,考察他们的学习成绩;(2)每个班都抽取1人,共计20人,考察这20个学生的成绩;(3)把学生按成绩分成优秀、良好、普通三个级别,从其中共抽取100名学生进行考察.(已知若按成绩分,该校高三学生中优秀生共150人,良好生共600人,普通生共250人)根据上面的叙述,试回答下列问题.(1)上面三种抽取方式中,其总体、个体、样本分别指什么?每一种抽取方式抽取的样本中,其样本容量分别是多少?(2)上面三种抽取方式中各自采用何种抽取样本的方法? (3)试分别写出上面三种抽取方式各自抽取样本的步骤.[探究] 本题目主要考查数理统计中一些基本的概念和基本方法.做这种题目时,应该注意叙述的完整和条理.[解析] (1)这三种抽取方式中,其总体都是指该校高三全体学生本年度的考试成绩,个体都是指高三年级每个学生本年度的考试成绩.其中第一种抽取方式中样本为所抽取的20名学生本年度的考试成绩,样本容量为20;第二种抽取方式中样本为所抽取的20名学生本年度的考试成绩,样本容量为20;第三种抽取方式中样本为所抽取的100名学生本年度的考试成绩,样本容量为100.(2)上面三种抽取方式中,第一种方式采用的方法是简单随机抽样法;第二种方式采用的方法是系统抽样法和简单随机抽样法;第三种方式采用的方法是分层抽样法和简单随机抽样法.(3)第一种方式抽样的步骤如下:第一步,首先在这20个班中用抽签法任意抽取一个班.第二步,然后从这个班中按学号用随机数表法或抽签法抽取20名学生,考察其考试成绩.第二种方式抽样的步骤如下:第一步,首先在第一个班中,用简单随机抽样法任意抽取某一学生,记其学号为a . 第二步,在其余的19个班中,选取学号为a 的学生,共计19人. 第三种方式抽样的步骤如下: 第一步,分层.因为若按成绩分,其中优秀生共150人,良好生共600人,普通生共250人,所以在抽取样本时,应该把全体学生分成三个层次.第二步,确定各个层次抽取的人数.因为样本容量与总体的个体数比为100 1 000=110,所以在每个层次抽取的个体数依次为15010,60010,25010,即15,60,25.第三步,按层次分别抽取:在优秀生中用简单随机抽样法抽取15人;在良好生中用系统抽样法抽取60人;在普通生中用简单随机抽样法抽取25人.。

高中数学 2.1.3分层抽样同步测试 新人教A版必修3

高中数学 2.1.3分层抽样同步测试 新人教A版必修3

2-1-3分层抽样一、选择题1.①教育局到某学校检查工作,打算在每个班各抽调2人参加座谈;②某班其中考试有10人在85分以上,25人在60~84分,5人不及格,欲从中抽出8人参加改进教与学研讨;③某班级举行元旦晚会,要产生两名“幸运者”,则合适的抽样方法分别为( ) A.系统抽样,系统抽样,简单随机抽样B.简单随机抽样,分层抽样,简单随机抽样C.系统抽样,分层抽样,简单随机抽样D.分层抽样,简单随机抽样,简单随机抽样[答案] C2.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点.公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区有10个特大型销售点,要从中抽取7个销售点调查其销售收入和售后服务等情况,记这项调查为②,则完成①②这两项调查宜采用的抽样方法依次为( ) A.分层抽样法,系统抽样法B.分层抽样法,简单随机抽样法C.系统抽样法,分层抽样法D.简单随机抽样法,分层抽样法[答案] B[解析]由调查①可知个体差异明显,故宜用分层抽样;调查②中个体较少,故宜用简单随机抽样.3.某工厂为了检查产品质量,在生产流水线上每隔5分钟就取一件产品,这种抽样方法是( )A.抽签法B.简单随机抽样C.系统抽样D.随机数法[答案] C[解析]由于生产流水线均匀生产出产品,且所拿出的产品中每相邻的两件的“间隔”是相同的,所以是系统抽样,故选C.4.下列问题中,最适合用简单随机抽样方法的是( )A.某电影院有32排座位,每排有40个座位,座位号1~40.有一次报告会坐满了听众,报告会结束以后为听取意见,要留下32名听众进行座谈B.从10台冰箱中抽出3台进行质量检查C.某学校有在编人员160人,其中行政人员16人,教师112人,后勤人员32人.教育部门为了解学校机构改革意见,要从中抽取一个容量为20的样本D .某乡农田有山地8 000公顷,丘陵12 000公顷,平地24 000公顷,洼地4 000公顷,现抽取农田480公顷估计全乡农田平均产量[答案] B[解析] 根据简单随机抽样的特点进行判断.A 的总体容量较大,用简单随机抽样法比较麻烦,易用系统抽样 ;B 的总体容量较小,用简单随机抽样法比较方便;C 由于学校各类人员对这一问题的看法可能差异很大,不宜采用简单随机抽样法,宜用分层抽样;D 总体容量较大,且各类田地的产量差别很大,也不宜采用简单随机抽样法,宜用分层抽样.[点评] 解答本题时,应关注两个方面的问题:(1)抽出的样本必须准确地反映总体特征;(2)操作起来比较方便.5.某校高三一班有学生54人,二班有学生42人,现在要用分层抽样的方法从两个班抽出16人参加军训表演,则一班和二班分别被抽取的人数是( )A .8,8B .10,6C .9,7D .12,4 [答案] C[解析] 抽样比为1654+42=16,则一班和二班分别被抽取的人数是54×16=9,42×16=7. 6.某学校高一、高二、高三三个年级共有学生3500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300人,现在按1100的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为( )A .8B .11C .16D .10 [答案] A[解析] 若设高三学生数为x ,则高一学生数为x 2,高二学生数为x 2+300,所以有x +x 2+x 2+300=3 500,解得x =1 600.故高一学生数为800,因此应抽取的高一学生数为800100=8. 7.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为( )A .6B .8C .10D .12[答案] B[解析] 设在高二年级学生中抽取的人数为x ,则3040=6x ,解得x =8.8.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本.若样本中的青年职工为7人,则样本容量为( )A .7B .15C .25D .35 [答案] B[解析] 由题意知,青年职工人数中年职工人数老年职工人数=350:250:150=7:5:3.由样本中的青年职工为7人,得样本容量为15.9.100个个体分成10组,编号后分别为第一组:00,01,02,03,…09;第二组:10,11,12,…,19;……;第十组:90,91,92,…,99.现在从第k 组中抽取其号码的个位数字与(k +m -1)的个位数字相同的个体,其中m 是第一组随机抽取的号码的个位数字,则当m =5时,从第七组中抽取的号码是( )A .71B .61C .75D .65[答案] B[解析] 第七组中的10个号码分别为60,61,62,63,64,65,66,67,68,69,我们会发觉十位数字都是6,只需确定个位数字即可.由题设可知个位数字与7+5-1=11的个位数字相同,故被抽取的号码是61.10.某单位有老年人28人,中年人54人,青年人81人.为了调查它们的身体状况,从他们中抽取容量为36的样本,最适合抽取样本的方法是( )A .简单随机抽样B .系统抽样C .分层抽样D .先从老年人中剔除1人,再用分层抽样[答案] D[解析] 总体总人数为28+54+81=163(人).样本容量为36,由于总体由差异明显的三部分组成,考虑用分层抽样.若按36:163取样本,无法得到整解.故考虑先剔除1人,抽取比例变为36:162=2:9.则中年人取54×29=12(人),青年人取81×29=18(人),先从老年人中剔除1人,老年人取27×29=6(人),组成容量为36的样本. 二、填空题11.某地区有农民、工人、知识分子家庭共计2004户,其中农民家庭1 600户,工人家庭303户.现要从中抽出容量为40的样本,则在整个抽样过程中,可以用到下列抽样方法中的________.(将你认为正确的选项的序号都填上)①简单随机抽样 ②系统抽样 ③分层抽样[答案] ①②③[解析] 为了保证抽样的合理性,应对农民、工人、知识分子分层抽样;在各层中采用系统抽样和简单随机抽样.抽样时还要先用简单随机抽样剔除多余个体.12.防疫站对学生进行身体健康调查.红星中学共有学生1600名,采用分层抽样法抽取一个容量为200的样本.已知女生比男生少抽了10人,则该校的女生人数应是________.[答案] 760[解析] 设该校的女生人数是x ,则男生人数是 1 600-x ,抽样比是2001 600=18,则18x =18(1 600-x )-10,解得x =760. 13.某地有居民100000户,其中普通家庭99 000户,高收入家庭1 000户.从普通家庭中以简单随机抽样方式抽取990户,从高收入家庭中以简单随机抽样方式抽取100户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收入家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是________.[答案] 5.7%[解析] 该地拥有3套或3套以上住房的家庭可以估计有99 000×50990+1 000×70100=5 700户,所以所占比例的合理估计是5 700÷100 000=5.7%.14.某单位200名职工的年龄分布情况如图所示,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是________.若用分层抽样方法,则40岁以下年龄段应抽取________人.[答案] 37 20[解析] 由分组可知,抽号的间隔为5,又因为第5组抽出的号码为22,所以第8组抽出的号码为22+(8-5)×5=37.40岁以下年龄段的职工数为200×0.5=100,则应抽取的人数为40200×100=20人. 三、解答题15.某校500名学生中,O型血有200人,A型血有125人,B型血有125人,AB型血有50人.为了研究血型与色弱的关系,需从中抽取一个容量为20的样本.怎样抽取样本?[分析] 由于是研究血型与色弱的关系,因此应按血型分层,用分层抽样抽取样本.[解析]用分层抽样抽取样本.∵20500=125,即抽样比为125,∴200×125=8,125×125=5,50×125=2.故O型血抽8人,A型血抽5人,B型血抽5人,AB型血抽2人.抽样步骤:(1)确定抽样比250.(2)按比例分配各层所要抽取的个体数,O型血抽取8人,A型血抽取5人,B型血抽取5人,AB型血抽取2人.(3)用简单随机抽样分别在各种血型的人数中抽取样本,直至抽取出容量为20的样本.16.一个地区共有5个乡镇,人口3万人,其中人口比例为3:2:5:2:3,从3万人中抽取一个300人的样本,分析某种疾病的发病率,已知这种疾病与不同的地理位置及水土有关,问应采取什么样的方法?并写出具体过程.[分析] 采用分层抽样的方法.[解析]因为疾病与地理位置和水土均有关系,所以不同乡镇的发病情况差异明显,因而应采用分层抽样的方法.具体过程如下:(1)将3万人分成5层,一个乡镇为一层.(2)按照各乡镇的人口比例随机抽取各乡镇的样本:300×315=60(人),300×215=40(人),300×515=100(人),300×215=40(人),300×315=60(人).各乡镇分别用分层抽样抽取的人数分别为60,40,100,40,60.(3)将抽取的这300人组到一起,即得到一个样本.17.为了对某课题进行讨论研究,用分层抽样的方法从三所高校A,B,C的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人)(1)求(2)若从高校B 相关的人中选2人作专题发言,应采用什么抽样法,请写出合理的抽样过程.[解析] (1)分层抽样是按各层相关人数和抽取人数的比例进行的,所以有:x 54=13⇒x =18,3654=y 3⇒y =2,故x =18,y =2. (2)总体容量和样本容量较小,所以应采用抽签法,过程如下:第一步,将36人随机的编号,号码为1,2,3, (36)第二步,将号码分别写在相同的纸片上,揉成团,制成号签;第三步,将号签放入一个不透明的容器中,充分搅匀,依次抽取2个号码,并记录上面的编号;第四步,把与号码相对应的人抽出,即可得到所要的样本.18.为了考察某校的教学水平,将对这个学校高三年级的部分学生的本学年考试成绩进行考察,为了全面地反映实际情况,采取以下三种方式进行抽查:(已知该校高三年级共有20个教学班,并且每个班内的学生已经按随机方式编好了学号,假定该校每班学生人数都相同)(1)从全年级20个班中任意抽取一个班,再从该班中任意抽取20人,考察他们的学习成绩;(2)每个班都抽取1人,共计20人,考察这20个学生的成绩;(3)把学生按成绩分成优秀、良好、普通三个级别,从其中共抽取100名学生进行考察.(已知若按成绩分,该校高三学生中优秀生共150人,良好生共600人,普通生共250人)根据上面的叙述,试回答下列问题.(1)上面三种抽取方式中,其总体、个体、样本分别指什么?每一种抽取方式抽取的样本中,其样本容量分别是多少?(2)上面三种抽取方式中各自采用何种抽取样本的方法?(3)试分别写出上面三种抽取方式各自抽取样本的步骤.[分析] 本题目主要考查数理统计中一些基本的概念和基本方法.做这种题目时,应该注意叙述的完整和条理.[解析] (1)这三种抽取方式中,其总体都是指该校高三全体学生本年度的考试成绩,个体都是指高三年级每个学生本年度的考试成绩.其中第一种抽取方式中样本为所抽取的20名学生本年度的考试成绩,样本容量为20;第二种抽取方式中样本为所抽取的20名学生本年度的考试成绩,样本容量为20;第三种抽取方式中样本为所抽取的100名学生本年度的考试成绩,样本容量为100.(2)上面三种抽取方式中,第一种方式采用的方法是简单随机抽样法;第二种方式采用的方法是系统抽样法和简单随机抽样法;第三种方式采用的方法是分层抽样法和简单随机抽样法.(3)第一种方式抽样的步骤如下:第一步,首先在这20个班中用抽签法任意抽取一个班.第二步,然后从这个班中按学号用随机数表法或抽签法抽取20名学生,考察其考试成绩.第二种方式抽样的步骤如下:第一步,首先在第一个班中,用简单随机抽样法任意抽取某一学生,记其学号为a . 第二步,在其余的19个班中,选取学号为a 的学生,共计19人.第三种方式抽样的步骤如下:第一步,分层.因为若按成绩分,其中优秀生共150人,良好生共600人,普通生共250人,所以在抽取样本时,应该把全体学生分成三个层次.第二步,确定各个层次抽取的人数.因为样本容量与总体魄个体数比为:100:1 000=1:10,所以在每个层次抽取的个体数依次为15010,60010,25010,即15,60,25. 第三步,按层次分别抽取:在优秀生中用简单随机抽样法抽取15人;在良好生中用系统抽样法抽取60人;在普通生中用简单随机抽样法抽取25人.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1.3 分层抽样
一、基础过关
1.某城市有学校700所,其中大学20所,中学200所,小学480所.现用分层抽样方法从中抽取一个容量为70的样本,进行某项调查,则应抽取中学数为( ) A.70 B.20 C.48 D.2
2.具有A、B、C三种性质的总体,其容量为63,将A、B、C三种性质的个体按1∶2∶4的比例进行分层抽样调查,如果抽取的样本容量为21,则A、B、C三种元素分别抽取( ) A.12、6、3 B.12、3、6 C.3、6、12 D. 3、12、6 3.甲校有3 600名学生,乙校有5 400名学生,丙校有1 800名学生,为统计三校学生某方面的情况,计划采用分层抽样法,抽取一个容量为90人的样本,应在这三校分别抽取学生( ) A.30人,30人,30人B.30人,45人,15人
C.20人,30人,10人D.30人,50人,10人
4.某城区有农民、工人、知识分子家庭共计2 000家,其中农民家庭1 800户,工人家庭100户.现要从中抽取容量为40的样本,调查家庭收入情况,则在整个抽样过程中,可以用到下列抽样方法( )
①简单随机抽样;②系统抽样;③分层抽样.
A.②③B.①③C.③D.①②③
5.某地区有小学150所,中学75所,大学25所.现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取________所学校,中学中抽取________所学校.
6.某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.7.某学校高一年级有x个学生,高二年级有y个学生,高三年级有z个学生,采用分层抽样抽取一个容量为45人的样本,高一年级被抽取20人,高三年级被抽取10人,高二年级共有300人,则此学校共有高中学生多少人?
8.某工厂有3条生产同一产品的流水线,每天生产的产品件数分别是3 000件,4 000件,
8 000件.若要用分层抽样的方法从中抽取一个容量为150件产品的样本,应该如何抽样?
二、能力提升
9.某单位有老年人28人,中年人54人,青年人81人,为了调查他们的身体状况,从他们
中抽取容量为36的样本,最适合抽样本的方法是( ) A.简单随机抽样
B.系统抽样
C.先从中年人中剔除1人,再用分层抽样
D.先从老年人中剔除1人,再用分层抽样
10.某工厂生产A、B、C、D四种不同型号的产品,产品数量之比依次为2∶3∶5∶1.现用分层抽样方法抽出一个容量为n的样本,样本中A种型号有16件,那么此样本的容量n为________.
11.一批产品有一级品100个,二级品60个,三级品40个,分别采用系统抽样和分层抽样,从这批产品中抽取一个容量为20的样本.
三、探究与拓展
12.某单位有技师18人,技术员12人,工程师6人,需要从这些人中抽取一个容量为n 的样本,如果采用系统抽样和分层抽样方法抽取,都不用剔除个体;如果样本容量增加1,则在采用系统抽样时,需要在总体中剔除1个个体,求样本容量n.
答 案
1.B 2.C 3.B 4.D 5.18 9 6.15
7.解 高二年级被抽取45-20-10=15(人),
被抽取的比例为15300=120
, ∴x =400,z =200.
∴此学校共有高中学生900人.
8.解 总体中的个体数N =3 000+4 000+8 000=15 000,样本容量n =150,抽样比例为
n N =15015 000=1100,所以应该在第1条流水线生产的产品中随机抽取3 000×1100
=30(件)产品,在第2条流水线生产的产品中随机抽取4 000×1100
=40(件)产品,在第3条流水线生产的产品中随机抽取8 000×1100
=80(件)产品.这里因为每条流水线所生产的产品数都较多,所以,在每条流水线的产品中抽取样品时,宜采用系统抽样方法.
9.D 10.88
11.解 (1)系统抽样方法:将200个产品编号1,2,…,200,再将编号分为20段,每段
10个编号,第一段为1~10号,…,第20段为191~200号.在第1段用抽签法从中抽取1个,如抽取了6号,再按预先给定规则,通常可用加间隔数10,第二段取16号,
第三段取26号…,第20段取196号,这样可得到一个容量为20的样本.
(2)分层抽样方法:因为样本容量与总体的个体数的比为20∶200=1∶10,所以一、二、
三级品中分别抽取的个体数目依次是100×110,60×110,40×110
,即10,6,4.将一级品的100个产品按00,01,02,…,99编号,将二级品的60个产品按00,01,02,…,59编号,将三级品的40个产品按00,01,02,…,39编号,采用随机数表法,分别抽取10个,6个,4个.这样可得容量为20的一个样本.
12.解 因为采用系统抽样和分层抽样时不用剔除个体,所以n 是36的约数,且36n
是6的约数,即n 又是6的倍数,n =6,12,18或36,又n +1是35的约数,故n 只能是4,6,34,综合得n =6,即样本容量为6.。

相关文档
最新文档