单片机之间通过串行口双向通信仿真

合集下载

两片单片机之间的串行通信(proteus仿真图+程序)

两片单片机之间的串行通信(proteus仿真图+程序)

两片单片机之间的串行通信(proteus仿真图+程序)两片单片机之间的串行通信(仿真图+程序)AT89C51+MAX232功能:(1)甲机P1口的开关控制乙机P1口的发光二级管,开关闭合发光二级管亮,开关断开发光二级管灭。

(2)乙机P2口的开关控制甲机P2口的数码管,按下4*4矩阵键盘,显示对应的键值0~F (3)乙机P0^0口的开关控制甲机P2口的数码管,按下按键,数码管从0~9循环显示;乙机P0^2口的开关控制甲机P2口的数码管,按下按键,数码管清零。

/****************************甲机控制与接收*********************************/ #include#include#define uchar unsigned char#define uint unsigned intsbit K0=P1^0;sbit K1=P1^1;sbit K2=P1^2;sbit K3=P1^3;sbit K4=P1^4;sbit K5=P1^5;sbit K6=P1^6;sbit K7=P1^7;uchar i;uchar code tab[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07, 0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71}; void delay(uint z){ uint x,y;for(x=z;x>0;x--)for(y=110;y<0;y--);}void send(uchar c) //向串口发送字符{ SBUF=c;while(TI==0);TI=0;}void main(){ uchar i;P2=0x00;SCON=0x50; //串口模式1TMOD=0x20; //T1工作模式2PCON=0x00; //波特率不倍增TH1=0xfd; //波特率设定6900TL1=0xfd;TI=RI=0;TR1=1; //启动定时器T1IE=0x90; //允许串口中断while(1){ if(K0==0) send('0'); else send('A');if(K1==0) send('1'); else send('B');if(K2==0) send('2'); else send('C');if(K3==0) send('3'); else send('D');if(K4==0) send('4'); else send('E');if(K5==0) send('5'); else send('F');if(K6==0) send('6'); else send('G');if(K7==0) send('7'); else send('H');}}void serial_int() interrupt 4 //甲机串口接收中断函数{ if(RI){ RI=0;if(SBUF>=0 &&SBUF<=15)P2=tab[SBUF];elseP2=0x00;if(SBUF=='x')if(i>=0&&i<9){i=i+1;P2=tab[i];}if(i==9) i=0;if(SBUF=='y'){P2=0x00;i=0;}}}/*****************************乙机控制与接收程序*****************************/ #include#include#define uchar unsigned char#define uint unsigned intsbit L0=P1^0;sbit L1=P1^1;sbit L2=P1^2;sbit L3=P1^3;sbit L4=P1^4;sbit L5=P1^5;sbit L6=P1^6;sbit L7=P1^7;sbit KEY1=P0^0;sbit KEY2=P0^2;void delay(uint z){ uint x,y;for(x=z;x>0;x--)for(y=110;y<0;y--);}void send(uchar c) //向串口发送字符{ SBUF=c;while(TI==0);TI=0;}uchar key() //按键扫描{ uchar keyon,temp;P2=0x0f;delay(1);temp=P2^0x0f;switch(temp){ case 1:keyon=3;break;case 2:keyon=2;break;case 4:keyon=1;break;case 8:keyon=0;break;default:keyon=16;}P2=0xf0;delay(1);temp=P2>>4^0x0f;switch(temp){ case 1:keyon+=0;break;case 2:keyon+=4;break;case 4:keyon+=8;break;case 8:keyon+=12;break;}return keyon;}void main(){ SCON=0x50; //串口模式1,允许接收TMOD=0x20; //T1 工作模式2PCON=0x00; //波特率不倍增TH1=0xfd; //波特率设定: 9600TL1=0xfd;TI=RI=0;TR1=1; //启动定时器T1IE=0x90; //允许串口中断delay(100);while(1){ P2=0xf0; //矩阵键盘if(P2!=0xf0)send(key());if(KEY1==1) //独立按键{ delay(20);if(KEY1==0)send('x');}if(KEY2==0) //清零send('y');}}void serial_int() interrupt 4 //乙机串口接收中断函数{ if(RI) { RI=0;switch(SBUF){ case '0':L0=0;break;case '1':L1=0;break;case '2':L2=0;break;case '3':L3=0;break;case '4':L4=0;break;case '5':L5=0;break;case '6':L6=0;break;case '7':L7=0;break;case 'A':L0=1;break;case 'B':L1=1;break;case 'C':L2=1;break;case 'D':L3=1;break;case 'E':L4=1;break;case 'F':L5=1;break;case 'G':L6=1;break;case 'H':L7=1;break;}}}。

单片机单片机课程设计-双机串行通信

单片机单片机课程设计-双机串行通信

单片机单片机课程设计-双机串行通信单片机课程设计双机串行通信在当今的电子信息领域,单片机的应用无处不在。

而双机串行通信作为单片机系统中的一个重要环节,为实现设备之间的数据交换和协同工作提供了关键的技术支持。

一、双机串行通信的基本原理双机串行通信是指两个单片机之间通过串行接口进行数据传输的过程。

串行通信相较于并行通信,具有线路简单、成本低、抗干扰能力强等优点。

在串行通信中,数据是一位一位地按顺序传输的。

常见的串行通信协议有 UART(通用异步收发器)、SPI(串行外设接口)和 I2C(内部集成电路)等。

在本次课程设计中,我们主要采用 UART 协议来实现双机串行通信。

UART 协议包括起始位、数据位、奇偶校验位和停止位。

起始位用于标识数据传输的开始,通常为逻辑 0;数据位可以是 5 位、6 位、7 位或 8 位,具体取决于通信双方的约定;奇偶校验位用于检验数据传输的正确性,可选择奇校验、偶校验或无校验;停止位用于标识数据传输的结束,通常为逻辑 1。

二、硬件设计为了实现双机串行通信,我们需要搭建相应的硬件电路。

首先,每个单片机都需要有一个串行通信接口,通常可以使用单片机自带的UART 模块。

在硬件连接方面,我们将两个单片机的发送端(TXD)和接收端(RXD)交叉连接。

即单片机 A 的 TXD 连接到单片机 B 的 RXD,单片机 B 的 TXD 连接到单片机 A 的 RXD。

同时,还需要共地以保证信号的参考电平一致。

此外,为了提高通信的稳定性和可靠性,我们可以在通信线路上添加一些滤波电容和上拉电阻。

三、软件设计软件设计是实现双机串行通信的核心部分。

在本次课程设计中,我们使用 C 语言来编写单片机的程序。

对于发送方单片机,首先需要对 UART 模块进行初始化,设置波特率、数据位、奇偶校验位和停止位等参数。

然后,将要发送的数据放入发送缓冲区,并通过 UART 发送函数将数据一位一位地发送出去。

对于接收方单片机,同样需要对 UART 模块进行初始化。

单片机串行通信实验报告(实验要求、原理、仿真图及例程)

单片机串行通信实验报告(实验要求、原理、仿真图及例程)

《嵌入式系统原理与实验》实验指导实验三调度器设计基础一、实验目的和要求1.熟练使用Keil C51 IDE集成开发环境,熟练使用Proteus软件。

2.掌握Keil与Proteus的联调技巧。

3.掌握串行通信在单片机系统中的使用。

4.掌握调度器设计的基础知识:函数指针。

二、实验设备1.PC机一套2.Keil C51开发系统一套3.Proteus 仿真系统一套三、实验容1.甲机通过串口控制乙机LED闪烁(1)要求a.甲单片机的K1按键可通过串口分别控制乙单片机的LED1闪烁,LED2闪烁,LED1和LED2同时闪烁,关闭所有的LED。

b.两片8051的串口都工作在模式1,甲机对乙机完成以下4项控制。

i.甲机发送“A”,控制乙机LED1闪烁。

ii.甲机发送“B”,控制乙机LED2闪烁。

iii.甲机发送“C”,控制乙机LED1,LED2闪烁。

iv.甲机发送“C”,控制乙机LED1,LED2停止闪烁。

c.甲机负责发送和停止控制命令,乙机负责接收控制命令并完成控制LED的动作。

两机的程序要分别编写。

d.两个单片机都工作在串口模式1下,程序要先进行初始化,具体步骤如下:i.设置串口模式(SCON)ii.设置定时器1的工作模式(TMOD)iii.计算定时器1的初值iv.启动定时器v.如果串口工作在中断方式,还必须设置IE和ES,并编写中断服务程序。

(2)电路原理图Figure 1 甲机通过串口控制乙机LED闪烁的原理图(3)程序设计提示a.模式1下波特率由定时器控制,波特率计算公式参考:b.可以不用使用中断方式,使用查询方式实现发送与接收,通过查询TI和RI标志位完成。

2.单片机与PC串口通讯及函数指针的使用(1)要求:a.编写用单片机求取整数平方的函数。

b.单片机把计算结果向PC机发送字符串。

c.PC机接收计算结果并显示出来。

d.可以调用Keil C51 stdio.h 中的printf来实现字符串的发送。

单片机串行口应用实验双机通信

单片机串行口应用实验双机通信

单片机串行口应用实验_双机通信一.设计要求利用两个8031单片机实现甲乙两机间的信息串行通信。

二.设计作用和目的1、注重培养综合运用所学知识、独立分析和解决实际问题的能力,培养创新意识和创新能力,并获得科学研究的基础训练。

2、了解8031各脚的功能,工作方式,计数/定时,I/O口的相关原理,掌握双机通信的原理和方法,并巩固学习单片机的相关内容知识。

3、通过软硬件设计实现两片8031单片机间的信息串行通信,以及74LS373、62256和2764等芯片的应用。

4、掌握串行口工作方式的程序设计,掌握单片机通信程序编制方法。

5、掌握双机通信的原理和方法,了解实现串行通信的硬环境,数据格式的协议,数据交换的协议。

三.具体内容1、先在发送端1号机上显示班级号,然后送到接受端2号机上显示。

2、接下来在发送端1号机上输入学号显示,然后送到接受端2号机上显示。

如:某学生的班级号为050901,学号为0502030;则:3、先在发送端1号机上显示050901,然后送到接收端2号机上显示050901。

4、接下来在发送端1号机上输入学号0502030显示,然后送到接受端2号机上显示0502030。

四.硬件设计五.实验说明1、实验时需将1号机8031串行接收信号线(RXD)连到2号机8031串行发送信号线(TXD),1号机的(TXD)连到2号机的(RXD)。

2、两台实验机必须共地。

实验接线图P3.1 GND P3.0P3.0 GND P3.18031一号机8031二号机六、画出发送与接收程序流程图七、实验步骤1、用8芯排线将8279区JB51(a-h)连接到数码管显示区的CODE,JB53(BIT0-BIT7)连接到数码管显示区的BIT。

用4芯排线将8279区的JB52(RL0-RL3)连到键盘区的KH上;JB54(KBIT0-KBIT3)连到键盘区的KL上。

8279区8279CS2连到系统译码的Y6上,8279CLK连接到固定脉冲的1MHz。

单片机用proteus仿真双机串口通信总结体会

单片机用proteus仿真双机串口通信总结体会

单片机用 Proteus 仿真双机串口通信总结体会本文介绍了使用 Proteus 仿真软件进行单片机双机串口通信的实验过程及总结体会。

下面是本店铺为大家精心编写的5篇《单片机用 Proteus 仿真双机串口通信总结体会》,供大家借鉴与参考,希望对大家有所帮助。

《单片机用 Proteus 仿真双机串口通信总结体会》篇1引言在单片机应用中,串口通信是一种重要的通信方式,它具有传输速率快、传输距离远、抗干扰能力强等优点。

Proteus 仿真软件是一种功能强大的电子电路仿真工具,可以用来模拟单片机串口通信的整个过程,为学习和实践提供方便。

本文将详细介绍使用Proteus 仿真软件进行单片机双机串口通信的实验过程及总结体会。

实验过程1. 硬件电路设计首先,我们需要设计一个简单的单片机硬件电路,包括电源电路、串口通信电路和 LED 显示电路。

电源电路可以使用电池或者稳压器来提供稳定的电压,串口通信电路可以使用 Proteus 提供的串口助手软件进行设计和调试,LED 显示电路可以使用 Proteus 提供的 LED 助手软件进行设计和调试。

2. 软件程序设计在软件程序设计中,我们需要编写两个程序:主程序和串口通信程序。

主程序主要负责初始化串口通信电路和 LED 显示电路,并将控制权转移到串口通信程序。

串口通信程序主要负责接收和发送数据,通过串口助手软件可以方便地进行调试和测试。

3. 仿真测试在仿真测试中,我们可以使用 Proteus 提供的仿真工具进行测试。

首先,我们需要将硬件电路和软件程序导入 Proteus 仿真软件中,并进行电路连接和程序编译。

然后,我们可以通过串口助手软件进行数据发送和接收,并通过 LED 显示电路进行数据展示。

总结体会通过使用 Proteus 仿真软件进行单片机双机串口通信实验,我们可以得出以下总结体会:1. Proteus 仿真软件是一种非常强大的电子电路仿真工具,可以用来模拟各种电路和通信方式。

51单片机与PC机串口通信的仿真与实现

51单片机与PC机串口通信的仿真与实现

51单片机与PC机串口通信的仿真与实现作者:李健来源:《电脑知识与技术》2018年第32期摘要:介绍了利用几种常见软件实现的51单片机与PC机串口通信的仿真过程,可以在单片机课程的理论教学中加以应用,具有效率高、成本低等优点,有助于教师的教学和学生对知识的掌握和应用。

关键词:51单片机;PC机;串口通信;仿真中图分类号:TP393 文献标识码:A 文章编号:1009-3044(2018)32-0038-02在实际应用中,单片机与PC机间的通信非常普遍[1]。

这时单片机主要完成现场数据采集和设备监控[2],PC机接收单片机发来的数据进行分析、处理,并对结果再次发送单片机进行现场控制等。

笔者在单片机课程的理论教学中,由于课堂上受到条件的约束,采用了纯软件的方法对单片机串口通信进行仿真和演示,便于实现和让学生理解。

下面通过一个实例来介绍51单片机与PC机之间串口通信的仿真与实现过程。

1 所需软件使用到的软件有:VSPD、Proteus、Keil和串口助手[3]。

VSPD是一个虚拟串口小软件,可以虚拟出一对串行接口用于仿真;Proteus是一款流行的单片机仿真软件,用于建立串口通信仿真电路;Keil是用于编写单片机程序的软件;串口助手是用于上位机即PC机的软件,用来向单片机发送数据,或者接收单片机发送来的数据并进行显示。

2 设计与仿真过程预期实现的功能为:PC机通过串口助手向单片机发送一个字节数据,单片机接收到后将数据的二进制形式通过八个数码管的亮灭显示出来,接收的“1”对应的灯亮,接收的“0”对应的灯灭。

同时单片机将接收的数据发回给PC机,PC机将数据在串口助手中再显示出来。

2.1 利用Proteus设计仿真电路如图1所示,在Proteus软件中选用AT89C51单片机、COMPIM、电阻和发光二极管组成仿真电路。

COMPIM在仿真中相当于PC机上配置的RS232标准串行接口,为D型九针插座[4]。

在实际中,单片机和PC机之间需要通过MAX232芯片进行电平转换才能连接,但在仿真图中可以直接将两者的RXD(接收数据)和TXD(发送数据)连接起来进行串行通信。

单片机与单片机通信原理

单片机与单片机通信原理

单片机与单片机通信原理
单片机与单片机之间的通信原理是通过串行通信或并行通信进行的。

串行通信是指将数据按位顺序传输,而并行通信则是同时传输多个位。

在串行通信中,需要使用UART(通用异步收发器)进行通信。

UART将数据转换为适合传输的格式,并通过一个线路将数据发送到接收方。

在发送数据时,发送方将数据发送到UART
的发送缓冲区中,UART会按照设定的速率将数据按位发送。

接收方的UART会接收到发送方发送的数据,将其保存在接
收缓冲区中,然后应用程序可以从接收缓冲区中读取数据。

在并行通信中,通常使用I2C(双线串行总线)或SPI(串行
外围接口)进行通信。

I2C通信使用两根线路:数据线(SDA)和时钟线(SCL)。

发送方通过SDA线将数据发送给接收方,同时使用SCL线提供时钟信号。

接收方通过SCL线接收时钟
信号,并从SDA线上读取数据。

SPI通信需要至少四根线路:时钟线(SCK)、主设备输出(MOSI)、主设备输入(MISO)和片选线(SS)。

在SPI
通信中,主设备通过时钟线提供时钟信号,通过MOSI线发送数据给从设备,并通过MISO线接收从设备传输的数据。

片选线用于选择将要进行通信的从设备。

无论是串行通信还是并行通信,单片机之间的通信都需要事先约定好通信协议和参数设置,以确保数据的准确传输。

通信协
议可以包括数据格式、波特率等。

同时,通信的双方也需要进行数据的校验和错误处理,以防止数据传输中的错误或丢失。

单片机双机通信实验报告

单片机双机通信实验报告

单片机双机通信实验报告
实验目的:
1. 了解单片机之间的串口通信原理;
2. 掌握单片机之间的双机通信方法;
3. 实现单片机之间的数据互相传输。

实验器材:
1. 单片机开发板(两块);
2. USB转串口模块(两个);
3. 杜邦线若干;
4. 电脑。

实验步骤:
首先,将单片机开发板和USB转串口模块进行连接,具体的连接方法如下:
1. 将USB转串口模块的TXD引脚连接到单片机开发板的RXD引脚上;
2. 将USB转串口模块的RXD引脚连接到单片机开发板的TXD引脚上;
3. 将USB转串口模块的GND引脚连接到单片机开发板的GND引脚上;
4. 将USB转串口模块的VCC引脚连接到单片机开发板的VCC引脚上。

接下来的步骤如下:
1. 打开两台电脑上的串口调试助手软件,并分别将波特率设置为相同的数值(例如9600);
2. 在一台电脑上,发送数据给另一台电脑。

具体的操作是在串口调试助手软件上输入要发送的数据,然后点击发送按钮;
3. 在另一台电脑上,接收来自第一台电脑发送的数据。

具体的操作是在串口调试助手软件上点击接收按钮,然后可以看到接收到的数据。

实验结果:
通过实验可以看到,单片机之间成功地实现了数据的双向传输。

一台单片机发送的数据可以被另一台单片机接收到。

实验总结:
本实验通过串口通信的方式实现了单片机之间的双机通信。

通过这种方式,可以方便地实现单片机之间的数据互相传输,可以用于各种应用场景,如传感器与控制器之间的数据传输等。

同时要注意,串口通信的波特率要设置一致,否则数据将无法正确接收。

单片机实验三双机通信实验程序

单片机实验三双机通信实验程序

单片机实验三双机通信实验程序第一篇:单片机实验三双机通信实验程序实验三双机通信实验一、实验目的UART 串行通信接口技术应用二、实验实现的功能用两片核心板之间实现串行通信,将按键信息互发到对方数码管显示。

三、系统硬件设计实验所需硬件:电脑一台;开发板一块;串口通信线一根; USB线一根;四、系统软件设计实验所需软件:编译软件:keil uvision3;程序下载软件:STC_ISP_V480;试验程序:#include sbit W1=P0^0;sbit W2=P0^1;sbit W3=P0^2;sbit W4=P0^3;sbit D9=P3^2;sbit D10=P3^3;sbit D11=P3^4;sbit D12=P3^5;sbit DP=P1^7;code unsigned char table[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71};sfr P1M1=0x91;sfr P1M0=0x92;sbit H1=P3^6;sbit H2=P3^7;sbit L1=P0^5;sbit L2=P0^6;sbit L3=P0^7;unsigned char dat;unsigned char keynum;unsigned char keyscan();void display();void delay(void);L1=1;L2=1;L3=1;H1=0;if(L1==0)return 1;else if(L2==0)return 2;else if(L3==0)return 3;H1=1;H2=0;if(L1==0)return 4;else if(L2==0)return 5;else if(L3==0)return 6;H2=1;return 0;} unsigned char keyscan(){ static unsigned int ct=0;static unsigned char lastkey=0;unsigned char key;key=getkey();if(key==lastkey){ct++;if(ct==900){ct=0;lastkey=0;return key;} } else {第二篇:单片机串行通信实验实验四单片机串行通信实验一、实验目的1、掌握单片机串行口工作方式的程序设计,及简易三线式通讯的方法。

单片机的双机串口通信原理

单片机的双机串口通信原理

单片机的双机串口通信原理单片机的双机串口通信原理是通过串口连接两个单片机,使它们能够进行数据的传输和通信。

串口是一种常见的通信方式,它使用两条信号线进行数据的传输:一条是串行数据线(TXD),用于发送数据;另一条是串行接收线(RXD),用于接收数据。

通过串口通信,两个单片机可以进行双向的数据传输,实现信息的互相交流和共享。

在双机串口通信中,一台单片机充当主机(Master),另一台单片机充当从机(Slave)。

主机负责发起通信请求并发送数据,从机负责接收并响应主机发送的数据。

通信过程中,主机和从机需要遵守相同的协议和通信规则,以确保数据的正确和可靠传输。

双机串口通信的主要步骤如下:1. 端口初始化:在双机串口通信开始之前,两台单片机的串口端口需要初始化。

主机和从机需要设置相同的波特率(Baud Rate),数据位数(Data Bits)、停止位数(Stop Bits)和校验方式(Parity Bit),确保两台单片机之间的通信能够正常进行。

2. 数据发送:主机将要发送的数据写入到串口发送寄存器中,然后通过串口发送线路将数据位一位一位地发送给从机。

主机发送完所有数据位后,等待从机的响应。

3. 数据接收:从机通过串口接收线路接收主机发送的数据位,然后将接收到的数据位存放在串口接收寄存器中,等待从机的处理。

4. 数据处理:从机接收到主机发送的数据后,根据通信协议和通信规则进行数据处理。

从机可能需要对数据进行校验、解析和执行相应的操作,然后将处理结果写入到串口发送寄存器中,以供主机进行相应的处理。

5. 响应发送:从机将处理结果写入到串口发送寄存器中,然后通过串口发送线路将数据位一位一位地发送给主机。

从机发送完所有数据位后,等待主机的进一步操作。

6. 数据接收:主机通过串口接收线路接收从机发送的数据位,然后将接收到的数据位存放在串口接收寄存器中,等待主机的处理。

7. 数据处理:主机接收到从机发送的数据后,根据通信协议和通信规则进行数据处理。

单片机串行通信仿真实验

单片机串行通信仿真实验



目的:掌握电平转换器件RS-232的使用方法;掌握 Proteus VSM虚拟终端(VITUAL TERMINAL)的使用; 掌握单片机与PC机间的串行通信软硬件设计方法。
1 2013年3月 2006-2-10
传感器原理与应用
1
51系列单片机与PC机串行通信实验Proteus仿真
1 Proteus电路设计
所属子类
8051 Family Generic Generic - Generic
7SEG-BCD-GRN
MAX232 COMPIM
2 2013年3月
Optoelectronics
Microprocessor ICs Miscellaneous
2006-2-10
7-Segment Displays
Peripherals -


在Proteus仿真中,单片机和COMPIM之间也可以 不用加MAX232器件
11 2013年3月
2006-2-10
传感器原理与应用
11
传感器原理与应用
2
51系列单片机与PC机串行通信实验Proteus仿真(2)串口模型介绍
串口模型COMPIM及其引脚功能如图1中(a)所示。需要 注意的是,在Proteus ISIS元件库的“Connectors”类的 “D-Type”子类中,也有一个串口模型器件CONN-D9F, 如图1中(b)所示,因该器件在使用时没有仿真模型,将 导致仿真失败,所以要避免选用。

进入调试环境执行程序,进行以下操作: (I) 在Proteus ISIS界面中的PCT虚拟终端上单击右键,在弹出的 快捷菜单中选择“Echo Typed Characters”项; (II) 鼠标指针在PCT终端窗口单击,该窗口出现闪烁的光标,从 键盘输入数字“8”,在PCS终端窗口中就出现“8”,表明PC机 发送数据“8”,按照设计好的程序,单片机将接收到“8”,所 以在单片机接收虚拟终端SCMR上会显示“8”,同时又将数字 “8”送显到数码管上。接下来,单片机又将该数回发给PC机, 因此在单片机发送终端SCMT上也显示“8”,PC机接收到数据 后在接收终端PCR上同样显示“8”,结果如图6所示。根据程序 设计,当在键盘上输入0~9以外的字符时,单片机输出到数码 管上显示的则是该字符的ASCII码,如图7所示。

单片机和单片机通信

单片机和单片机通信

单片机和单片机之间的通信主要有以下几种方式:
1. 采用硬件UART进行异步串行通信。

这是一种占用口线少,有效、可靠的通信方式。

但遗憾的是许多小型单片机没有硬件UART,有些也只有1个UART,如果系统还要与上位机通信的话,硬件资源可能是不够的。

这种方法一般用于单片机有硬件UART且不需与外界进行串行通信或采用双UART单片机的场合。

2. 采用片内SPI接口或I2C总线模块串行通信形式。

SPI/I2C接口具有硬件简单、软件编程容易等特点,但目前大多数单片机不具备硬件SPI/I2C模块。

3. 利用软件模拟SPI/I2C模式通信,这种方式很难模拟从机模式,通信双方对每一位要做出响应,通信速率与软件资源的开销会形成一个很大的矛盾,处理不好会导致系统整体性能急剧下降。

这种方法只能用于通信量极少的场合。

4. 通过单片机之间的双机通信设计,进一步学习定时器的功能和编程使用,理解穿行通信与并行通信两种通信方式的异同,掌握串行通信的重要指标:字符帧和波特率,初步了解MCS-51系列单片机串行口的使用方法。

5. 单片机通信的方式分有线通信和无线通信,有线通信主要是通过串行或并行接口进行数据传输,无线通信则是通过无线电波进行数据传输。

单片机双机之间的串行通讯设计报告

单片机双机之间的串行通讯设计报告

单片机双机之间的串行通讯设计报告摘要:本文介绍了一种基于单片机的双机之间的串行通讯设计。

该设计使用两个单片机,通过串行通信协议进行数据传输。

通讯过程中,两台单片机之间通过数据线连接,并使用中断方式进行数据接收和发送。

同时,本文还介绍了串行口工作方式 0 的应用,以及如何使用移位寄存器进行串行口扩展。

通过该设计,可以实现两台单片机之间的高速数据传输,并且具有良好的稳定性和可靠性。

关键词:单片机,串行通讯,中断方式,移位寄存器,串行口扩展一、引言串行通讯是计算机系统中常用的一种数据传输方式,它可以实现不同设备之间的数据传输。

在单片机应用中,串行通讯也是一种常见的数据传输方式。

本文介绍了一种基于单片机的双机之间的串行通讯设计,该设计使用两个单片机通过串行通信协议进行数据传输。

本文还介绍了串行口工作方式 0 的应用,以及如何使用移位寄存器进行串行口扩展。

通过该设计,可以实现两台单片机之间的高速数据传输,并且具有良好的稳定性和可靠性。

二、设计原理该串行通讯设计使用两个单片机,分别为发送单片机和接收单片机。

发送单片机将数据通过串行口发送到接收单片机,接收单片机再将接收到的数据进行处理。

两台单片机之间通过数据线连接,并使用中断方式进行数据接收和发送。

在串行通讯中,数据是通过串行口进行传输的。

串行口工作方式0 是一种常见的串行口工作方式,它使用移位寄存器进行数据接收和发送。

在移位寄存器中,数据被移位到寄存器中进行传输,从而实现了数据的串行传输。

三、设计实现1. 硬件设计在该设计中,发送单片机和接收单片机分别使用一个串行口进行数据传输。

发送单片机将数据通过串行口发送到接收单片机,接收单片机再将接收到的数据进行处理。

两台单片机之间通过数据线连接,并使用中断方式进行数据接收和发送。

硬件设计主要包括两个单片机、串行口、数据线和中断控制器。

其中,两个单片机分别拥有自己的串行口,并且都能够接收和发送数据。

数据线将两台单片机连接在一起,中断控制器用于处理数据的接收和发送。

单片机课程设计-- 单片机之间的双向通信演示

单片机课程设计-- 单片机之间的双向通信演示

课程设计任务书课程单片机课程设计题目单片机之间的双向通信演示专业姓名学号一、任务以AT89C51单片机为控制核心,利用串行通信技术实现两个单片机之间的数据传输。

二、设计要求[1] 单片机甲机向单片机乙机发送控制命令符,甲机同时接收乙机发送的数字,并显示在数码管上[2] 基本电路包括:单片机最小系统,串口通信电路,LED显示电路等。

[3] 提交设计报告、电路图及程序源码。

三、参考资料[1] 万光毅.单片机实验与实践教程[M]. 北京:北京航空航天大学出版社.2005.1.[2] 张毅刚.单片机原理及应用[M]. 北京:高等教育出版社.2003:160-190.[3] 张小波, 徐航.基于MCS—51单片机的串行通信技术.[M].北京:北京航空航天大学出版社.2006[4] 胡汉才.单片机原理与其接口技术(第二版)[M].北京:清华大学出版社,2004.[5] 何文才,杜鹏.基于VB.NET的PC机和MCS-51单片机之间的串行通信 [J]. 北京电子科技学院学报. 2006.4期[6] 李秀忠.基于单片机的LED显示屏控制电路设计.[J].现代电子技术. 2010 .15期完成期限2012.6.29 至2012.7.8指导教师专业负责人2012年6月29 日目录第1章绪论 (1)1.1 单片机AT89C51概述......................... 错误!未定义书签。

1.2 LED显示屏控制技术状况 (2)1.3 MAX232概述 (2)1.4 本设计任务 (3)第2 章总体方案论证与设计......................... 错误!未定义书签。

2.1 LED驱动模块................................ 错误!未定义书签。

2.2 总体硬件组成框图........................... 错误!未定义书签。

第3章系统硬件设计.. (4)3.1 单片机最小系统硬件设计 (4)3.2 串行通信电路 (5)3.3 LED显示电路 (6)第4章系统的软件设计 (7)4.1 甲单片机程序设计 (7)4.2 乙单片机程序设计 (8)第5章系统调试与测试结果分析 (8)5.1 使用的仪器仪表 (9)5.2 系统调试 (9)5.3 测试结果 (9)结论 (9)参考文献 (11)附录1 程序 (12)附录2 仿真效果图 (17)第1章绪论随着科学技术的发展,单片机在各个领域的应用越来越广泛,计算机领域,航天领域,电子技术领域等,都离不开单片机的使用。

proteus仿真51单片机串口双机通讯

proteus仿真51单片机串口双机通讯

51单片机的串口双机通讯一、什么是串口串口是串行发送数据的接口,是相对于并口来说的,是一个广泛的定义。

本期我们说的串口指的是指UART或是RS232。

二、什么是波特率波特率是指串行端口每秒内可以传输的波特位数。

这里所指的波特率,如标准9600不是每秒种可以传送9600个字节,而是指每秒可以传送9600个二进位。

一个字节需要8个二进位,如用串口模式1来传输,那么加上起始位和停止位,每个数据字节就要占用10个二进位。

9600bps用模式1传输时,每秒传输的字节数是9600÷10=960个字节,发送一个字节大概需要1ms时间。

三、51单片机串口相关寄存器1、SCON串口控制寄存器(1)SM0和SM1:方式选择寄存器SM0 SM1 工作方式功能波特率0 0 方式0 8位同步移位寄存器晶振频率/ 120 1 方式1 10位UART 可变1 0 方式2 11位UART 晶振频率/32或晶振频率/64 1 1 方式3 11位UART 可变多机通信是工作在方式2和方式3的,所以SM2主要用于方式2和方式3,多级通信时,SM2=1,当SM2=1时,只有当接收到的数据帧第9位(RB8)为1时,单片机才把前八位数据放入自己的SBUF中,否则,将丢弃数据帧。

当SM2=0时,不论RB8的值是什么,都会把串口收到的数据放到SBUF中。

(3)REN:允许接收位REN用于控制是否允许接收数据,REN=1时,允许接收数据,REN=0时,拒绝接收数据。

(4)TB8:要发送的第9位数据位在方式2和方式3中,TB8是要作为数据帧第9位被发送出去的,在多机通信中,可用于判断当前数据帧的数据是地址还是数据,TB8=0为数据,TB8=1为地址。

(5)RB8:接收到的第9位数据位当单片机已经接收一帧数据帧时,会把数据帧中的第9位放到RB8中。

方式0不使用RB8,在方式2和方式3中,RB8为接收到的数据帧的第9位数据位。

(6)TI:发送中断标志位方式0中,不用管他。

单片机串行通信仿真与实现

单片机串行通信仿真与实现

实训题目:单片机串行通信仿真与实现1.任务题目设计一个通信模块,实现上位PC与下位机单片机之间的通讯。

通信协议使用RS-232协议。

2.性能、指标、要求2.1基本要求(1) 按照题目要求独立设计系统所需电路,并完成硬件电路的制作及调试。

(2)结合硬件能够正常单向发送。

(3)能够正常发送接收。

(4)能够发送、接收字符串。

(5)能够正常显示所接收的字符。

2.2发挥部分(1)能够自动对接收或发送的字节数进行计数。

(2)波特率能够得手动设定。

3.方案设计:3.1 方案论证C语言是一种计算机程序设计语言。

它既有高级语言的特点,又具有汇编语言的特点。

它可以作为系统设计语言,编写工作系统应用程序,也可以作为应用程序设计语言,编写不依赖计算机硬件的应用程序。

因此,它的应用范围广泛。

C语言对操作系统和系统使用程序以及需要对硬件进行操作的场合,用C语言明显优于其它解释型高级语言,有一些大型应用软件也是用C语言编写的。

而且我们很早就学了C语言所以我们本次程序使用C语言编写。

3.2工作原理3.2.1基本框图:3.2.2原理说明系统中采用AT89S52单片机作为下位机,PC机为上位机,二者通过RS232串行口接收或上传数据。

如上图所示,我们要实现串口通信,是通过PC机发出信号,然后经过电平转换模块接到C51单片机上,最后通过数码管显示。

此次硬件电路的设计我们只要求做电平转换模块,即我们通过芯片串口与PC机和C51单片机相连。

由于串口用的是TTL电平,和RS232电平不同,因此,单片机和PC通信时需要进行电平转换,常用的IC是MAX232,连接图如图所示,其中MAX232供电脚为+5V,中间连接的电解电容取10UF,转换完毕的串口信号TXD,RXD直接和 89S52串行口连接。

MAX232内部框图其中在TxD和RxD上:逻辑1(MARK)=-3V~-15V逻辑0(SPACE)=+3~+15V在RTS、CTS、DSR、DTR和DCD等控制线上:信号有效(接通,ON状态,正电压)=+3V~+15V 信号无效(断开,OFF状态,负电压)=-3V~-15V而单片机串口信号电平为TTL电平:逻辑1为大于3.6 V;逻辑0为小于0.3 V;所以必须进行二者之间的电平转换。

两个单片机之间数据通信的仿真实现

两个单片机之间数据通信的仿真实现

目录一、课程设计内容要求 (4)二、方案设计 (5)三、电路原理图设计 (6)3.1电路原理图 (6)3.2 硬件系统简介 (6)3.3 AT89C51 单片机简介 (7)3.4 晶振电路的设计 (7)四、软件的设计 (8)4.1 软件流程图 (8)4.2 程序的设计 (10)五、仿真与调试 (14)六、结论与心得 (18)七、参考文献 (19)摘要80C51是最常见的一种8位单片机,具有多机通信的功能,可以很好完成基本的数据数据通信的功能。

借助PROTEUS等仿真软件强大的仿真功能,可以从工程的角度直接能够看到仿真程序的运行电路工作的结果。

因此弥补实验和实际单片机之间数据通信的脱节环节,因而具有一定的研究意义。

本次设计在了解一定数据通信有关知识的基础上,利用单片机串口进行多个单片机的数据通信的仿真基本上达到了与实际多个单片机之间的数据通信的相同一致的效果。

一.课程设计内容要求单片机在工业控制、尖端武器、通信设备、信息处理、家用电器等各测控领域的应用非常广泛。

单片机之所以能在通信设备的测控领域中广泛应用的一个重要的基础就是它具有数据通信的能力。

而串行数据通信又是数据通信中最基本的也是最重要的一种。

80C51是最常见的一种8位单片机,具有多机通信的功能,可以很好完成基本的数据数据通信的功能。

借助PROTEUS等仿真软件强大的仿真功能,可以从工程的角度直接能够看到仿真程序的运行电路工作的结果。

因此弥补实验和实际单片机之间数据通信的脱节环节,因而具有一定的研究意义。

本次设计在了解一定数据通信有关知识的基础上,利用单片机串口进行多个单片机的数据通信的仿真基本上达到了与实际多个单片机之间的数据通信的相同一致的效果。

具体应完成以下任务1.分析设计任务,搜集参考文献,根据设计任务要求进行分析与论证,认真完成开题报告。

2.熟悉了解并掌握8051单片机工作原理和结构及接口技术、串行通信工作原理、熟练掌握8051汇编语言或单片机C语言的运用,熟练掌握PROTEUS 仿真软件的使用,了解并掌握串行通信的种类及学会如何利用单片机的来实现相关功能。

单片机串行通信双机通信

单片机串行通信双机通信

因为串行口工作于方式3 时的波特率为
模式3的波特率 2SMOD
fOSC
32 12 (256 TH1)
所以
TH
1
256
波特率
fOSC 12 (32
/
2 SMOD )
当SMOD=0 时, 初值TH1=256-6×106/(1 200×12×32/1) =243=0F3H
当SMOD=1 时, 初值TH1=256-6×106/(1200×12×32/2) =230=0E6H
9.2.4
串行口每秒钟发送或接收的数据位数称为波特率。 假设 发送一位数据所需时间为T, 则波特率为 1/T。
(1) 模式 0 的波特率等于单片机晶振频率的 1/12, 即每个 机器周期接收或发送一位数据。
(2) 模式 2 的波特率与电源控制器PCON的最高位SMOD 的写入值有关:
模式2的波特率 晶振频率 2SMOD 64
SM0 SM1 模式
功能
波特率
0
0 0 同步移位寄存器 fOSC/12
0 1 1 8位UART
可变
1 0 2 9位UART 1 1 3 9位UART
fOSC/64 或 fOSC/32
可变
REN:串行接收允许位。由软件置位或清零, ‘1’ :允许接收;’0’:禁止接收。
TB8:在方式2或方式3中,是将要发送的第九位 数据,由软件置位或清零,它可作为数据奇偶校验位, 也可在多机通信中作为地址帧或数据帧的标志位使用。
跟我做
1、准备器件及单片机最小系 统
2、设计硬件电路,焊接电路 板
3、编写控制程序 4、程序下载,软硬件联调
电路原理图
跟我总结
1、与串口通信有关的SFR 2、串行口的工作方式与初始 化

实验四两个单片机之间双向通信实验

实验四两个单片机之间双向通信实验

实验四两个单片机之间双向通信实验一、实验目的1.了解MCS-51单片机串行口(UART)的结构、工作方式。

2.了解串行口通信的原理和数据交换过程。

3.掌握单片机之间进行串行口通信的编程方法。

二、实验内容将甲乙两台单片机串行口连接,即甲机的TXD与乙机的RXD相连;甲机的RXD与乙机的TXD相连;并实现双机共地。

整个系统实现双向通信。

具体是:1.甲机的K1按键可通过串行口分别控制乙机的LED1点亮;LED2点亮;LED1和LED2全亮或者全灭。

2.乙机的K2按键可通过串行口向甲机发送数字,甲机将接收到的数字显示在其P0端口的LED数码管显示器上。

三、实验程序甲机程序:ORG 0000HAJMP MAINORG 0003HAJMP SENDORG 0023HAJMP READYMAIN: MOV SCON,#90HMOV PCON,#80HSETB EASETB ESSETB IT0SETB EX0MOV SP,#40HMOV R0,#0MOV DPTR,#TAB HERE: SJMP HERESEND: CJNE R0,#04H,LP1 SHOW: MOV A,R0MOV C A,A+DPTRMOV C,PMOV TB8,CMOV SBUF,ACLR TIINC R0RETIREADY: JBC TI,RETURN RECEIVE:CLR RIMOV A,SBUFMOV P0,ARETURN: RETILP1:JC SHOWCLR CMOV A,R0SUBB A,#04HMOV R0,AAJMP SHOWTAB: DB 00H,01H,02H,03H END乙机程序:ORG 0000HAJMP MAINORG 0003HAJMP SENDORG 0023HAJMP READYMAIN: MOV SCON,#90H MOV PCON,#80HSETB EASETB ESSETB IT0SETB EX0MOV SP,#40HMOV R0,#0MOV DPTR,#TABHERE: SJMP HERESEND: CJNE R0,#09H,LP1 SHOW: MOV A,R0MOV C A,A+DPTRMOV C,PMOV TB8,CMOV SBUF,ACLR TIINC R0RETIREADY: JBC TI,RETURN RECEIVE:CLR RIMOV A,SBUFMOV P1,ARETURN: RETILP1: JC SHOWCLR CMOV A,R0SUBB A,#0AHMOV R0,AAJMP SHOWTAB: DB0C0H,0F9H,0A4H,0B0H,99H,92H,82H,0F8H,80H,90H,0FFH END四、实验原理图五、实验仿真及结果六、实验总结通过本次实验,掌握了单片机之间进行串行口通信的编程方法,对MCS-51单片机串行口(UART)的结构、工作方式都有了进一步的了解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档