通信原理多进制数字调制系统共78页文档

合集下载

多进制数字相位调制(MPSK)系统.doc

多进制数字相位调制(MPSK)系统.doc

多进制数字相位调制(MPSK)系统多相移键控(MPSK -多相移键控)也被称为多相位系统,它是二相系统的推广。

它是利用不同载波的相位状态来表征数字信息的调制。

与二进制数字相位调制相似,它有绝对相位调制(MPSK)和相位调制(MDPSK)两种调制方式。

本文以4PSK为例,主要介绍基于Xilinx ISE 仿真软件的多相移键控系统(MPSK)的设计。

调制方法是简单的相位选择方法。

它只专注于数字系统的设计,而忽略了模拟电路系统。

关键词:多相移键控MPSK西林ISE选相方法摘要多进制数字相位调制(MPSK -多相移键控)又称多相制,是二相制的推广。

它是利用载波的多种不同相位状态来表征数字信息的调制方式。

与二进制数字相位调制相同,多进制数字相位调制也有绝对相位调制(MPSK)和相对相位调制(MDPSK)两种。

本文主要研究基于Xilinx ISE仿真软件设计的多进制数字相位调制(MPSK)系统,以4PSK系统为例。

调制方法采用简便的相位选择法,且略去模拟电路系统部分,仅对数字系统进行设计。

关键字: 多进制数字相位调制MPSK锡林郭勒ISE相位选择法武汉理工大学《FPGA课程设计》说明书目录摘要1摘要11 多进制数字相位调制11.1 MPSK概念11.2 MPSK原理12 四相相位调制(4PSK) 22.1 4PSK调制22.1.1相位选择法22.1.2直接调相法32.2 4PSK解调42.3 4PSK调制与解调系统设计53 ISE设计与仿真73.1 ISE操作环境73.1.1输入(设计条目)73.1.2综合(综合83.1.3)实现(实施83.1.4)验证(验证83.1.5)下载(下载)93.2 ISE程序设计93.2.1调制系统程序设计93.2.2解调系统程序设计103.3仿真结果114总结125参-省略部分-cess;结束行为;MPSK2_TEST文件:LIBRARY ieee使用ieee.std_logic_1164 .全部;使用IEEE。

多进制数字调制系统PPT课件(通信原理)

多进制数字调制系统PPT课件(通信原理)
若各信号状态出现的概率相等,则调制信 号的平均发送功率
13
8PSK信号点
14
在L=8 的5种信号星座图可以看 出,(4) 是最佳的一种方案
在同样的性能下,即在保证信 号状态点之间的最小距离为2 的情况下,(4)方案所用的平 均信号功率最小.
15
1
6.4.1 MASK
L电平的调制信号
可看成由时间上不重叠的L个不同振幅值 的OOK信号的叠加,因而,其功率谱密度便是这L 个信号的功率谱密度之和,尽管叠加后的谱结构 很复杂,但就带宽而言,L电平调制信号的带宽与 二电平的相同.
2
A(t)
×
x(t)
A(t)
BPF
× LPF 抽样判决
… 门限电平
每个四进制码元又被称为双比特码元
ab
(A方式) (B方式)
00 10 11 01
0° 90° 180° 270°
225° 315° 45° 135°
8
10
01
11
11
00
参考相位
参考相位
00
10
01
QPSK信号的矢量图
9
a
×
输入
串/并变换
-π/2
b
×
输出
+
调制
×
LPF
抽样判决
a
-π/2
并/串
×
多进制数字调制系统
特点 1. 在相同的码元传输速率下,信息传输速
率比二进制系统高。 Rb=RBN㏒2N b/s 2. 在相同的信息传输速率下,多进制码元
传输速率比二进制低。增大码元宽度, 会增加码元的能量,并能减少由于信道 特性引起的码间干扰的影响。 3. 在相同的噪声下,多进制数字调制系统 的抗噪声性能低于二进制数字调制系统。

第十二部分:多进制数字调制系统

第十二部分:多进制数字调制系统

其正交表示形式为: sMQAM(t)= [∑ An g (t − nTS ) cosϑn ] cos wct − [∑ An g (t − nTS ) sin ϑn ] sin wct
n n

Xn=An cosφn Yn=Ansinφn
sMQAM(t)= [∑ X n g (t − nTS ) cosϑn ] cos wct − [∑ Yn g (t − nTS ) sinϑn ] sin wct
QAM星座图 星座图
(0,4.61) (0,2.61)
(-3,3)
(3,3)
(-3,1)
(3,1)
(-4.61,0)
(-2.61,0)
(2.61,0)
(4.61,0)
(-1,-1) (-3,-3)
(-1,1) (3,-3) (0,-2.61)
(0,-4.61)
(a)
(b)
(a) 方型16QAM星座; (b) 星型16QAM星座
Agenda
引言 多进制幅度键控 多进制频移键控 多进制相移键控 正交幅度调制 恒包络调制 Q&A
多进制相移键控(MPSK)
MPSK可以通过使用两个正交的载波分别对信 号复包络的相位和幅度进行调制而得到
g (t ) = Ac e jθ (t ) = x(t ) + jy (t )
• 其中x和y允许的值为:
对于星型16QAM,信号平均功率为
A2 p( s) = M
A2 2 2 ( cn + d n ) = (4 × 2.612 + 8 × 4.612 ) = 14.03 A2 ∑ 16 n =1
M
两者功率相差1.4dB。另外,两者的星座结构也有重要的 差别。一是星型16QAM只有两个振幅值,而方型16QAM有 三 种 振 幅 值 ; 二 是 星 型 16QAM 只 有 8 种 相 位 值 , 而 方 型 16QAM 有 12 种 相 位 值 。 这 两 点 使 得 在 衰 落 信 道 中 , 星 型 16QAM比方型16QAM更具有吸引力。

通信原理-第7章-数字调制系统

通信原理-第7章-数字调制系统
CPM系统的频带利用率取决于权重和相位偏移的配置,通常高于单纯的调相信号和 调频信号。
05
数字调制系统的实现
数字信号的生成
01
数字信号的生成
通过将数字信号转换为模拟信号,实现数字信号的生成。常用的方法包
括脉码调制(PCM)和增量调制(ΔM)。
02 03
PCM编码
将数字信号转换为模拟信号的一种方法是通过脉码调制(PCM)。 PCM编码器将输入的数字信号转换为模拟信号,通常使用8位、12位或 16位量化器进行量化。
由离散的二进制比特流表示的信息。
数字调制系统的应用场景
01
02

无线通信
数字调制系统广泛应用于 无线通信系统,如移动电 话、无线局域网和卫星通 信。
有线通信
在有线通信中,数字调制 系统用于光纤、电缆和其 他传输介质。
数据传输
数字调制系统用于高速数 据传输,如数字电视、高 速互联网接入和数据中心 内部通信。
频率调制(FM)
总结词
频率调制是利用载波的频率变化来传递信息的一种调制方式。
详细描述
在频率调制中,载波的频率随着调制信号的幅度变化而变化,从而将信息编码 到载波信号中。解调时,通过检测载波的频率变化来恢复原始信息。
相位调制(PM)
总结词
相位调制是利用载波的相位变化来传递信息的一种调制方式 。
详细描述
数字调制系统的实验
实验是学习和研究数字调制系统的重要手段。通过搭建实验平台,可以观察和分 析数字调制系统的实际性能,验证理论的正确性。实验中常用的设备包括信号发 生器、频谱分析仪和误码测试仪等。
06
数字调制系统的应用与发 展
数字调制系统在通信领域的应用
数字电视广播

多进制数字调制原理

多进制数字调制原理

多进制数字调制原理咱先得知道啥是数字调制哈。

你想啊,咱们生活中有好多信息,像你给朋友发的短信内容啊,手机上看的视频啥的,这些信息在传播的时候可不能就那么原封不动地“走”,得经过处理,这个处理的过程就有点像给信息穿上不同的“衣服”,这就是调制啦。

那多进制数字调制又是啥呢?普通的二进制数字调制呢,就像是只有两种选择,是或者不是,0或者1。

但是多进制数字调制就像是打开了一个多选项的大门。

比如说四进制数字调制,就有0、1、2、3这四个选项呢。

这就好比你去买冰淇淋,二进制的时候就只有香草味和巧克力味两种选择,四进制就像是突然多了草莓味和抹茶味。

多进制数字调制为啥要这么干呢?这是因为它能在同样的带宽下传输更多的信息。

就像一条小路上,二进制的时候一次只能运两种东西,多进制的时候就能运更多种类的东西啦。

比如说在无线通信里,咱们都想在有限的频段里传更多有用的信息,多进制数字调制就像是一个超级搬运工,能把更多信息一股脑儿地搬过去。

那多进制数字调制是怎么实现的呢?这就涉及到一些数学魔法啦。

咱们以四进制相移键控(QPSK)为例。

它是通过改变信号的相位来表示不同的数字信息的。

想象一下,信号就像一个小舞者在跳舞,它可以跳到四个不同的位置,每个位置就代表一个四进制的数字。

比如说,0度的相位可以代表0,90度的相位代表1,180度代表2,270度代表3。

这小舞者可机灵了,它根据要传输的数字信息,快速地跳到相应的位置,接收端呢,就看着这个小舞者跳到哪了,然后就知道传来的是啥数字啦。

再说说多进制数字调制的信号特点吧。

它的信号看起来可比二进制复杂多啦。

就像是一幅色彩更丰富的画,二进制的画可能只有黑白两种颜色,多进制的画就有好多种颜色混合在一起。

但是这种复杂也带来了一些挑战。

比如说在接收端,要更准确地判断这个复杂的信号到底代表啥数字就有点难度,就像你在一堆五颜六色的小珠子里找特定颜色组合的珠子一样。

在实际的通信系统里,多进制数字调制可是大功臣呢。

现代通信技术-多进制数字调频(MFSK)

现代通信技术-多进制数字调频(MFSK)

键控法产生的MFSK信号,可以看作由M个幅度相同、载频不同、时间上互 不重叠的2ASK信号叠加的结果。 设MFSK信号码元的宽度为Tb,即
式中,fM为最高选用载频,f1为最低选用载频。
02. MFSK信号的频谱及带宽
MFSK信号功率谱P(f)如图所示。
03. MFSK系统的误码性能
MFSK信号采用相干解调时系统的误码率为
多频制误码率随M增大而增加,但与多电平调制相比增加的速度要小的多。 多频制的主要缺点是信号频带宽,频带利用率低。 因此,MFSK多用于调制速率较低及多径延时比较严重的信道,如无线短波信道。
谢谢
多进制数字调频
目录
01
02 03
多进制调频的概念
MFSK信号的频谱及带宽 MFSK系统的误码性能
01.多进制调频的概念
多进制数字频率调制(MFSK)简称多频制,是2FSK方式的推广。 它是用个不同的载波频率代表种数字信息。
02. MFSK信号的频谱及带宽
由于多进制数字已调信号的被调参数在一个码元间隔内有多个取值,因此, 与二进制数字调制相比,多进制数字调制有以下几个特点:

多进制数字调制

多进制数字调制

多进制数字调制
所谓多进制数字调制,就是利用多进制数字基带信号去调制高频载波的某个参量,如幅度、频率或相位的过程。

根据被调参量的不同,多进制数字调制可分为多进制幅度键控(MASK)、多进制频移键控(MFSK)以及多进制相移键控(MPSK 或MDPSK)。

也可以把载波的两个参量组合起来进行调制,如把幅度和相位组合起来得到多进制幅相键控(MAPK)或它的特殊形式多进制正交幅度调制(MQAM)等。

由于多进制数字已调信号的被调参数在一个码元间隔内有多个取值,因此,与二进制数字调制相比,多进制数字调制有以下几个特点:
(1)在码元速率(传码率)相同条件下,可以提高信息速率(传信率),使系统频带利用率增大。

码元速率相同时,进制数传系统的信息速率是二进制的倍。

在实际应用中,通常取,为大于1的正整数。

(2)在信息速率相同条件下,可以降低码元速率,以提高传输的可靠性。

信息速率相同时,进制的码元宽度是二进制的倍,这样可以增加每个码元的能量,并能减小码间串扰影响等。

正是基于这些特点,使多进制数字调制方式得到了广泛的使用。

不过,获得以上几点好处所付出的代价是,信号功率需求增加和实现复杂度加大。

M进制幅度调制系统原理框图。

通信原理教程基本的数字调制系统课件

通信原理教程基本的数字调制系统课件

01
频谱效率
频谱效率是指在单位频谱资源上所能传输的信息量,数字调制系统的频谱效率越高,频带利用率就越高。
02
调制方式的灵活性
数字调制系统应具备多种调制方式,以满足不同传输需求和信道条件下的使用。
频带利用率分析
05
CHAPTER
数字调制系统的应用与发展
无线通信
数字调制系统广泛应用于无线通信领域,如移动通信、卫星通信和无线局域网等。
多径干扰是无线通信中常见的问题,数字调制系统应具有较强的抗多径干扰能力,以保证信号的稳定传输。
抗突发干扰能力
突发干扰是指短暂的、强烈的干扰信号,数字调制系统应具有较强的抗突发干扰能力,以应对突发性的干扰。
抗干扰性能分析
03
频带利用率与抗干扰性能的平衡
在提高频带利用率的同时,需要考虑抗干扰性能的保持,以实现更好的通信效果。
数字调制系统的研究热点问题
06
CHAPTER
实验与课程设计
01
02
04
实验目的与要求
掌握基本的数字调制系统原理。
学会使用调制解调器进行信号调制和解调。
分析不同调制方式的性能特点和应用场景。
培养学生对通信系统的实际操作和问题解决能力。
03
准备必要的实验设备和软件,如信号发生器、调制解调器、示波器等。
课程简介
掌握基本的数字调制系统的基本原理和技术
了解数字调制系统的性能指标和评估方法
熟悉数字调制系统的实际应用和系统设计
课程目标
02
CHAPTER
数字调制系统基础
将低频信号转换为高频载波信号的过程,以便传输。
调制
调频、调相、调幅等。
调制的分类
实现信号的传输、提高信号的抗干扰能力、实现多路复用等。

多进制数字调制系统

多进制数字调制系统

多进制数字调制系统摘要: 一、多进制幅度调制原理及抗噪声性能M 电平调制信号的时间表达式为: 式中且有4ASK 信号的波形图1 4ASK 信号的波形图(b)所示的4ASK 信号波形可以等效成图(c)中四种波形之和,其中三种波形都分...一、多进制幅度调制原理及抗噪声性能M 电平调制信号的时间表达式为: 式中且有4ASK 信号的波形图1 4ASK 信号的波形图(b)所示的4ASK 信号波形可以等效成图(c)中四种波形之和,其中三种波形都分别是一个2ASK 信号。

这就是说,MASK 信号可以看成是由振幅互不相等、时间上互不相容的个2ASK 信号相加而成。

其中是多进制码元速率。

频带利用率若以信息速率来考虑频带利用率,则有它是2ASK 系统的倍。

这说明在信息速率相等的情况下,MASK 系统的频带利用率高于2ASK 系统的频带利用率。

MASK 信号的解调与2ASK 相同,可以使用相干解调和非相干解调的方法来恢复基带信号。

采用相干解调时,MASK 信号的误码率与电平基带信号的误码率相同,即其中为信噪比,,为信号功率,为噪声功率。

MASK 信号有以下几个特点:(1)传输效率高。

与二进制相比,当码元速率相同时,多进制调制的信息速率比二进制的高,是二进制的倍。

在相同信息速率的情况下,MASK 系统的频带利用率也是2ASK 系统的倍。

(2)在接收机输入平均信噪比相等的情况下,MASK 系统的误码率比2ASK系统要高。

(3)抗衰减能力差。

只适宜在恒参信道中使用。

(4)进制数越大,设备越复杂。

二、多进制频率调制原理及抗噪声性能多进制数字频率调制(MFSK)基本上是2FSK 方式的推广。

它是用多个频率的载波分别代表不同的数字信息。

MFSK 通信系统原理方框图如图2 所示。

图2 MFSK 系统的原理方框图与2ASK 信号相同,可将MFSK 信号等效为个2ASK 信号相加,它的相邻载波频率间隔应大于进制码元速率的二倍,否则接收端的带通滤波器无法将各个2ASK 信号分离开。

【精】cp多进制数字调制系统MASK和MFSK

【精】cp多进制数字调制系统MASK和MFSK
加的结果。
B M F S fM Kf1 2fs
设MFSK信号码元的宽度为TS,传输速率RB=1/TS(Baud)= fS
《 通信原理》第七章 数字带通传输系统
7-8-21
第8节多进制数字调制系统-MASK和MFSK
MFSK信号的频带利用率
B M F S fM Kf1 2fs
在每个符号时间间隔0≤t≤Ts内,可能发送的符号有M种,分别为s1(t):s2(t), …, sM(t)。
2
f2

fM
M
门 电路 门 电路 门 电路
输 出 逻 辑电 路
抽样 判决

检 波器 检 波器
带 通 f1 带 通 f2
相 加器
信 道
接收 滤 波器
检 波器
带 通 fM
多进制数字频率调制系统的组成方框图
《 通信原理》第七章 数字带通传输系统
7-8-19
第8节多进制数字调制系统-MASK和MFSK
无线寻呼系统中四电平调频频率配置方案
与2ASK系统相同,不能反映多进制的高频带利用率特点
信息速率形式的频带利用率--能反映多进制的高频带利用率特点
bB M R bA S R B K 2 lR o B 2M glo 2 2M g(b /sH )z
(b)M(b)2lo2M g
《 通信原理》第七章 数字带通传输系统
7-8-12
第8节多进制数字调制系统-MASK和MFSK
fc+4.8 kHz 1.6 kHz
fc-1.6 kHz fc-4.8 kHz
1 10 1 1 0 0 0 0 1
《 通信原理》第七章 数字带通传输系统
7-8-20
第8节多进制数字调制系统-MASK和MFSK

多进制数字调制(二)

多进制数字调制(二)

时,频带利用率为
1
1
log2
M (b
/
s
/
Hz)
两种形状MQAM 的比较
• 方型与星型MQAM
(- 3 ,3 ) (- 3 ,1 )
(3 ,3 ) (3 ,1 )
(- 3 ,- 3 )
(- 1 ,- 1 ) (- 1 ,1 )
(3 ,- 3 )
(a)
(0 ,4 .6 1)
(0 ,2 .6 1)
恒定包络调制
• 如果每个符号包络是矩形 的,则已调信号包络是恒
Àí Ïë µÄ QPSKÐÅ ºÅ
定的,但此时已调信号频
t
谱→∞。
– 实际信道是限带的,限带后如
QPSK信号已不能保持恒包络。 – 相邻符号间发生180º相移时,经
ÂË ²¨ºó µÄ QPSKÐÅ ºÅ
限带后会出现包络为0的现象
t
• 经非线性放大后,包络中的起伏
n
MAPK信号 可以看作两 个正交调制
信号之和
-[ An g(t-nTS ) sinn ]sinCt
n
sAPK [ X ng(t nTS )]cosC t
n
-[ Yn g(t nTS )]sinCt
n
正交振幅调制 QAM
• 正交振幅调制QAM原理
– 用两个独立的基带波形对两个互相正交的同频载 波进行抑制载波的双边带调制(DSB-SC),利用这
y
16PSK
x
16QAM
y x
16PSK
QAM:正交幅度调制 APK:幅度相位联合键控
16QAM
y
16APK
x
16APK
振幅相位联合调制系统

演示文稿通信原理多进制数字调制系统

演示文稿通信原理多进制数字调制系统

串/并变 输入二进 换器
制序列 接收到两位信息 后,同时送到两 个支路,每个支 路各送一位
电平变
an 换器
bn 电平变
换器
In
同相支路
cos 2fct
相移 900
Qn sin 2fct
正交支路
QPSK由两个2PSK信号相加而成。
QPSK信号
第32页,共77页。
5.5.3 多进制相移键控
四、QPSK信号的功率谱及带宽
5.5 多进制数字调制系统
定义:在码元间隔0≤t≤TS内,可能发送的码元有M种: si(t),i=1,2,,M。实际应用中,通常取M=2k (k>1为整数)。
每个码元可以携带log2M比特信息,因此在信道频带受限 时可以增加信息的传输速率(即比特率),提高频带的 利用率。(有例外)
第5页,共77页。
正交支路
第30页,共77页。
5.5.3 多进制相移键控
输入信息与同相分量及正交分量之间的关系
an bn
n
11
/4
01
3 / 4
00
10
5 / 4 7 / 4
In
Qn
2 2
++
-+
--
+-
输入 电平 输出
输入 1
0
1
0
t
变换
输出
t
第31页,共77页。
5.5.3 多进制相移键控
QPSK调制器方框图
f4
f6
f1
f5
2FSK 8FSK
fb fS
第21页,共77页。
5.5.2 多进制频移键控
问题1:MASK和MFSK调制是如何利用信号波形携带信息?

通信原理多进制数字调制系统方案

通信原理多进制数字调制系统方案

优点
多进制数字调制系统具有较高的频谱 效率和抗噪声性能,能够更好地适应 复杂信道环境和高数据速率传输需求 。
缺点
多进制数字调制系统的实现复杂度高 于二进制数字调制系统,对硬件设备 的要求较高,同时可能存在一定的误 码率。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
05
实施步骤与计划
03
相对于传统的二进制数字调制系统,多进制数字调制系统具有
更高的频谱利用率和更好的抗干扰性能。
目的和意义
目的
研究多进制数字调制系统的原理、性 能和实现方法,以提高通信系统的性 能和效率。
意义
多进制数字调制系统的研究对于推动 通信技术的发展、提高通信系统的传 输速率和信号质量、降低通信成本等 方面具有重要的意义。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
02
多进制数字调制系统基 础
调制的基本概念
调制是将低频信号转 换为高频信号的过程 ,以便传输信号。
调制的主要目的是提 高信号的抗干扰能力 和传输效率。
调制有多种方式,包 括调频、调相和调幅 等。
多进制数字调制的原理
01
多进制数字调制是将数字信号转换为模拟信号的过 程。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
03
多进制数字调制系统的 方案设计
方案一:QPSK调制系统
总结词
QPSK是一种四相相位偏移键控调制方式,具有较高的频谱利用率和抗干扰能 力。
详细描述
QPSK通过将输入比特流分为两组,每组分别进行相移键控调制,最终实现四相 位调制。在解调端,通过测量相位信息进行解调。QPSK广泛应用于数字通信系 统,如GSM和CDMA等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档