遗传算法与模糊逻辑的双向集成

收稿日期:!"""#$"#!%

基金基目:国家自然科学基金(批准号:&"%%’$’")和国家“(&)

”计划资助项目。作者简介:王磊,男,!"%’年生,博士生,主要研究方向为进化算法、数据挖掘和*+,

-.网络等。遗传算法与模糊逻辑的双向集成

磊,陈

莉,焦李成

(西安电子科技大学雷达信号处理国家重点实验室,陕西西安%!$$%!

)摘

要:简要介绍了模糊逻辑和遗传算法相互结合的途径与

方法,并提出了一些其中有可能出现的问题。文章认为二者在很多方面具有互补性,可以进行广泛而深度地结合:一方面可以用模糊控制规则来提高遗传算法的性能,克服未成熟收敛等现象:另一方面,应用遗传算法可以有助于模糊逻辑的数据库、规则库和知识库的设计与构造。关键词:遗传算法;模糊逻辑;双向集成中图分类号:/0!()*(!12&文献标识码:3

引言

众所周知,模糊逻辑(4566,789:;#47)可以看成是经典逻辑系统的延伸和拓展,它为处理那些含糊不清和不确定情况下的知识表达问题提供了有效的理论框架。模糊逻辑的推理方式,顾名思义,是一种近似而非精确的的并且是隐念的逻辑推理方式。它的提出来源于大多数人类自然的思维与推理方法,特别是那些简明通用、带有自然属性的一些方法。一般而言,可以从两个不同的角度来理解模糊

逻辑所蕴涵的意义[’]:其一为狭义解释(47<

),它把模糊逻辑基本上看成一种近似的逻辑推理方式;其二是广义解释(47=),即模糊逻辑是对模糊集理论的一种拓展。比如在对处理对象的分类上,一类成员与另一类成员之间的界限是模糊而非鲜明的,或者说成员向非成员的转化是一种循序渐进的、逐步完成的过程。在这一领域中,模糊逻辑控制器(4566,789

:;>8B )被视为一种基于知识的系统并被广泛且成功地应用于各种领域[)]。这种知识就是通过模糊规则和模糊隶属函数的形

式,以人类的知识而建立起来的知识库系统[C ]。

另一方面,遗传算法(D -<-?:;3A 98@:?E F#D 3)是建立在达尔文生物进化论基础上的一种优化算法,它借鉴并模拟了生物界自然选择和自然遗传过

程中繁殖,交配和物种突变等现象

[1]。其主要特点是群体搜索策略和群体中个体之间的信息交换,而且是一种具有“生成G 检测”(D -<-@+?:8<#+

/-.?

)的迭代过程的计算模型[&]。遗传算法以选择(B -A -;?:8<)、交叉(>@8..8I -@)和变异(J 5?+?:8<

)为其三个主要操作算子,并由此而构成所谓的遗传操作(D -<-?:;K L -@+?:8<),使其具有其它传统算法所没有的优良特性。

上述的两种算法在实际应用过程中各具特色。一方面,模糊逻辑为不确定情况下不同形式系统的知识的表述奠定了基础,并允许在各个系统变量之间建立内在的关系模型,使推理过程更具鲁棒性和灵活性;而遗传算法则有利于提高学习能力,改进全局搜索性能。近年来涌现出许多关于模糊逻辑与遗传算法相互结合方面的论文与应用研究报告,并逐渐引起越来越多的学者的关注。本文在对二者各自所固有的一些优缺点进行分析的基础上,探索了它们相互结合与集成的方法和途径,以及在此过程中有可能出现的问题。

!遗传算法与模糊逻辑的集成

这里对遗传算法与模糊逻辑相互结合与集成的讨论主要从下面两个方面来展开:

其一,应用模糊逻辑来提高遗传算法的性能和改进各个遗传算子,进一步讲就是通过模糊集来对具有不确定性的信息或知识建立规则模型,从而使

第)$卷第!期航空计算技术’$$$年)!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!月

万方数据

模糊遗传算法及其应用研究

第19卷第2期计算技术与自动化V o l119 N o12 2000年6月COM PU T I N G T ECHNOLO GY AND AU TOM A T I ON Jun 2000 文章编号:1003—6199(2000)02—0005—05 模糊遗传算法及其应用研究 王兴成 郑紫微 贾欣乐 (大连海事大学轮机工程研究所,辽宁大连 116026) 摘 要:针对多目标遗传算法化的特点,基于模糊集理论,提出模糊遗传算法的概念及其算法结构。将系统设计的要求转化为模糊遗传算法的约束条件,利用模糊遗传算法对其进行优化设计。具体的设计示例说明了该算法的有效性。 关键词:遗传算法;模糊优化;模糊遗法算法 中图分类号:T P13 文献标识码:A 1 引 言 在工程科学中,存在着很多困难的组合优化问题和复杂的函数优化问题。这些问题大多是非线性的、有些甚至是不连续的。对这些问题,常规的数学优化技术仅能对问题作简化的近似处理,而无法有效地求解。由于遗传算法只要求所要解决的问题是可计算的,而无可微性及其它要求,所以,它的适用范围很广。大量的应用结果已经证明了遗传算法极强的计算能力。经过多年的发展,遗传算法已经成为一种实际可行、鲁棒性强的优化技术和搜索方法,并且遗传算法在诸多领域中都得到了广泛的应用[1]。在遗传算法的应用过程中,通常需要解决如下三个方面的问题:参数控制(P a ram eter Con trol);过早收敛(P er m a tu re Converg ence);误导性问题(D ecep tive P roble m)[2][3]。对于上面三个方面的问题,至今仍未得到较好的解决。模糊性是人类思维和客观事物普遍具有的属性之一,模糊优化设计思想自从其被提出以来,已经得到了较快的发展和实际应用。针对遗传算法和模糊优化各自的特点,本文提出了一种融合模糊优化设计思想的模糊遗传算法(F uz zy_Genetic A lg orithm,简称F uz zy_GA)。文中定义了模糊遗传算法的概念,给出了模糊遗传算法的算法结构,并用实际系统的示例说明了该方法有的效性。 2 模糊遗传算法 211 多目标遗传算法优化 利用遗传算法进行多个目标同时优化的系统设计往往会加大其优化的难度。针对多目标优化,采取适当的选择方法和设计性能优良的遣传算子也就格外重要,因为它直接影响到遗传算法优化的效果。在进行多目标遗传算法优化设计时,往往都是将系统的设计要求转化为遣传算法优化的约束条件及优化的目标函数,以使得容易进行编程设计。由格式定理和遗传算法的 收稿日期:2000—02—03 基金项目:国家教委博士点专项科研基金资助项目(98015101);国家自然科学基金国际合作资助项目(6981010032)作者简介:王兴成,(1956—),男,教授,研究方向;分布参数H∞控制;郑紫微,(1975—),男,研究生,研究方向;混合智能控制,H∞控制;贾欣乐,(1932—),男,教授,博士导师,研究方向;船舶运动控制。

遗传算法与模糊逻辑的双向集成

收稿日期:!"""#$"#!% 基金基目:国家自然科学基金(批准号:&"%%’$’")和国家“(&) ”计划资助项目。作者简介:王磊,男,!"%’年生,博士生,主要研究方向为进化算法、数据挖掘和*+, -.网络等。遗传算法与模糊逻辑的双向集成 王 磊,陈 莉,焦李成 (西安电子科技大学雷达信号处理国家重点实验室,陕西西安%!$$%! )摘 要:简要介绍了模糊逻辑和遗传算法相互结合的途径与 方法,并提出了一些其中有可能出现的问题。文章认为二者在很多方面具有互补性,可以进行广泛而深度地结合:一方面可以用模糊控制规则来提高遗传算法的性能,克服未成熟收敛等现象:另一方面,应用遗传算法可以有助于模糊逻辑的数据库、规则库和知识库的设计与构造。关键词:遗传算法;模糊逻辑;双向集成中图分类号:/0!()*(!12&文献标识码:3 引言 众所周知,模糊逻辑(4566,789:;#47)可以看成是经典逻辑系统的延伸和拓展,它为处理那些含糊不清和不确定情况下的知识表达问题提供了有效的理论框架。模糊逻辑的推理方式,顾名思义,是一种近似而非精确的的并且是隐念的逻辑推理方式。它的提出来源于大多数人类自然的思维与推理方法,特别是那些简明通用、带有自然属性的一些方法。一般而言,可以从两个不同的角度来理解模糊 逻辑所蕴涵的意义[’]:其一为狭义解释(47< ),它把模糊逻辑基本上看成一种近似的逻辑推理方式;其二是广义解释(47=),即模糊逻辑是对模糊集理论的一种拓展。比如在对处理对象的分类上,一类成员与另一类成员之间的界限是模糊而非鲜明的,或者说成员向非成员的转化是一种循序渐进的、逐步完成的过程。在这一领域中,模糊逻辑控制器(4566,789 :;>8B )被视为一种基于知识的系统并被广泛且成功地应用于各种领域[)]。这种知识就是通过模糊规则和模糊隶属函数的形 式,以人类的知识而建立起来的知识库系统[C ]。 另一方面,遗传算法(D -<-?:;3A 98@:?E F#D 3)是建立在达尔文生物进化论基础上的一种优化算法,它借鉴并模拟了生物界自然选择和自然遗传过 程中繁殖,交配和物种突变等现象 [1]。其主要特点是群体搜索策略和群体中个体之间的信息交换,而且是一种具有“生成G 检测”(D -<-@+?:8<#+@8..8I -@)和变异(J 5?+?:8< )为其三个主要操作算子,并由此而构成所谓的遗传操作(D -<-?:;K L -@+?:8<),使其具有其它传统算法所没有的优良特性。 上述的两种算法在实际应用过程中各具特色。一方面,模糊逻辑为不确定情况下不同形式系统的知识的表述奠定了基础,并允许在各个系统变量之间建立内在的关系模型,使推理过程更具鲁棒性和灵活性;而遗传算法则有利于提高学习能力,改进全局搜索性能。近年来涌现出许多关于模糊逻辑与遗传算法相互结合方面的论文与应用研究报告,并逐渐引起越来越多的学者的关注。本文在对二者各自所固有的一些优缺点进行分析的基础上,探索了它们相互结合与集成的方法和途径,以及在此过程中有可能出现的问题。 !遗传算法与模糊逻辑的集成 这里对遗传算法与模糊逻辑相互结合与集成的讨论主要从下面两个方面来展开: 其一,应用模糊逻辑来提高遗传算法的性能和改进各个遗传算子,进一步讲就是通过模糊集来对具有不确定性的信息或知识建立规则模型,从而使 第)$卷第!期航空计算技术’$$$年)! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!月 万方数据

智能控制作业报告-基于遗传算法的模糊控制器最优设计

西安理工大学 研究生课程论文/研究报告 课程名称:智能控制 任课教师: 论文/研究报告题目: 基于遗传算法的模糊控制器最优设计 完成日期:2016 年8 月27 日学科:电力电子与电力传动 学号: 姓名:

1. 基于遗传算法的模糊控制MATLAB程序: clear all close all clc T=0.1; %控制系统采样时间 TM=200; %控制系统运行次数 time=zeros(1,TM); kp=0.2;ki=0.002;kd=20; tr=0; %定义初始种群参数 N=10; %初始种群数目 M=3; %遗传代数 varb=3; %语言值个数 yout1=zeros(N,TM); yout=zeros(M,TM); fitness=zeros(1,N); %产生初始种群 n=varb^2; n1=varb^2+varb*2; %每条染色体的长度 mfpara1=randint(N,n,[1,varb]); %控制规则表 mfpara2=-1*rand(N,varb); %mfpara2(1),mfpara2(2),mfpara2(3)分别为an,bn,cn mfpara3=rand(N,varb); %mfpara3(1),mfpara3(2),mfpara3(3)分别为ap,bp,cp init=[mfpara1,mfpara2,mfpara3]; %离散化被控对象 num=[1]; den=conv(conv([1,0.1],[1,0.2]),[1,0.7]); g=tf(num,den); yn=c2d(g,T,'zoh'); [tt,ff]=tfdata(yn,'v'); %开始循环 p=1 while p<=M %循环代数从1到3 q=1 while q<=N %染色体数从1到10 y=zeros(1,TM); u=zeros(1,TM); er=zeros(1,TM);

各种融合方法之间的结合对比

现代方法间的集成 遗传算法和模糊理论相结合 模糊理论和神经网络理论相结合 遗传算法和神经网络理论相结合 遗传算法和模糊神经网络相结合 经典方法与现代方法的结合 模糊逻辑和Kalman滤波相结合 小波变换和Kalman滤波相结合 模糊理论和最小二乘法相结合 小波变换和Kalman滤波相结合 在实际中,不同的传感器数据采集系统采集的数据具有不同的分辨率,因而,需要解决多分辨率数据的融合技术和方法,以便更好地利用不同分辨率数据的互补信息,达到更佳的融合效果。Kalman滤波对非平稳信号具有较强的估计能力,能对信号所有的频率成分同时进行处理。同时,小波变换具有高分辨力,对高频分量采用逐渐精细的时域和频域步长,可以聚焦到分析对象的任意细节。因此,小波变换与Kalman滤波结合可以取得良好的融合效果。 模糊理论和最小二乘法相结合 最小二乘法的准则是选取X 使得估计性能指标(估计误差的平方和)达到最小。它是以误差理论为依据,在诸数据处理方法中,误差最小,精确性最好,并在处理数据过程中不需要知道数据的先验信息。因而,刘建书等人利用模糊理论中的相关性函数对多传感器的相互支持程度进行计算,应用基于最小二乘原理的数据融合方法,对支持程度高的传感器数据进行融合。仿真结果表明:相比同类融合方法,该方法获得的结果具有更高的精度。模糊逻辑和Kalman滤波相结合 经典最优Kalman 滤波理论对动态系统提出了严格的要求,即当观测几何信息和动力学模型及统计信息可靠时,Kalman滤波计算性能较好。但在实践中很难满足这一条件,在使用不精确或错误的模型和噪声统计设计Kalman 滤波器时会导致滤波结果失真,甚至使滤波发散。为了解决此问题,产生了自适应Kalman 滤波。Escamilla,Ambrosio等人提出了一种基于模糊逻辑的自适应Kalman 滤波数据融合算法,该算法使用模糊逻辑调整Q和R 的值使之可以更好地符合协方差的估计值。接着scamilla,Ambrosio PJ等人又将上述算法用来建立集中式、分布式和混合式的自适应Kalman滤波多传感器融合算法。另外,TaftiA D等人还提出了一种可用于实时处理的自适应Kalman 滤波和模糊跟踪数据融合算法。 近年来,模糊Kalman滤波算法在实际中得到了非常广泛的应用,例如:目标跟踪、图像处理以及组合导航等。 遗传算法和神经网络理论相结合 神经网络技术是模拟人类大脑而产生的一种信息处理技术,它使用大量的简单处理单元(即神经元)处理信息,神经元按层次结构的形式组织,每层上的神经元以加权的方式与其他层上的神经元联接,采用并行结构和并行处理机制,因而,网络具有很强的容错

基于数据挖掘的遗传算法

基于数据挖掘的遗传算法 xxx 摘要:本文定义了遗传算法概念和理论的来源,介绍遗传算法的研究方向和应用领域,解释了遗传算法的相关概念、编码规则、三个主要算子和适应度函数,描述遗传算法计算过程和参数的选择的准则,并且在给出的遗传算法的基础上结合实际应用加以说明。 关键词:数据挖掘遗传算法 Genetic Algorithm Based on Data Mining xxx Abstract:This paper defines the concepts and theories of genetic algorithm source, Introducing genetic algorithm research directions and application areas, explaining the concepts of genetic algorithms, coding rules, the three main operator and fitness function,describing genetic algorithm parameter selection process and criteria,in addition in the given combination of genetic algorithm based on the practical application. Key words: Data Mining genetic algorithm 前言 遗传算法(genetic algorithm,GAs)试图计算模仿自然选择的过程,并将它们运用于解决商业和研究问题。遗传算法于20世界六七十年代由John Holland[1]发展而成。它提供了一个用于研究一些生物因素相互作用的框架,如配偶的选择、繁殖、物种突变和遗传信息的交叉。在自然界中,特定环境限制和压力迫使不同物种竞争以产生最适应于生存的后代。在遗传算法的世界里,会比较各种候选解的适合度,最适合的解被进一步改进以产生更加优化的解。 遗传算法借助了大量的基因术语。遗传算法的基本思想基于达尔文的进化论和孟德尔的遗传学说,是一类借鉴生物界自然选择和自然遗传机制的随机搜索算法。生物在自然界的生存繁殖,显示对其自然环境的优异自适应能力。受其启发,人们致力于对生物各种生存特性的机制研究和行为模拟。通过仿效生物的进化与遗传,根据“生存竞争”和“优胜劣汰”的原则,借助选择、交叉、变异等操作,使所要解决的问题从随机初始解一步步逼近最优解。现在已经广泛的应用于计算机科学、人工智能、信息技术及工程实践。[2]在工业、经济管理、交通运输、工业设计等不同领域,成功解决了许多问题。例如,可靠性优化、流水车间调度、作业车间调度、机器调度、设备布局设计、图像处理以及数据挖掘等。遗传算法作为一类自组织于自适应的人工智能技术,尤其适用于处理传统搜索方法难以解决的复杂的和非线性的问题。 1.遗传算法的应用领域和研 究方向 1.1遗传算法的特点 遗传算法作为一种新型、模拟生物进化过程的随机化搜索方法,在各类结 构对象的优化过程中显示出比传统优 化方法更为独特的优势和良好的性能。 它利用其生物进化和遗传的思想,所以 它有许多传统算法不具有的特点[3]: ※搜索过程不直接作用在变量上,而是 作用于由参数集进行了编码的个体 上。此编码操作使遗传算法可以直接 对结构对象进行操作。 ※搜索过程是从一组解迭代到另一组 解,采用同时处理群体中多个个体的 方法,降低了陷入局部最优解的可能 性,易于并行化。

模糊算法

遗传模糊算法在短期负荷预测中的应用 提出了一种基于模糊逻辑原理的负荷预测方法,使用遗传算法对系统参数进行训练。在以往的模糊逻辑系统建立过程中,其主要参数(如模糊推理规则和隶属函数等)需要依靠运行人员经验或专家知识来确定,而本文利用遗传算法,通过对样本数据的自学习过程来获取系统参数。在遗传算法中,将推理规则与隶属函数参数的确定结合在一起,从而确定系统参数的最优组合,由此建立起一个较合理的模糊负荷预测系统。仿真实验结果表明,该方法能够达到满意的预测精度,具有良好的实用前景。 关键词:短期负荷预测;模糊逻辑系统;遗传算法 APPLICATION OF GENETIC-FUZZY ALGORITHM FOR SHORT TERM LOAD FORECASTING OF POWER SYSTEM Xiong Hao ;Luo Ri-cheng (Electrical Engineering School ,Wuhan University, WuHan 430072, China) ABSTRACT: A novel approach based on fuzzy logic system (FLS) is introduce d to short term load forecasting (STLF).Traditional methods to choose membership functions and fuzzy control rules used to be done by means of integrating experien ce from experts in professional fields and technologic faculty. In this paper, howeve r, a genetic algorithm based approach is developed to optimize parameters of mem

神经网络和遗传算法中英文对照外文翻译文献

中英文对照外文翻译 (文档含英文原文和中文翻译) 基于神经网络和遗传算法的模糊系统的自动设计摘要 本文介绍了基于神经网络和遗传算法的模糊系统的设计,其目的在于缩短开发时间并提高该系统的性能。介绍一种利用神经网络来描绘的多维非线性隶属函数和调整隶属函数参数的方法。还提及了基于遗传算法的集成并自动化三个模糊系统的设计平台。 1 前言 模糊系统往往是人工手动设计。这引起了两个问题:一是由于人工手动设计是费时间的,所以开发费用很高;二是无法保证获得最佳的解决方案。为了缩短开发时间并提高模糊系统的性能,有两种独立的途径:开发支持工具和自动设计方法。前者包括辅助模糊系统设计的开发环境。许多环境已具有商业用途。后者介绍了自动设计的技术。尽管自动设计不能保证获得最优解,他们仍是可取的手工技巧,因为设计是引导走向和依某些标准的最优解。 有三种主要的设计决策模糊控制系统设计: (1)确定模糊规则数, (2)确定隶属度函数的形式。 (3)确定变化参数 再者,必须作出另外两个决定: (4)确定输入变量的数量 (5)确定论证方法 (1)和(2)相互协调确定如何覆盖输入空间。他们之间有高度的相互依赖性。(3)用以确定TSK(Takagi-Sugeno-Kang)模式【1】中的线性方程式的系数,或确定隶属度函数以及部分的Mamdani模型【2】。(4)符合决定最低套相关的输入变量,计算所需的目标决策或控制的价值观。像逆向消除(4)和信息标准的技术在此设计中经常被利用。(5)相当于决定使用哪一个模糊算子和解模糊化的方法。虽然由数种算法和模糊推理的方法已被提出,仍没有选择他们标准。[5]表明动态变化的推理方法,他依据这个推理环境的结果在性能和容错性高于任何固定的推理的方法。 神经网络模型(以更普遍的梯度)和基于遗传算法的神经网络(最常见的梯度的基础)和遗传算法被用于模糊系统的自动设计。基于神经网络的方法主要是用来设计模糊隶属度函数。这有两种主要的方法; (一)直接的多维的模糊隶属度函数的设计: 该方法首先通过数据库确定规则的数目。然后通过每个簇的等级的训练来确定隶属函

基于遗传算法的库位优化问题

Logistics Sci-Tech 2010.5 收稿日期:2010-02-07 作者简介:周兴建(1979-),男,湖北黄冈人,武汉科技学院经济管理学院,讲师,武汉理工大学交通学院博士研究生,研究方向:物流价值链、物流系统规划;刘元奇(1988-),男,甘肃天水人,武汉科技学院经济管理学院;李泉(1989-),男,湖北 武汉人,武汉科技学院经济管理学院。 文章编号:1002-3100(2010)05-0038-03 物流科技2010年第5期Logistics Sci-Tech No.5,2010 摘 要:应用遗传算法对邯运集团仓库库位进行优化。在充分考虑邯运集团仓库所存放的货物种类、货物数量、出入库频 率等因素的基础上进行库位预分区规划,建立了二次指派问题的数学模型。利用遗传算法对其求解,结合MATLAB 进行编程计算并得出最优划分方案。 关键词:遗传算法;预分区规划;库位优化中图分类号:F253.4 文献标识码:A Abstract:The paper optimize the storage position in warehouse of Hanyun Group based on genetic algorithm.With thinking of the factors such as goods categories,quantities and frequencies of I/O,etc,firstly,the storage district is planned.Then the model of quadratic assignment problems is build,and genetic algorithm is utilized to resolve the problem.The software MATLAB is used to program and figure out the best alternatives. Key words:genetic algorithm;district planning;storage position optimization 1 库位优化的提出 邯郸交通运输集团有限公司(简称“邯运集团”)是一家集多种业务为一体的大型综合性物流企业。邯运集团的主要业务板块有原料采购(天信运业及天昊、天诚、天恒等)、快递服务(飞马快运)、汽贸业务(天诚汽贸)及仓储配送(河北快运)等。其中,邯运集团的仓储配送业务由河北快运经营,现有仓库面积总共40000㎡,主要的业务范围为医药、日用百货、卷烟、陶瓷、化工产品的配送,其中以医药为主。邯运集团库存货物主要涉及两个方面:一个是大宗的供应商货物,如医药,化工产品等;另一方面主要是大规模的小件快递货物,如日用百货等[1]。经分析,邯运集团在仓储运作方面存在如下问题: (1)存储货物繁多而分拣速度低下。仓库每天到货近400箱,有近200多种规格,缺乏一套行之有效的仓储管理系统。(2)货架高度不当而货位分配混乱。现在采用的货架高度在2米以上,而且将整箱货物直接码垛在货架上,不严格按货位摆放。当需要往货架最上层码放货物需要借助梯子,增加操作难度且操作效率较低。货物在拣货区货架摆放是以件为单位的,分拣和搬运速度较慢。 (3)拣货货架设计不当而仓储效率低下。发货前装箱工作主要由人工协同完成,出库效率低,出错率难以控制。 (4)存储能力和分拣能力不能满足需求。根据邯运集团的业务发展现状及趋势,现有的仓库储存和分拣能力远远达不到集团公司对配送业务量的需求。 当前邯运集团的货位分配主要采用物理地址编码的方式,很少考虑货位分配对仓储管理员工作效率的影响。对其进行库位优化设计不仅直接影响到其库存量的大小、出入库的效率,还间接影响到邯运集团的整体经营效益。本文对邯运集团的仓库货位进行优化时,结合考虑仓库所存放的货物种类、货物数量、出入库频率等因素,对仓库货位进行规划,以提高仓储效率。 2库位预分区规划 在进行仓库货位规划时,作如下假设: (1)货物的存放种类已知; (2)货物每种类的单位时间内存放的数量己知; (3) 每一种货物的存取频率已知。 在仓库货位优化中一个重要的环节即预分区。所谓预分区,是指没有存放货物时的分区,分区时只考虑仓储作业人员的速基于遗传算法的库位优化问题 Optimization of Storage Position in Warehouse Based on Genetic Algorithm 周兴建1,2,刘元奇1,李泉1 ZHOU Xing-jian 1,2,LIU Yuan-qi 1,LI Quan 1 (1.武汉科技学院经济管理学院,湖北武汉430073;2.武汉理工大学交通学院,湖北武汉430063) (1.College of Economics &Management,Wuhan University of Science &Engineering,Wuhan 430073,China; 2.School of Transportation,Wuhan University of Technology,Wuhan 430063,China) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 38

(整理)人工智能-模糊推理.

目录 引言 1不確定性與模糊逻辑 1.1古典逻辑 1.2 模糊逻辑 1.2.1 一维隶属函数参数值 1.2.2 二维隶属函数参数值 2 模糊关系 2.1 模糊关系的定义 2.2 模糊关系的表示 3 模糊集合 3.1 模糊集合的概念 3.2 模糊集合的表示 3.3 模糊集合的运算性质 4 模糊逻辑 5 简单遗传算法 6 模糊遗传算法 7 关于模糊遗传算法的新方法

引言 模糊逻辑指模仿人脑的不确定性概念判断、推理思维方式,对于模型未知或不能确定的描述系统,以及强非线性、大滞后的控制对象,应用模糊集合和模糊规则进行推理,表达过渡性界限或定性知识经验,模拟人脑方式,实行模糊综合判断,推理解决常规方法难于对付的规则型模糊信息问题。模糊逻辑善于表达界限不清晰的定性知识与经验,它借助于隶属度函数概念,区分模糊集合,处理模糊关系,模拟人脑实施规则型推理,解决因“排中律”的逻辑破缺产生的种种不确定问题 。 一、 不確定性與模糊逻辑 ? 妻子: Do you love me ? ? 丈夫: Yes .(布林逻辑) ? 妻子: How much ? (模糊逻辑) 布林逻辑(Boolean Logic):二值,布林逻辑:{真,假} {0,1}; 模糊逻辑(Fuzzy Logic):多值,模糊逻辑:部分为真(部分为假),而不是非真即假。模糊逻辑取消了二值之间非此即彼的对立,用隶属度表示二值间的过度状态(1---完全属于这个集合;0---完全不属于这个集合)。 1.1 古典逻辑 对于任意一个集合A ,论域中的任何一个元素x ,或者属于A ,或者不属于A ,集合A 也可以由其特征函数定义: 1.2 模糊逻辑 论域上的元素可以“部分地属于”集合A 。一个元素属于集合A 的程度称为 隶属度,模糊集合可用隶属度函数定义。 1.2.1 一维隶属函数参数化 1) 三角形隶属函数: (如图1.1) 1,()0,A x A f x x A ∈?=???

比较专家系统、模糊方法、遗传算法、神经网络、蚁群算法的特点及其适合解决的实际问题

比较专家系统、模糊方法、遗传算法、神经网络、蚁群算法的特点及其适合解决的实际问题 一、专家系统(Expert System) 1,什么是专家系统? 在日常生活中大家所认知的“专家”一般都拥有某一特定领域的大量专业知识,以及丰富的实际经验。在解决问题时,专家们通常拥有一套独特的思维方式,能较圆满地解决一类困难问题,或向用户提出一些建设性的建议等。 专家系统一般定义为一个具有智能特点的计算机程序。 它的智能化主要表现为能够在特定的领域内模仿人类专家思维来求解复杂问题。因此,专家系统必须包含领域专家的大量知识,拥有类似人类专家思维的推理能力,并能用这些知识来解决实际问题。 专家系统的基本结构如图1所示,其中箭头方向为数据流动的方向。 图1 专家系统的基本组成 专家系统通常由知识库和推理机两个主要组成要素。 知识库存放着作为专家经验的判断性知识,例如表达建议、 推断、 命令、 策略的产生式规则等, 用于某种结论的推理、 问题的求解,以及对于推理、 求解知识的各种控制知识。 知识库中还包括另一类叙述性知识, 也称作数据,用于说明问题的状态,有关的事实和概念,当前的条件以及常识等。

专家系统的问题求解过程是通过知识库中的知识来模拟专家的思维方式的,因此,知识库是专家系统质量是否优越的关键所在,即知识库中知识的质量和数量决定着专家系统的质量水平。一般来说,专家系统中的知识库与专家系统程序是相互独立的,用户可以通过改变、完善知识库中的知识内容来提高专家系统的性能。 推理机实际上是一个运用知识库中提供的两类知识,基于木某种通用的问题求解模型,进行自动推理、 求解问题的计算机软件系统。 它包括一个解释程序, 用于决定如何使用判断性知识推导新的知识, 还包括一个调度程序, 用于决定判断性知识的使用次序。 推理机的具体构造取决于问题领域的特点,及专家系统中知识表示和组织的方法。 推理机针对当前问题的条件或已知信息,反复匹配知识库中的规则,获得新的结论,以得到问题求解结果。在这里,推理方式可以有正向和反向推理两种。正向推理是从前件匹配到结论,反向推理则先假设一个结论成立,看它的条件有没有得到满足。由此可见,推理机就如同专家解决问题的思维方式,知识库就是通过推理机来实现其价值的。 人机界面是系统与用户进行交流时的界面。通过该界面,用户输入基本信息、回答系统提出的相关问题,并输出推理结果及相关的解释等。 综合数据库专门用于存储推理过程中所需的原始数据、中间结果和最终结论,往往是作为暂时的存储区。解释器能够根据用户的提问,对结论、求解过程做出说明,因而使专家系统更具有人情味。 知识获取是专家系统知识库是否优越的关键,也是专家系统设计的“瓶颈”问题,通过知识获取,可以扩充和修改知识库中的内容,也可以实现自动学习功能。 2,专家系统的特点 在功能上, 专家系统是一种知识信息处理系统, 而不是数值信息计算系统。在结构上, 专家系统的两个主要组成部分 – 知识库和推理机是独立构造、分离组织, 但又相互作用的。在性能上, 专家系统具有启发性, 它能够运用专家的经验知识对不确定的或不精确的问题进行启发式推理, 运用排除多余步骤或减少不必要计算的思维捷径和策略;专家系统具有透明性, 它能够向用户显示为得出某一结论而形成的推理链, 运用有关推理的知识(元知识)检查导出结论的精度、一致性和合理性, 甚至提出一些证据来解释或证明它的推理;专家系统具有灵活性, 它能够通过知识库的扩充和更新提高求解专门问题的水平或适应环境对象的某些变化,通过与系统用户的交互使自身的性能得到评价和监护。 3,专家系统适合解决的实际问题 专家系统是人工智能的一个应用,但由于其重要性及相关应用系统之迅速发展,它已是信息系统的一种特定类型。专家系统一词系由以知识为基础的专家系统(knowledge-based expert system)而来,此种系统应用计算机中储存的人类知识,解决一般需要用到专家才能处理的问题,它能模仿人类专家解决特定问题时的推理过程,因而可供非专家们用来增进问题解决的能力,同时专家们也可把它视为具备专业知识的助理。由于在人类社会中,专家资源确实相当稀少,有了专家系统,则可使此珍贵的专家知识获得普遍的应用。 专家系统技术广泛应用在工程、科学、医药、军事、商业等方面,而且成果相当丰硕,甚至在某些应用领域,还超过人类专家的智能与判断。其功能应用领

遗传算法模糊控制

智能控制实验报告 基于遗传算法优化的舵机伺服系统模糊控制

W zf (S)- K Q S v 2333 T QSV S+ 1 0.00245S+ 1 -、液压舵机伺服系统模型的建立 某型飞机液压舵机伺服系统可以简单的视为由两级伺服放大器、小舵 机(包括小舵机作动筒、电液伺服阀)、小舵机反馈传感器、小舵机 反馈传感器解调器、液压作动筒、液压作动筒反馈传感器、液压作动 筒反馈传感器解调器组成的两级闭环控制系统。 图屮:外回路伺服放大器增益K° =7.5V/V,内回路伺服放 大器增益K =8mA/V,综合摇臂传动比K =0.65min/mm,平板 丄 1^ 阀开度梯度= 2deg/nun ,平板阀流量增益K Q = 8.4 X 104nmi 3/deg/s,校正传感器对内回路的影响系数K 。】=1.435, 内回路反馈传感器输出梯度Rs 】 =1.31V/nun,舵机作动筒反馈传 感器输出梯度兀2 =0.182±0.025V/mm,内回路反馈传感器解 调器放人系数K“ =0.5V/V,舵机作动筒反馈传感器解调器放 大系数 I ;。? =0.52V/V O 电液伺服阀传递函数:

舵机作动筒的传递函数: 平尾液压作动筒的传递函数: 二、基于遗传算法的模糊控制器优化设计 1.常规模糊控制器的设计 理论而言,模糊控制器维数越高,系统的控制精度越高。但是维数选 择过高,模糊控制律就过于复杂,基于模糊合成推理的控制算法的计 算机实现相当困难。本文采用二维模糊控制器,考虑到要严格地反映 受控过程中输出量的动态特性并消除静态误差,选取受控变量值和输 入给定值的偏差e 和偏差变化率ec 作为输入量,选取舵机伺服阀系统 的电流u 为输出量。模糊控制的结构方框图如图所示。 将系统误差e 和误差变化率ec 及输岀量u 的变化范围定义 为模糊集上的论域 E, EC ={?3,?2,0,1,2,3}, U={-6, -5, -4, -3, -2,? 101,2,3,4,5,6}。模糊了集均为{NB,NM,NS,ZO,PS,PM,PB} 。依据工程技术人员技术知识和实际操作经验,列出输出变量的模糊 控制规则。 W zT (S) = 1 97.34S W Z1(S) = 1 3570 S

模糊逻辑工具箱

Glossary术语表 Adaptive Neuro-Fuzzy Inference System (ANFIS) A technique for automatically tuning Sugeno-type inference systems based on training data. Foreword(前言) The past few years have witnessed a rapid growth in the number and variety of applications of fuzzy logic. The applications range from consumer products such as cameras, camcorders, washing machines, and microwave ovens to industrial process control, medical instrumentation, decision-support systems, and portfolio selection. 过去几年间,模糊逻辑无论是在应用数量上还是应用种类上都呈现快速增长的趋势。其应用范围从消费产品,例如照相机,便携式摄像机,洗衣机,及微波炉到工业过程控制,医药器具,决策支持系统,以及部长职务选举等 To understand the reasons for the growing use of fuzzy logic it is necessary, first, to clarify what is meant by fuzzy logic. 为了理解模糊逻辑为何能得以如此快速使用,首先,有必要理清什么是模糊逻辑。 Fuzzy logic has two different meanings. In a narrow sense, fuzzy logic is a logical system, which is an extension of multivalued logic. But in a wider sense, which is in predominant use today, fuzzy logic (FL) is almost synonymous with the theory of fuzzy sets, a theory which relates to classes of objects with unsharp boundaries in which membership is a matter of degree. In this perspective, fuzzy logic in its narrow sense is a branch of FL. What is important to recognize is that, even in its narrow sense, the agenda of fuzzy logic is very different both in spirit and substance from the agendas of traditional multivalued logical systems. 模糊逻辑有两种含义。从狭义上来说,模糊逻辑是一个逻辑系统,它是一种多值逻辑的扩充。但是广义上来说,就今天多数使用情况来看,模糊逻辑(FL)几乎与模糊理论的同义,这里模糊理论是一种与事物无明显界限的的分类,在这个界限里关系是一个度的问题。以此观点,狭义上说,模糊逻辑应该是模糊逻辑理论(FL)的一个分支。重要的是,我们要认清楚模糊逻辑与以往传统的多值逻辑系统无论是在精神还是主旨上都不相同,甚至从狭义角度也不相同。 In the Fuzzy Logic Toolbox, fuzzy logic should be interpreted as FL, that is, fuzzy logic in its wide sense. The basic ideas underlying FL are explained very clearly and insightfully in the Introduction. What might be added is that the basic concept underlying FL is that of a linguistic variable, that is, a variable whose values are words rather than numbers. In effect, much of FL may be viewed as a methodology for computing with words rather than numbers. Although words are inherently less precise than numbers, their use is closer to human intuition. Furthermore, computing with words exploits the tolerance for imprecision and thereby lowers the cost of solution. 在模糊逻辑工具箱,模糊逻辑应该理解为FL,即模糊逻辑的广义定义。在介绍中,FL的潜

协同进化数值优化算法及其应用分析

Vol.32No.9 Sep.2016 赤峰学院学报(自然科学版)JournalofChifengUniversity(NaturalScienceEdition)第32卷第9期(上) 2016年9月协同进化数值优化算法及其应用分析 梁树杰 (广东石油化工学院高州师范学院,广东 高州525200) 摘 要:探讨协同进化数值优化算法在无约束优化、约束优化、多目标优化问题及其在不同领域的应用情况,旨在充分发 挥协同进化数值优化算法的作用,进而为各领域的发展奠定基础. 关键词:协同进化算法;数值优化;应用中图分类号:O224;TP273.1 文献标识码:A 文章编号:1673-260X(2016)09-0006-02 协同进化作为一种自然现象,具有普遍性,超过两个种群间经相互影响,便会出现此现象,可用于解释种群间的适应性,将其用于生物学研究,促进了生物进化.在进化计算研究方面,协同进化算法作为一种快速发展的最优化算法,他是传统进化算法的一种扩展.这种算法的模型包含了两个和多个种群.不同的种群在生态系统中协同进化,并且相互作用,最终使得生态系统不断进化[1].协同进化算法在许多领域得到了广泛的应用[2].在许多非常困难的问题上,协同进化算法都证明了其作为优化算法的有效性.文章综述了国内外学者的研究内容,介绍了进化算法、协同进化算法等,重点阐述了其在各类问题中的应用,旨在为协同进化数值优化算法的推广提供可靠的理论保障.1协同进化数值优化算法的概况1.1进化算法 在人类生存与发展过程中涉及众多的优化问题,与分析问题相比,优化问题属于逆问题,在求解方面具有较大的难度,造成此情况的原因主要为优化问题的可行解为无穷多个,但要在可行解集合中获取最优化解,通常情况下,利用数学规划法可实现对相关问题的处理,但实际计算过于繁琐,进而难以保证计算的准确性与有效性.为了满足实际需求,进化算法随之出现,它作为算法工具具有创新性与高效性,适应了数值优化问题的求解奠定了坚实的基础. 进化计算技术属于人工智能技术,它主要是通过对自然界生物进化过程及机制的模拟,以此实现了对相关问题的求解,其具有自组织、自适应与自学习的特点.进化算法是由生物学知识逐渐发展而来的,即:生物种群的优胜劣汰、遗传变异等,在此过程中生命个体对环境的适应力不断在 增强.通过国内外学者的不断探索与研究,进化算法及其相关的计算智能方法日渐丰富,其中进化数值优化算法吸引了众多学者的目光[3]. 与传统优化算法相比, 进化算法具有一定的特殊性,其优势显著,主要表现在以下几方面:处理对象为编码,通过编码操作,使参数集成为个体,进而利于实现对结构对象的直接操作;便于获得全局最优解,借助进化算法,可对群体中的多个个体进行同时处理,从而提高了计算准确性,降低了计算风险性;不需要连续可微要求,同时可利用随机操作与启发式搜索,从而保证了搜索的明确性与高效性,在此基础上,它在各个领域的应用均取得了显著的成效,如:函数优化、自动控制、图像处理等.但进化算法也存在不足,主要表现为其选择机制仍为人工选择,在实际问题处理过程中,难以发挥指导作用;同时,局部搜索能力相对较差,难以保证解的质量[4]. 为了弥补进化算法的不足,相关学者通过研究提出了新型计算智能方法,具体包括免疫进化算法,它主要是利用自然免疫系统功能获得的,此方法在数据处理、故障诊断等方面均扮演着重要的角色;Memetic算法属于混合启发式搜索算法,其利用了不同的搜索策略,从而保证了其应用效果;群智能算法主要分为两种,一种为蚁群算法,另一种为粒子群算法,前者可用于多离散优化问题方面;后者主要利用迭代从而获取了最优解,由于其具有简便性与实用性,因此其应用较为广泛;协同进化算法作为新型进化算法,其分析了种群与环境二者间的关系,并对二者进化过程中的协调给予了高度关注[5].1.2协同进化算法 收稿日期:2016-05-23 基金项目:广东省教育研究院课题项目(GDJY-2015_F-b057);茂名市青年名师培养项目成果 传统优化算法 协同进化算法 简化问题无法简化复杂的问题.简化问题,利用分解分解问题等方式,对复杂问题的简化,从而实现求解.兼容性相对简单,算法相对独立.兼具了不同优点,发挥了不同搜索算法的作用,保证了种群间的有效协同进化. 应用领域 应用领域相对独立. 适应了各领域的需求,在各个领域均涉及协同思想. 表一 协同进化算法与传统优化算法的对比 在数值优化领域中应用协同进化算法,相关的研究成果主要体现在无约束优化、约束优化与多目标优化等方面. 在第一类问题方面.对于进化算法而言,其经典的应用领域 便是无约束数值优化,经过不断实际,此技术的应用日渐成 6-- DOI:10.13398/https://www.360docs.net/doc/0a7679261.html,ki.issn1673-260x.2016.17.003

相关文档
最新文档