勾股定理的证明教学设计
勾股定理教案范本 勾股定理教案教学方法优秀6篇
勾股定理教案范本勾股定理教案教学方法优秀6篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!勾股定理教案范本勾股定理教案教学方法优秀6篇作为一位优秀的人·民教师,常常需要准备教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。
勾股定理的教学设计(热门14篇)
勾股定理的教学设计(热门14篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划总结、合同协议、管理制度、演讲致辞、心得体会、条据书信、好词好句、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as plan summaries, contract agreements, management systems, speeches, insights, evidence letters, good words and sentences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!勾股定理的教学设计(热门14篇)勾股定理的教学设计(1)1、知识目标:(1)掌握勾股定理;(2)学会利用勾股定理进行计算、证明与作图;(3)了解有关勾股定理的历史。
勾股定理教学设计(优秀3篇)
勾股定理教学设计(优秀3篇)《勾股定理》教学设计篇一教学目标具体要求:1.知识与技能目标:会用勾股定理及直角三角形的判定条件解决实际问题。
2.过程与方法目标:经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件。
3.情感态度与价值观目标:通过自主学习的发展体验获取数学知识的感受;通过有关勾股定理的历史讲解,对学生进行德育教育。
重点:勾股定理的应用难点:勾股定理的应用教案设计一、知识点讲解知识点1:(已知两边求第三边)1.在直角三角形中,若两直角边的长分别为1cm,2cm,则斜边长为_____________。
2.已知直角三角形的两边长为3、4,则另一条边长是______________。
3.三角形ABC中,AB=10,AC=一qi,BC边上的高线AD=8,求BC的长?知识点2:利用方程求线段长1、如图,公路上A,B两点相距25km,C,D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=壹五km,CB=10km,现在要在公路AB上建一车站E,(1)使得C,D两村到E站的距离相等,E站建在离A站多少km处?(2)DE与CE的位置关系(3)使得C,D两村到E站的距离最短,E站建在离A站多少km处?利用方程解决翻折问题2、如图,用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm.当折叠时,顶点D落在BC边上的点F处(折痕为AE).想一想,此时EC有多长?3、在矩形纸片ABCD中,AD=4cm,AB=10cm,按图所示方式折叠,使点B与点D重合,折痕为EF,求DE的长。
4.如图,将一个边长分别为4、8的矩形形纸片ABCD折叠,使C点与A点重合,则EF 的长是多少?5、折叠矩形ABCD的一边AD,折痕为AE,且使点D落在BC边上的点F处,已知AB=8cm,BC=10cm,以B点为原点,BC为x轴,BA为y轴建立平面直角坐标系。
求点F和点E坐标。
6、边长为8和4的矩形OABC的两边分别在直角坐标系的x轴和y轴上,若沿对角线AC折叠后,点B落在第四象限B1处,设B1C交x轴于点D,求(1)三角形ADC的面积,(2)点B1的坐标,(3)AB1所在的直线解析式。
勾股定理的优秀教案5篇
勾股定理的优秀教案5篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、讲话致辞、条据文书、合同协议、策划方案、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, speeches, written documents, contract agreements, planning plans, rules and regulations, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!勾股定理的优秀教案5篇教案的制定可以帮助教师思考教学策略和方法是否合理,激发学生的学习兴趣和积极参与,写好教案帮助教师评估学生的学习情况和教学效果,及时调整教学计划和教学内容,以下是本店铺精心为您推荐的勾股定理的优秀教案5篇,供大家参考。
人教版八年级数学下册第十七章勾股定理勾股定理的证明教学设计
(一)教学重难点
1.理解并掌握勾股定理的表达式及其适用条件。
2.运用勾股定理解决实际问题,特别是计算直角三角形斜边长度。
3.理解并掌握勾股定理的证明过程,提高逻辑思维能力。
4.培养学生运用勾股定理发现和解决实际问题的能力。
(二)教学设想
1.创设情境,导入新课
通过呈现生活中的直角三角形实例,如楼梯、墙壁等,引导学生观察、思考,激发学生的好奇心和求知欲,为新课的学习做好铺垫。
(二)过程与方法
1.通过对勾股定理的探究,培养学生提出问题、分析问题、解决问题的能力。
2.通过小组合作、讨论交流,培养学生团队协作精神和沟通能力。
3.引导学生运用多种方法证明勾股定理,培养学生的发散思维和创新能力。
4.设计实际情境,让学生在实际问题中运用勾股定理,提高学生的应用能力。
(三)情感态度与价值观
3.教师强调勾股定理在实际问题中的应用价值,鼓励学生在生活中发现数学的美。
4.教师布置课后作业,要求学生运用勾股定理解决实际问题,巩固课堂所学布置
为了巩固学生对勾股定理的理解和应用,特布置以下作业:
1.请同学们运用勾股定理,计算以下直角三角形的斜边长度:
1.引入勾股定理的概念,引导学生了解勾股定理的背景和意义。
2.通过实例演示,让学生直观地感受勾股定理的应用。
3.采用多种方法证明勾股定理,如几何法、代数法等,培养学生的逻辑思维和创新能力。
4.设计丰富的练习题,巩固学生对勾股定理的理解和应用。
5.结合生活实际,让学生在实际情境中运用勾股定理,提高学生的应用能力。
某建筑工地需要测量一块直角三角形的斜边长度,已知两条直角边的长度分别为10米和24米。由于工地条件有限,无法直接测量斜边长度。请问:如何利用勾股定理计算斜边长度?
人教版数学八下17.1《勾股定理》教案3篇
初中数学教学案例18.1勾股定理(第一课时)教学目标知识技能数学思考解决问题情感态度教学重点教学难点教具教学过程教学流程教师活动学生活动设计意图情景引人[活动1]讲述资料故事提出问题1:数学家大会为什么用该图做会徽呢?它有什么特殊的含义吗?教师作补充说明:这个图案是我国汉代数学家赵爽在证明勾股定理时用到的,被称为“赵爽弦图”.问题2:你听说过“勾股定理”吗?教师关注:学生对“赵爽弦图”及勾股定理的历史是否感兴趣.引人课题18.1《勾股定理》(板书课题)[活动2]学生观察图片发表见解.生1.会徽是很具有代表性的东西,比如2008年体育奥运会的会徽是五环旗.生2.我在其他的资料里见过这个图案.生3.课本面上也有这样的图案.(同学们积极踊跃的发言,学习积极性很高)学生当听到是“赵爽弦图”时,好奇之心更加强烈,学习热情很高.对“勾股定理”表示不从现实生活中提出“赵爽弦图”,为学生能够积极主动地投入到探索活动创设情境,激发学生学习热情,同时为探索勾股定理提供背景材料.探究新知A BC你知道他是通过什么途径找到怎样的三边关系的吗?问题1.你能发现S A、S B 、S C之间的关系吗?问题2.等腰直角三角形的三边a、b、c之间有什么关系?出示幻灯片3169254913否也有这样的性质呢?在本次活动中,教师重点关注:(1)教师参与小组活动,指导、倾听学生交流.针对不同认识水平的学生,引导其用不同的方法得出大正方形C的面积.理解观察图片后结合课本上的内容,学生很快就发现这一关系式SA+ SB=SCa2 + b2 = c2纷纷举手回答,并总结:等腰直角三角形的两条的平方问题是思维的起点,通过问题激发学生好奇心和主动学习的欲望.为学生提供参与数学活动的时间和组内交流(2)幻灯片展示答案(3)引导学生将三个正方形面积的关系转化为直角三角形三条边之间的关系,并用自己的语言叙述出来:[活动3] 实践验证早在公元3世纪,我国数学家赵爽就用赵爽弦图验证了“勾股定理”幻灯片展示赵爽弦图教师详细介绍赵爽弦图的拼割过程.问题:.你能利用手中的材料通过其他的拼法验证勾股定理吗?试试看,你能拼几种在独立探究的基础上,学生分组(前后位四人一组)合作交流.用不同的方法得出大正方形C的面积生1:把C“补” 成边长为7的正方形面积的一半.生2:将正方形C分“割”成若干个直角边为整数的三角形当答案不同、意见有分歧时,所有同学都在积极思考,大胆发言,各抒己见,直到探求出正确结果.学生总结命题:直角三角形的两条直角边的平方和等于斜边的平方空间,让学生积极动手,发挥学生的主体作用,使学生在相互欣赏、争辩、互助中得到提高.,得出猜想实践验证在本次活动中,教师重点关注:(1)学生能否进行合理的拼图.对不同层次的学生有针对性地给予分析、帮助;(2)学生能否用语言准确的表达自己的观点.勾股定理(毕达哥拉斯定理)(板书)直角三角形两直角边的平方和等于斜边的平方。
《勾股定理》说课稿(通用6篇)精选全文
可编辑修改精选全文完整版《勾股定理》说课稿(通用6篇)《勾股定理》篇1尊敬的各位评委、老师,您们好,我是临沂市苍山县实验中学的宋宁。
今天我说课的内容是人教版《数学》八年级下册第十八章第一节《勾股定理》第一课时,我将从教材、教法与学法、教学过程、教学评价以及设计说明五个方面来阐述对本节课的理解与设计。
一、教材分析:(一) 教材的地位与作用从知识结构上看,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。
从学生认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁;勾股定理又是对学生进行爱国主义教育的良好素材,因此具有相当重要的地位和作用。
根据数学新课程标准以及八年级学生的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。
其中【情感态度】方面,以我国数学文化为主线,激发学生热爱祖国悠久文化的情感。
(二)重点与难点为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。
限于八年级学生的思维水平,我将面积法(拼图法)发现勾股定理确定为本节课的难点,我将引导学生动手实验突出重点,合作交流突破难点。
二、教学与学法分析教学方法叶圣陶说过“教师之为教,不在全盘授予,而在相机诱导。
”因此教师利用几何直观提出问题,引导学生由浅入深的探索,设计实验让学生进行验证,感悟其中所蕴涵的思想方法。
学法指导为把学习的主动权还给学生,教师鼓励学生采用动手实践,自主探索、合作交流的学习方法,让学生亲自感知体验知识的形成过程。
三、教学过程我国数学文化源远流长、博大精深,为了使学生感受其传承的魅力,我将本节课设计为以下五个环节。
首先,情境导入古韵今风给出《七巧八分图》中的一组图片,让学生利用两组七巧板进行合作拼图。
(请看视频)让学生观察并思考三个正方形面积之间的关系?它们围成了什么三角形?反映在三边上,又蕴含着什么数学奥秘呢?寓教于乐,激发学生好奇、探究的欲望。
八年级数学《勾股定理》教案优秀10篇
八年级数学《勾股定理》教案优秀10篇年级数学《勾股定理》教案1[教学分析]勾股定理是揭示三角形三条边数量关系的一条非常重要的性质,也是几何中最重要的定理之一。
它是解直角三角形的主要依据之一,同时在实际生活中具有广泛的用途,“数学源于生活,又用于生活〞正是这章书所表达的主要思想。
教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际操作,使学生获得较为直观的印象;通过联系比拟、探索、归纳,帮助学生理解勾股定理,以利于进行正确的应用。
本节教科书从毕达哥拉斯观察地面发现勾股定理的传说谈起,让学生通过观察计算一些以直角三角形两条直角边为边长的小正方形的面积与以斜边为边长的正方形的面积的关系,发现两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积,从而发现勾股定理,这时教科书以命题的形式呈现了勾股定理。
关于勾股定理的证明方法有很多,教科书正文中介绍了我国古人赵爽的证法。
之后,通过三个探究栏目,研究了勾股定理在解决实际问题和解决数学问题中的应用,使学生对勾股定理的作用有一定的认识。
[教学目标]一、知识与技能1、探索直角三角形三边关系,掌握勾股定理,开展几何思维。
2、应用勾股定理解决简单的实际问题3学会简单的合情推理与数学说理二、过程与方法引入两段中西关于勾股定理的史料,激发同学们的兴趣,引发同学们的思考。
通过动手操作探索与发现直角三角形三边关系,经历小组协作与讨论,进一步开展合作交流能力和数学表达能力,并感受勾股定理的应用知识。
三、情感与态度目标通过对勾股定理历史的了解,感受数学文化,激发学习兴趣;在探究活动中,学生亲自动手对勾股定理进行探索与验证,培养学生的合作交流意识和探索精神,以及自主学习的能力。
四、重点与难点1、探索和证明勾股定理2熟练运用勾股定理[教学过程]一、创设情景,揭示课题1、教师展示图片并介绍第一情景以中国最早的一部数学著作——《周髀算经》的开头为引,介绍周公向商高请教数学知识时的对话,为勾股定理的出现埋下伏笔。
八年级数学《勾股定理》教案8篇
八年级数学《勾股定理》教案8篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如心得体会、工作报告、工作总结、工作计划、申请书、读后感、作文大全、合同范本、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as insights, work reports, work summaries, work plans, application forms, post reading reviews, essay summaries, contract templates, speech drafts, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!八年级数学《勾股定理》教案8篇本文将为大家介绍八年级数学《勾股定理》教案8篇。
勾股定理的证明(16种方法)教案
勾股定理的证明【证法1】(课本的证明)做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即abc ab b a 214214222⨯+=⨯++, 整理得 222c b a =+.【证法2】(邹元治证明)以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积等于ab 21. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上.∵ Rt ΔHAE ≌ Rt ΔEBF ,∴ ∠AHE = ∠BEF .∵ ∠AEH + ∠AHE = 90º, ∴ ∠AEH + ∠BEF = 90º. ∴ ∠HEF = 180º―90º= 90º.∴ 四边形EFGH 是一个边长为c 的正方形. 它的面积等于c 2. ∵ Rt ΔGDH ≌ Rt ΔHAE , ∴ ∠HGD = ∠EHA . ∵ ∠HGD + ∠GHD = 90º, ∴ ∠EHA + ∠GHD = 90º. 又∵ ∠GHE = 90º,∴ ∠DHA = 90º+ 90º= 180º.∴ ABCD 是一个边长为a + b 的正方形,它的面积等于()2b a +.∴()22214c ab b a +⨯=+. ∴ 222c b a =+.【证法3】(赵爽证明) 以a 、b 为直角边(b>a ), 以c 为斜边作四个全等的直角三角形,则每个直角三角形的面积等于ab 21. 把这四个直角三角形拼成如图所示形状. ∵ Rt ΔDAH ≌ Rt ΔABE,∴ ∠HDA = ∠EAB .∵ ∠HAD + ∠HAD = 90º, ∴ ∠EAB + ∠HAD = 90º, ∴ ABCD 是一个边长为c 的正方形,它的面积等于c 2. ∵ EF = FG =GH =HE = b ―a , ∠HEF = 90º.∴ EFGH 是一个边长为b ―a 的正方形,它的面积等于()2a b -.∴ ()22214c a b ab =-+⨯.∴ 222c b a =+. 【证法4】(1876年美国总统Garfield 证明)以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面积等于ab21. 把这两个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上.∵ Rt ΔEAD ≌ Rt ΔCBE ,∴ ∠ADE = ∠BEC .∵ ∠AED + ∠ADE = 90º, ∴ ∠AED + ∠BEC = 90º. ∴ ∠D EC = 180º―90º= 90º. ∴ ΔDEC 是一个等腰直角三角形,它的面积等于221c .又∵ ∠DAE = 90º, ∠EBC = 90º, ∴ AD ∥BC .∴ ABCD 是一个直角梯形,它的面积等于()221b a +.∴ ()222121221c ab b a +⨯=+. ∴ 222c b a =+.【证法5】(梅文鼎证明)做四个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c . 把它们拼成如图那样的一个多边形,使D 、E 、F 在一条直线上. 过C 作AC 的延长线交DF 于点P .∵ D 、E 、F 在一条直线上, 且Rt ΔGEF ≌ Rt ΔEBD , ∴ ∠EGF = ∠BED ,∵ ∠EGF + ∠GEF = 90°,∴ ∠BED + ∠GEF = 90°,∴ ∠BEG =180º―90º= 90º. 又∵ AB = BE = EG = GA = c ,∴ ABEG 是一个边长为c 的正方形. ∴ ∠ABC + ∠CBE = 90º.∵ Rt ΔABC ≌ Rt ΔEBD , ∴ ∠ABC = ∠EBD . ∴ ∠EBD + ∠CBE = 90º. 即 ∠CBD= 90º. 又∵ ∠BDE = 90º,∠BCP = 90º,BC = BD = a .∴ BDPC 是一个边长为a 的正方形. 同理,HPFG 是一个边长为b 的正方形. 设多边形GHCBE 的面积为S ,则,21222ab S b a ⨯+=+abS c 2122⨯+=, ∴ 222c b a =+.【证法6】(项明达证明)做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ) ,斜边长为c . 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形,使E 、A 、C 三点在一条直线上. 过点Q 作QP ∥BC ,交AC 于点P .过点B 作BM ⊥PQ ,垂足为M ;再过点F 作FN ⊥PQ ,垂足为N . ∵ ∠BCA = 90º,QP ∥BC , ∴ ∠MPC = 90º, ∵ BM ⊥PQ , ∴ ∠BMP = 90º, ∴ BCPM 是一个矩形,即∠MBC = 90º.∵ ∠QBM + ∠MBA = ∠QBA = 90º,∠ABC + ∠MBA = ∠MBC = 90º, ∴ ∠QBM = ∠ABC ,又∵ ∠BMP = 90º,∠BCA = 90º,BQ = BA = c , ∴ Rt ΔBMQ ≌ Rt ΔBCA .同理可证Rt ΔQNF ≌ Rt ΔAEF . 从而将问题转化为【证法4】(梅文鼎证明).【证法7】(欧几里得证明)做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使H 、C 、B 三点在一条直线上,连结 BF 、CD . 过C 作CL ⊥DE ,交AB 于点M ,交DE 于点L .∵ AF = AC ,AB = AD , ∠FAB = ∠GAD , ∴ ΔFAB ≌ ΔGAD ,∵ ΔFAB 的面积等于221a , ΔGAD 的面积等于矩形ADLM 的面积的一半,∴ 矩形ADLM 的面积 =2a . 同理可证,矩形MLEB 的面积 =2b .∵ 正方形ADEB 的面积 = 矩形ADLM 的面积 + 矩形MLEB 的面积 ∴ 222b a c += ,即 222c b a =+.【证法8】(利用相似三角形性质证明)如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b ,斜边AB 的长为c ,过点C 作CD ⊥AB ,垂足是D .在ΔADC 和ΔACB 中, ∵ ∠ADC = ∠ACB = 90º, ∠CAD = ∠BAC , ∴ ΔADC ∽ ΔACB .AD ∶AC = AC ∶AB ,即 AB AD AC •=2. 同理可证,ΔCDB ∽ ΔACB ,从而有 AB BD BC •=2.∴ ()222AB AB DB AD BC AC =•+=+,即 222c b a =+.【证法9】(杨作玫证明)做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ),斜边长为c . 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形. 过A 作AF ⊥AC ,AF 交GT 于F ,AF 交DT 于R . 过B 作BP ⊥AF ,垂足为P . 过D 作DE 与CB 的延长线垂直,垂足为E ,DE 交AF 于H .∵ ∠BAD = 90º,∠P AC = 90º, ∴ ∠DAH = ∠BAC .又∵ ∠DHA = 90º,∠BCA = 90º, AD = AB = c ,∴ Rt ΔDHA ≌ Rt ΔBCA .∴ DH = BC = a ,AH = AC = b .由作法可知, PBCA 是一个矩形, 所以 Rt ΔAPB ≌ Rt ΔBCA . 即PB = CA = b ,AP= a ,从而PH = b ―a .∵ Rt ΔDGT ≌ Rt ΔBCA ,Rt ΔDHA ≌ Rt ΔBCA . ∴ Rt ΔDGT ≌ Rt ΔDHA .∴ DH = DG = a ,∠GDT = ∠HDA . 又∵ ∠DGT = 90º,∠DHF = 90º,∠GDH = ∠GDT + ∠TDH = ∠HDA+ ∠TDH = 90º, ∴ DGFH 是一个边长为a 的正方形.∴ GF = FH = a . T F ⊥AF ,TF = GT ―GF = b ―a .∴ TFPB 是一个直角梯形,上底TF=b ―a ,下底BP= b ,高FP=a +(b ―a ). 用数字表示面积的编号(如图),则以c 为边长的正方形的面积为 543212S S S S S c ++++= ①∵()[]()[]a b a a b b S S S -+•-+=++21438 =ab b 212-, 985S S S +=,∴ 824321S ab b S S --=+=812SS b -- . ② 把②代入①,得98812212S S S S b S S c ++--++== 922S S b ++ = 22a b +. ∴ 222c b a =+.【证法10】(李锐证明)设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c . 做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使A 、E 、G 三点在一条直线上. 用数字表示面积的编号(如图).∵ ∠TBE = ∠ABH = 90º, ∴ ∠TBH = ∠ABE .又∵ ∠BTH = ∠BEA = 90º,BT = BE = b ,∴ Rt ΔHBT ≌ Rt ΔABE . ∴ HT = AE = a . ∴ GH = GT ―HT = b ―a .又∵ ∠GHF + ∠BHT = 90º,∠DBC + ∠BHT = ∠TBH + ∠∴ ∠GHF = ∠DBC .∵ DB = EB ―ED = b ―a ,∠HGF = ∠BDC = 90º,∴ Rt ΔHGF ≌ Rt ΔBDC . 即 27S S =.过Q 作QM ⊥AG ,垂足是M . 由∠BAQ = ∠BEA = 90º,可知 ∠ABE= ∠QAM ,而AB = AQ = c ,所以Rt ΔABE ≌ Rt ΔQAM . 又Rt ΔHBT ≌ Rt ΔABE . 所以Rt ΔHBT ≌ Rt ΔQAM . 即 58S S =.由Rt ΔABE ≌ Rt ΔQAM ,又得QM = AE = a ,∠AQM = ∠BAE .∵ ∠AQM + ∠FQM = 90º,∠BAE + ∠CAR = 90º,∠AQM = ∠BAE , ∴ ∠FQM = ∠CAR .又∵ ∠QMF = ∠ARC = 90º,QM = AR = a , ∴ Rt ΔQMF ≌ Rt ΔARC . 即64S S =.∵ 543212S S S S S c ++++=,612S S a +=,8732S S S b ++=,又∵ 27S S =,58S S =,64S S =,∴8736122S S S S S b a ++++=+ =52341S S S S S ++++=2c ,即 222c b a =+.【证法11】(利用切割线定理证明)在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c . 如图,以B 为圆心a 为半径作圆,交AB 及AB 的延长线分别于D 、E ,则BD = BE = BC = a . 因为∠BCA = 90º,点C 在⊙B 上,所以AC 是⊙B 的切线. 由切割线定理,得AD AE AC •=2=()()BD AB BE AB -+ =()()a c a c -+= 22a c -,即222a c b -=, ∴ 222c b a =+.【证法12】(利用多列米定理证明)在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c (如图). 过点A 作AD ∥CB ,过点B 作BD ∥CA ,则ACBD 为矩形,矩形ACBD 内接于一个圆. 根据多列米定理,圆内接四边形对角线的乘积等于两对边乘积之和,有BD AC BC AD DC AB •+•=•, ∵ AB = DC = c ,AD = BC = a ,AC = BD = b ,∴ 222AC BC AB +=,即 222b a c +=,∴ 222c b a =+.【证法13】(作直角三角形的内切圆证明)在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c . 作Rt ΔABC 的内切圆⊙O ,切点分别为D 、E 、F (如图),设⊙O 的半径为r .∵ AE = AF ,BF = BD ,CD = CE ,∴ ()()()BF AF CD BD CE AE AB BC AC +-+++=-+= CD CE += r + r = 2r,即 r c b a 2=-+, ∴ c r b a +=+2.∴ ()()222c r b a +=+,即 ()222242c rc r ab b a ++=++,∵ab S ABC 21=∆,∴ ABC S ab ∆=42,又∵ AOC BOCAOB ABC S S S S ∆∆∆∆++= = br ar cr 212121++ = ()r c b a ++21= ()r c c r ++221= rc r +2,∴()ABC S rc r ∆=+442, ∴ ()ab rc r242=+,∴ 22222c ab ab b a +=++, ∴ 222c b a =+. 【证法14】(利用反证法证明)如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b ,斜边AB 的长为c ,过点C 作CD ⊥AB ,垂足是D .假设222c b a ≠+,即假设 222AB BC AC ≠+,则由AB AB AB •=2=()BD AD AB +=BD AB AD AB •+•可知 AD AB AC •≠2,或者 BD AB BC •≠2. 即 AD :AC ≠AC :AB ,或者 BD :BC ≠BC :AB .在ΔADC 和ΔACB 中, ∵ ∠A = ∠A , ∴ 若 AD :AC ≠AC :AB ,则 ∠ADC ≠∠ACB . 在ΔCDB 和ΔACB 中, ∵ ∠B = ∠B ,∴ 若BD :BC ≠BC :AB ,则 ∠CDB ≠∠ACB . 又∵ ∠ACB = 90º,∴ ∠ADC ≠90º,∠CDB ≠90º.这与作法CD ⊥AB 矛盾. 所以,222AB BC AC ≠+的假设不能成立.∴ 222c b a =+.【证法15】(辛卜松证明)D设直角三角形两直角边的长分别为a 、b ,斜边的长为c . 作边长是a+b 的正方形ABCD . 把正方形ABCD 划分成上方左图所示的几个部分,则正方形ABCD的面积为()ab b a b a 2222++=+;把正方形ABCD 划分成上方右图所示的几个部分,则正方形ABCD 的面积为 ()22214c ab b a +⨯=+ =22c ab +.∴ 22222c ab ab b a +=++,∴ 222c b a =+.【证法16】(陈杰证明)设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c . 做两个边长分别为a 、b 的正方形(b>a ),把它们拼成如图所示形状,使E 、H 、M 三点在一条直线上. 用数字表示面积的编号(如图).在EH = b 上截取ED = a ,连结DA 、DC ,则 AD = c .∵ EM = EH + HM = b + a , ED = a ,∴ DM = EM ―ED = ()a b +―a = b . 又∵ ∠CMD = 90º,CM = a , ∠AED = 90º, AE = b ,∴ Rt ΔAED ≌ Rt ΔDMC . ∴ ∠EAD = ∠MDC ,DC = AD = c . ∵ ∠ADE + ∠ADC+ ∠MDC =180º, ∠ADE + ∠MDC = ∠ADE + ∠EAD = 90º,∴ ∠ADC = 90º.∴ 作AB ∥DC ,CB ∥DA ,则ABCD 是一个边长为c 的正方形. ∵ ∠BAF + ∠FAD = ∠DAE + ∠FAD = 90º, ∴ ∠BAF=∠DAE .连结FB ,在ΔABF 和ΔADE 中,∵ AB =AD = c ,AE = AF = b ,∠BAF=∠DAE , ∴ ΔABF ≌ ΔADE .∴ ∠AFB = ∠AED = 90º,BF = DE = a . ∴ 点B 、F 、G 、H 在一条直线上. 在Rt ΔABF 和Rt ΔBCG 中, ∵ AB = BC = c ,BF = CG = a , ∴ Rt ΔABF ≌ Rt ΔBCG .∵ 54322S S S S c +++=, 6212S S S b ++=, 732S S a +=,76451S S S S S +===, ∴6217322S S S S S b a ++++=+ =()76132S S S S S ++++=5432S S S S +++=2c ∴ 222c b a =+.。
勾股定理教案(共五则范文)
勾股定理教案(共五则范文)第一篇:勾股定理教案勾股定理(课时一)教学目标知识与技能:通过观察猜想得出勾股定理的结论。
过程与方法:通过观察、归纳、猜想、探索的过程,发展学生的合情推理能力,体会数形结合的思想。
情感态度与价值观:通过对勾股定理历史的了解,感受数学文化,激发学生的爱国热情。
教学重、难点重点:探索三角形两条直角边的平方和等于斜边的平方的结论,从而发现勾股定理。
难点:勾股定理的证明。
教学过程1、创设问题情境、引入新课问题1:我国古代,人们将直角三角形中的短的直角边叫做钩、长的直角边叫做股、斜边叫做弦。
根据我国古算书《周髀算经》记载,约在公元前1100年人们已经知道钩是三、股是四,那么弦就是五,你知道是为什么吗?(设计意图:问题设置具有一定的挑战性,为的是激发学生探究的欲望。
在学生感到困惑时教师指出:通过本章的学习可以解开困惑。
)2、探索交流、开展新科活动1 问题2:毕得格拉斯是古希腊著名的哲学家、数学家、天文学家,相传2500年前,一次他去朋友家做客,发现朋友家的用砖铺成的地面反映了直角三角形三边的某种关系。
我们来观察一下图中的地面,看看能发现些什么?问题3:你能发现下图中等腰直角三角形A、B、C有什么性质吗?问题4:等腰三角形都有上述性质吗?观察下图,回答问题。
(1)观察图1 正方形A中含有个小方格,即A的面积是个单位面积。
正方形B中含有个小方格,即B的面积是个单位面积。
正方形C中含有个小方格,即C的面积是个单位面积。
(2)在图2、图3中,正方形A、B、C中个含有多少个小方格?它们的面积各是多少?你如何得到上述结果的?与同伴交流。
(2)请将上述结果填入下表,你能发现正方形A、B、C的面积关系吗?(设计意图:通过学生观察计算,发现对于等腰直角三角形而言,满足两直角边的平方和等于斜边的平方。
通过探究、发现,体会数形结合思想。
)命题一如果直角三角形的两直角边长分别为a、b,斜边长为c,那么a2+b2=c2活动2 问题5:等腰三角形有上述性质,其他的三角形也有这个性质吗?如下图,每个小方格的面积均为1,请分别计算出下图中A、B、C、A‘、B‘、C’的面积,看看能得出什么结论?(问题6:给出一个边长为0.5、1.2、1.3,这种含小数的直角三角形,也满足上述结论吗?(设计意图:进一步让学生体会观察、猜想、归纳这一数学结论的发现过程,提高学生的分析问题、解决问题的能力。
人教版(五四制)数学八年级下册24.1勾股定理证明教学设计
(三)学生小组讨论
在学生小组讨论环节,我会将学生分成若干小组,让他们针对以下问题进行讨论:
1.几何拼贴法、代数法和归纳法在证明勾股定理时的异同点。
2.勾股定理在实际问题中的应用,如建筑、测量等。
3.探究拓展题:鼓励学生通过查找资料或与小组成员合作,探究勾股定理在其他领域的应用,如艺术、科技等。此类题目旨在培养学生的探究意识和团队合作能力。
例题:请查阅资料或与小组成员讨论,了解勾股定理在建筑领域的应用,并撰写一篇简要的报告。
4.思考题:布置一些具有挑战性的思考题,要求学生在理解勾股定理的基础上,进行深度思考,培养学生的逻辑思维能力和创新意识。
3.作业反馈:教师应及时批改作业,给予学生个性化的反馈,指出学生的优点和不足,指导学生改进学习方法。
4.家长参与:鼓励家长关注孩子的学习情况,共同参与作业完成过程,促进家校共育。
(2)终结性评价:通过课后作业、阶段测试等形式,评价学生对勾股定理的理解和应用能力。
(3)个性化评价:针对学生的个体差异,给予针对性的指导和鼓励,激发学生的学习潜能。
4.教学拓展:
(1)引导学生探索勾股定理在生活中的其他应用,如艺术、科技等领域。
(2)介绍勾股定理的历史背景,让学生了解数学发展的历程,增强学生的学习兴趣。
(4)课堂练习:设计分层、分梯度的练习题,让学生在练习中巩固知识,提高解决问题的能力。
(5)总结反馈:对本节课的内容进行总结,强调勾股定理的证明方法和应用,了解学生的学习情况,及时进行教学调整。
3.教学评价:
(1)过程性评价:关注学生在课堂上的参与度、讨论交流、思考问题等表现,鼓励学生积极参与课堂活动。
勾股定理教案(精选3篇)
勾股定理教案(精选3篇)勾股定理教案(精选3篇)作为一位无私奉献的人民教师,有必要进行细致的教案准备工作,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。
怎样写教案才更能起到其作用呢?以下是大熊猫壹号书店整理的勾股定理教案(精选3篇),仅供参考,大家一起来看看吧。
勾股定理教案1学习目标1、通过拼图,用面积的方法说明勾股定理的正确性。
2、探索勾股定理的过程,发展合情推理的能力,体会数型结合的思想。
重点难点或学习建议学习重点:用面积的方法说明勾股定理的正确。
学习难点:勾股定理的应用。
学习过程教师二次备课栏自学准备与知识导学:这是1955年希腊为纪念一位数学家曾经发行的邮票。
邮票上的图案是根据一个著名的数学定理设计的。
学习交流与问题研讨:1、探索问题:分别以图中的直角三角形三边为边向三角形外作正方形,小方格的面积看做1,求这三个正方形的面积?S正方形BCED=S正方形ACFG=S正方形ABHI=发现:2、实验在下面的方格纸上,任意画几个顶点都在格点上的三角形;并分别以这个三角形的各边为一边向三角形外做正方形并计算出正方形的面积。
请完成下表:S正方形BCEDS正方形ACFGS正方形ABHIS正方形BCED、S正方形ACFG、S正方形ABHI的关系1121454162091625发现:如何用直角三角形的三边长来表示这个结论?这个结论就是我们今天要学习的勾股定理:如图:我国古代把直角三角形中,较短的直角边叫做“勾”,较长的直角边叫做“股”,斜边叫做“弦”,所以勾股定理可表示为:弦股还可以表示为:或勾练习检测与拓展延伸:练习1、求下列直角三角形中未知边的长练习2、下列各图中所示的线段的长度或正方形的面积为多少。
(注:下列各图中的三角形均为直角三角形)例1、如图,在四边形中,∠,∠,,求。
检测:1、在Rt△ABC中,∠C=90°(1)若a=5,b=12,则c=________;(2)b=8,c=17,则S△ABC=________。
勾股定理优秀教学设计模板(通用5篇)
勾股定理优秀教学设计模板(通⽤5篇)勾股定理优秀教学设计模板(通⽤5篇) 在教学⼯作者实际的教学活动中,时常需要⽤到教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学⽅案的设想和计划。
那么⼤家知道规范的教学设计是怎么写的吗?以下是⼩编为⼤家收集的勾股定理优秀教学设计模板(通⽤5篇),希望能够帮助到⼤家。
勾股定理优秀教学设计1 ⼀、教案背景概述: 教材分析:勾股定理是直⾓三⾓形的重要性质,它把三⾓形有⼀个直⾓的"形"的特点,转化为三边之间的"数"的关系,它是数形结合的典范。
它可以解决许多直⾓三⾓形中的计算问题,它是直⾓三⾓形特有的性质,是初中数学教学内容重点之⼀。
本节课的重点是发现勾股定理,难点是说明勾股定理的正确性。
学⽣分析: 1、考虑到三⾓尺学⽣天天在⽤,较为熟悉,但真正能仔细研究过三⾓尺的同学并不多,通过这样的情景设计,能⾮常简单地将学⽣的注意⼒引向本节课的本质。
2、以与勾股定理有关的⼈⽂历史知识为背景展开对直⾓三⾓形三边关系的讨论,能激发学⽣的学习兴趣。
设计理念:本教案以学⽣⼿中舞动的三⾓尺为知识背景展开,以勾股定理在古今中外的发展史为主线贯穿课堂始终,让学⽣对勾股定理的发展过程有所了解,让他们感受勾股定理的丰富⽂化内涵,体验勾股定理的探索和运⽤过程,激发学⽣学习数学的兴趣,特别是通过向学⽣介绍我国古代在勾股定理研究和运⽤⽅⾯的成就,激发学⽣热爱祖国,热爱祖国悠久⽂化的思想感情,培养他们的民族⾃豪感和探究创新的精神。
教学⽬标: 1、经历⽤⾯积割、补法探索勾股定理的过程,培养学⽣主动探究意识,发展合理推理能⼒,体现数形结合思想。
2、经历⽤多种割、补图形的⽅法验证勾股定理的过程,发展⽤数学的眼光观察现实世界和有条理地思考能⼒以及语⾔表达能⼒等,感受勾股定理的⽂化价值。
3、培养学⽣学习数学的兴趣和爱国热情。
勾股定理的证明方法教学设计与教学反思
《17.1勾股定理》教学设计与教学反思【教学目标】一、知识目标1.了解勾股定理的历史背景,体验勾股定理的探索过程。
2.掌握直角三角形中的三边关系并会运用勾股定理解决实际问题。
二、能力培养目标:1.在勾股定理的探索过程中,体验数学思维的严谨性,发展学生合理推理能力,体会数形结合的思想。
2.把实际问题转化为数学模型,培养学生分析问题解决问题的能力。
三、情感态度目标1.学生通过适当训练,养成数学说理的习惯,培养学生参与的积极性,逐步体验数学说理的重要性。
2.在探究活动中体验解决问题方法的多样性,培养学生的合作交流意识和探究精神。
3.了解勾股定理的历史,理解勾股定理的证明方法,加强爱国主义教育,体验数学的价值,增强通过应用意识。
【重点难点】1.重点:探索和证明勾股定理。
2.难点:灵活运用勾股定理。
3.疑点:把线段的计算转化为直角三角形,用勾股定理解决实际问题。
教学方法:讲练结合;讨论探究法。
教具准备:多媒体课件。
【设计思路】本课时教学强调让学生经历数学知识的形成与应用过程,鼓励学生自主探索与合作交流,以学生自主探索为主,并强调同桌之间的合作与交流,强化应用意识,培养学生多方面的能力。
让学生通过动手、动脑、动口自主探索,感受到“无出不在的数学”与数学的美,以提高学习兴趣,进一步体会数学的地位与作用。
通过对勾股定理历史背景有初步了解,感受人类文明的力量,增强爱国情感。
【教学流程安排】活动一:了解历史,探索勾股定理活动二:拼图验证并证明勾股定理活动三:例题讲解,巩固练习活动四:反思小结,布置作业活动内容及目的:①通过多勾股定理的发现,(国外、国内)了解历史,激发学生对勾股定理的探索兴趣,培养学生爱国主义情感。
②观察、分析方格图,得到直角三角形的性质——勾股定理,发展学生分析问题的能力。
③通过拼图验证勾股定理,体会数学的严谨性,培养学生的数形结合思想,激发探究精神。
④布置作业,巩固、发展提高学生运用能力。
【教学过程设计】【活动一】(一)问题与情景1、你听说过“勾股定理”吗?(1)勾股定理古希腊数学家毕达哥拉斯发现的,西方国家称勾股定理为“毕达哥拉斯”定理(2)我国著名的《算经十书》最早的一部《周髀算经》。
勾股定理的证明教案
勾股定理(第一课时)【学习目标】1.知识技能(1)了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理.(2)运用勾股定理.2.解决问题经历观察与发现直角三角形三边关系的过程,感受勾股定理的应用意识.3.数学思考通过勾股定理的实验演示,发展自身对图形变换的认识能力.4.情感态度坚持严谨的数学学习态度,体会勾股定理的应用价值.【学习重难点】1.重点:掌握了解勾股定理,会用面积法证明勾股定理并能运用勾股定理.2.难点:用面积法证明勾股定理.一、课前延伸一、思考下列问题:(1)三角形三边关系(2)分别画一个锐角三角形和一个钝角三角形,用刻度尺量出各边的长度(3)分别计算锐角三角形和钝角三角形较小两边的平方和与较大边的平方有何大小关系?(4)猜想直角三角形中较小两边的平方和与第三边的平方的关系.二、预习课本,完成思考题1.一个直角三角形的两条直角边分别为5cm、12cm,那么这个直角三角形斜边为.2.如图,要将楼梯铺上地毯,则需要米长的地毯.三、课内探究1、问题:毕达哥拉斯是古希腊著名的数学家.相传在2500年以前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角形的三边的某种数量关系.(1)同学们,请你也来观察下图中的地面,看看能发现些什么?地面(2)你能找出图中正方形A、B、C面积之间的关系吗?(3)图中正方形A、B、C所围等腰直角三角形三边之间有什么特殊关系?2、(1)等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也具有“两直角边的平方和等于斜边的平方”呢?如图,每个小方格的面积均为1,以格点为顶点,有一个直角边分别是2、3的直角三角形.仿照上一活动,我们以这个直角三角形的三边为边长向外作正方形.(2)想一想,怎样利用小方格计算正方形A、B、C面积?(3)猜想:直角三角形三边有何数量关系四、课堂反馈1.在Rt△ABC,∠C=90°⑴已知a=b=5,求c.⑵已知a=1,c=2,求b.⑶已知c=17,b=8,求a.⑷已知a:b=1:2,c=5,求a.2.已知直角三角形的两边长分别为5和12,求第三边.3.小明的妈妈买了一部29英寸(74厘米)的电视机.小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了.你同意他的想法吗?你能解释这是为什么吗?4.如图,一根旗杆在离地面9m处断裂,旗杆顶部落在离旗杆底部12m处,旗杆折断之前有多高?5.填空题(1)在Rt△ABC,∠B=90°,a=3,b=4,则c= .(2)在Rt△ABC,∠C=90°,c=10,a:b=3:4,则a= ,b= .(3)一个直角三角形的三边为三个连续偶数,则它的三边长分别为.(4)已知直角三角形的两边长分别为3cm和5cm,,则第三边长为.(5)已知等边三角形的边长为2cm,则它的高为,面积为.五、课后提升已知等腰三角形腰长是10,底边长是16,求这个等腰三角形的面积.勾股定理(第二课时)学习目标:1.知识目标:在上一节课学习了勾股定理的基础上,联系实际,应用勾股定理解决问题。
勾股定理的证明教学设计 (2)
《勾股定理》教学设计
岳池县镇裕小学校蒲先平
一、学情分析
学生通过初一一年的学习,具备了一定的归纳、总结、类比、转化以及数学表达的能力,对现实生活中的数学知识充满了强烈的好奇心与探究欲,并能在老师的指导下通过小组成员间的互助合作,发表自己的见解。
另外,在学本节课时,通过前置知识的学习,学生对直角三角形有了初步的认识,并能从直观把握直角三角形的一些特征,为此在授课时要抓住学生的这些特点,激发学生学习数学的兴趣,建立他们的自信心,为学生空间观念的发展、数学活动经验的积累、个性的发挥提供机会。
二、教材分析
(一)本节内容分析
本节课是勾股定理的第1课时,根据课程标准的要求,注意让学生经历探索勾股定理的过程,鼓励学生用不同的方法解决问题,在解决问题的过程中,注意渗透数形结合的思想。
另外,勾股定理具有很高的文化价值,这点要充分体现,以提高学生探索的欲望。
(二)教学目标
1、经历探索勾股定理的过程,提高学生的推理能力,体会数形结合的思想。
2、理解并掌握勾股定理。
3、通过对勾股定理的历史介绍及交流,让学生体会它的文化价值,提高学习数学的兴趣和信心。
(三)教学重难点
1、教学重点:掌握勾股定理,让学生深刻感悟到直角三角形三边所具备的特殊关系。
2、教学难点:勾股定理的证明
1、提问:是否任意直角三角形三边都符合等腰直角三角形三边的这个关系?引导学生由特殊到一般。
2、让学生提前准备了两个全等的边长为a、b、c 的直角三角形进行拼图。
提问:由以上过程,你能得到什么结论?
二、课堂练习小组讨论并举手回答:
方法不一。
由此我们得到了证明勾股定理的一种方法:等积法。
证明勾股定理(详案)
2.1证明勾股定理(教案)教学内容:苏科版初中数学八年级上册第二章第一节第二课时教学目标:1、会用拼图、面积计算的方法证明勾股定理;2、通过勾股定理的证明培养学生主动操作、合作探究的意识;3、引领学生感受古代文化的魅力,学习古人勇于探索的优良品质。
教学重点:用拼图、面积计算的方法证明勾股定理。
教学难点:“毕达哥拉斯”证法。
教具准备:三角尺、红笔、红粉笔、磁铁、4张直角三角形纸片、多媒体课件。
教学时间:2009年9月28日第2节课(公开课)教学地点:兴化市文正实验学校八(4)班教学过程:一.回顾与复习直角三角形有哪些性质?(用符号语言表达)板书:(1)边:∠C=90°→AC2+BC2=AB2(2)角:∠C=90°→CA+CB=90°(3)中线:∠C=90°→CD=ABAD=BD师:其中,性质(1)也叫什么定理?(板书课题:勾股定理)二.新授1.导入:勾股定理是人类数学史上一次重大的发现,全世界几乎所有拥有古代文化的民族和国家都对此定理实行了大量的研究,找到了很多证明方法。
下面呀!让我们一起沿着古人的足迹去寻找勾股定理的证明方法。
(补充板书:证明)2.问题(1):师:中国历史上第一位证明勾股定理的人三国时期东吴的数学家赵爽先生,他说呀……(出示课件)赵爽:“如果同学们能够用4个全等的直角三角形拼成一个正方形(中间允许有空隙),通过面积计算的方法就能够证明勾股定理了。
”你知道他的证明方法吗?来!和对方合作一下,拼拼看!(师生合作)师:哪位同学给大家展示一下你拼的正方形?(学生展示)还有不同的拼法吗?3.问题(2):师:如果老师给出直角三角形的三边长分别为a、b、c(教师在图中标上a、b、c)你能通过面积计算的方法证明勾股定理吗?(板书:a2+b2=c2?)谁来说说看?(学生分析)学生板书:方法(1):方法(2):∵S大=(a+b)2 ∵S大=c2S大=ab×4+c2S大=ab×4+(b-a)2∴(a+b)2=ab×4+c2∴c2=ab×4+(b-a)2a2+2ab+b2=2ab+ c2c2=2ab+b2-2ab+a2∴a2+b2=c2 ∴a2+b2=c2师点评:(1)(出示课件)你们的这幅图以前在2002年北京举行的国际数学家大会上被选做过会标,你们的这种证法就是1700年前赵爽先生当时所用的方法。
人教版八年级数学下册(教案):17.1《勾股定理的证明》
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“勾股定理在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
举例:在计算不规则图形的面积时,如何利用勾股定理建立方程求解。
在教学过程中,教师应针对这些难点进行详细的讲解和指导,通过举例、讨论、练习等形式,帮助学生突破难点,确保学生对勾股定理的理解透彻。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《勾股定理的证明》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过直角三角形的情况?”(如测量墙角、计算楼梯斜长等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索勾股定理的奥秘。
3.学习勾股定理在实际问题中的应用,如测量距离、计算面积等;
4.掌握勾股数的特点,了解勾股数在数学发展史上的地位和价值。
二、核心素养目标
Hale Waihona Puke 本节课的核心素养目标主要包括:1.培养学生的逻辑推理能力,通过探索和证明勾股定理的过程,让学生掌握几何图形的性质和关系,提高逻辑思维和推理能力;
2.培养学生的空间想象力和直观想象力,通过观察和分析直角三角形的特点,激发学生对几何图形的想象力;
3.重点难点解析:在讲授过程中,我会特别强调勾股定理的概念和证明方法这两个重点。对于难点部分,如拼贴法和代数推导法,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)学生是否积极参与了拼接活动。
(2)学生能否合理进行分割。
(3)学生能否用语言准确地表达自己的观点。
通过拼图活动,调动学生思维的积极性,为学生提供从事数学活动的机会,建立空间观念,发展形象思维。
通过拼图活动,使学生对定理的理解更加深刻,体会数学中的数形结合思想。己的意见,能从交流中获益。
[活动3]探究
教师提出问题,学生分组讨论。
教师着重引导学生将实际问题转化为数学模型。由已知可得:
(a+b)2=c2+4 ab
+ +2ab= +2ab
可得: + =c
通过运用勾股定理对实际问题的解释和应用,培养学生从身边的事物中抽象出几何模型的能力,使学生更加深刻地认识数学的本质:数学来源于生活,并能服务于生活。
[活动4]
总统证法
提示:
三个三角形面积=一个直角梯形面积
1/2ab+/1/2ab+1/2c2=1/2(a+b)2
2ab+c2=a2+b2+2ab
a2+b2=c2
教师提出问题,学生在独立思考的基础上以小组为单位动手剪拼。
教师参与学生活动,帮助、指导学生完成拼图活动。
学生展示分割、拼接过程。
教师展示多媒体拼接过程。
(4)作业;
1、第76页 第1、2题;
2、收集有关勾股定理的证明方法。
在本次活动中,教师应重点关注:
(1)不同层次的学生对知识的理解程度;
(2)学生是否能从不同方面谈感受;
(பைடு நூலகம்)学生是否受到了爱国主义教育,探索科学奥谜的精神是否得到了培养。
通过小结为学生创设交流的空间,调动学习的积极性,既引导学生从面积的角度理解勾股定理,又从能力、情感、态度等方面关注学生对课堂整体感受,在轻松愉快的气氛中体会收获的喜悦。
勾股定理的证明
问题与情境
师生行为
设计意图
[活动1]
导言:史话勾股
本次活动中,教师应关注:
学生对勾股定理的了解程度及应用程度。
从实际生活入手,为学生探索活动创设情境,激发学生学习兴趣。
[活动2]下面我们就来看一看我国古代数学家赵爽的证明方法。
(1)把边长分别为a、b的两个正方形并在一起,你能通过剪、拼,把它拼成赵爽弦图吗?
小故事1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人…….终于弄清了其中的道理,并给出了简洁的证明方法。
[活动5]
小结:
(1)勾股定理研究的是直角三角形三边之间的关系。
(2)本节课经历了从实际问题引入数学问题然后发现定理,再到探索定理,最后学会验证定理及应用定理解决实际问题的过程。
(3)运用小练习
让学生课外继续研究,进一步培养学习兴趣。
=(4个全等直角三角形的面积)+中间方孔的面积
=4*(1/2*ba)+(b-a)(b-a)
=4*(1/2ba)+(b-a)2
=2ab+b2-2ab+a2
= a2+b2
∴c2= a2+b2
即:a2+b2=c2
通过对大正方形面积的计算,培养学生的观察、分析能力,让学生学会灵活的计算方法。
通过对会徽问题的回答,培养学生的民族自豪感及勇于探索的精神历经从特殊到一般的探索过程,培养学生大胆设想的能力。
(2)面积分别怎样表示?它们有什么关系?
(3)现在你知道2002年国际数学家大会为什么用赵爽弦图作会徽吗?
证明:赵爽玄图
教师出示图片并提出问题。
学生观察图片发表意见。
前提条件:ABCD为AB=BC=CD=DA的矩形、(b-a):为中间方孔的边长,
很显然:c2=ABCD(面积),
c2=ABCD(面积)