第5章金属的塑性

合集下载

第五章 金属的塑性

第五章 金属的塑性

§5.3.1 影响塑性的内部因素
(2)合金元素 取决于加入元素的特性, 加入数量、元素之间的相互 作用。 当加入的合金元素与基体 作用使在加工温度范围内形 成单相固溶体时,则有较好 塑性;如形成过剩相(尤其是 脆性相),或使在加工温度范 围内两相共存,则塑性降低。
2.组织结构
外加应力低于原子间结合力极限
正应力使晶格沿应力方向伸长,切应力使晶格沿某晶面和晶向相对移动, 外力去除后晶格恢复原状
外加应力大于原子间结合力极限
正应力使晶体发生断裂,切应力使晶体的原子沿某晶面和晶向迁移到新 的平衡位置,外力去除原子停留在新的平衡位置
为什么金属晶体能够产生相对移动而不发生破坏呢?
金属原子之间特殊的结合方式 — 金属键
第三篇 塑性变形材料学基础
第5章 金属的塑性
§5.1 金属的塑性 §5.2 金属多晶体塑性变形的主要机制
§5.3 影响金属塑性的因素
§5.4 金属的超塑性
§5.1 金属的塑性
§5.1.1 塑性的基本概念 §5.1.2 塑性指标及其测量方法
§5.1.3 塑性状态图及其应用
§5.1.1 塑性的基本概念
(4)滑移的临界分切应力
F 横截面积 A
某一滑移系上的分切应力

F cos A / cos
滑 移 方 向

M

滑 移 面 法 向
F cos cos A
cos cos
滑移面
取向因子
F 分切应力计算分析图
cos cos
其中任何一个角度为90°时,分切应力为零,晶体不可能 滑移 当两个角度都为45°时,取向因子最大(为0.5),该滑 移系处于最有利取向 只有当分切应力τ≥临界分切应力τk时,滑移才能开始

第五章 金属的塑性变形及再结晶

第五章   金属的塑性变形及再结晶

四、金属的热加工
1.热变形加工与冷变形加工的区别
从金属学的观点来看,热加工和冷加工的区别是以再结晶温 度为界限。在再结晶温度之下进行的变形加工,在变形的同时没 有发生再结晶,这种变形加工称之为冷变形加工。而金属在再结 晶温度以上进行塑性变形就称为热加工。
2.热变形加工对金属组织与性能的影响
(1)改善铸态组织 热变形加工可以使金属铸锭中的组织缺陷显 著减少,如气孔、显微裂纹等,从而提高材料的致密度,使金属 的力学性能得到提高。
在工业上常利用回复现象将冷变形金属低温加热既消除应为去应力退火力稳定组织同时又保留了加工硬化性能这种热处理方法称1再结晶过程变形后的金属在较高温度加热时原子活动能力较强时会在变形随着原子的扩散移动新晶核的边界面不断向变形的原晶粒中推进使新晶核不断消耗原晶粒而长大
金属材料及热处理
第五章 金属的塑性变形及再结晶
二、冷塑性变形对金属组织和性能的影响
2.冷塑性变形对组织结构的影响 1)产生“纤维组织”
塑性变形使金属的晶粒形状发生了变化,即随着金属外形的 压扁或拉长。当变形量较大时,各晶粒将被拉长成细条状或纤维 状,晶界变得模糊不清,形成所谓的“纤维组织”。
2)产生变形织构
由于在滑移过程中晶体的转动和旋转,当塑性变形量很大时, 各晶粒某一位向,大体上趋于一致了,这种现象称择优取向。 这种由于塑性变形引起的各个晶粒的晶格位向趋于一致的晶粒 结构称为变形织构。
二、冷塑性变形对金属组织和性能的影响
3.产生残余内应力
经过塑性变形,外力对金属所做的功,约90%以上在使金属变 形的过程中变成了热,使金属的温度升高,随后散掉;部分功转 化为内应力残留于金属中,使金属的内能增加。残余的内应力就 是指平衡于金属内部的应力,它主要是金属在外力的作用下所产 生的内部变形不均匀而引起的。 第一类内应力,又称宏观内应力。它是由于金属材料各部分变形 不均匀而造成的宏观范围内的残余应力。 第二类内应力,又称微观残余应力。它是平衡于晶粒之间的内应 力或亚晶粒之间的内应力。 第三类内应力,又称晶格畸变内应力。其作用范围很小,只是在 晶界、滑移面等附近不多的原子群范围内维持平衡。

第5章金属材料及热处理概论

第5章金属材料及热处理概论
金属材料的性能是指用来表征材料在给定外界条件下的 行为参量。通常所指金属材料的性能包括以下两个方面: (1)使用性能。使用性能是为了保证零件、工程构件或 工具等的正常工作,材料所应具备的性能。 包括物理性能(如熔点、导热性、热膨胀性等)、化学性 能(如耐腐蚀性、抗氧化性等)、力学性能等。金属材料的使 用性能决定了其应用范围、安全可靠性和使用寿命等。
第5章金属材料及热处理概论 (3)热膨胀性。金属在温度升高时体积膨胀的现象称 为热膨胀性,用线膨胀系数α表示,其单位是1/℃或1/K, 即温度每升高1℃,其单位长度的膨胀量。α值越大,金属的 尺寸或体积随温度变化而变化的程度就越大。
第5章金属材料及热处理概论
2.金属材料的化学性能
金属材料的化学性能是指金属材料在室温或高温条件下
全性,因此必须同时考虑金属材料的冲击韧度。 目前,工程上一般用金属夏比冲击试验来测定金属材料 的冲击韧度值αk。 金属夏比冲击试验是先将被测的金属材料制成一定形状
和尺寸的试样(图5-1(a)为u形缺口冲击试样),将其安放在冲
击试验机上,把具有一定重量G的摆锤提到h1高度后,使摆锤 自由下落(见图5-1(b))。
第5章金属材料及热处理概论 3)塑性 塑性是指金属材料在外力作用下,产生永久变形而不致
破裂的能力。
许多零件或毛坯是通过塑性变形而成形的,要求材料有
较高的塑性,并且为防止零件工作时脆断,也要求材料有一
定的塑性。塑性也是金属材料的主要力学性能指标之一,常 用的塑性指标有断后伸长率δ 和断面收缩率ψ 。关于塑性
第5章金属材料及热处理概论 (2)收缩性。收缩性是指铸件在冷却凝固时,体积和线 性尺寸收缩的程度。收缩不利于金属铸造,它将使铸件产生
缩孔、缩松、变形等缺陷。

金属塑性成型原理

金属塑性成型原理

第一章1.什么是金属的塑性什么是塑性成形塑性成形有何特点塑性----在外力作用下使金属材料发生塑性变形而不破坏其完整性的能力;塑性变形----当作用在物体上的外力取消后,物体的变形不能完全恢复而产生的残余变形;塑性成形----金属材料在一定的外力作用下,利用其塑性而使其成型并获得一定力学性能的加工方法,也称塑性加工或压力加工;塑性成形的特点:①组织、性能好②材料利用率高③尺寸精度高④生产效率高2.试述塑性成形的一般分类。

Ⅰ.按成型特点可分为块料成形(也称体积成形)和板料成型两大类1)块料成型是在塑性成形过程中靠体积转移和分配来实现的。

可分为一次成型和二次加工。

一次加工:①轧制----是将金属坯料通过两个旋转轧辊间的特定空间使其产生塑性变形,以获得一定截面形状材料的塑性成形方法。

分纵轧、横轧、斜轧;用于生产型材、板材和管材。

②挤压----是在大截面坯料的后端施加一定的压力,将金属坯料通过一定形状和尺寸的模孔使其产生塑性变形,以获得符合模孔截面形状的小截面坯料或零件的塑性成形方法。

分正挤压、反挤压和复合挤压;适于(低塑性的)型材、管材和零件。

③拉拔----是在金属坯料的前端施加一定的拉力,将金属坯料通过一定形状、尺寸的模孔使其产生塑性变形,以获得与模孔形状、尺寸相同的小截面坯料的塑性成形方法。

生产棒材、管材和线材。

二次加工:①自由锻----是在锻锤或水压机上,利用简单的工具将金属锭料或坯料锻成所需的形状和尺寸的加工方法。

精度低,生产率不高,用于单件小批量或大锻件。

②模锻----是将金属坯料放在与成平形状、尺寸相同的模腔中使其产生塑性变形,从而获得与模腔形状、尺寸相同的坯料或零件的加工方法。

分开式模锻和闭式模锻。

2)板料成型一般称为冲压。

分为分离工序和成形工序。

分离工序:用于使冲压件与板料沿一定的轮廓线相互分离,如冲裁、剪切等工序;成型工序:用来使坯料在不破坏的条件下发生塑性变形,成为具有要求形状和尺寸的零件,如弯曲、拉深等工序。

第5章 金属的塑性变形

第5章 金属的塑性变形
第四章 金属的塑性变形
塑性变形及随后的加热,对金属材料组织和性能有 显著的影响。了解塑性变形的本质、塑性变形及加 热时组织的变化,有助于发挥金属的性能潜力,正 确确定加工工艺
单晶体的塑性变形 多晶体的塑性变形 变形后金属的回复与再结晶 金属的热塑性变形
1
第一节 单晶体的塑性变形 一、单晶体纯金属的塑性变形
T再与ε的关系
如Fe:T再=(1538+273)×0.4–273=451℃
39
2)、金属的纯度 金属中的微量杂质或合金元素,尤其高熔点元素, 起阻碍扩散和晶界迁移作用,使再结晶温度显著 提高。
40
3)、再结晶加热速度和加热时间 提高加热速度会使再结晶推迟到较高温度发生;
延长加热时间,使原子扩散充分,再结晶温度降低。
3、产生织构:金属中的晶粒的取向一般是无规则的随机排列,尽管每个 晶粒是各向异性的,宏观性能表现出各向同性。当金属经受大量(70% 以上)的一定方向的变形之后,由于晶粒的转动造成晶粒取向趋于一致, 形成了“择优取向”,即某一晶面 (晶向)在某个方向出现的几率明 显高于其他方向。金属大变形后形成的这种有序化结构叫做变形织构, 它使金属材料表现出明显的各向异性。 24
在应力低于弹性极限σ e时, 材料发生的变形为弹性变形; 应力在σ e到σ b之间将发生的变 形为均匀塑性变形;在σ b之后 将发生颈缩;在K点发生断裂。
s e
弹性变形的实质是:在应力的作用下,材料内部的原子偏离了平衡位 置,但未超过其原子间的结合力。晶格发生了伸长(缩短)或歪扭。 原子的相邻关系未发生改变,故外力去除后,原子间结合力便可 2 以使变形的塑性:fcc>bcc>chp
8
哪个滑移系先滑移?
当作用于滑移面上滑移方向的切应力分量c(分切应力)大于等于一定的 临界值(临界切应力,决定于原子间结合力),才可进行。

5 金属的塑性变形、回复和再结晶

5 金属的塑性变形、回复和再结晶


第三类内应力是形变金属中的主要内应力,也是金属 强化的主要原因。而第一、二类内应力都使金属强度 降低。

内应力的存在,使金属
耐蚀性下降,引起零件
加工、淬火过程中的变
形和开裂。因此,金属 在塑性变形后,通常要 进行退火处理,以消除 或降低内应力。
晶界位错塞积所 引起的应力集中
5.4 回复与再结晶
定加工工艺。
5.1 金属的塑性变形
一、单晶体金属的塑性变形
单晶体受力后,外力在 任何晶面上都可分解为正应 力和切应力。正应力只能引 起弹性变形及解理断裂。只 有在切应力的作用下金属晶 体才能产生塑性变形。
外 力 在 晶 面 上 的 分 解 切 应 力 作 用 下 的 变 形 锌 单 晶 的 拉 伸 照 片
因原子密度最大的晶面和
晶向之间原子间距最大,
结合力最弱,产生滑移所
需切应力最小。

沿其发生滑移的晶面和晶向分别叫做滑移面和滑 移方向。通常是晶体中的密排面和密排方向。

一个滑移面和其上的一个滑 移方向构成一个滑移系。 三种典型金属晶格的滑移系
体心立方晶格 面心立方晶格
滑移系示意图
密排六方晶格

滑移系越多,金属发生滑移的可能性越大,塑性也 越好,其中滑移方向对塑性的贡献比滑移面更大。 因而金属的塑性,面心立方晶格好于体心立方晶格, 体心立方晶格好于密排六方晶格。

加工硬化是强化金属的重要
手段之一,对于不能热处理
强化的金属和合金尤为重要。
变形20%纯铁中的位错网
三、残余内应力

内应力是指平衡于金属内部的应力。是由于金属受力时,
内部变形不均匀而引起的。金属发生塑性变形时,外
力所做的功只有10%转化为内应力残留于金属中。

第5章金属

第5章金属

第五章金属及合金的形变金合金变金属及合金的塑性变形¾单晶体的滑移¾单晶体的应力-应变曲线及加工硬化¾孪生及扭折¾多晶体的塑性变形¾塑性变形后金属的结构、组织和性能单晶体的滑移滑移要素——滑移系(slip system)滑移是指在外力作用下晶体沿某些特定晶面和晶向相对滑开的形变方式。

滑移的特定晶面称为滑移面(slip plane),开的形变方式滑移的特定晶面称为滑移面特定晶向称为滑移方向(slip direction)。

滑移面和滑移方向合称为滑移要素。

合称为滑移要素对于一定的晶体结构,不论载荷大小或方向,滑移要素的类型一般都是确定的。

一般地,滑移面是晶体的密排面和较密排面,滑移方向是晶体的密排方向。

面心立方晶体:滑移面——{111}滑移方向——<110>体心立方晶体:滑移面——{110}、{112}、{123}滑移方向——<111>密排六方晶体:滑移面{}c/a>1.633 ——{0001}滑移方向——<11-20>c/a<1.633——{10-10}c/a<1.633 滑移面{1010}滑移方向——<11-23>一个滑移面和一个滑移方向组成一个滑移系(slip system)。

面心立方结构有12个滑移系;体心立方结构有48个滑移系;密排六方结构有3个滑移系;在外力作用下,并不是所有的滑移系都会开动,只能是其中一个或几个滑移系开动,那些没有开动的滑移系称为潜在滑移系(potential slip system)。

滑移带与滑移线光学显微镜观察7%形变Al表面形貌扫描电镜观察形变Co单晶表面形貌Schmid 定律(临界分切应力定律)F==τm A ⋅⋅⋅σϕλcos cos 0取向因子(Orientation Factor )临界分切应力(Critical Resolved Shear Stress )Slip in a Zinc single crystal From C.F.ElamThe Distortion of Metal Crystals Oxford University Press London,1935London1935滑移系开动时,所需要的临界分切应力是和外力无关的常数,这个规律称为Schmid定律或临界分切应力定律。

金属的力学性能-第5章__金属的疲劳 2

金属的力学性能-第5章__金属的疲劳 2

8/69
二、疲劳现象及特点 1、分类:根据断裂周次高低 (1) 高周疲劳(断裂周次Nf >105) 断裂应力水平较低,σ<σs,也称低应力疲 劳,即通常所说的疲劳——机械疲劳; 高周疲劳定义:材料在低于屈服极限的交 变应力作用下,于超过105循环周次而产生的疲 劳断裂。
9/69
(2) 低周疲劳(Nf=102-105)
max 2 max 2 分子分母同除 tan m max min 1 r
max
28/69
机件受到短时偶然过载作用后,又回到
正常应力下服役,材料的疲劳极限会发生什 么变化呢?—可能没有变化,也可能降低。 与材料所受的过载应力和相应的累计过 载周次有关。 同时也间接表明了材料抗疲劳过载的能 力的大小。
1/69
第五章 金属的疲劳性能
一些构件在远低于抗拉强度的变动载荷 作用下,经过一定周次之后,会发生突然破 断,但在破断前没有明显的宏观塑性变形-疲 劳破坏。在整个失效件中占80%;
疲劳属低应力循环延时断裂,其断裂应 力水平往往<σb,甚至<σs; 不发生明显的塑性变形,难预防,损失 大。
2/69
元凶是制造飞机机体结构的金属材料产生疲劳。金属机体表面存在细小 的裂纹,飞机增压舱内方形舷窗处的机身蒙皮,在反复的增压和减压冲击下, 不断地来回弯曲变形,使裂纹逐步扩展,反复数次,最终招致金属疲劳断裂。
)。
26/69
1、极限循环振幅图(σ a-σ m疲劳图)
出发点: 用某一应 力比下的 σmax 表 示 该应力比 下的疲劳 极限σr。
已知r, 就可知α。 从 图 中 做出α角 即可。
rB aB mB
1 a 2 ( max min ) 分子和分母同除 max 1 r tan 1 m 1 r ( max min ) 2

材料科学基础-第五章_金属及合金的塑性变形

材料科学基础-第五章_金属及合金的塑性变形

{1120}
{0001}
<111> 体心立方结构(bcc)
<110> 面心立方结构(fcc)
密排六方结构(hcp)
三种典型金属结构的滑移系构成
第五章 金属及合金的塑性变形与断裂-§5.2 单晶体的塑性变形
为何滑移面和滑移方向是晶体的密排面和密排方向?
d2
d1
d3
晶体晶面间距示意图 晶面上的原子密度越大,晶面间距越大,面与面之间的原子结合力越 弱,滑移时的阻力越小。晶向上的原子密度越大,滑移的阻力越小。
第五章 金属及合金的塑性变形 Chapter 5 Plastic Deformation of Metals and Alloys 主要内容:
金属的变形特性 单晶体的塑性变形 多晶体的塑性变形 合金的塑性变形 塑性变形对金属组织和性能的影响
第五章 金属及合金的塑性变形与断裂
各种压力加工,如轧制、挤压、拉拔、锻压、冲压等,均能使金属发 生塑性变形,即金属的外形发生了改变。
G 2
结论:
Frank的滑移理论不正确,即滑移不是晶体原子作整体刚性滑动。
第五章 金属及合金的塑性变形与断裂-§5.2 单晶体的塑性变形
1934年,物理学家泰勒(G.I.Taylor)、波郎依(M.Polanyi)和奥罗
万(E.Orowan)几乎同时提出了晶体中位错的概念,Taylor还将位错与滑 移变形联系了起来,最终圆满解释了晶体滑移的机理。
A是晶体的横截面积, 是滑移面的面积。 A/cos
当F增加,使s = F/A,晶体发生塑性变 形,即开始滑移,则临界分切应力:
τ K σ s cos υ cos λ 或 σ s
τK cos υ cos λ

第五章金属的塑性和变形抗力

第五章金属的塑性和变形抗力

第五章 金属的塑性和变形抗力从金属成形工艺的角度出发,我们总希望变形的金属或合金具有高的塑性和低的变形抗力。

随着生产的发展,出现了许多低塑性、高强度的新材料,需要采取相应的新工艺进行加工。

因此研究金属的塑性和变形抗力,是一个十分重要的问题。

本章的目的在于阐明金属塑性和变形抗力的概念,讨论各种因素对它们的影响。

§5.1 塑性、塑性指标、塑性图和变形抗力的概念所谓塑性,是指固体材料在外力作用下发生永久变形而又不破坏其完整性的能力。

人们常常容易把金属的塑性和硬度看作成反比的关系,即认为凡是硬度高的金属其塑性就差。

当然,有些金属是这样的,但并非都是如此,例如下列金属的情况: Fe HB =80 ψ=80%Ni HB =60 ψ=60%Mg HB =8 ψ=3%Sb HB =30 ψ=0%可见Fe 、Ni 不但硬度高,塑性也很好;而Mg 、Sb 虽然硬度低,但塑性也很差。

塑性是和硬度无关的一种性能。

同样,人们也常把塑性和材料的变形抗力对立起来,认为变形抗力高塑性就低,变形抗力低塑性就高,这也是和事实不符合的。

例如奥氏体不锈钢在室温下可以经受很大的变形而不破坏,既这种钢具有很高的塑性,但是使它变形却需要很大的压力,即同时它有很高的变形抗力。

可见,塑性和变形抗力是两个独立的指标。

为了衡量金属塑性的高低,需要一种数量上的指标来表示,称塑性指标。

塑性指标是以金属材料开始破坏时的塑性变形量来表示。

常用的塑性指标是拉伸试验时的延伸率δ和断面缩小率ψ,δ和ψ由下式确定: %100l l l 00k ×−=δ (5.1) %100F F F 0K 0×−=ψ (5.2) 式中l 0、F 0——试样的原始标距长度和原始横截面积;l K 、F K ——试样断裂后标距长度和试样断裂处最小横截面积。

实际上,这两个指标只能表示材料在单向拉伸条件下的塑性变形能力。

金属的塑性指标除了用拉伸试验之外,还可以用镦粗试验、扭转试验等来测定。

金属塑性成形

金属塑性成形

1、金属塑性成形的定义
改变形状 金属坯料
产生
塑性变形
达到
改变尺寸 改善性能
外力
得到 毛坯 零件
又称为压力加工。
2、塑性成形加工的特点及应用
(1)特点 优点: a)与铸造相比:力学性能高,内部缺陷被压合, 晶粒显著细化。 b)与切削加工比:材料的利用率和生产率高。 缺点: a) 形状不能太复杂 b) 坯料塑性要好 (2)应用 汽车、拖拉机、宇航、军工、电器、桥梁、建筑等
回复只能部分消除加工硬化
3、再结晶 温度上升到一定温度时,开始以某些 碎晶或杂质为核心生长成新的晶粒,加工 硬化完全消除,这个过程称为再结晶。 (1)再结晶的结果 a)原子热振动加剧 b)以某些质点为核心重结晶 c)加工硬化全部消除 (2)再结晶温度 金属经大量塑性变形后开始再结晶的 最低温度。
T再=(0.4-0.5)T熔
自由锻、模锻、胎模

(4)冲压
利用冲模将金属板料切离或变形为各种冲压件。
(5)拉拔
将金属坯料从拉模的模孔中拉出而成形为各种线 材、薄壁管材、特殊截面型材等
第一节
金属塑性变形
• 塑性变形的实质 • 冷变形和热变形 • 金属的可锻性及影响因素
一、金属塑性成形的实质
塑性:金属在外力作用下,产生永久变形而不破 坏的能力。 金属变形过程: a)金属材料在外力作用下发生弹性变形 b)当外力超过一定值后产生塑性变形 c)外力继续加大,发生断裂 金属塑性变形的实质: a)晶粒内部滑移和孪生
纤维组织合理分布
(1)零件最大拉应 力方向应与锻造流线平 行 (2)零件最大剪切 应力方向应与锻造流线 垂直 (3)零件外形轮廓 应与锻造纤维的分布相 符合而不被切断。
三、冷变形和热变形

材料成形工艺基础最新精品课件第五章金属塑性成形理论基础

材料成形工艺基础最新精品课件第五章金属塑性成形理论基础
图5-3孪生变形示意图
2. 多晶体的塑性变形
多晶体的塑性变形是由于晶界的存在和 各晶粒晶格位向的不同,其塑性变形过程比 单晶体的塑性变形复杂得多。在外力作用下, 多晶体的塑性变形首先在晶格方向有利于滑 移的晶粒A内开始,然后,才在晶格方向较 为不利的晶粒B、C内滑移。由于多晶体中 各晶粒的晶格位向不同,滑移方向不一致, 各晶粒间势必相互牵制阻扰。为了协调相邻 晶粒之间的变形,使滑移得以继续进行,便 图5-4 多晶体塑性变形过程示意图 会出现晶粒彼此间相对的移动和转动。因此, 多晶体的塑性变形,除晶粒内部的滑移和转 动外,晶粒与晶粒之间也存在滑移和转动。
图5-6 回复和再结晶示意图
(3)晶粒长大 在结晶退火后的金属组织一般为细小均匀的等 轴晶。如果温度继续升高,或延长保温时间,则在结晶后的晶粒 又会长大而形成粗大晶粒,从而使金属的强度、硬度和塑性降低。 所以要正确选择再结晶温度和加热时间的长短。
5.2.2 冷变形和热变形后金属的组织与性能
金属在再结晶温度以下进行的塑性变形称为冷变形,在再结晶以 上进行的塑性变形称为热变形。
图5-7 冲压件的制耳
(4)残余内应力 残余内应力是指去除外力后,残留在金属内 部的应力,它主要是由于金属在外力作用下变形不均匀而造成的。 残余内应力的存在,使金属原子处于一种高能状态,具有自发恢 复到平衡状态的倾向。在低温下,原子活动能力较低,这种恢复 现象难以觉察,但是,当温度升高到某一程度后,金属原子获得 热能而加剧运动。金属组织和性能将会发生一系列变化。
1. 锻造比 锻造比是锻造生产中代表金属变形程度大小的一个参数,一 般是用锻造过程中的典型工序的变形程度来表示(Y)。如拔长时, 锻造比Y拔=F0/F;镦粗时,锻造比Y镦=H0/H。(式中,H0、F0分别为坯 料变形前的高度和横截面积,H、F分别为坯料变形后的高度和横截面 积)。

塑性加工力学__第5章_屈服准则解读

塑性加工力学__第5章_屈服准则解读
2
在一定的塑性变形条件下,当受力物体内一点的应力偏张量的第2不 变量 I ' 达到某一定值时,该点就进入塑性状态。
2
屈服函数为:
)=J 2 C f ( ij
应力偏张量第二不变量为 :
2 2 1 2 2 2 2 I 2 x y y z z x 6 xy yz zx C 6 '
二、关于材料性质的基本概念
a)实际金属材料
b)理想弹塑性 c)理想刚塑性 讨论:
d)弹塑性硬化
e)刚塑性硬化
1、实际金属材料在比例极限以下——理想弹性 一般金属材料是理想弹性材料
2、金属在慢速热变形时——接近理想塑性材料

s
3、金属在冷变形时——弹塑性硬化材料 4、金属在冷变形屈服平台部分——接近理想塑性
5.2 Tresca屈服准则
1864年,法国工程师屈雷斯加: 当材料中的最大切应力达到某一定值时,材料就屈服。即材料处于 塑性状态时,其最大切应力是一不变的定值, ——又称为最大切应力不 变条件:
max
max min
2
C
C为材料性能常数,可通过单拉求得 :
材料单向拉伸时的应力 : K为材料屈服时的最大切应 力值,即剪切屈服强度
当主应力不知时,上述Tresca准则不便使用
对于平面变形及主应力为异号的平面应力问题:
max
x y 2 xy 2
2
屈雷斯加屈服准则可写成:
2 2 2 4 4 K x y xy s 2
5.3 Mises屈服准则
1913年,德国力学家米塞斯: f( ij ) = C 与坐标的先择无关, 对于各向同性材料,屈服函数式 与塑性变形与应力偏张量有关,且只与应力偏张量的第二不变量 I ' 有关。

《材料工程基础》课件——第五章 金属的塑性加工(第5、6、7节)

《材料工程基础》课件——第五章 金属的塑性加工(第5、6、7节)
脂肪酸皂 石蜡等
3.5.4 拉拔工具
拉拔工具主要包括拉拔模和芯头。此二者的结构、 形状尺寸、表面质量与材质对制品的质量、产量、 成本等具有重要影响。
拉拔模
拉拔模
旋转模
辊式模 普通模(应用最多 )
弧线模:只用于细线的拉拔
锥形模:管、棒、型材和较粗的 线材拉拔
图 普通拉拔模的基本结构 (a)锥形模 (b)弧线模
空拉时壁厚增加或减少,主要取决于两个因素:
①圆周方向压应力:促使金属沿径向流动,导致管材壁厚增 加
②轴向拉应力:促使金属产生轴向延伸,并导致壁厚减薄。
这两个因素作用的强弱取决于各种变形条件。
③固定短芯头拉拔变形
变形分三部分:
AB C D
AB段:空拉区,主要是减径 变形,壁厚一般有所增加, 又称减径区。应力应变特点 与空拉时一样。 BC段:减壁区,此阶段外径 减小,内径不变,壁厚减薄。 应力应变特点与棒材拉拔时 一样。 CD段:定径区,为弹性变形 区。
②空拉时的应力与变形
应力状态:与圆棒拉拔时类似,即:周向、径向为
压,轴向为拉,但 ,且有

径向压应力的数值由管材外表面至内表面逐渐减小, 在内表面上为零。
周向应力由外表面向内逐渐增大。
轴向应力由变形区入口为零逐渐增加,在变形区出
口(模孔出口)处达到最大。
变形
按目的不同有: 减径空拉:目的是减径,主要用于中间道次,一般 认为拉拔后壁厚不变; 整径空拉:目的是精确控制制品的尺寸,减径量不 大(0.5~1),一般在最后道次进行; 定型空拉:目的是控制形状,主要用于异型管材拉 拔,即用于圆截面向异型截面过渡拉拔。
拉拔加工的特点
①拉拔制品的尺寸精度高,表面粗糙度低 ②工具与设备简单,维护方便,一机多用 ③适用于连续高速生产断面尺寸小的长尺产品(Al、

第5章-其他精密塑性成形技术

第5章-其他精密塑性成形技术
钛合金、铝合金、镁合金等零件的精密成形。
§5.5 超塑性模锻
5.5.1超塑性
超塑性是指材料在一定的内部条件和外部条件下,呈现
出异常低的流变抗力、异常高的流变性能的现象。超塑性通
常分为三类,即微细晶粒超塑性、相变超塑性、和其他超塑 性。后两者由于实现技术较复杂,应用受到限制,通常所讲 的超塑性多指前者。 微细晶粒超塑性应具有三个条件:材料具有等轴稳定
§5.1 多向模锻
实例:三通管接头成形过程中金属的流动变形情况
如图5.2所示,第一阶段金属 的流动特点主要是反挤、镦粗和 径向挤压成形。棒料在封闭模腔 中,由冲头Ⅰ和冲头Ⅱ首先加压, 在反挤成孔的同时,棒料被镦粗, 直至与模壁接触。随着冲头Ⅰ、 Ⅱ的继续流动,坯料金属开始向凹模的旁通型腔流动,形成单纯的径向挤压。 当挤入旁通的金属与冲头Ⅲ接触时,冲头Ⅲ对其进行反挤压和镦粗,直至金 属充满模膛。 第二阶段金属的流动主要是形成飞边。经过第一阶段后,坯料已极少再 有变形,只有当模压力极大的情况下冲头附近金属才会有少量的流动变形, 金属的流向与冲头的1)平面精压
平面精压由于摩擦力的影响,引起不均匀的应力分布,如图5.13
所示是精压件和精压平板均产生不均匀的弹性变形,造成精压后平面 中部有凸起现象。因此为提高精压质量,需采取下列工艺措施。 采用热精压,适当进行润滑,以降低精压时 工件的平均压力分布。
尽量减少精压面积,如有中间孔的精压面,
§5.2 径向锻造
图5.7所示为部分典型径向锻造件。
5.2.4两种典型应用
(1)实心台阶轴
CA6140卧式车床主轴(图5.8),可采用墩头和径向锻
造杆部联合工艺锻制成型。毛坯为Φ115x730mm的45钢。
§5.2 径向锻造
首先在1t自由锻锤上镦出直径为Φ205mm的头部,然后夹持头部

金属塑性成形原理课后答案

金属塑性成形原理课后答案

金属塑性成形原理课后答案金属塑性成形是指金属在一定条件下,通过外力作用,使其形状发生改变而不破坏其内部结构的一种加工方法。

金属材料在塑性变形过程中,其晶粒会发生滑移、再结晶等变化,从而使金属材料产生塑性变形。

金属塑性成形原理是金属材料在外力作用下的变形规律,了解金属塑性成形原理对于加工工程师来说是非常重要的。

首先,金属塑性成形的原理是基于金属材料的晶体结构和变形机理。

金属材料的晶体结构决定了其塑性变形的特性,比如晶粒的大小、形状、排列方式等。

而金属材料的变形机理则是指金属材料在外力作用下,晶粒发生滑移、再结晶等变化的规律。

通过了解金属材料的晶体结构和变形机理,我们可以更好地掌握金属塑性成形的原理。

其次,金属塑性成形的原理还与金属材料的力学性能密切相关。

金属材料的力学性能包括强度、硬度、韧性、塑性等指标,这些指标决定了金属材料在外力作用下的变形能力。

不同的金属材料具有不同的力学性能,因此在进行金属塑性成形时,需要根据金属材料的力学性能选择合适的加工方法和工艺参数。

另外,金属塑性成形的原理还与加工工艺和设备密切相关。

不同的金属材料和不同的零件形状需要采用不同的加工工艺和设备来实现塑性成形。

比如锻造、拉伸、压铸、滚压等加工工艺都是金属塑性成形的常见方法,而锻造机、拉伸机、压铸机、滚压机等设备则是实现金属塑性成形的工具。

最后,金属塑性成形的原理还与加工工程师的经验和技能密切相关。

加工工程师需要具备丰富的金属材料知识、加工工艺知识和设备操作技能,才能够准确地把握金属塑性成形的原理,并且根据实际情况进行加工操作。

总之,金属塑性成形原理是一个复杂而又深刻的学科,它涉及到金属材料的晶体结构、力学性能、加工工艺和设备以及加工工程师的经验和技能等多个方面。

只有深入理解金属塑性成形的原理,才能够在实际生产中取得良好的加工效果。

希望通过学习金属塑性成形原理,大家能够对金属加工有更深入的了解,提高加工技术水平,为相关行业的发展做出更大的贡献。

第5章 塑性成形新技术 PPT课件

第5章 塑性成形新技术 PPT课件
➢ 超塑性状态下的金属在拉伸变形过程中不产生缩颈现象, 金属的变形应力可比常态下降低几倍至几十倍。因此, 超塑性金属极易成形,可采用多种工艺方法制出复杂零 件。
34
五、微成形
概念:指以塑性加工的方式生产至少在二维方向上尺寸处于 亚毫米量级的零件或结构的工艺技术。
实际应用:主要源于电子工业的兴起,随着大规模集成电路 制造技术和以计算机为代表的微电子工艺的发展,而且 还来自技术的需要,例如医疗器械、传感器及电子器械 的发展。越来越多的电子元件、电器组件及计算机配件 等相关零件开始采用这一工艺方法进行生产。随着制造 领域中微型化趋势的不断发展,微型零件的需求量越来 越大,特别是在微型机械和微型机电系统中。
3
二)高速高能成形的类型 1、爆炸成形
1)概念 爆炸瞬间释放出巨大的化学能,对金属毛坯 进行加工的高速高能成形。
2)原理 爆炸成形时,爆炸物质的化学能在极短时间内 转化为周围介质(空气或水)中的高压冲击波,并以脉 冲波的形式作用于毛坯,使其产生塑性变形。 冲击波对毛坯的作用时间为微秒级,仅占毛坯变形时 间的一小部分。这种异乎寻常的高速变形条件,使爆 炸成型的变形机理及过程与常规冲压加工有着根本性 的差别。
2
4)可提高材料的塑性变形能力 与常规成形方法相比,高速高能成形可提高材料的 塑性变形能力。因此,对于塑性差的难成形材料, 高速高能成形是一种较理想的工艺方法。
5)利于采用复合工艺 用常规成形方法需多道工序才能成形的零件,采用 高速高能成形方法可在一道工序中完成。因此,可 以有效地缩短生产周期,降低成本
8
4)原理 该装置主要由充电回路及放电回路组成。
交流电经过变压器及整流 器后,变为高压直流并向电 容器4充电。
当充电电压达到所需值之 后,导通辅助间隙5,高压电 瞬时加到两放电电极9所形成 的主放电间隙上,并使间隙 击穿,在其间产生高压放电, 在放电回路中形成强大的冲 击电流,使电极周围介质中 形成冲击波及液流冲击而使 金属毛坯成形。

金属的塑性变形

金属的塑性变形
晶体受力时处于最软取向的一组滑移系首先启动并转动晶体取向变化可使另一组原处于硬取向的滑移系转动到软取向后启动导致滑移可在两组或多组滑移系中同时或交替进行
第七章
金属的塑性变形
主要参考书: 李超,《金属学原理》第十章 赵刚,《材料成型的物理冶金学基础》 第1~5章
2015-11-7
引言 金属受力 → 变形 = 弹性形变 + 塑性形变 外力撤除 → 弹性形变自动消除+塑性形变永久残留
G

E 2(1
)
2.微观规律 双原子模型: A, B位置两原子处于平衡状态,原子之间合力f=0。 有限外力去除后,B可自动回到原平衡位置。故受力与应变之间近似为线性关系。 外力较大使原子位移较大时,无法自动回位,应力应变偏离线性关系,发生塑性变形。 弹性变形行为可反映内部原子结合力: ● 原子结合力越强,E或G越大。 ● 凡是能够提高原子结合力的过程,均可以提高材料的弹性模量。
形态特征: 发生多滑移的晶体表面会出现交叉状滑移线。
6.交滑移 交滑移: 两个或多个滑移面同时或交替启动,沿同一滑移方向进行的滑移。 形态特征: 发生交滑移的晶体表面会出现曲
折或波纹状滑移线。
与多滑移的区别: ♣ 滑移沿同一滑移方向; ♣ 晶体表面滑移线为曲折状; ♣ 只能由螺型位错产生。
四、滑移的位错机制
设m=cossincos=coscos,称m为取向因子(Schmid因子)
则:
= m
当晶体开始塑性变形时,即应力应达到屈服极限,有 = s 则滑移方向上的分切应力即为滑移启动的临界分切应力k: k= sm 即滑移面启动滑移的临界条件必定是: ≥k
2
2015-11-7
1.滑移的理论切应力
设滑移面上层原子位移需要克服下层原子的作用力变化为:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动与转动能获得很大的变形,且没有断裂的危险。可以认为,在高温下这种变形机构比晶
内变形所起的作用大,对整个变形的贡献也较多。
2高温缓慢变形条件下两相合金的塑性变形时确定了这个机构。该机构的实质是 一相晶体的原子迅速而飞跃式的转移到另一相的晶体中去。为了完成原子由一相转移至另 一相,除了应保证两相有较大的相互溶解度以外,还必须具备下列条件。
多晶体由于晶粒具有各种位向和受晶界的约束,各晶粒的变形先后不同、变形大小不
同,晶体内甚至同一晶粒内的不同部位变形也不一致,因而引起多晶体变形的不均匀性。
由于变形的不均匀性,在变形体内就会产生各种内应力,变形结束后不会消失,成为残余
应力。
5. 2. 2 多晶体的塑性变形机构
多晶体的塑性变形包括晶内变形和晶间变形两种。晶内变形的主要方式是滑移和孪生。
图 5-7 晶粒的转动
献不大,同时,低温下出现这种变形,又常常是断裂的预兆。
在高温下,由于晶间一般有较多的易熔物质,并且因晶格的歪扭原子活泼性比晶内大,
所以晶间的熔点温度比晶粒本身低,而产生晶粒的移动与转动的可能性大。同时伴随着产
生了软化与扩散过程,能很快的修复与调整因变形所破坏的联系,因此金属借助晶粒的移
( )。
R n 30L0
(5-4)
式中:R——试样工作段的半径; L0——试样工作段的长度; n——试样破坏前的总转数。
(4)轧制模拟试验法 在平辊间轧制楔形试件,用偏心轧辊轧制矩形试样,找出试样上产生第一条可见裂纹 时的临界压下量作为轧制过程的塑性指标。 上述各种试验,只有在一定条件下使用才能反映出正确的结果,按所测数据只能确定 具体加工工艺制度的一个大致的范围,有时甚至与生产实际相差甚远。因此需将几种试验 方法所得结果综合起来考虑才行。 5. 1. 3 塑性状态图及其应用 表示金属塑性指标与变形温度及加载方式的关系曲线图形,称为塑性状态图或简称塑 性图。它给出了温度——速度及应力状态类型对金属及合金塑性状态影响的明晰概念。在
晶间变形包括晶粒之间的相对移动和转动、溶解——沉积机构以及非晶机构。冷变形时以
晶内变形为主,晶间变形对晶内变形起协调作用。热变形时则晶内变形和晶间变形同时起
作用,这里主要讨论晶间变形机构。
1.晶粒的转动与移动
多晶体变形时,由于各晶粒原来位向不同,变形发生、发展情况各异,但金属整体的
变形应该是连续的、相容的(不然将立刻断裂),所以在相
112
塑性图中所包含的塑性指标越多,变形速度变化的范围越宽广,应力状态的类型越多,则 对于确定正确的热变形温度范围越有益。
塑性图可用来选择金属及合金的合理塑性加工方法及制订适当的冷热变形规程,是金 属塑性加工生产中不可缺少的重要的数据之一,具有很大的实用价值。由于各种测定方法 只能反映其特定的变形力学条件下的塑性情况,为确定实际加工过程的变形温度,塑性图
邻晶粒间产生了相互牵制又彼此促进的协同动作,因而出现
力偶(图 5-7),造成了晶粒间的转动,晶粒相对转动的结果
可促使原来位向不适于变形的晶粒开始变形,或者促使原来
已变形的晶粒能继续变形。另外,在外力的作用下,当晶界所承
受的切应力已达到(或者超过了)阻止晶粒彼此间产生相对
移动的阻力时,则将发生晶间的移动。
所谓塑性,是指固体金属在外力作用下能稳定地产生永久变形而不破坏其完整性的能 力。因此,塑性反映了材料产生塑性变形的能力。塑性的好坏或大小,可用金属在破坏前 产生的最大变形程度来表示,并称其为“塑性极限”或“塑性指标”。
人们有时会把金属的塑性与柔软性混淆起来,其实它们是有严格区别的两种概念,前 者是指金属的流动性能,指是否易于变形而言,后者则是指金属抵抗变形的能力,是指变 形量的大小而言,即塑性好的金属不一定易于变形,因此变形抗力不一样,如铜的塑性好, 并不像铅那样易于变形,因为铜的变形抗力较高。而铅的柔软性,主要不是指它的塑性好, 而是指它变形抗力很小。所有的金属在高温下变形抗力都很小,可以说具有很好的柔软性, 但绝对不能肯定它们必然有良好的塑性。因为温度过高往往使其产生过热或过烧,在变形 时,就容易产生裂纹,即塑性变坯。可见,金属的塑性与柔软性是完全不同的概念。
§5. 2 金属多晶体塑性变形的主要机制
工业上实际使用的金属和合金绝大部分都是多晶体,多晶体是由大小、形状和位向不 同的晶粒组成,晶粒之间有晶界相连,因而多晶体的变形比单晶体要复杂得多。 5. 2. 1 多晶体变形的特点
1.变形不均匀 多晶体内的晶界及相邻晶粒的不同取向对变形产生重要的影响。如果将一个只有几个 晶粒的试样进行拉伸变形,变形后就会产生“竹节效应”(图 5-4)。此种现象说明,在晶 界附近变形量较小,而在晶粒内部变形量较大。
态下的镁铝合金显微组织是由 -固溶体和析出在晶界上的金属化合物 相(Mg4Al3 或 Mg17Al12)组成。 相随铝含量的增加而逐渐增多,当 Al 含量达 15%时,则形成封闭的网
状组织,使合金变脆。
113
温度,℃ δ, %、σb,公斤/毫米 2
HB,公斤/毫米 2
图 5-2 Mg-Al 二元系状态图
MB5 属变形镁合金,其主要成分为 Al5. 5~7. 0%,Mn0. 15~0. 5%,Zn0. 5~1. 5%。根 据镁铝二元相图(图 5-2)可以看出,铝在镁中的溶解度很大,在共晶温度 437℃时达到最 大,为 12. 6%,随着温度的降低,溶解度急剧下降,镁铝合金中铝含量对合金性能的影响, 如图 5-3 所示。随着铝含量的增加,强度虽缓慢上升,但塑性却显著下降。因为在平衡状
(2)压缩试验法 在简单加载条件下,因压缩试验法测定的塑性指标用下式确定:
H 0 H h 100% H0
(5-3)
式中: ——压下率; H0——试样原始高度; Hh——试样压缩后,在侧表面出现第一条裂纹时的高度
(3)扭转试验法 扭转试验法是在专门的扭转试验机上进行。试验时圆柱体试样的一端固定,另一端扭 转。随试样扭转数的不断增加,最后将发生断裂。材料的塑性指标用破断前的总扭转数 (n)来表示,对于一定试样,所得总转数越高,塑性越好,可将扭转数换作为剪切变形
晶粒的转动与移动,常常造成晶间联系的破坏,出现显
微裂纹。如果这种破坏完全不能依靠其它塑性变形机构来修
复时,继续变形将导致裂纹的扩大与发展并引起金属的破
坏。
由于晶界难变形的作用,低温下晶间强度比晶内大,因
此低温下发生晶界移动与转动的可能性较小,晶间变形的这 种机构只能是一种辅助性的过渡型式,它本身对塑性变形贡
多晶体的塑性变形还受到晶界的影响。在晶界中,原子排列是不规则的,在结晶时这
115
里还积聚了许多不固溶的杂质,在塑性变形时这里还堆积了大量位错(一般位错运动到晶
界处即行停止),此外还有其它缺陷,这些都造成了晶界内的晶格畸变。所以,晶界使多
晶体的强度、硬度比单晶体高。多晶体内晶粒越细,晶界区所占比率就越大,金属和合金
(1)因为原子的迁移,最大可能是从相的表面层进行,故应随着温度的变化或原有 相晶体表面大小及曲率的变化,伴随有最大的溶解度改变。
(2)在变形时,必须有利于进行高速溶解和沉积产生的扩散过程,也就是说应具备 足够高的温度条件。
溶解——沉积机构的重要特点是塑性变形在两相间的界面上进行,又由于金属的沉淀 很容易在显微空洞和显微裂纹中进行,则原子的相间转移可使这些显微空洞和裂纹消除, 起着修复损伤的作用,从而可使金属的塑性显著增大。
度应在 250℃以下进行为佳。
以上是一个应用塑性图,并配合合金状态图选择加工温度及加工方法的实例,必须指
出,各种试验方法都是相对于其特定受力状况和变形条件所测定的塑性指标,因此仅具有
相对和比较意义。况且由于塑性图的研究并未完善,比较适用和全面的塑性图也不多,所
以对加工工作者来说,仍有继续深入研究和积累经验的必要。
第三篇 塑性变形材料学基础
第 5 章 金属的塑性
§5. 1 金属的塑性
金属塑性加工是以塑性为前提,在外力作用下进行的。从金属塑性加工的角度出发, 人们总是希望金属具有高的塑性。但随着科学技术的发展,出现了许多低塑性、高强度的 新材料需要进行塑性变形。因此,研究提高金属的塑性问题具有重要意义。 5. 1. 1 塑性的基本概念
图 5-6 是粗晶铝在总变形量相同时,不同晶粒所承受的实际变形量。由图可见,不论 是同一晶粒内的不同位置,还是不同晶粒间的实际变形量都不尽相同。因此,多晶体在变 形过程中存在着普遍的变形不均匀性。
2.晶界的作用及晶粒大小的影响
晶粒 5 晶粒 4 晶粒 3
晶粒 2
晶粒 1
在 2mm 内的延伸率,%
位置,mm 图 5-6 多晶铝的几个晶粒各处的应变量。垂直虚线是晶界,线上的数字为总变形量
上需给出多种塑性指标,最常用的有 、 、 k 、 、n 等。此外,还常给出 b 曲线以
作参考。下面以 MB5 塑性图为例,分析选定该合金加工工艺规程的原则和方法。MB5 塑 性图如图 5-1 所示。
试验温度,℃ 图 5-1 MB5 合金的塑性图
k —冲击韧性; M —慢力作用下的最大压缩率, C —冲击 力作用下的最大压缩率; —断面收缩率, 0 —弯曲角度
研究金属塑性的目的是为了探索金属塑性的变化规律,寻求改善金属塑性的途径,以 便选择合理的加工方法,确定最适宜的工艺制度,为提高产品的质量提供理论依据。 5. 1. 2 塑性指标及其测量方法
1.塑性指标 为了便于比较各种材料的塑性性能和确定每种材料在一定变形条件下的加工性能,需 要有一种度量指标,这种指标称为塑性指标,即金属在不同变形条件下允许的极限变形量。 由于影响金属塑性的因素很多,所以很难采用一种通用指标来描述。目前人们大量使 用的仍是那些在某特定的变形条件下所测出的塑性指标。如拉伸试验时的断面收缩率及延 伸率,冲击试验所得之冲击韧性;镦粗或压缩实验时,第一条裂纹出现前的高向压缩率 (最大压缩率);扭转实验时出现破坏前的扭转角(或扭转数);弯曲实验试样破坏前的弯 曲角度等等。 2.塑性指标的测量方法 (1)拉伸试验法
相关文档
最新文档