人教版高中数学选修4-4:第一讲四柱坐标系与球坐标系简介含解析

合集下载

人教A版数学【选修4-4】ppt课件:1-4第一讲-坐标系

人教A版数学【选修4-4】ppt课件:1-4第一讲-坐标系

3.点的空间坐标的互相转化公式 设空间一点 P 的直角坐标为(x,y,z),柱坐标为(ρ,θ,z),球 坐标为(r,φ,θ),则 空间直角坐标(x,y,z) x= y= z= x= y= z= 转换公式 , ,
柱坐标(ρ,θ,z)
球坐标(r,φ,θ)
, ,
1.(ρ,θ,z) 空间的点 自我 校对 2.正向 标系 逆时针 球坐标 ρsinθ z
(3)在极坐标中,方程 ρ=ρ0(ρ0 为不等于 0 的常数)表示圆心在 极点,半径为 ρ0 的圆,方程 θ=θ0(θ0 为常数)表示与极轴成 θ0 角的 射线.而在空间的柱坐标系中,方程 ρ=ρ0 表示中心轴为 z 轴,底 半径为 ρ0 的圆柱面, 它是上述圆周沿 z 轴方向平行移动而成的. 方 程 θ=θ0 表示与 Oxz 坐标面成 θ0 角的半平面.方程 z=z0 表示平行 于 Oxy 坐标面的平面. 常把上述的圆柱面、 半平面和平面称为柱坐 标系的三族坐标面.
π π 2,6,4,则点 M 的柱坐
)
π π 2,4, 6 B. 2,4, 6 π π 2,6,2 2 D. 2,6, 2
解析 因为点 M
的球坐标为2
π π π 2,6,4,即 r=2 2,φ= , 6
π θ= ,故点 M 的直角坐标为 4 π π x=rsinφcosθ=2 2sin cos =1, 6 4 π π y=rsinφsinθ=2 2sin sin =1, 6 4 π z=rcosφ=2 2cos = 6. 6
2.球坐标系与球坐标
一般地,如图所示,建立空间直角坐标系 Oxyz.设 P 是空间任 意一点,连接 OP,记|OP|=r,OP 与 Oz 轴________所夹的角为 φ. 设 P 在 Oxy 平面上的射影为 Q,Ox 轴按________方向旋转到 OQ 时所转过的 ________ 为 θ. 这样点 P 的位置就可以用有序数组 ________表示.这样空间的点与有序数组(r,φ,θ)之间建立了一种 对应关系.把建立上述对应关系的坐标系叫做 ________(或空间极 坐标系),有序数组(r,φ,θ)叫做 P 的________,记作 P(r,φ,θ), 其中 r≥0,0≤φ≤π,0≤θ<2π.

人教版高中数学选修4-4--第一讲-坐标系-1.4--柱坐标系与球坐标系简介ppt课件

人教版高中数学选修4-4--第一讲-坐标系-1.4--柱坐标系与球坐标系简介ppt课件
• 一、释疑难 • 对课堂上老师讲到的内容自己想不通卡壳的问题,应该在课堂上标出来,下课时,在老师还未离开教室的时候,要主动请老师讲解清楚。如果老师已
经离开教室,也可以向同学请教,及时消除疑难问题。做到当堂知识,当堂解决。 • 二、补笔记 • 上课时,如果有些东西没有记下来,不要因为惦记着漏了的笔记而影响记下面的内容,可以在笔记本上留下一定的空间。下课后,再从头到尾阅读一
空间点 P 的直角坐标(x,y,z)与球坐标(r,φ 之间的变换关系为:____x_2_+__y2_+__z_2=__r_2,___.
x=rsin φcos θ , y=rsin φsin θ , z=rcos φ
预习 思考
(1,1,1)
1.设
P







2,π4,1 . 则 它 的 直 角 坐 标 为
____________.
2.设点 M 的球坐标为2,34π,34π,它的直角坐标为 ____ቤተ መጻሕፍቲ ባይዱ_______.
(-1,1,- 2)
题型1 柱坐标、球坐标的确定
例1 如图所示,已知长方体 ABCD-A1B1C1D1 的边长 AB 6 3,AD=6,AA1=12,以这个长方体的顶点 A 为坐标原点 以射线 AB、AD、AA1 分别为 x 轴、y 轴、z 轴的正半轴, 立空间直角坐标系,求长方体顶点 C1 的空间直角坐标、柱 标、球坐标.
变式 训练
1.建立如下图所示的柱坐标系,写出棱长为 1 的正方
各顶点的柱坐标.
变式 训练
变式 训练
题型2 柱、球坐标与直角坐标的互化
例2
已知点
M




最新人教版高中数学选修4-4《极坐标系》教材梳理

最新人教版高中数学选修4-4《极坐标系》教材梳理

最新⼈教版⾼中数学选修4-4《极坐标系》教材梳理庖丁巧解⽜知识·巧学⼀、极坐标系的概念1.在⽣活中,如台风预报、地震预报、测量、航空、航海等,经常⽤距离和⽅向来表⽰⼀点的位置.⽤距离和⽅向表⽰平⾯上⼀点的位置,就是极坐标.极坐标系的建⽴:在平⾯内取⼀个定点O ,叫做极点.引⼀条射线Ox ,叫做极轴.再选定⼀个长度单位和⾓度正⽅向(通常取逆时针⽅向).这样就建⽴了⼀个极坐标系.2.如图1-2-3,极坐标系内⼀点的极坐标的规定:对于平⾯上任意⼀点M ,⽤ρ表⽰线段OM 的长度,⽤θ表⽰从Ox 到OM 的⾓度,ρ叫做M 的极径,θ叫做点M 的极⾓,有序数对(ρ,θ)就叫做M 的极坐标.图1-2-3深化升华极点、极轴、长度单位、⾓度单位和它的正⽅向,构成了极坐标系的四要素,缺⼀不可.1.特别规定:当M 在极点时,它的极坐标ρ=0,θ可以取任意值.2.平⾯上⼀点的极坐标是不唯⼀的,有⽆数种表⽰⽅法.坐标不唯⼀是由极⾓引起的.不同的极坐标可以写出统⼀表达式.⼆、极坐标和直⾓坐标的互化1.互化的前提条件:①极坐标系中的极点与直⾓坐标系中的原点重合;②极轴与x 轴的正半轴重合;③两种坐标系中取相同的长度单位.2.互化公式??≠=+===.0,t an ,,sin ,co s 222x x y y x y x θρθρθρ在进⾏两种坐标间的互化时,应注意以下⼏点:①两套公式是在三条规定下得到的;②由直⾓坐标求极坐标时,理论上不是唯⼀的,但这⾥约定只在主值范围内求值;③由直⾓坐标⽅程化为极坐标⽅程,最后要化简;④由极坐标⽅程化为直⾓坐标⽅程时要注意变形的等价性,通常总要⽤ρ去乘⽅程的两端,应该检查极点是否在曲线上,若在是等价变形,否则,不是等价变形.问题·探究问题1 平⾯内建⽴直⾓坐标系是⼈们公认的最容易接受并且被经常采⽤的⽅法,但为什么它并不是确定点的位置的唯⼀⽅法,为什么要使⽤极坐标?探究:确定平⾯内⼀个点的位置时,有时是依靠⽔平距离与垂直距离这两个量,有时却是依靠距离与⽅位⾓(即“长度”与“⾓度”,这就是极坐标系的基本思想)这两个量.在⽣活中,如台风预报、地震预报、测量、航空、航海中等,甚⾄更贴近⽣活的如⼈听声⾳,不但有⾼低之分,还有⽅向之分.描述⼀个⼈所⾛的⽅向和路程,经常会这样说:从A 点出发向北偏东60°⽅向⾛了⼀段距离到B 点,再从B 点向南偏西15°⽅向⾏⾛……描述某飞机的位置:飞⾏⾼度1 200⽶,从飞机上看地平⾯控制点B 的俯⾓α=16°31′……这种位置的刻画能够给⼈⼀个很直观的形象.⽣活中除了应⽤这两种坐标系外,还应⽤地理坐标系,它实际上能称为真实世界的坐标系了.它能确定物体在地球上的位置.最常⽤的地理坐标系是经纬度坐标系,这个坐标系可以确定地球上任何⼀点的位置.另外,从⼏何上来说,有些复杂的曲线,⽐如说环绕⼀点做旋转运动的点的轨迹,⽤直⾓坐标表⽰,形式极其复杂,但⽤极坐标表⽰,就变得⼗分简单且便于处理.在应⽤上有重要价值的等速螺线,它的直⾓坐标x 与y 之间的关系很难确定,可是它的极坐标ρ与θ却有⼀个简单的⼀次函数关系ρ=ρ0+aθ(a≠0),从⽽可以看出ρ的值是随着θ的增加(或减少)⽽增加(或减少)的.总之,使⽤极坐标是⼈们⽣产⽣活的需要.平⾯内建⽴直⾓坐标系是⼈们公认的最容易接受并且被经常采⽤的⽅法,但它并不是确定点的位置的唯⼀⽅法.问题2 ⽤极坐标与直⾓坐标来表⽰点时,⼆者究竟有哪些相同和不同呢?探究:极坐标系是⽤距离和⾓来表⽰平⾯上的点的位置的坐标系,它由极点O 与极轴Ox 组成.对于平⾯内任⼀点P ,若设|OP|=ρ(≥0),以Ox 为始边,OP 为终边的⾓为θ,则点P 可⽤有序数对(ρ,θ)表⽰.直⾓坐标是⽤两个长度来度量的,直⾓坐标系是在数轴的基础上发展起来的,⾸先定义原点,接着⽤两条互相垂直的直线分别构成x 轴和y 轴.点的位置⽤有序数对(x,y)来表⽰.在平⾯直⾓坐标系内,点与有序实数对,即坐标(x ,y )是⼀⼀对应的,可是在极坐标系内,虽然⼀个有序实数对(ρ,θ)只能与⼀个点P 对应,但⼀个点P 却可以与⽆数多个有序实数对(ρ,θ)对应.也就是说平⾯上⼀点的极坐标是不唯⼀的.极坐标系中的点与有序实数对极坐标(ρ,θ)不是⼀⼀对应的.典题·热题例1设有⼀颗彗星,围绕地球沿⼀抛物线轨道运⾏,地球恰好位于该抛物线轨道的焦点处,当此彗星离地球为30(万千⽶)时,经过地球和彗星的直线与抛物线的轴的夹⾓为30°,试建⽴适当的极坐标系,写出彗星此时的极坐标.思路分析:如图1-2-4所⽰,建⽴极坐标系,使极点O 位于抛物线的焦点处,极轴Ox 过抛物线的对称轴,由题设可得下列四种情形:图1-2-4(1)当θ=30°时,ρ=30(万千⽶);(2)当θ=150°时,ρ=30(万千⽶);(3)当θ=210°时,ρ=30(万千⽶);(4)当θ=330°时,ρ=30(万千⽶).解:彗星此时的极坐标有四种情形:(30,30°),(30,150°),(30,210°),(30,330°).误区警⽰彗星此时的极坐标是四个,不能忽略了夹⾓的概念.如果只找到了⼀个极坐标,这是三⾓概念不清.例2极坐标与直⾓坐标的互化:(1)化点M 的直⾓坐标(-3,4)为极坐标;(2)化点M 的极坐标(-2,6π-)为直⾓坐标.思路分析:本题利⽤直⾓坐标与极坐标之间的互化公式,化极坐标时,需要找到点所对应的极径,极⾓;将极坐标化为直⾓坐标,直接根据公式可得到横,纵坐标.解:(1)∵ρ=22224)3(+-=+y x =5,tanθ=34-=x y , ⼜∵x<0,y>0,∴θ是第⼆象限⾓.∴θ=π-arctan 34. ∴点M 的极坐标为(5,π-arctan34). (2)x=2cos(6π-)=3-,y=-2sin(65π-)=1,∴点M 的直⾓坐标为(3-,1).深化升华(1)化点的直⾓坐标为极坐标时,⼀般取ρ≥0,0≤θ<2π,即θ取最⼩正⾓,由tanθ=xy 求θ时,还需结合点(x,y)所在的象限来确定θ的值. (2)化点的极坐标为直⾓坐标时,直接⽤互化公式?==,sin ,cos θρθρy x 例3在极坐标系中,A(4,9π),B(1,185π),则△OAB 的⾯积是__________. 思路解析:如图1-2-5所⽰,∠AOB=185π-9π=6π,图1-2-5S △AOB =21·|AO|·|BO|·sin ∠AOB=21·4·1·sin 6π=1. 答案:1⽅法归纳既然是求⾯积,那么就要明确所⽤到的⾯积公式不是⼀般的底乘⾼的⾯积公式,⽽是正弦定理的⾯积公式.例4已知两点的极坐标A(3,2π)、B(3,6π),则|AB|=______,AB 与极轴正⽅向所夹的⾓为____.图1-2-6思路解析:如图1-2-6所⽰,根据极坐标的定义可得|AO|=|BO|=3,∠AOB=60°,即△AOB 为正三⾓形.答案:3,65π⽅法归纳在坐标系中找到点的位置后,利⽤数形结合的⽅法可求出距离来.例5在极坐标中,若等边△ABC 的两个顶点是A(2,4π)、B(2,45π),那么顶点C 的坐标可能是( )A.(4,43π)B.(32,43π) C.(32,π) D.(3,π)思路解析:如图1-2-7,由题设可知A 、B 两点关于极点O 对称,即O 是AB 的中点.图1-2-7⼜|AB|=4,△ABC 为正三⾓形,|OC|=32,∠AOC=2π,C 对应的极⾓θ=4π+2π=43π或θ=4π-2π=4π-,即C 点极坐标为(32,43π)或(32,4π-). 答案:B深化升华在找点的极坐标时,把图形画出来,通过画图解决问题.例6(1)θ=43π的直⾓坐标⽅程是______; (2)极坐标⽅程ρ=sinθ+2cosθ所表⽰的曲线是______. 思路解析:(1)根据极坐标的定义,∵t anθ=xy ,∴tan 43π=x y ,即y=-x. (2)将极坐标⽅程化为直⾓坐标⽅程即可判断曲线的形状,因为给定的ρ不恒等于零,⽤ρ同乘⽅程的两边得ρ2=ρsinθ+2ρcosθ.化成直⾓坐标⽅程为x 2+y 2=y+2x,即(x-1)2+(y-21)2=45,这是以点(1,21)为圆⼼,半径为25的圆. 答案:(1)y=-x (2)以点(1,21)为圆⼼,半径为25的圆+++++++++++ ⽅法归纳当极坐标⽅程中含有sinθ、cosθ时,可将⽅程两边同乘以ρ,凑成含有ρsinθ、ρcosθ的项,然后再代⼊互化公式便可化为直⾓坐标⽅程,此法称为拼凑法.。

人教版高中数学选修4-4 第一讲 坐标系 二 极坐标系 (共34张PPT)教育课件

人教版高中数学选修4-4 第一讲 坐标系 二 极坐标系 (共34张PPT)教育课件

A. y 1
sin t
1
x t2
C.
1
yt 2
x cos t
B. y 1
cos t
x tan t
D. y 1
tan t
7.极坐标方程
2
arcsin化(为 直0)角坐标方程的形
式是 ( )
A. x2 y2 x 0
B.y x(1 x)
C. 2x 1 4y2 1 D..y (x 1)
2.极坐标(,)与(ρ,2kπ+θ)( k )表z 示 同一个点.即一点的极坐标的统一的表达式 为(ρ,2kπ+θ)
3.如果规定ρ>0,0≤θ<2π,那么除 极 点外,平面内的点和极坐标就可以一一对 应了。
我们学了直角坐标,也学了极坐 标,那么这两种坐标有什么关系呢? 已知点的直角坐标为,如何用极坐标 表示这个点呢?
M (, )
0
x
2
4
5
6
C
1.如图,在极坐标系中,写出点 AF(,6B, ,4C3 ,)D的, G极(坐5, 标53,所) 并在标的出位E置( 72 , ) ,
E D BA
O
X
4 F
3
G 5
3
解:如图可得A,B,C,D的坐标分别为
(4,0)
(2, )
(3, )
(1, 5 )
4
2
6
点E,F,G的位置如图所示
1
4.极坐标方程ρ=cosθ与ρcosθ= 的2 图形是( ) B
A
B
C
D
解x=:12把,ρc故os排θ=除A,、12 化D;为又直圆角ρ坐=c程os,θ显得然: 过点 (0,1),又排除C,故选B。
5、若A、B的两点极坐标为A(4,

新人教A版高二数学选修4-4第一章坐标系 1.4 柱坐标系与球坐标系_1

新人教A版高二数学选修4-4第一章坐标系 1.4 柱坐标系与球坐标系_1

Q
叫做球坐标系 (或空间极坐标系) .
有序数组(r,φ,θ)叫做点P的球坐标,
其中 r 0, 0 , 0 2
空间点P的直角坐标(x, y, z)与球坐标 (r,φ,θ)之间的变换关系为
x r sin cos
y
r
sin
sin
z
P(r,φ,θ)
z r cos
oφ r θ
y
x
Q
设点的球坐标为(2,3 ,3 ),求
s
in
z z
设点的直角坐标为(1,1,1),求它
在柱坐标系中的坐标.
1 cos
1 sin
1 z
解得ρ=
2,θ=
4
点在柱坐标系中的坐标为
( 2 , ,1).
4
注:求θ时要注意角的终边与点的
射影所在位置一致
给定一个底面半径为r,高为h的圆 柱,建立柱坐标系,利用柱坐标描述 圆柱侧面以及底面上点的位置.
z
注:坐标与点的位置有关 o
x
y
练习:
1、设点M的直角坐标是(1, 3,3),则它的柱 坐标是?
(2, 4 ,3)
3
2、设点M的柱坐标为(2, ,7),求它的直角坐标。
6
( 3,1,7)
阅读课本P18 了解球坐标系的概念以及在球坐标 系中点的确定
z 设P是空间任意一点,
P(r,φ,θ)
在oxy平面的射影为Q, 连接OP,记| OP |=r,
阅读课本P16---17 了解柱坐标系的定义, 以及如何用 柱坐标系描述空间中的点.
设P是空间任意一点, 在oxy平面的射影为Q,
z P(ρ,θ,Z)
用(ρ,θ)(ρ≥0,
0≤θ<2π)表示点Q o 在平面oxy上的极坐标, θ

人教版高中数学选修4-4课件:第一讲二极坐标

人教版高中数学选修4-4课件:第一讲二极坐标

4.写出下图中各点的极坐标:
A________,B________,C________. 答案:(4,0) 2,π4 3,π2
5.极坐标系中,与点3,-π3关于极轴所在直线对 称的点的极坐标是________.
答案:3,π3
类型 1 极坐标系与点的极坐标(自主研析) [典例 1] (1)写出下图中各点的极坐标(ρ>0,0≤ θ<2π,且各线之间间距相等).
法二 将点 A 化为直角坐标为( 3,1),点 B 化为直 角坐标为( 3,-1).所以 A、B 两点间的距离
d= ( 3- 3)2+[1-(-1)]2=2. (2)如下图所示:
关于极轴的对称点为 B2,-π3. 关于直线 l 的对称点为 C2,23π. 关于极点 O 的对称点为 D2,-23π.
归纳升华 1.点(ρ,θ)关于极轴的对称点是(ρ,-θ)或(ρ,2π- θ),关于极点的对称点是(ρ,π+θ),关于过极点且垂直 于极轴的直线的对称点是(ρ,π-θ).
2.求极坐标系中两点间的距离应通过由这两点和极 点 O 构成的三角形求解,也可以运用两点间距离公式|AB| = ρ21+ρ22-2ρ1ρ2cos(θ1-θ2)求解,其中 A(ρ1,θ1), B(ρ2,θ2).注意当 θ1+θ2=2kπ(k∈Z)时,|AB|=|ρ1-ρ2|; 当 θ1+θ2=2kπ+π(k∈Z)时,|AB|=|ρ1+ρ2|.
2.点的极坐标
一般地,极坐标(ρ,θ)与(ρ,θ+2kπ)(k∈Z)表示同一 个点.特别地,极点 O 的坐标为(0,θ)(θ∈R).和直角坐 标不同,平面内一个点的极坐标有无数种表示方法.
如果规定 ρ>0,0≤θ<2π,那么除极点外,平面内的 点可用唯一的极坐标(ρ,θ)表示;同时,极坐标(ρ,θ)表 示的点也是唯一确定的.

人教版高中数学选修4-4教材用书第一讲 坐标系 四 柱坐标系与球坐标系简介 2.球坐标系 Word版含答案

人教版高中数学选修4-4教材用书第一讲 坐标系 四 柱坐标系与球坐标系简介 2.球坐标系 Word版含答案

.球坐标系球坐标系()定义:建立空间直角坐标系,设是空间任意一点,连接,记=,与轴正向所夹的角为φ.设在平面上的射影为,轴按逆时针方向旋转到时所转过的最小正角为θ.这样点的位置,)φ就可以用有序数组表示.这样,空间的点与有序数组(,θ之间建立了一种(θ)φ,,对应关系.把建立上述对应关系的坐标系叫做球坐标系(或空间极坐标系),有序数组(,φ,,θ)φθ)叫做点的球坐标,记作(,,其中θ≥π.≤<≤φ≤π,()空间点的直角坐标(,,)与球坐标(,φ,θ)之间的变换关系为(\\(=φθ,=φθ,=φ.))直接套用变换公式求解.由变换公式,得=φθ==.=φθ==.=φ==-.∴它的直角坐标为(,-).已知球坐标求直角坐标,可根据变换公式直接求得,但要分清哪个角是φ,哪个角是θ..求下列各点的直角坐标:();().解:()由变换公式,得=φθ==,=φθ==,=φ==.∴它的直角坐标是.()由变换公式,得=φθ==-.=φθ==-.=φ==-.∴它的直角坐标为..将点的球坐标(π,π,π)化成直角坐标.解:∵(,φ,θ)=(π,π,π),∴=φθ=,=φθ=,=φ=-π.∴点的直角坐标为(,-π).直接套用坐标变换公式求解.由坐标变换公式,可得===.由φ==,得φ==,φ=.又θ==,θ=(在第一象限),从而知点的球坐标为.由直角坐标化为球坐标时,我们可以先设点的球坐标为(,φ,θ),再利用变换公式(\\(=φθ,=φθ,=φ,))求出,θ,φ代入点的球坐标即可;也可以利用=++,θ=,φ=.特别注意由直角坐标求球坐标时,θ和φ的取值应首先看清点所在的象限,准确取值,才能无误..求下列各点的球坐标:()(,,);()(-,-).解:()===,由=φ,得φ===.∴φ=,又θ===,>,>,。

高中数学选修4-4知识点(坐标系与参数方程)

高中数学选修4-4知识点(坐标系与参数方程)
个变量的值;参数方程中自变量也只有一个,而且给定参数 t 的一个值,就可以求出唯一对 应的 x,y 的值.
这两种方程之间可以进行互化,通过消去参数可以把参数方程化为普通方程,而通过引 入参数,也可把普通方程化为参数方程. 2.圆的参数方程
1.圆心在坐标原点,半径为 r 的圆的参数方程 如图圆 O 与 x 轴正半轴交点 M0(r,0).
α α (t
为参数)
称为直线参数方程的标准形式,此时的参数 t 有明确的几何意义.
一般地,过点 M0(x0,y0),斜率 k=ba(a,b 为常数)的直线,参数方程为xy= =xy00+ +abtt(t 为参
数),称为直线参数方程的一般形式,此时的参数 t 不具有标准式中参数的几何意义. 四 渐开线与摆线(了解)
x=rsin φcos θ (2)空间点 P 的直角坐标(x,y,z)与球坐标(r,φ,θ)之间的变换公式为y=rsin φsin θ .
z=rcos φ
第二讲:
第4页
一 曲线的参数方程
1.参数方程的概念 1.参数方程的概念
(1)定义:一般地,在平面直角坐标系中,如果曲线上任意一点的坐标 x,y 都是某个变
2.参数方程与普通方程的区别与联系 (1)区别:普通方程 F(x,y)=0,直接给出了曲线上点的坐标 x,y 之间的关系,它含有
x,y 两个变量;参数方程xy= =fg((tt))(t 为参数)间接给出了曲线上点的坐标 x,y 之间的关系,
它含有三个变量 t,x,y,其中 x 和 y 都是参数 t 的函数. (2)联系:普通方程中自变量有一个,而且给定其中任意一个变量的值,可以确定另一
就可得到普通方程. (3)普通方程化参数方程,首先确定变数 x,y 中的一个与参数 t 的关系,例如 x=f(t),

高中数学选修4-4全套教案(PDF)

高中数学选修4-4全套教案(PDF)

高中数学选修4-4全套教案第一讲坐标系一平面直角坐标系课题:1、平面直角坐标系教学目的:知识与技能:回顾在平面直角坐标系中刻画点的位置的方法能力与与方法:体会坐标系的作用情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。

教学重点:体会直角坐标系的作用教学难点:能够建立适当的直角坐标系,解决数学问题授课类型:新授课教学模式:启发、诱导发现教学.教具:多媒体、实物投影仪教学过程:一、复习引入:情境1:为了确保宇宙飞船在预定的轨道上运行,并在按计划完成科学考察任务后,安全、准确的返回地球,从火箭升空的时刻开始,需要随时测定飞船在空中的位置机器运动的轨迹。

情境2:运动会的开幕式上常常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。

要出现正确的背景图案,需要缺点不同的画布所在的位置。

问题1:如何刻画一个几何图形的位置?问题2:如何创建坐标系?二、学生活动学生回顾刻画一个几何图形的位置,需要设定一个参照系1、数轴它使直线上任一点P都可以由惟一的实数x确定2、平面直角坐标系在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。

它使平面上任一点P都可以由惟一的实数对(x,y)确定3、空间直角坐标系在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。

它使空间上任一点P 都可以由惟一的实数对(x,y,z)确定三、讲解新课:1、建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满足:任意一点都有确定的坐标与其对应;反之,依据一个点的坐标就能确定这个点的位置2、确定点的位置就是求出这个点在设定的坐标系中的坐标四、数学运用例1选择适当的平面直角坐标系,表示边长为1的正六边形的顶点。

*变式训练如何通过它们到点O 的距离以及它们相对于点O 的方位来刻画,即用”距离和方向”确定点的位置?例2已知B 村位于A 村的正西方1公里处,原计划经过B 村沿着北偏东600的方向设一条地下管线m.但在A 村的西北方向400米出,发现一古代文物遗址W.根据初步勘探的结果,文物管理部门将遗址W 周围100米范围划为禁区.试问:埋设地下管线m 的计划需要修改吗?*变式训练1.一炮弹在某处爆炸,在A 处听到爆炸的时间比在B 处晚2s,已知A 、B 两地相距800米,并且此时的声速为340m/s,求曲线的方程2.在面积为1的PMN ∆中,2tan ,21tan -=∠=∠MNP PMN ,建立适当的坐标系,求以M ,N 为焦点并过点P 的椭圆方程例3已知Q (a,b ),分别按下列条件求出P 的坐标(1)P 是点Q 关于点M (m,n )的对称点(2)P 是点Q 关于直线l:x-y+4=0的对称点(Q 不在直线1上)*变式训练用两种以上的方法证明:三角形的三条高线交于一点。

1.4《柱坐标系与球坐标系简介》 课件(人教A版选修4-4)

1.4《柱坐标系与球坐标系简介》 课件(人教A版选修4-4)
一、选择题(每小题列柱坐标
对应的点在平面yOz内的是( )
【解析】选A.由点P的柱坐标(ρ,θ,z),当θ= 时,点P
在平面yOz内,故选A.
2
2.已知空间直角坐标系Oxyz中,点M在平面yOz内,若M的球坐
0≤φ≤π,0≤θ<2π.
答案: , ) (4,
6 3
9.已知柱坐标系中,点M的柱坐标为 (2, 2 , 5) ,且点M在数轴Oy
上的射影为N,则|OM|=______,|MN|=______.
【解析】设点M在平面Oxy上的射影为P,连结PN, 则PN为线段MN在平面Oxy上的射影.
3
≧MN⊥直线Oy,MP⊥平面xOy,
)
2=cos 【解析】选A.设M的柱坐标为(ρ,θ,z),由 0=sin , z=2 =2 解得 =0, ≨点M的柱坐标为(2,0,2). z=2
4.若点P的柱坐标为 (2, , 3),则P到直线Oy的距离为(
6
)
(A)1
(B)2
(C) 3
(D) 6
6
<2π,0≤z≤2的动点M(ρ,θ,
z)的轨迹是以直线Oz为轴,轴截面 为正方形的圆柱,如图所示,圆柱的
底面半径r=1,h=2,≨V=Sh=πr2h=
2π(体积单位).
标为(r,φ ,θ ),则应有( )
【解析】选D.由点M向平面xOy作垂线,垂足N一定在直线Oy
上,由极坐标系的意义知θ= 或 3 .
2 2
3.设点M的直角坐标为(2,0,2),则点M的柱坐标为( (A)(2,0,2) (C)( 2,0,2) (B)(2,π ,2) (D)( 2,π ,2)
3 3 3 3
求|MN|. 【解析】方法一:由题意知, |OM|=|ON|=6,∠MON= ,

高二数学 4-4第一章坐标系全部教案

高二数学  4-4第一章坐标系全部教案

表示方法?(3)、坐标不唯一是由谁引起的?(4)、不同的极坐标是否可以写出统一
表达式。约定:极点的极坐标是 =0, 可以取任意角。
变式训练 :在极坐标系里描出下列各点
A(3,0) B(6,2 )C(3, )D(5, 4 )E(3, 5 )F(4, )G(6, 5 )
2
3
6
3
例 2 在极坐标系中,
特别强调:由极径的意义可知 ≥0;当极角 的取值范围是[0,2 )时,平面上的 点(除去极点)就与极坐标(,)建立一一对应的关系 .们约定,极点的极坐标是极 径 =0,极角是任意角. 3、负极径的规定:在极坐标系中,极径 允许取负值,极角 也可以去任意的正角 或负角,当 <0 时,点 M (,)位于极角终边的反向延长线上,且 OM= 。
(1)如果图形有对称中心,可以选对称中心为坐标原点;
(2)如果图形有对称轴,可以选择对称轴为坐标轴;
(3)使图形上的特殊点尽可能多的在坐标轴上。
(二)、平面直角坐标轴中的伸缩变换
1、在平面直角坐标系中进行伸缩变换,即改变 x 轴或 y 轴的单位长度,将会对图形
产生影响。
2、探究:(1)在正弦曲线 y=sinx 上任取一点 P(x,y),保持纵坐标不变,将横坐标 x
π 3
<0,解得 k=-1,
= 3
-2 =- 5 , 点 A 的坐标为(5,- 5 ).
3
3
变式训练:1、若 ABC的的三个顶点为 A(5, 5 ), B(8, 5 ),C(3, 7 ),判断三角形的形状.
2
6
6
答案:正三角形。2、若 A、B 两点的极坐标为 (1,1), (2 ,2 ) 求 AB 的长以及 AOB 的 面积。(O 为极点)

高中数学第一讲四柱坐标系与球坐标系简介1柱坐标系课件新人教A版选修4-4

高中数学第一讲四柱坐标系与球坐标系简介1柱坐标系课件新人教A版选修4-4

将直角坐标化为柱坐标
[例 1] 设点 A 的直角坐标为(1, 3,5),求它的柱坐标. [思路点拨] 由公式求出 ρ,再由 tan θ=xy求 θ.
已知点的直角坐标,确定它的柱坐标关键是确定ρ和 θ,尤其是θ,要注意求出tan θ后,还要根据点所在象限 确定θ的值(θ的范围是[0,2π)).
1.点A的直角坐标为(1,1,1),求它的柱坐标.

柱坐标系与球坐标系简介
1.柱坐标系
柱坐标系 (1)定义:建立空间直角坐标系 Oxyz,设 P 是空间任意一点,它在 Oxy 平面上的射影为 Q,用(ρ,θ)(ρ≥0,0≤θ<2π)表示点 Q 在平面 Oxy 上的极坐标,这时点 P 的位置可用有序数组 (ρ,θ,z) (z∈R)表示.这 样,我们建立了空间的点与有序数组(ρ,θ,z)之间的一种对应关系.把 建立上述对应关系的坐标系叫做柱坐标系,有序数组(ρ,θ,z)叫做点 P 的柱坐标,记作 P(ρ,θ,z) ,其中_ρ_≥__0_,_0_≤__θ_<__2_π_,__z_∈__R_.
解:ρ2=x2+y2=12+12=2,∴ρ= 2, 又tan θ=1,x>0,y>0,点在第一象限.
∴θ=π4,
∴点A的柱坐标为
பைடு நூலகம்
2,π4,1.
将点的柱坐标化为直角坐标
[例 2] 已知点 P 的柱坐标为4,π3,8,求它的直角坐标. [思路点拨] 直接利用公式求解.
已知柱坐标,求直角坐标,利用变换公式
x=ρcos θ, y=ρsin θ, z=z
即可.
3.点N的柱坐标为2,π2,3,求它的直角坐标.
x=ρcos θ, 解:由变换公式y=ρsin θ, 得
z=z, x=ρcos θ=2cosπ2=0,y=ρsin θ=2·sinπ2=2, 故点 N 的直角坐标为(0,2,3).

2019版三维方案数学同步人教A版选修4-4 第一讲 四 柱坐标系与球坐标系简介

2019版三维方案数学同步人教A版选修4-4 第一讲  四  柱坐标系与球坐标系简介



柱坐标系与球坐标系简介
首 页
上一页
下一页
末 页


1.柱坐标系 (1)定义:建立空间直角坐标系 Oxyz.设 P 是空间任意一 点,它在 Oxy 平面上的射影为 Q,用 (ρ, θ)(ρ≥0,0≤ θ< 2π) 表示点 Q 在平面 Oxy 上的极坐标, 这时点 P 的位置可用有序 数组 (ρ,θ,z) (z∈ R)表示,这样,我们建立了空间的点与 有序数组(ρ, θ, z)之间的一种对应关系,把建立上述对应关 系的坐标系叫做柱坐标系,有序数组(ρ,θ,z)叫做点 P 的柱 坐标,记作 P(ρ,θ,z) ,其中
即 ρ2= 12+( 3)2= 4,∴ ρ= 2. y tan θ= = 3,又 x> 0, y> 0. x
π π ∴ θ= ,∴点 A 的柱坐标为2, , 5. 3 3
首 页
上一页
下一页
末 页


x= ρcos θ, (2)由变换公式y= ρsin θ, z= z π π 得 x= 4cos = 2, y= 4sin = 2 3, z= 8. 3 3 ∴点 P 的直角坐标为(2,2 3, 8).


柱坐标与直角坐标的互相转化
[例 1] (1)设点 A 的直角坐标为(1, 3,5),求它的柱坐标.
π 的柱坐标为4, ,8,求它的直角坐标. 3
(2)已知点 P
[思路点拨]
直接利用变换公式求解.
首 页
上一页
下一页
末 页


[ 解]
x= ρcos θ, 2 2 2 y = ρ sin θ ,得 ρ = x + y , (1)由变换公式 z= z,

【2019-2020年度】人教B版高中数学-选修4-4教学案-第一章球坐标系(Word)

【2019-2020年度】人教B版高中数学-选修4-4教学案-第一章球坐标系(Word)

【2019-2020年度】人教B 版高中数学-选修4-4教学案-第一章球坐标系(Word )[读教材·填要点]1.球坐标系设空间中一点M 的直角坐标为(x ,y ,z),点M 在xOy 坐标面上的投影点为M0,连接OM 和OM0,设z 轴的正向与向量的夹角为φ,x 轴的正向与0的夹角为θ,M 点到原点O 的距离为r ,则由三个数r ,θ,φ构成的有序数组(r ,θ,φ)称为空间中点M 的球坐标.在球坐标中限定r≥0,0≤θ<2π,0≤φ≤π.OM OM2.直角坐标与球坐标的转化空间点M 的直角坐标(x ,y ,z)与球坐标(r ,φ,θ)之间的变换关系为⎩⎨⎧x =rsin φ·cos θ,y =rsin φ·sin θ,z =rcos φ. [小问题·大思维]球坐标与平面上的极坐标之间有什么关系?提示:空间某点的球坐标中的第二个坐标θ就是该点在xOy 平面上投影点的极坐标中的第二个坐标θ.[例1][思路点拨] 本题考查球坐标与直角坐标的变换关系.解答本题需要先搞清球坐标中各个坐标的意义,然后代入相应的公式求解即可.[精解详析] ∵M 的球坐标为,∴r =5,φ=,θ=.由变换公式⎩⎨⎧ x =rsin φcos θ,y =rsin φsin θ,z =rcos φ,得⎩⎪⎨⎪⎧ x =5sin 5π6cos 4π3=-54,y =5sin 5π6sin 4π3=-534,z =5cos 5π6=-532.故它的直角坐标为. 已知球坐标求直角坐标,可根据变换公式直接求解,但要分清哪个角是φ,哪个角是θ.1.已知点P 的球坐标为,求它的直角坐标.解:由变换公式得x =rsin φcos θ=4sin cos =2,y =rsin φsin θ=4sin sin =2,z =rcos φ=4cos =-2.∴它的直角坐标为(2,2,-2).[例[思路点拨] 本题考查直角坐标与球坐标的变换关系.解答本题只需将已知条件代入变换公式求解即可,但应注意θ与φ的取值范围.[精解详析] 由坐标变换公式,可得r ===2.由rcos φ=z =,得cos φ==,φ=.又tan θ==1,θ=(x>0,y>0),所以知M点的球坐标为.由直角坐标化为球坐标时,我们可以先设点M的球坐标为(r,θ,φ),再利用变换公式求出r,θ,φ代入点的球坐标即可;也可以利用r2=x2+y2+z2,tan θ=,cos φ=求解.特别注意由直角坐标求球坐标时,θ和φ的取值应首先看清点所在的象限,准确取值,才能无误.2.设点M的直角坐标为,求它的球坐标.解:由变换公式得r===1.由rcos φ=z=-得cos φ=-,φ=.又tan θ==(r>0,y>0),得θ=,∴M的球坐标为.[例3] O为端点且与零子午线相交的射线Ox为极轴,建立坐标系.有A,B两个城市,它们的球坐标分别为AR,,,BR,,.飞机沿球的大圆圆弧飞行时,航线最短,求最短的路程.[思路点拨] 本题考查球坐标系的应用以及球面上的最短距离.解答本题需要搞清球的大圆的圆心角及求法.[精解详析] 如图所示,因为A,B,可知∠AOO1=∠O1OB=,∴∠O1AO=∠O1BO=.又∠EOC=,∠EOD=,∴∠COD=-=.∴∠AO1B=∠COD=.在Rt△OO1B中,∠O1BO=,OB=R,∴O1B=O1A=R.∵∠AO1B=,∴AB=R.在△AOB中,AB=OB=OA=R,∴∠AOB=.故飞机沿经过A,B两地的大圆飞行,航线最短,其路程为R.我们根据A,B两地的球坐标找到纬度和经度,当飞机沿着过A,B两地的大圆飞行时,飞行最快.求所飞行的路程实际上是要求我们求出过A,B两地的球面距离.3.用两平行面去截球,如图,在两个截面圆上有两个点,它们的球坐标分别为A,B8,θB,,求出这两个截面间的距离.解:由已知,OA=OB=8,∠AOO1=,∠BOO1=.∴在△AOO1中,OO1=4.在△BOO2中,∠BOO2=,OB=8,∴OO2=4,则O1O2=OO1+OO2=8.即两个截面间的距离O1O2为8.一、选择题1.已知一个点P的球坐标为,点P在xOy平面上的投影点为P0,则与的夹角为( )OPA.- B.3π4C.D.π3解析:选A ∵φ=,∴OP 与OP0之间的夹角为=. 2.点M 的球坐标为(r ,φ,θ)(φ,θ∈(0,π)),则其关于点(0,0,0)的对称点的坐标为( )A .(-r ,-φ,-θ)B .(r ,π-φ,π-θ)C .(r ,π+φ,θ)D .(r ,π-φ,π+θ)解析:选D 设点M 的直角坐标为(x ,y ,z),则点M 关于(0,0,0)的对称点M′的直角坐标为(-x ,-y ,-z),设M′的球坐标为(r′,φ′,θ′),因为⎩⎨⎧ x =rsin φcos θ,y =rsin φsin θ,z =rcos φ,所以⎩⎨⎧ r′sin φ′cos θ′=-rsin φcos θ,r′sin φ′sin θ′=-rsin φsin θ,r′cos φ′=-rcos φ,可得⎩⎨⎧ r′=r ,φ′=π-φ,θ′=π+θ,即M′的球坐标为(r ,π-φ,π+θ).3.点P 的球坐标为,则它的直角坐标为( )A .(1,0,0)B .(-1,-1,0)C .(0,-1,0)D .(-1,0,0)解析:选D x =rsin φcos θ=1·sin ·cos π=-1, y =rsin φsin θ=1·sinsin π=0,z =rcos φ=1·cos=0,∴它的直角坐标为(-1,0,0).4.已知点P 的柱坐标为,点B 的球坐标为,则这两个点在空间直角坐标系中的点的坐标为( )A .P(5,1,1),B ⎝⎛⎭⎪⎫364,324,62 B .P(1,1,5),B ⎝⎛⎭⎪⎫364,324,62 C .P ,B(1,1,5)D .P(1,1,5),B ⎝ ⎛⎭⎪⎫62,364,324 解析:选B 球坐标与直角坐标的互化公式为⎩⎨⎧ x =rsin φcos θ,y =rsin φsin θ,z =rcos φ,柱坐标与直角坐标的互化公式为⎩⎨⎧ x =ρcos θ,y =ρsin θ,z =z.设P 点的直角坐标为(x ,y ,z),则x =cos =×=1, y =sin =1,z =5.设B 点的直角坐标为(x′,y′,z′),则x′=sin cos =××=,y′=sin sin =××=,z′=cos =×=.所以点P 的直角坐标为(1,1,5),点B 的直角坐标为.二、填空题5.以地球中心为坐标原点,地球赤道平面为xOy 坐标面,由原点指向北极点的连线方向为z 轴正向,本初子午线所在平面为zOx坐标面,如图所示.若某地在西经60°,南纬45°,地球的半径为R ,则该地的球坐标可表示为________.解析:由球坐标的定义可知,该地的球坐标为R ,,.答案:⎝ ⎛⎭⎪⎫R ,5π3,3π4 6.已知点M 的球坐标为,则它的直角坐标为________,它的柱坐标是________.解析:由坐标变换公式直接得直角坐标和柱坐标.答案:(-2,2,2) ⎝ ⎛⎭⎪⎫22,3π4,22 7.设点M 的直角坐标为(-1,-1,),则它的球坐标为________. 解析:由坐标变换公式,得r ===2,cos φ==,∴φ=.∵tan θ===1,又∵x<0,y<0,∴θ=.∴M 的球坐标为.答案:⎝ ⎛⎭⎪⎫2,5π4,π4 8.在球坐标系中,方程r =1表示________,方程φ=表示空间的________.解析:数形结合,根据球坐标的定义判断形状.答案:球心在原点,半径为1的球面 顶点在原点,轴截面顶角为的圆锥面三、解答题9.如图,请你说出点M 的球坐标.解:由球坐标的定义,记|OM|=R ,OM 与z 轴正向所夹的角为φ.设M 在xOy 平面上的射影为Q ,Ox 轴按逆时针方向旋转到OQ 时所转过的最小正角为θ.这样点M 的位置就可以用有序数组(R ,θ,φ)表示.∴M 点的球坐标为M(R ,θ,φ).10.已知点P 的球坐标为,求它的直角坐标.解:根据坐标变换公式⎩⎨⎧ x =rsin φcos θ,y =rsin φsin θ,z =rcos φ,得⎩⎪⎨⎪⎧ x =2sin 3π4cos 7π6=2·22·⎝ ⎛⎭⎪⎫-32=-62,y =2sin 3π4sin 7π6=2·22·⎝ ⎛⎭⎪⎫-12=-22,z =2·cos 3π4=2·⎝ ⎛⎭⎪⎫-22=-2,∴点P 的直角坐标为. 11.如图,建立球坐标系,正四面体ABCD 的棱长为1,求A ,B ,C ,D 的球坐标.(其中O 是△BCD 的中心)解:O 是△BCD 的中心,则OC =OD =OB =,AO =.∴C ,D ,B,A.[对应学生用书P19][对应学生用书P19]1的对称性,尽量使图形的对称轴(对称中心)正好是坐标系中的x 轴,y 轴(坐标原点).2.坐标系的建立,要尽量使我们研究的曲线的方程简单.[例1] 线段AB 与CD 互相垂直且平分于点O ,|AB|=2a ,|CD|=2b ,动点P 满足|PA|·|PB|=|PC|·|PD|,求动点P 的轨迹方程.[解] 以AB 的中点O 为原点,直线AB 为x 轴建立直角坐标系,如图所示.设P(x ,y),则A(-a,0),B(a,0),C(0,-b),D(0,b),由题设,知|PA|·|PB|=|PC|·|PD|.∴ ·错误!= ·.化简得x2-y2=,∴动点P 的轨迹方程为x2-y2=.设点点P(X ,Y)对应点P′(x′,y′),称这种变换为平面直角坐标系中的坐标伸缩变换.[例2] 在同一平面直角坐标系中,经过伸缩变换后,曲线C 变为曲线(X -5)2+(Y +6)2=1,求曲线C 的方程,并判断其形状.[解] 将代入(X -5)2+(Y +6)2=1中,得(2x -5)2+(2y +6)2=1.化简,得⎝⎛⎭⎪⎫x -522+(y +3)2=. 该曲线是以为圆心,为半径的圆.1F(ρ,θ)=0.如果曲线C 是由极坐标(ρ,θ)满足方程的所有点组成的,则称此二元方程F(ρ,θ)=0为曲线C的极坐标方程.2.平面上点的极坐标的表示形式不唯一,因此曲线的极坐标方程和直角坐标方程也有不同之处.一条曲线上的点的极坐标有多组表示形式,有些表示形式可能不满足方程,这里要求至少有一组能满足极坐标方程.3.求轨迹方程的方法有直接法、定义法、相关点代入法,其在极坐标中仍然适用.注意求谁设谁,找出所设点的坐标ρ,θ的关系.[例3] △ABC的底边BC=10,∠A=∠B,以B为极点,BC为极轴,求顶点A的轨迹的极坐标方程.[解] 如图,令A(ρ,θ).△ABC内,设∠B=θ,∠A=,又|BC|=10,|AB|=ρ,所以由正弦定理,得=.化简,得A点轨迹的极坐标方程为ρ=10+20cos θ.1x轴的正半轴作为极轴并在两种坐标系下取相同的单位.2.互化公式为x=ρcos θ,y=ρsin θ3.直角坐标方程化极坐标方程可直接将x=ρcos θ,y=ρsin θ代入即可,而极坐标方程化为直角坐标方程通常将极坐标方程化为ρcos θ,ρsin θ的整体形式,然后用x,y代替较为方便,常常两端同乘以ρ即可达到目的,但要注意变形的等价性.[例4] 把下列极坐标方程化为直角坐标方程,并指出它们分别表示什么曲线.(1)ρ=2acos θ(a>0);(2)ρ=9(sin θ+cos θ);(3)ρ=4;(4)2ρcos θ-3ρsin θ=5.[解] (1)ρ=2acos θ,两边同时乘以ρ,得ρ2=2aρcos θ,即x2+y2=2ax.整理得x2+y2-2ax=0,即(x-a)2+y2=a2.它是以(a,0)为圆心,以a为半径的圆.(2)两边同时乘以ρ得ρ2=9ρ(sin θ+cos θ),即x2+y2=9x+9y,又可化为2+2=.它是以为圆心,以为半径的圆.(3)将ρ=4两边平方得ρ2=16,即x2+y2=16.它是以原点为圆心,以4为半径的圆.(4)2ρcos θ-3ρsin θ=5,即2x-3y=5.它是一条直线.1M0,用(ρ,θ)(ρ≥0,0≤θ<2π)来表示点M0在平面xOy上的极坐标.这时点M的位置可由有序数组(ρ,θ,z)表示,叫做点M的柱坐标.2.球坐标:建立空间直角坐标系O ­xyz,设M是空间任意一点,连接OM,记|OM|=r,OM与Oz轴正向所夹的角为φ,设M在xOy平面上的射影为M0.Ox轴按逆时针方向旋转到OM0时,所转过的最小正角为θ,则M(r,θ,φ)为M点的球坐标.[例5] 在柱坐标系中,求满足的动点M(ρ,θ,z)围成的几何体的体积.[解] 根据柱坐标系与点的柱坐标的意义可知,满足ρ=1,0≤θ<2π,0≤z≤2的动点M(ρ,θ,z)的轨迹是以直线Oz 为轴,轴截面为正方形的圆柱,如图所示,圆柱的底面半径r =1,h =2,∴V=Sh =πr2h =2π.[例6] 如图,长方体OABC —D′A′B′C′中,OA =OC =a ,BB′=OA ,对角线OB′与BD′相交于点P ,顶点O 为坐标原点,OA ,OC 分别在x 轴,y 轴的正半轴上.试写出点P 的球坐标.[解] r =|OP|,φ=∠D′OP,θ=∠AOB,而|OP|=a ,∠D′OP=∠OB′B,tan ∠OB′B==1,∴∠OB′B=,θ=∠AOB=.∴点P 的球坐标为.[对应学生用书P21]一、选择题1.点M 的直角坐标是(-1,),则点M 的极坐标为( )A.B.⎝ ⎛⎭⎪⎫2,-π3C.D.,k∈Z解析:选C ρ2=(-1)2+()2=4,∴ρ=2.又∴⎩⎪⎨⎪⎧ cos θ=-12,sin θ=32.∴θ=π+2k π,k ∈Z.即点M 的极坐标为,k∈Z.2.化极坐标方程ρ2cos θ-ρ=0为直角坐标方程为( )A.x2+y2=0或y=1 B.x=1C.x2+y2=0或x=1 D.y=1解析:选 C ρ(ρcos θ-1)=0,ρ==0,或ρcos θ=x =1.3.极坐标方程ρcos θ=2sin 2θ表示的曲线为( )A.一条射线和一个圆B.两条直线C.一条直线和一个圆D.一个圆解析:选C ρcos θ=4sin θcos θ,cos θ=0,或ρ=4sin θ(ρ2=4ρsin θ),则x=0,或x2+y2=4y.4.极坐标系内曲线ρ=2cos θ上的动点P与定点Q的最近距离等于( )A.-1B.-1C.1 D.2解析:选A 将曲线ρ=2cos θ化成直角坐标方程为(x-1)2+y2=1,点Q的直角坐标为(0,1),则P到Q的最短距离为点Q与圆心的距离减去半径,即-1.二、填空题5.极坐标方程5ρ2cos2θ+ρ2-24=0所表示的曲线焦点的极坐标为________________.解析:原方程化为直角坐标方程为-=1,∴c==,双曲线在直角坐标系下的焦点坐标为(,0),(-,0),故在极坐标系下,曲线的焦点坐标为(,0),(,π).答案:(,0),(,π)6.点M的球坐标为,则它的直角坐标为________.解析:x=6·sin·cos =3,y=6sinsin=3,z=6cos=0,∴它的直角坐标为(3,3,0).答案:(3,3,0)7.在极坐标系中,若过点(3,0)且与极轴垂直的直线交曲线ρ=4cos θ于A,B两点,则|AB|=________.解析:过点(3,0)且与极轴垂直的直线的直角坐标方程为x=3,曲线ρ=4cos θ化为直角坐标方程为x2+y2-4x=0,把x=3代入上式,得9+y2-12=0,解得,y1=,y2=-,所以|AB|=|y1-y2|=2.答案:238.在极坐标系中,过点A(6,π)作圆ρ=-4cos θ的切线,则切线长为________.解析:圆ρ=-4cos θ化为(x+2)2+y2=4,点(6,π)化为(-6,0),故切线长为==2.答案:23三、解答题9.求由曲线4x2+9y2=36变成曲线X2+Y2=1的伸缩变换.解:设变换为将其代入方程X2+Y2=1,得a2x2+b2y2=1.又∵4x2+9y2=36,即+=1,∴又∵a>0,b>0,∴a=,b=.∴将曲线4x2+9y2=36变成曲线X2+Y2=1的伸缩变换为⎩⎪⎨⎪⎧ X =13x ,Y =12y.10.已知A ,B 两点的极坐标分别是,,求A ,B 两点间的距离和△AOB 的面积.解:求两点间的距离可用如下公式:|AB|===2.S△AOB=|ρ1ρ2sin(θ1-θ2)|=2×4×sin=×2×4=4.11.在极坐标系中,已知圆C 的圆心C ,半径为1.Q 点在圆周上运动,O 为极点.(1)求圆C 的极坐标方程;(2)若P 在直线OQ 上运动,且满足=,求动点P 的轨迹方程.解:(1)如图所示,设M(ρ,θ)为圆C 上任意一点.在△OCM 中,可知|OC|=3,|OM|=ρ,|CM|=1,∠COM =.根据余弦定理,得1=ρ2+9-2·ρ·3·cos .化简整理,得ρ2-6·ρcos +8=0为圆C 的轨迹方程.(2)设Q(ρ1,θ1),则有ρ-6·ρ1cos +8=0.①设P(ρ,θ),则OQ∶QP=ρ1∶(ρ-ρ1)=2∶3⇒ρ1=ρ, 又θ1=θ,所以⎩⎨⎧ ρ1=25ρ,θ1=θ.代入①得ρ2-6·ρcos +8=0,整理得ρ2-15ρcos +50=0为P 点的轨迹方程.。

人教版高中数学选修4-4课件:第一讲四柱坐标系与球坐标系简介

人教版高中数学选修4-4课件:第一讲四柱坐标系与球坐标系简介

且角 θ 的终边经过点(1,1,0),所以 θ=π4,

所以点 M 的柱坐标为

2,π4,1.
(2)设点 P 的直角坐标为(x,y,z),柱坐标为(ρ,θ,
z),

因为(ρ,θ,z)=

2,34π,2,
x=ρcos θ, x= 2cos 34π, x=-1,


由公式y=ρsin
tzρa==nzθ=x2xy+(yx2,≠0),及rc=os
x2+y2+z2, φ=zr.
在用三角函数值求角时,要结合图形确定角的取值范 围再求值;若不是特殊角,可以设定角,然后明确其余弦 值或正切值,并标注角的取值范围即可.
[变式训练]如图所示,已知长方体
ABCD-A1B1C1D1 的边长 AB=6 3, AD=6,AA1=12,以这个长方体的顶点 A 为坐标原点,以射线 AB、AD、AA1 分别 为 x 轴、y 轴、z 轴的正半轴,建立空间直 角坐标系,求长方体顶点 C1 的空间直角坐标、柱坐标、 球坐标.
()
A.(2 2,2 2,3)
B.(-2 2,2 2,3)
C.(-2 2,-2 2,3) D.(2 2,-2 2,3)
解析:x=ρcos θ=4cos54π=-2 2, y=ρsin θ=4sin 54π=-2 2,
故其直角坐标为(-2 2,-2 2,3). 答案:C
4.如图所示,正方体 OABC-O1A1B1C1 中,棱长为 1. (1)在柱坐标系中,点 B1 的坐标为 ________________. (2)在球坐标系中,点 C1 的坐标为 ________________.
5.已知点 M 的直角坐标为(1,2,3),球坐标为(r, φ,θ),则 tan φ=________,tan θ=________.

人教版数学选修4-4课件 1.1 平面直角坐标系

人教版数学选修4-4课件 1.1 平面直角坐标系
TIP4:早晨起床后,由于不受前摄抑制的影响,我们可以记忆一些新的内容或 者 复习一下昨晚的内容,那么会让你记忆犹新。
如何利用规律实现更好记忆呢?
超级记忆法-记忆 规律
记忆中
选择恰当的记忆数量
魔力之七:美国心理学家约翰·米勒曾对短时记忆的广 度进行过比较精准的测定:通常情况下一个人的记忆 广度为7±2项内容。
• 思维导引:本题涉及两点间的距离及曲线, 故要想到坐标法解决问题.
解析:以 A,B 所在直线为 x 轴,A,B 中点 O 为坐标原点,建立如图的直角坐标 系.
∵|AB|=10,∴点 A(-5,0),B(5,0).设某地 P 的坐标为(x,y),并设 A 地运费为 3a 元/公里,则 B 地运费为 a 元/公里,设 P 地居民购货总费用满足条件(P 地居民选择 A 地 购货):价格+A 地运费≤价格+B 地运费,
超级记忆法-记忆 规律
TIP1:我们可以选择记忆的黄金时段——睡前和醒后! TIP2:可以在每天睡觉之前复习今天或之前学过的知识,由于不受后摄抑制的 影 响,更容易储存记忆信息,由短时记忆转变为长时记忆。
如何利用规律实现更好记忆呢?
超级记忆法-记忆 规律
TIP3:另外,还有研究表明,记忆在我们的睡眠过程中也并未停止,我们的大 脑 会归纳、整理、编码、储存我们刚接收的信息。所以,睡前的这段时间可是 非常 宝贵的,不要全部用来玩手机哦~
•要点二 平面直角坐标系中的伸缩变换
定义:设 P(x,y)是平面直角坐标系中任意一点,在变换 φ:xy′′==λμxy,,λμ>>00,
• 的作用下,点P(x,y)对应到点P′(x′,y′),就 坐称标φ伸为缩平变面换 直角伸坐缩标变换系中的________________, 简称______________.

选修4-4坐标系和参数方程

选修4-4坐标系和参数方程

数学选修4-4坐标系与参数方程2016-7第一讲 坐标系一、平面直角坐标系1.平面直角坐标系在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。

它使平面上任一点P 都可以由惟一的实数对(x,y )确定.例1 某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到一声巨响,正东观测点听到巨响的时间比其他两个观测点晚4s ,已知各观测点到中心的距离都是1020m ,试确定该巨响的位置。

(假定当时声音传播的速度为340m/s ,各相关点均在同一平面上)以接报中心为原点O ,以BA 方向为x 轴,建立直角坐标系.设A 、B 、C 分别是西、东、北观测点,则 A(1020,0), B(-1020,0), C(0,1020) 设P (x,y )为巨响为生点,由B 、C 同时听到巨响声,得|PC|=|PB|,故P 在BC 的垂直平分线PO 上,PO 的方程为y=-x ,因A 点比B 点晚4s 听到爆炸声,故|PA|- |PB|=340×4=1360,由双曲线定义知P 点在以A 、B 为焦点的双曲线22221x y a b-=上,2222222222680,1020102068053401(0)6805340a c b c a x y x ∴==∴=-=-=⨯-=<⨯故双曲线方程为用y=-x代入上式,得x =± , ∵|PA|>|PB|,(x y P PO ∴=-=-=即故答:巨响发生在接报中心的西偏北450距中心处.上述问题的解决体现了坐标法的思想. 建系时,根据几何特点选择适当的直角坐标系:(1)如果图形有对称中心,可以选对称中心为坐标原点; (2)如果图形有对称轴,可以选择对称轴为坐标轴; (3)使图形上的特殊点尽可能多的在坐标轴上。

变式训练1.一炮弹在某处爆炸,在A 处听到爆炸的时间比在B 处晚2s,已知A 、B 两地相距800米,并且此时的声速为340m/s,求曲线的方程.2.在面积为1的PMN ∆中,2tan ,21tan -=∠=∠MNP PMN ,建立适当的坐标系,求以M ,N 为焦点并过点P 的椭圆方程.课后作业1.若P 是以F 1,F 2为焦点的椭圆x 2a 2+y 2b2=1(a >b >0)上的一点,且PF 1→·PF 2→=0,tan ∠PF 1F 2=12,则此椭圆的离心率为( ). A.53 B.23 C.13 D.122.设F 1、F 2是双曲线x23-y 2=1的两个焦点,P 在双曲线上,当△F 1PF 2的面积为2时,1PF ·2PF 的值为( )A .2B .3C .4D .6 3.若抛物线y 2=2px (p >0)的焦点在圆x 2+y 2+2x -3=0上,则p =( )A.12B .1C .2D .3 4.已知两定点A (1,1),B (-1,-1),动点P 满足P A →·PB →=x22,则点P 的轨迹方程是_________.5.△ABC 的顶点A (-5,0)、B (5,0),△ABC 的内切圆圆心在直线x =3上,则顶点C 的轨迹方程是___________.6. 已知动圆过点(1,0),且与直线x =-1相切,则动圆的圆心的轨迹方程为________.7.已知:圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0. (1)当a 为何值时,直线l 与圆C 相切;(2)当直线l 与圆C 相交于A 、B 两点,且AB =22时,求直线l 的方程.8. 已知长方形ABCD ,22=AB ,BC=1。

人教版高中数学选修4-4《柱坐标系与球坐标系简介》

人教版高中数学选修4-4《柱坐标系与球坐标系简介》

(ρ,θ,z) (z∈ 面 Oxy 上的极坐标,这时点 P 的位置可用有序数组_________
R)表示,这样,我们建立了空间的点与有序数组(ρ,θ,z)之间的一 种对应关系,把建立上述对应关系的坐标系叫做柱坐标系,有序数 P(ρ,θ,z) , ρ≥0,0≤θ 组(ρ, θ, z)叫做点 P 的柱坐标, 记作___________ 其中____________
3.求下列各点的直角坐标:
π π 3π 7π (1)M2,6,3 ;(2)N2, 4 , 6 .
解:(1)由变换公式得: π π 1 x=rsin φcos θ=2sin cos = , 6 3 2 π π 3 y=rsin φsin θ=2sin sin = , 6 3 2 π z=rcos φ=2cos = 3. 6
柱坐标系与 球坐标系简介
四 柱 坐 标 系 与 球 坐 标 系 简 介
理解教材新知
第 一 讲
把握热点考向
考点一
考点二
应用创新演练

柱坐标系与球坐标系简介
1.柱坐标系 (1)定义:建立空间直角坐标系 Oxyz.设 P 是空间任意一点,它 在 Oxy 平面上的射影为 Q,用(ρ,θ)(ρ≥0,0≤θ<2π)表示点 Q 在平
1 故其直角坐标是 2, 3 , 3 . 2
(2)由变换公式得: 3π 7π 6 x=rsin φcos θ=2sin cos =- . 4 6 2 3π 7π 2 y=rsin φsin θ=2sin sin =- . 4 6 2 3π z=rcos φ=2cos =- 2. 4
由直角坐标化为球坐标时, 可设点的球坐标为(r, φ, θ), x=rsin φcos θ, 利用变换公式y=rsin φsin θ, z=rcos φ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一讲 坐标系
四、柱坐标系与球坐标系简介
A 级 基础巩固
一、选择题
1.点M 的直角坐标为(3,1,-2),则它的柱坐标为( )
A.⎝ ⎛⎭
⎪⎫2,π6,2 B.⎝ ⎛⎭⎪⎫2,π3,2 C.⎝ ⎛⎭⎪⎫2,π6,-2 D.⎝ ⎛⎭
⎪⎫2,-π6,-2 解析:ρ=(3)2+12=2,tan θ=
13=33,θ=π6,所以点M 的柱坐标为⎝ ⎛⎭
⎪⎫2,π6,-2. 答案:C
2.已知点M 的球坐标为⎝ ⎛⎭
⎪⎫1,π3,π6,则它的直角坐标为( ) A.⎝ ⎛⎭
⎪⎫1,π3,π6 B.⎝ ⎛⎭⎪⎫34,34,12 C.⎝ ⎛⎭⎪⎫34,34,12 D.⎝ ⎛⎭⎪⎫34,34,32 解析:设点M 的直角坐标为(x ,y ,z),
因为点M 的球坐标为⎝ ⎛⎭
⎪⎫1,π3,π6, 所以x =1·sin π3cos π6=34
, y =1·sin π3sin π6=34
, z =1·cos π3=12
. 所以M 的直角坐标为⎝ ⎛⎭
⎪⎫34,34,12. 答案:B
3.已知点P 的柱坐标为⎝ ⎛⎭⎪⎫2,π4,5,点Q 的球坐标为⎝ ⎛⎭
⎪⎫6,π3,π6,则这两个点在空间直角坐标系中的点的坐标为( )
A .点P(5,1,1),点Q ⎝ ⎛⎭⎪⎫364
,324,62 B .点P(1,1,5),点Q ⎝
⎛⎭⎪⎫364,324,62 C .点P ⎝ ⎛⎭⎪⎫364
,324,62,点Q(1,1,5) D .点P(1,1,5),点Q ⎝ ⎛⎭⎪⎫62
,364,324 答案:B
4.在空间直角坐标系中的点M(x ,y ,z),若它的柱坐标为⎝ ⎛⎭
⎪⎫3,π3,3,则它的球坐标为( )
A.⎝
⎛⎭⎪⎫3,π3,π4 B.⎝ ⎛⎭⎪⎫32,π3,π4 C.⎝ ⎛⎭⎪⎫3,π4,π3 D.⎝ ⎛⎭
⎪⎫32,π4,π3 解析:因为M 点的柱坐标为M ⎝ ⎛⎭
⎪⎫3,π3,3,设点M 的直角坐标为(x ,y ,z). 所以x =3cos π3=32,y =3sin π3=332
,z =3, 所以M 点的直角坐标为⎝ ⎛⎭
⎪⎫32,332,3. 设点M 的球坐标为(γ,φ,θ).
γ是球面的半径,φ为向量OM 在xOy 面上投影到x 正方向夹角,θ为向量OM 与z 轴正方向夹角.
所以r = 94+274+9=32,容易知道φ=π3
,同时结合点M 的直角坐标为⎝ ⎛⎭⎪⎫32,332,3,
可知cos θ=z γ=332=22
, 所以θ=π4
, 所以M 点的球坐标为⎝
⎛⎭⎪⎫32,π3,π4. 答案:B
5.在直角坐标系中,点(2,2,2)关于z 轴的对称点的柱坐标为( )
A.⎝ ⎛⎭
⎪⎫22,3π4,2 B.⎝ ⎛⎭⎪⎫22,π4,2[来源:] C.⎝ ⎛⎭⎪⎫22,5π4,2 D.⎝ ⎛⎭
⎪⎫22,7π4,2 解析:(2,2,2)关于z 轴的对称点为(-2,-2,2),[来源:学科网]
则ρ=(-2)2+(-2)2
=22,tan θ=y x =-2-2=1, 因为点(-2,-2)在平面Oxy 的第三象限内, 所以θ=5π4
, 所以所求柱坐标为⎝ ⎛⎭
⎪⎫22,5π4,2. 答案:C
二、填空题
6.已知点M 的球坐标为⎝
⎛⎭⎪⎫4,π4,3π4,则它的直角坐标为_______,它的柱坐标是________.
答案:(-2,2,22) ⎝ ⎛⎭
⎪⎫22,3π4,22 7.已知在柱坐标系中,点M 的柱坐标为⎝ ⎛⎭
⎪⎫2,2π3,5,且点M 在数轴Oy 上的射影为N ,则|OM|=________,|MN|=________.
解析:设点M 在平面xOy 上的射影为P ,连接PN ,则PN 为线段MN 在平面xOy 上的射影.
因为MN ⊥直线Oy ,MP ⊥平面xOy ,。

相关文档
最新文档