应变片的温度误差及补偿之令狐文艳创作

合集下载

应变片测量温度补偿

应变片测量温度补偿

应变片测量温度补偿在工业生产和科学研究中,温度是一个非常重要的物理量。

准确地测量温度对于保证产品质量、实现工艺优化以及科学研究的准确性至关重要。

然而,由于环境和材料等因素的影响,传统的温度测量方法往往存在一定的误差。

为了减小这些误差,科学家们设计出了应变片测量温度补偿的方法。

应变片是一种能够感知物体形变的传感器,它可以通过测量物体的应变来间接地推断出温度。

应变片的原理非常简单,它利用了材料在受力下发生形变的特性。

当物体受到外力作用时,它会发生形变,而应变片可以感知到这种形变,并将其转化为电信号输出。

通过对应变片输出的电信号进行分析,我们就可以获得物体的应变情况,从而推断出物体的温度。

然而,应变片的测量结果并不总是准确的。

这是因为应变片的输出信号不仅受到温度的影响,还受到其他因素的干扰。

为了排除这些干扰因素对温度测量结果的影响,科学家们引入了温度补偿的概念。

温度补偿是一种通过测量其他参量来消除应变片输出信号中温度引起的误差的方法。

具体而言,科学家们通过同时测量物体的温度和其他参量(如应变、压力等),并建立起它们之间的数学模型。

通过分析这个数学模型,我们可以根据其他参量的测量结果来推断出物体的温度,从而实现温度补偿。

温度补偿的关键在于建立准确的数学模型。

这个数学模型需要考虑到应变片的特性、物体的材料参数以及其他参量的影响。

科学家们通过大量的实验和理论分析,不断改进和完善数学模型,以提高温度补偿的准确性和可靠性。

温度补偿在工业生产和科学研究中有着广泛的应用。

例如,在汽车制造中,应变片测量温度补偿可以用于发动机的温度监测,从而实现对发动机工作状态的准确控制。

在航天器的设计中,应变片测量温度补偿可以用于航天器表面温度的实时监测,以保证航天器的安全运行。

在材料科学研究中,应变片测量温度补偿可以用于材料的热膨胀系数的测量,从而帮助科学家们理解材料的热力学性质。

应变片测量温度补偿是一种有效提高温度测量准确性的方法。

电阻应变片产生温度误差的原因及其补偿方法

电阻应变片产生温度误差的原因及其补偿方法

电阻应变片产生温度误差的原因及其补偿方法
电阻应变片是一种常用的测量温度变化的传感器,但是它也会产生温度误差。

主要原因有两种:一是电阻应变片的自身热漂移,即其热稳定性差;二是电阻应变片的电路噪声,它会影响温度的测量精度。

为了减少电阻应变片产生的温度误差,可以采用补偿方法。

首先,增加电阻应变片的热稳定性,可以通过在电阻应变片的外壳上安装热稳定垫片,或者在电路中加入温度补偿电路来实现。

其次,可以采用抗噪声技术,例如在电路中加入滤波器,以减少电路噪声的影响。

电阻应变片产生温度误差的原因主要有两种:一是电阻应变片的自身热漂移,二是电阻应变片的电路噪声。

为了减少温度误差,可以采用增加热稳定性和抗噪声技术的补偿方法。

温度补偿应变片法

温度补偿应变片法

温度补偿应变片法
温度补偿应变片法是一种利用应变片进行温度测量的方法。

应变片是一种能够测量物体应变的敏感元件,其工作原理是利用材料的电阻变化来反映物体的应变状态。

在温度变化的情况下,应变片也会受到影响,导致温度测量出现误差。

为了解决这个问题,温度补偿应变片法应运而生。

该方法利用两个应变片来对温度进行补偿。

其中一个应变片被安装在需要测量的物体上,另一个应变片则被安装在一个稳定的参考物体上。

通过同时测量物体和参考物体的应变程度,可以计算出物体的实际应变,从而消除温度的影响。

温度补偿应变片法广泛应用于工业生产中的温度测量和控制领域。

它可以有效地提高温度测量的精度和可靠性,从而保证产品质量和生产效率。

- 1 -。

电阻应变片的温度误差补偿

电阻应变片的温度误差补偿

电阻应变片的温度误差补偿电阻应变片是一种广泛应用于温度测量和补偿的传感器。

然而,由于电阻应变片本身的温度特性,会产生一定的温度误差。

为了提高测量的准确性,我们需要进行温度误差补偿。

电阻应变片的温度误差主要来源于两个方面:一是电阻本身的温度系数,二是电阻应变片的热电效应。

在实际应用中,我们需要通过一系列的补偿手段来消除这些误差。

电阻应变片的温度系数是指电阻值随温度变化而变化的程度。

一般来说,电阻的温度系数是一个正值,也就是说,随着温度的升高,电阻值会增大。

这就导致了在实际测量中,当温度变化时,电阻应变片的电阻值也会发生变化,从而影响到测量结果的准确性。

为了消除这种影响,我们可以通过在电路中引入补偿电阻来抵消电阻值的变化。

补偿电阻的值可以根据电阻应变片的温度系数来确定,以实现温度误差的补偿。

电阻应变片还存在着热电效应,即在温度变化时会产生热电势。

这种热电势同样会对测量结果产生影响。

为了消除热电效应带来的误差,我们可以采用热电偶进行补偿。

热电偶是由两种不同材料的导线组成的,当两个导线的温度不一样时,就会产生热电势。

通过将热电偶与电阻应变片连接在一起,可以通过测量热电势来推算出电阻应变片的温度,从而实现误差的补偿。

除了上述两种方法外,还可以采用温度传感器进行补偿。

温度传感器可以直接测量环境的温度,并将测量结果反馈给控制系统。

通过与电阻应变片进行比较,可以得出温度误差,并进行相应的补偿。

常见的温度传感器有热敏电阻、热电阻和热电偶等。

这些传感器在不同的应用场景中具有不同的特点和优势,可以根据实际需求选择合适的传感器进行温度误差补偿。

电阻应变片的温度误差补偿是提高测量准确性的重要手段。

通过引入补偿电阻、热电偶或温度传感器等方法,可以消除电阻应变片的温度误差,使测量结果更加准确可靠。

在实际应用中,我们需要根据具体情况选择合适的补偿手段,并进行相应的校准和调试,以确保温度误差补偿的有效性和可靠性。

只有这样,才能保证电阻应变片在各种温度条件下的准确测量和可靠应用。

应变片温度误差的概念

应变片温度误差的概念

应变片温度误差的概念一、引言应变片是测量物体应力和应变的重要工具,其精度和准确性对于工程设计和科学研究至关重要。

然而,应变片温度误差是影响其精度和准确性的一个重要因素。

本文将详细介绍应变片温度误差的概念,包括其定义、产生原因、计算方法以及解决方案。

二、应变片温度误差的定义应变片温度误差指在测量物体的应力或应变时,由于环境温度的影响导致应变片输出信号与实际值之间存在偏差。

这种偏差可能会导致测量结果不准确或失真。

三、产生原因1. 温度系数不同:不同材料的温度系数不同,当环境温度发生改变时,由于材料本身的热膨胀系数不同,会导致输出信号与实际值之间存在偏差。

2. 热电效应:当环境温度发生改变时,电阻材料内部电子的热运动速率也会发生改变,从而导致电阻值发生改变。

3. 环境湿度:在高湿度环境下,应变片表面可能会出现水膜,从而导致输出信号与实际值之间存在偏差。

四、计算方法应变片温度误差的计算方法一般分为两种:一种是根据材料的温度系数进行计算;另一种是根据实际测量数据进行修正。

1. 根据材料的温度系数进行计算应变片温度误差可以通过以下公式进行计算:Δε=ε0αΔT其中,Δε表示应变片温度误差;ε0表示在参考温度下的应变值;α表示应变片材料的温度系数;ΔT表示环境温度和参考温度之间的差异。

2. 根据实际测量数据进行修正在实际测量中,可以通过对不同温度下的输出信号进行测量,并根据实验数据进行修正。

通常采用线性插值法或多项式拟合法对测量数据进行处理,从而得到更加准确的测量结果。

五、解决方案为了减少应变片温度误差对测量结果的影响,可以采取以下措施:1. 选择合适的材料:选择具有较小热膨胀系数的材料可以减少温度误差的影响。

2. 温度补偿:在测量过程中,可以通过加热或冷却应变片来使其温度与环境温度保持一致,从而减少温度误差的影响。

3. 湿度控制:在高湿度环境下,可以采取加热或通风等方式来控制湿度,从而减少水膜对应变片的影响。

电阻应变式传感器的温度误差及其补偿.

电阻应变式传感器的温度误差及其补偿.

电阻应变式传感器的温度误差及其补偿
一、温度误差及其产生的原因
1.温度变化引起应变片敏感栅电阻变化而产生附加应变
2.试件材料与敏感栅材料的线膨胀系数不同,使应变片产生附加应变
二、温度补偿方法
1.桥路补偿法
结构:补偿应变片粘贴于补偿块上(与试件相同的材料),补偿块不受应力。

电路:测量片与补偿片构成半桥(全桥)差动电路。

原理:温度变化引起的应变片电阻变化为相同方向,通过电桥消除影响。

2.应变片自补偿法
方法一
结构:特殊材料构成应变片。

原理:使温度与线膨胀产生的附加应变相互抵消或减小。

条件:
缺点:局限性大。

一种应变片只能用于一种试件材料。

方法二
结构:用两种不同材料构成应变片。

原理:两种不同材料的温度系数不同,选择适当的材料,使电阻变化减小或消除。

条件:。

电阻应变片测量中温度误差的补偿方法

电阻应变片测量中温度误差的补偿方法
度影响很大 ,本文对温度误差的产生及其补偿方法进行了分析 。
关键词 :电阻应变片测量 温度 误差 补偿方法
电阻应变式传感器是实际工程中应用较
广的传感器之一 ,将电阻式应变片粘贴到各 种弹性敏感元件上 , 可构成测量位移 、加速 度 、力 、力矩 、压力等参数的电阻应变式传感
器 。它的主要优点是 :传感器结构简单 、使用 方便 、性能稳定可靠 、灵敏度高 、测量速度快 、
应变片通常是作为平衡电桥的一个臂测量应变的利用电桥的和差特性电桥的输出反映相邻桥臂电阻值变化相减的结果如图1a所示r1为工作片r2为补偿片工作片ri粘贴在被测工作的需要测量的部位宇卜偿片r2粘贴在一块不受力的与被测试件的相同的材料上这块材料自由地放在试件上或附近如图1bo时工作片r1和补偿片r2的电阻都发生变化但他们的温度变化是相同的即r1二r2rir2因接在相邻的桥臂上所以对电桥输出的影响互相抵消掉从而起到温度补偿作用
不等式
(
- 1) n n
-
0
<ε是能够成立的 ,即数

( - 1) n n
中总存在第 N =
1 ε
,第 N 项以
后的所有项 (n > N) ,有
(
- 1) n n
-
0
<ε。
(上接第 69 页) ) 效果较好 。其缺点是在温度 变化大的情况下 ,很难做到工作片与补偿片 处于温度一致的情况 ,因而影响补偿效果 。
(
- 1) n n
-
0

这句话共有四小段 ,前后两小段时“任意
ε< 0 , ……, 有
(
- 1) n n
-
0
Hale Waihona Puke <ε”说 明 数 列

应变片温度误差的概念产生原因及补偿方法

应变片温度误差的概念产生原因及补偿方法

应变片温度误差的概念产生原因及补偿方法
应变片温度误差指的是由于应变片与被测物体的温度不一致而引起的测量误差。

通常情况下,应变片的灵敏度会随着温度的变化而发生变化,从而导致测量误差的发生。

应变片温度误差产生原因主要有以下几点:
1. 应变片与被测物体温度不一致。

由于被测物体的温度不是恒定的,因此应变片与物体的温度也会发生变化,从而引起测量误差。

2. 应变片材料的温度系数不同。

不同的材料在温度变化时,其应变系数也会发生变化,从而影响应变片的灵敏度。

3. 应变片与电缆的温度不一致。

由于应变片和电缆连接处的温度不一致,其电阻值也会发生变化,从而影响测量精度。

针对应变片温度误差,可以采取以下补偿方法:
1. 温度补偿法。

该方法是通过测量应变片和被测物体的温度,计算出应变片的灵敏度变化,从而进行温度误差的补偿。

2. 电桥平衡法。

该方法是通过调节电桥电阻,使电桥相互平衡,从而消除温度
误差。

3. 自动温度补偿技术。

该技术是将温度传感器集成到应变片中,通过对温度进行实时监测和补偿加以消除温度误差。

以上方法可以有效地解决应变片温度误差的问题,从而提高测量的精度和准确性。

应变片温度误差

应变片温度误差

应变片温度误差应变片温度误差是指应变片所测得的应变值与实际应变值之间的差异,它是由于温度变化引起的。

应变片是一种常用的测量应变的传感器,广泛应用于工程结构、材料实验和力学测试等领域。

在应变测量中,温度对应变片的影响是一个重要的误差来源。

本文将为大家介绍应变片温度误差的原因、影响以及一些常见的解决方法。

首先,应变片温度误差的原因主要有以下几个方面:1. 材料的热膨胀性:随着温度的升高,应变片材料会发生热膨胀或热收缩,从而引起应变片形状发生变化,影响测量结果。

2. 应变片与被测对象之间的传热效应:当被测对象的温度发生变化时,热量会通过接触面传递到应变片上,导致应变片温度发生变化,进而影响测量准确性。

3. 环境温度变化:环境温度的变化会直接影响应变片的温度,从而影响测量结果的准确性。

应变片温度误差的影响主要表现在以下几个方面:1. 测量结果的准确性受到影响:温度变化会引起应变片形状发生变化,进而影响测量的准确性。

如果温度误差过大,将导致测量结果产生较大的误差。

2. 不同温度下的灵敏度变化:应变片的灵敏度随温度变化而变化,导致在不同温度下所测得的应变值不同,不利于数据的比较和分析。

3. 温度漂移问题:温度误差会引起应变片的温度漂移,即在长时间使用过程中,温度误差的累积效应将导致测量结果的偏差越来越大。

为了减小应变片温度误差,可以采取以下一些常见的解决方法:1. 温度补偿技术:通过在应变片的电路中加入温度传感器,实时监测温度的变化,然后利用补偿电路来对测量结果进行修正,从而减小温度误差的影响。

2. 温度控制:在应变测试过程中尽量控制环境温度的变化,可以采用恒温室、风扇等设备来控制环境温度,从而减小应变片温度误差的影响。

3. 选择合适的应变片材料:不同的材料对温度的敏感度不同,可以选择温度稳定性较好的材料来制作应变片,从而减小温度误差对测量结果的影响。

4. 校准和测试:定期对应变片进行校准和测试,及时发现和修正温度误差,提高测量结果的准确性。

应变式传感器的温度误差及补偿方法

应变式传感器的温度误差及补偿方法

应变式传感器的温度误差及补偿方法作者:张宁来源:《价值工程》2012年第04期摘要:分析了应变式传感器在实际应用中由于环境温度变化等因素的影响产生的附加误差,给出了几种温度误差的补偿方法,以提高测量的准确性。

关键词:应变式传感器;温度误差;补偿中图分类号:TS3 文献标识码:A文章编号:1006-4311(2012)04-0011-020引言应变式传感器以电阻应变片为转换元件,应变片粘贴在被测试件表面,由于被测试件的变形使其表面产生应变,从而引起电阻应变片的阻值变化,通过测量电阻的变化即反映了应变或应力的大小。

电阻应变片不仅能够测量应变,而且对其他的物理量,只要能变为应变的相应变化,都可进行测量,如可以测量力、压力、位移、力矩、重量、温度和加速度等物理量。

它结构简单、体积小、测量范围广、频率响应特性好、适合动态和静态测量、使用寿命长、性能稳定可靠,是目前应用最广泛的传感器之一[1-3]。

电阻应变片由于温度变化引起的电阻变化与试件应变所产生的电阻变化几乎有相同的数量级,如果不采取必要的措施克服温度的影响,测量的精度无法保证。

1温度误差产生的原因1.1 电阻温度系数的影响应变片敏感栅的电阻丝阻值随温度变化的关系可用下式表示:Rt=R0(1+?琢0)?驻t(1)式中:Rt——温度为t时的电阻值;R0——温度为t0时的电阻值;?琢0——温度为t0时金属丝的电阻温度系数;Δt——温度变化值,Δt=t-t0。

当温度变化Δt时,电阻丝电阻的变化值为:ΔR=Rt-R0=R0?琢0Δt(2)1.2 试件材料和电阻丝材料的线膨胀系数的影响当试件与电阻丝材料的线膨胀系数相同时,不论环境温度如何变化,电阻丝的变形仍和自由状态一样,不会产生附加变形。

当试件与电阻丝材料的线膨胀系数不同时,由于环境温度的变化,电阻丝会产生附加变形,从而产生附加电阻变化。

设电阻丝和试件在温度为0℃时的长度均为l0,它们的线膨胀系数分别为βs和βg,若两者不粘贴,则它们的长度分别为ls=l0(1+βsΔt),lg=l0(1+βgΔt)(3)当两者粘贴在一起时,电阻丝产生的附加变形Δl、附加应变εβ和附加电阻变化ΔRβ分别为Δl=lg-ls=(βg-βs)l0Δt(4)εβ=■=(βg-βs)Δt,ΔRt=K0R0εβ=K0R0(βg-βs)Δt(5)那么由于温度变化而引起的应变片总电阻相对变化量为■=■=[?琢0+K0(βg-βs)]Δt(6)折合成附加应变量或虚假的应εt,有εt=■=■+(βg-βs)Δt (7)由式(6)和式(7)可知,因环境温度变化而引起的附加电阻的相对变化量,除了与环境温度有关外,还与应变片自身的性能参数(K0,?琢0,βs)以及被测试件线膨胀系数βg有关。

应变片温度补偿

应变片温度补偿

应变片温度补偿
摘要:
1.应变片的概念与作用
2.应变片温度补偿的必要性
3.温度补偿的原理与方法
4.应变片温度补偿的实际应用
5.结论
正文:
一、应变片的概念与作用
应变片是一种用于测量应变的元件,主要由敏感栅等构成。

其工作原理是基于应变效应,即当导体或半导体材料在外界力的作用下产生机械变形时,其电阻值相应发生变化。

应变片广泛应用于各种测量应变的场合,如工程结构、机械设备等。

二、应变片温度补偿的必要性
由于应变片在使用过程中会受到温度的影响,导致电阻值的变化,从而影响测量结果的准确性。

因此,对应变片进行温度补偿是保证测量精度的重要手段。

三、温度补偿的原理与方法
温度补偿的原理是通过测量温度并根据材料的温度系数来计算出温度对电阻值的影响,从而在测量结果中消除这一影响。

常见的温度补偿方法有内置热敏电阻温度补偿、外部热敏电阻温度补偿和数字温度补偿等。

四、应变片温度补偿的实际应用
在实际应用中,应变片温度补偿技术的有效性得到了广泛验证。

例如,在某大型工程结构的应变测量中,通过采用温度补偿技术,成功提高了测量结果的准确性,保证了工程的安全与稳定。

五、结论
综上所述,应变片温度补偿技术对于保证应变测量结果的准确性具有重要意义。

应变片温度补偿

应变片温度补偿

应变片温度补偿摘要:1.应变片的定义与作用2.应变片温度补偿的必要性3.温度补偿的原理与方法4.应变片温度补偿的实际应用5.结论正文:一、应变片的定义与作用应变片是一种由敏感栅等构成的元件,用于测量应变。

其工作原理是基于应变效应,即当导体或半导体材料在外界力的作用下产生机械变形时,其电阻值相应发生变化。

应变片广泛应用于各种测量应变的场景,如力学试验、结构健康监测等。

二、应变片温度补偿的必要性应变片在使用过程中,其电阻值会受到温度的影响而发生改变。

当温度发生变化时,应变片的电阻值也会随之发生变化,这会对应变测量结果产生误差。

为了确保应变测量的准确性,需要对应变片进行温度补偿。

三、温度补偿的原理与方法温度补偿的原理是通过测量温度并根据应变片的温度特性来调整电阻值,从而消除温度对电阻值的影响。

温度补偿的方法主要有两种:1.线性温度补偿:通过设置一个线性的温度- 电阻关系,实现对应变片的温度补偿。

这种方法简单易行,但补偿效果受到温度范围的限制。

2.二次多项式温度补偿:通过设置一个二次多项式的温度- 电阻关系,实现对应变片的温度补偿。

这种方法的补偿效果较好,但计算复杂度较高。

四、应变片温度补偿的实际应用在实际应用中,应变片温度补偿技术的作用至关重要。

例如,在某些结构健康监测系统中,应变片用于测量结构的应变变化,而温度变化会对应变片的电阻值产生影响。

通过采用温度补偿技术,可以有效地消除这种影响,从而提高应变测量的准确性。

五、结论综上所述,应变片温度补偿技术对于确保应变测量的准确性具有重要意义。

应变片的温度误差及补偿范文

应变片的温度误差及补偿范文

应变片的温度误差及补偿1. 应变片的温度误差由于测量现场环境温度的改变而给测量带来的附加误差, 称为应变片的温度误差。

产生应变片温度误差的主要因素有:1) 电阻温度系数的影响敏感栅的电阻丝阻值随温度变化的关系可用下式表示:(1+ α 0 Δ t )(3 - 14)式中: Rt——温度为t ℃时的电阻值;R0——温度为t ℃时的电阻值;α 0——金属丝的电阻温度系数;——温度变化值, Δ t=t -t0 。

当温度变化Δ t 时, 电阻丝电阻的变化值为- R0= R0 α 0 Δ t (3 - 15 )2) 试件材料和电阻丝材料的线膨胀系数的影响当试件与电阻丝材料的线膨胀系数相同时, 不论环境温度如何变化, 电阻丝的变形仍和自由状态一样, 不会产生附加变形。

当试件和电阻丝线膨胀系数不同时, 由于环境温度的变化, 电阻丝会产生附加变形, 从而产生附加电阻。

设电阻丝和试件在温度为0 ℃时的长度均为L0 ,它们的线膨胀系数分别为β s 和β g, 若两者不粘贴, 则它们的长度分别为(1+ β s Δ t )( 3 - 16 )Lg= L0 (1+ β g Δ t )(3 - 17 )当二者粘贴在一起时, 电阻丝产生的附加变形Δ L, 附加应变εβ和附加电阻变化Δ R β分别为Δ L= Lg - Ls = (β g- β s )L0 Δ t (3 - 18)εβ = Δ LL0= (β g- β s )Δ t (3 - 19)R β = K0 R0 εβ = K0 R0( β g- β s) Δ t (3 - 20)由式(3 - 15 )和式( 3 - 20 ), 可得由于温度变化而引起应变片总电阻相对变化量为折合成附加应变量或虚假的应变ε t, 有由式(3 - 21 )和式( 3 - 22 )可知, 因环境温度变化而引起的附加电阻的相对变化量, 除了与环境温度有关外, 还与应变片自身的性能参数(K0 ,α 0 ,β s )以及被测试件线膨胀系数β g 有关。

电阻应变片温度误差及补偿.

电阻应变片温度误差及补偿.

电阻应变片温度误差及补偿1.温度误差因环境温度改变而引起电阻变化的两个主要因素是:(1) 应变片的电阻丝具有一定的温度系数。

(2) 电阻丝材料与测试材料的线膨胀系数不同。

应变片电阻丝的电阻与温度关系为:t R R t R R t ∆+=∆+=αα000)1( (2.24)式中,t R 为温度t 时的电阻值,0R 为温度t 0时的电阻值;t ∆为温度变化值;α为敏感栅材料电阻温度系数。

应变片由于温度变化产生的电阻相对变化为:t R R ∆=∆α01 (2.25)另外,如果敏感栅材料线膨胀系数为与被测构件材料线膨胀系数不同,当环境温度变化时,也将引起应变片的附加应变,这时电阻的变化值为:t K R R g e ∆⋅-⋅=∆)(02ββ (2.26) 式中,e β为被测构件(弹性元件)的线膨胀系数,g β敏感栅(应变丝)材料的线膨胀系数。

因此,由温度变化造成的总电阻变化为:0])([R t K t R g e ∆⋅-⋅+∆=∆ββα (2.27)而电阻的相对变化量为: t K t R R g e ∆⋅-⋅+∆=∆)(0ββα (2.28) 由式(2.28)可知,试件不受外力作用而温度变化时,粘贴在试件表面上的应变片会产生温度效应,它表明应变片输出的大小与应变计敏感栅材料的电阻温度系数α、线膨胀系数g β,以及被测试材料的线膨胀系数e β有关。

2.线路补偿(1) 零点补偿电桥的电阻应变片虽经挑选,但要求四个应变片阻值绝对相等是不可能的。

即使原来阻值相等,经过贴片后将产生变化,这样就使电桥不能满足初使平衡条件,即电桥有一个零位输出(00≠U )。

为了解决这一问题,可以在一对桥臂电阻乘积较小的任一桥臂中串联一个小电阻进行补偿,如图2.8所示。

例如当4231R R R R <时,初始不平衡输出电压0U 为负,这时可在1R 桥臂上接入0R ,使电桥输出达到平衡。

图2.8 零点补偿电路(2) 温度补偿环境温度的变化也会引起电桥的零点漂移。

应变片温度误差

应变片温度误差

应变片温度误差
【实用版】
目录
一、应变片温度误差的概念与产生原因
二、应变片温度误差的影响
三、温度误差的补偿方法
四、总结
正文
一、应变片温度误差的概念与产生原因
应变片温度误差是指在测量过程中,由于环境温度变化导致应变片产生额外的应变,从而使测量结果与真实值之间产生偏差。

温度误差的主要原因包括:敏感栅温度系数、栅丝与试件膨胀系数的差异性以及电阻丝承受应力方向不同等。

二、应变片温度误差的影响
应变片温度误差会对测量结果产生影响,导致测量值与真实值之间的偏差。

温度误差的影响程度与温度变化范围、应变片的材料性能以及测量系统的精度等因素有关。

三、温度误差的补偿方法
为了减小应变片温度误差,通常采用温度补偿方法。

温度补偿方法分为线路补偿法和应变片自补偿法两类。

1.电桥补偿法:是最常用的且效果较好的线路补偿法。

电桥补偿法简单易行,而且能在较大的温度范围内补偿。

但上面的四个条件不一满足,尤其是两个应变片很难处于同一温度场。

2.应变片自补偿法:是利用自身具有温度补偿作用的应变片。

在另一
桥壁用相同的应变片,叫做补偿片,粘贴在相同的材质上,而不受任何力的作用,只是感应温度的变化,来抵消工作片的温度应变。

四、总结
应变片温度误差是在测量过程中由于环境温度变化而产生的一种误差。

为了减小这种误差,可以采用温度补偿方法,如电桥补偿法和应变片自补偿法等。

3.3.3 金属应变片的温度误差与补偿方法

3.3.3 金属应变片的温度误差与补偿方法
α, 线膨胀系数β, 应变灵敏度系数K和初始电阻 值R0 ③ 粘贴补偿片的补偿块材料和粘贴工作片的被测 试件材料必须一样, ④
7
金属应变片
2.应变片自补偿法 使0 k0 (g s ) 成立。 0-敏感栅材料的温度系数; g-被测试件线膨胀系数; s-敏感栅材料线膨胀系数; K0-敏感系数。
3.3.3 金属电阻应变片的温度误差与补偿方法
应变片安装在自由膨胀的试件上,如果环境温度变 化,应变片的电阻也会变化,这种变化叠加在测量 结果中称应变温度误差。
误差产生的原因:
(1)敏感栅本身存在温度系数,当温度改变时,应变 片的标称阻值发生变化;
(2)当试件与敏感栅的热膨胀系数不同时,由于环境 温度的变化,敏感栅会产生附加的变形,从而产生附 加电阻。
Rt R R
R0
R0
0t K (g s )t
t
4
2.补偿方法
(1)线路补偿法
U0 A(R1R4 R3RB )
A—由桥臂电阻和 电源电压决定的常 数;
5
测偿且仅应量工变应作片变应R时B变,粘片工贴承作在受应与应变被变片测。R试1粘件贴材在料被完测全试相件同表的面补上偿,块补上, 初始状态:
8
Ls L0 (1 st)
Lg L0 (1 gt)
附加变形为:
L Lg Ls (g s )L0t
附加应变为:
L L0
(g
s
)t
R K0R0 K0R0 (g s )t
有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)
3
可得,由温度变化而引起应变片总电阻相对变化量 为:
1
a.电阻温度系数的影响
敏感栅的电阻丝阻值随温度变化的关系可用下式表示:

应变片测量温度补偿

应变片测量温度补偿

应变片测量温度补偿引言:在现代科技发展的背景下,温度测量在各个行业中起到至关重要的作用。

然而,由于环境的变化和仪器本身的特性,温度测量结果往往存在一定的误差。

为了提高温度测量的准确性和可靠性,科学家们提出了各种方法和技术来进行温度补偿。

本文将重点介绍一种常见的温度补偿方法——应变片测量温度补偿。

一、应变片测量原理应变片是一种能够感知物体变形的传感器,它的基本原理是根据应变效应来测量温度。

应变片通常由金属或半导体材料制成,其电阻值会随着温度的变化而发生相应的变化。

当材料受到温度变化或外力作用时,应变片会发生变形,从而引起电阻值的变化。

通过测量电阻值的变化,我们可以间接地得知温度的变化。

二、应变片测量温度补偿的原理温度补偿是指通过对温度传感器进行修正,从而得到更加准确的温度测量结果。

在应变片测量中,由于应变片本身的特性,其测量结果会受到温度的影响。

为了消除这种影响,我们需要进行温度补偿。

温度补偿的方法有很多种,其中一种常见的方法是使用一个额外的温度传感器来测量环境温度。

通过将环境温度与应变片测量的温度进行比较,我们可以得到一个补偿系数。

然后,将补偿系数应用到应变片的测量结果上,就可以得到更加准确的温度值。

三、应变片测量温度补偿的应用应变片测量温度补偿广泛应用于各个行业中,特别是对于那些对温度变化要求比较高的领域。

比如,在汽车行业中,引擎温度的测量对于保证发动机的正常运行非常重要。

通过应变片测量温度补偿,可以准确地监测引擎的温度,并及时采取措施,以防止发动机过热。

应变片测量温度补偿还被广泛应用于航空航天、电子设备、化工等领域。

在这些领域中,温度的变化往往会对设备的性能和安全性产生很大的影响。

通过应变片测量温度补偿,可以有效地提高设备的可靠性和稳定性。

四、应变片测量温度补偿的优势相比于其他温度补偿方法,应变片测量温度补偿具有以下几个优势:1. 精度高:应变片测量温度补偿可以实现较高的测量精度,可以满足对温度变化要求较高的应用场景。

应变片测量温度补偿

应变片测量温度补偿

应变片测量温度补偿一、引言在现代工业生产和科学研究中,温度的准确测量对于确保产品质量和研究结果的准确性至关重要。

然而,由于环境因素的干扰和测量设备的不完美性,温度传感器的输出往往会受到一定的误差影响。

为了提高温度测量的准确性,科学家们提出了各种温度补偿方法,其中应变片测量温度补偿技术是一种被广泛应用的方法。

二、应变片测量原理应变片是一种用于测量物体应变的传感器,它的工作原理基于材料的应变与电阻的变化之间的关系。

当应变片受到外力作用时,材料会发生微小的形变,导致电阻值的变化。

通过测量电阻值的变化,可以推断出物体所受到的应变大小。

而物体的应变又与其温度密切相关,因此可以利用应变片来间接测量物体的温度。

三、温度补偿原理在实际应用中,应变片的电阻值除了受到应变的影响外,还会受到温度的影响。

为了准确地测量温度,需要对应变片的电阻值进行温度补偿。

温度补偿的关键在于找到应变片电阻值与温度之间的函数关系,并利用该函数关系对测量结果进行修正。

四、温度补偿方法1. 线性温度补偿线性温度补偿是最简单直观的补偿方法,它假设应变片的电阻值与温度呈线性关系。

根据这个假设,可以通过测量应变片在不同温度下的电阻值,建立电阻值与温度之间的线性函数关系,然后利用该函数对测量结果进行修正。

然而,由于应变片的电阻值与温度之间的关系往往是非线性的,线性温度补偿方法在高温或低温条件下的准确性较差。

2. 非线性温度补偿为了提高温度补偿的准确性,科学家们提出了各种非线性温度补偿方法。

这些方法利用了应变片电阻值与温度之间的非线性关系,通过建立更复杂的函数关系来对测量结果进行修正。

常见的非线性温度补偿方法包括多项式拟合、指数函数拟合和神经网络等。

这些方法在不同的应用场景中具有一定的适用性,可以根据实际需要选择合适的方法进行温度补偿。

五、应变片测量温度补偿的应用应变片测量温度补偿技术在工业自动化控制、航空航天、能源监测等领域得到了广泛应用。

例如,在汽车发动机温度监测中,应变片测量温度补偿技术可以提高温度测量的准确性,确保发动机在正常工作温度范围内运行。

应变片产生温度误差的原因

应变片产生温度误差的原因

应变片产生温度误差的原因应变片是一种用于测量结构物体内应力的传感器,广泛应用于机械、建筑、化工等领域。

然而,在实际应用中,应变片的测量数据可能存在一定的误差,其中温度误差是影响精度较大的因素之一。

本文将从物理机制、设计结构、安装方式等多个方面分析应变片产生温度误差的原因。

1. 物理机制在应变片中,电阻的值会随着温度的变化而发生变化,这种现象被称为温度效应。

由于应变片的电阻材料是金属导体,随着温度的升高,导体中自由电子的平均自由程将缩短,与原子的相互碰撞频率增加,这会导致电阻升高。

相反,温度下降会导致电阻降低。

因此,在不同温度下,应变片的电阻值会不同,产生温度误差。

2. 设计结构在应变片的设计过程中,充分考虑了温度效应的因素,通常采用类负温度系数材料(PTC材料)来抵销电阻变化引起的温度影响。

PTC材料会随着温度升高而导致电阻升高,从而与金属导体产生反作用力,抵消电阻增加引起的温度误差。

此外,应变片的尺寸也会影响温度误差,对于小尺寸的应变片,其表面所处位置与内部温度不同,因此会产生不同程度的温度效应。

3. 安装方式应变片的安装方式也会影响温度误差。

一般情况下,应变片需要粘贴在待测物体的表面,直接暴露在环境中。

因此,环境温度变化也会影响应变片的温度效应,导致误差。

为了减小这种影响,常采用套管式安装方式,将应变片封装在保护壳内,形成一种相对稳定的环境,避免外部温度的干扰。

4. 温度补偿为了消除温度误差的影响,可以采用温度补偿的方法。

温度补偿是利用已知温度下的应变片电阻值与未知温度下的电阻值之间的关系,计算出温度下对应的电阻值,从而找出实际应变值。

常见的温度补偿方法有两点法、三点法、多点法等。

需要注意的是,在温度补偿过程中,应当注意应变片的热导率,避免温度补偿本身就产生较大误差。

综上所述,应变片产生温度误差的原因可能是由于多个因素的影响累加产生的。

为了提高应变片的测量精度,需要在设计、安装、使用等多个环节上进行综合考虑和优化,尽量避免温度误差的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

应变片的温度误差及补偿
令狐文艳
1. 应变片的温度误差
由于测量现场环境温度的改变而给测量带来的附加误差 , 称为应变片的温度误差。

产生应变片温度误差的主要因素有 : 1) 电阻温度系数的影响
敏感栅的电阻丝阻值随温度变化的关系可用下式表示:Rt=R0(1+ α 0 Δ t ) (3 - 14)
式中 : Rt——温度为 t ℃时的电阻值 ;
R0——温度为 t 0 ℃时的电阻值 ;
α 0——金属丝的电阻温度系数 ;
Δt——温度变化值, Δ t=t -t0 。

当温度变化Δ t 时 , 电阻丝电阻的变化值为
ΔRt=Rt-R0=R0α0Δt( 3 - 15 )
2) 试件材料和电阻丝材料的线膨胀系数的影响
当试件与电阻丝材料的线膨胀系数相同时 , 不论环境温度如何变化 , 电阻丝的变形仍和自由状态一样 , 不会产生附加变形。

当试件和电阻丝线膨胀系数不同时 , 由于环境温度的变化 , 电阻丝会产生附加变形 , 从而产生附加电阻。

设电阻丝和试件在温度为 0 ℃时的长度均为 L0 ,它们的线膨胀系数分别为β s 和β g, 若两者不粘贴 , 则它们的长度分别为
Ls=L0(1+ β s Δ t )( 3 - 16 )
Lg= L0 (1+ β g Δ t )( 3 - 17 )
当二者粘贴在一起时 , 电阻丝产生的附加变形Δ L, 附加应变εβ和附加电阻变化Δ R β分别为
Δ L= Lg - Ls = (β g- β s )L0 Δ t (3 - 18)
εβ = Δ LL0= (β g- β s )Δ t (3 - 19)
ΔRβ=K0R0εβ=K0R0(βg-βs)Δt(3-20)
由式( 3 - 15 )和式( 3 - 20 ) , 可得由于温度变化而引起应变片总电阻相对变化量为
折合成附加应变量或虚假的应变ε t, 有
由式( 3 - 21 )和式( 3 - 22 )可知 , 因环境温度变化而引起的附加电阻的相对变化量 , 除了与环境温度有关外 , 还与应变片自身的性能参数( K0 ,α 0 ,β s )以及被测试件线膨胀系数β g 有关。

2. 电阻应变片的温度补偿方法
电阻应变片的温度补偿方法通常有线路补偿法和应变片自补偿两大类。

1) 线路补偿法
电桥补偿是最常用的且效果较好的线路补偿法。

图 3 - 4 所示是电桥补偿法的原理图。

电桥输出电压 Uo 与桥臂参数的关系为
Uo=A( R1 R4- RB R3 )( 3 - 23 )
式中 : A——由桥臂电阻和电源电压决定的常数。

R1—工作应变片; RB—补偿应变片
由上式可知 , 当 R3 和 R4 为常数时 , R1 和 RB 对电桥输出电压 U0 的作用方向相反。

利用这一基本关系可实现对温度的补偿。

测量应变时 , 工作应变片 R1 粘贴在被测试件表面上 , 补偿应变片 RB 粘贴在与被测试件材料完全相同的补偿块上 , 且仅工作应变片承受应变。

如图 3 - 4 所示。

当被测试件不承受应变时 , R1 和 RB 又处于同一环境温度为t ℃的温度场中 , 调整电桥参数,使之达到平衡 , 有Uo=A( R1R4-RBR3 ) =0 ( 3 – 2 )
图 3-4 电桥补偿法
工程上 , 一般按 R1 = R2 = R3 = R4 选取桥臂电阻。

当温度升高或降低Δ t = t-t0 时 , 两个应变片的因温度而引起的电阻变化量相等 , 电桥仍处于平衡状态 , 即
Uo=A[(R1+ Δ R1t ) R4-(RB+ Δ RBt)R3 ] =0 (3 - 25) 若此时被测试件有应变ε的作用 , 则工作应变片电阻 R1 又有新的增量Δ R1=R1K ε , 而补偿片因不承受应变 , 故不产生新的增量 , 此时电桥输出电压为
Uo=AR1R4Kε( 3 - 26 )由上式可知 , 电桥的输出电压 Uo 仅与被测试件的应变ε有关 , 而与环境温度无关。

应当指出 , 若实现完全补偿 , 上述分析过程必须满足四个条件 :
①在应变片工作过程中 , 保证 R3 =R4 。

② R1 和 RB 两个应变片应具有相同的电阻温度系数α , 线膨胀系数β , 应变灵敏度系数 K 和初始电阻值 R0 。

③粘贴补偿片的补偿块材料和粘贴工作片的被测试件材料必须一样 , 两者线膨胀系数相同。

④两应变片应处于同一温度场。

2) 应变片的自补偿法
这种温度补偿法是利用自身具有温度补偿作用的应变片 , 称之为温度自补偿应变片。

温度自补偿应变片的工作原理可由式( 3 - 21 )得出 , 要实现温度自补偿 , 必须有
α0=-K0(β g- β s )( 3 - 27 )
上式表明 , 当被测试件的线膨胀系数β g 已知时 , 如果合理选择敏感栅材料 , 即其电阻温度系数α 0 、灵敏系数 K0 和线膨胀系数β s, 使式( 3 - 27 )成立 , 则不论温度如何变化 , 均有Δ Rt/ R0=0, 从而达到温度自补偿的目的。

一、电阻应变片的种类
电阻应变片品种繁多 , 形式多样。

但常用的应变片可分为两类 : 金属电阻应变片和半导体电阻应变片。

金属应变片由敏感栅、基片、覆盖层和引线等部分组成 , 如图 3 - 2 所示。

敏感栅是应变片的核心部分 , 它粘贴在绝缘的基片上 , 其上再粘贴起保护作用的覆盖层 , 两端焊接引出导线。

金属电阻应变片的敏感栅有丝式、箔式和薄膜式三种。

图 3-2 金属电阻应变片的结构
箔式应变片是利用光刻、腐蚀等工艺制成的一种很薄的金属箔栅 , 其厚度一般在 0.003 ~ 0.01mm 。

其优点是散热条件
好 , 允许通过的电流较大 , 可制成各种所需的形状 , 便于批量生产。

薄膜应变片是采用真空蒸发或真空沉淀等方法在薄的绝缘基片上形成0.1 μ m 以下的金属电阻薄膜的敏感栅 , 最后再加上保护层。

它的优点是应变灵敏度系数大 , 允许电流密度大 , 工作范围广。

半导体应变片是用半导体材料制成的 , 其工作原理是基于半导体材料的压阻效应。

所谓压阻效应,是指半导体材料在某一轴向受外力作用时 , 其电阻率ρ发生变化的现象。

半导体应变片受轴向力作用时 , 其电阻相对变化为
( 3-10 )
式中Δρ / ρ为半导体应变片的电阻率相对变化量 , 其值与半导体敏感元件在轴向所受的应变力关系为
( 3-11 )
式中: π ——半导体材料的压阻系数。

将式( 3 - 11 )代入式( 3 - 10 )中得
( 3-12 )
实验证明, π E 比(1+2 μ)大上百倍 , 所以( 1+2 μ)可以忽略 , 因而半导体应变片的灵敏系数为
Ks=( 3-13 )
半导体应变片突出优点是灵敏度高 , 比金属丝式高 50 ~ 80 倍 , 尺寸小 , 横向效应小 , 动态响应好。

但它有温度系数大 , 应变时非线性比较严重等缺点。

相关文档
最新文档