小学六年级(上册)数学总复习知识点及典型例题
六年级上专题复习题及知识归纳(分数乘除、比、百分数应用、简便运算、解方程)
一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。
2、求一个数是另一个数的百分之几用一个数除以另一个数,结果写为百分数形式。
3、已知单位“1”的量(用乘法),求单位“1”的百分之几是多少,数量关系式和分数乘法解决问题中的关系式相同:(1)百分率前是“的”:单位“1”的量×百分率=百分率对应量(2百分率前是“多或少”的数量关系:单位“1”的量×(1±百分率)=百分率对应量4、未知单位“1”的量(用除法),已知单位“1”的百分之几是多少,求单位“1”。
方法与分数的方法相同。
解法:(1)方程:根据数量关系式设未知量为X,用方程解答。
(2)算术(用除法):百分率对应量÷对应百分率= 单位“1”的量5、求一个数比另一个数多(少)百分之几的方法与分数的方法相同。
只是结果要写为百分数形式。
看百分率前有没有比多或比少的问题;百分率前是“多或少”的关系式:(比少):具体量÷(1-百分率)= 单位“1”的量;(比多):具体量÷(1+百分率)= 单位“1”的量6、求一个数比另一个数多百分之几的方法:方法与分数的方法相同。
用两个数的相差量÷单位“1”的量=百分之几即①求一个数比另一个数多百分之几:用(大数–小数)÷另一个数(比那个数就除以那个数),结果写为百分数形式。
②求一个数比另一个数少几分之几:用(大数–小数)÷另一个数(比那个数就除以那个数),结果写为百分数形式。
说明:多百分之几不等于少百分之几,因为单位一不同。
7、如果甲比乙多或少a﹪,求乙比甲少或多百分之几,用a﹪÷(1±a﹪)8、求价格先降a﹪又上升a﹪后的价格:1×(1-a﹪)×(1+a ﹪)(假设原来的价格为“1”。
求变化幅度(求降价后的价格是涨价后价格的百分之几)用1-降价后又上升的百分率。
人教版小学六年级数学知识点归纳梳理及总复习归类讲解及训练中(含答案)附公式大全
5
2. 圆 弧 和 弦 :圆 上 任 意 两 点 间 的 部 分 叫 做 圆 弧 ,简 称 弧 。大 于 半 圆 的 弧 称 为 优 弧 ,小 于 半 圆 的 弧 称 为 劣 弧 ,半 圆 既 不 是 优 弧 ,也 不 是 劣 弧 。连 接 圆 上 任 意 两 点 的 线 段 叫 做 弦。圆中最长的弦为直径。 3. 圆 心 角 和 圆 周 角 :顶 点 在 圆 心 上 的 角 叫 做 圆 心 角 。顶 点 在 圆 周 上 ,且 它 的 两 边 分 别 与圆有另一个交点的角叫做圆周角。 4. 内 心 和 外 心 :和 三 角 形 三 边 都 相 切 的 圆 叫 做 这 个 三 角 形 的 内 切 圆 ,其 圆 心 称 为 内 心 。 过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。 5. 扇 形 :在 圆 上 ,由 两 条 半 径 和 一 段 弧 围 成 的 图 形 叫 做 扇 形 。圆 锥 侧 面 展 开 图 是 一 个 扇形。这个扇形的半径称为圆锥的母线。 6.圆 的 种 类 : ( 1) 整 体 圆 形 , ( 2) 弧 形 圆 , ( 3) 扁 圆 , ( 4) 椭 形 圆 , ( 5) 缠 丝 圆 ,( 6)螺 旋 圆 ,( 7)圆 中 圆 、圆 外 圆 ,( 8)重 圆 ,( 9)横 圆 ,( 10 )竖 圆 ,( 11 ) 斜圆。 7.圆和其他图形的位置关系:圆和点的位置关系:以点 P 与圆 O 的为例(设 P 是一点, 则 PO 是点到圆心的距离),P 在⊙O 外,PO>r;P 在⊙O 上,PO=r;P 在⊙O 内,0≤ PO<r。 8.百分数的由来
比的意义是两个数的除又叫做两个数的比,而比例的意义是表示两个比相等的式 子是叫做比例。比是表示两个数相除,有两项;比例是一个等式,表示两个比相等, 有四项。因此,比和比例的意义也有所不同。 而且,比号没有括号的含义 而另一种 形式,分数有括号的含义! 19.比和比例的联系:
六年级数学上册知识点汇总及例题解析
本资料分为简单概括版(上半部分)和重点精析版(下半部分)第一单元位置(1)用数据表示位置的方法:先横着数,看在第几行,这个数就是数据中的第一个数;再竖着数,看在第几列,这个数就是数据中的第二个数。
(第几行,第几列)第二单元分数乘法(1)分数乘以整数:整数与分子的乘积作分子,分母不变。
(能约分的可以先约分,再计算)(2)分数乘以分数:用分子乘以分子的积作分子,分母乘以分母的积做分子。
(能约分的可以先约分,再计算)(3)分数乘加、乘减混合运算顺序:Ⅰ、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
Ⅱ、在没有括号的算式里,有乘、除法和加、减法,要先算乘、除法后算加、减法。
Ⅲ、在有括号的算式里,要先算括号里面的,再算括号外面的。
(4)分数乘法运算定律⒈交换两个因数的位置,积不变,这叫做乘法交换律。
a×b=b×a⒉先乘前两个数,再乘第三个数;或者先乘后两个数,再乘第一个数,这叫做乘法结合律。
(a×b)×c=a×( b×c)⒊两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加,这叫做乘法分配律。
(a+b)×c=a×c+b×c⒋两个数的差与一个数相乘,可以先把它们与这个数分别相乘,再相减,这叫做乘法分配律。
(a-b)×c=a×c-b×c5.. 25×4=100 125×8=1000 25×8=200 125×4=500(5) 规律(比较大小要用到):1、一个数(0除外)乘以大于1的数,积大于这个数;2、一个数(0除外)乘以小于1的数(0除外),积小于这个数;3、一个数(0除外)乘以1,积等于这个数。
第一个数(6)谁是谁的几分之几,就用第一个数除以第二个数,用分数表示就是第二个数。
(7)求一个数的几倍,一个数×几倍;求一个数的几分之几是多少,一个数×几分之几。
小学六年级(上册)数学总复习知识点典型例题
小学六年级上册数学复习资料第一单元:位置与方向(一) 用数对表示位置 女口:第三列第二行表示为(3, 2)。
一般情况下表示为(列,行)位置与方向(二) 用方向和距离表示位置同一方向的不同描述:小明在小华的东偏北 30°方向上,距离15米。
也可以说成:小明在小华的 ___________________ 方向上,距离。
相对位置:小明在小华的东偏北 30°方向上,距离15米。
小华在小明的 _______________ 方向上,住 ___________ 。
第二单元:分数乘法1、 分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
55 5 (如:- >4表示4个—是多少或—的4倍是多少。
)7 7 7 2、 一个数乘分数的意义就是求这个数的几分之几是多少。
3 3 5 2 5 2 (如: 6>—表示6的是多少;>一表示一的一是多少。
)556 56 5分数乘法的计算法则:分子相乘的积作分子,分母相乘的积作分母。
(能约分的先约分)小于1的数,积小于这个数,等于1的数,积等于这个数,大于1的数,积大于这个数。
1的倒数是1, 0没有倒数。
(1) 8 + 8+ 8 + 8 =()>()=()5 2 (2)12 个 6 是( );24 的 3 是( )。
1 、(3) 边长分米的正方形的周长是( )分米。
第三单元:分数除法1、 分数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中的一个因数,求 另一个因数的运算。
2、 分数除法的计算法则:被除数除以除数( 0除外)等于被除数乘除数的倒数。
13、 一个数除以真分数,商大于这个数(如:4-> 4);23一个数除以大于1的假分数,商小于这个数 (如: 3 —< 3)。
24、 两个数相除又叫做两个数的比。
在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
人教版六年级数学上册(全)复习知识点【精品】
小学数学六年级上册期末复习知识点归纳1.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
2.分数乘法的计算法则分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。
但分子分母不能为零.。
3.分数乘法意义分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
一个数与分数相乘,可以看作是求这个数的几分之几是多少。
4.分数乘整数:数形结合、转化化归5.倒数:乘积是1的两个数叫做互为倒数。
6.分数的倒数找一个分数的倒数,例如3/4 把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/3。
3/4是4/3的倒数,也可以说4/3是3/4的倒数。
7.整数的倒数找一个整数的倒数,例如12,把12化成分数,即12/1 ,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是1/12 ,12是1/12的倒数。
8.小数的倒数普通算法:找一个小数的倒数,例如0.25 ,把0.25化成分数,即1/4 ,再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。
则是4/19.用1计算法:也可以用1去除以这个数,例如0.25 ,1/0.25等于4 ,所以0.25的倒数4 ,因为乘积是1的两个数互为倒数。
分数、整数也都使用这种规律。
10.分数除法:分数除法是分数乘法的逆运算。
11.分数除法计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
12.分数除法的意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
13.分数除法应用题:先找单位1。
单位1已知,求部分量或对应分率用乘法,求单位1用除法。
14.比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。
北师大版小学六年级数学上册总复习整理及试题(1)
北师大版小学六年级数学上册总复习整理及试题(1)第一单元圆1、圆心决定圆的位置,半径(直径)决定圆的大小。
在同圆或等圆中,所有的直径都相等,所有的半径都相等,直径是半径的2倍。
一个圆有无数条半径,有无数条直径。
2、连接圆心和圆上任意一点的线段叫半径,经过圆心并且两端都在圆上的线段叫直径。
3、圆是轴对称图形,有无数条对称轴,任意一条直径所在的直线都是圆的对称轴。
圆环也有无数条对称轴。
4、一个圆的周长总是它直径的兀倍,也就是3倍多一点,这就是圆周率。
圆周率是一个固定不变的数,不会随着圆的大小而改变,是一个无限不循环小数,一般取其近似值 3.14。
圆的周长与直径的比是兀:1,比值是兀。
我国古代数学家祖冲之首先算出圆周率的值在 3.1415926和 3.1415927之间。
5、周长相等的长方形、正方形和圆,圆的面积最大,正方形面积次之,长方形面积最小。
6、圆的周长=圆周率×直径 C=兀D D= C÷兀圆的面积=圆周率×半径2 S=兀r27、圆环的面积=圆周率×(大圆半径2-小圆半径2) S环=兀(R2-r2)8、圆的半径扩大a倍,则直径扩大a倍,周长也扩大a倍,则面积扩大a2倍。
周长相等的圆,则其半径、直径、面积一定相等,反之则不等。
圆典型题例1、一只挂钟的时针长4厘米,分针长5厘米,从上午8点到11点,分针针尖走过的路线长是多少厘米?时针扫过的面积是多少?2、在一张长10厘米宽8厘米的长方形内剪一个最大的圆,这个圆的面积是多少?3、在一个长30厘米,宽20厘米的长方形内画一个最大的半圆,这个半圆的周长和面积各是多少?4、在一个直径为8米的圆形花坛外修一条宽2米的环形小路,小路的面积是多少平方米?5、用37.68米的铁丝围成一个圆,这个圆的面积是多少平方米?6、一条线长15.7米,正好在一个圆形线圈上绕100圈,这个线圈的直径是多少?7、在一个周长80厘米的正方形内画一个最大的圆,这个圆的面积是多少?8、一张可折叠的圆桌,直径是1.2米,折叠后就成了正方形,折叠后的桌面面积是多少平方米?9、在一个直径4分米的半圆形钢板上取一个最大的三角形,这个三角形的面积是多少平方分米?10、甜甜骑自行车上学,自行车的外胎直径是60厘米,自行车每分钟转80圈,她从家骑车12分钟到学校,求学校和她家的距离。
六年级数学总复习知识点整理(完整版)
六年级数学总复习知识点整理(完整版)很快就小升初了,数学应该怎样复习呢?小学数学下面整理了六年级数学总复习知识点整理,供你参考。
六年级数学总复习知识点整理第一章数和数的运算一概念1 整数的意义自然数和0都是整数。
2 自然数我们在数物体的时候,用来表示物体个数的1,2,3 叫做自然数。
一个物体也没有,用0表示。
0也是自然数。
3计数单位一(个)、十、百、千、万、十万、百万、千万、亿都是计数单位。
每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。
4 数位计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5数的整除整数a除以整数b(b 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。
如果数a能被数b(b 0)整除,a就叫做b的倍数,b就叫做a 的约数(或a的因数)。
倍数和约数是相互依存的。
因为35能被7整除,所以35是7的倍数,7是35的约数。
一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。
例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。
一个数的倍数的个数是无限的,其中最小的倍数是它本身。
3的倍数有:3、6、9、12 其中最小的倍数是3 ,没有最大的倍数。
个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。
个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。
一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。
一个数各位数上的和能被9整除,这个数就能被9整除。
能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。
例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。
小学六年级上册数学知识点总结归纳(绝对经典)
小学六年级上册数学知识点总结归纳第一单元位置1、行和列的意义:竖排叫做列,横排叫做行。
2、数对可以表示物体的位置,也可以确定物体的位置。
3、数对表示位置的方法:先表示列,再表示行。
用括号把代表列和行的数字或字母括起来,再用逗号隔开。
例如:(7,9)表示第七列第九行。
4、两个数对,前一个数相同,说明它们所表示物体位置在同一列上。
如:(2,4)和(2,7)都在第2列上。
5、两个数对,后一个数相同,说明它们所表示物体位置在同一行上。
如:(3,6)和(1,6)都在第6行上。
6、物体向左、右平移,行数不变,列数减去或加上平移的各数。
物体向上、下平移,列数不变,行数减去或加上平移的各数。
第二单元分数乘法(一)、分数乘法的意义。
1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。
例如:512×6,表示:6个512相加是多少,还表示512的6倍是多少。
2、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。
例如:6×512,表示:6的512是多少。
2 7×512,表示:27的512是多少。
(二)、分数乘法的计算法则:1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。
2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。
3、注意:能约分的先约分,然后再乘,得数必须是最简分数。
当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
(三)、分数大小的比较:1、一个数(0除外)乘以一个真分数,所得的积小于它本身。
一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。
一个数(0除外)乘以一个带分数,所得的积大于它本身。
2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。
(四)、解决实际问题。
1分数应用题一般解题步行骤。
(1)找出含有分率的关键句。
六年级上册数学知识点梳理及典型题(经典)
六年级上册数学知识点梳理及典型题(经典)2、找单位“1”:在分率句中分率的前面; 或“占”、“是”、“比”的后面3、求一个数的几倍:一个数×几倍;求一个数的几分之几是多少:一个数×几分之几4、写数量关系式技巧:(1)“的”相当于“×”“占”、“是”、“比”相当于“ ÷ ”(2)分率前是“的”:单位“1”的量×分率=分率对应量(3)分率前是“多或少”的意思: 单位“1”的量×(分率)=分率对应量●典型题:看图列式计算。
解决问题。
1、甲乙两地相距420千米,一辆汽车行驶了全程的75,行驶了多少千米?2、一个果园占地20公顷,其中的52种苹果树,41种梨树,苹果树和梨树各种了多少公顷? 3、某鞋店进来皮鞋600双。
第一周卖出总数的51,第二周卖出总数的83。
⑴两周一共卖出总数的几分之几?⑵两周一共卖出多少双?⑶还剩多少双?4、六年级同学给灾区的小朋友捐款。
六一班捐了500元,六二班捐的是六一班的54,六三班捐的是六二班的89。
六三班捐款多少元?5、一件西服原价180元,现在的价格比原来降低了51,现在的价格是多少元?6、希望小学三年级有学生216人,四年级人数比三年级多92,四年级有学生多少人?第二单元位置与方向课前回顾:(1)、用方位词描述物体的大体的位置。
(2)、路程、时间、速度之间的关系。
(3)、画角时注意事项。
概念整理:(1)、位置是相对的,要指出一个物体的位置,必须以另一个物体为参照物。
以谁为参照物,就以谁为观测点。
(2)、东偏北30度,也可以说成北偏东60度,但在生活中一般先说与物体所在方向离得较近(夹角较小)的方位。
(3)、主方向。
例如“北偏西”中“北”定为主方向(4)、确定一个物体的准确位置,只知道方向或距离是不可以的,要同时知道这两个条件才行。
(5)、A 在B 的某个方向,B 在A 的相反方向。
(6)、观测点转换。
从一个地点到另一个地点,中间要经过一个或多个地点,那么观测点也依次转换。
六年级数学上册总复习知识点和典型例题
一、分数乘法(一)、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。
(整数和分母约分)5 × 23= 18 × 163= 45 × 10 % = 2 % × 12 % =6 ×65 =2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。
53 × 23 = 74 × 167 = 1312 × 1312 = 94 × 43 = 232 × 158= 3、分数与小数相乘:先把小数换成分数,转化为分数与分数的乘法。
0.14 × 213 = 0.25 × 34 = 0.125 × 38 = 0.36 × 811 = 0.39 × 2625=3、为了计算简便,能约分的要先约分,再计算。
注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
1的数,积大于这个数。
一个数(01的数,积小于这个数。
1的数,积等于这个数。
53×23 ○23 53×45○53 85×85○85 1312×1 ○1312 94 ○94×65(三)、分数混合运算的运算顺序和整数的运算顺序相同。
(四)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。
乘法交换律:a ×b=b ×a乘法结合律:(a ×b)×c=a ×(b ×c)乘法分配律:(a+b )×c=a ×c+b ×c a ×c+b ×c=(a+b )×c 48)672145( ⨯-+ 2112117548⨯⨯⨯ 852368 ⨯ 511913541913⨯+⨯二、倒数1、倒数的意义: 乘积是1的两个数互为倒数。
新课标小学六年级数学上册知识点总结及复习要点
新课标小学六年级数学上册知识点总结及复习要点一、数与代数(一)分数与百分数1分数的性质定义:分数表示部分与整体的关系,其值由分子和分母共同决定。
性质:分子相同时,分母越大,分数越小;分母相同时,分子越大,分数越大。
此外,分数还有等值性质,即分子、分母可以同时乘以或除以同一个非零数,分数值不变。
例子:比较分数3/4和6/8。
虽然它们的分子和分母都不同,但通过等值性质,我们可以发现3/4=6/8,因为它们都可以简化为3/4。
2分数的运算加减法则:同分母的分数相加减,分母不变,分子相加减;异分母的分数相加减,先通分,再按同分母分数相加减的法则进行计算。
乘除法则:分数乘以整数,分母不变,分子乘以整数;分数乘分数,用分子乘分子,分母乘分母;分数除以整数(0除外),等于分数乘以这个整数的倒数;分数除以分数,等于被除数乘以除数的倒数。
例子:计算1/2 + 1/3。
首先通分,得到3/6 + 2/6 = 5/6。
3百分数的理解与应用定义:百分数是表示一个数是另一个数的百分之几的数,也叫百分率或百分比。
性质:百分数可以方便地用于比较不同量纲的数据,如比较不同产品的合格率、增长率等。
转换:百分数可以方便地转换为小数和分数,反之亦然。
例如,25%等于0.25或1/4。
例子:某班有50名学生,其中40名通过了数学考试。
求该班的通过率。
根据百分数的定义,通过率= (通过的学生数/ 总学生数) ×100% = (40 / 50) ×100% = 80%。
(二)整数与小数1整数的性质定义:整数是包括正整数、零和负整数的数集。
运算:整数可以进行加、减、乘、除等基本运算,遵循相应的运算法则。
例子:计算3 + 5 - 2 = 6。
2小数的性质定义:小数是表示分数的一种形式,由整数部分和小数部分组成。
性质:小数可以表示分数和非整数的有理数,具有十进制的特点。
运算:小数可以进行加、减、乘、除等基本运算,需要注意小数点对齐和进位或退位。
小学六年级上册数学期末复习知识点(精选21篇)
小学六年级上册数学期末复习知识点(精选21篇)1.小学六年级上册数学期末复习知识点篇一分数的四则混合运算:与整数的四则混合运算的运算顺序相同。
①连除:同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据“除以几个数,等于乘上这几个数的积”的简便方法计算。
加、减法为一级运算,乘、除法为二级运算。
②混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面。
(a±b)÷c=a÷c±b÷c 2.小学六年级上册数学期末复习知识点篇二a、被除数÷除数=被除数×除数的倒数。
b、除法转化成乘法时,被除数一定不能变,“÷”变成“×”,除数变成它的倒数。
c、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算。
d、被除数与商的变化规律:①除以大于1的数,商小于被除数:a÷b=c当b>1时,c②除以小于1的数,商大于被除数:a÷b=c当ba(a≠0b≠0)③除以等于1的数,商等于被除数:a÷b=c当b=1时,c=a3.小学六年级上册数学期末复习知识点篇三 1.比值:比的前项除以比的后项,所得的商就叫比值。
注:比值是一个数,可以是整数、分数、小数,不带单位名称。
2.比的基本性质:比的前项和后项同时乘或除以一个相同的数(0除外),比值不变。
3.最简整数比:比的前项和后项是互质数。
也就是比的前项和后项除了1意外没有其它公因数。
4.化简:运用比的基本性质对比进行化简,方法:先把比的前、后项变成整数,再除以它们的公因数。
注:化简比和求比值是不同的两个概念【意义不同,方法不同,结果不同】4.小学六年级上册数学期末复习知识点篇四1、求一个数是另一个数的几分之几是多少:用一个数除以另一个数,结果写为分数形式。
例如:男生有20人,女生有15人,女生人数占男生人数的几分之几。
六年级(上册)数学1_4单元知识点总结
第一讲第一单元圆一、公式二、易错点1.描述直径、半径的长度关系时,要先说明是在同一个圆内。
2.直径不是圆的对称轴,直径所在的直线才是圆的对称轴。
3.π是固定不变的,所有的圆的圆周率都是一样的。
4.π是无限不循环小数,常取近似值3.14,即π≈3.14,所以不能说π=3.14。
5.周长和面积的单位不同,所以不能比较大小。
三、补充知识点1.在同一个圆里,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。
而面积扩大或缩小以上倍数的平方倍。
例如:在同一个圆里,半径扩大4倍,那么直径和周长就都扩大4倍,而面积扩大42=16倍。
2.两个圆的半径比等于直径比等于周长比,而面积比等于以上比的平方。
例如:两个圆的半径比是2:3,那么这两个圆的直径比和周长比都是2:3,而面积比是22:32=4:9 3.圆的半径扩大(缩小)几倍,直径就扩大(缩小)几倍,周长也扩大(缩小)几倍,面积就扩大(缩小)几的平方倍,但圆周率永远不变。
4. 周长相等时,圆的面积最大;面积相等时,圆的周长最小。
考试一般考正方形、长方形和圆:①它们周长相等时,圆的面积最大,正方形面积居中,长方形的面积最小;②它们面积相等时,长方形周长最大,正方形周长居中,圆的周长最小。
5.一个环形,外圆的半径是R,内圆的半径是r,它的面积是:S=πR²-πr²或S=π(R²-r²)。
(其中R=r+环的宽度.)6.在长方形中画最大的圆,则长方形的宽= 圆的直径7.在正方形中画最大的圆,则正方形的边长= 圆的直径8.2πr或πdπr πr+d典型例题:一、填空1.在同一个圆内可以画()条直径。
如果用圆规画一个直径是10厘米的圆,圆规两脚间的距离应该是()厘米。
2.圆的位置由_______决定,圆的大小由_______决定。
3.如图1,正方形的边长为8cm,圆的半径是()cm,周长是()cm,如图2,长方形的宽是2cm,半圆的直径是()cm,面积是()cm².,小圆的面积是大圆面积的_______。
小学六年级数学系统复习知识点及练习题
小学数学系统复习知识要点与习题小升初数学专用资料第一部分分数与代数一、数的认识一、自然数1、表示物体个数的一类数叫做自然数。
2、0也是自然数。
3、基数:表示物体个数。
序数:表示物体的顺序。
4、0是最小的自然数,没有最大的自然数。
5、每一个自然数(0除外)都是由若干个“1”组成,所以“1”是自然数的单位。
二、整数1、自然数是整数的一部分,整数还包括负整数。
2、数轴-4 -3 -2 -1 1 2 3 4负整数正整数自然数整数3、整数的个数是无限的,没有最大的也没有最小的。
最大的负整数是 -1 1 是最小的正整数4、负数5、数位顺序表:数位……十亿位亿位千万位百万位十万位万位千位百位十位个位数级……亿级万级个级计数单位……十亿亿千万百万十万万千百十个例如:十万位万位千位百位十位个位3 54 2 0 13个十万5个万4个千2个百0个十1个一练习(1)一个数由3个百万,5个一万,7个百组成,这个数是()。
(2) 一个数亿位上是9,十万位上是5,万位和千位都是3,其余各位都是0,这个数是()。
6、整数读法方法:从高位开始,一级一级的读。
步骤:分级——按级读数0的读法:数中间的0要读,末尾的0不读。
练习读数:200345000()770700 ()800930400 ()7、整数的写法。
方法:从高位开始,一级一级的写。
练习写数:三百七十亿二千零九十五万零五百()五亿零五百五十八万零五百二十()八亿零九三万零四百()8、整数的大小比较(1)负整数< 0 <正整数(2)正整数的大小比较数位多的数比较大,数位一样的数从高位开始比较。
(3)负整数的大小比较数字越大这个数就越小,数字越小这个数就越大。
练习比较大小37456 ○ 37098 -785 ○-1 -9 ○ 39、数的改写(1)准确数和近似数(2)取近似数的方法四舍五入法去尾法进一法(3)改写成用“亿”、“万”做单位的数。
练习先填空,再判断下面的数哪些是准确数,哪些是近似数。
人教版六年级上册数学期末专题复习(知识要点、易错易混题目、按类型整理)
六年级上册数学期末复习(概念与题型)一、分数、百分数应用题解题公式单位“1” 已知: 单位“1” × 对应分率 = 对应数量求单位“1”或单位“1”未知:对应数量 ÷ 对应分率 = 单位“1” 1、求一个数是另一个数的几分之几(或百分之几)公式: 一个数 ÷ 另一个数 = 一个数是另一个数的几分之几(百分之几) 2、求一个数比另一个数多几分之几(或百分之几)公式:多的数量÷单位“1” = 一个数比另一个数多几分之几(百分之几) 3、求一个数比另一个数少几分之几(或百分之几)公式:少的数量÷单位“1” = 一个数比另一个数少几分之几(百分之几) 二、熟练掌握:百分数和分数、小数的互化,熟练背诵:1 2 = 0.5 = 50% 1 4 = 0.25=25% 34 = 0.75 = 75% 1 5 = 0.2 = 20% 2 5 = 0.4 = 40% 35 = 0.6 = 60% 4 5 = 0.8 = 80% 1 8 =0.125=12.5% 38 =0.375=37.5% 5 8 =0.625=62.5% 7 8 =0.875=87.5% 1 10 =0.1=10% 1 20 =0.05=5% 1 25 =0.04=4% 150 =0.02=2% 1100=0.01=1%三、基本题型:(1)一条路全长1200米,第一天修了全长的 15 ,第二天修了全长的 14 ,还剩几分之没有修?(2)果园里有桃树200棵,梨树比桃树少 15 ,果园里有梨树多少棵?(3)果园里有桃树200棵,比梨树少 15 ,果园里有梨树多少棵?(4)一件上衣,打八折后是72元,这件上衣原价多少元?(5)一条路,第一天修了全长的 1 5 ,第二天修了全长的 14 ,第一天比第二天少修60米,这条路全长多少米?(6)五月份比六月份节约用水20吨,五月份用水80吨。
五月份比六月份用水节约百分之几?(7)一杯盐水,盐10克,水90克,这杯盐水的含盐率。
六年级数学总复习知识归纳与整理(小学六年全部知识点)
小学数学总复习知识整理(全)第一章数和数的运算一概念(一)整数1 整数的意义自然数都是整数。
整数包括正整数、0和负整数。
2 自然数我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
一个物体也没有,用0表示。
0也是自然数。
3计数单位一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。
4 数位计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
如:个位、十位、百位、千位、万位……5数的整除(1)整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。
(2)如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。
倍数和约数是相互依存的。
因为35能被7整除,所以35是7的倍数,7是35的约数。
一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。
例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。
一个数的倍数的个数是无限的,其中最小的倍数是它本身。
3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。
(3)个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。
个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。
一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。
一个数各位数上的和能被9整除,这个数就能被9整除。
能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。
例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。
新部编人教版小学六年级数学上册期末复习知识要点(第一单元 分数乘法 )
小部编人教版小学六年级数学上册期末复习要点(第一单元分数乘法 )第一单元 分数乘法1、分数乘整数的意义:与整数乘法的意义相同,求几个相同加数的和的简便运算。
例如:32×3就是求3个32是多少。
2、一个数乘分数的意义:求一个数的几分之几是多少。
例如:32×43就是求32的43是多少。
3、分数乘法的运算法则:分子乘分子,分母乘分母。
例如:32×43=4×33×2=214、约分方法:用整数和下面的分母约掉最大公因数。
例如32×43=4×33×2=21。
5、分数的基本性质:分子和分母同乘或除以同一个数(0除外),分数的大小不变。
例如: 32=3×33×2=96 ; 126=6÷126÷6=216、一个数(0除外)乘大于1的数,积大于这个数。
例如:32×45>327、一个数(0除外)乘小于1的数,积小于这个数。
例如:12×43<128、一个数(0除外)乘等于1的数,积等于这个数。
例如:1×43=129、分数乘法混合运算顺序:与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
10、整数乘法运算定律对分数乘法同样适用。
乘法交换律:a ×b=b ×a 例如:32×43=43×32乘法结合律:(a ×b)×c=a ×(b ×c) 。
例如:43×53×34=(43×34)×53=53 乘法分配律:a ×(b ±c)=a ×b ±a ×c 。
例如:32×43+43×31=(32+31)×43=43 11、倒数:乘积为1的两个数互为倒数。
小学六年级上册数学知识点总结归纳(绝对经典)
小学六年级上册数学知识点总结归纳(绝对经典)第一单元:位置在数学中,我们经常需要描述物体的位置。
为了方便,我们引入了行和列的概念。
竖排叫做列,横排叫做行。
数对可以表示物体的位置,先表示列,再表示行。
例如,(7,9)表示第七列第九行。
如果两个数对前一个数相同,说明它们所表示物体位置在同一列上;如果后一个数相同,说明它们所表示物体位置在同一行上。
物体向左、右平移,行数不变,列数减去或加上平移的各数。
物体向上、下平移,列数不变,行数减去或加上平移的各数。
第二单元:分数乘法分数乘法可以分为分数乘整数和分数乘分数两种情况。
分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。
例如,6×1/2,表示:6个1/2相加是多少,还表示的6倍是多少。
一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。
例如,6×2/5,表示:6的2/5是多少。
分数乘法的计算法则:整数和分数相乘,整数和分子相乘的积作分子,分母不变。
分数和分数相乘,分子相乘的积作分子,分母相乘的积作分母。
能约分的先约分,然后再乘,得数必须是最简分数。
当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。
分数大小的比较:一个数(除外)乘以一个真分数,所得的积小于它本身。
一个数(除外)乘以一个假分数,所得的积等于或大于它本身。
一个数(除外)乘以一个带分数,所得的积大于它本身。
在解决实际问题时,我们可以先找出含有分率的关键句,然后找出单位“1”的量,根据线段图写出等量关系式:单位“1”的量×对应分率=对应量。
最后根据已知条件和问题列式解答。
在乘法应用题中,我们需要注意概念,找到含有分数的关键句中的单位“1”,并注意“的”前“比”后的规则。
3.表示甲比乙多几分之几,是指甲比乙多的数占乙的几分之几,而甲比乙少几分之几,则是指甲比乙少的数占乙的几分之几。
在应用题中,比如小湖村去年水稻的亩产量是750千克,今年水稻的亩产量是800千克,我们要求增产几分之几。
小学六年级数学(上册)知识点及题型总结
小学六年级上册数学知识点和题型第一单元分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘的积作分子,分母不变。
注:(1)为了计算简便能约分的可先约分再计算。
(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数)2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。
(分子乘分子,分母乘分母)注:①如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
②分数化简的方法是:分子、分母同时除以它们的最大公因数。
③在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)④分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
3、小数乘分数的运算法则是:(1)把小数化成分数计算;(2)如果所乘分数可以化成有限小数,也可以把分数化成小数计算;(3)小数和分母能约分的,先约分在计算比较方便。
(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。
a×b=c,当b >1时,c>a. 一个数(0除外)乘小于1的数,积小于这个数。
a×b=c,当b <1时,c<a (b≠0).一个数(0除外)乘等于1的数,积等于这个数。
a×b=c,当b =1时,c=a . 注:在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学六年级上册数学复习资料第一单元:位置与方向(一)用数对表示位置 如:第三列第二行 表示为(3,2)。
一般情况下表示为(列,行) 位置与方向(二)用方向和距离表示位置同一方向的不同描述:小明在小华的东偏北30°方向上,距离15米。
也可以说成:小明在小华的 方向上,距离 。
相对位置:小明在小华的东偏北30°方向上,距离15米。
小华在小明的 方向上,距离 。
第二单元:分数乘法1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
(如:75×4表示4个75是多少或75的4倍是多少。
) 2、一个数乘分数的意义就是求这个数的几分之几是多少。
(如:6×53表示6的53是多少; 65×52表示65的52是多少。
) 分数乘法的计算法则:分子相乘的积作分子,分母相乘的积作分母。
(能约分的先约分) 4、 小于1的数,积小于这个数,一个数(0除外) 乘 等于1的数,积等于这个数, 大于1的数,积大于这个数。
5、乘积是1的两个数互为倒数。
1的倒数是1,0没有倒数。
[典型练习题](1)38 +38 +38 +38 =( )×( )=( )(2)12个 56 是( );24的 23 是( )。
(3)边长 12分米的正方形的周长是( )分米。
第三单元:分数除法1、分数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中的一个因数,求另一个因数的运算。
2、分数除法的计算法则:被除数除以除数(0除外)等于被除数乘除数的倒数。
3、一个数除以真分数,商大于这个数(如:4÷21﹥4); 一个数除以大于1 的假分数,商小于这个数 (如:3÷ 23﹤3)。
4、两个数相除又叫做两个数的比。
在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比 的前项除以后项所得的商,叫做比值。
比值通常用分数表示,也可以用小数或整数表示。
根据分数与除法的关系,两 个数的比也可以写成分数形式。
(如:3:2也可以写成23,仍读作“3比2”) 5、比和除法、分数的关系:比 前项 比号 后项 比值 除法 被除数 除号 除数 商 分数分子分数线分母分数值6、比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。
7、“黄金比”(0.618:1)给人以一种优 美的视觉感受。
许多建筑作品、艺术作品都是按“黄金比”来设计的。
[典型练习题](1)把6:21化成最简单的整数比是( ),比值是( )。
(2)甲车3小时行150千米,乙车2小时行120千米,甲车和乙车的速度比是( ),比值是( )。
(3)化简下面各比并求出比值。
25 :12 51:730.6: 2360∶45 0.35∶6145分钟∶1.5小时(4)一台新式磨面机,每小时磨面65吨,3台这样的磨面机54小时磨面多少吨?第四单元 圆一、圆的认识圆心O 画圆时固定的一点,叫做圆心,确定圆的位置;1、圆的各部分名称 半径r 连接圆心和圆上任意一点的线段,叫做半径; 直径d 通过圆心并且两端都在圆上的线段,叫做直径。
一个圆内,有无数条半径,无数条直径。
同圆或等圆中 直径与半径的2倍(d = 2 r ),半径与直径的21(r = 错误!未找到引用源。
)。
[典型练习题](1)在同一个圆内,半径与直径都有( )条,半径的长度是直径的( )直径与半径的长度比是( )。
(2)( )决定圆的位置,( )决定圆的大小。
ww w.x k b1.co m2、圆是轴对称图形,它有无数条对称轴(对称轴是直径所在的直线,用虚线表示),确定圆的大小半圆形的对称轴只有一条。
[典型练习题](1)对称轴最少的图形是()。
①圆②长方形③正方形④等边三角形(2)按要求作图、填空。
(右图:o为圆心。
A为圆周上一点)①以A点为圆心,画一个与已知圆同样大小的圆。
②画出这两个圆所组成的图形的所有对称轴。
(3)下图是三个半径相等的圆组成的图形,它有()条对称轴。
二、圆的周长和面积1、圆周率:圆的周长总是直径的三倍多一些,这个比值叫做圆周率,用π表示,π≈3.14 。
可以说圆的周长是直径的π倍,也可以说圆的周长大约是直径的3.14倍;可以说圆的周长是半径的2π倍,也可以说圆的周长大约是半径的6.28倍;2、圆的周长:圆的周长 = 直径×圆周率(π)或圆的周长 = 半径×2×圆周率(π)字母公式: C = πd 或 C = 2πr3、圆的面积:圆的面积 = 半径²×圆周率(π)字母公式: S = πr²掌握:圆面积的推导过程。
把一个圆分成若干等份,然后把它剪开,照右图的样子拼起来,拼成一个近似的长方形,长方形的长相当于圆的(),宽相当于圆的(),长方形的面积=(),圆的面积=(),圆的周长是()。
[典型练习题](1)圆的面积和长方形的面积相等,周长()。
①它们的周长也相等②圆的周长长③长方形的周长长(2)一个钟,分针长40厘米,一小时分针的尖端走动了()厘米,分针所扫过的地方有()平方厘米。
(3)一个圆的直径是4厘米,它的周长是(),面积是()。
(4)要画一个周长是18.84厘米的圆,圆规两脚之间的距离应是()厘米。
(5)一个圆形花坛,底面圆的周长是18.84米,这个花坛的半径是多少平方厘米?(6)现在有一根长125.6米的绳子,要围成一块尽量大的土地,你认为怎样围,围成的是什么图形?面积是多少?(7)西城绿化广场的一个圆形花坛,周长是18.84米,花坛面积是多少平方米?(8)用圆规画一个周长为18.84厘米的圆,圆规两脚间的距离应取( )厘米,所画圆的面积是( )平方厘米。
(9)把一个圆分成若干等份,然后把它剪拼成一个近似的长方形,已知长方形的长是6.28厘米,这个长方形的宽是( )厘米,这个圆的面积是( )平方厘米。
2、圆各部分的变化规律半径扩大a 倍,直径也扩大a 倍,周长也扩大a 倍,面积也扩大a ² 倍。
[典型练习题](1)如果大圆半径是小圆半径的2倍,则大圆的周长是小圆的( )倍,大圆的面积是小圆的( )倍。
(2)大圆的半径是4厘米,小圆的半径是3厘米,小圆面积和大圆面积的比是( )。
① 4∶3 ② 3∶4 ③ 9∶16(3)一个圆的半径增加2分米,它的周长增加( )分米。
(4)如果小圆的直径等于大圆的半径,那么小圆的面积是大圆面的( )。
①21 ② 41③ 2倍 三、圆与其它图形的关系1、周长相等的图形中,面积的比较。
(1)如果圆周长=正方形周长=长方形周长; (2)如果圆面积 =正方形面积=长方形面积;则圆面积>正方形面积>长方形面积。
则圆周长<正方形周长<长方形周长。
[典型练习题](1)用两根同样长的绳子各围成一个长方形和正方形,( )形的面积大。
(2)用三根同样长的绳子各围成一个圆形、长方形和正方形,( )形的面积大。
(3)把一根24分米长的铁丝平均截成3段,一段围成正方形,一段围成长方形,另一段围成一个圆。
其中,( )面积最大,( )面积最小。
(4)用一根长3.14米绳子围成一个图形,( )形的面积大。
① 正方 ② 圆 ③ 长方。
(5)如果这三个图形的面积相等,你能发现它们的周长之间的大小关系吗?[典型练习题](1)从一个边长是10分米的正方形纸里剪一个最大的圆,这个圆的周长是( )分米,面积是( )平方分米。
(2)从一个边长是20分米的正方形纸里剪一个最大的圆,这个圆的周长是( )分米,面积是( )平方分米。
(3)在一个长5厘米,宽4厘米的长方形内画一最大的圆。
这个圆的周长和面积分别是多少?(4)在边长是a 分米的正方形中,画一个最大的圆,这个圆的面积占整个正方形面积的( )。
①78.5% ②21.5% ③a 2④ 0.785 a 2[典型练习题](1)如图,一个正方形的边长增加它的31后,得到的新正方形的周长是48厘米。
原正方形的边长是多少厘米?(2)把一个边长是8分米的正方形剪成一个最大的圆,圆的周长是( )分米,面积是( )平方分米。
(3)已知直角三角形面积是5平方厘米,求圆的面积。
(4)在右面的空白处画一个周长为12.56厘米的圆,并在圆内画 两条相互垂直的直径,然后依次连接这两条直径的四个端点,得 到一个正方形,这个正方形的面积是( )平方厘米。
四、组合图形的周长和面积 [典型练习题](1)求右图阴影部分的面积。
(单位:米)(2)如右图,圆的周长是6.28厘米,圆的面积和长方形的面积相等。
阴影部分的面积是()平方厘米,周长是()厘米。
(3)在一块边长是20厘米的正方形木板上锯下一个最大的圆,这个圆的面积是()平方厘米,剩下的边料是()平方厘米。
六、圆环的面积:S外 - S内 = S环 R ─ r = 环宽πR ²–πr² = π(R²–r ²)= π(R + r)(R–r)[典型练习题](1)求环形的面积。
(单位:分米)(2)沿直径为9米的圆形花坛修建一条宽1.5米的路,路面面积是多少平方米?(3)歌厅有一个圆形表演台,周长43.96米。
现在半径加宽1米,比原来的面积增加多少?(4)一个圆环,它的外直径是内直径的2倍,这个圆环的面积是()。
①比内圆面积小②比内圆面积大③与内圆面积相等附:常见的π值及平方数。
(背熟)π≈3.14 2π≈6.28 3π≈9.42 4π≈12.56 5π≈15.7 6π≈18.84 7π≈21.98 8π≈25.12 9π≈28.26112=121 122=144 132=169 142=196 152=225 162=256172=289 182=324 192=361 252=625 352=1225 452=2025易错的平方数:102=100 202=400 0.12=0.01 0.22=0.04 0.32=0.09第五单元:百分数1、百分数:表示一个数是另一个数的百分之几的数叫百分数,也叫百分率或百分比。
百分数表示的是两个数的倍比关系,因此不带单位名称。
2、分数与百分数和比的联系和区别:具体数量(量)倍数关系(率)分数一根绳子长错误!未找到引用源。
米。
用去这根绳子的错误!未找到引用源。
百分数用去这根绳子的40%。
比用去的与这根绳子的比是2:5。
分数既可表量也可表率,比和百分数只能表率。
3、一般公式:小麦的出粉率=的重量的重量小麦面粉×100%出勤率=总人数出勤人数× 100%花生的出油率=花生仁的重量花生油的重量×100%达标率=总人数达标人数×100%发芽率=种子总数发芽种子数×100%成活率=总棵数成活的棵活×100%合格率=总数量合格的数量×100%投球的命中率=投球总球总投中的数量×100%利润率=进价(成本)进价(成本)-售价×100%(利润=售价-进价)(注意:出粉率、出米率、出油率、发芽率、出勤率、成活率、合格率均不大于100%。