高速铁路桥梁主要结构型式
德国高速铁路线上的桥梁结构型式
德国咼速铁路线上的桥梁结构型式1. 设计速度250 km/h、全长327 km的德国汉诺威一维尔茨堡和全长104 km的曼海姆一斯图加特两条新干线上,共有桥梁359座,总延长37 km。
在359座桥中,152座跨越公路,139座跨越铁路,其余68座为大型山谷桥和高架桥。
2. 从桥梁总长与线路总长之比来看,德国高速铁路上的桥梁数量远小于日本新干线和我国拟建的京沪高速铁路线。
3. 德国这两条新干线上的桥梁几乎全部是预应力混凝土和钢筋混凝土桥。
其原因一方面是混凝土桥养护维修方便、造价也较低,另一更主要的的原因则是混凝土桥在高速行车条件下的噪音远比钢桥低。
4. 在德国的这两条新干线上,大部分桥为预应力混凝土简支梁和连续梁。
5. 简支梁的墩中心距基本上采用44 m及58 m两种,25 m的只有少数几跨。
墩中心距44 m的梁跨度为42 m,58 m的梁跨度55.75 m。
6. 为这两条新干线,德国联邦铁路管理中心组织力量制定了一套标准设计图(参考设计),标准设计均为单室单箱形截面预应力混凝土梁,桥面的横断面按《铁路新干线上桥梁的特殊规程》的56条办理,规定的横断面如图432所示。
432时速超过200.M线路上的铁路桥桥而横斷面(德国)(单位:in)7. 在标准设计中,箱梁底板宽 5.0 m,桥面板宽14.3 (道床部分9.1 m)。
跨度42 m 的梁高4.0 m,55.75 m的梁高5.0 m ;腹板与铅垂方向成15 0.6 m,支座处0.7m;底板的一般厚度为0.35 m,支座处0.6m;梁端还设有0.8 m厚的横隔板,横隔板设有可供维修人员及小车通行的洞。
迪陽舟it山圾桥(6)祭转勒Jt斯爭塔尔山谷桥图433痔国高速铁路桥梁的上部结构典型橫截面图(单位:cm)確国高速铁路桥彖时典型善敷表43.5法国高速铁路线上的高架桥1•运行TGV列车的法国大西洋高速铁路时速为300 km/h,总长263 km。
总共修建了10座双线高架桥,总长 3 523 m,单线高架桥3座,总长455 m,其数量相对说来非常少,这些高架桥的基本资料列于表436中蛙国夭西漁宫速鉄路肓架桥^U6从表436所反映的情况可见,绝大部分桥都采用预应力混凝土箱梁。
我国高速铁路桥梁的结构型式及特点
我国高速铁路桥梁的结构型式及特点
曾敬东;李贞新;李小珍
【期刊名称】《四川建筑》
【年(卷),期】2005(025)004
【摘要】简要叙述了在我国秦沈客运专线以及规划中的京沪高速铁路上出现的新的铁路桥梁型式,并分析了高速铁路桥梁不同于普通桥梁的特点.
【总页数】3页(P58-60)
【作者】曾敬东;李贞新;李小珍
【作者单位】中铁二局集团有限公司,四川,成都,610031;西南交通大学土木工程学院,四川,成都,610031;西南交通大学土木工程学院,四川,成都,610031
【正文语种】中文
【中图分类】U448.13
【相关文献】
1.铁路桥梁传递列车制动力的结构型式 [J], 许克宾
2.我国高速铁路桥梁和区间路基结构设计方案的比选探讨 [J], 刘玉杰;谢亚伟
3.博士学位论文摘要-中小跨度铁路桥梁横向振动模拟及适应快速行车结构型式的研究 [J], 冯星梅;史永吉
4.浅论我国高速铁路桥梁建设的设计特点与关键技术 [J], 张义君
5.浅谈我国高速铁路桥梁建设的设计特点 [J], 陈强
因版权原因,仅展示原文概要,查看原文内容请购买。
第五节 高速铁路桥梁
• 一、桥梁的结构
1、在修建一条铁路时,常常会碰到江河、山谷、公路或者 与另外一条铁路交叉,为了让铁路跨越这些地形上的障碍, 就需要修建各种各样的铁路桥梁。 2、铁路桥梁采用最多的是梁式桥。它是一种使用最广泛的 桥梁型式,可细分为简支梁桥、连续梁桥和悬臂梁桥。
3、桥梁主要由桥面、上部结构、(桥跨结构)及下部结构 (桥墩及基础)所组成。
桥梁组成:
二、高速铁路 桥梁的特点
1、桥梁所占比例大、 高架长桥多。 2、以中小跨度为主。 3、刚度大、整体性 好。 4、纵向刚度大。 5、重视改善结构耐 久性,便于检查、ቤተ መጻሕፍቲ ባይዱ 修。 6、强调结构与环境 协调。
三、高速铁路对桥梁的要求
1、高速铁路桥梁遵循的基本原则有哪些?
2、高速铁路对桥梁有哪些方面的要求?
1)桥梁建筑材料 2)桥梁结构体系 3)上部结构形式
4)下部结构形式
5)桥梁支座 6)施工工艺 7)养护维修
四、高速铁路桥梁的维护与管理
1、经常维修保养的工作范围 1) 7)
• ·
2) 3)
8) 9)
4)
5) 6)
10 )
11 ) 12 )
2、综合维修
1) 2) 3) 4) 5) 6) 7) 8) 9)
高速铁路有砟、无砟轨道结构及精调
第二章高速铁路有砟、无砟轨道结构及精调第一节概述无砟轨道是以混凝土或沥青混合料等取代散粒道碴道床而组成的轨道结构形式。
由于无碴轨道具有轨道平顺性高、刚度均匀性好、轨道几何形位能持久保持、维修工作量显著减少等特点,在各国铁路得到了迅速发展。
特别是高速铁路,一些国家已把无碴轨道作为轨道的主要结构形式进行全面推广,并取得了显著的经济效益和社会效益。
以下是无砟轨道的主要优势和缺点。
一、无砟轨道的优势主要有:1、轨道结构稳定、质量均衡、变形量小,利于高速行车;2、变形积累慢,养护维修工作量小;3、使用寿命长—设计使用寿命60年;二、无砟轨道的缺点主要有:1、轨道造价高:有砟180万/km,双块式350万,1型板式450万,2 型板式500万。
2、对基础要求高因而显著提高修建成本:有砟轨道可允许15cm工后沉降,无砟轨道允许3cm,由此引起的以桥代路及路基加固投资巨大。
3、振动噪声大:减振降噪型无砟轨道目前尚不成功,减振无砟轨道选型存在较大困难。
4、一旦损坏整治困难:尤其是连续式无砟轨道。
第二节无砟轨道结构一、国外铁路无碴轨道结构型式国外铁路无碴轨道的发展,数量上经历了由少到多、技术上经历了由浅到深、品种上经历了由单一到多样、铺设范围上经历了由桥梁、隧道到路基、道岔的过程。
无碴轨道已成为高速铁路的发展趋势。
1.日本日本是发展无碴轨道最早的国家之一。
早在20世纪60年代中期,日本就开始了无碴轨道的研究与试验并逐步推广应用,无碴轨道比例愈来愈大,成为高速铁路轨道结构的主要形式。
据统计,日本高速铁路无碴轨道比例,在20世纪70年代达到60%以上,而90 年代则达到80%以上。
日本从20世纪60年代中期开始进行板式无碴轨道的研究到目前大规模的推广应用,走过了近40年的历程。
对于最初提出的轨道结构方案,铁道综合技术研究所相继进行了设计、部件试验、实尺模型试验、设计修改、在营业线上试铺等工作。
从津田沼、日野土木试验所内的实尺模型试验到既有线、新干线的桥梁、隧道和路基上的各种形式无碴轨道结构的试铺,总共建立了20多处近30km的试验段,开展了大量的室内、营业线上动力测试和长期观测的试验研究工作,并在试验结果的基础上,不断的改进、完善结构设计参数和技术条件,最终将普通A 型(图4-3)、框架形(图4-4)等板式轨道结构作为标准定型,在山阳、东北、上越、北陆和九州新干线的桥梁、隧道和路基上大量使用。
墩台施工—墩台的类型与构造(高速铁路桥梁施工)
一、梁式桥桥墩
双柱式、三柱式桥墩
一、梁式桥桥墩
一、梁式桥桥墩
(三)轻型桥墩
4、柔性排架墩 排架桩式桥墩是将钻孔桩基础向上延伸作为桥墩的墩身, 在桩顶浇筑盖梁。 在一个墩台纵向设置一排桩时,称为单排桩墩。如设置两 排桩时称为双排桩墩。
通过一些构造措施,将上部结构传来的水平力(制动力、 温度影响力)传递到全桥的各个柔性墩,或相邻的刚性 墩台上。
一、梁式桥桥墩
(三)轻型桥墩
2、空心桥墩
通风孔: 调节内外温差,减少施工中混凝土水化热对墩内温度
的影响。 圆形通风孔对墩壁应力分布较好,直径不宜小于20cm
,隔3~5m交错设置。 离地面宜高于5m;高出设计水位;并设栅栏。
排水孔: 墩下部过渡段顶部设置排水孔。排水孔周应设加强钢
筋网。施工时设置的临时排水孔,竣工后应加以封堵。 进人洞:便于检查维修,相应的检查设备、检查梯等。
桥梁上。
4、尖端形桥墩 尖端形桥墩外形简单,因阻水作用所引起的河床局部冲刷较小。 适用于水流与桥轴线斜交角小于5°和有流冰的情况。但因尖端部分
施工较麻烦,目前使用较少。
一、梁式桥桥墩
菱柱体桥墩
一、梁式桥桥墩
(一)重力式桥墩
墩身是一个受压弯联合作用的构件,各截面上的竖向力 和弯矩愈往下愈大。
为了使墩身沿全高各截面受力较为均匀,墩身的侧面 一般做成一定的斜坡。
一、梁式桥桥墩
(三)轻型桥墩
1、柔性桥墩 在两个刚性墩(或台)之间设置若干个柔性墩,在这些柔 性墩上,只有一个活动支座(用来消除由温度变化等因素 所引起梁长变化之影响),其余都是固定支座。两个活动 支座之间的梁、墩(或台)构成一个“联”。
柔性墩的桥式布置 1-刚性墩;2-活动支座;3-刚性台
浅谈高速铁路桥梁技术刘忠华
浅谈高速铁路桥梁技术刘忠华发布时间:2022-07-12T10:52:33.595Z 来源:《建筑模拟》2022年第5期作者:刘忠华[导读] 我国高速铁路桥梁的建设发展迅速,高速铁路桥梁在高铁建设中起到了至关重要的作用。
本文全面介绍了高速铁路桥梁的特点,我国高遠铁路桥梁的主要设计标准及主要结构型式,提出了在基础理论研究、新技术的应用方面与国外存在的差距及急需解决的问题。
中建二局第三建筑工程有限公司摘要:我国高速铁路桥梁的建设发展迅速,高速铁路桥梁在高铁建设中起到了至关重要的作用。
本文全面介绍了高速铁路桥梁的特点,我国高遠铁路桥梁的主要设计标准及主要结构型式,提出了在基础理论研究、新技术的应用方面与国外存在的差距及急需解决的问题。
关键词:高速铁路桥梁、特点、结构形式1前言桥梁是客运专线土建工程中重要组成部分,比例大、高架桥及长桥多。
客运专线桥梁的主要功能是为高速列车提供稳定、平顺的桥上线路。
桥上线路与路基上、隧道中的线路不同,由于桥梁结构在列车活载通过时产生变形和振动,并在风力、温度变化、日照、制动、混凝土徐变等因素作用下产生各种变形,桥上线路平顺性也随之发生变化。
因此,每座桥梁都是对线路平顺的干扰点。
尤其是大跨度桥梁。
为了保证高速列车的行车安全和乘坐舒适,高速铁路桥梁除了具备一般桥梁的功能外,首先要为列车高速通过提供高平顺、稳定的桥上线路。
2高速铁路桥梁的特点高速铁路上的桥梁,除须满足一般铁路桥梁的要求外,还需满足一些特殊的要求,这是因为在高速列车运行条件下,结构的动力响应加剧,从而使列车运行的安全性、旅客乘坐的舒适度、荷载冲击、材料的疲劳、列车运行时的噪声、结构的耐久性等等问题都与普通铁路不同。
所以,桥梁结构必须具有足够的强度和刚度,必须保证可靠的稳定性和保持桥上轨道的高平顺状态,使高速铁路的桥梁结构能够承受较大的动力作用,具备良好的动力特性。
高速列车的运营要求较高,能用于检查、维修的时间有限。
试论中国铁路桥梁技术发展与展望
试论中国铁路桥梁技术发展与展望摘要:本文以时间为线索,论述了新中国成立以来具有典型特征的铁路桥梁在跨径、结构形式、工程材料、施工工艺、技术装备等各个方面所取得的技术进步。
简要地介绍了我国铁路桥梁的现状和解放以来的发展历程,论述了既有桥梁提速后出现的问题以及解决问题的对策、高速铁路桥梁的特点和设计要求,最后对新世纪铁路桥梁的几个主要发展方向的前景做了评述。
关键词:铁路桥梁; 技术成就; 桥梁科技;展望1我国铁路桥梁的现状铁路桥梁由于荷载大、动力响应剧烈,与公路桥梁相比,其结构形式创新和跨度发展的速度受到了制约。
在众多的铁路桥梁当中,简支的中小跨度桥梁占有很高的比例,主要型式有:1) 钢筋混凝土简支梁跨度一般小于20 m ,1975 年铁道部对小跨度的钢筋混凝土桥编制了标准设计,在4~20 m 跨度范围内编制了8 种不同跨度的定型设计。
2) 预应力混凝土简支梁20 世纪50 年代初试制的是跨度23.8 m T 型截面的PC 梁,1957 年编制了跨度19.8~27.7 m 的标准设计,以后又生产了31.7 m 的T 形截面的PC 梁,这种跨度梁在目前铁路建设中被广泛的采用。
80 年代后,又设计了24m、40 m 跨度的箱型截面梁。
目前,铁路预应力混凝土简支梁最大跨度为64 m。
3) 钢板梁有上承与下承式2 种类型,解放前遗留下来的钢板梁跨度不一,解放后进行定型设计, 目前常见的有32 m 和40 m 两种跨度。
下承式板梁主梁间距大于上承钢板梁,又带有纵横梁结构的桥面系,因此,下承式板梁横向刚度较大,稳定性好。
由于预应力混凝土梁的普遍采用,目前铁路建设中这种型式桥梁很少采用。
20 世纪50 年代至60 年代末,大跨度钢桁梁基本上以连续钢桁梁为主要结构形式,如武汉长江大桥、南京长江大桥。
70 年代起,出现了简支的刚性桁梁和柔性拱的组合结构,跨度达112 m (成昆线的迎水村桥) 。
80 年代初建成的汉江钢箱斜腿刚构桥,斜腿底铰中心距176 m ,居世界同类型桥梁跨度第一位。
高速铁路桥梁工程
桥梁刚度”大”
《规范》预应力混凝土梁部结构,宜选用双线整孔箱形截面梁。需要时可 选用两个并置的单线箱形截面梁。跨度16m及以下桥梁也可根据具体情况选 用整体性好、结构刚度大的其他结构型式。
梁部结构,在ZK活载静力作用下,跨度L>80m的梁端竖向折角 不应大于2‰、水平折角不应大于1‰ 。 梁体的竖向挠度限值
8
目前国内设备研制情况
架桥机(900吨级):
郑州大方(15局、4局委托)正在制造、秦皇
岛通联(建研院)、大桥局、二局和武研院、 石家庄和17局、三局、五局、一局共8家单位 进行研制。
桥梁工程设计的原则
2. 桥梁设计细则 (1)标准跨度 简支箱梁:L=20、24、32、40m。 中小跨度连续梁:3×20、2×24、 3×24、2×32、 3×32、 2×40 连续箱梁:32+48+32m、40+64+40m、48+80+48m。 连续结合梁:32+40+32、40+50+40、40+56+40m。
移动模架法施工
移动模架法施工
Rio Major, 葡萄牙
最大跨度: 40 m 桥梁宽度: 15,35 m 上部结构重量:210 kN/m MSS重量: 400 t 施工周期: 7 - 9 天孔
移动模架法施工示意
移动模架法施工
Song La / Pal Kok, 韩国
最大跨度: 桥梁宽度: 上部结构重量: MSS重量: 施工周期: 40 m 14 m 300 - 350 kN/m 625 t 8 - 12 days pr. span
桥梁工程设计的原则
(2)桥跨布置 除受控制点影响外,尽量按等跨布置,等跨布置以 32m、24m梁跨为主。一座桥尽量采用同一梁跨类 型。 跨越河堤的桥孔应尽量一孔跨越,堤上及边坡上不 设墩,如确有困难,桥墩应设在背水坡。 斜交过路过河时,采用较大跨度通过,可采用双线 圆形桥墩,可异形墩或带洞式背靠背T台进行调孔。
高速铁路桥梁综述
高速铁路桥 梁综Βιβλιοθήκη 刘建伟 ( 中铁 十九局集 团第五工 程有 限公 司。辽宁 大连 1 1 6 0 0 0)
【 摘 要】 高速铁路桥 梁在 高铁建设 中起到 了至关重要的作用 ,
我 国高速铁路桥 梁的建设发展迅速 , 与 实际工程 结合 中也凸显其特 色。本文全 面介绍 了高速铁路桥 梁的特 点,我 国高速铁 路桥 梁的主 要 设计标准及主要结构型式 ,提 出 了在基础理论研 究、新技 术的应 用方面与 国外存在的差距及 急需解决的问题 。 【 关键词 】 高速铁路桥 梁 ; 发 展 ;特点 ;结构形式
40 m、 5 0 m。
高速 铁路 桥梁可分为高架桥、谷架桥和跨越河流 的一般桥梁 。 其 中, 高架桥用 以穿越既有交通路 网、 人 口稠密地 区及地质不 良地段, 通常墩身不高 , 跨度较小, 桥梁往 往长达 十余公里; 谷架桥用 以跨越 山谷, 跨度较 大, 墩 身较高。由于桥 梁建设投资规模大 ,列车高速运 行 时对桥上线路 的平顺性要求 高,特别是采用无渣轨道技术后 ,对 桥梁 的变形控制提 出了更高 的要求 , 因此高速铁 路桥梁是 我国高速 铁路建设 中重点研究的 问题之一 。 1高速铁 路桥 梁的发展现 状 : 桥梁 建设作为高速铁路 土建工程 的重要组成部 分, 主 要功能是 为高速列车提供平顺 、稳定 的桥上线路 ,以确保 运营的安全和旅客 乘坐的舒适 。以京沪高速铁路为例 ,它经过 的区域 是东部经济发达 地区,京沪高速铁路桥梁总长达 1 0 6 0 k m , 桥梁 比重 为8 0 % 。我国通过 借鉴德国、 日本等国高速铁路桥梁先进 技术和 成功建 设经验 , 逐 渐完 善技术 的同时形 成 自己的特色 。 2 高速铁路桥梁的特点 桥 梁是高速铁 路土建工程 的重要组成 部分, 与普通 铁路桥梁相 比, 在数量 、设计理念及方法 、耐 久性要 求、养护 维修等诸 多方 面都 存在较大 差异 。其特 点可归纳 为以下几个方面 : ( 1 )高架桥所 占比例大 。主要原 因是在平原 、软土 以及人 口和 建筑密集地 区,通常采用高架桥通过 。 ( 2 ) 大量采用简支箱梁结构形式。 根据我 国高速铁路建设规模 、 工期要求和技术特点 , 通过深 入的技术 比 较, 确定 以3 2 m 简支箱梁作 为标准跨度, 整孔预制架设施工 。 ( 3 )大跨度桥多。据统计, 在建与拟建客运专线 中, l O O m 以上跨 度 的高速桥梁至少在2 0 0 座 以上 。其中, 预应力混凝土连续梁桥 的最 大跨度为1 2 8 m , 预应力混凝土刚构桥的最大跨度为1 8 0 m 。 ( 4 )桥梁刚度大, 整体 性好 。为了保证列车高速、舒适 、安全 行驶,高速铁路桥梁必须具有足够大 的竖向和横 向刚度 以及 良好的 整体性, 以防止桥梁 出现较大挠度和振幅。 严格控制 由混凝土产生的 徐变上拱和不均匀温差 引起的结构变形, 以保证轨道的高平顺性。 3高速铁路桥梁 的结构型式 3 . 1装配式双向预应力混凝土T 形简支梁桥 T 形简支粱 由于其预制简单 、架设方便, 在 我国普通 铁路的中小 跨度桥梁中被大量采用 ; 但 因为其整体性差 、横 向刚度 弱, 在高速铁 路中, 需要进 行改进 。 双向预应 力结构体系具有 良好的纵 横向刚度 和 整体性, 且 构件重量轻 , 架设方便, 因此在秦沈 客运 专线较小跨度 桥 梁中广泛 采用了装配式 双向预应 力T 形简 支梁。如用于 1 6 m 的简支梁 桥, 桥 跨均采 用双线4 片式T 梁, 通过桥面板 、横隔板及横 向预应 力钢 筋组装而成 。梁 高为l 1 6 m , T 梁间距2 6 0 c m , 梁端部和 中部设横 隔板 。 3 . 2后张法预应力混凝土 简支箱梁 简支箱梁具有 良好 的力学性 能, 如整体性好 、 刚度大、 抗扭性 能 好等, 很适用于 高速铁路桥梁 。 截面 型式分为双线单箱单室和单线单 箱 单室, 双线 箱梁采用斜腹 板, 单线采用 直腹板, 简支 箱梁均不设跨 中横 隔板 : 由于采 用了整体 内模, 在结构允许的条件下尽量减小横 隔
铁路桥梁耐久性及对策
以上各钢桥主要部位裂纹可归纳为如下四 种: (1).竖向加劲肋上端焊趾处腹板裂纹。 (2).竖向加劲肋下端焊趾处腹板裂纹或焊缝 开裂。 (3).竖向加劲肋上端与上盖板焊接部分开列。 (4).纵横梁连接部分,纵梁端部上切口处腹 板开裂。
• • • • • • •
钢梁裂纹原因初步分析: A.腹板平面外弯曲 导致腹板平面外弯曲的因素有以下几点: (1)纵梁上翼缘与腹板不垂直; (2)加劲肋与上盖板不垂直; (3)枕木与上盖板不密贴; (4)枕木受到列车活载作用发生挠曲而引起 的横向扭曲。
铁路桥梁耐久性及对策
陈夏新
铁道部高速办 2004年12月
铁路桥梁耐久性及对策
一、铁路桥梁基本概况 二、铁路桥梁耐久性现状 三、铁路桥梁耐久性实例分析 四、提高铁路桥梁耐久性建议与对策
一、铁路桥梁基本概况
1.桥梁结构型式 (1)混凝土结构 低高度、普通高度钢筋混凝土简支 板梁和T梁,普通高度、低高度预应 力钢筋混凝土简支T梁,预应力混凝 土简支箱梁,预应力混凝土连续箱 梁,预应力混凝土连续刚构梁,钢 筋混凝土斜腿刚构,斜拉桥,拱桥, 框构桥。
• 根据铁道部2003年桥梁秋检统计资料汇 总,混凝土梁发生钢筋锈蚀、保护层脱 落、漏水、碱—骨料反应等耐久性病害 共计7179孔,桥墩严重腐蚀、裂纹、裂 损共计3277个,钢梁裂损及开焊、主要 节点订栓松动共计478孔2256处,钢梁涂 装失效94000吨。
(二)桥梁耐久性不足原因初步分析 1.钢结构 • 构造细节设计不合理。 •腹板平面外弯曲,腹板产生较大的面外弯 曲应力。 •应力集中。 •钢梁油漆涂装标准过低。
2.混凝土结构 • 梁体发生碱—骨料反应(主要是碱—硅反应),产生 沿预应力管道纵向裂纹。 • 环境腐蚀性介质引起梁体混凝土腐蚀、裂纹、钢筋及 预应力钢丝锈断。 • 早期设计的梁体混凝土强度偏低,钢筋保护层厚度偏 小,导致混凝土碳化深度加快。 • 桥面防水层标准低,泄水管施工质量较差,引起桥面 混凝土腐蚀及桥面板钢筋锈蚀。 • 墩台混凝土强度等级偏低,导致桥墩腐蚀、裂损及冻 融破坏
高速铁路设计规范条文(桥梁)
7 桥涵7.1 一般规定7.1.1 桥涵的洪水频率标准,应符合现行《铁路桥涵设计基本规范》(TB10002.1)中Ⅰ级铁路干线的规定。
7.1.2 桥涵结构应构造简洁、美观、力求标准化、便于施工和养护维修,结构应具有足够的竖向刚度、横向刚度和抗扭刚度,并应具有足够的耐久性和良好的动力特性,满足轨道稳定性、平顺性的要求,满足高速列车安全运行和旅客乘座舒适度的要求。
7.1.3 桥涵主体结构设计使用寿命应满足100年。
7.1.4 桥涵结构所用工程材料应符合现行国家及行业标准的规定。
7.1.5 桥梁上部结构型式的选择,应根据桥梁的使用功能、河流水文条件、工程地质情况、轨道类型以及施工设备等因素综合考虑。
桥梁上部结构宜采用预应力混凝土结构,也可采用钢筋混凝土结构、钢结构和钢-混凝土结合结构。
预应力混凝土简支梁结构,宜选用箱形截面梁,也可根据具体情况选用整体性好、结构刚度大的其他截面型式。
7.1.6 桥梁结构应设计为正交。
当斜交不可避免时,桥梁轴线与支承线夹角不宜小于60°,斜交桥台的台尾边线应与线路中线垂直,否则应采取特殊的与路基过渡措施。
7.1.7 桥面布置应满足轨道类型、桥面设施的设置及其养护维修的要求。
7.1.8 涵洞宜采用钢筋混凝土矩形框架涵。
7.1.9 相邻桥涵之间路堤长度,要综合考虑高速列车行车的平顺性要求、路桥(涵)过渡段的施工工艺要求以及经济造价等因素合理确定。
两桥台尾之间路堤长度不应小于150m,两涵(框构)之间以及桥台尾与涵(框构)之间路堤长度不应小于30m,对于特殊情况路堤长度不满足上述长度要求时,路基应特殊处理。
7.1.10 桥涵设置应做好和自然水系、地方排灌系统的衔接,并满足铁路路基排水的要求。
7.1.11当线路位于深切冲沟等特殊地形地貌、地质条件地区时要进行桥梁、涵洞方案比较确定跨越方式。
7.1.12无砟轨道桥涵变形及基础沉降应设立观测基准点进行系统观测与分析,其测点布置、观测频次、观测周期应符合《客运专线铁路无砟轨道铺设条件评估指南》的有关规定。
桥梁的结构特点
桥梁的结构特点
桥梁的结构特点有:
1、梁式桥。
以梁为主承重结构,竖荷下无水平反力,梁内弯矩最大,有简支、悬臂、连续、T构、等结构形式,结构简单,施工方便,地基承载低,跨度小,材料要求高。
2、拱式桥。
拱圈为主承重结构,拱圈受压为主,弯矩、剪力小,竖荷下,墩台承受竖向反力,并水平反力,拱脚基岩要求高,拱比梁跨越能力大,造型美,施工难、工期长、劳力多。
3、刚架桥。
主梁与支柱,刚性连接,竖荷下梁受弯,支柱受压、又受弯;跨中建筑高度小,受力状况介于梁桥与拱桥之间,钢筋用量大,基础造价高,梁柱钢结处易裂缝,施工困难。
4、吊桥。
缆索为主承重结构,竖荷下,吊杆使缆索承受拉力,吊杆使主梁形成多点支承的连续梁,自重轻,施工简单(快),结构刚度差,车、风荷载下变形、振动大。
5、组合体系桥。
包括梁拱桥、拱梁桥和斜拉桥。
1000t40m梁昆仑号架桥机对高铁简支箱梁的适应性分析
重大专题文章编号:1009 -4539 (2021) 01 -0022 - 051 000 t/40 m梁昆仑号架桥机对高铁简支箱梁的适应性分析李方柯1班新林2王冰1田丰1(1.中铁第五勘察设计院集团有限公司北京102600; 2.中国铁道科学研究院集团有限公司北京100081)摘要:高速铁路40 m简支箱梁较传统预制梁重量大幅增加,需采用千吨级运架设备,其运架过程中对已架桥梁的适应性亟待研究。
依托福厦高铁湄洲湾特大桥,针对昆仑号千吨级架桥机的各种工况,建立了相应的桥梁整体和局部有限元计算模型进行分析,研究架桥机对高铁简支箱梁的适应性,并对特殊条件下架桥机的适应性进行探讨。
研究结果表明:高铁简支箱梁在各种运架梁荷载工况下的结构受力性能满足要求,运架梁控制荷栽为架梁支腿荷载,昆仑号架桥机具有较好的适应性,采取适当措施后可满足各类特殊条件的运架梁需求,研究结论可为今后类似铁路桥梁工程建设提供参考。
关键词:昆仑号架桥机运架一体机高铁40 m梁适应性分析中图分类号:U445.36; U238 文献标识码:A DOI :10. 3969/j. issn. 1009-4539.2021.01.005Adaptability Analysis of 1 000 t/40 m Beam Kunlun Bridge Erecting Machine toSimply Supported Box Girder in High-speed RailwayLI Fangke1, BAN Xinlin2, WANG Bing' , TIAN Feng1(1. China Railway Fifth Survey and Design Institute Group Co. Ltd., Beijing 102600, China;2. China Academy of Railway Sciences Corporation Limited, Beijing 100081 , China)Abstract:Compared with the traditional high-speed railway prefabricated box girder, the weight of 40 m simply supported box girder is greatly increased. The thousands-tons transporting and erecting machine is needed for the construction of 40 m girder, and the adaptability of the machine to the existing bridge structure in the process of transportation and erection is urgent to be studied. Based on Meizhou Bay Bridge of Fuzhou-Xiamen High-speed Railway, global and partial bridge finite element models are established and analyzed with the consideration of various working conditions set specifically for Kunlun bridge erecting machine, the adaptability of bridge erecting machine to simply supported box girder in high-speed railway is studied and the discuss of adaptability under special conditions is made also. The results show that the structural mechanical performance of the simply supported box girder in high-speed railway meets the requirements under various transportation and erection conditions, and the control load is the leg load of the machine. Kunlun bridge erecting machine shows excellent adaptability and can be used in various special conditions with appropriate measures. The results could provide reference for the construction of similar railway bridges in the future.Key words:Kunlun bridge erecting machine; combined machine for transporting and erecting;high-speed railway 40 m girder;adaptability analysis收稿日期:2020-12-25基金项目:北京市科技计划课题(Z181100003918003);中国铁建股份有限公司2018年度科技重大专项(18-A04)作者简介:李方柯(1987—),男,四川广安人,髙级工程师,主要从事桥梁设计研究工作;E-mail: 717723223@22铁道建筑技术RAILWAY CONSTRUCTION TECHNOLOGY 2021 (01)李方柯,等:1 〇〇〇 t /40 m 梁昆仑号架桥机对高铁简支箱梁的适应性分析重大专题1引言我国高速铁路桥梁以等跨布置预制预应力混凝土简支箱梁为主要结构型式,标准跨度32 m ,速 度等级250 km /h 、350 km /h ,匹配对应的制、吊、存、 运、架设备,相继应用到秦沈、京沪、武广等高速铁 路建设中。
铁路桥梁桥面
枕已逐步改造成树脂轨枕,但减振降噪仍需研究新型枕 下橡胶垫层及扣件的弹性垫板来实现。树脂轨枕单根造 价很高,约为普通预应力砼枕的十倍。
桥面型式
明桥面
(4)由于明桥面与桥梁处于较大的刚性连接状态,桥梁 受荷后的微小变形都将给轨道系统产生影响,包括扣件 受力、钢轨位移、以及轨枕同纵梁之间的相对位移,由 于扣压件及联接螺栓在上拔力过大时可能会断裂,且在 梁端位移作用下对它们的受力较大,故上拔力对梁端位 移的影响起控制作用。而胶垫刚度影响扣件系统的荷载位移特性。
应用:兰新客专、武广客专等。
轨道结构:无砟 CRTS Ⅰ型双块式无砟轨道
轨道结构:无砟
CRTS Ⅱ型双块式无砟轨道
钢轨、扣件系统、双块式轨枕、道床板、钢筋混凝土底座等组成。 将与之的双块式轨枕通过机械振动法嵌入现场浇注的连续钢筋混凝土道床
内,形成整体。桥梁地段在道床板下设置底座。 应用:遂渝无砟轨道试验段、郑西客专等。
在明桥面上不应设置变坡点。竖曲线和缓和曲线也不应伸 入明桥面。如有竖曲线和缓和曲线时,其曲率需要用轨枕调整 ,每根轨枕厚度都不一样,均需特制,并需固定位置顺序铺设 ,给施工和养护都带来困难。故在一般情况下,明桥面应将全 桥设在一个坡度上,竖曲线和缓和曲线不应伸入桥面。
桥面型式
明桥面
(2)结构寿命: 明桥面一般采用木枕,耐久性差,木枕的使用寿命
电缆槽、竖墙、盖板及防护墙
电缆槽、竖墙、盖板及防护墙
电缆槽、竖墙、盖板及防护墙
电缆槽、竖墙、盖板及防护墙
电缆槽、竖墙、盖板及防护墙
电缆槽、竖墙、盖板及防护墙
电缆槽最小尺寸应满足相关专业要求,注意在有接触网立柱 基础处也应满足最小尺寸要求。
高速铁路拱桥构造全(图文精选)
• 3、选则合理的矢跨比及拱轴线,一般拱桥失跨比在 1/5~1/10;
• 4 根据环境选择结构的造型及注意全桥的美观;
主拱的构造
• 1、板拱 • 石板拱 • 混凝土板拱 • 钢筋混凝土板拱
高速铁路 拱桥构造
拱桥的现状和发展
拱桥的现状和发展 1、拱桥的发展
十八世纪
十九世纪
国外:石拱,木拱
铸铁拱
钢拱 钢筋混凝土拱
拱桥
1964年
70年代
80年代 钢筋混
国内:石拱,木拱
双曲拱
桁架拱
凝土拱
80年代中
刚架拱 桁式组合拱
钢管拱 新型组合体系拱
古代拱桥: 拱轴曲线造型的千变万化,其中最具有代表意义 的是建于公元 595-605年的赵州桥(如图所示,跨径L=37m)
施工中的桁架拱桥
国内的大型拱桥列表
桥名
通车年份
上海卢浦大桥 2003.6.28
万县长江大桥
1997
广州丫髻沙大桥 2000
江界河大桥
1985
重庆梅溪河大桥
浙江淳安南浦大桥
武汉汉江三桥
2000
二岸邕江大桥
1998
跨径(米) 550米 420
76+360+源自630+330+30 310 303 280 270
当代拱桥:结构型式与施工方法的丰富多彩如,97年建成的重
庆万县长江大桥(L=420m),广州丫髻沙特大桥(L=360m), 1932建成的澳大利亚悉尼钢拱桥(L= 503m )及上海卢浦大桥 (L=550m)。
高速铁路桥梁设计初探
高速铁路桥梁设计初探摘要:本文从高速铁路的基本特点出发,讨论了高速铁路桥梁设计的基本原则和基本要求,分析了荷载设计、上部结构型式设计和桥面设计等三个关键设计环节。
关键词:高速铁路桥梁设计设计原则关键设计环节高速铁路作为现代社会的一种新的运输方式,中国的高铁速度代表了目前世界的高铁速度。
中国是世界上高速铁路发展最快、系统技术最全、集成能力最强、运营里程最长、运营速度最高、在建规模最大的国家。
截止2010年10月底,国内运营时速200公里以上的高速铁路运营里程已经达到7431公里。
在运行速度上,目前最高设计时速可达350公里,已于2011年6月30日正式开通运营的京沪高速铁路客运专线最高时速达到300公里;在运输能力上,一个长编组的列车可以运送1000多人,每隔3分钟就可以开出一趟列车,运力强大;在适应自然环境上,高速列车可以全天候运行,基本不受雨雪雾的影响;在列车开行上,采取“公交化”的模式,旅客可以随到随走;在节能环保上,高速铁路是绿色交通工具,非常适应节能减排的要求。
在高速铁路的设计施工中,桥梁设计是其中一个重要的组成部分。
与其他类型的公路和铁路桥梁相比,高速列车对桥梁的冲击力远远大于普通桥梁,桥梁轨道平顺性会受到很大影响,从而影响到列车的安全性和乘坐的舒适性。
因此,在设计高速铁路桥梁时,就必须考虑到其特殊的设计要求和设计原则,并在后续施工工程中予以坚决贯彻。
1 高速铁路桥梁的基本特点第一,高速铁路桥梁占线路里程比例大,高架长桥等桥型较多。
桥梁在高速铁路中所占的比例较大,主要原因是因为在平原、软土以及人口和建筑密集地区,通常采用高架桥通过。
此外,由于高速铁路桥梁技术标准要求高,因而投资也较高,桥梁设计和建造对高速铁路的建设周期和造价都会产生重大的影响。
第二,高速铁路桥梁以中、小跨度为主,且要求大刚度和一体性。
由于高速铁路对桥梁刚度要求严格,桥梁不宜采用大跨度,应以中、小跨度为主。
同时,为了保证列车高速、舒适、安全地行驶,高速铁路桥梁必须具有足够大的竖向和横向刚度,并具备较强的一体性特征,以防止桥梁出现较大挠度和振幅。
高速铁路桥梁设计原则及结构形式总结[详细]
我国客运专线采用的 ZK 活载图式(0.8UIC) 17
2. 刚度和变形控制限值
• 我国普通铁路桥梁的规定
项目
混凝土梁,简支 钢板梁
钢桁梁
梁式桥跨梁体 竖向挠度
≤L/800
≤L/900
墩台顶纵、横向 弹性水平位移
≤5 L(mm)
静定结构墩台 均匀沉降量
≤20 L(mm)
≤L/4000
6 墩台基础工后均匀沉降
≤30mm(20mm)
有砟(无砟)
7 相邻墩台基础工后沉降差
≤15mm(5mm)
有砟(无砟)
8 铺轨后梁体残余徐变上拱
≤20mm(10mm)
有砟(无砟)
19
2. 刚度和变形控制限值
序号
项目
限值 ≥100/L(Hz)(L=12、16、20、24m)
≥120/L(Hz)(L=32m)
高速铁路桥梁
1
讲座内容
一. 前言 二. 高速铁路桥梁特点 三. 主要设计原则及相关限值 四. 我国高速铁路桥梁结构型式
2
一、前 言
3
1. 桥梁是客运专线土建工程中重要组成部分,比例大、高架桥 及长桥多。
4
2. 客运专线桥梁的主要功能是为高速列车提供稳定、平顺的桥 上线路。
桥上线路与路基上、隧道中的线路不同,由于桥梁结构在列车 活载通过时产生变形和振动,并在风力、温度变化、日照、制 动、混凝土徐变等因素作用下产生各种变形,桥上线路平顺性 也随之发生变化。因此,每座桥梁都是对线路平顺的干扰点。 尤其是大跨度桥梁。
7
5. 客运专线与普通铁路是两个时代的产物,客运专线设计、施工采 用新理念,其建设促进了我国铁路桥梁工程技术的发展。
轨道桥梁的组成
轨道桥梁的组成
轨道桥梁通常由以下几个部分组成:
1. 桥墩:桥墩是支撑桥梁的柱状或墙状结构,一般由混凝土或钢材制成。
它支撑着桥梁的主梁或主拱,并将桥梁的荷载传递到地基上。
2. 主梁:主梁是桥梁的主要承载结构,位于桥墩之间,一般由钢材制成。
主梁承受轨道和车辆的荷载,并将荷载传递到桥墩上。
3. 桥面板:桥面板是轨道桥梁上的水平道路平台,用于支持铁轨和行驶的列车或车辆。
桥面板一般由混凝土、钢材或其他材料制成。
4. 支座:支座是连接主梁和桥墩之间的结构,用于支撑和传递荷载。
支座通常由橡胶或钢材制成,它能够吸收部分荷载并减少对主梁和桥墩的影响。
5. 栏杆:栏杆是用于保护行人和车辆的围栏结构,位于桥梁两侧。
栏杆通常由金属或混凝土制成,并具有一定的防护功能。
此外,轨道桥梁还可能包括其他部分,如桥头排水设备、防撞设施等,以提供桥梁的安全和功能完整性。