2018版高中数学第二章数列2.1.2数列的递推公式选学学案新人教B版
2018_2019版高中数学第二章数列2.1.2数列的递推公式课件新人教A版必
������������ 2������+3
=
(2������+53)(������2������+3)<0
恒成立.因为(2n+5)(2n+3)>0,
所以必有 3k<0,故 k<0.
反思感悟判断数列的增减性,一般是将其转化为比较相邻两项的大 小,常用的方法有作差法、作商法,作差法判断数列增减性的步骤 为:(1)作差;(2)变形;(3)定号;(4)结论.作商法适用于各项都是同号的 数列,且应比较比值与1的大小关系.
解(1)由 an+1=an+n(n∈N*),得 an+1-an=n(n∈N*),所以 a2-a1=1,a3-a2=2,a4-a3=3,…,an-an-1=n-1, 以上各式相加,得 (a2-a1)+(a3-a2)+(a4-a3)+…+(an-an-1)=1+2+3+…+(n-1),
即 an-a1=������(���2���-1).因为 a1=1,所以 an=������(���2���-1)+1=������2-2������+2.故数列{an}的通
3.通项公式和递推公式的区别:
通项公式直接反映了an与n之间的关系,即已知n的值,即可代入通项 公式求得该项的值an;递推关系则是间接反映数列的式子,它是数列 任意两个(或多个)相邻项之间的推导关系,要求an,需将前面的各项 依次求出.
4.数列的表示方法:数列的表示方法有通项公式法、图象法、列表
法、递推公式法.
2.数列作为特殊的函数,也具有单调性,对于递减数列
1 ������
,显然满足
a1>a2>…>an>an+1>…,反之,若数列满足 an>an+1,数列一定是递减数 列吗?若数列满足 an<an+1,数列一定是递增数列吗?
最新人教版高三数学必修5(B版)电子课本课件【全册】
1.1.2 余弦定理
最新人教版高三数学必修5(B版)电 子课本课件【全册】
1.2 应用举例
最新人教版高三数学必修5(B版)电 子课本课件【全册】
2.2.2 等差数列的前n项和
ห้องสมุดไป่ตู้
2.3.2 等比数列的前n项和
阅读与欣赏
级数趣题
第三章 不等式
3.1.2 不等式的性质
3.3 一元二次不等式及其解法
3.5 二元一次不等式(组)与简单的线性规划问题
本章小结
后记
第一章 解三角形
最新人教版高三数学必修5(B版)电 子课本课件【全册】
1.1 正弦定理和余弦定理 1.1.1 正弦定理
最新人教版高三数学必修5(B版) 电子课本课件【全册】目录
0002页 0057页 0111页 0131页 0145页 0192页 0237页 0283页 0285页 0321页 0390页 0461页 0500页 0557页
第一章 解三角形
1.1.2 余弦定理
本章小结
第二章 数列
2.1.2 数列的递推公式(选学)
本章小结
最新人教版高三数学必修5(B版)电 子课本课件【全册】
阅读与欣赏
亚历山大
时期的三角测量
最新人教版高三数学必修5(B版)电 子课本课件【全册】
高中数学教材人教B版目录(详细版).doc
数学①必修第一章集合1.1 集合与集合的表示方法1.1.1 集合的概念1.1.2 集合的表示方法1.2 集合之间的关系与运算1.2.1 集合之间的关系1.2.2 集合的运算第二章函数2.1 函数2.1.1 函数2.1.2 函数的表示方法2.1.3 函数的单调性2.1.4 函数的奇偶性2.1.5 用计算机作函数的图像(选学)2.2 一次函数和二次函数2.2.1 一次函数的性质和图像2.2.2 二次函数的性质和图像2.2.3 待定系数法2.3 函数的应用(I)2.4 函数与方程2.4.1 函数的零点2.4.2 求函数零点近似解的一种近似方法——二分法第三章基本初等函数(I)3.1 指数与指数函数3.1.1 有理指数幂及其运算3.1.2 指数函数3.2 对数与对数函数3.2.1 对数及其运算3.2.2 对数函数3.2.3 指数函数与对数函数的关系3.3 幂函数3.2 函数的应用(II)数学②必修第一章立体几何初步1.1 空间几何体1.1.1 构成空间几何体的基本元素1.1.2 棱柱、棱锥和棱台的结构特征1.1.3 圆柱、圆锥、圆台和球1.1.4 投影与直观图1.1.5 三视图1.1.6 棱柱、棱锥、棱台和球的表面积1.1.7 柱、锥、台和球的体积1.2 点、线、面之间的位置关系1.2.1 平面的基本性质与推论1.2.2 空间中的平行关系1.2.3 空间中的垂直关系第二章平面解析几何初步2.1 平面直角坐标系中的基本公式2.1.1 数轴上的基本公式2.1.2 平面直角坐标系中的基本公式2.2 直线的方程2.2.1 直线方程的概念与直线的斜率2.2.2 直线方程的集中形式2.2.3 两条直线的位置关系2.2.4 点到直线的距离2.3 圆的方程2.3.1 圆的标准方程2.3.2 圆的一般方程2.3.3 直线与圆的位置关系2.3.4 圆与圆的位置关系2.4 空间直角坐标系2.4.1 空间直角坐标系2.4.2 空间两点的距离公式数学③必修第一章算法初步1.1 算法与程序框图1.1.1 算法的概念1.1.2 程序框图1.1.3 算法的三种基本逻辑结构和框图表示1.2 基本算法语句1.2.1 赋值、输入和输出语句1.2.2 条件语句1.2.3 循环语句1.3 中国古代数学中的算法案例第二章统计2.1 随机抽样2.1.1 简单随机抽样2.1.2 系统抽样2.1.3 分层抽样2.1.4 数据的收集2.2 用样本估计总体2.2.1 用样本的频率分布估计总体分布2.2.2 用样本的数字特征估计总体的数字特征2.3 变量的相关性2.3.1 变量间的相关关系2.3.2 两个变量的线性相关第三章概率3.1 事件与概率3.1.1 随机现象3.1.2 事件与基本事件空间3.1.3 频率与概率3.1.4 概率的加法公式3.2 古典概型3.2.1 古典概型3.2.2 概率的一般加法公式(选学)3.3 随机数的含义与应用3.3.1 几何概型3.3.2 随机数的含义与应用3.4 概率的应用数学④必修第一章基本初等函数(II)1.1 任意角的概念与弧度制1.1.1 角的概念的推广1.1.2 弧度制和弧度制与角度制的换算1.2 任意角的三角函数1.2.1 三角函数的定义1.2.2 单位圆与三角函数线1.2.3 同角三角函数的基本关系式1.2.4 诱导公式1.3 三角函数的图像与性质1.3.1 正弦函数的图像与性质1.3.2 余弦函数、正切函数的图像与性质1.3.3 已知三角函数值求角第二章平面向量2.1 向量的线性运算2.1.1 向量的概念2.1.2 向量的加法2.1.3 向量的减法2.1.4 向量的数乘2.1.5 向量共线的条件与轴上向量坐标运算2.2 向量的分解与向量的坐标运算2.2.1 平面向量基本定理2.2.2 向量的正交分解与向量的直角坐标运算2.2.3 用平面向量坐标表示向量共线条件2.3 平面向量的数量积2.3.1 向量数量积的物理背景与定义2.3.2 向量数量积的运算律2.3.2 向量数量积的坐标运算与度量公式2.4 向量的应用2.4.1 向量在几何中的应用2.4.2 向量在物理中的应用第三章三角恒等变换3.1 和角公式3.1.1 两角和与差的余弦3.1.2 两角和与差的正弦3.1.3 两角和与差的正切3.2 倍角公式和半角公式3.2.1 倍角公式3.2.2 半角的正弦、余弦和正切3.3 三角函数的积化和差与和差化积数学⑤必修第一章解三角形1.1 正弦定理和余弦定理1.1.1 正弦定理1.1.2 余弦定理1.2 应用举例第二章数列2.1 数列2.1.1 数列2.1.2 数列的递推公式(选学)2.2 等差数列2.2.1 等差数列2.2.2 等差数列的前n项和2.3 等比数列2.3.1 等比数列2.3.2 等比数列的前n项和第三章不等式3.1 不等关系与不等式3.1.1 不等关系与不等式3.1.2 不等式的性质3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单的线性规划问题3.5.1 二元一次不等式(组)所表示的平面区域3.5.2 简单线性规划数学选修1-1第一章常用逻辑用语1.1 命题与量词1.1.1 命题1.1.2 量词1.2 基本逻辑关联词1.2.1 “且”与“或”1.2.2 “非”(否定)1.3 充分条件、必要条件与命题的四种形式1.3.1 推出与充分条件、必要条件1.3.2 命题的四种形式第二章圆锥曲线与方程2.1 椭圆2.1.1 椭圆及其标准方程2.1.2 椭圆的几何性质2.2 双曲线2.2.1 双曲线及其标准方程2.2.2 双曲线的几何性质2.3 抛物线2.3.1 抛物线及其标准方程2.3.2 抛物线的几何性质第三章导数及其应用3.1 导数3.1.1 函数的平均变化率3.1.2 瞬时速度与导数3.1.3 导数的几何意义3.2 导数的运算3.2.1 常数与幂函数的导数3.2.2 导数公式表3.2.3 导数的四则运算法则3.3 导数的应用3.3.1 利用导数判断函数的单调性3.3.2 利用导数研究函数的极值3.3.3 导数的实际应用数学选修1-2第一章统计案例1.1 独立性检验1.2 回归分析第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与分析法2.2.2 反证法第三章数系的扩充与复数的引入3.1 数系的扩充与复数的引入3.1.1 实数系3.1.2 复数的引入3.2 复数的运算3.2.1 复数的加法和减法3.2.2 复数的乘法和除法第四章框图4.1 流程图4.2 结构图数学选修2-1第一章常用逻辑用语1.1 命题与量词1.1.1 命题1.1.2 量词1.2 基本逻辑关联词1.2.1 “且”与“或”1.2.2 “非”(否定)1.3 充分条件、必要条件与命题的四种形式1.3.1 推出与充分条件、必要条件1.3.2 命题的四种形式第二章圆锥曲线与方程2.1 曲线与方程2.1.1 曲线与方程的概念2.1.2 由曲线求它的方程、由方程研究曲线的性质2.2 椭圆2.2.1 椭圆的标准方程2.2.2 椭圆的几何性质2.3 双曲线2.3.1 双曲线的标准方程2.3.2 双曲线的几何性质2.4 抛物线2.4.1 抛物线的标准方程2.4.2 抛物线的几何性质2.5 直线与圆锥曲线第三章空间向量与立体几何3.1 空间向量及其运算3.1.1 空间向量的线性运算3.1.2 空间向量的基本定理3.1.3 空间向量的数量积3.1.4 空间向量的直角坐标运算3.2 空间向量在立体几何中的应用3.2.1 直线的方向向量与直线的向量方程3.2.2 平面的法向量与平面的向量表示3.2.3 直线与平面的夹角3.2.4 二面角及其度量3.2.5 距离(选学)数学选修2-2第一章导数及其应用1.1 导数1.1.1 函数的平均变化率1.1.2 瞬时速度与导数1.1.3 导数的几何意义1.2 导数的运算1.2.1 常数函数与幂函数的导数1.2.2 导数公式表及数学软件的应用1.2.3 导数的四则运算法则1.3 导数的应用1.3.1 利用导数判断函数的单调性1.3.2 利用导数研究函数的极值1.3.3 导数的实际应用1.4 定积分与微积分基本定理1.4.1 曲边梯形面积与定积分1.4.2 微积分基本定理第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与分析法2.2.2 反证法2.3 数学归纳法 2.3.1 数学归纳法2.3.2 数学归纳法应用举例第三章数系的扩充与复数3.1 数系的扩充与复数的概念3.1.1 实数系3.1.2 复数的概念3.1.3 复数的几何意义3.2 复数的运算3.2.1 复数的加法与减法3.2.2 复数的乘法3.2.3 复数的除法数学选修2-3第一章计数原理1.1 基本计数原理1.2 排列与组合1.2.1 排列1.2.2 组合1.3 二项式定理1.3.1 二项式定理1.3.2 杨辉三角第二章概率2.1 离散型随机变量及其分布列2.1.1 离散型随机变量2.1.2 离散型随机变量的分布列2.1.3 超几何分布2.2 条件概率与事件的独立性2.2.1 条件概率2.2.2 事件的独立性2.2.3 独立重复试验与二项分布2.3 随机变量的数字特征2.3.1 离散型随机变量的数学期望2.3.2 离散型随机变量的方差2.4 正态分布第三章统计案例3.1 独立性检验3.2 回归分析数学选修4-5不等式选讲第一章不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.1.1 不等式的基本性质1.1.2 一元一次不等式和一元二次不等式的解法1.2 基本不等式1.3 绝对值不等式的解法1.3.1 |ax+b|≤c、|ax+b|≥c型不等式的解法1.3.2 |x-a|+|x-b|≥c、|x-a|+|x-b|≤c型不等式的解法1.4 绝对值的三角不等式1.5 不等式证明的基本方法1.5.1 比较法1.5.2 综合法和分析法1.5.3 反证法和放缩法第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2.1.1 平面上的柯西不等式的代数和向量形式2.1.2 柯西不等式的一般形式及其参数配置方法的证明2.2 排序不等式2.3 平均值不等式(选学)2.4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3.1 数学归纳法原理3.1.1 数学归纳法原理3.1.2 数学归纳法应用举例3.2 用数学归纳法证明不等式,贝努利不等式3.2.1 用数学归纳法证明不等式3.2.2 用数学归纳法证明贝努利不等式。
【非常学案】高中数学 2.1.2 数列的递推公式课件 新人教B版必修5
1.由递推公式求通项公式的三个步骤 第一步: 先根据递推公式写出数列的前几项(至少是前 3 项); 第二步:根据写出的前几项,观察归纳其特点,并把每一项 统一形式; 第三步:写出一个通项公式并证明.
an 2 . (1) 当 = g(n)(n≥2) 满 足 一 定 条 件 时 , 常 用 an = an-1 an an-1 an-2 a2 · · · „· · a1 累乘法求 an. a an-1 an-2 an-3 1 (2)当 an-an-1=f(n)(n≥2)满足一定条件时,常用 an=(an- an-1)+(an-1-an-2)+„+(a2-a1)+a1 累加来求通项 an.
教 学 教 法 分 析 课 前 自 主 导 学 课 堂 互 动 探 究
易 错 易 误 辨 析 当 堂 双 基 达 标 课 后 知 能 检 测 教 师 备 课 资 源
2.1.2 数列的递推公式(选学)
●三维目标 1.知识与技能 了解数列的递推公式,明确递推公式与通项公式的异同;会 根据数列的递推公式写出数列的前几项; 理解数列的前 n 项和与 an 的关系.
【解】 ∵a1=3,an+1=2an+1, ∴a2=2×3+1=7,a3=2×7+1=15, a4=2×15+1=31,a5=2×31+1=63, a6=2×63+1=127.
由 a1=3,a2=7,a3=15,a4=31,a5=63,a6=127, 可以看出,如果给每一项均加上 1,就变成了 a1+1=22,a2+1=23,a3+1=24, a4+1=25,a5+1=26,a6+1=27, ∴可猜想出:an+1=2n+1, ∴an=2n+1-1.
1 1 已知数列{an}中,a1=1, - = ,求数列{an}的通项公 an+1 an 2 式.
人教新课标版数学高二B必修5学案 数列的递推公式
2.1.2数列的递推公式(选学)明目标、知重点 1.理解递推公式是数列的一种表示方法.2.能根据递推公式写出数列的前n 项.3.掌握由一些简单的递推公式求通项公式的方法.1.递推公式如果已知数列的第一项(或前几项),且从第二项(或某一项)开始的任一项a n与它的前一项a n(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.-12.数列的表示方法数列的表示方法有通项公式法、图象法、列表法、递推公式法.某人有一对新生的兔子饲养在围墙中,如果它们每个月生一对兔子,且新生的兔子从第三个月开始也是每个月生一对兔子,问一年后围墙中共有多少对兔子?对此问题的研究产生了著名斐波那契数列{a n}:1,1,2,3,5,8,13,21,34,55,89,144,…,此数列具有a n+1=a n+a n-1的特性,我们称之为数列的递推公式,这正是本节我们要研究的重点内容.探究点一数列的递推公式思考1观察:1,3,7,15,31,63这些数有什么规律吗?如何用一个代数式表示出该数列的规律?答首项为1,从第2项起每一项等于它的前一项的2倍再加1.即a n=2a n-1+1(n>1且n∈N +).思考2观察下面两个数列如何用首项及相邻两项的关系表示出这两个数列?(1)a1=2,a2=4,a3=8,a4=16,a5=32,…;(2)1,cos 1,cos(cos 1),cos(cos(cos 1)),….答(1)a1=2,从第2项开始,每一项是它前一项的2倍,因此该数列可以用如下方式表示:a1=2,a n=2a n-1 (n=2,3,4,…);(2)a1=1,a n=cos(a n-1) (n=2,3,4,…).小结像上面那样,如果已知数列的第1项(或前几项),且从第2项(或某一项)开始的任一项a n 与它的前一项a n -1(或前几项)间的关系可以用一个公式表示,那么这个公式就叫做这个数列的递推公式,递推公式也是给出数列的一种方法.例1 已知数列{a n }的第1项是2,以后各项由公式a n =a n -11-a n -1给出,写出这个数列的前5项.解 a 1=2,a 2=21-2=-2,a 3=-21-(-2)=-23,a 4=-231-(-23)=-25,a 5=-251-(-25)=-27.反思与感悟 递推公式反映的是相邻两项(或几项)之间的关系.对于通项公式,已知n 的值即可得到相应的项;而递推公式则要已知首项(或前几项),才可求得其他的项.跟踪训练1 在数列{a n }中,已知a 1=2,a 2=3,a n +2=3a n +1-2a n (n ≥1),写出此数列的前6项.解 a 1=2,a 2=3,a 3=3a 2-2a 1=3×3-2×2=5, a 4=3a 3-2a 2=3×5-2×3=9, a 5=3a 4-2a 3=3×9-2×5=17, a 6=3a 5-2a 4=3×17-2×9=33.例2 已知直线l :y =x 与曲线C :y =(12)x (如图所示),过曲线C 上横坐标为1的一点P 1作x 轴的平行线交l 于Q 2,过Q 2作x 轴的垂线交曲线C 于P 2,再过P 2作x 轴的平行线交l 于Q 3,过Q 3作x 轴的垂线交曲线C 于P 3,……,设点P 1,P 2,…,P n ,…的纵坐标分别为a 1,a 2, …,a n ,…,试求数列{a n }的递推公式. 解 由题意,点P 1的横坐标为1,纵坐标为a 1=12,点Q n +1与P n 的纵坐标相同,都是a n ,同时点P n +1与Q n +1的横坐标相等,点P n +1在曲线C : y =(12)x 上,由横坐标得它的纵坐标为1()2n a即a n +1=1()2n a这就是数列{a n }的递推公式.反思与感悟 解答本例的关健是在读懂题意的前提下,通过具体的点P 2与点Q 2的横坐标相等及点Q 2与点P 1的纵坐标相同,抽象出一般性的点Q n +1与P n 的纵坐标相同,点P n +1与Q n+1的横坐标相等,从而找到了a n +1与a n 的关系.跟踪训练2 数列{a n }中,a n +1=a n +2(n ∈N +),则点A 1(1,a 1),A 2(2,a 2),…,A n (n ,a n )分布在( )A .直线上,且直线的斜率为-2B .抛物线上,且抛物线的开口向下C .直线上,且直线的斜率为2D .抛物线上,且抛物线的开口向上 答案 C解析 ∵a n -a n -1n -(n -1)=a n -a n -1=2(n ≥2),∴A 1,A 2,A 3,…,A n 在斜率为2的直线上.故选C.探究点二 数列的递推公式的应用思考1 对于任意数列{a n },等式:a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=a n 都成立.试根据这一结论,已知数列{a n }满足:a 1=1,a n +1-a n =2,求通项a n . 答 a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)()(1)212222112 1.n n n -=+++⋅⋅⋅+-+=-个=思考2 若数列{a n }中各项均不为零,则有a 1·a 2a 1·a 3a 2·…·a na n -1=a n 成立.试根据这一结论,已知数列{a n }满足:a 1=1,a n a n -1=n -1n (n ≥2),求通项a n .答 a n =a 1·a 2a 1·a 3a 2·…·a n -1a n -2·a n a n -1=1·12·23·…·n -2n -1·n -1n=1n .例3 已知数列{a n },a 1=1,以后各项由a n =a n -1+1n (n -1)(n ≥2)给出.(1)写出数列{a n }的前5项; (2)求数列{a n }的通项公式. 解 (1)a 1=1;a 2=a 1+12×1=32;a 3=a 2+13×2=53;a 4=a 3+14×3=74;a 5=a 4+15×4=95.(2)由a n =a n -1+1n (n -1)得a n -a n -1=1n (n -1)(n ≥2),∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)+a 1 =1n (n -1)+1(n -1)(n -2)+…+13×2+12×1+1=(1n -1-1n )+(1n -2-1n -1)+…+(12-13)+(1-12)+1=-1n +1+1=2-1n =2n -1n (n ∈N +).反思与感悟 由递推公式求通项公式的技巧(1)由数列的递推公式求通项公式是数列的重要问题之一,是高考考查的热点,累加法、累乘法、迭代法是解决这类问题的常用技巧.(2)当a n -a n -1=f (n )且满足一定条件时,常用a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1来求a n . (3)当a n a n -1=f (n )且满足一定条件时,常用a n =a n a n -1·a n -1a n -2·…·a 3a 2·a 2a 1·a 1来求a n .已知数列递推公式求数列某一项时,依次将项数n 的值代入即可.跟踪训练3 已知数列f (x )=2x -2-x ,数列{a n }满足f (log 2a n )=-2n . (1)求数列{a n }的通项公式; (2)证明:数列{a n }是递减数列.(1)解 因为f (x )=2x -2-x ,f (log 2a n )=-2n , 所以22log log 222nn a a n --=-,a n -1a n=-2n ,所以a 2n +2na n -1=0,解得a n =-n ±n 2+1.因为a n >0,所以a n =n 2+1-n .(2)证明 a n +1a n=(n +1)2+1-(n +1)n 2+1-n=n2+1+n(n+1)2+1+(n+1)<1.又因为a n>0,所以a n+1<a n,所以数列{a n}是递减数列.1.数列1,3,6,10,15,…的递推公式是()A.a n+1=a n+n,n∈N+B.a n=a n-1+n,n∈N+,n≥2C.a n+1=a n+(n+1),n∈N+,n≥2D.a n=a n-1+(n-1),n∈N+,n≥2答案B2.已知数列{a n}满足a1=2,a n+1-a n+1=0(n∈N+),则此数列的通项a n等于()A.n2+1 B.n+1 C.1-n D.3-n答案D解析∵a n+1-a n=-1.∴a n=a1+(a2-a1)+(a3-a2)+…+(a n-a n-1)=2(1)(1)(1)n+-+-+⋅⋅⋅+-共(-1)个=2+(-1)×(n-1)=3-n.3.用火柴棒按下图的方法搭三角形:按图示的规律搭下去,则所用火柴棒数a n与所搭三角形的个数n之间的关系式可以是______________.答案a n=2n+1解析a1=3,a2=3+2=5,a3=3+2+2=7,a4=3+2+2+2=9,…,∴a n=2n+1. 4.已知:数列{a n}中,a1=1,a n+1=nn+1a n.(1)写出数列的前5项;(2)猜想数列的通项公式.解(1)a1=1,a2=11+1×1=12,a3=21+2×12=13,a4=31+3×13=14,a5=41+4×14=15.(2)猜想:a n =1n .1.递推公式的理解与应用(1)与所有的数列不一定都有通项公式一样,并不是所有的数列都有递推公式.(2)递推公式也是给出数列的一种重要方法,递推公式和通项公式一样都是关于项数n 的恒等式,如果用符合要求的正整数依次去替换n ,就可以求出数列的各项.(3)递推公式通过赋值逐项求出数列的项,直至求出数列的任何一项和所需的项.(4)运用递推法给出数列,不容易了解数列的全貌,计算也不方便,所以我们经常用它得出数列的通项公式或者得到一个特殊数列,比如具有周期性质的数列. 2.数列的通项公式与递推公式的作用和联系通项公式递推公式作用通项公式是给出数列的主要形式,由通项公式可求出数列的各项及指定项,也可以解决数列的性质问题(如增减性,最值等).数列的递推公式是给出数列的另一重要形式.由递推公式可以依次求出数列的各项.联系数列的通项公式与递推公式可以相互转化,如数列1,3,5,…,2n -1,…的一个通项公式为a n =2n -1(n ∈N +).用递推公式表示为a 1=1,a n =a n -1+2(n ≥2,n ∈N +)一、基础过关1.已知a n +1-a n -3=0,则数列{a n }是( ) A .递增数列 B .递减数列 C .常数列 D .不能确定答案 A2.已知数列{a n }的首项为a 1=1,且满足a n +1=12a n +12n ,则此数列的第4项是( )A .1 B.12 C.34 D.58答案 B3.数列{a n }中,a 1=1,对所有的n ≥2,都有a 1·a 2·a 3·…·a n =n 2,则a 3+a 5等于( )A.259B.2516C.6116D.3115 答案 C解析 a 1a 2a 3=32,a 1a 2=22, a 1a 2a 3a 4a 5=52,a 1a 2a 3a 4=42,则a 3=3222=94,a 5=5242=2516.故a 3+a 5=6116.4.在数列{a n }中,a 1=2,a n +1=a n +ln ⎝⎛⎭⎫1+1n ,则a n 等于( ) A .2+ln n B .2+(n -1)ln n C .2+n ln n D .1+n +ln n答案 A解析 ∵a n +1=a n +ln ⎝⎛⎭⎫1+1n , ∴a n +1-a n =ln ⎝⎛⎭⎫1+1n =ln n +1n =ln(n +1)-ln n . 又a 1=2,∴a n =a 1+(a 2-a 1)+(a 3-a 2)+(a 4-a 3)+…+(a n -a n -1)=2+=2+ln n -ln 1=2+ln n . 5.已知数列{a n }满足a 1=0,a 2=2,且对任意m ,n ∈N +都有a 2m -1+a 2n -1=2a m +n -1+2(m -n )2.则a 3,a 5分别等于________. 答案 6,20解析 由题意,令m =2,n =1则a 3+a 1=2a 2+2,所以a 3=6,令m =3,n =1则a 5+a 1=2a 3+2×4, 所以a 5=20.6.设a n =1n +1+1n +2+1n +3+…+12n (n ∈N +),那么a n +1-a n 等于____________.答案12n +1-12n +2解析 ∵a n =1n +1+1n +2+1n +3+…+12n∴a n +1=1n +2+1n +3+…+12n +12n +1+12n +2,∴a n +1-a n =12n +1+12n +2-1n +1=12n +1-12n +2.7.根据下列各个数列{a n }的首项及其递推公式,写出数列的前5项,并归纳出通项公式; (1)a 1=0,a n +1=a n +(2n -1),n ∈N +; (2)a 1=1,a n +1=2a na n +2,n ∈N +.解 (1)因为a 1=0,a n +1=a n +(2n -1),n ∈N +; 所以,a 2=1,a 3=4,a 4=9,a 5=16, 归纳出它的通项公式是a n =(n -1)2.(2)a 2=2a 1a 1+2=23,a 3=2a 2a 2+2=12,a 4=2a 3a 3+2=25,a 5=2a 4a 4+2=13,归纳出它的通项公式是a n =2n +1.二、能力提升8.若a 1=1,a n +1=a n3a n +1,则给出的数列{a n }的第4项是( )A.116B.117C.110D.125答案 C解析 a 2=a 13a 1+1=13+1=14,a 3=a 23a 2+1=1434+1=17,a 4=a 33a 3+1=1737+1=110.9.已知数列{a n }满足a n +1=⎩⎨⎧2a n ⎝⎛⎭⎫0≤a n <12,2a n-1⎝⎛⎭⎫12≤a n<1.若a 1=67,则a 2 014=________.答案 67解析 计算得a 2=57,a 3=37,a 4=67,故数列{a n }是以3为周期的周期数列, 又知2 014除以3余1,所以a 2 014=a 1=67.10.根据下列条件,写出数列的前四项,并归纳猜想它的通项公式.(1)a 1=1,a n +1=a n +a nn +1(n ∈N +); (2)a 1=-1,a n +1=a n +1n (n +1)(n ∈N +).解 (1)a 1=1,a 2=32,a 3=42=2,a 4=52.猜想a n =n +12.(2)a 1=-1,a 2=-12,a 3=-13,a 4=-14.猜想a n =-1n.11.已知数列{a n }满足a 1=12,a n a n -1=a n -1-a n ,求数列{a n }的通项公式.解 ∵a n a n -1=a n -1-a n ,∴1a n -1a n -1=1.∴1a n =1a 1+⎝⎛⎭⎫1a 2-1a 1+⎝⎛⎭⎫1a 3-1a 2+…+⎝⎛⎭⎪⎫1a n -1a n -1=(1)12111n -+++⋅⋅⋅+个=n +1. ∴1a n =n +1,∴a n =1n +1. 12.数列{a n }中,a 1=2,a n +1=n +1n a n,求{a n }的通项公式. 解 ∵a n +1=n +1n a n ,∴a n +1a n =n +1n .∴a 2a 1=2,a 3a 2=32,a 4a 3=43,…,a n a n -1=nn -1. 把上述等式相乘,得a 2a 1×a 3a 2×a 4a 3×…×a n a n -1=2×32×43×…×n n -1, 即a na 1=n ,而a 1=2,∴a n =2n . 三、探究与拓展13.设{a n }是首项为1的正项数列,且(n +1)a 2n +1-na 2n +a n +1a n =0(n =1,2,3,…),求它的通项公式.解 ∵(n +1)a 2n +1-na 2n +a n a n +1=0,∴(a n +1+a n )=0. 又∵a n >0,∴a n +1+a n >0.∴(n +1)a n +1-na n =0,即a n +1a n =nn +1.∴a 2a 1·a 3a 2·a 4a 3·…·a n a n -1=12×23×34×…×n -1n . ∴a n a 1=1n .又a 1=1,∴a n =1n.。
数学:2.1.2《数列的递推公式》课件(1)(新人教B版必修5) (2)
以上6个数列的公差本资分料别由书为利华…教育网(又名数理
5
化网)为您整理
等差数列的通项公式
如果一个数列 a1, a2 , a3 , …,an , …,
是等差数列,它的公差是d,那么
a2 a1 d a3 a2 d (a1 d ) d a1 2d
A ab 2
本资料由书利华教育网(又名数理
10
化网)为您整理
等差数列的的例题1-2
an a1 (n 1)d
例1 求等差数列8,5,2,…,的第20项。
解: a1 8, d 5 8 3, n 20,
a20 8 (20 1) (3) 49
本资料由书利华教育网(又名数理
9
化网)为您整理
等差中项
观察如下的两个数之间,插入一个什么数后者三个数就会成
为一个等差数列:
(1)2 ,3 , 4 (3)-12, -6 ,0
(2)-1,2 ,5 (4)0, 0 ,0
如果在a与b中间插入一个数A,使a,A,b成等差数列, 那么A叫做a与b的等差中项。
(3) 7x, 3x,-x,-5x,-9x,… 公差 d= -4x
(4) 2,0,-2,-4,-6,…
公差 d= -2 递减数列
(5) 5,5,5,5,5,5,… 公差 d=0 非零常数列
(6) 0,0,0,0,0,…
公差 d=0 零常数列
定义:如果一个数列从第2项起,每一项与它的前一项的差等 于同一个常数(指与n无关的数),这个数列就叫做等差数列, 这个常数叫做等差数列的公差,公差通常用字母d表示。
8
7
●
6
高中数学第二章函数2.1.1函数2.1.2函数的表示方法学习导航学案新人教B版必修1
函数-2.1.2 函数表示方法自主整理设集合A是一个非空数集,对A内任意数x,按照确定法那么f,都有唯一确定数值y与它对应,那么这种对应关系叫做集合A上一个函数,记作y=f(x),x∈A.其中,x叫做自变量,自变量取值范围A叫做函数定义域;如果自变量取值a,那么由法那么f确定值y称作函数在a处函数值,记作y=f(a)或y|x=a.所有函数值构成集合{y|y=f(x),x∈A}叫做函数值域.函数定义含有三个要素,即定义域A、值域C与对应法那么f.当且仅当两个函数定义域与对应法那么都分别一样时,这两个函数才是同一个函数.(1)在数轴上,区间可以用一条以a,b为端点线段来表示(如下表).用实心点表示端点包括在区间内,用空心点表示端点不包括在区间内.定义名称符号数轴表示{x|a≤x≤b}闭区间[a,b]{x|a<x<b}开区间(a,b){x|a≤x<b}半开半闭区间[a,b){x|a<x≤b}半开半闭区间(a,b](2)无穷区间概念:关于-∞,+∞作为区间一端或两端区间称为无穷区间,它定义与符号如下表:{x|x≥a}[a,+∞){x|x>a}(a,+∞){x|x≤a}(-∞,a]{x|x<a}(-∞,a)R(-∞,+∞)取遍数轴上所有值设A、B是两个非空集合,如果按某种对应法那么f,对A内任意一个元素x,在B中有一个且仅有一个元素y与x对应,那么称f是集合A 到集合B映射.这时,称y是x在映射f作用下象,记作f(x).于是y=f(x),x称作y原象,映射f也可记为f:A→B,x→f(x).其中A叫做映射f定义域(函数定义域推广),由所有象f(x)构成集合叫做映射f值域,通常记作f(A).(1)列表法:通过列出自变量与对应函数值表来表达函数关系方法;(2)图象法:就是用函数图象来表达函数关系;(3)解析法:如果在函数y=f(x)(x∈A)中,f(x)是用代数式(或解析式)来表达,那么这种表达函数方法叫做解析法(也称公式法).在函数定义域内,对于自变量x不同取值区间,有着不同对应法那么,这样函数通常叫做分段函数.高手笔记1.(1)“y=f(x)〞中“f〞是函数符号,可以用任意字母表示,如“y=g(x)〞;(2)函数符号“y=f(x)〞中f(x)表示与x对应函数值,是一个数,而不是f 乘x.2.对应法那么可以有多种形式给出,可以是解析法,可以是列表法与图象法,不管是哪种形式,都必须是确定,且使集合A中每一个元素在B 中都有唯一元素与之对应.3.函数是建立在两个非空数集间一种对应,假设将其中条件“非空数集〞弱化为“任意两个非空集合〞,按照某种法那么可以建立起更为普通元素之间对应关系,这种对应就叫映射.A到B映射与B到A映射是截然不同.4.区间与数轴是严密联系在一起,在识别与使用区间符号时都不能脱离开数轴.区间端点值取舍是很容易出错地方,一定要准确判断是该用小括号还是中括号,正确书写.在用数轴表示时也要注意实心点与空心点区别.对于某些不能用区间表示集合就仍用集合符号表示.5.对于分段函数问题,一般要分别转化成在定义域内每一个区间上来解决.要明确分段函数是一个函数,不是多个函数,只是这个函数较为特殊,不像一般函数可以用一个解析式表示,而只能分段表示.分段函数画法要领是根据各段上函数解析式,分段画出各段图象.6.假设y=f(u),u=g(x),x∈(a,b),u∈(m,n),那么y=f[g(x)]称为复合函数,u称为中间变量,它取值范围是g(x)值域与(m,n)交集.名师解惑1.如何理解构成函数三要素:定义域、对应关系与值域求值域有几种常用方法剖析:(1)解决一切函数问题必须认真确定该函数定义域,函数定义域包含三种形式:①自然型:指函数解析式有意义自变量x取值范围(如:分式函数分母不为零,偶次根式函数被开方数为非负数,等等);②限制型:指命题条件或人为对自变量x限制,这是函数学习重点,往往也是难点,因为有时这种限制比拟隐蔽,不容易注意,或者即使注意到,在解题时却忘记用到;③实际型:解决函数综合问题与应用问题时,应认真考察自变量x实际意义.(2)求函数值域是比拟困难数学问题,中学数学要求能用初等方法求一些简单函数值域问题.求法主要有以下几种:①配方法(转化为二次函数);②判别式法(转化为二次方程);③不等式法(运用不等式各种性质);④函数法(运用根本函数性质或抓住函数单调性、函数图象等).2.函数有哪几种表示法?各有什么优点与缺乏?剖析:(1)表示函数有三种方法:解析法,列表法,图象法.现实生活中如:商场各种商品与其价格之间函数关系就是用列表法表示;房地产公司出售商品房,总价格与面积之间函数关系就是用解析式来表示;工厂每月产量与月份之间函数关系是用图表来表示.(2)表示函数三种方法优点与缺乏,分别说明如下.①用解析式表示函数优点是简明扼要、标准准确.可以利用函数解析式求自变量x=a时对应函数值,还可利用函数解析式列表、描点、画函数图象,进而研究函数性质,又可利用函数解析式构造特点,分析与发现自变量与函数间依存关系,猜测或推导函数性质(如对称性、增减性等),探求函数应用等.缺乏之处是有些变量与函数关系很难或不能用解析式表示,求x与y对应值需要逐个计算、有时比拟繁杂.②列表法优点是能鲜明地显现出自变量与函数值之间数量关系,于是一些数学用表应运而生.如用立方表、平方根表分别表示函数.商店职员也制作售价与数量关系计价表,方便收款.列表法缺点是只能列出局部自变量与函数对应值,难以反映函数变化全貌.③用图象表示函数优点是形象直观,清晰呈现函数增减变化、点对称、最大(或小)值等性质.图象法缺乏之处是所画出图象是近似、局部,观察或由图象确定函数值往往不够准确.由于以上表示函数三种方法具有互补性,因此在实际研究函数时,通常是三种方法交替使用.3.如何理解映射?为什么说映射是一种特殊对应剖析:(1)理解映射概念,必须注意以下几点:①方向性,“集合A到集合B映射〞与“集合B到集合A映射〞往往不是同一个映射;②非空性,集合A、B必须是非空集合;③唯一性,对于集合A中任何一个元素,集合B中都是唯一确定元素与之对应,这是映射唯一性,也可以说“在集合B中〞,A中任一元素象必在集合B中,也叫映射封闭性.④存在性,就是说对集合A中任何一个元素,集合B中都有元素与它对应,这是映射存在性.(2)映射也是两个集合A与B元素之间存在某种对应关系.说其是一种特殊映射,就是因为它只允许存在“一对一〞与“多对一〞这两种对应,而不允许存在“一对多〞对应.映射中对应法那么f是有方向,一般来说从集合A到集合B映射与从集合B到集合A映射是不同.讲练互动【例题1】以下各组中两个函数表示同一个函数是…( )A.f(x)=x,g(x)=n n x22B.f(n)=2n+1(n∈Z),g(n)=2n-1(n∈Z)C.f(x)=x-2,g(t)=t-2D.f(x)=,g(x)=1+x解析:两个函数一样必须有一样定义域、值域与对应法那么.A中两函数值域不同;B中虽然定义域与值域都一样,但对应法那么不同;C 中尽管表示自变量两个字母不同,但两个函数三个要素是一致,因此它们是同一函数;D中两函数定义域不同.答案:C绿色通道给定两个函数,要判断它们是否是同一函数,主要看两个方面:一看定义域是否一样;二看对应法那么是否一致.只有当两函数定义域一样且对应法那么完全一致时,两函数才可称为同一函数.只要三者中有一者不同即可判断不是同一个函数,比方上面对A判断即属此.变式训练1.判断以下各组中两个函数是否为同一函数,并说明理由.(1)y=x-1,x∈R 与y=x-1,x∈N ; (2)y=42-x 与y=22+•-x x ; (3)y=1+x 1与u=1+v1;(4)y=x 2与y=x 2x ;(5)y=2|x|与y=分析:判断两个函数是否为同一函数,应着眼于两个函数定义域与对应法那么比拟,而求定义域时应让原始解析式有意义,而不能进展任何非等价变换,对应法那么判断需判断它本质是否一样而不是从外表形式上下结论.解:(1)不同,因为它们定义域不同.(2)不同,前者定义域是x≥2或x≤-2,后者定义域是x≥2.(3)一样,定义域均为非零实数,对应法那么都是自变量取倒数后加1.(4)不同,定义域是一样,但对应法那么不同.(5)一样,将y=2|x|利用绝对值定义去掉绝对值结果就是y=【例题2】设f,g 都是由A 到A 映射,其对应法那么(从上到下)如下表:表1 映射f 对应法那么原象1 2 3 象 2 3 1 表2 映射g 对应法那么原象123象213试求f[g(1)],g[f(2)],f{g[f(3)]}.分析:此题是将映射概念与复合函数求值相结合一道典型例题,解答此题首先要弄清f[g(x)]含义与映射中原象与象关系,然后再按照有关定义解题.解:∵g(1)=2,f(2)=3,∴f[g(1)]=f(2)=3.又∵g(3)=3,∴g[f(2)]=g(3)=3.∵f(3)=1,g(1)=2,∴f{g[f(3)]}=f[g(1)]=f(2)=3.绿色通道读懂对应法那么f与g含义是解题关键,要弄清在法那么f与g作用下,集合A中元素在集合A中象是什么,要掌握象与原象定义.变式训练2.以下各图中表示对应,其中能构成映射个数是…( )图2-1-1A.4B.3C.2解析:所谓映射,是指多对一或一对一对应且A中每一个元素都必须参与对应.只有图(3)所表示对应符合映射定义,即A中每一个元素在对应法那么下,B中都有唯一元素与之对应.图(1)不是映射,因A中元素c没有参与对应,即违背A中任一元素都必须参与对应原那么.图(2)、图(4)不是映射,这两个图中集合A中元素在B中有多个元素与之对应,不满足A中任一元素在B中有且仅有唯一元素与之对应原那么.综上,可知能构成映射个数为1.答案:D3.(2007山东济宁二模,理10)A={a,b,c},B={-1,0,1},函数f:A→B满足f(a)+f(b)+f(c)=0,那么这样函数f(x)有( )解析:对f(a),f(b),f(c)值分类讨论.当f(a)=-1时,f(b)=0,f(c)=1或f(b)=1,f(c)=0,即此时满足条件函数有2个;当f(a)=0时,f(b)=-1,f(c)=1或f(b)=1,f(c)=-1或f(b)=0,f(c)=0,即此时满足条件函数有3个;当f(a)=1时,f(b)=0,f(c)=-1或f(b)=-1,f(c)=0,即此时满足条件函数有2个.综上所得,满足条件函数共有2+3+2=7(个).应选C.答案:C【例题3】求以下函数值域:(1)y=x2-2x-1,x∈[0,3];(2)y=3x;-2+(3)y=;(4)y=|x-1|+|x-2|.分析:求二次函数值域一般要数形结合,先配方找出对称轴,再考察给定区间与对称轴关系,利用二次函数在对称轴两侧单调性,求出给定区间上最大值与最小值,即可得到函数值域.除数形结合之外,求函数值域方法还有逐步求解法、判别式法、别离常数法与利用有界性等.绝对值函数通常先化为分段函数.解:(1)将原式变形,得y=(x-1)2-2,此函数对称轴为x=1,由于x∈[0,3],∴当x=1时,y 有最小值-2.根据函数对称性知,x=3比x=0时值要大,∴当x=3时,y 有最大值2.∴这个函数值域为[-2,2].(2)易知x≥2,∴2-x ≥0. ∴y=2-x +3≥3.∴这个函数值域为[3,+∞).(逐步求解法)(3)先别离常数,y=1311311222222+-=+-+=+-x x x x x .① 解法一(逐步求解法):∵x 2+1≥1,∴0<≤1.∴1>1≥-2.∴y∈[-2,1).解法二(判别式法):两边同乘x 2+1并移项,得(y-1)x 2+y+2=0. 又由①可知y<1,∴Δ=-4(y-1)(y+2)≥0.∴y∈[-2,1).解法三(利用有界性):∵y≠1,易得x 2=.又∵x 2≥0,∴≥0.∴y∈[-2,1).(4)原函数可化为y=由图2-1-2可知y∈[1,+∞).图2-1-2绿色通道求值域一定要注意定义域限制,一定要在定义域范围内求函数值域.当然,求值域一定要根据函数对应关系来确定.如果我们抓住了这些解决问题关键,求这类问题就能得心应手.变式训练4.函数y=-x2+4x+5(1≤x≤4)值域是…( )A.[5,8]B.[1,8]C.[5,9]D.[8,9]解析:y=-x2+4x+5=-(x-2)2+9(x∈[1,4]).∴当x=2时,y最大=9;当x=4时,y最小=5.∴函数值域为{y|5≤x≤9}.答案:C【例题4】图2-1-3是一个电子元件在处理数据时流程图:图2-1-3(1)试确定y与x函数关系式;(2)求f(-3)、f(1)值;(3)假设f(x)=16,求x值.分析:此题是一个分段函数问题,当输入值x≥1时,先将输入值x加2再平方得输出值y;当输入值x<1时,那么先将输入值x平方再加2得输出值y.解:(1)y=(2)f(-3)=(-3)2+2=11;f(1)=(1+2)2=9.(3)假设x≥1,那么(x+2)2=16,解得x=2或x=-6(舍去).假设x<1,那么x2+2=16,解得x=14(舍去)或x=14-.综上,可得x=2或x=14-.绿色通道通过实例,了解简单分段函数并能简单应用是新课程标准根本要求.对于分段函数来说,给定自变量求函数值时,应根据自变量所在范围利用相应解析式直接求值;假设给定函数值求自变量,应根据函数每一段解析式分别求解,但应注意要检验该值是否在相应自变量取值范围内.变式训练5.(2007山东蓬莱一模,理13)设函数f(n)=k(k∈N*),k是π小数点后第n位数字,π=3.141 592 653 5…,那么等于____________.解析:由题意得f(10)=5,f(5)=9,f(9)=3,f(3)=1,f(1)=1,…,那么有=1.答案:1【例题5】函数f(x+1)=x2-1,x∈[-1,3],求f(x)表达式.分析:函数是一类特殊对应,函数f(x+1)=x2-1,即知道了x+1象是x2-1,求出x象,即是f(x)表达式.求解f(x)表达式此题可用“配凑法〞或“换元法〞.解法一(配凑法):∵f(x+1)=x2-1=(x+1)2-2(x+1),∴f(x)=x2-2x.又x∈[-1,3]时,(x+1)∈[0,4],∴f(x)=x2-2x,x∈[0,4].解法二(换元法):令x+1=t,那么x=t-1,且由x∈[-1,3]知t∈[0,4],∴由f(x+1)=x2-1,得f(t)=(t-1)2-1=t2-2t,t∈[0,4].∴f(x)=(x-1)2-1=x2-2x,x∈[0,4].绿色通道函数f[g(x)]表达式,求f(x)表达式,解决此类问题一般有两种思想方法,一种是用配凑方法,一种是用换元方法.所谓“配凑法〞即把f[g(x)]配凑成关于g(x)表达式,而后将g(x)全用x取代,化简得要求f(x)表达式;所谓“换元法〞即令f[g(x)]中g(x)=t,由此解出x,即用t表达式表示出x,后代入f[g(x)],化简成最简式.需要注意是,无论是用“配凑法〞还是用“换元法〞,在求出f(x)表达式后,都需要指出其定义域,而f(x)定义域即x取值范围应与条件f [g(x)]中g(x)范围一致,所以说求f(x)定义域就是求函数g(x)值域.变式训练6.函数f(x)对于任意实数x满足条件f(x+2)=,假设f(5)=-5,那么f [f(1)]=___________.解析:∵f(x+2)=,∴f(x)=.∴f(1)===f(5)=-5.∴f(1)=-5.∴f[f(1)]=f(-5).又f(-5)=)23(11)3(1)25(1+---=--=+--f f f =f(-1)=51)1(1)21(1--=-=+--f f =51, ∴f[f(1)]=51. 答案:51 7.f(x)=x +11(x∈R 且x≠-1),g(x)=x 2+2(x∈R ), (1)求f(2)、g(2)值.(2)求f [g(2)]值.(3)求f [g(x)]解析式.分析:在解此题时,要理解对应法那么“f〞与“g〞含义,在求f [g(x)]时,一般遵循先里后外原那么.解:(1)f(2)=,g(2)=22+2=6.(2)f [g(2)]=f(6)=.(3)f [g(x)]=f(x 2+2)=.教材链接[思考与讨论]如何检验一个图形是否是一个函数图象写出你检验法那么,图2-1-4所示各图形都是函数图象吗哪些是,哪些不是,为什么图2-1-42-1-4所示各图形中因为(1)、(3)、(4)符合“一对一〞或“多对一〞原那么,所以(1)、(3)、(4)是函数图象,而(2)中有一个x 值对应两个y 值,不满足函数“多对一〞或“一对一〞条件,所以(2)不是函数图象.。
《步步高 学案导学设计》2013-2014学年 高中数学 人教B版必修5【配套备课资源】第二章2.1.2
a2 a3 an-1 an 解 an=a1· · · „· · a1 a2 an-2 an-1 1 2 n-2 n-1 =1··· 2 3 „· · n n-1 1 = . n
研一研·问题探究、课堂更高效
探究点三 问题 数列的周期性
2.1.2
已知数列{an}中,a1=1,a2=2,an+2=an+1-an,试写出
典型例题 例1 已知数列{an},a1=1,以后各项由an+1=an+
2.1.2
本 课 时 栏 目 开 关
1 给 nn+1 1 1 1 出,试用累加法求通项公式an.(提示: = - ). n n+1 nn+1 1 解 ∵an+1-an= , nn+1
∴an=a1+(a2-a1)+(a3-a2)+„+(an-an-1) 1 1 1 =1+ + +„+ 1×2 2×3 n-1n 1 1 1 1 1 - =1+1-2+2-3+„+ n-1 n 1 =2- . n
小结 形如an+1=an+f(n)的递推数列,常用累加法求其通项公 式,关键是不断变换递推公式中的“下标”.
研一研·问题探究、课堂更高效
跟踪训练1 已知a1=1,an+1=an+n,求a100.
解 ∵an+1-an=n, ∴a100=a1+(a2-a1)+(a3-a2)+„+(a100-a99)
本 课 时 栏 目 开 关
研一研·问题探究、课堂更高效
2.1.2
(2)若每年损失树木量为5%,则第n年后的树木量与第(n-1)年的树 木量之间的关系为: 1 1 19 an=an- 11+ n-2(1-5%)= 1+ n-2an-1(n≥2). 2 20 2
本 课 时 栏 目 开 关
《数列的递推公式》公开课学案
学习好资料 欢迎下载 2.1 数列的概念与简单表示法《数列的递推公式》导学案※ 导学准备 ※【学习目标】 1、知识目标⑴了解递推公式的概念;⑵明确递推公式与通项公式的异同; ⑶会由递推公式求数列的有限项. 2、过程与方法 类比,实践,归纳. 3、情感态度价值观①培养大家归纳,类比,特殊、一般的认知能力; ②用独立思考与合作探究的模式去解决问题. 【知识链接】 数列的通项公式. 【学习重难点】重点:利用递推公式求数列的有限项; 难点:递推公式和通项公式的异同.※ 导学过程 ※┍【导学1:复习回顾】┑例题1:已知数列{}n a 的前几项为1,7,13,19,… ⑴ 试写出{}n a 的一个通项公式;⑵ 据⑴的结论判定55和101是不是该数列中的项? 反思:▲通项公式的定义是:________________________ ___________________________________________. ▲知道一个数列的通项公式有什么作用?___________________________________________________________________________________________________________________________________. ▲数列是定义在*N 上的函数,从这个角度上去认识通项,其就是函数的__________,记作()n a f n =,数列的图像是__________ 变式⒈⑴ 例题1中的数列,项与项之间的关系是什么?⑵ 已知数列{}n a 的前几项为1,1,2,3,5,8,13,21, …,你能发现其中项与项之间的关系吗?┍【导学2:递推公式】┑例题2:已知数列{}n a 满足下列条件,写出它的前5项⑴ 11a =,12n n a a +=+ ⑵ 11a =,12n n a a +=⑶ 11a =,132n n a a -=+, (n 1)> 反思:▲例题2中的三个小题中出现的等式是通项公式吗?______________,▲利用这些等式求出了对应数列的前5项,理想状态下,数列的其他项可以都求出来吗?_________,求解方法是:对n 进行_______.▲像题中给出数列的方法叫做___________,其中这些等式(如12n n a a +=+,12n n a a +=…)叫做_________,其定义是:如果已知数列{}n a 的首项(或前几项),且从第2项(或某一项)开始的任一项n a 与它的前一项1n a -(或前几项)间的关系可以用一个公式表示,那么这个公式就叫做这个数列的递推公式.※ 导学评价 ※变式⒉写出下面数列{}n a 的前5项学习好资料 欢迎下载⑴114a =-,111,(1)n n a n a -=->⑵11,a =22a =,12,(2)n n n a a a n --=+>⑶10,a =1(2n 1)n n a a +=+-变式⒊给出下面的图形及对应的点数,在空格和括号中分别填上适当的图形和点数,并写出它的一个递推公式.⑴ ●● ● ● ●● ● ● ● ●● ● ________________;1 4 7 ( )⑵ ●●●●●●●●● ●●●●●●●● ●●●● ●●●●● ________________;3 8 15 ( )※ 小结 ※▲通项公式可以确定一个数列,通过今天的学习你能收获确定数列的另外一种方法吗?_________________________________________ ▲请思考“通项公式”和“递推公式”有何异同? ___________________________________________________________________________________________________________________________________.想一想?递推公式和通项公式可以互相转化吗? ※ 预习探究:由递推公式求通项公式 ※例题 3 :数列{}n a 中,11a =,12n n a a +=+,试求数列的通项公式?提示1:写出前几项,能归纳吗? 提示2:观察12n n a a +=+,对n 赋值.能得到212a a =+ 322a a =+ :122n n a a --=+ 12,(n 1)n n a a -=+> 由这些式子求得n a 吗?变式⒋已知{}n a 满足:10a =,1n n a a n +=+,求数列{}n a 的通项公式(提示:(1)122n n n ++++=) 反思:▲用自己的体会将以上方法命名:___________ ▲以上方法的操作过程中应该注重哪些细节? _______________________________________________________________________________________.▲以后遇到什么类型的递推公式可以用以上方法,尝试归纳:。
高中数学 第二章 数列 2.1.2 数列的递推公式(选学)课
6
预课当解习堂导讲检学义测∵a1=0,an+1=an+栏CON(目T2EnN索T-S PA引1G)E, ∴a2=a1+(2×1-1)=0+1=1; a3=a2+(2×2-1)=1+3=4; a4=a3+(2×3-1)=4+5=9; a5=a4+(2×4-1)=9+7=16. 故该数列的一个通项公式是an=(n-1)2.
1 2
2
.
2.1.2 数列的递推公式(选学)
挑重当战点堂自难训我点练,点个体点个验落击成实破功
12
预课当(2习堂)这导讲检个学义测数列从第几项开始及其栏以目后索各引项均小于
解 ∵bn=n-21n=12(n-12)2C-ON18TE,NTS PAGE
1
010挑重当0?战点堂自难训我点练,点个体点个验落击成实破功
2.1.2 数列的递推公式(选学)
11
预课当习堂导讲检学义测
解
an=aan-n 1·aann- -12·…栏C·OaaN目32TE·Naa索T21S·PaA引G1E
=(12)n-1·(12)n-2·…·(12)2·(12)1·1
(n 1)n
=(12)1+2+…+(n-1)=
1 2
2
,
(n 1)n
∴an=
答案 数列的项与对应的序号能构成函数关系.数列的一般形式可 以写成:a1,a2,a3,…,an,….除了列举法外,数列还可以用公 式法、列表法、图象法来表示.
2.1.2 数列的递推公式(选学)
4
预课当[预习堂导讲检习学义测导引] 1.递推公式
栏目索引
CONTENTS PAGE
挑重当战点堂自难训我点练,点个体点个验落击成实破功
2.1.2 数列的递推公式(选学)
挑战自我,点点落实 重点难点,个个击破 当堂训练,体验成功
湖北省高三数学必修五第二章数列2.1.2数列的递推公式选学教案
地出现 2,12,-1 这三个数,也就是说 a1=a4,a2=a5,…,an=an+3,….
课堂篇 合作学习
-6-
1.1.1 正弦定理
探究一
探究二
思维辨析 当堂检测
首页
课前篇 自主预习
课堂篇 合作学习
反思感悟由递推公式写出数列的项的方法 1.根据递推公式写出数列的前几项,首先要弄清楚公式中各部分 的关系,然后依次代入计算即可. 2.解答这类问题时还需注意:若知道的是首项,通常将所给公式整 理成用前面的项表示后面的项的形式. 3.若知道的是末项,通常将所给公式整理成用后面的项表示前面 的项的形式.
递推公式转化为通项公式进行研究.
(1)解法一:(累加法)∵a1=1,an+1-an=2, ∴a2-a1=2,a3-a2=2,a4-a3=2,…,an-an-1=2,将这些式子的两边分别相
加得(a2-a1)+(a3-a2)+(a4-a3)+…+(an-an-1)=2(n-1),即an-a1=2(n-1).
课堂篇 合作学习
-14-
1.1.1 正弦定理
探究一
探究二
思维辨析 当堂检测
首页
课前篇 自主预习
1.下列说法错误的是( ) A.递推公式也是数列的一种表示方法 B.an=an-1,a1=1(n≥2)是递推公式 C.给出数列的方法只有图象法、列表法、通项公式 D.an=2an-1,a1=2(n≥2)是递推公式 解析:通过图象、列表、通项公式我们可以确定一个数列,另外根 据递推公式和数列的第一项,我们也可以确定数列,它也是给出数 列的一种方法.an=an-1(n≥2)与an=2an-1(n≥2),这两个关系式虽然比 较特殊,但都表示的是数列中的任意项与它的前后项间的关系,且 都已知a1,所以都是递推公式. 答案:C
高中数学教材人教B版目录(详细版)
数学①必修第一章集合1.1 集合与集合的表示方法1.1.1 集合的概念1.1.2 集合的表示方法1.2 集合之间的关系与运算1.2.1 集合之间的关系1.2.2 集合的运算第二章函数2.1 函数2.1.1 函数2.1.2 函数的表示方法2.1.3 函数的单调性2.1.4 函数的奇偶性2.1.5 用计算机作函数的图像(选学)2.2 一次函数和二次函数2.2.1 一次函数的性质和图像2.2.2 二次函数的性质和图像2.2.3 待定系数法2.3 函数的应用(I)2.4 函数与方程2.4.1 函数的零点2.4.2 求函数零点近似解的一种近似方法——二分法第三章基本初等函数(I)3.1 指数与指数函数3.1.1 有理指数幂及其运算3.1.2 指数函数3.2 对数与对数函数3.2.1 对数及其运算3.2.2 对数函数3.2.3 指数函数与对数函数的关系3.3 幂函数3.2 函数的应用(II)数学②必修第一章立体几何初步1.1 空间几何体1.1.1 构成空间几何体的基本元素1.1.2 棱柱、棱锥和棱台的结构特征1.1.3 圆柱、圆锥、圆台和球1.1.4 投影与直观图1.1.5 三视图1.1.6 棱柱、棱锥、棱台和球的表面积1.1.7 柱、锥、台和球的体积1.2 点、线、面之间的位置关系1.2.1 平面的基本性质与推论1.2.2 空间中的平行关系1.2.3 空间中的垂直关系第二章平面解析几何初步2.1 平面直角坐标系中的基本公式2.1.1 数轴上的基本公式2.1.2 平面直角坐标系中的基本公式2.2 直线的方程2.2.1 直线方程的概念与直线的斜率2.2.2 直线方程的集中形式2.2.3 两条直线的位置关系2.2.4 点到直线的距离2.3 圆的方程2.3.1 圆的标准方程2.3.2 圆的一般方程2.3.3 直线与圆的位置关系2.3.4 圆与圆的位置关系2.4 空间直角坐标系2.4.1 空间直角坐标系2.4.2 空间两点的距离公式数学③必修第一章算法初步1.1 算法与程序框图1.1.1 算法的概念1.1.2 程序框图1.1.3 算法的三种基本逻辑结构和框图表示1.2 基本算法语句1.2.1 赋值、输入和输出语句1.2.2 条件语句1.2.3 循环语句1.3 中国古代数学中的算法案例第二章统计2.1 随机抽样2.1.1 简单随机抽样2.1.2 系统抽样2.1.3 分层抽样2.1.4 数据的收集2.2 用样本估计总体2.2.1 用样本的频率分布估计总体分布2.2.2 用样本的数字特征估计总体的数字特征2.3 变量的相关性2.3.1 变量间的相关关系2.3.2 两个变量的线性相关第三章概率3.1 事件与概率3.1.1 随机现象3.1.2 事件与基本事件空间3.1.3 频率与概率3.1.4 概率的加法公式3.2 古典概型3.2.1 古典概型3.2.2 概率的一般加法公式(选学)3.3 随机数的含义与应用3.3.1 几何概型3.3.2 随机数的含义与应用3.4 概率的应用数学④必修第一章基本初等函数(II)1.1 任意角的概念与弧度制1.1.1 角的概念的推广1.1.2 弧度制和弧度制与角度制的换算1.2 任意角的三角函数1.2.1 三角函数的定义1.2.2 单位圆与三角函数线1.2.3 同角三角函数的基本关系式1.2.4 诱导公式1.3 三角函数的图像与性质1.3.1 正弦函数的图像与性质1.3.2 余弦函数、正切函数的图像与性质1.3.3 已知三角函数值求角第二章平面向量2.1 向量的线性运算2.1.1 向量的概念2.1.2 向量的加法2.1.3 向量的减法2.1.4 向量的数乘2.1.5 向量共线的条件与轴上向量坐标运算2.2 向量的分解与向量的坐标运算2.2.1 平面向量基本定理2.2.2 向量的正交分解与向量的直角坐标运算2.2.3 用平面向量坐标表示向量共线条件2.3 平面向量的数量积2.3.1 向量数量积的物理背景与定义2.3.2 向量数量积的运算律2.3.2 向量数量积的坐标运算与度量公式2.4 向量的应用2.4.1 向量在几何中的应用2.4.2 向量在物理中的应用第三章三角恒等变换3.1 和角公式3.1.1 两角和与差的余弦3.1.2 两角和与差的正弦3.1.3 两角和与差的正切3.2 倍角公式和半角公式3.2.1 倍角公式3.2.2 半角的正弦、余弦和正切3.3 三角函数的积化和差与和差化积数学⑤必修第一章解三角形1.1 正弦定理和余弦定理1.1.1 正弦定理1.1.2 余弦定理1.2 应用举例第二章数列2.1 数列2.1.1 数列2.1.2 数列的递推公式(选学)2.2 等差数列2.2.1 等差数列2.2.2 等差数列的前n项和2.3 等比数列2.3.1 等比数列2.3.2 等比数列的前n项和第三章不等式3.1 不等关系与不等式3.1.1 不等关系与不等式3.1.2 不等式的性质3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单的线性规划问题3.5.1 二元一次不等式(组)所表示的平面区域3.5.2 简单线性规划数学选修1-1第一章常用逻辑用语1.1 命题与量词1.1.1 命题1.1.2 量词1.2 基本逻辑关联词1.2.1 “且”与“或”1.2.2 “非”(否定)1.3 充分条件、必要条件与命题的四种形式1.3.1 推出与充分条件、必要条件1.3.2 命题的四种形式第二章圆锥曲线与方程2.1 椭圆2.1.1 椭圆及其标准方程2.1.2 椭圆的几何性质2.2 双曲线2.2.1 双曲线及其标准方程2.2.2 双曲线的几何性质2.3 抛物线2.3.1 抛物线及其标准方程2.3.2 抛物线的几何性质第三章导数及其应用3.1 导数3.1.1 函数的平均变化率3.1.2 瞬时速度与导数3.1.3 导数的几何意义3.2 导数的运算3.2.1 常数与幂函数的导数3.2.2 导数公式表3.2.3 导数的四则运算法则3.3 导数的应用3.3.1 利用导数判断函数的单调性3.3.2 利用导数研究函数的极值3.3.3 导数的实际应用数学选修1-2第一章统计案例1.1 独立性检验1.2 回归分析第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与分析法2.2.2 反证法第三章数系的扩充与复数的引入3.1 数系的扩充与复数的引入3.1.1 实数系3.1.2 复数的引入3.2 复数的运算3.2.1 复数的加法和减法3.2.2 复数的乘法和除法第四章框图4.1 流程图4.2 结构图数学选修2-1第一章常用逻辑用语1.1 命题与量词1.1.1 命题1.1.2 量词1.2 基本逻辑关联词1.2.1 “且”与“或”1.2.2 “非”(否定)1.3 充分条件、必要条件与命题的四种形式1.3.1 推出与充分条件、必要条件1.3.2 命题的四种形式第二章圆锥曲线与方程2.1 曲线与方程2.1.1 曲线与方程的概念2.1.2 由曲线求它的方程、由方程研究曲线的性质2.2 椭圆2.2.1 椭圆的标准方程2.2.2 椭圆的几何性质2.3 双曲线2.3.1 双曲线的标准方程2.3.2 双曲线的几何性质2.4 抛物线2.4.1 抛物线的标准方程2.4.2 抛物线的几何性质2.5 直线与圆锥曲线第三章空间向量与立体几何3.1 空间向量及其运算3.1.1 空间向量的线性运算3.1.2 空间向量的基本定理3.1.3 空间向量的数量积3.1.4 空间向量的直角坐标运算3.2 空间向量在立体几何中的应用3.2.1 直线的方向向量与直线的向量方程3.2.2 平面的法向量与平面的向量表示3.2.3 直线与平面的夹角3.2.4 二面角及其度量3.2.5 距离(选学)数学选修2-2第一章导数及其应用1.1 导数1.1.1 函数的平均变化率1.1.2 瞬时速度与导数1.1.3 导数的几何意义1.2 导数的运算1.2.1 常数函数与幂函数的导数1.2.2 导数公式表及数学软件的应用1.2.3 导数的四则运算法则1.3 导数的应用1.3.1 利用导数判断函数的单调性1.3.2 利用导数研究函数的极值1.3.3 导数的实际应用1.4 定积分与微积分基本定理1.4.1 曲边梯形面积与定积分1.4.2 微积分基本定理第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与分析法2.2.2 反证法2.3 数学归纳法 2.3.1 数学归纳法2.3.2 数学归纳法应用举例第三章数系的扩充与复数3.1 数系的扩充与复数的概念3.1.1 实数系3.1.2 复数的概念3.1.3 复数的几何意义3.2 复数的运算3.2.1 复数的加法与减法3.2.2 复数的乘法3.2.3 复数的除法数学选修2-3第一章计数原理1.1 基本计数原理1.2 排列与组合1.2.1 排列1.2.2 组合1.3 二项式定理1.3.1 二项式定理1.3.2 杨辉三角第二章概率2.1 离散型随机变量及其分布列2.1.1 离散型随机变量2.1.2 离散型随机变量的分布列2.1.3 超几何分布2.2 条件概率与事件的独立性2.2.1 条件概率2.2.2 事件的独立性2.2.3 独立重复试验与二项分布2.3 随机变量的数字特征2.3.1 离散型随机变量的数学期望2.3.2 离散型随机变量的方差2.4 正态分布第三章统计案例3.1 独立性检验3.2 回归分析数学选修4-5不等式选讲第一章不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.1.1 不等式的基本性质1.1.2 一元一次不等式和一元二次不等式的解法1.2 基本不等式1.3 绝对值不等式的解法1.3.1 |ax+b|≤c、|ax+b|≥c型不等式的解法1.3.2 |x-a|+|x-b|≥c、|x-a|+|x-b|≤c型不等式的解法1.4 绝对值的三角不等式1.5 不等式证明的基本方法1.5.1 比较法1.5.2 综合法和分析法1.5.3 反证法和放缩法第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2.1.1 平面上的柯西不等式的代数和向量形式2.1.2 柯西不等式的一般形式及其参数配置方法的证明2.2 排序不等式2.3 平均值不等式(选学)2.4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3.1 数学归纳法原理3.1.1 数学归纳法原理3.1.2 数学归纳法应用举例3.2 用数学归纳法证明不等式,贝努利不等式3.2.1 用数学归纳法证明不等式3.2.2 用数学归纳法证明贝努利不等式欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。
2.1.2 数列的递推公式 (选学)-王后雄学案
张喜林制2.1.2 数列的递推公式(选学)教材知识检索考点知识清单1.如果已知数列的第1项(或前几项),且从 开始的任一项n a 与 间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式. 2.递推公式与通项公式的异同:3.定义:数列}{n a 的和称为该数列的前n 项和,一般记作,n S 即=n s .数列}{n a 的 的和称为该数列的各项和,一般记作.S ,S=n n a S 与.4的关系:数列前n 项和n s 与通项n a 间的关系为=n a ⎩⎨⎧∈≥=+).,2_________(),1________(N n n n 要点核心解读1.数列的递推公式已知数列}{n a 的第一项(或前几项),且从第二项(或某一项)开始的任一项n a 与它的前一项1-n a (或前几项)间的关系可以用一个公式来表示,这个公式就叫做这个数列的递推公式.通过递推公式给出的数列,一般称为递推数列.常见的递推公式如:=⋅=+=+--111;;n n n n n a q a a d a a ,1-+n n a a 等等,又如,数列:1,3,5,…,2n-1,…用递推法表示为:,11=a ),2(21≥+=-n a a n n 其中21+=-n n a a 是递推公式.[注意] (1)用递推公式给出一个数列,必须给出①“基础”——数列}{n a 的第1项或前几项;②递推关系——数列}{n a 的任一项n a 与它的前一项1-n a (或前几项)之间的关系,并且这个关系可以用一个公式来表示.如果两个条件缺一个,数列就不能确定,例如,已知数列}{n a 的,2,121==a a 这个数列就不能确定,因为有的说,n a n =有的说,21-=n n a 等等.再如,已知数列}{n a 满足=n a ),2(21≥-n a n 你能说出这个数列的第1项、第2项、第n 项是多少吗?(不能.)(2)递推公式是给出数列的一种方法,并不是一种新的数列.应注意,类似].+=n n n a a b 这样的公式不是递推公式,数列}{n b 是由数列}{n a 中的项通过公式.m n a b =1+n a 构造出来,不是由}{n b 中的项经过递推得到的.(3)与并不是所有的数列都有通项公式一样,并不是所有的数列都有递推公式;递推公式也是给出数列的一种重要方法,有时候并不一定要知道数列的通项公式,只要知道数列的递推公式,即可解决问,题,有的递推公式与通项公式之间也可以进行互化.2.数列的前几项和n s 与通项n a 的关系数列}{n a 的前n 项和n s 与n 的关系,可以用一个公式表示,则这个公式叫做这个数列的前n 项和公式,即++=21a a S n ,3n a a ++ 如543215a a a a a s ++++=表示数列}{n a 的前5项和.,11S a =即1S为数列}{n a的首项,而++++=- 3211a a a s n1-n a,2≥<a且),+∈N n故有.2{,11,1⎰≥=--=--r hn sa n nS n x n S L这就是数列}{n a的前n 项和n s与通项n a的关系.已知数列}{n a的前 n 项和,n s则这个数列的通项n a一定可求,利用n s与n a的关系求通项是一个重要内容,应注意对n s与n a间关系的灵活运用.[注意] (1)要重视分类讨论的应用,分n-l 和n ≥ 2两种情况讨论,要特别注意1--=n n n S s a中必须是n ≥2,这是因为当n=l 时,1-n s无意义. (2)由n n n a S S =--1推得的,n a当n=l 时,1a也适合n ua式”,则需统一“合写”. (3)由n n n a s s =--1推得的,n a当凡=f 时,1a不适合n ua式”,则数列的通项公式应分段表示(“分写”),即.2,,{11,1N hn S a nn a hn s n ≥⋅=--±⋅=典例分类剖析考点1 由递推公式求数列的通项 命题规律(1)利用前n 项和与数列通项间的关系来求通项.(2)通过递推公式求数列的项并猜想通项公式. [例1] 已知数列}{n a满足)1(1,11]-+==-n n a a a n n).2(≥n写出该数列的前5项及它的一个通项公式. [解析],11=a;2321112112=+=⨯+=a a ;35610612323123==+=⨯+=a a;4712211213534134==+=⨯+=a a⋅==+=⨯+=5920362014745145a a ,)1(11-+=-n n a a n nnn n n l a a n n 111)1(1--=-=-∴-则;112121---=---n n a a n n ;312123-=-a a⋅-=-21112a a则以上各式左右分别相加有:,111na a n -=-即nn n n a n 12121)11(-=-=+-=[方法技巧] 由递推公式求通项公式:一是可先列出前几项进行归纳,二是可由n a与1+n a的关系综合求解. 1.已知下面各数列}{n a的前n 项和n s的公式,求}{n a的通项公式.;32)1(2n n S n -= .23)2(-=n n S考点2 递推公式求通项公式的类型 命题规律(1)利用累加、累商、迭代等方法求数列的通项公式.(2)善于将递推公式变形,转化为常见的等差、等比数列.[例2] 已知数列),(22,1,}{11++∈+==ΦN n a a a a a n nn n 求通项⋅n a[答案],2)2(,2211n n n n nn a a a a a a =+∴+=++ ⋅-=∴++1122n n n n a a a a两边同除以n n a a 12+得,21111=-+n n a a ,2111,,2111,211112312=-=-=-∴-n n a a a a a a 把以上这n-l 个式子叠加,得⋅-=-21111n a a n 又⋅+=∴=12,11n a a n [技巧点拨] 本题是转化法求通项公式的典例,1122++=-n n n n a a a a的处理方式是两边同除以,21+n n a a从而转化为“等差”数列. [例3] 已知数列}{n a中,,11=a且,21n n n a a =+求通项 公式.[答案] 解法一:(求商相消法)由已知,21n n n a a =+得.21nnn a a =+ 将n 用n-l ,n-2,…,3,2,l 代入得.2,,2,211222111===-----a a a a a a n n n n n n将上面n-l 个式子相乘,得,2.22211⋅⋅=-- n n n a a 又,22,12)1(12)2()1(1-+++-+-==∴=n n n n n a a2)1(2-=∴n n n a解法二:(迭代法) [方法技巧] 形如==--11.2n n n a a=---)2(2221n n n a.2221--⋅n n.2.22212⋅⋅==--- n n n a ,.21123)2()1(1a a n n ++++-+-=2)1(12,1-=∴=n n n a a且),2,1,0()(| ==/=+n a a n f a n n n可以用求商相消法或用迭代法.,1a x =2.已知数列 中,}{n a求通项公式.22,111+==+n nn a a a a ),(+∈N n考点3 递推数列在实际中的应用 命题规律(1)把实际问题转化为数学问题,建立恰当的数学模型.(2)利用递推数列来建立数学模型.[例4] (1)(有趣的汉诺塔问题)一块黄铜平板上装着三根金刚石细柱,其中一根细柱A 上套着64个大小不等的环形金盘,大的在下,小的在上,如图2 -1-2 -1所示.这些盘子可每次一个地从一根柱子转移到另一根柱子,但不允许 较大盘子放在较小盘子的上面,若把这64个金盘从一根柱子全部移到另一根柱子上,至少需移动多少次? (2)(花钱中的学问)某人看n 元钱,他每天买— 次物品,每次买物品的品种很单调,或者买一元钱的甲物品,或者买;元钱的乙物品,或者买二元钱的丙物品.问他花完这n 元钱有多少种不同的方式.[答案] (l )用n a表示将几个盘子从一根柱子移到另一 根柱子上至少需移动的次数.显然.3,1,020===a a a i对于n 个盘子,可看成先把柱子A 的n-l 个盘子看成一个 整体,套到柱子C 上,此时,需要1-n a次,再把A 中底下的大盘移到B 柱,然后再把C 中的n-l 个盘子移到日柱,此时需要1+1-n a次.所以有.121+=-n n a a由数列知识可得.12-=n n a回到原问题上来,则至少需移动1264-次.(2)设花完n 元钱的方法有n a种,则易知,,3,121 ==a a在花完n 元钱时有三种情形:花完n-l 元时再花1元买甲物品到,1元;花完n -2元时再花2元买乙物品到n 元;花完n -2元时再花2元买丙物品到n 元,此时则有关系式212--+=n n n a a a⋅≥)3(n由数列知识,可求得⋅-+=+])1(2[311n n n a[启示] 从上述几例可以看出应用递推方法的一般步骤是:(1)求初始值;(2)建立递推关系;(3)利用递推关系求解.3.(1)(体育课上的思考)体育课上,4名同学互相传球,要求接球后马上传给别人,由甲开始作为第一次传球,经过10次传球后球仍回到甲手中的传球方式有多少种?(2)(每天走过的楼梯)已知楼梯共12阶,某学生上楼梯时,每步上1阶或2阶,当他走完后有多少种不同的走法?优化分层测讯学业水平测试1.在数列}{n a中,),2(2)1(,3111≥⋅-==-n a a a n n n则=5a( ).316.-A316.B38.-C38.D2.已知}{n a中),2()1(,1111≥-+==--n a a a a n n n n 则53a a 的值为( ).3.-A4.-B43.C34.D3.某数列第一项为l ,并且对所有,,2N n n ∈≥数列的前n 项之积为.2n则2≥n时,这个数列的通项公式是( ).12.-=n a A n2.n a B n =2)1(.-=n n a C n22)1(.n n a D n +=4.在数列}{n a中,,3,21221n n n a a a a a -===++则=4a5.已知数列}{n a中,),2(111,211≥-=+=n a a a nn则=16a6.已知数列}{n a中,,21,311n n a a a ==+则=5a7.已知数列}{n a的第1项是1,第2项是2,以后各项由=n a),2(21+--∈>+N n n a a n n给出.(1)写出这个数列的前5项;(2)利用上面的数列},{n a通过公式nn n a a b 1+= 构造一个新的数列},{n b试写出数列}{n b的前5项,高考能力测试(测试时间:90分钟测试满分:100分)一、选择题(本题包括7小题,每小题6分,共42分.每小题只有一个选项符合题意)1.数列}{n a中,,11=a以后各项由公式=n a a a a (321)2n给出,则53a a +等于( ).925.A 1625.B 1661.C 1531.D 2.(2008年江西高考题)在数列}{n a中,+==+n n a a a 11,2),11ln(n +则=n a( ).n A ln 2.+n n ln )1(2.8-+n n C ln 2.+n n D ln 1.++3.(2010年江苏省模拟题)在数列}{n a中,,12,1111+==--n n n a aa a则12a等于( ).211.A231.B251.C271.D4.<高考题改编)已知数列}{n a满足⎪⎪⎩⎪⎪⎨⎧⋅≤≤-≤≤=+)121(12),210(21n n n n n a a a a a若,761=a则2010a的值为( ).76.A75.B73.C71.D5.一给定函数)(x f y =的图象在图2 -1-2 -2中,并且对任意),1,0(1∈a由关系式)(1n n a f a =+得到的数列}{n a满足),(1++∈>N n a a n n则该函数的图象是( ).6.已知数列}{n x满足,3,1),(2112==∈-=+++x x N n x x x n n n记,21n n x x x s +++=则下列结论正确的是( ).5,1.11=-=ωωS x A5,3.1001=-=∞s x B2,3.100100=-=s x C2,1.1100=-=∞s x D7.已知n s表示数列}{n a的前,n 项和,且11++=+n n n a S s),(+∈N n那么此数列是( ).A .递增数列B .递减数列C .常数列D .摆动数列二、填空题(本题包括4小题,每小题5分,共20分)8.在德国不来梅举行的第48届世乒赛期间,某商场橱窗里用同样的乒乓球堆成若干堆“正三棱锥”形的展品,其中第一堆只有一层,就一个球,第2、3、4、…堆最底层(第一层)分别按图2 -1-2 -3所示方式固定摆放,从第二层开始,每层的小球自然垒放在下一层之上,第n 堆第n 层就放一个乒乓球,以)(n f表示第n 堆的乒乓球总数,则=)3(f=)(;n f(答案用n 表示).9.(2009年湖北高考题)已知数列}{n a满足:m m a <=1为正整数),,*.,2{,131x h T a a a n nhkhr a a n n r n -±⇒⋅⋅=±++≡-⋅β 若,16=a则m 所有可能的取值为10.(2009年四川高考题)设数列}{n a中,++==+n a a a n n 11,21,则通项=n a11.(全国高考题)设}{n a是首项为1的正项数列,且).1(+n),,3,2,1(01221 ==+-++n a a na a n n n n 则它的通项公式是三、解答题(本题包括3小题,共38分.解答应写出文字说明、证明过程或演算步骤)12.(12分)已知数列}{n a中,),(22,111++∈+==N n a a a a n n n 求通项 ⋅n a13.(12分)设数列}{n a的前凡项和为,n S已知==+11,n a a a⋅∈++N n s n n ,3(1)设,3n n n s b -=求数列}{n b的通项公式;(2)若,,1++∈≥N n a a n n求Ⅱ的取值范围.14.(14分)(2010年北京海淀区模拟题)观察蜜蜂爬过六边形蜂房所取的不同路线(如图2 -1-2 -4),假定该蜜蜂总是向相邻的蜂房移动,并且总是向右移动,那么,蜜蜂到蜂房O 有1条路,到蜂房1有2条路,到蜂房2有3条路,到蜂房3有5条路,依此规律,蜜蜂到蜂房10有多少条路?。
数学人教B版教材目录(必修选修)
数学人教B版教材目录(必修选修)人教B版-----------------------------------必修1-----------------------------------第一章集合1.1集合与集合的表示方法1.1.1集合的概念1.1.2集合的表示方法1.2集合之间的关系与运算1.2.1集合之间的关系1.2.2集合的运算第二章函数2.1函数2.1.1函数2.1.2函数的表示方法2.1.3函数的单调性2.1.4函数的奇偶性2.1.5用计算机作函数的图形(选学)2.2一次函数和二次函数2.2.1一次函数的性质与图象2.2.2二次函数的性质与图象2.2.3待定系数法2.3函数的应用(Ⅰ)2.4函数与方程2.4.1函数的零点求函数零点2.4.2近似解的一种方法----二分法第三章基本初等函数(Ⅰ)3.1指数与指数函数3.1.1实数指数幂及其运算3.1.2指数函数3.2对数与对数函数3.2.1对数及其运算3.2.2对数函数3.2.3指数函数与对数函数的关系3.3幂函数3.4函数的应用(Ⅱ)-----------------------------------必修2-----------------------------------第一章立体几何初步1.1空间几何体1.1.1构成空间几何体的基本元素1.1.2棱柱、棱锥、棱台的结构特征1.1.3圆柱、圆锥、圆台和球1.2点、线、面之间的位置关系1.2.1平面的基本性质与推论1.2.2空间中的平行关系1.2.3空间中的垂直关系第二章平面解析几何初步2.1平面真角坐标系中的基本公式2.1.1数轴上的基本公式2.1.2平面直角坐标系中的基本公式2.2直线方程2.2.1直线方程的概念与直线的斜率2.2.2直线方程的几种形式2.2.3两条直线的位置关系2.2.4点到直线的距离2.3圆的方程2.3.1圆的标准方程2.3.2圆的一般方程2.3.3直线与圆的位置关系2.3.4圆与圆的位置关系2.4空间直角坐标系2.4.1空间直角坐标系2.4.2空间两点的距离公式-----------------------------------必修3-----------------------------------第一章算法初步1.1.3算法的三种基本逻辑结构和框图表示1.2基本算法语句1.2.1赋值、输入、输出语句1.2.2条件语句1.2.3循环语句1.3中国古代数学中的算法案例第二章统计2.1随机抽样2.1.1简单随机抽样2.1.2系统抽样2.1.3分层抽样2.1.4数据的收集2.2用样本估计总体2.2.1用样本的频率估计总体的分布2.2.2用样本的数字特征估计总体的数字特征2.3变量的相关性2.3.1变量间的相关关系2.3.2两个变量的线性相关第三章概率3.1随机现象3.1.1随机事件3.1.2时间与基本事件空间3.1.3频率与概率3.1.4概率的加法公式3.2古典概型3.2.1古典概型3.2.2概率的一般加法公式(选学)3.3随机数的含义与应用3.3.1几何概型3.3.2随机数的含义与应用3.4概率的应用-----------------------------------必修4-----------------------------------第一章基本初等函(Ⅱ)1.1任意角的概念与弧度制1.1.1角的概念推广1.1.2弧度制和弧度制与角度制的换算1.2任意角的三角函数1.2.1三角函数的定义1.2.2单位圆与三角函数线1.2.3同角三角函数的基本关系1.2.4诱导公式1.3三角函数的图像与性质1.3.1正弦函数的图象与性质1.3.2余弦函数、正切函数的图象与性质1.3.3已知三角函数值求角第二章平面向量2.1向量的线性运算2.1.1向量的概念2.1.2向量的加法2.1.3向量的减法2.1.4数乘向量2.1.5向量共线的条件与向量坐标运算2.2向量的分解与向量的坐标运算2.2.1平面向量基本定理2.2.2向量的正交分解与向量的直角坐标运算2.2.3用平面向量坐标表示向量共线的条件2.3平面向量的数量积2.3.1向量数量积的物理背景与定义2.3.2向量数量积的运算律2.3.3向量数量积的坐标运算与度量公式2.4向量的应用2.4.1向量在集合中的应用2.4.2向量在物理中的应用第三章三角恒等变换3.1和角公式3.1.1两角和与差的余弦3.1.2两角和与差的正弦3.1.3两角和与差的正切3.2倍角公式和半角公式3.2.1倍角公式3.2.2半角的正弦、余弦和正切3.3三角函数的积化和差与和差化积-----------------------------------必修5-----------------------------------第一章解直角三角形1.1正弦定理和余弦定理1.1.1正弦定理1.1.2余弦定理1.2应用举例第二章数列2.1数列2.1.1数列2.1.2数列的递推公式(选学)2.2等差数列2.2.1等差数列2.2.2等差数列的前n项和2.3等比数列2.3.1等比数列2.3.2等比数列的前n项和第三章不等式3.1不等关系与不等式3.1.1不等关系与不等式3.1.2不等式的性质3.2均值不等式3.3一元二次不等式及其解法3.4不等式的实际应用3.5二元一次不等式(组)与简单线性规划问题3.5.1二元一次不等式(组)所表示的平面区域3.5.2简单线性规划-----------------------------------选修1-1-----------------------------------第一章常用逻辑用语1.1命题与量词1.2基本逻辑联结词1.3充分条件、必要条件与命题的.第二章圆锥曲线与方程2.1椭圆2.1.1椭圆及其标准方程2.1.2椭圆的几何性质2.2双曲线2.2.1双曲线及其标准方程2.2.2双曲线的几何性质2.3抛物线2.3.1抛物线及其标准方程2.3.2抛物线的几何性质第三章导数及其应用3.1导数3.1.1函数的平均变化率3.1.2瞬时速度与导数3.1.3导数的几何含义3.2导数的运算3.2.1常数与幂函数的导数3.2.2导数公式表3.2.3导数的四则运算法则3.3导数的应用3.3.1利用导数判断函数的单调性3.3.2利用导数研究函数的极值3.3.3导数的实际应用-----------------------------------选修1-2-----------------------------------第一章统计案例1.1独立性检验1.2回归分析第二章推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.2直接证明与间接证明2.2.1综合法与分析法2.2.2反证法第三章数系的扩充与复数的引入3.1数系的扩充与复数的引入3.1.1实数系3.1.2复数的引入3.2复数的运算3.2.1复数的加法与减法3.2.2复数的乘法与除法第四章框图,4.1流程图4.2结构图-----------------------------------选修2-1-----------------------------------第一章常用逻辑用语1.1命题与量词1.2基本逻辑联结词1.3充分条件、必要条件与命题的.第二章锥曲线与方程2.1曲线与方程2.1.1曲线与方程的概念2.1.2由曲线求它的方程,由方程研究曲线的性质2.2椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质2.4抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质2.5直线与圆锥曲线第三章空间向量与立体几何3.1空间向量及其运算3.1.1空间向量的线性运算3.1.2空间向量的基本定理3.1.3两个向量的数量积3.1.4空间向量的直角坐标运算3.2空间向量在立体几何中的应用3.2.1直线的方向向量与直线的向量方程3.2.2平面的法向量与平面的向量表示3.2.3直线与平面的夹角3.2.4二面角及其度量3.2.5距离-----------------------------------选修2-2-----------------------------------第一章导数及其应用1.1导数1.1.1函数的平均变化率1.1.2瞬时速度与导数1.1.3导数的几何意义1.2导数的运算1.2.1常用函数与幂函数的导数1.2.2导数公式表及数学软件的应用1.2.3导数的四则运算法则1.3导数的应用1.3.1利用导数判断函数的单调性1.3.2利用导数研究函数的极值1.3.3导数的实际应用1.4定积分与微积分基本定理1.4.1曲边梯形面积与定积分1.4.2微积分基本定理第二章推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.2直接证明与间接证明2.2.1综合法与分析法2.2.2反证法2.3数学归纳法第三章数系的扩充与复数3.1数系的扩充与复数的概念3.1.1实数系3.1.2复数的概念3.1.3复数的几何意义3.2复数的运算3.2.1复数的加法与减法3.2.2复数的乘法3.2.3复数的除法-----------------------------------选修2-3-----------------------------------第一章计数原理1.1基本计数原理1.2排列与组合1.2.1排列1.2.2组合1.3二项式定理1.3.1二项式定理1.3.2杨辉三角第二章概率2.1离散型随机变量及其分布列2.1.1离散型随机变量2.1.2离散型随机变量的分布列2.1.3超几何分布2.2条件概率与事件的独立性2.2.1条件概率2.2.2事件的独立性2.2.3独立重复试验与二项分布2.3随机变量的数学特征2.3.1离散型随机变量的数学期望2.3.2离散型随机变量的方差2.4正态分布第三章统计案例3.1独立性检验3.2回归分析-----------------------------------选修4-1-----------------------------------第一章相似三角形定理与圆幂定理1.1相似三角形1.1.1相似三角形判定定理1.1.2相似三角形的性质1.1.3平行切割定理1.1.4锐角三角函数与射影定理1.2圆周角与弦切角1.2.1圆的切线1.2.2圆周角定理1.2.3弦切角定理1.3圆幂定理与圆内接四边形1.3.1圆幂定理1.3.2圆内接四边形的性质与判定第二章圆锥、圆锥与圆锥曲线2.1平行投影与圆柱面的平面截线2.1.1平行投影的性质2.1.2圆柱面的平面截线2.2用内切球探索圆锥曲线的性质2.2.1球的切线与切平面2.2.2圆柱面的内切球与圆柱面的平面截线2.2.3圆锥面及其内切球2.2.4圆锥曲线的统一定义-----------------------------------选修4-2-----------------------------------第一章二阶矩阵与平面图形的变换1.1二阶矩阵1.2二阶矩阵与平面向量的乘法1.2.1二阶矩阵与平面向量的乘法1.2.2矩阵变换1.2.3几类特殊的矩阵变换1.3二阶方阵的乘法1.3.1二阶方阵的乘法1.3.2矩阵乘法的运算律第二章逆矩阵及其应用2.1逆矩阵2.1.1逆矩阵的定义2.1.2逆矩阵的性质2.1.3用二阶行列式求逆矩阵2.2二元一次方程组的矩阵解法2.2.1二元一次方程组解的含义2.2.2二元一次方程组的矩阵解法2.2.3解的存在性与唯一性第三章变换的不变量3.1平面变换的不变量3.1.1特征值与特征向量3.1.2特征值与特征向量的求法3.1.3特征值的不变性n3.2A?的简单表示-----------------------------------选修4-4-----------------------------------第一章坐标系1.1直角坐标系,平面上的伸缩变换1.1.1直角坐标系1.1.2平面的伸缩变换1.2极坐标系1.2.1平面上点的极坐标1.2.2极坐标与直角坐标的关系1.3曲线的极坐标方程1.4圆的极坐标方程1.4.1圆心在极轴上且过极点的圆a,?1.4.2圆心在点?2?处且过极点的圆1.5柱坐标系和球坐标系1.5.1柱坐标系1.5.2球坐标系第二章参数方程2.1曲线的参数方程2.1.1抛射体的运动2.1.2曲线的参数方程2.2直线和圆的参数方程2.2.1直线的参数方程2.2.2圆的参数方程2.3圆锥曲线的参数方程2.3.1椭圆的参数方程2.3.2抛物线的参数方程2.3.3双曲线的参数方程2.4一些常见曲线的参数方程2.4.1摆线的参数方程2.4.2圆的渐开线的参数方程-----------------------------------选修4-5-----------------------------------第一章不等式的基本性质和证明的基本方法1.1不等式的基本性质和一元二次不等式的解法1.1.1不等式的基本性质1.1.2一元一次不等式和一元二次不等式的解法1.2基本不等式1.3绝对值不等式的解法1.3.1,a某?b,≤c,,a某?b,≥c型不等式的解法1.3.2,某?a,+,某?b,≤c,,某?a,+,某?b,≥c型不等式的解法1.4绝对值的三角不等式1.5不等式证明的基本方法1.5.1比较法1.5.2综合法和分析法1.5.3反证法和放缩法第二章柯西不等式与排序不等式及其应用2.1柯西不等式2.1.1平面上的柯西不等式的代数和向量形式2.1.2柯西不等式的一般形式及其参数配方法的证明2.2排序不等式2.3平均值不等式(选学)2.4最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3.1数学归纳法原理3.1.1数学归纳法原理3.1.2数学归纳法应用举例3.2用数学归纳法证明不等式,贝努利不等式3.2.1用数学归纳法证明不等式3.2.2用数学归纳法证明内努利不等式。
高中数学新人教B版必修5课件:第二章数列2.1.2数列的递推公式(选学)
1 自主学习
PART ONE
知识点一 递推公式 如果已知数列的第1项(或前几项),且从第 二 项(或某一项)开始的任一项_a_n_与 它的前一项 an-1 (或前几项)(n≥2)间的关系可以用一个公式来表示,那么这个 公式叫做这个数列的递推公式. 特别提醒:(1)与所有的数列不一定都有通项公式一样,并不是所有的数列都有 递推公式. (2)递推公式也是表示数列的一种重要方法,它和通项公式一样,都是关于项数 n的恒等式. (3)递推公式可以通过赋值逐项求出数列的项,直至求出数列的任何一项和所需 的项.
第二章 §2.1 数 列
2.1.2 数列的递推公式(选学)
学习目标
XUEXIMUBIAO
1.理解数列的几种表示方法,能选择适当的方法表示数列. 2.理解递推公式的含义,能根据递推公式求出数列的前几项. 3.了解用叠加法、叠乘法由递推公式求通项公式.
内容索引
NEIRONGSUOYIN
自主学习 题型探究 达标检测
12345
课小结
KETANGXIAOJIE
1.{an}与an是不同的两种表示,{an}表示数列a1,a2,…,an,…,是数列 的一种简记情势.而an只表示数列{an}的第n项,an与{an}是“个体”与“整 体”的从属关系. 2.数列的表示方法 (1)图象法;(2)列表法;(3)通项公式法;(4)递推公式法. 3.通项公式和递推公式的区分:通项公式直接反应an和n之间的关系,即an 是n的函数,知道任意一个具体的n值,就可以求出该项的值an;而递推公 式则是间接反应数列的式子,它是数列任意两个(或多个)相邻项之间的推 导关系,不能由n直接得出an.
思考辨析 判断正误
SIKAOBIANXIPANDUANZHENGWU
人民教育出版社B版高中数学目录(全)
人民教育出版社B版高中数学目录(全)高中数学(B版)必修一第一章集合1.1集合与集合的表示方法1.1.1集合的概念1.1.2集合的表示方法1.2集合之间的关系与运算1.2.1集合之间的关系1.2.2集合的运算整合提升第二章函数2.1 函数2.1.1函数2.1.2函数的表示方法2.1.3函数的单调性2.1.4函数的奇偶性2.2一次函数和二次函数2.2.1一次函数的性质与图象2.2.2二次函数的性质与图象2.2.3待定系数法2.3函数的应用(I)2.4函数与方程2.4.1函数的零点2.4.2求函数零点近似解的一种计算方法——二分法整合提升第三章基本初等函数(I)3.1指数与指数函数3.1.1实数指数幂及其运算3.1.2指数函数3.2对数与对数函数3.2.1对数及其运算3.2.2对数函数-3.2.3指数函数与对数函数的关系3.3幂函数3.4函数的应用(Ⅱ)整合提升高中数学(B版)必修二第1章立体几何初步1.1空间几何体1.1.1构成空间几何体的基本元素1.1.2棱柱、棱锥和棱台的结构特征1.1.3圆柱、圆锥、圆台和球1.1.4投影与直观图1.1.5三视图1.1.6棱柱、棱锥、棱台和球的表面积1.1.7柱、锥、台和球的体积1.2点、线、面之间的位置关系1.2.1平面的基本性质与推论1.2.2空间中的平行关系(第1课时)空间中的平行关系(第2课时)1.2.3空间中的垂直关系(第1课时)空间中的垂直关系(第2课时)综合测试阶段性综合评估检测(一)第2章平面解析几何初步2.1平面直角坐标系中的基本公式2.2直线的方程2.2.1直线方程的概念与直线的斜率2.2.2直线方程的几种形式2.2.3两条直线的位置关系2.2.4点到直线的距离2.3 圆的方程2.3.1圆的标准方程2.3.2圆的一般方程2.3.3直线与圆的位置关系2.3.4圆与圆的位置关系2.4空间直角坐标系综合测试高中数学(B版)必修三一章算法初步1.1 算法与程序框图1.1.1 算法的概念1.1.2 程序框图1.1.3 算法的三种基本逻辑结构和框图表示1.2 基本算法语句1.2.1 赋值、输入和输出语句1.2.2 条件语句1.2.3 循环语句1.3 中国古代数学中的算法案例单元回眸第二章统计2.1 随机抽样2.1.1 简单随机抽样2.1.2 系统抽样显示全部信息第一章算法初步1.1 算法与程序框图1.1.1 算法的概念1.1.2 程序框图1.1.3 算法的三种基本逻辑结构和框图表示1.2 基本算法语句1.2.1 赋值、输入和输出语句1.2.2 条件语句1.2.3 循环语句1.3 中国古代数学中的算法案例单元回眸第二章统计2.1 随机抽样2.1.1 简单随机抽样2.1.2 系统抽样2.1.3 分层抽样2.1.4 数据的收集2.2 用样本估计总体2.2.1 用样本的频率分布估计总体的分布2.2.2 用样本的数字特征估计总体的数字特征2.3 变量的相关性2.3.1 变量间的相关关系2.3.2 两个变量的线性相关单元回眸第三章概率3.1 事件与概率3.1.1 随机现象3.1.2 事件与基本事件空间3.1.3 频率与概率3.1.4 概率的加法公式3.2 古典概型3.2.1 古典概型3.3 随机数的含义与应用3.3.1 几何概型3.3.2 随机数的含义与应用3.4 概率的应用单元回眸高中数学(B版)必修四第一章基本初等函数(2)1.1 任意角的概念与弧度制1.1.1 角的概念的推广1.1.2 弧度制和弧度制与角度制的换算1.2 任意角的三角函数1.2.1 三角函数的定义1.2.2 单位圆与三角函数线1.2.3 同角三角函数的基本关系式1.2.4 诱导公式1.3 三角函数的图象与性质1.3.1 正弦函数的图象与性质1.3.2 余弦函数、正切函数的图象与性质1.3.3 已知三角函数值求角单元回眸第二章平面向量2.1 向量的线性运算2.1.1 向量的概念2.1.2 向量的加法2.1.3 向量的减法2.1.4数乘向量2.1.5 向量共线的条件与轴上向量坐标运算2.2 向量的分解与向量的坐标运算2.2.1 平面向量基本定理2.2.2 向量的正交分解与向量的直角坐标运算2.2.3 用平面向量坐标表示向量共线条件2.3 平面向量的数量积2.3.1 向量数量积的物理背景与定义2.3.2 向量数量积的运算律2.3.3 向量数量积的坐标运算与度量公式2.4 向量的应用2.4.1 向量在几何中的应用2.4.2 向量在物理中的应用单元回眸第三章三角恒等变换3.1 和角公式3.1.1 两角和与差的余弦3.1.2 两角和与差的正弦3.1.3 两角和与差的正切3.2 倍角公式和半角公式3.2.1 倍角公式3.2.2 半角的正弦、余弦和正切3.3 三角函数的积化和差与和差化积单元回眸高中数学(B版)必修五第一章解三角形1.1 正弦定理和余弦定理1.1.1 正弦定理1.1.2 余弦定理1.2 应用举例复习与小结第一章综合测试第二章数列2.1 数列2.1.1 数列2.1.2 数列的递推公式(选学)2.2 等差数列2.2.1 等差数列2.2.2 等差数列的前n项和2.3 等比数列2.3.1 等比数列2.3.2 等比数列的前n项和复习与小结第二章综合测试第三章不等式. 3.1 不等关系与不等式3.1.1 不等关系3.1.2 不等式的性质3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单的线性规划问题3.5.1 二元一次不等式(组)与简单的线性规划问题3.5.2 简单的线性规划复习与小结第三章综合测试高中数学(B版)选修1-1第1章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3充分条件、必要条件与命题的四种形式1.3.1推出与充分条件、必要条件1.3.2命题的四种形式第1章综合测试题第2章圆锥曲线与方程2.1 曲线与方程2.1.1 曲线与方程的概念2.1.2 由曲线求它的方程、由方程研究曲线的性2.2 椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3 双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质2.4 抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质2.5直线与圆锥曲线第2章综合测试题阶段性综合评估检测(一)第3章空间向量与立体几何3.1 空间向量及其运算3.1.1 空间向量的线性运算3.1.2 空间向量的基本定理3.1.3两个向量的数量积3.1.4空间向量的直角坐标运算3.2 空间向量在立体几何中的应用3.2.1 直线的方向向量与直线的向量方程3.2.2平面的法向量与平面的向量表示3.2.3直线与平面的夹角3.2.4二面角及其度量3.2.5距离高中数学(B版)选修1-2目录:第一章统计案例1.1独立性检验1.2回归分析单元回眸第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明单元回眸第三章数系的扩充与复数的引入3.1数系的扩充与复数的引入3.2复数的运算单元回眸第四章框图4.1流程图4.2结构图单元回眸高中数学(人教B)选修2-1第1章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3充分条件、必要条件与命题的四种形式1.3.1推出与充分条件、必要条件1.3.2命题的四种形式第1章综合测试题第2章圆锥曲线与方程2.1 曲线与方程2.1.1 曲线与方程的概念2.1.2 由曲线求它的方程、由方程研究曲线的性2.2 椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3 双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质2.4 抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质.2.5直线与圆锥曲线第2章综合测试题阶段性综合评估检测(一)第3章空间向量与立体几何3.1 空间向量及其运算3.1.1 空间向量的线性运算3.1.2 空间向量的基本定理3.1.3两个向量的数量积3.1.4空间向量的直角坐标运算3.2 空间向量在立体几何中的应用3.2.1 直线的方向向量与直线的向量方程3.2.2平面的法向量与平面的向量表示3.2.3直线与平面的夹角3.2.4二面角及其度量3.2.5距离第3章综合测试题阶段性综合评估检测(二)高中数学人教B选修2-2第一章导数及其应用1.1 导数1.1.1 函数的平均变化率1.1.2 瞬时速度与导数1.1.3 导数的几何意义1.2 导数的运算1.2.1 常数函数与幂函数的导数1.2.2 导数公式表及数学软件的应用1.2.3 导数的四则运算法则1.3 导数的应用1.3.1 利用导数判断函数的单调性1.3.2 利用导数研究函数的极值1.3.3 导数的实际应用1.4 定积分与微积分基本定理1.4.1 曲边梯形面积与定积分1.4.2 微积分基本定理本章整合提升第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与分析法2.2.2 反证法2.3 数学归纳法本章整合提升第三章数系的扩充与复数3.1 数系的扩充与复数的概念3.1.1 实数系3.1.2 复数的概念3.1.3 复数的几何意义3.2 复数的运算3.2.1 复数的加法与减法3.2.2 复数的乘法3.2.3 复数的除法本章整合提升高中数学人教B选修2-3第一章计数原理1.1基本计数原理1.2排列与组合1.2.1排列1.2.2组合1.3二项式定理1.3.1二项式定理1.3.2杨辉三角单元回眸第二章概率2.1离散型随机变量及其分布列2.1.1离散型随机变量2.1.2离散型随机变量的分布列2.1.3超几何分布2.2条件概率与事件的独立性2.2.1条件概率2.2.2事件的独立性2.2.3独立重复试验与二项分布2.3随机变量的数字特征2.3.1离散型随机变量的数学期望2.3.2离散型随机变量的方差2.4正态分布单元回眸第三章统计案例3.1独立性检验3.2回归分析单元回眸高中数学(B版)选修4-1第一章相似三角形定理与圆幂定理1.1相似三角形1.1.1相似三角形判定定理1.1.2相似三角形的性质1.1.3平行截割定理1.1.4锐角三角函数与射影定理1.2圆周角与弦切角1.2.1圆的切线1.2.2圆周角定理1.2.3弦切角定理1.3圆幂定理与圆内接四边形1.3.1圆幂定理1.3.2圆内接四边形的性质与判定本章小结阅读与欣赏欧几里得附录不可公度线段的发现与逼近法第二章圆柱、圆锥与圆锥曲线2.1平行投影与圆柱面的平面截线2.1.1平行投影的性质2.1.2圆柱面的平面截线2.2用内切球探索圆锥曲线的性质2.2.1球的切线与切平面2.2.2圆柱面的内切球与圆柱面的平面截线2.2.3圆锥面及其内切球2.2.4圆锥曲线的统一定义本章小结阅读与欣赏吉米拉•丹迪林附录部分中英文词汇对照表后记高中数学(B版)选修4-4第一章坐标系1.1直角坐标系,平面上的伸缩变换1.2极坐标系本章小结第二章参数方程2.1曲线的参数方程2.2直线和圆的参数方程2.3圆锥曲线的参数方程2.4一些常见曲线的参数方程本章小结附录部分中英文词汇对照表后记高中数学(B版)选修4-5第一章不等式的基本性质和证明的基本方法1.1不等式的基本性质和一元二次不等式的解法1.2基本不等式1.3绝对值不等式的解法1.4绝对值的三角不等式1.5不等式证明的基本方法本章小结第二章柯西不等式与排序不等式及其应用2.1柯西不等式2.2排序不等式2.3平均值不等式(选学)2.4最大值与最小值问题,优化的数学模型本章小结阅读与欣赏著名数学家柯西第三章数学归纳法与贝努利不等式3.1数学归纳法原理3.2用数学归纳法证明不等式、贝努利不等式本章小结阅读与欣赏完全归纳法和不完全归纳法数学归纳法数学归纳法简史附录部分中英文词汇对照表。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1.2 数列的递推公式(选学)
学习目标 1.理解递推公式是数列的一种表示方法.2.能根据递推公式写出数列的前n 项.3.掌握由一些简单的递推公式求通项公式的方法.
知识点一 递推公式
思考 下图形象地用小正方形个数给出数列{a n }的前4项:
那么a 2=a 1+______,a 3=a 2+______,a 4=a 3+____.由此猜想a n =a n -1+______.
梳理 思考中的数列{a n }可由⎩
⎪⎨
⎪⎧
a 1=1,
a n =a n -1+n ,n ≥2完全确定.
一般地,如果已知数列的__________(或前几项),且从第2项(或某一项)开始的任一项a n 与它的______________(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.
知识点二 递推公式与通项公式的比较
思考 (1)已知⎩
⎪⎨
⎪⎧
a 1=2,
a n +1=a n +2,n ∈N +,求a 4;
(2)已知a n =2n ,求a 4.
梳理 通项公式和递推公式都是给出数列的方法.已知数列的通项公式,可以直接求出任意
一项;已知递推公式,要求某一项,则必须依次求出该项前面所有的项.
类型一 由数列前若干项归纳递推公式
例1 已知数列{a n }的前4项依次是:13,31,49,67,试猜想a n +1与a n 的关系.
反思与感悟 递推公式是反映数列相邻两项(或几项)间的关系的,所以寻找数列的递推关系,也常从数列相邻项有何变化着手,常考虑的变化有:数列是递增不是递减,若递增,增幅有什么规律.
跟踪训练1 已知数列{a n }中,a 1=1,a 2=3,a 3=7,a 4=15,试猜想{a n }的递推公式.
类型二 数列的递推公式的应用
命题角度1 由递推公式求前若干项
例2 设数列{a n }满足⎩
⎪⎨⎪⎧
a 1=1,a n =1+1
a n -1n >1,n ∈N +写出这个数列的前5项.
引申探究
数列{a n }满足a 1=2,a n +1=
1+a n
1-a n
,求a 2 016.
反思与感悟 递推公式反映的是相邻两项(或n 项)之间的关系.对于通项公式,已知n 的值即可得到相应的项;而递推公式则要已知首项(或前几项),才可依次求得其他的项.若项数很大,则应考虑数列是否有规律性.
跟踪训练2 在数列{a n }中,已知a 1=2,a 2=3,a n +2=3a n +1-2a n (n ≥1),写出此数列的前6项.
命题角度2 由递推公式求通项
例3 (1)对于任意数列{a n },等式:a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=a n (n ≥2,n ∈N
+
)都成立.试根据这一结论,完成问题:已知数列{a n }满足:a 1=1,a n +1-a n =2,求通项a n ;
(2)若数列{a n }中各项均不为零,则有a 1·a 2a 1·a 3
a 2·…·a n
a n -1
=a n (n ≥2,n ∈N +)成立.试根据这一结论,完成问题:已知数列{a n }满足:a 1=1,a n a n -1=n -1n
(n ≥2,n ∈N +),求通项a n .
反思与感悟 形如a n +1-a n =f (n )的递推公式,可以利用a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -
a n -1)=a n (n ≥2,n ∈N +)求通项公式;形如
a n +1
a n
=f (n )的递推公式,可以利用a 1·a 2a 1·a 3a 2·…·a n
a n -1
=a n (n ≥2,n ∈N +)求通项公式.
跟踪训练3 已知数列{a n}中,a1=1,a2=2,a n+2=a n+1-a n,试写出a3,a4,a5,a6,a7,a8,你发现数列{a n}具有怎样的规律?你能否求出该数列中的第2 016项?
1.数列1,3,6,10,15,…的递推公式是( )
A.a n+1=a n+n,n∈N+
B.a n=a n-1+n,n∈N+,n≥2
C.a n+1=a n+(n+1),n∈N+
D.a n=a n-1+(n-1),n∈N+,n≥2
2.已知数列{a n}满足a1=2,a n+1-a n+1=0(n∈N+),则此数列的通项a n等于( )
A.n2+1 B.n+1
C.1-n D.3-n
3.用火柴棒按下图的方法搭三角形:
按图示的规律搭下去,则所用火柴棒数a n与所搭三角形的个数n之间的关系式可以是______________.
1.{a n}与a n是不同的两种表示,{a n}表示数列a1,a2,…,a n,…,是数列的一种简记形式.而a n只表示数列{a n}的第n项,a n与{a n}是“个体”与“整体”的从属关系.
2.数列的表示方法:(1)图象法;(2)列表法;(3)通项公式法;(4)递推公式法.
3.通项公式和递推公式的区别:通项公式直接反映a n和n之间的关系,即a n是n的函数,知道任意一个具体的n值,就可以求出该项的值a n;而递推公式则是间接反映数列的式子,它是数列任意两个(或多个)相邻项之间的推导关系,不能由n直接得出a n.
答案精析
问题导学 知识点一 思考 2 3 4 n 梳理 第1项 前一项a n -1 知识点二
思考 (1)a 2=a 1+2=4,a 3=a 2+2=6,
a 4=a 3+2=8.
(2)a 4=2×4=8. 题型探究 类型一
例1 解 由a 2-a 1=31-13=18,
a 3-a 2=49-31=18, a 4-a 3=67-49=18,
猜想a n +1-a n =18,即a n +1=a n +18. 跟踪训练1 解 由a 2-a 1=3-1 =2=21
,
a 3-a 2=7-3=4=22, a 4-a 3=15-7=8=23,
猜想a n +1-a n =2n
,n ∈N +. 或a 2=2×a 1+1,
a 3=2×a 2+1, a 4=2×a 3+1.
∴猜想a n +1=2a n +1,n ∈N +. 类型二 命题角度1
例2 解 由题意可知a 1=1,
a 2=1+1a 1=2,a 3=1+1a 2=32,a 4=1+1a 3=53,a 5=1+1a 4=1+35=8
5
.
引申探究
解 a 2=1+a 11-a 1=1+2
1-2
=-3,
a 3=
1+a 21-a 2=1-31+3=-1
2
, a 4=1+a 3
1-a 3=1-1
21+12=13
,
a 5=1+a 4
1-a 4=1+131-1
3=2=a 1.
故{a n }是周期为4的数列. ∴a 2 016=a 4×503+4=a 4=1
3.
跟踪训练2 解 a 1=2,a 2=3,
a 3=3a 2-2a 1=3×3-2×2=5, a 4=3a 3-2a 2=3×5-2×3=9, a 5=3a 4-2a 3=3×9-2×5=17, a 6=3a 5-2a 4=3×17-2×9=33.
命题角度2
例3 解 (1)n ≥2时,
a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+2+2+…+
2
n -
个2
=2(n -1)+1
=2n -1.
a 1=1也适合上式,
所以数列{a n }的通项公式是a n =2n -1. (2)n ≥2时,
a n =a 1·a 2a 1·a 3a 2·…·a n
a n -1
=1·12·23·…·n -1n =1
n
.
a 1=1也适合上式,
所以数列{a n }的通项公式是a n =1n
.
跟踪训练3 解 a 1=1,a 2=2,a 3=1,
a 4=-1,a 5=-2, a 6=-1,a 7=1,a 8=2,….
发现:a n +6=a n ,数列{a n }具有周期性,周期T =6. 证明如下:∵a n +2=a n +1-a n ,
∴a n+3=a n+2-a n+1
=(a n+1-a n)-a n+1=-a n.
∴a n+6=-a n+3=-(-a n)=a n.
∴数列{a n}是周期数列,且T=6. ∴a2 016=a335×6+6=a6=-1.
当堂训练
1.B 2.D 3.a n=2n+1,n∈N+.。