机械原理大作业凸轮
机械原理大作业2凸轮(18题)
1、运动分析题目如图1所示直动从动件盘形凸轮机构,其原始参数见表1。
图 1表 1序号 升程 (mm ) 升程运动角() 升程运动规律 升程许用压力角() 回程运动角()回程运动规律 回程许用压力角() 远休止角() 近休止角()18 100150正弦加速度 30 100等减等加速 6040702、凸轮推杆升程、回程运动方程及推杆位移、速度、加速度线图:2.1从动件运动方程:(1)从动件升程运动方程升程段采用正弦加速度运动规律,运动方程为:()1212112100sin 5/6251001251cos 05/656210012sin 55/6s v a ϕϕππωπϕϕππωϕπ⎫⎡⎤⎛⎫=-⎪⎪⎢⎥⎝⎭⎣⎦⎪⎪⎡⎤⎪⎛⎫⎛⎫=-≤≤⎬ ⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦⎪⎪⨯⎛⎫⎪= ⎪⎝⎭⎪⎭(2)从动件远休止运动方程在远休止s Φ段,即5/619/18πϕπ≤≤时,100s h mm ==,0v =,0a =。
(3)从动件回程运动方程升程段采用等减等加运动规律,运动方程为:()221221220019100518()94001919/184/3518()94005()9s v a πϕπωπϕπϕππωπ⎫⎪⎡⎤=--⎪⎢⎥⎣⎦⎪⎪⎪⎪⎡⎤=--≤≤⎬⎢⎥⎣⎦⎪⎪⎪⎪=-⎪⎪⎭()221221220029()518()94002()4/329/1853()94005()9s v a πϕπωπϕπϕππωπ⎫⎪=-⎪⎪⎪⎪⎪=--≤≤⎬⎪⎪⎪⎪=⎪⎪⎭(4)从动件近休止运动方程在近休止s 'Φ段,即29/182πϕπ≤≤时,0s =,0v =,0a =。
2.2推杆位移、速度、加速度线图:(1)推杆位移线图图 2 推杆位移线图(2)推杆速度线图图 3 推杆速度线图(3)推杆加速度线图图 4 推杆加速度线图3、凸轮机构的ds s d ϕ-线图,并由此确定凸轮的基圆半径和偏距:图 5 凸轮机构的dss d ϕ-线图 4滚子半径的确定及凸轮理论廓线和实际廓线的绘制 4.1凸轮的理论轮廓方程为:00()cos sin (02)()sin cos x s s e y s s e ϕϕϕπϕϕ=+-⎫≤≤⎬=++⎭式中,220031.45s r e mm =-=(1)推程凸轮轮廓方程:11231100sin cos 18sin 5/625(05/6)112(31100sin )sin 18cos 5/625x y ϕϕϕϕππϕπϕϕϕϕππ⎫⎧⎫⎡⎤⎛⎫=+--⎨⎬⎪⎪⎢⎥⎝⎭⎣⎦⎪⎩⎭≤≤⎬⎡⎤⎛⎫⎪=+-+ ⎪⎢⎥⎪⎝⎭⎣⎦⎭(2)远休止凸轮轮廓方程:131cos 18sin (5/619/18)131sin 18cos x y ϕϕπϕπϕϕ=-⎫≤≤⎬=+⎭(3)回程凸轮轮廓方程:222220019131cos 18sin 518()9(19/184/3)20019131sin 18cos 518()9x y πϕϕϕππϕππϕϕϕπ⎫⎧⎫⎪⎪⎪⎡⎤=---⎪⎨⎬⎢⎥⎣⎦⎪⎪⎪⎩⎭⎪≤≤⎬⎧⎫⎪⎪⎪⎡⎤⎪=--+⎨⎬⎢⎥⎪⎣⎦⎪⎪⎪⎩⎭⎭22222002931()cos 18sin 518()9(19/184/3)2002931()sin 18cos 518()9x y πϕϕϕππϕππϕϕϕπ⎫⎧⎫⎪⎪⎪=+--⎪⎨⎬⎪⎪⎪⎩⎭⎪≤≤⎬⎧⎫⎪⎪⎪⎪=+-+⎨⎬⎪⎪⎪⎪⎩⎭⎭(4)近休止凸轮轮廓方程:31cos 18sin (29/182)31sin 18cos x y ϕϕπϕπϕϕ=-⎫≤≤⎬=+⎭4.2凸轮理论轮廓曲线为:图 6 凸轮理论轮廓由上图可编程可求其最小曲率半径为min 10.309110mm ρ=≈,所以滚子半径min 1037r r mm ρ=-∆=-=。
机械原理大作业凸轮设计
机械原理大作业凸轮设计本文档旨在介绍《机械原理大作业凸轮设计》的背景和目的。
凸轮设计在机械工程中具有重要性和挑战,因此本文档将探讨凸轮设计的原理和方法,并提供相应的示例和解释。
本文档包括以下内容:凸轮设计的背景和意义凸轮设计的原理和方法凸轮设计的实例和案例分析结论和建议每一部分将详细阐述相关的知识和技术,旨在帮助读者理解和应用凸轮设计的原理及方法。
请继续阅读以下各章节,以便全面了解凸轮设计的重要性和实践应用。
凸轮的定义和作用凸轮是一种机械元件,具有特殊形状的轮缘。
它主要用于传递运动和改变运动方向。
凸轮通常与其他机械部件,如凸轮轴和凸轮销,一起使用,以实现特定的工作任务。
凸轮的重要性和应用凸轮在机械原理中具有重要的作用。
它被广泛应用于不同的机械系统中。
首先,凸轮在传输运动方面非常重要。
通过凸轮的特殊形状,它可以转换来自动力源的旋转运动为直线或曲线的机械运动。
这使得凸轮能够将动力传递给其他部件,实现机械装置的工作。
其次,凸轮还能够改变运动方向。
通过将凸轮与其他机械部件连接,如齿轮或连杆,可以改变运动的方向和速度。
这使得凸轮在不同机械系统中能够实现不同的功能,例如提供机械装置的正向和反向运动。
最后,凸轮还可以用于执行特定的运动模式。
通过调整凸轮的形状和轮缘的位置,可以实现不同的运动曲线和运动模式。
这为机械系统的设计师提供了更大的灵活性,以满足特定的工作要求。
总之,凸轮在机械原理中起着关键的作用。
它通过传输运动和改变运动方向,为不同机械系统的功能实现提供支持。
凸轮的设计和应用需要充分考虑机械装置的工作需求和运动特性,以确保凸轮的有效性和可靠性。
本文介绍凸轮设计的基本原则,包括凸轮外形的选择和凸轮参数的确定。
我们将讨论凸轮的轮廓曲线以及与其相关的几何特征。
此外,我们还将介绍凸轮的运动学和动力学分析,以及对凸轮进行性能评估和优化的方法。
本文以一个具体案例为例,详细介绍凸轮设计的过程。
通过该案例研究,读者可以了解凸轮设计的步骤和方法,以及可能遇到的问题和解决方案。
机械原理大作业凸轮
机械原理大作业二题目:凸轮机构设计19班号: 1408301学号: 1140830118姓名:高奎教师:焦映厚完成时间: 2016.6.11.从动件位移,速度,加速度图syms fai1fai2fai3=pi/3:0.01:8/9*pi;fai4=4/3*pi:0.01:2*pi;omiga=1;h=25;fai1=0:0.01:pi/3;fai2=160/180*pi:0.01:240/180*pi;s1=h*(fai1*3/pi-1/(2*pi)*sin(360/60*fai1));s2=h/2*(1+cos(180/80*(fai2-160/180*pi)));figure(1);subplot(3,1,1);subs(s1,'fai1',fai1);subs(s2,'fai2',fai2);plot(fai1,s1);hold on;plot(fai2,s2);plot(fai3,25);plot(fai4,0);xlabel('凸轮转角(rad)');ylabel('位移(mm)');title('位移图');v1=h*omiga*3/pi*(1-cos(360/60*fai1));v2=-h*omiga*180/160*sin(180/80*(fai2-160/180*pi));subplot(3,1,2);plot(fai1,v1,'g');hold on;plot(fai2,v2,'g');plot(fai3,0,'g');plot(fai4,0,'g');xlabel('凸轮转角(rad)');ylabel('速度(mm/s)');title('速度图');a1=2*pi*h*omiga^2/((60/180*pi)^2)*sin(360/60*fai1);a2=-(180/80)^2/2*h*omiga^2*cos(180/80*(fai2-160/180*pi)); subplot(3,1,3);plot(fai1,a1,'r');hold on;plot(fai2,a2,'r');plot(fai3,0,'r');plot(fai4,0,'r');xlabel('凸轮转角(rad)');ylabel('加速度(mm/s^2)');title('加速度图');2.类速度-位移图x1=60;t1=100;x2=80;t2=120;h=25;x1=x1*pi/180;x2=x2*pi/180;t1=t1*pi/180;t2=t2*pi/180; x= 0:0.001:60*pi/180;%升程s = h*(x/x1-sin(2*pi*x/x1)/(2*pi));k =-h*(1-cos(2*pi*x/x1))/x1;plot(k,s,'r'),hold on;x=160*pi/180:0.001:240*pi/180;%回程s = h*(1+cos(pi*(x-(x1+t1))/x2))/2;k = pi*h*sin(pi*(x-(x1+t1))/x2)/(2*x2);plot(k,s,'r'),hold on;%回程切线for i=-3.9:1:-3.9;f=@(k)k*tan(20/180*pi)+i;k =-50:0.1:50;s=f(k);plot(k,s),hold on;end%升程切线for i=-57:0.2:-57;f=@(k)-k*tan(55*pi/180)+i;k =-50:0.1:50;s=f(k);plot(k,s),hold on;endgrid onf=@(k)k*tan(55*pi/180);k=-50:0.1:0;s=f(k);plot(k,s);hold on;xlabel('ds/dψ');ylabel('s');title('类位移-速度图');3.压力角和曲率半径图figure(3);e=20;r0=102;s0=sqrt(r0.^2-e.^2);rs1=s0+s1;rs2=s0+s2;ang1=abs(atan((v1/omiga-e)./rs1))*180/pi; ang2=abs(atan((v2/omiga-e)./rs2))*180/pi; plot(fai1,ang1);hold on;plot(fai2,ang2);hold on;plot(fai3,9.0789);hold on;plot(fai4,11.5257);title('压力角图');h=25;t0=pi*60/180;t01=pi*80/180;ts=pi*100/180;ts1=pi*120/180;e=20;s0=100;t=0:0.001:60*pi/180;s=h*(t/t0-sin(2*pi*t/t0)/(2*pi));dx1 =(h/t0-h*cos(2*pi*t/t0)).*cos(t)-(s0+s).*sin(t)- e*cos(t); dy1=(h/t0-h*cos(2*pi*t/t0)).*sin(t)+(s0+s).*cos(t)- e*sin(t); p=sqrt(dx1.^2+dy1.^2);hold onplot(t,p);t=60*pi/180:pi/200:160*pi/180;s=h;dx2 =- sin(t).*(s + s0) - e*cos(t);dy2 =cos(t).*(s + s0) - e*sin(t);p=sqrt(dx2.^2+dy2.^2);hold onplot(t,p);t=160*pi/180:pi/200:240*pi/180;s=0.5*h*(1+cos(pi*(t-(t0+ts))/t01));dx3 =-0.5*h*pi/(2*t01)*sin((pi/t01)*(t-(t0+ts))).*cos(t)-sin(t).*(s + s0) - e*cos(t);dy3 =-0.5*h*pi/(2*t01)*sin((pi/t01)*(t-(t0+ts))).*sin(t)+ cos(t).*(s + s0) - e*sin(t);p=sqrt(dx3.^2+dy3.^2);hold onplot(t,p);t=240*pi/180:pi/200:2*pi;s=0;dx4 =- sin(t).*(s + s0) - e*cos(t);dy4 =cos(t).*(s + s0) - e*sin(t);p=sqrt(dx4.^2+dy4.^2);hold on;plot(t,p);hold off;title('曲率半径');grid on;4.凸轮理论轮廓和实际轮廓的绘制fai=0:0.01:2*pi;x1=60;t1=100;x2=80;t2=120;h=25;x1=x1.*pi./180;x2=x2.*pi./180;t1=t1.*pi./180;t2=t2.*pi./180; e=20;r0=102;s0=100;rr=20;%滚子半径x=0:pi/200:60.*pi/180;s = h.*(x./x1-sin(2.*pi.*x./x1)./(2.*pi));X1=(s0+s).*cos(x)-e.*sin(x);Y1=(s0+s).*sin(x)+e.*cos(x);X11=X1-(rr.*(cos(x).*(s + s0) - e.*sin(x)))./((sin(x).*(s + s0) + e.*cos(x)).^2 + (cos(x).*(s + s0) - e.*sin(x)).^2).^(1./2);Y11=Y1-(rr.*(sin(x).*(s + s0) + e.*cos(x)))./((sin(x).*(s + s0) + e.*cos(x)).^2 + (cos(x).*(s + s0) - e.*sin(x)).^2).^(1./2);plot(X1,Y1,'r',X11,Y11,'k'),hold on;plot(e*cos(fai),e*sin(fai));plot(r0*cos(fai),r0*sin(fai),'--g');x=60.*pi/180:pi/200:160.*pi/180;s=25;X2=(s0+s).*cos(x)-e.*sin(x);Y2=(s0+s).*sin(x)+e.*cos(x);X22=X2-(rr.*(cos(x).*(s + s0) - e.*sin(x)))./((sin(x).*(s + s0) + e.*cos(x)).^2 + (cos(x).*(s + s0) - e.*sin(x)).^2).^(1./2);Y22=Y2-(rr.*(sin(x).*(s + s0) + e.*cos(x)))./((sin(x).*(s + s0) + e.*cos(x)).^2 + (cos(x).*(s + s0) - e.*sin(x)).^2).^(1./2);plot(X2,Y2,'r',X22,Y22,'k'),hold on;x=160.*pi/180:pi/200:240.*pi/180;s=h.*(1+cos(pi.*(x-(x1+t1))./x2))./2;X3=(s0+s).*cos(x)-e.*sin(x);Y3=(s0+s).*sin(x)+e.*cos(x);X33=X3-(rr.*(cos(x).*(s + s0) - e.*sin(x)))./((sin(x).*(s + s0) + e.*cos(x)).^2 + (cos(x).*(s + s0) - e.*sin(x)).^2).^(1./2);Y33=Y3-(rr.*(sin(x).*(s + s0) + e.*cos(x)))./((sin(x).*(s + s0) + e.*cos(x)).^2 + (cos(x).*(s + s0) - e.*sin(x)).^2).^(1./2);plot(X3,Y3,'r',X33,Y33,'k'),hold on;x=240*pi/180:pi/200:2*pi;s=0;X4=(s0+s).*cos(x)-e.*sin(x);Y4=(s0+s).*sin(x)+e.*cos(x);X44=X4-(rr.*(cos(x).*(s + s0) - e.*sin(x)))./((sin(x).*(s + s0) + e.*cos(x)).^2 + (cos(x).*(s + s0) - e.*sin(x)).^2).^(1./2);Y44=Y4-(rr.*(sin(x).*(s + s0) + e.*cos(x)))./((sin(x).*(s + s0) + e.*cos(x)).^2 + (cos(x).*(s + s0) - e.*sin(x)).^2).^(1./2);plot(X4,Y4,'r',X44,Y44,'k'),hold on;x=240:pi/200:2*pi;X4=(s0+s).*cos(x)-e.*sin(x);Y4=(s0+s).*sin(x)+e.*cos(x);plot(X4,Y4,'b');legend('凸轮实际轮廓','凸轮理论轮廓','偏距圆','基圆');grid on;axis equal;。
机械原理大作业2-1120810417-凸轮
机械原理大作业二课程名称:机械原理设计题目:凸轮机构设计院系:机电工程学院班级:1208104完成者:学号:1120810417指导教师:林琳刘福利设计时间:2014年6月2日哈尔滨工业大学一、设计题目如下图所示为直动从动件盘形凸轮机构,据此设计该凸轮机构:二、原始参数 序号升程升程运动角 升程运动规律 升程许用压力角 回程运动角 回程运动规律 回程许用压力角 远休止角 近休止角 15 90mm150°正弦加速度30°100°余弦加速度60°55°55°三、推杆升程方程和推杆回程方程: 在这里取ω=1rad/s. (1)推杆升程方程:650,)512sin(215690)(πφφππφφ≤≤⎥⎦⎤⎢⎣⎡-=s 650),512cos(108)(πφφφπφν≤≤-=650,512sin 2.259)(πφφπφ≤≤=a(2)推杆回程方程:36613641,)05.059cos(145)(πφππφφ≤≤⎥⎦⎤⎢⎣⎡-+=s ω36613641,)05.059sin(181)(πφππφφν≤≤⎥⎦⎤⎢⎣⎡---= 36613641),05.059cos(8.145)(≤≤--=φππφφa四、matlab 程序及曲线图像注:每一段都为完整程序,可直接运行。
1.推杆位移曲线clear allp1=0:pi/360:(5*pi/6-pi/360); w=1;s1=90*(6*p1/(5*pi)-1/(2*pi)*sin(12*p1/5)); p2=5*pi/6:pi/360:(41*pi/36-pi/360); s2=90*ones(1,length(p2));p3=41*pi/36:pi/360:(61*pi/36-pi/360); s3=45*(1+cos(9*p3/5-1*pi/20)); p4=61*pi/36:pi/360:2*pi; s4=0*p4;p=[p1,p2,p3,p4]; s=[s1,s2,s3,s4];plot(p,s)xlabel('Φ(角度)');ylabel('S(位移)'); title('推杆位移曲线');2.推杆速度曲线clear allp1=0:pi/360:(5*pi/6-pi/360);w=1;v1=108*w/pi*(1-cos(12*p1/5));p2=5*pi/6:pi/360:(41*pi/36-pi/360);v2=0*p2;p3=41*pi/36:pi/360:(61*pi/36-pi/360);v3=-81*w*sin(9*p3/5-1*pi/20);p4=61*pi/36:pi/360:2*pi;v4=0*p4;p=[p1,p2,p3,p4];v=[v1,v2,v3,v4];plot(p,v)xlabel('Φ(角度)');ylabel('V(速度)'); title('推杆速度曲线');3.推杆加速度曲线clear allp1=0:pi/360:(5*pi/6-pi/360);w=1;a1=36*36*w^2/5/pi*sin(12*p1/5);p2=5*pi/6:pi/360:(41*pi/36-pi/360);a2=0*p2p3=41*pi/36:pi/360:(61*pi/36-pi/360);a3=-18*81*w^2/10*cos(9*p3/5-1*pi/20);p4=61*pi/36:pi/360:2*pi;a4=0*p4;p=[p1,p2,p3,p4];a=[a1,a2,a3,a4];plot(p,a)xlabel('Φ(角度)');ylabel('a(加速度)'); title('推杆加速度曲线');4.凸轮机构的ds/dφ-s线图clear allp1=0:pi/360:(5*pi/6-pi/360);w=1;s1=90*(6*p1/(5*pi)-1/(2*pi)*sin(12*p1/5)); p2=5*pi/6:pi/360:(41*pi/36-pi/360);s2=90*ones(1,length(p2));p3=41*pi/36:pi/360:(61*pi/36-pi/360);s3=45*(1+cos(9*p3/5-1*pi/20));p4=61*pi/36:pi/360:2*pi;s4=0*p4;p=[p1,p2,p3,p4];s=[s1,s2,s3,s4];p1=0:pi/360:(5*pi/6-pi/360);w=1;v1=108*w/pi*(1-cos(12*p1/5));p2=5*pi/6:pi/360:(41*pi/36-pi/360);v2=0*p2;p3=41*pi/36:pi/360:(61*pi/36-pi/360);v3=-81*w*sin(9*p3/5-1*pi/20);p4=61*pi/36:pi/360:2*pi;v4=0*p4;p=[p1,p2,p3,p4]; v=[v1,v2,v3,v4]; vx=-v; hold on plot(vx,s)%直线Dtdty=-100:0.01:100; x=-69; hold onplot(x,y,'-r'); % 直线Dt’dt’ x=-100:0.01:100; y=-0; hold onplot(x,y,'-r'); grid on hold offtitle('ds/d φ-s 曲线');曲线为升程阶段的类速度-位移图,根据升程压力角与回城压力角做直线与其相切,, 其直线斜率分别为:K 1=)30150tan(+=0 K 2=)60150tan(-为∞;两直线方程为: }{0,69=-=y x进而确定凸轮偏距和基圆半径:在轴心公共许用区内取轴心位置,能够满足压力角要求,由图可得:取s0=200mm ,e=30;r0=(2002 +502)1/2=206.2mmclear allp1=0:pi/360:(5*pi/6-pi/360);w=1;s1=90*(6*p1/(5*pi)-1/(2*pi)*sin(12*p1/5));p2=5*pi/6:pi/360:(41*pi/36-pi/360);s2=90*ones(1,length(p2));p3=41*pi/36:pi/360:(61*pi/36-pi/360);s3=45*(1+cos(9*p3/5-1*pi/20));p4=61*pi/36:pi/360:2*pi;s4=0*p4;p=[p1,p2,p3,p4];s=[s1,s2,s3,s4];s0=200;e=30;x=(s0+s).*cos(p)-e*sin(p);y=(s0+s).*sin(p)+e*cos(p);plot(x,y)title('凸轮理论轮廓');6.凸轮实际轮廓工作轮廓曲率半径ρ、理论轮廓曲率半径ρ与滚子半径r三者存在如下关系aρa=ρ+r,不妨最终设定滚子半径为30mm,这时滚子与凸轮间接触应力最小,可提高凸轮寿命。
机械原理大作业-凸轮结构20
凸轮机构设计 题目要求:试用计算机辅助设计完成下列偏置直动推杆盘形凸轮机构的设计,已知数据如下各表所示。
凸轮沿逆时针方向作匀速转动。
表一 偏置直动滚子推杆盘形凸轮机构的已知参数升程/mm 升程运动角/。
升程运动规律 升程许用压力角/。
回程运动角/。
回程运动规律 回程许用压力角/。
远休止角/。
近休止角/。
70 120 余弦加速度 35 90 正弦加速度65 60 90要求:1)确定凸轮推杆的升程、回程运动方程,并绘制推杆位移、速度、加速度线图。
2)绘制凸轮机构的sd ds -ϕ线图;3)确定凸轮基圆半径和偏距;4)确定滚子半径;5)绘制凸轮理论廓线和实际廓线。
推杆运动规律:(取32w π=) 1)推程运动规律:由余弦加速度运动公式可得⎥⎦⎤⎢⎣⎡-=)cos(1211θπψh s)sin(2hw v111θπϕθπ=)cos(2h 112122θπϕθπw a = 2)回程运动规律:正弦加速度运动公式可得⎥⎦⎤⎢⎣⎡+-=)2sin(211322T h s Tθππθ ⎥⎦⎤⎢⎣⎡--=)2cos(1v322T hw θπθ )2sin(2a32222T hw θπθπ-=试中:T=)(s θθϕ+1- 经带入计算可得:s1 = 0.035*(1 - cos(1.5*x));v1=0.105/2 * w * sin(1.5 * x);a1 = 0.1575/2 * w^2 .* cos(1.5*x);s3 = 0.070*(3 - 2*z/pi + 1/(2*pi).*sin (4*z - 4* pi));v3 = -0.140/pi * w .* (1 - cos(4*z - 4* pi));a3 = 0.56 * w^2/pi .*sin(4*z - 4* pi);三 计算程序(matlab )(1)推杆位移、速度、加速度线图编程;a.位移与转角曲线w = 2*pi/3x = 0:(pi/100):(2*pi/3);s1 = 0.035*(1 - cos(1.5*x));v1=0.105/2 * w * sin(1.5 * x);a1 = 0.1575/2 * w^2 .* cos(1.5*x);y = (2*pi/3):(pi/100):(pi);s2 = 0.070;v2=0;a2 = 0;z = (pi ):(pi/100):(3*pi/2);s3 = 0.070*(3 - 2*z/pi + 1/(2*pi).*sin (4*z - 4* pi)); v3 = -0.140/pi * w .* (1 - cos(4*z - 4* pi));a3 = 0.56 * w^2/pi .*sin(4*z - 4* pi);c = (3*pi/2):(pi/100):( 2*pi);s4 = 0;v4 = 0;a4 = 0;plot(x,s1,'b',y,s2,'b',z,s3,'b',c,s4,'b')xlabel('转角/rad')ylabel('位移/m/')title('位移与转角曲线')b.速度与转角曲线w = 2*pi/3x = 0:(pi/100):(2*pi/3);s1 = 0.035*(1 - cos(1.5*x));v1=0.105/2 * w * sin(1.5 * x);a1 = 0.1575/2 * w^2 .* cos(1.5*x);y = (2*pi/3):(pi/100):(pi);s2 = 0.070;v2=0;a2 = 0;z = (pi ):(pi/100):(3*pi/2);s3 = 0.07*(3 - 2*z/pi + 1/(2*pi).*sin (4*z - 4* pi)); v3 = -0.140/pi * w .* (1 - cos(4*z - 4* pi));a3 = 0.56 * w^2/pi .*sin(4*z - 4* pi);c = (3*pi/2):(pi/100):( 2*pi);s4 = 0;v4 = 0;a4 = 0;plot(x,v1,'g',y,v2,'g',z,v3,'g ',c,v4,'g')xlabel('转角/rad')ylabel('速度/(m/s)')title('速度与转角曲线')c.加速度与位移转角曲线w = 2*pi/3x = 0:(pi/100):(2*pi/3);s1 = 0.035*(1 - cos(1.5*x));v1=0.105/2 * w * sin(1.5 * x);a1 = 0.1575/2 * w^2 .* cos(1.5*x);y = (2*pi/3):(pi/100):(pi);s2 = 0.070;v2=0;a2 = 0;z = (pi):(pi/100):(3*pi/2);s3 = 0.070*(3 - 2*z/pi + 1/(2*pi).*sin (4*z - 4* pi)); v3 = -0.140/pi * w .* (1 - cos(4*z - 4* pi));a3 = 0.56 * w^2/pi .*sin(4*z - 4* pi);c = (3*pi/2):(pi/100):( 2*pi);s4 = 0;v4 = 0;a4 = 0;plot(x,a1,'r',y,a2,'r',z,a3,'r ',c,a4,'r')xlabel('转角/rad')ylabel('加速度/(m^2/s)')title('加速度与转角曲线')(2)凸轮机构的s d -ϕds 线图编程; w = 2*pi/3x = 0:(pi/100):(2*pi/3);s1 = 35*(1 - cos(1.5*x));news1 = 35*1.5*sin(1.5*x);y = (2*pi/3):(pi/100):(pi);s2 = 70;news2 = 0;z = (pi ):(pi/100):(3*pi/2);s3=70*(3 - 2*z/pi + 1/(2*pi).*sin (4*z - 4* pi));news3 =-140/pi * w .* (1 - cos(4*z - 4* pi));c = (3*pi/2):(pi/100):( 2*pi);s4 = 0;news4 = 0;plot(news1,s1,'b',news2,s2,'b',news3,s3,'b',news4,s4,'b')xlabel('ds/dp');ylabel('(位移s/mm)')title('ds/dp 与位移s 曲线') grid(3)确定基圆半径和偏距;(4)经过对凸轮机构的s d -ϕds 线图分析确定其偏距e=17,s=70,基圆半径r0=32,,得s0=50; a.先求凸轮理论轮廓曲线,程序如下:w = 2*pi/3;s0 = 50;s = 70;e = 17;x = 0:(pi/100):(2*pi/3);x1 = (s + s0)*cos(x)-e*sin(x);y1 = (s0 + s)*sin(x) - e*cos(x);y = (2*pi/3):(pi/100):(pi);x2 = (s + s0)*cos(y)-e*sin(y);y2 = (s0 + s)*sin(y) - e*cos(y);z = (pi):(pi/100):(3*pi/2);x3 = (s + s0)*cos(z)-e*sin(z);y3 = (s0 + s)*sin(z) - e*cos(z);c = (3*pi/2):(pi/100):( 2*pi);x4 = (s + s0)*cos(c)-e*sin(c);y4 = (s0 + s)*sin(c) - e*cos(c);plot(x1,y1,'b',x2,y2,'b',x3,y3,'b',x4,y4,'b');xlabel('x/mm')ylabel('y/mm')title('理轮轮曲线')b.再通过该廓线求其最小曲率半径,程序如下:v=[];syms x1 x2 x3 x4 x5s0 = 50;e = 20;s1 = 35*(1 - cos(1.5*x1));t1 = (s1 + s0)*cos(x1)-e*sin(x1);y1 = (s0 + s1)*sin(x1) - e*cos(x1);tx1=diff(t1,x1);txx1=diff(t1,x1,2);yx1=diff(y1,x1);yxx1=diff(y1,x1,2);for xx1= 0:(pi/100):(2*pi/3);k1=subs(abs((tx1*yxx1-txx1*yx1)/(tx1^2+yx1^2)^1.5),{x1},{xx1}); v=[v,1/k1];ends2 = 70;t2 = (s2 + s0)*cos(x2)-e*sin(x2);y2 = (s0 + s2)*sin(x2) - e*cos(x2);tx2=diff(t2,x2);txx2=diff(t2,x2,2);yx2=diff(y2,x2);yxx2=diff(y2,x2,2);for xx2=(2*pi/3):(pi/100):(pi);k2=subs(abs((tx2*yxx2-txx2*yx2)/(tx2^2+yx2^2)^1.5),{x2},{xx2}); v=[v,1/k2];ends3 = 110*(10/3- 2*x3/pi + 1/(2*pi).*sin (4*x3 - 14* pi/3));t3 = (s3 + s0)*cos(x3)-e*sin(x3);y3 = (s0 + s3)*sin(x3) - e*cos(x3);tx3=diff(t3,x3);txx3=diff(t3,x3,2);yx3=diff(y3,x3);yxx3=diff(y3,x3,2);for xx3=(pi):(pi/100):(3*pi/2);k3=subs(abs((tx3*yxx3-txx3*yx3)/(tx3^2+yx3^2)^1.5),{x3},{xx3}); v=[v,1/k3];ends4 = 0;t4 = (s4 + s0)*cos(x4)-e*sin(x4);y4 = (s0 + s4)*sin(x4) - e*cos(x4);tx4=diff(t4,x4);txx4=diff(t4,x4,2);yx4=diff(y4,x4);yxx4=diff(y4,x4,2);for xx4=(3*pi/2):(pi/100):( 2*pi);k4=subs(abs((tx4*yxx4-txx4*yx4)/(tx4^2+yx4^2)^1.5),{x4},{xx4}); v=[v,1/k4];endmin(v)(3)凸轮的理论廓线和其包络线;由基圆半径确定其滚子的半径为r=8mm,其他参数保持不变;a.凸轮的理论廓线w = 2*pi/3;s0 = 50;s = 70;e = 17;x = 0:(pi/100):(2*pi/3);x1 = (s + s0)*cos(x)-e*sin(x);y1 = (s0 + s)*sin(x) - e*cos(x);y = (2*pi/3):(pi/100):(pi);x2 = (s + s0)*cos(y)-e*sin(y);y2 = (s0 + s)*sin(y) - e*cos(y);z = (pi ):(pi/100):(3*pi/2);x3 = (s + s0)*cos(z)-e*sin(z);y3 = (s0 + s)*sin(z) - e*cos(z);c = (3*pi/2):(pi/100):( 2*pi);x4 = (s + s0)*cos(c)-e*sin(c);y4 = (s0 + s)*sin(c) - e*cos(c);plot(x1,y1,'b',x2,y2,'b',x3,y3,'b',x4,y4,'b');xlabel('x/mm')ylabel('y/mm')title('理轮轮曲线')b.凸轮的包络线w = 2*pi/3;s0 = 50;e = 17;r = 8;x = 0:(pi/100):(2*pi/3);s1 = 35*(1 - cos(1.5*x));x1 = (s1 + s0).*cos(x) - e*sin(x);y1 = (s0 + s1).*sin(x) - e*cos(x);n1 = -(35*1.5*sin(x) + s0).*sin(x) -e*cos(x);m1 = (s0 + 35*1.5*sin(x) ).*cos(x) + e*sin(x);xt1 = x1+(r*m1)./(sqrt(n1.^2+m1.^2));yt1 = y1 - (r*n1)./sqrt(m1.^2 +n1.^2);xw1 = x1 - (r*m1)./sqrt(m1.^2 +n1.^2);yw1 = y1 + (r*n1)./sqrt(m1.^2 +n1.^2);y = (2*pi/3):(pi/100):(pi);s2 = 70;x2 = (s2 + s0).*cos(y)-e*sin(y);y2 = (s0 + s2).*sin(y) - e*cos(y);n2 = -s0.*sin(y)-e*cos(y);m2 = s0 .*cos(y) + e*sin(y);xt2 = x2 + (r*m2)./sqrt(m2.^2+n2.^2);yt2 = y2 - (r*n2)./sqrt(m2.^2+n2.^2);xw2 = x2 - (r*m2)./sqrt(m2.^2+n2.^2);yw2 = y2 + (r*n2)./sqrt(m2.^2+n2.^2);z = (pi ):(pi/100):(3*pi/2);s3 = 70*(3- 2*z/pi + 1/(2*pi).*sin (4*z - 4* pi));x3 = (s3 + s0).*cos(z)-e*sin(z);y3 = (s0 + s3).*sin(z) - e*cos(z);n3 = -(140/pi *cos(4*z - 4*pi) + s0).*sin(z)-e*cos(z); m3 = (s0 + 140/pi *cos(4*z - 4*pi)).*cos(z) + e*sin(z);xt3= x3 + (r*m3)./sqrt(m3.^2+n3.^2);yt3 = y3 - (r*n3)./sqrt(m3.^2+n3.^2);xw3 = x3 -(r* m3)./sqrt(n3.^2+m3.^2);yw3 = y3 + (r*n3)./sqrt(n3.^2+m3.^2);c = (3*pi/2):(pi/100):( 2*pi);s4 = 0;x4 = (s4 + s0).*cos(c)-e*sin(c);y4 = s0 .*sin(c) - e*cos(c);n4 = - s0.*sin(c)-e*cos(c);m4 = s0 .*cos(c) + e*sin(c);xt4= x4 + (r*m4)./sqrt(m4.^2+n4.^2);yt4 = y4 - (r*n4)./sqrt(m4.^2+n4.^2);xw4 = x4 - (r*m4)./sqrt(n4.^2+m4.^2);yw4 = y4 + (r*n4)./sqrt(n4.^2+m4.^2);plot(xw1,yw1,'b',xw2,yw2,'b',xw3,yw3,'b',xw4,yw4,'b') xlabel('x/mm')ylabel('y/mm')title('凸轮的包络线')grid。
机械原理大作业——凸轮
大作业(二)凸轮机构设计题号: 6班级:姓名:学号:同组者:成绩:完成时间:目录一凸轮机构题目要求 (1)二摆杆的运动规律及凸轮轮廓线方程 (2)三计算程序 (3)四运算结果及凸轮机构图 (9)4.1 第一组(A组)机构图及计算结果 (9)4.2 第二组(B组)机构图及计算结果 (14)4.3 第三组(C组)机构图及计算结果 (19)五心得体会 (24)第一组(A组) (24)第二组(B组) (24)第三组(C组) (24)六参考资料 (25)附录程序框图 (26)一凸轮机构题目要求(摆动滚子推杆盘形凸轮机构)题目要求:试用计算机辅助设计完成下列偏置直动滚子推杆盘形凸轮机构或摆动滚子推杆盘形凸轮机构的设计,已知数据如下各表所示。
凸轮沿逆时针方向作匀速转动。
表一摆动滚子推杆盘形凸轮机构的已知参数题号初选的基圆半径R0/mm机架长度Loa/mm摆杆长度Lab/mm滚子半径Rr/mm推杆摆角φ许用压力角许用最小曲率半径[ρamin][α1] [α2]A 15 60 55 10 24°35°70°0.3RrB 20 70 65 14 26°40°70°0.3RrC 22 72 68 18 28°45°65°0.35Rr 要求:1)凸轮理论轮廓和实际轮廓的坐标值2)推程和回程的最大压力角,及凸轮对应的转角3)凸轮实际轮廓曲线的最小曲率4)半径及相应凸轮转角5)基圆半径6)绘制凸轮理论廓线和实际廓线7)计算点数:N:72~120推杆运动规律:1)推程运动规律:等加速等减速运动2)回程运动规律:余弦加速度运动二摆杆的运动规律及凸轮轮廓线方程1)推程:1,运动规律:等加速等减速运动;2,轮廓线方程:A:等加速推程段设定推程加速段边界条件为: 在始点处 δ=0,s=0,v=0。
在终点处 h /2 s ,2/==δοδ。
整理得:⎪⎩⎪⎨⎧===^2^2/*h *4a ^2/**h *4v ^2^2/*h *2s δοωδοδωδοδ( 注意:δ的变化范围为0~δ0/2。
机械原理大作业凸轮机构设计
机械原理大作业凸轮机构设计一、凸轮机构概述凸轮机构是一种常见的传动机构,它通过凸轮的旋转运动,带动相应零件做直线或曲线运动。
凸轮机构具有结构简单、运动平稳、传递力矩大等优点,在各种机械设备中得到广泛应用。
二、凸轮基本结构1. 凸轮凸轮是凸起的圆柱体,通常安装在主轴上。
其表面通常为圆弧形或其他曲线形状,以便实现所需的运动规律。
2. 跟随件跟随件是与凸轮配合的零件,它们通过接触面与凸轮相互作用,并沿着规定的路径做直线或曲线运动。
跟随件可以是滑块、滚子、摇臂等。
3. 连杆连杆连接跟随件和被驱动部件,将跟随件的运动转化为被驱动部件所需的运动。
连杆可以是直杆、摇杆等。
三、凸轮机构设计要点1. 几何参数设计设计时需要确定凸轮半径、角度和曲率半径等参数,这些参数的选择将直接影响凸轮机构的运动规律和性能。
2. 运动规律设计根据被驱动部件的运动要求,选择合适的凸轮曲线形状,以实现所需的运动规律。
3. 稳定性设计在设计凸轮机构时,需要考虑其稳定性。
例如,在高速旋转时,可能会发生跟随件脱离凸轮或者产生振动等问题,因此需要采取相应措施提高稳定性。
4. 材料和制造工艺设计在材料和制造工艺方面,需要考虑凸轮机构所承受的载荷和工作环境等因素,选择合适的材料和制造工艺。
四、几种常见凸轮机构及其应用1. 摇臂式凸轮机构摇臂式凸轮机构由摇臂、连杆和被驱动部件组成。
它通常用于实现直线运动或旋转运动,并且具有结构简单、运动平稳等优点。
摇臂式凸轮机构广泛应用于各种机械设备中,如发动机气门控制系统、纺织设备等。
2. 滑块式凸轮机构滑块式凸轮机构由凸轮、滑块、连杆和被驱动部件组成。
它通常用于实现直线运动,并且具有结构简单、运动平稳等优点。
滑块式凸轮机构广泛应用于各种机械设备中,如冲压设备、印刷设备等。
3. 滚子式凸轮机构滚子式凸轮机构由凸轮、滚子、连杆和被驱动部件组成。
它通常用于实现圆弧形运动,并且具有运动平稳、传递力矩大等优点。
滚子式凸轮机构广泛应用于各种机械设备中,如汽车发动机气门控制系统等。
机械原理大作业——凸轮.docx
大作业(二)凸轮机构设计题号:6班级:姓名:学号:同组者:成绩:完成时间:目录一凸轮机构题目要求 (1)二摆杆的运动规律及凸轮轮廓线方程 (2)三计算程序 (3)四运算结果及凸轮机构图 (9)4.1 第一组(A组)机构图及计算结果 (9)4.2 第二组(B组)机构图及计算结果 (14)4.3 第三组(C组)机构图及计算结果 (19)五心得体会 (24)第一组(A组) (24)第二组(B组) (24)第三组(C组) (24)六参考资料 (25)附录程序框图 (26)一凸轮机构题目要求(摆动滚子推杆盘形凸轮机构)题目要求:试用计算机辅助设计完成下列偏置直动滚子推杆盘形凸轮机构或摆动滚子推杆盘形凸轮机构的设计,已知数据如下各表所示。
凸轮沿逆时针方向作匀速转动。
表一摆动滚子推杆盘形凸轮机构的已知参数题号初选的基圆半径R0/mm机架长度Loa/mm摆杆长度Lab/mm滚子半径Rr/mm推杆摆角φ许用压力角许用最小曲率半径[ρamin][α1] [α2]A 15 60 55 10 24°35°70°0.3RrB 20 70 65 14 26°40°70°0.3RrC 22 72 68 18 28°45°65°0.35Rr 要求:1)凸轮理论轮廓和实际轮廓的坐标值2)推程和回程的最大压力角,及凸轮对应的转角3)凸轮实际轮廓曲线的最小曲率4)半径及相应凸轮转角5)基圆半径6)绘制凸轮理论廓线和实际廓线7)计算点数:N:72~120推杆运动规律:1)推程运动规律:等加速等减速运动2)回程运动规律:余弦加速度运动二摆杆的运动规律及凸轮轮廓线方程1)推程:1,运动规律:等加速等减速运动;2,轮廓线方程:A:等加速推程段设定推程加速段边界条件为:在始点处δ=0,s=0,v=0。
在终点处。
整理得:(注意:δ的变化范围为0~δ0/2。
西工大机械原理大作业2凸轮机构作业
西工大机械原理大作业2凸轮机构作业摘要:凸轮机构是机械传动中十分重要的一种机构,它通过凸轮的回转运动将直线运动或其他运动转化为需要的曲线运动。
本文将对凸轮机构的结构和工作原理进行详细介绍,并以汽车发动机中凸轮机构为例进行分析。
通过本次作业的学习,可以更好地理解和应用凸轮机构的原理。
关键词:凸轮机构、结构、工作原理、汽车发动机一、引言凸轮机构是一种将直线运动或其他运动转化为需要的曲线运动的机构。
它广泛应用于各种机械传动中,尤其在汽车发动机中扮演着重要的角色。
凸轮机构能够将发动机的气缸活塞的直线往复运动转化为曲轴的回转运动,从而实现汽缸进、排气门的开闭。
凸轮机构还广泛应用于各种机械设备中,如机床、印刷机等。
因此,对凸轮机构的学习和掌握是十分重要的。
二、凸轮机构的结构和工作原理凸轮机构主要由凸轮、凸轮轴和从动件等组成。
凸轮是一个平面上的旋转曲线,它通过与凸轮轴的配合将转动运动转化为需要的曲线运动。
从动件则是根据需要进行曲线运动的机构组成部分,如气缸活塞、机床刀架等。
凸轮的工作原理是通过其凸轮轴的旋转将自身上的凸点或凹槽与从动件相配合,从而实现曲线运动。
当凸轮轴旋转时,凸轮上的凸点或凹槽与从动件相接触,从而驱动从动件做曲线运动。
凸轮机构的运动规律可以通过凸轮的轮廓形状来确定,因此,在设计凸轮机构时,需要根据所需要的运动曲线来确定凸轮的形状和参数。
三、汽车发动机中的凸轮机构汽车发动机中的凸轮机构是一个非常典型的凸轮机构应用案例。
它通过凸轮的回转运动来驱动气缸活塞做往复运动,并控制气缸进、排气门的开闭。
凸轮机构通过凸轮轴上的凸点和凹槽与气门机构相连接,从而实现曲线运动。
汽车发动机中的凸轮机构一般由凸轮轴、凸轮、气门弹簧、气门和凸轮轴链条组成。
凸轮轴位于汽车发动机的上部,凸轮装在凸轮轴上,通过气门弹簧与气门相连接。
当凸轮轴旋转时,凸轮上的凸点或凹槽与气门弹簧相接触,从而控制气门的开闭,进而控制气缸的进、排气。
机械原理大作业凸轮
机械原理大作业凸轮
机械原理大作业,凸轮。
凸轮是机械传动中常用的一种机构,它通过不规则形状的轮廓
来实现对运动部件的控制。
在机械原理中,凸轮通常被用于将旋转
运动转化为直线运动,或者实现复杂的运动轨迹控制。
本文将对凸
轮的结构、工作原理以及应用进行介绍。
首先,凸轮的结构可以分为凸轮轴、凸轮轮廓和凸轮座三个部分。
凸轮轴是凸轮的主体,它通常由钢材或铸铁制成,具有一定的
硬度和强度。
凸轮轮廓是凸轮的关键部分,它的形状决定了凸轮的
运动规律。
凸轮座则是凸轮的支撑部分,用于将凸轮固定在机器上。
这三个部分共同构成了凸轮的基本结构。
其次,凸轮的工作原理是利用凸轮轮廓的不规则形状来控制运
动部件的运动。
当凸轮轴旋转时,凸轮轮廓会推动凸轮座上的运动
部件,使其产生直线运动或者复杂的运动轨迹。
通过合理设计凸轮
轮廓的形状,可以实现各种不同的运动控制效果。
最后,凸轮在机械传动中有着广泛的应用。
它常常被用于发动
机的气门控制系统中,通过凸轮的旋转来控制气门的开闭,从而实现发动机的正常工作。
此外,凸轮还被应用于纺织机械、冲压机械等领域,用于控制各种不同的运动部件。
综上所述,凸轮作为机械传动中常用的机构,具有结构简单、工作可靠、应用广泛的特点。
通过合理设计凸轮的结构和轮廓,可以实现对运动部件的精确控制,从而实现各种不同的机械运动。
在未来的机械设计中,凸轮仍然会发挥重要的作用,为各种机械设备的运动控制提供可靠的解决方案。
机械原理大作业凸轮机构题DOC
Harbin Institute of Technology机械原理大作业二课程名称:机械原理设计题目:连杆机构运动分析院系:机械设计制造及其自动化班级:设计者:学号:指导教师:设计时间:一.设计题目设计直动从动件盘形凸轮机构,凸轮机构原始参数 序号 升程(mm) 升程运动角(º) 升程运 动规律升程许用压力角(º) 回程运动角(º)回程运 动规律回程许用压力角(º)远休止角 (º)近休止角 (º) 22 120 90等加等减速 4080等减等加速 70 70120二. 凸轮推杆运动规律1.运动规律(等加速等减速运动) 推程 0450≤≤ϕ2229602ϕπϕ=⎪⎪⎭⎫ ⎝⎛Φ=h s ϕπωϕω2219204=Φ=h v2220219204πωω=Φ=h a 推程 009045≤≤ϕ()222020)2(9601202ϕππϕ--=-ΦΦ-=hh s())2(1920422ϕπωπϕω-=-ΦΦ=h v222219204ωπω-=Φ-=h a2.运动规律(等加速等减速运动) 回程 00200160≤≤ϕ ()[]2222)98(9601202πϕπϕ--=Φ+Φ-Φ-=S h h s ()[])98(1920-4-22πϕωπϕω-=Φ+Φ-Φ=S h v 222219204ωπω-=Φ-=h a回程 00240200≤≤ϕ ()[]222'002)34(9602ϕππϕ-=-Φ+Φ+ΦΦ=S h s ()[])34(1920-4-2'002ϕπωπϕω-=-Φ+Φ+ΦΦ=S h v222219204ωπω=Φ=h a三.推杆位移、速度、加速度线图及凸轮s d ds-φ线图采用VB 编程,其源程序及图像如下: 1.位移:Private Sub Command1_Click()Timer1.Enabled = True '开启计时器 End SubPrivate Sub Timer1_Timer() Static i As SingleDim s As Single, q As Single 'i 作为静态变量,控制流程;s 代表位移;q 代表角度 Picture1.CurrentX = 0 Picture1.CurrentY = 0 i = i + 0.1 If i <= 45 Then q = is = 240 * (q / 90) ^ 2Picture1.PSet Step(q, -s), vbRedElseIf i >= 45 And i <= 90 Thenq = is = 120 - 240 * ((90 - q) ^ 2) / (90 ^ 2)Picture1.PSet Step(q, -s), vbGreenElseIf i >= 90 And i <= 150 Thenq = is = 120Picture1.PSet Step(q, -s), vbBlackElseIf i >= 150 And i <= 190 Thenq = is = 120 - 240 * (q - 150) ^ 2 / 6400Picture1.PSet Step(q, -s), vbBlueElseIf i >= 190 And i <= 230 Thenq = is = 240 * (230 - q) ^ 2 / 6400Picture1.PSet Step(q, -s), vbRedElseIf i >= 230 And i <= 360 Thenq = is = 0Picture1.PSet Step(q, -s), vbBlackElseEnd IfEnd Sub2.速度Private Sub Command2_Click()Timer2.Enabled = True '开启计时器End SubPrivate Sub Timer2_Timer()Static i As SingleDim v As Single, q As Single, w As Single 'i为静态变量,控制流程;q代表角度;w代表角速度,此处被赋予50Picture1.CurrentX = 0Picture1.CurrentY = 0w = 50i = i + 0.1If i <= 45 Thenq = iv = 480 * w * q / 8100Picture1.PSet Step(q, -v), vbRedElseIf i >= 45 And i <= 90 Thenq = iv = 480 * w * (90 - q) / 8100Picture1.PSet Step(q, -v), vbBlack ElseIf i >= 90 And i <= 150 Thenq = iv = 0Picture1.PSet Step(q, -v), vbGreen ElseIf i >= 150 And i <= 190 Then q = iv = -480 * w * (q - 150) / 6400Picture1.PSet Step(q, -v), vbBlue ElseIf i >= 190 And i <= 230 Thenq = iv = -480 * w * (230 - q) / 6400Picture1.PSet Step(q, -v), vbRedElseIf i >= 230 And i <= 360 Then q = iv = 0Picture1.PSet Step(q, -v), vbBlack ElseEnd IfEnd Sub3.加速度Private Sub Command3_Click()Timer3.Enabled = True '开启计时器End SubPrivate Sub Timer3_Timer()Static i As SingleDim a As Single, w As Single, q As Single 'i为静态变量,控制流程;a代表加速度;q代表角度;w代表角速度w = 50Picture1.CurrentX = 0Picture1.CurrentY = 0i = i + 0.1If i <= 45 Thenq = ia = 480 * w ^ 2 / 8100Picture1.PSet Step(q, -a), vbRedElseIf i >= 45 And i <= 90 Thenq = ia = -480 * w ^ 2 / 8100Picture1.PSet Step(q, -a), vbBlackElseIf i >= 90 And i <= 150 Thenq = ia = 0Picture1.PSet Step(q, -a), vbGreenElseIf i >= 150 And i <= 190 Thenq = ia = -480 * w ^ 2 / 6400Picture1.PSet Step(q, -a), vbBlueElseIf i >= 190 And i <= 230 Thenq = ia = 480 * w ^ 2 / 6400Picture1.PSet Step(q, -a), vbRedElseIf i >= 230 And i <= 360 Thenq = ia = 0Picture1.PSet Step(q, -a), vbBlackElseEnd IfEnd Sub4.ds/dq---dsPrivate Sub Command4_Click()Timer4.Enabled = True '开启计时器;建立坐标系Picture1.Scale (-400, -400)-(400, 400)End SubPrivate Sub Timer4_Timer()Static i As SingleDim x As Single, s As Single, q As Single, scaley As Single, t As Single 'i为静态变量,控制流程;x代表位移;s代表纵坐标ds/dq;q代表角度Picture1.CurrentX = 0Picture1.CurrentY = 0scaley = 1t = 3.14 / 180i = i + 0.1If i <= 45 Thenq = i * tx = 194.734 * qs = 240 * (2 * q / 3.14) ^ 2Picture1.PSet Step(x, -s), vbRedElseIf i >= 45 And i <= 90 Thenq = i * tx = 194.734 * (3.14 / 2 - q)s = 120 - 97.367 * (3.14 / 2 - q) ^ 2Picture1.PSet Step(x, -s), vbRedElseIf i >= 90 And i <= 150 Thenq = i * tx = 0s = 120 * scaleyPicture1.PSet Step(x, -s), vbRedElseIf i >= 150 And i <= 190 Thenq = i * tx = -246.46 * (q - 5 * 3.14 / 6)s = 120 - 123.23 * (q - 5 * 3.14 / 6) ^ 2 Picture1.PSet Step(x, -s), vbRedElseIf i >= 190 And i <= 230 Thenq = i * tx = -246.46 * (23 * 3.14 / 18 - q)s = 123.23 * (23 * 3.14 / 18 - q) ^ 2Picture1.PSet Step(x, -s), vbRedElseIf i >= 230 And i <= 360 Thenq = i * tx = 0s = 0Picture1.PSet Step(x, -s), vbRedElseEnd IfEnd Sub四.确定凸轮基圆半径和偏距1. 求切点转角在图中,右侧曲线为升程阶段的类速度-位移图,作直线Dt dt与其相切,且位移轴正方向呈夹角[ 1]=300,则切点处的斜率与直线D t d t的斜率相等,因为kDtdt=tan600,右侧曲线斜率可以表示为:q;q=tan600继而求出切点坐标(337.272,292.084)。
机械原理大作业凸轮机构有关公式
机械原理大作业凸轮机构有关公式凸轮机构是机械传动中常见的一种机构,具有转动曲线的特点,可以将驱动轴的转动运动通过凸轮的滚动轮廓来实现对从动件的相应动作控制。
在凸轮机构的设计和分析中,有一些与凸轮曲线有关的公式是十分重要的。
一、凸轮曲线方程凸轮曲线是指凸轮的滚动轮廓,可以通过数学方法来表示。
常见的凸轮曲线方程有圆弧、椭圆、正弦曲线等。
其中,最常用的是圆弧和直线的组合,这种凸轮曲线被称为简谐凸轮曲线。
简谐凸轮曲线方程可以表示为:y = r (1 - cos(θ - θ0))其中,r为凸轮半径,θ为凸轮角度,θ0为凸轮曲线的初相位差。
凸轮在其中一角度θ的位置的坐标可以通过此公式计算得出。
二、凸轮曲线的导数和导数变化率在凸轮机构的设计和分析中,对凸轮曲线的导数和导数变化率也有相当重要的影响。
凸轮的导数表示了凸轮曲线的斜率,而导数的变化率表示了凸轮曲线的曲率。
凸轮曲线的导数可以表示为:dy/dθ = r sin(θ - θ0)凸轮曲线的导数变化率可以表示为:d²y/dθ² = r cos(θ - θ0)通过对凸轮的导数和导数变化率的计算和分析,可以确定从动件的运动状态和速度变化情况,进而进行凸轮机构的设计和优化。
三、凸轮压力和压力角在凸轮机构中,凸轮和从动件之间存在着压力作用。
对于凸轮的任何一个位置,凸轮所施加的压力可以通过力的分解计算得出,并且可以利用凸轮的转角来表示。
凸轮的压力可以表示为:F = P * r * cos(θ - θ0)其中,P为压力系数,r为凸轮半径,θ为凸轮角度,θ0为凸轮曲线的初相位差。
凸轮的压力角可以表示为:φ = atan(dy/dθ)其中,dy/dθ为凸轮曲线的导数。
凸轮的压力角可以用来描述凸轮的主动件施加力的方向和作用范围,对凸轮机构的设计和分析具有指导意义。
以上是凸轮机构常见的几个重要的公式,通过这些公式可以计算和分析凸轮机构的运动学和动力学性能,为凸轮机构的设计和优化提供指导。
机械原理大作业凸轮设计
机械原理大作业凸轮设计1. 引言凸轮是一种通过凸起部分的形状变化驱动其他机械部件的旋转元件。
在机械系统中,凸轮被广泛应用于各种传动装置和运动控制系统。
本文档将讨论凸轮的设计原理和方法,并以一个具体的案例进行说明。
2. 凸轮设计原理2.1 凸轮的基本概念凸轮由凸起部分和基座两部分组成。
其中,凸起部分通常称为凸轮型面,它的形状决定了凸轮所能产生的运动规律。
基座是凸轮的固定部分,通常与主轴连接,使凸轮能够旋转。
2.2 凸轮设计的基本要求凸轮设计的目标是实现所需的运动规律。
在设计一个凸轮时,需要考虑以下几个方面:•运动规律:根据具体需求确定凸轮的运动规律,如线性运动、往复运动、旋转运动等。
•周期性:确定凸轮的运动周期,即凸轮的一次完整运动所需的时间。
•加减速:确定凸轮的运动加速和减速过程,以实现平滑的运动过渡。
•载荷和寿命:考虑凸轮所承受的载荷和使用寿命要求,选择适当的材料和结构。
2.3 凸轮设计的方法凸轮设计可以采用基于经验的方法或基于计算机辅助设计(CAD)的方法。
基于经验的方法通常适用于简单的凸轮系统,而复杂的凸轮系统通常需要借助CAD 软件进行设计和分析。
凸轮设计的关键步骤包括:•确定凸轮的运动规律和周期。
•根据凸轮的运动规律计算凸轮型面的形状。
•通过CAD软件创建凸轮的三维模型。
•进行凸轮的运动仿真和动态分析。
•对凸轮进行优化设计,以满足运动要求和结构要求。
3. 案例分析:凸轮驱动往复运动机构3.1 问题描述设计一个凸轮驱动的往复运动机构,要求满足以下条件:•机构的往复运动幅度为20mm。
•机构的往复运动频率为10Hz。
•机构的驱动电机转速为1000rpm。
•机构的凸轮型面应满足正弦形状。
3.2 设计步骤1.确定凸轮的运动规律和周期。
根据往复运动要求,选择正弦运动作为凸轮的运动规律,运动周期为0.1s。
2.计算凸轮型面的形状。
根据凸轮的运动规律和运动周期,计算凸轮型面的形状参数。
3.创建凸轮的三维模型。
机械原理大作业-凸轮机构
二、凸轮机构一、运动分析凸轮的运动分为4个阶段:推程运动、远休程、回程运动、近休程。
该凸轮机构4个阶段的运动角分别为推程运动角90˚、远休止角100 ˚、回程运动角50 ˚、近休止角120 ˚。
推程运动阶段的运动规律为正弦加速度运动,回程运动的运动规律为4-5-6-7多项式运动。
凸轮的简图如图1所示。
图1对该机构进行简单的运动分析:1.升程阶段采用正弦加速度的运动规律,从动件的位移、速度、加速度、压力角的计算公式如下:计算时将相应的量带入公式即可得到。
类速度可以直接将位移方程对凸轮转角ϕ求导得到。
2.远休程阶段的位移不变,与凸轮升程阶段最后的位移相等,速度、加速度则变为0。
3.回程阶段位移、速度、加速度可通过代入4-5-6-7多项式的方程求得。
4.近休程阶段的位移与回程阶段最后的位移相等,且为0,速度、加速度均变为0.二、流程框图图2三、运用VC编程#include<stdio.h>#include<math.h>#define pi 3.141592654 //定义全局变量int main() //主函数{int i,j,k,l;double s; //定义位移量double v; //定义速度量double a; //定义加速度量double r; //定义弧度制角度量double d,o,m,t=40,x1,x2,y1,y2,d1,d2; //定义中间变量double p; //定义角度制角度量double w=1; //定义并角速度量赋值double R=50; //定义基圆半径double e=30; //定义偏距double n; //定义压力角double u; //定义曲率半径double Rr=17; //定义滚子半径并赋值double x,y,X,Y; //定义实际与理论廓线上点的坐标r=0;for(i=0;i<20;i++){s=20/pi*(4*r-sin(4*r));x=-(t+s)*sin(r)-e*cos(r);y=(t+s)*cos(r)-e*sin(r);d1=-(s+t)*cos(r)+e*sin(r);d2=-(s+t)*sin(r)-e*cos(r);X=x-Rr*d2/pow(d1*d1+d2*d2,0.5);Y=y+Rr*d1/pow(d1*d1+d2*d2,0.5);d=80/pi*(1-cos(4*r));v=80/pi*(1-cos(4*r));a=320/pi*sin(4*r);m=atan(fabs(d-e)/(s+t));n=180*m/pi;x1=(t+s)*cos(r)+v/w*sin(r)-e*sin(r);y1=-(t+s)*sin(r)+v/w*cos(r)-e*cos(r);x2=-(t+s)*sin(r)+v/w*cos(r)+a/(w*w)*sin(r)+v/w*cos(r)-e*cos(r);y2=-(t+s)*cos(r)-v/w*sin(r)+a/(w*w)*cos(r)-v/w*sin(r)+e*sin(r);u=pow(x1*x1+y1*y1,1.5)/fabs(x1*y2-y1*x2);r=r+pi/40;p=180/pi*r;printf("%lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf\n", p,s,v,a,d,n,u,x,y,X,Y);}r=pi/2;for(j=0;j<5;j++){s=s;x=-(t+s)*sin(r)-e*cos(r);y=(t+s)*cos(r)-e*sin(r);d1=-(s+t)*cos(r)+e*sin(r);d2=-(s+t)*sin(r)-e*cos(r);X=x-Rr*d2/pow(d1*d1+d2*d2,0.5);Y=y+Rr*d1/pow(d1*d1+d2*d2,0.5);d=0;v=0;a=0;m=atan(fabs(d-e)/(s+t));n=180*m/pi;x1=(t+s)*cos(r)+v/w*sin(r)-e*sin(r);y1=-(t+s)*sin(r)+v/w*cos(r)-e*cos(r);x2=-(t+s)*sin(r)+v/w*cos(r)+a/(w*w)*sin(r)+v/w*cos(r)-e*cos(r);y2=-(t+s)*cos(r)-v/w*sin(r)+a/(w*w)*cos(r)-v/w*sin(r)+e*sin(r);u=pow(x1*x1+y1*y1,1.5)/fabs(x1*y2-y1*x2);r=r+pi/9;p=180/pi*r;printf("%lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf\n", p,s,v,a,d,n,u,x,y,X,Y);}r=(19*pi)/18;for(k=0;k<20;k++){o=(18*r-19*pi)/(5*pi);s=40*(1-35*pow(o,4)+84*pow(o,5)-70*pow(o,6)+20*pow(o,7));x=-(t+s)*sin(r)-e*cos(r);y=(t+s)*cos(r)-e*sin(r);d1=-(s+t)*cos(r)+e*sin(r);d2=-(s+t)*sin(r)-e*cos(r);X=x-Rr*d2/pow(d1*d1+d2*d2,0.5);Y=y+Rr*d1/pow(d1*d1+d2*d2,0.5);d=18*40/5/pi*(-35*4*pow(o,3)+84*5*pow(o,4)-70*6*pow(o,5)+20*7*pow(o,6));v=-80/pi*(140*pow(o,3)-420*pow(o,4)+420*pow(o,5)-140*pow(o,6));a=-160/pi*(420*pow(o,2)-1680*pow(o,3)+2100*pow(o,4)-840*pow(o,5));m=atan(fabs(d-e)/(s+t));n=180*m/pi;x1=(t+s)*cos(r)+v/w*sin(r)-e*sin(r);y1=-(t+s)*sin(r)+v/w*cos(r)-e*cos(r);x2=-(t+s)*sin(r)+v/w*cos(r)+a/(w*w)*sin(r)+v/w*cos(r)-e*cos(r);y2=-(t+s)*cos(r)-v/w*sin(r)+a/(w*w)*cos(r)-v/w*sin(r)+e*sin(r);u=pow(x1*x1+y1*y1,1.5)/fabs(x1*y2-y1*x2);r=r+pi/72;p=180/pi*r;printf("%lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf\n", p,s,v,a,d,n,u,x,y,X,Y);}r=(4*pi)/3;for(l=0;l<5;l++){s=s;x=-(t+s)*sin(r)-e*cos(r);y=(t+s)*cos(r)-e*sin(r);d1=-(s+t)*cos(r)+e*sin(r);d2=-(s+t)*sin(r)-e*cos(r);X=x-Rr*d2/pow(d1*d1+d2*d2,0.5);Y=y+Rr*d1/pow(d1*d1+d2*d2,0.5);d=0;v=0;a=0;m=atan(fabs(d-e)/(s+t));n=180*m/pi;x1=(t+s)*cos(r)+v/w*sin(r)-e*sin(r);y1=-(t+s)*sin(r)+v/w*cos(r)-e*cos(r);x2=-(t+s)*sin(r)+v/w*cos(r)+a/(w*w)*sin(r)+v/w*cos(r)-e*cos(r);y2=-(t+s)*cos(r)-v/w*sin(r)+a/(w*w)*cos(r)-v/w*sin(r)+e*sin(r);u=pow(x1*x1+y1*y1,1.5)/fabs(x1*y2-y1*x2);r=r+2*pi/15;p=180/pi*r;printf("%lf %lf %lf %lf %lf %lf %lf %lf %lf %lf %lf\n", p,s,v,a,d,n,u,x,y,X,Y);}return 0;}四、计算结果处理1.输出数据位移s、速度v、加速度a、类速度ds/dϕ、压力角α、曲率半径ρ(其中曲率半径缺失的数据为太大而不合题意的数据,已将其舍去):表1凸轮轮廓:理论廓线坐标、实际廓线坐标:表22.根据输出数据做出图像:图2图3图4图5图6图7图8。
机械原理大作业
机械原理大作业凸轮机构的设计一、简介凸轮机构是由凸轮,从动件和机架三个基本构件组成的高副机构。
凸轮是一个具有曲线轮廓或凹槽的构件,一般为主动件,作等速回转运动或往复直线运动。
与凸轮轮廓接触,并传递动力和实现预定的运动规律的构件,一般做往复直线运动或摆动,称为从动件。
凸轮机构在应用中的基本特点在于能使从动件获得较复杂的运动规律。
因为从动件的运动规律取决于凸轮轮廓曲线,所以在应用时,只要根据从动件的运动规律来设计凸轮的轮廓曲线就可以了。
凸轮机构广泛应用于各种自动机械、仪器和操纵控制装置。
凸轮机构之所以得到如此广泛的应用,主要是由于凸轮机构可以实现各种复杂的运动要求,而且结构简单、紧凑。
二、凸轮机构的工作原理由凸轮的回转运动或往复运动推动从动件作规定往复移动或摆动的机构。
凸轮具有曲线轮廓或凹槽,有盘形凸轮、圆柱凸轮和移动凸轮等,其中圆柱凸轮的凹槽曲线是空间曲线,因而属于空间凸轮。
从动件与凸轮作点接触或线接触,有滚子从动件、平底从动件和尖端从动件等。
尖端从动件能与任意复杂的凸轮轮廓保持接触,可实现任意运动,但尖端容易磨损,适用于传力较小的低速机构中。
为了使从动件与凸轮始终保持接触,可采用弹簧或施加重力。
具有凹槽的凸轮可使从动件传递确定的运动,为确动凸轮的一种。
一般情况下凸轮是主动的,但也有从动或固定的凸轮。
多数凸轮是单自由度的,但也有双自由度的劈锥凸轮。
凸轮机构结构紧凑,最适用于要求从动件作间歇运动的场合。
它与液压和气动的类似机构比较,运动可靠,因此在自动机床、内燃机、印刷机和纺织机中得到广泛应用。
但凸轮机构易磨损,有噪声,高速凸轮的设计比较复杂,制造要求较高。
一、工作过程和参数在凸轮机构中最常见的运动形式为凸轮机构作等速回转运动,从动件往复移动。
以图6-8为例(对心外轮廓盘形凸轮机构)。
首先介绍一下本图中各构件的名称。
1,运动分析:从动件运动状态凸轮运动凸轮转过的角度ϕ升AB1ϕ2停BC2ϕ3降CD 3停CA4ϕ2、参数①推程(升程)-- 从动件自最低位置升到最高位置的过程 ②推程角(升程角)--推动从动件实现推程时的凸轮转角(ϕ1) ③回程 -- 从动件自最高位置升到最低位置的过程 ④回程角 --从动件从最高位置回到最低位置时的 凸轮转角(ϕ3)⑤远停角(远休止角)从动件在最高位置停止不动,与此对应的凸轮转角。
(完整word版)哈工大机械原理大作业凸轮DOC
H a r b i n I n s t i t u t e o f T e c h n o l o g y机械原理大作业二课程名称:机械原理设计题目: 凸轮机构设计院系:班级:设计者:学号:指导教师:哈尔滨工业大学一、设计题目如右图所示直动从动件盘形凸轮机构,选择一组凸轮机构的原始参数,据此设计该凸轮机构。
凸轮机构原始参数序号升程(mm)升程运动角升程运动规律升程许用压力角27130150正弦加速度30°回程运动角回程运动规律回程许用压力角远休止角近休止角100°余弦加速度60°30°80°二. 凸轮推杆升程、回程运动方程及推杆位移、速度、加速度线图凸轮推杆升程运动方程:)]512sin(2156[130s ϕππϕ-= )512sin(4.374)]512cos(1[156v 211ϕπϕπωω=-=a% t 表示转角,s 表示位移t=0:0.01:5*pi/6;%升程阶段s= [(6*t)/(5*pi )- 1/(2*pi )*sin(12*t/5)]*130; hold on plot(t ,s ); t= 5*pi/6:0。
01:pi; %远休止阶段s=130; hold on plot(t,s );t=pi :0.01:14*pi/9;%回程阶段s=65*[1+cos(9*(t-pi )/5)]; hold on plot(t ,s );t=14*pi/9:0.01:2*pi ;s=0;hold onplot(t,s);grid onhold off%t表示转角,令ω1=1t=0:0。
01:5*pi/6;%升程阶段v=156*1*[1-cos(12*t/5)]/pi hold onplot(t,v);t= 5*pi/6:0。
01:pi;v=0hold onplot(t,v);t=pi:0.01:14*pi/9;%回程阶段v=—117*1*sin(9*(t—pi)/5) hold onplot(t,v);t=14*pi/9:0。
机械原理大作业凸轮结构设计
机械原理大作业(二) 作业名称:机械原理设计题目:凸轮机构设计院系: 机电工程学院班级:设计者:学号:指导教师:丁刚陈明设计时间:哈尔滨工业大学机械设计1、设计题目如图所示直动从动件盘形凸轮机构,根据其原始参数设计该凸轮。
表一:凸轮机构原始参数序号升程(mm) 升程运动角(º)升程运动规律升程许用压力角(º)回程运动角(º)回程运动规律回程许用压力角(º)远休止角(º)近休止角(º)12 80 150正弦加速度30 100 正弦加速度60 60 502、凸轮推杆运动规律(1)推杆升程运动方程S=h[φ/Φ0-sin(2πφ/Φ0)]V=hω1/Φ0[1-cos(2πφ/Φ0)]a=2πhω12sin(2πφ/Φ0)/Φ02式中:h=150,Φ0=5π/6,0<=φ<=Φ0,ω1=1(为方便计算)(2)推杆回程运动方程S=h[1-T/Φ1+sin(2πT/Φ1)/2π]V= -hω1/Φ1[1-cos(2πT/Φ1)]a=-2πhω12sin(2πT/Φ1)/Φ12式中:h=150,Φ1=5π/9,7π/6<=φ<=31π/18,T=φ-7π/63、运动线图及凸轮线图运动线图:用Matlab编程所得源程序如下:t=0:pi/500:2*pi;w1=1;h=150;leng=length(t);for m=1:leng;if t(m)<=5*pi/6S(m) = h*(t(m)/(5*pi/6)-sin(2*pi*t(m)/(5*pi/6))/(2*pi));v(m)=h*w1*(1-cos(2*pi*t(m)/(5*pi/6)))/(5*pi/6);a(m)=2*h*w1*w1*sin(2*pi*t(m)/(5*pi/6))/((5*pi/6)*(5*pi/6));% 求退程位移,速度,加速度elseift(m)<=7*pi/6S(m)=h;v(m)=0;a(m)=0;% 求远休止位移,速度,加速度elseif t(m)<=31*pi/18T(m)=t(m)-21*pi/18;S(m)=h*(1-T(m)/(5*pi/9)+sin(2*pi*T(m)/(5*pi/9))/(2*pi));v(m)=-h/(5*pi/9)*(1-cos(2*pi*T(m)/(5*pi/9)));a(m)=-2*pi*h/(5*pi/9)^2*sin(2*pi*T(m)/(5*pi/9));%求回程位移,速度,加速度elseS(m)=0;v(m)=0;a(m)=0;% 求近休止位移,速度,加速度endend推杆位移图推杆速度图推杆加速度图4、确定凸轮基圆半径与偏距在凸轮机构得ds/dφ-s线图里再作斜直线Dt dt与升程得[ds/dφ-s(φ)]曲线相切并使与纵坐标夹角为升程许用压力角[α],则D t d t线得右下方为选择凸轮轴心得许用区。
机械原理大作业凸轮
机械原理大作业凸轮凸轮是一种常见的机械传动装置,通过其特殊的轮廓形状和旋转运动,可以实现对连杆机构的运动控制。
在机械原理的学习中,凸轮是一个重要的研究对象,其设计和运用涉及到机械工程、动力学、运动学等多个学科领域。
本文将从凸轮的基本原理、结构特点、工作原理和应用范围等方面进行介绍和分析。
首先,凸轮的基本原理是利用凸轮轮廓的不规则形状,在旋转运动中对连杆机构施加不同的力和运动规律,从而实现对机械装置的运动控制。
凸轮的轮廓可以是圆形、椭圆形、心形等多种形状,根据具体的运动要求和传动方式来设计选择。
凸轮的轮廓形状决定了其在运动中对连杆机构的推动和拉动效果,是凸轮传动的关键。
其次,凸轮的结构特点主要包括凸轮轴、凸轮轮廓和凸轮支撑等部分。
凸轮轴是凸轮的轴心部分,通过轴承和传动装置与动力源相连,实现旋转运动。
凸轮轮廓是凸轮的轮廓外形,根据具体的运动要求和传动方式进行设计和加工。
凸轮支撑是凸轮的固定支撑装置,通常由轴承、轴套和固定座等部分组成,用于支撑和固定凸轮的运动。
凸轮的工作原理是利用凸轮轮廓的不规则形状,在旋转运动中对连杆机构施加不同的力和运动规律,从而实现对机械装置的运动控制。
当凸轮轴转动时,凸轮轮廓与连杆机构发生接触和相互作用,通过凸轮的推动和拉动作用,实现对连杆机构的运动控制。
凸轮的工作原理是基于凸轮轮廓的不规则形状和旋转运动,通过对连杆机构施加不同的力和运动规律,实现对机械装置的运动控制。
最后,凸轮在机械工程中有着广泛的应用范围,常见的应用包括发动机气门控制、机床加工控制、自动化生产线等领域。
在发动机气门控制中,凸轮通过其特殊的轮廓形状和旋转运动,实现对气门的开启和关闭,从而控制气缸内气体的进出。
在机床加工控制中,凸轮通过其特殊的轮廓形状和旋转运动,实现对工件的加工和定位,从而实现精密加工和高效生产。
在自动化生产线中,凸轮通过其特殊的轮廓形状和旋转运动,实现对工件的输送和定位,从而实现自动化生产和装配。
机械原理大作业凸轮..
Harbin Institute of Technology机械原理大作业二课程名称:机械原理设计题目:凸轮结构设计院系:机电工程学院班级:1308108设计者:仲星光学号:1130810816指导教师:林琳设计时间:2015年6月7日一、设计题目如图所示直动从动件盘形凸轮机构,其原始参数见表,据此设计该凸轮机构。
行程(mm)升程运动角(°)升程运动规律升程许用压力角(°)回程运动角(°)回程运动规律回程许用压力角(°)远休止角(°)近休止角(°)6080余弦加速度30 60 摆抛摆60 100 120二.数学计算方法(设计书中所给出的回程运动方程有误)1.理论轮廓和工作轮廓廓线方程正偏置平面凸轮,反转法,小滚子中心在反转运动中的轨迹即为凸轮的理论轮廓,推杆所在直线一直与偏心圆相切,由几何关系可得盘形凸轮理论轮廓线方程为:滚子从动件盘形凸轮的实际轮廓线是以理论轮廓上各点为圆心,以小滚子半径为半径的圆族的包络线,理论廓线B点相对应的实际廓线B'点的方程为:2.压力角3.凸轮轮廓曲率半径由数学分析知,凸轮理论轮廓曲线上任一点的曲率半径的计算公式为:(以上方程来自《基于MatLab语言的机构设计与分析》上海科学技术出版社)三.MatLab程序程序设计流程1.主程序:推杆位clc;clear;h=60;%行程phi01=80;%推程运动角phis1=100;%远休止角phi02=60;%回程运动角phis2=120;%近休止角alpha1=pi/6;%升程许用压力角alpha2=pi/3;%回程许用压力角omiga=1;%凸轮角速度设为1%计算凸轮转角、从动件位移,速度和加速度%绘制从动件位移、速度、加速度线图[psi,s,v,a]=CanShuJiSuan(h,phi01,phis1,phi02,phis2,... omiga,alpha1,alpha2);e=22;r0=57;%由ds/dpsi-s图像确定基圆半径和偏距%计算凸轮轮廓线曲率半径及压力角%绘制凸轮理论轮廓线上的压力角线图和曲率半径图[ang,rou,DxDpsi,DyDpsi]=YaLiJiao_QuLvBanJin( r0,psi,s, v,a,e,omiga );Rr=9;%由曲率半径最小值确定小滚子半径%计算凸轮轮廓曲线%绘制理论和实际轮廓曲线LunKuoXian( r0,psi,s,e,Rr,DxDpsi,DyDpsi );2.余弦加速运动规律子函数function [ s1,v1,a1,psi1 ] = Yuxian( phi01,h,omiga )%计算余弦加速度运动规律psi1=linspace(0,phi01,round(phi01));s1=(h/2).*[1 - cos(pi.*psi1./phi01)];v1=(pi*h*omiga./(2.*(phi01*pi/180))) .*sin(pi.*psi1./phi01);a1=pi^2*h*omiga^2/(2*(phi01*pi/180)^2)*cos(pi.*psi1./p hi01)end3.远休止程子函数function [ s2,v2,a2,psi2 ] = YuanXiu( phi01,phis1,h ) psi2=linspace(phi01+1,phi01+phis1,round(phis1));s2=h*psi2./psi2;v2=0*psi2;a2=0*psi2;end4.摆抛摆子函数function [ s3,v3,a3,psi3 ] =BaiPaoBai( phi01,phis1,phi02,h,omiga )%计算回程摆线-抛物线-摆线运动规律%计算当phi01+phis1<psi<=phi01+phis1+phi02/8时,从动件的位移、速度、加速度psi3_1=linspace(phi01+phis1+phi02/8/100,phi01+phis1+ph i02/8,100);s3_1=h-h*(2*(psi3_1-phi01-phis1)/phi02-sin(4*pi*(psi3_ 1-phi01-phis1)/...phi02)/(2*pi))/(2+pi);v3_1=-2*h*omiga*(1-cos(4*pi*(psi3_1-phi01-phis1)/phi02 ))/((2+pi)*...phi02*pi/180);a3_1=-8*h*pi*omiga^2*sin(4*pi*(psi3_1-phi01-phis1)/phi 02)/((2+pi)*...(phi02*pi/180)^2);%计算当phi01+phis1<psi<=phi01+phis1+3*phi02/8时,从动件的位移、速度、加速度psi3_2=linspace(phi01+phis1+phi02/8+phi02/4/100,phi01+ phis1+3*phi02/8,100);s3_2=h-h*(4*pi*((psi3_2-phi01-phis1).^2)/(phi02^2)-(pi -2)*(psi3_2-phi01...-phis1)/phi02+pi/16-1/(2*pi))/(2+pi);v3_2=-h*omiga*(8*pi*(psi3_2-phi01-phis1)/phi02-pi+2)/( (2+pi)*phi02*pi/180);a3_2=-8*h*pi*omiga^2/((2+pi)*(phi02*pi/180)^2)*psi3_2. /psi3_2;%计算当phi01+phis1<psi<=phi01+phis1+5*phi02/8时,从动件的位移、速度、加速度psi3_3=linspace(phi01+phis1+3*phi02/8+phi02/4/100,phi0 1+phis1+5*phi02/8,100);s3_3=h-h*(2*(pi+1)*(psi3_3-phi01-phis1)/phi02-pi/2-sin (4*pi*(psi3_3-phi01...-phis1)/phi02-pi)/(2*pi))/(2+pi);v3_3=-2*h*omiga*(pi+1-cos(4*pi*(psi3_3-phi01-phis1)/ph i02-pi))/((2+pi)...*phi02*pi/180);a3_3=-8*h*pi*omiga^2*sin(4*pi*(psi3_3-phi01-phis1)/phi 02-pi)/((2+pi)*...(phi02*pi/180)^2);%计算当phi01+phis1<psi<=phi01+phis1+7*phi02/8时,从动件的位移、速度、加速度psi3_4=linspace(phi01+phis1+5*phi02/8+phi02/4/100,phi0 1+phis1+7*phi02/8,100);s3_4=h-h*(-4*pi*((psi3_4-phi01-phis1).^2)/(phi02^2)+(7 *pi+2)*(psi3_4-...phi01-phis1)/phi02-33*pi/16+1/(2*pi))/(2+pi);v3_4=-h*omiga*(-8*pi*(psi3_4-phi01-phis1)/phi02+7*pi+2 )/((2+pi)*phi02*pi/180);a3_4=8*h*pi*omiga^2/((2+pi)*(phi02*pi/180)^2)*psi3_4./ psi3_4;%计算当phi01+phis1<psi<=phi01+phis1+phi02时,从动件的位移、速度、加速度psi3_5=linspace(phi01+phis1+7*phi02/8+phi02/8/100,phi0 1+phis1+phi02,100);s3_5=h-h*(2*(psi3_5-phi01-phis1)/phi02+pi-sin(4*pi*(ps i3_5-phi01-phis1).../phi02-2*pi)/(2*pi))/(2+pi);v3_5=-2*h*omiga*(1-cos(4*pi*(psi3_5-phi01-phis1)/phi02 -2*pi))/((2+pi)...*phi02*pi/180);a3_5=-8*h*pi*omiga^2*sin(4*pi*(psi3_5-phi01-phis1)/phi 02-2*pi)/((2+pi)...*(phi02*pi/180)^2);%输出回程阶段凸轮的转角、从动件的位移速度加速度的数组s3=[s3_1,s3_2,s3_3,s3_4,s3_5];v3=[v3_1,v3_2,v3_3,v3_4,v3_5];a3=[a3_1,a3_2,a3_3,a3_4,a3_5];psi3=[psi3_1,psi3_2,psi3_3,psi3_4,psi3_5];end5.近休止程子函数function [ s4,v4,a4,psi4 ] =JinXiu( phi01,phis1,phi02,phis2 )psi4=linspace(phi01+phis1+phi02+1,phi01+phis1+phis2+ph i02,round(phis2));s4=0*psi4;v4=0*psi4;a4=0*psi4;End6.参数计算及图像绘制[s1,v1,a1,psi1]=YuXian(phi01,h,omiga);%推程[s2,v2,a2,psi2]=YuanXiu(phi01,phis1,h);%远休程[s3,v3,a3,psi3]=BaiPaoBai(phi01,phis1,phi02,h,omiga);%回程[s4,v4,a4,psi4]=JinXiu(phi01,phis1,phi02,phis2);%近休程psi=[psi1,psi2,psi3,psi4];%凸轮转角s=[s1,s2,s3,s4];%从动件位移v=[v1,v2,v3,v4];%从动件速度a=[a1,a2,a3,a4];%从动件加速度%绘制从动件位移、速度、加速度线图figure(1)subplot(3,1,1)plot(psi,s);grid onxlabel('凸轮转角(度)');ylabel('位移(mm)');subplot(3,1,2);plot(psi,v);grid onxlabel('凸轮转角(度)');ylabel('速度(mm/s)');subplot(3,1,3)plot(psi,a);grid onxlabel('凸轮转角(度)');ylabel('加速度(mm/s^2)');%绘制ds/dphi-s线图,并确定凸轮基圆半径和偏距DsDphi=v/omiga;figure(2)plot(DsDphi,s);hold onx1=-150:100;y1=tan(pi/2-alpha1)*(x1-65.26)+22.33; plot(x1,y1);hold ony2=tan(pi/2+alpha2)*(x1+107.6)+22.36; plot(x1,y2);7.轮廓线绘制if Rr==0x=x0;y=y0;elseA=sqrt(DxDpsi.^2+DyDpsi.^2);x=x0+Rr*DyDpsi./A;y=y0-Rr*DxDpsi./A;endfigure(4)plot(r0.*cos(psi.*pi/180),r0.*sin(psi.*pi/180),'-.',.. .x0,y0,'--',x,y,e*cos(psi.*pi/180),e*sin(psi.*pi/180)); grid on;legend('基圆','凸轮理论轮廓','凸轮实际轮廓','偏距圆');axis equalend8.压力角曲线及曲率半径function[ang,rou,DxDpsi,DyDpsi]=YaLiJiao_QuLvBanJin( r0,psi,s, v,a,e,omiga )s0=sqrt(r0.^2-e.^2);rs1=s0+s;ang=abs(atan((v/omiga-e)./rs1))*180/pi;DxDpsi=(v./omiga-e).*sin(psi.*pi/180)+...(s0+s).*cos(psi.*pi/180);DyDpsi=(v./omiga-e).*cos(psi.*pi/180)-...(s0+s).*sin(psi.*pi/180);DDxDpsi=(a./(omiga^2)-(s0+s)).*sin(psi.*pi/180)... +(2*v./omiga-e).*cos(psi.*pi/180);DDyDpsi=(a./(omiga^2)-(s0+s)).*cos(psi.*pi/180)... +(2*v./omiga-e).*sin(psi.*pi/180);A=(DxDpsi.^2+DyDpsi.^2).^1.5;B=abs(DxDpsi.*(DDyDpsi)-DyDpsi.*(DDxDpsi));rou=A./B;%凸轮理论轮廓曲率半径%绘图figure(3)axis onplotyy(psi,rou,psi,ang);%绘制曲率半径图[AX]=plotyy(psi,rou,psi,ang);set(AX(1),'yTick',[0:20:200]);set(AX(2),'yTick',[0:10:100]);end四.程序运行结果与生成图像。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Harbin Institute of Technology机械原理大作业二课程名称:机械原理设计题目:凸轮结构设计院系:机电工程学院班级:1308108设计者:仲星光学号:1130810816指导教师:林琳设计时间:2015年6月7日一、设计题目如图所示直动从动件盘形凸轮机构,其原始参数见表,据此设计该凸轮机构。
行 程 (mm) 升程运动角(°)升程运动规律 升程许用压力角(°) 回程运动角(°) 回程运动规律 回程许用压力角(°) 远休止角(°) 近休止角(°) 6080余弦加速度3060摆抛摆 60100120二.数学计算方法(设计书中所给出的回程运动方程有误) 1.理论轮廓和工作轮廓廓线方程正偏置平面凸轮,反转法,小滚子中心在反转运动中的轨迹即为凸轮的理论轮廓,推杆所在直线一直与偏心圆相切,由几何关系可得盘形凸轮理论轮廓线方程为:滚子从动件盘形凸轮的实际轮廓线是以理论轮廓上各点为圆心,以小滚子半径为半径的圆族的包络线,理论廓线B 点相对应的实际廓线B'点的方程为:2.压力角3.凸轮轮廓曲率半径由数学分析知,凸轮理论轮廓曲线上任一点的曲率半径的计算公式为:(以上方程来自《基于MatLab语言的机构设计与分析》上海科学技术出版社)三.MatLab程序程序设计流程行程,升回程运动角,远近休止角 升回程许用压力角 余弦加速度运动规律方程 回程规律运动方程(摆抛摆) 位移,速度,加速度图像 ds/d φ - φ图像 基圆半径与偏距 压力角和曲率半径 小滚子直径 压力角和曲率图像理论和工作廓线1.主程序:推杆位clc;clear;h=60;%行程phi01=80;%推程运动角phis1=100;%远休止角phi02=60;%回程运动角phis2=120;%近休止角alpha1=pi/6;%升程许用压力角alpha2=pi/3;%回程许用压力角omiga=1;%凸轮角速度设为1%计算凸轮转角、从动件位移,速度和加速度%绘制从动件位移、速度、加速度线图[psi,s,v,a]=CanShuJiSuan(h,phi01,phis1,phi02,phis2,... omiga,alpha1,alpha2);e=22;r0=57;%由ds/dpsi-s图像确定基圆半径和偏距%计算凸轮轮廓线曲率半径及压力角%绘制凸轮理论轮廓线上的压力角线图和曲率半径图[ang,rou,DxDpsi,DyDpsi]=YaLiJiao_QuLvBanJin( r0,psi,s, v,a,e,omiga );Rr=9;%由曲率半径最小值确定小滚子半径%计算凸轮轮廓曲线%绘制理论和实际轮廓曲线LunKuoXian( r0,psi,s,e,Rr,DxDpsi,DyDpsi );2.余弦加速运动规律子函数function [ s1,v1,a1,psi1 ] = Yuxian( phi01,h,omiga )%计算余弦加速度运动规律psi1=linspace(0,phi01,round(phi01));s1=(h/2).*[1 - cos(pi.*psi1./phi01)];v1=(pi*h*omiga./(2.*(phi01*pi/180))) .*sin(pi.*psi1./phi01);a1=pi^2*h*omiga^2/(2*(phi01*pi/180)^2)*cos(pi.*psi1./p hi01)end3.远休止程子函数function [ s2,v2,a2,psi2 ] = YuanXiu( phi01,phis1,h ) psi2=linspace(phi01+1,phi01+phis1,round(phis1));s2=h*psi2./psi2;v2=0*psi2;a2=0*psi2;end4.摆抛摆子函数function [ s3,v3,a3,psi3 ] =BaiPaoBai( phi01,phis1,phi02,h,omiga )%计算回程摆线-抛物线-摆线运动规律%计算当phi01+phis1<psi<=phi01+phis1+phi02/8时,从动件的位移、速度、加速度psi3_1=linspace(phi01+phis1+phi02/8/100,phi01+phis1+ph i02/8,100);s3_1=h-h*(2*(psi3_1-phi01-phis1)/phi02-sin(4*pi*(psi3_ 1-phi01-phis1)/...phi02)/(2*pi))/(2+pi);v3_1=-2*h*omiga*(1-cos(4*pi*(psi3_1-phi01-phis1)/phi02 ))/((2+pi)*...phi02*pi/180);a3_1=-8*h*pi*omiga^2*sin(4*pi*(psi3_1-phi01-phis1)/phi 02)/((2+pi)*...(phi02*pi/180)^2);%计算当phi01+phis1<psi<=phi01+phis1+3*phi02/8时,从动件的位移、速度、加速度psi3_2=linspace(phi01+phis1+phi02/8+phi02/4/100,phi01+ phis1+3*phi02/8,100);s3_2=h-h*(4*pi*((psi3_2-phi01-phis1).^2)/(phi02^2)-(pi -2)*(psi3_2-phi01...-phis1)/phi02+pi/16-1/(2*pi))/(2+pi);v3_2=-h*omiga*(8*pi*(psi3_2-phi01-phis1)/phi02-pi+2)/( (2+pi)*phi02*pi/180);a3_2=-8*h*pi*omiga^2/((2+pi)*(phi02*pi/180)^2)*psi3_2. /psi3_2;%计算当phi01+phis1<psi<=phi01+phis1+5*phi02/8时,从动件的位移、速度、加速度psi3_3=linspace(phi01+phis1+3*phi02/8+phi02/4/100,phi0 1+phis1+5*phi02/8,100);s3_3=h-h*(2*(pi+1)*(psi3_3-phi01-phis1)/phi02-pi/2-sin (4*pi*(psi3_3-phi01...-phis1)/phi02-pi)/(2*pi))/(2+pi);v3_3=-2*h*omiga*(pi+1-cos(4*pi*(psi3_3-phi01-phis1)/ph i02-pi))/((2+pi)...*phi02*pi/180);a3_3=-8*h*pi*omiga^2*sin(4*pi*(psi3_3-phi01-phis1)/phi 02-pi)/((2+pi)*...(phi02*pi/180)^2);%计算当phi01+phis1<psi<=phi01+phis1+7*phi02/8时,从动件的位移、速度、加速度psi3_4=linspace(phi01+phis1+5*phi02/8+phi02/4/100,phi0 1+phis1+7*phi02/8,100);s3_4=h-h*(-4*pi*((psi3_4-phi01-phis1).^2)/(phi02^2)+(7 *pi+2)*(psi3_4-...phi01-phis1)/phi02-33*pi/16+1/(2*pi))/(2+pi);v3_4=-h*omiga*(-8*pi*(psi3_4-phi01-phis1)/phi02+7*pi+2 )/((2+pi)*phi02*pi/180);a3_4=8*h*pi*omiga^2/((2+pi)*(phi02*pi/180)^2)*psi3_4./ psi3_4;%计算当phi01+phis1<psi<=phi01+phis1+phi02时,从动件的位移、速度、加速度psi3_5=linspace(phi01+phis1+7*phi02/8+phi02/8/100,phi0 1+phis1+phi02,100);s3_5=h-h*(2*(psi3_5-phi01-phis1)/phi02+pi-sin(4*pi*(ps i3_5-phi01-phis1).../phi02-2*pi)/(2*pi))/(2+pi);v3_5=-2*h*omiga*(1-cos(4*pi*(psi3_5-phi01-phis1)/phi02 -2*pi))/((2+pi)...*phi02*pi/180);a3_5=-8*h*pi*omiga^2*sin(4*pi*(psi3_5-phi01-phis1)/phi 02-2*pi)/((2+pi)...*(phi02*pi/180)^2);%输出回程阶段凸轮的转角、从动件的位移速度加速度的数组s3=[s3_1,s3_2,s3_3,s3_4,s3_5];v3=[v3_1,v3_2,v3_3,v3_4,v3_5];a3=[a3_1,a3_2,a3_3,a3_4,a3_5];psi3=[psi3_1,psi3_2,psi3_3,psi3_4,psi3_5];end5.近休止程子函数function [ s4,v4,a4,psi4 ] =JinXiu( phi01,phis1,phi02,phis2 )psi4=linspace(phi01+phis1+phi02+1,phi01+phis1+phis2+ph i02,round(phis2));s4=0*psi4;v4=0*psi4;a4=0*psi4;End6.参数计算及图像绘制[s1,v1,a1,psi1]=YuXian(phi01,h,omiga);%推程[s2,v2,a2,psi2]=YuanXiu(phi01,phis1,h);%远休程[s3,v3,a3,psi3]=BaiPaoBai(phi01,phis1,phi02,h,omiga);%回程[s4,v4,a4,psi4]=JinXiu(phi01,phis1,phi02,phis2);%近休程psi=[psi1,psi2,psi3,psi4];%凸轮转角s=[s1,s2,s3,s4];%从动件位移v=[v1,v2,v3,v4];%从动件速度a=[a1,a2,a3,a4];%从动件加速度%绘制从动件位移、速度、加速度线图figure(1)subplot(3,1,1)plot(psi,s);grid onxlabel('凸轮转角(度)');ylabel('位移(mm)');subplot(3,1,2);plot(psi,v);grid onxlabel('凸轮转角(度)');ylabel('速度(mm/s)');subplot(3,1,3)plot(psi,a);grid onxlabel('凸轮转角(度)');ylabel('加速度(mm/s^2)');%绘制ds/dphi-s线图,并确定凸轮基圆半径和偏距DsDphi=v/omiga;figure(2)plot(DsDphi,s);hold onx1=-150:100;y1=tan(pi/2-alpha1)*(x1-65.26)+22.33; plot(x1,y1);hold ony2=tan(pi/2+alpha2)*(x1+107.6)+22.36; plot(x1,y2);7.轮廓线绘制if Rr==0x=x0;y=y0;elseA=sqrt(DxDpsi.^2+DyDpsi.^2);x=x0+Rr*DyDpsi./A;y=y0-Rr*DxDpsi./A;endfigure(4)plot(r0.*cos(psi.*pi/180),r0.*sin(psi.*pi/180),'-.',.. .x0,y0,'--',x,y,e*cos(psi.*pi/180),e*sin(psi.*pi/180)); grid on;legend('基圆','凸轮理论轮廓','凸轮实际轮廓','偏距圆');axis equalend8.压力角曲线及曲率半径function[ang,rou,DxDpsi,DyDpsi]=YaLiJiao_QuLvBanJin( r0,psi,s, v,a,e,omiga )s0=sqrt(r0.^2-e.^2);rs1=s0+s;ang=abs(atan((v/omiga-e)./rs1))*180/pi;DxDpsi=(v./omiga-e).*sin(psi.*pi/180)+...(s0+s).*cos(psi.*pi/180);DyDpsi=(v./omiga-e).*cos(psi.*pi/180)-...(s0+s).*sin(psi.*pi/180);DDxDpsi=(a./(omiga^2)-(s0+s)).*sin(psi.*pi/180)... +(2*v./omiga-e).*cos(psi.*pi/180);DDyDpsi=(a./(omiga^2)-(s0+s)).*cos(psi.*pi/180)... +(2*v./omiga-e).*sin(psi.*pi/180);A=(DxDpsi.^2+DyDpsi.^2).^1.5;B=abs(DxDpsi.*(DDyDpsi)-DyDpsi.*(DDxDpsi));rou=A./B;%凸轮理论轮廓曲率半径%绘图figure(3)axis onplotyy(psi,rou,psi,ang);%绘制曲率半径图[AX]=plotyy(psi,rou,psi,ang);set(AX(1),'yTick',[0:20:200]);set(AX(2),'yTick',[0:10:100]);end四.程序运行结果与生成图像。