学17—18学年下学期高一第一次月考数学试题(附答案)(3)
江苏省扬州中学2022-2023学年高三上学期1月月考(期末)数学试题 附答案
江苏省扬州中学2022-2023学年度1月月考试题 高三数学 2023.01试卷满分:150分, 考试时间:120分钟一、单项选择题:本大题共8小题,每小题5分,共40分.在每题给出的四个选项中,只有一项是最符合题意的.(请将所有选择题答案填到答题卡的指定位置中.)1.已知复数3i z =(i 为虚数单位),则22z z-的共轭复数的模是( )A .1B .3C .5D .72.已知集合(){}{}ln 12,Z 3sin A x x B y y x =+<=∈=,则A B =( )A .{}0,1,2,3B .{}0,3C .{}3D .∅3.设123,,a a a ∈R ,则“123,,a a a 成等比数列”是“()()()2222212231223a a a a a a a a ++=+”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件4.某中学全体学生参加了数学竞赛,随机抽取了400名学生进行成绩统计,发现抽取的学生的成绩都在50分至100分之间,进行适当分组后(每组为左闭右开的区间),画出频率分布直方图如图所示,每组数据以组中值(组中值=(区间上限+区间下限)/2)计算),下列说法正确的是( )A .直方图中x 的值为0.035B .在被抽取的学生中,成绩在区间[)70,80的学生数为30人C .估计全校学生的平均成绩为83分D .估计全校学生成绩的样本数据的80%分位数约为95分5.已知π0,2α⎛⎫∈ ⎪⎝⎭,且tan 32πcos 4αα⎛⎫+= ⎪⎝⎭,则sin 2α=( )A .13- B .16 C .13 D .236.在平面直角坐标系xOv 中,M 为双曲线224x y -=右支上的一个动点,若点M 到直线20x y -+=的距离大于m 恒成立,则实数m 的最大值为( )A. 1B. 2C. 2D. 227.如图是一个由三根细棒PA 、PB 、PC 组成的支架,三根细棒PA 、PB 、PC 两两所成的角都为60︒,一个半径为1的小球放在支架上,则球心O 到点P 的距离是( )A .32 B .2 C .3 D .28.已知函数()f x 及其导函数()f x '的定义域均为R ,且()52f x +是偶函数,记()()g x f x '=,()1g x +也是偶函数,则()2022f '的值为( )A .-2B .-1C .0D .2二、多项选择题:本大题共4小题,每小题5分,共20分.在每题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.(请将所有选择题答案填到答题卡的指定位置中.) 9.如图,在正方体1111ABCD A B C D -中,E 为1AA 的中点,则( ) A .11//A D 平面BEC B .1AB ⊥平面BECC .平面11AA B B ⊥平面BECD .直线1DD 与平面BEC 所成角的余弦值为5510.已知函数()()2πsin 02f x x ϕϕ⎛⎫=+<< ⎪⎝⎭的一条对称轴为π3x =,则( )A .()f x 的最小正周期为πB .()104f =C .()f x 在π2π,33⎛⎫⎪⎝⎭上单调递增 D .π6x f x ⎛⎫≥- ⎪⎝⎭11.已知数列{}n a 中,12a =,()21212n n a a +=++-,则关于数列{}n a 的说法正确的是( )A .25a =B .数列{}n a 为递增数列C .221n a n n =+- D .数列11n a ⎧⎫⎨⎬+⎩⎭的前n 项和小于3412.已知函数()sin f x x =,()()0g x kx k =>,若()f x 与()g x 图象的公共点个数为n ,且这些公共点的横坐标从小到大依次为1x ,2x ,…,n x ,则下列说法正确的有( )A .若1n =,则1k >B .若3n =,则33321sin 2x x x =+ C .若4n =,则1423x x x x +<+ D .若22023k π=,则2024n =三、填空题:本大题共4小题,每小题5分,共20分.(请将所有填空题答案填到答题卡的指定位置中.)13.已知52212x ax ⎛⎫+ ⎪⎝⎭展开式中的各项系数和为243,则其展开式中含2x 项的系数为_____.14.已知()()2,1,3,a b a b a ==--⊥,则a 与b 的夹角为__________.15.已知()()12,0,,0F c F c -为椭圆2222:1x y C a b+=的两个焦点,P 为椭圆C 上一点(P 不在y轴上),12PF F △的重心为G ,内心为M ,且12//GM F F ,则椭圆C 的离心率为___________.16.对于函数()f x 和()g x ,设{|()0}x f x α∈=,{|()0}x g x β∈=,若存在α、β,使得||1αβ-<,则称()f x 与()g x 互为“零点相邻函数”.若函数1()e 2-=+-x f x x 与2()3g x x ax a =--+互为“零点相邻函数”,则实数a 的取值范围为______.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.(请将所有解答题答案填到答题卡的指定位置中.)17.已知数列{}n a 满足,12(1)nn n a a +=+⋅-.(1)若11a =,数列{}2n a 的通项公式; (2)若数列{}n a 为等比数列,求1a .18.记锐角ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,sin sin tan cos cos A CB A C+=+.(1)求B ;(2)求()2a c ab -的取值范围.19.密室逃脱可以因不同的设计思路衍生出不同的主题,从古墓科考到蛮荒探险,从窃取密电到逃脱监笼,玩家可以选择自己喜好的主题场景在规定时间内完成任务,获取奖励.李华参加了一次密室逃脱游戏,他选择了其中一种模式,该游戏共有三关,分别记为A ,B ,C ,他们通过三关的概率依次为:211,,323.若其中某一关不通过,则游戏停止,游戏不通过.只有依次通过A ,B ,C 三道关卡才能顺利通关整个游戏,并拿到最终奖励.现已知参加一次游戏的报名费为150元,最终奖励为400元.为了吸引更多的玩家来挑战该游戏,商家推出了一项补救活动,可以在闯关前付费购买通关币.游戏中,若某关卡不通过,则自动使用一枚通关币通过该关卡进入下一关.购买一枚通关币需另付100元,游戏结束后,剩余的未使用的通关币半价回收.(1)若李华同学购买了一枚通关币,求他通过该游戏的概率. (2)若李华同学购买了两枚通关币,求他最终获得的收益期望值.(收益等于所得奖励减去报名费与购买通关币所需费用).20.图1是直角梯形ABCD ,AB CD ,90D ∠=,2AB =,3DC =,3AD =,2CE ED =,以BE 为折痕将BCE 折起,使点C 到达1C 的位置,且16AC =,如图2. (1)求点D 到平面1BC E 的距离;(2)若113DP DC =,求二面角P BE A --的大小.21.已知点()1,2Q 是焦点为F 的抛物线C :()220y px p =>上一点. (1)求抛物线C 的方程;(2)设点P 是该抛物线上一动点,点M ,N 是该抛物线准线上两个不同的点,且PMN 的内切圆方程为221x y +=,求PMN 面积的最小值.22.已知函数()ln f x x ax a =-+,其中R a ∈. (1)讨论函数()f x 的单调性;(2)若()f x 在(]0,1上的最大值为0, ①求a 的取值范围;①若2()31f x kx ax ≤-+恒成立,求正整数k 的最小值.参考答案: 1.C 【详解】因为3i i z ==-,所以22212i 112i i z z -=+=+=+-,所以22z z -的共轭复数为12i -,12i 5-=,所以22z z-52.A 【详解】由()ln 12x +<,可得201e x <+<,则{}21e 1A x x =-<<-∣ 又{}{}Z 3sin 3,2,1,0,1,2,3B y y x =∈==---,所以{}0,1,2,3A B =.3.A 【详解】①若123,,a a a 成等比数列,则2213a a a =⋅,所以()()22221223a a a a ++()()22113133a a a a a a =+⋅⋅+()()113133a a a a a a ⎡⎤⎡⎤=++⎣⎦⎣⎦()21313a a a a =+()22132a a a =+()2132a a a ⎡⎤=+⎣⎦()21223a a a a =+;①若1230a a a ===,满足()()()2222212231223a a a a a a a a ++=+,但是不满足123,,a a a 成等比数列(因为等比数列中不能含有0)“123,,a a a 成等比数列”是“()()()2222212231223a a a a a a a a ++=+”的充分不必要条件, 4.D 【详解】对于A :根据学生的成绩都在50分到100分之间的频率和为1,可得10⨯(0.005+0.01+0.015+x +0.040)=1,解得x =0.03,故A 错误;对于B :在被抽取的学生中,成绩在区间[)70,80的学生数为10⨯0.015⨯400=60人, 故B 错误;对于C :估计全校学生的平均成绩为55⨯0.05+65⨯0.1+75⨯0.15+85⨯0.3+95⨯0.4=84分; 故C 错误.对于D :全校学生成绩的样本数据的80%分位数约为0.29010950.4+⨯=分. 故D 正确.5.D 【详解】设π4αβ+=,π3π,44β⎛⎫∈ ⎪⎝⎭,则π4αβ=-,tan 32πcos 4αα⎛⎫+= ⎪⎝⎭, 即πtan 3cos 23sin 22βββ⎛⎫=-= ⎪⎝⎭,sin 6sin cos cos ββββ=,sin 0β≠, 故21cos 6β=,22sin 2sin 2cos 212cos 23παβββ⎛⎫=-=-=-= ⎪⎝⎭.6.B 【详解】由点M 到直线20x y -+=的距离大于m 恒成立,可得点M 到直线20x y -+=的最近距离大于m .因为双曲线的渐近线为y x =,则y x =与20x y -+=的距离222d ==即为最近距离,则2m ≤,即max 2m =.7.C 【详解】如图所示,连接,,AB AC BC ,作ABC 所在外接圆圆心1O ,连接1,AO AO ,设PA x =,由PA 、PB 、PC 两两所成的角都为60︒可得AB AC BC x ===,因为1O 为ABC 几何中心,所以132332333AO AB AB x =⋅⋅==,易知对1PAO △和POA ,1,90P P PO A PAO ∠=∠∠=∠=︒,所以1PAO POA △≌△,所以1PA PO AO AO =,即133xPOx =,解得3PO =.故选:C8.C 【详解】因为()52f x +是偶函数,所以(52)(52)f x f x -+=+ ,两边求导得5(52)5(52)f x f x ''--+=+ ,即(52)(52)f x f x ''--+=+,所以(52(52)g x g x +=--+),即()(4)g x g x =--+, 令2x = 可得(2)(2)g g =- ,即(2)0=g , 因为()1g x +为偶函数,所以(1)(1)g x g x +=-+ ,即()(2)g x g x =-+ , 所以(4)(2)g x g x --+=-+ ,即()(2)g x g x =-+ ,(4)(2)()g x g x g x ∴+=-+= ,所以4是函数()g x 的一个周期, 所以(2022)(2022)(50542)(2)0f g g g '==⨯+==, 9.ACD10.ABD 【详解】因为函数21cos(22)11()sin ()cos(22)222x f x x x ϕϕϕ-+=+==-++, 因为函数()()2πsin 02f x x ϕϕ⎛⎫=+<< ⎪⎝⎭的一条对称轴为3x π=,所以π22π,()3k k ϕ⨯+=∈Z ,解得:ππ,()23k k ϕ=-∈Z , 又因为π02ϕ<<,所以π1,6k ϕ==,则1π1()cos(2)232f x x =-++,对于A ,函数()f x 的最小正周期πT =,故选项A 正确;对于B ,1111(0)2224f =-⨯+=,故选项B 正确;对于C ,因为π2π33x <<,所以π5ππ<2+33x <,因为函数cos y t =-在5π(π,)3上单调递减,故选项C 错误;对于D ,因为π11()cos 2622f x x -=-+,令π11()()cos 2622g x x f x x x =--=+-,当0x ≥时,11()cos 222g x x x =+-,则()1sin 20g x x ='-≥,所以()g x 在[0,)+∞上单调递增,则()(0)0g x g ≥=,也即π()6x f x ≥-,当0x <时,11()cos 222g x x x =-+-,则()1sin 20g x x ='--≤,所以()g x 在(,0)-∞上单调递减,则()(0)0g x g ≥=,也即π()6x f x -≥-,综上可知:6x f x π⎛⎫≥- ⎪⎝⎭恒成立,故选项D 正确,11.BCD 【详解】由)21212n n a a +=+-,得()21221n n a a ++=+1221n n a a +++,又12a =122a +所以{}2n a +是以2为首项,1为公差的等差数列,22(1)11n a n n ++-⨯=+,即221n a n n =+-, 所以27a =,故A 错误,C 正确;()212n a n =+-,所以{}n a 为递增数列,故B 正确;()211111112222n a n n n n n n ⎛⎫===- ⎪++++⎝⎭, 所以数列11n a ⎧⎫⎨⎬+⎩⎭的前n 项和为11111111111...232435112n n n n ⎛⎫-+-+-++-+- ⎪-++⎝⎭ 1111311131221242124n n n n ⎛⎫⎛⎫=+--=-+< ⎪ ⎪++++⎝⎭⎝⎭,故D 正确. 12.BCD 【详解】对于A :当1k =时,令sin y x x =-,则cos 10y x =-≤,即函数sin y x x =-有且仅有一个零点为0,同理易知函数sin y x x =--有且仅有一个零点为0,即()f x 与()g x 也恰有一个公共点,故A 错误; 对于B :当3n =时,如下图:易知在3x x =,且()3,2x ππ∈,()f x 与()g x 图象相切,由当(),2x ∈ππ时,()sin f x x =-,则()cos f x x '=-,()g x k '=,故333cos sin k x x kx =-⎧⎨-=⎩,从而33tan x x =,所以()222333332333333cos 1tan 1tan 112tan tan tan cos tan sin 2x x x x x x x x x x x +++=+===,故B 正确; 对于C :当4n =时,如下图:则10x =,42x ππ<<,所以142x x π+<,又()f x 图象关于x π=对称,结合图象有32x x ππ->-,即有32142x x x x π+>>+,故C 正确;对于D :当22023k π=时,由20232023()122f g ππ⎛⎫== ⎪⎝⎭,()f x 与()g x 的图象在y 轴右侧的前1012个周期中,每个周期均有2个公共点,共有2024个公共点,故D 正确.13.80 14. π415.12【详解】设()()000,0P x y x ≠,由于G 是12PF F △的重心,由重心坐标公式可得00,33x y G ⎛⎫⎪⎝⎭,由于12//GM F F ,所以M 的纵坐标为03M y y =,由于M 是12PF F △的内心,所以12PF F △内切圆的半径为03y r =,由椭圆定义得12212,2PF PF a F F c +==, ()2121210120122111223PF F MF F MF P MPF y SSSSF F y F F PF F P =++⇒⋅=++, ()001222232y c y a c a c e =+⇒=⇒= 16.23a ≤<【详解】因为(1)0f =,且函数1()e 2-=+-x f x x 为单调递增函数,所以1为函数1()e 2-=+-x f x x 的唯一零点, 设函数2()3g x x ax a =--+的零点为b ,又因为函数1()e 2-=+-x f x x 与2()3g x x ax a =--+互为“零点相邻函数”, 所以|1|1b -<,解得02b <<,所以函数2()3g x x ax a =--+在(0,2)上有零点,所以(0)(2)0g g ⋅<或()2022Δ430a a a ⎧<<⎪⎨⎪=--+=⎩或()()()2022Δ4300020a a a g g ⎧<<⎪⎪⎪=--+>⎨⎪>⎪>⎪⎩, 即733a <<或2a =或23a <<,所以23a ≤<. 17.【详解】(1)由题意得()121nn n a a +-=⋅-,所以()()()22212122211n n n n n a a a a a a a a ---=-+-++-+()()()212212121211n n --=⋅-+⋅-++⨯-+211=-+=-.(2)设数列{}n a 的公比为q ,因为()121n n n a a +=+⋅-,所以212a a =-,322a a =+,两式相加得2311a a q a =⋅=,所以1q =±,当1q =时,2112a a a ==-不成立,所以1q =-,2112a a a =-=-,解得11a =.18.【详解】(1)因为sin sin tan cos cos A C B A C +=+,即sin sin sin cos cos cos B A CB A C+=+,所以sin cos sin cos cos sin cos sin B A B C B A B C +=+,即sin cos cos sin cos sin sin cos B A B A B C B C -=-,所以sin()sin()B A C B -=-,因为0πA <<,0πB <<,所以ππB A -<-<,同理得ππC B -<-<, 所以B A C B -=-或()()πB A C B -+-=±(不成立), 所以2B A C =+,结合πA B C ++=得π3B =.(2)由余弦定理2221cos 22a c b B ac+-==得,222ac a c b =+-,所以222ac a c b -=-,则2222222()1a c a ac a c b c b b b b ---⎛⎫===- ⎪⎝⎭, 由正弦定理得,sin 23sin sin 3cC C bB ==, 因为π3B =,2π3A C +=,π02A <<,π02C <<,所以ππ62C <<,1sin 12C <<,所以32333c b ⎛⎫∈ ⎪ ⎪⎝⎭,,2()2133a c a b -⎛⎫∈- ⎪⎝⎭,. 19.【详解】(1)由题意可知:这一枚通关币的使用情况有四种: ①在第一关使用;①在第二关使用;①在第三关使用;①没有使用.而通过三关的概率依次为:211,,323,则李华通过该游戏的概率11121121221113233233233232P =⨯⨯+⨯⨯+⨯⨯+⨯⨯=.(2)购买两枚通关币的费用为200元,报名费为150元,则收益可能为:1400(150200100)150x =-+-=(未使用通关币过关), 2400(15020050)100x =-+-=(使用1枚通关币且过关), 3400(15020050)x =-+=(使用2枚通关币且过关), 4(150200350)x =-+=-(使用2枚通关币且未过关),则12111(150)3239p x ==⨯⨯=2117(100)2918p x ==-=31111122127(50)32332332318p x ==⨯⨯+⨯⨯+⨯⨯=41121(350)3239p x =-=⨯⨯=则17()150100918E x =⨯+⨯13255035018997+⨯-⨯=. 所以他最终获得的收益期望值是3259元.20【详解】(1)解:如图所示: 连接AC ,交BE 于F ,因为90D ∠=,2AB =,3DC =,3AD =,2CE ED =,所以AE =2,又AB CD ,所以四边形ABCE 是菱形, 所以AC BE ⊥,在ACD 中,2223AC AD CD =+=,所以3AF CF ==,又16AC =,则2221AC AF CF =+, 所以1C F AF ⊥,又AF BE F ⋂=, 所以1C F ⊥平面ABED ,设点D 到平面1BC E 的距离为h ,因为1113233,13222C BE DBESS =⨯⨯==⨯⨯=,且11C DBE D C BE V V --=, 所以111133C BE DBE h S C F S ⨯⨯=⨯⨯,解得32h =;(2)由(1)建立如图所示空间直角坐标系:则()()()()133,,0,0,0,3,0,1,0,0,1,0,3,0,022D C B E A ⎛⎫-- ⎪ ⎪⎝⎭, 所以()()3,1,0,0,2,0BA BE =-=-,因为113DP DC =,所以133,2,3133BP BD BD DP DC ⎛⎫=++=- ⎪ ⎪=⎝⎭, 设平面BEP 的一个法向量为(),,m x y z =, 则00m BE m BP ⎧⋅=⎪⎨⋅=⎪⎩,即20332033y x y z -=⎧⎪⎨-+=⎪⎩, 令1x =,得()1,0,1m =-,易知平面BEA 的一个法向量为()0,0,1n =, 所以2cos ,2m n m n m n⋅==-⋅,则3,4m n π=, 易知二面角P BE A --的平面角是锐角, 所以二面角P BE A --的大小为4π. 21.【详解】(1)因为点()1,2Q 是抛物线C :()220y px p =>上一点, 所以42p =,解得:2p =, 所以24y x =.(2)设点()00,P x y ,点()1,M m -,点()1,N n -,直线PM 方程为:()0011y my m x x --=++,化简得()()()()0000110y m x x y y m m x --++-++=.PMN 的内切圆方程为221x y +=,∴圆心()0,0到直线PM 的距离为1,即()()()002200111y m m x y m x -++=-++.故()()()()()()222220000001211y m x y m m y m x m x -++=-+-+++.易知01x >,上式化简得,()()20001210x m y m x -+-+=.同理有()()20001210x n y n x -+-+=,∴m ,n 是关于t 的方程()()20001210x t y t x -+-+=的两根.∴0021y m n x -+=-,()0011x mn x -+=-.∴()()()()222200200414411x y MN m n m n mnx x +=-=+-=+--.2004y x =,∴()20000220004116412(1)1(1)x x x x MN x x x ++-=+---点(00,P x y 到直线=1x -的距离为01d x =+,所以PMN 面积为()())()()()22200000022004114111212211xx x x x S MN d xx x +-++-=⋅=⨯+=-- 令()010x t t -=>,则()()22222444640161032tt t tS t t t t t++++==++++ 因为2222161628t t t t +≥⋅,4040101040t t t t+≥⋅=, 当且仅当2t =取等,所以840325S ≥++= 故PMN 面积的最小值为4522.【详解】(1)()'1f x a x =- ,若0a ≤ ,则有()'0f x > ,()f x 单调递增;若0a > ,()'11a x a f x a x x⎛⎫- ⎪⎝⎭=-= ,当10x a<< 时,()'0f x > ,()f x 单调递增, 当1x a > 时,()'0f x < ,()f x 单调递减;(2)①由(1)的讨论可知,当0a ≤ 时,()f x 单调递增,在(]0,1x ∈ ,()()max 10f x f == ,满足题意; 当11a≥ 时,在(]0,1x ∈ ,()()max 10f x f ==,满足题意; 当101a << 时,即1a >,在(]0,1x ∈,()max 11ln 1ln 1f x f a a a a a ⎛⎫==-+=-- ⎪⎝⎭, 令()ln 1g x x x =-- ,则()'111x g x x x-=-= ,当1x >时,()'g x >0 ,()g x 单调递增, ()()10g x g ∴=> ,即ln 10a a --> ,不满足题意; 综上,a 的取值范围是1a ≤ ;①由题意,1k ≥ ,2ln 31x ax a kx ax -+≤-+ ,即()2ln 121kx x a x -+≥+ ,考虑直线()21y a x =+ 的极端情况a =1,则2ln 2kx x x ≥+ ,即2ln 2x x k x +≥ ,令()2ln 2x x h x x += ,()'3122ln x x h x x --= ,显然()122ln k x x x =-- 是减函数, 333222471033e e e k ⎛⎫== ,44302e e k = ,①存在唯一的0432e ex ⎛⎫∈ 使得()'00h x = ,当0x x > 时,()'h x <0 ,当0x x < 时,()'h x >0 ,00122ln 0x x --= ,()()002max 012x h x h x x +== ,()max 432e e h h x h ⎛⎫∴<< , 即()max 24h x << ,故k 的最小值可能是3或4,验算23ln 20x x x --≥ , 由于ln 1≤-x x ,223ln 2331x x x x x ∴--≥-+ ,23340∆=-⨯< , 223ln 23310x x x x x ∴--≥-+> ,满足题意; 综上,a 的取值范围是1a ≤ ,k 的最小值是3.。
最新学17—18学年下学期高二第一次月考化学试题(附答案)
最新学17—18学年下学期⾼⼆第⼀次⽉考化学试题(附答案)奋⽃中学⾼⼆年级第⼀次阶段性考试化学试题说明:本试卷共分Ⅰ卷(选择题)Ⅱ卷(⾮选择题)两部分,满分100分,考试时间90分钟。
Ⅰ卷(选择题)⼀:选择题(每题只有⼀个正确选项,每题3分,共54分)1、某反应CH3OH(l)+NH3(g) = CH3NH2(g)+H2O(g)在⾼温度时才能⾃发进⾏,则该反应过程的△H、△S判断正确的是()A、△H>0 、△S<0B、△H<0 、△S>0C、△H<0 、△S<0D、△H>0 、△S>02、在⼀个固定体积的密闭容器中,保持⼀定温度,进⾏以下反应:H2(g)+I2(g)2HI(g).已知起始时加⼊1molH2和2molI2(g),当达到平衡时H2的体积分数为φ.下列四种情况分别投⼊上述容器,且始终保持原温度,平衡时H2的体积分数也为φ的是() A.2molH2(g)和1molI2(g) B.3molHI(g)C.2molH2(g)和2molI2(g) D.1molI2(g)和2molHI(g)3、将等物质的量的A、B混合于2L的恒容密闭容器中,发⽣如下的反应:3A(g)+B(g)xC(g)+2D(g),经5min后,测得D的量为1mol,C的平均反应速率为0.1mol/(L﹒min)。
则x的值为( )A.4 B.3 C.2 D.14、已知450℃时,反应H2(g)+I2(g)?2HI(g)的K=50,由此推测在450℃时,反应2HI(g)H2(g)+I2(g)的化学平衡常数为()A.0.02 B. 50 C.100 D.⽆法确定5、对于X+Y Z的平衡,若增⼤压强,Y的转化率增⼤,则X和Z可能的状态是( )A.X为液态,Z为⽓态 B.X为固态,Z为⽓态C.X为⽓态,Z为⽓态 D.⽆法确定6、在⽔溶液中存在反应:Ag++Fe2+Ag(s)+Fe3+ΔH<0,达到平衡后,为使平衡体系中析出更多的银,可采取的措施是()A.升⾼温度B.加⽔稀释 C.增⼤Fe2+的浓度 D.常温下加压7、在⼀化学平衡状态体系中,发⽣下列量的变化,其中⼀定会使平衡发⽣移动的是()A.体系的压强 B.反应物的浓度C.正、逆反应速率 D.反应物的转化率8、反应CO2(g)+2NH3(g)CO(NH2)2(s)+H2O(g) △H<0,达到平衡时,下列说法正确的是()A.加⼊催化剂,平衡常数不变B.减⼩容器体积,正反应速率增⼤、逆反应速率减⼩C.增⼤CO(NH2)2的量, CO2的转化率减⼩D.降低温度,平衡向逆反应⽅向移动9、在⼀体积可变的容器中,当反应2HI(g) H2(g)+I2(g) 达到平衡时,欲使混合⽓体的颜⾊加深,采取的措施不能达到此⽬的是( )(g)A.恒容下充⼊HI(g) B.恒容下充⼊HC.恒容下充⼊I2(g) D.减⼩容器体积10、在⼀定条件下,对于反应mA(g)+nB(g)cC(g)+dD(g), C物质的浓度(c%)与温度、压强的关系如图所⽰。
四川省成都市2023-2024学年高一下学期第一次月考数学试题含答案
武侯高中高2023级2023——2024下期第一次月考试题数学(答案在最后)学校:__________姓名:__________班级:__________考号:__________一、单选题1.如图,四边形ABCD 中,AB DC =,则必有()A.AD CB= B.DO OB= C.AC DB= D.OA OC= 【答案】B 【解析】【分析】根据AB DC =,得出四边形ABCD 是平行四边形,由此判断四个选项是否正确即可.【详解】四边形ABCD 中,AB DC =,则//AB DC 且AB DC =,所以四边形ABCD 是平行四边形;则有AD CB =-,故A 错误;由四边形ABCD 是平行四边形,可知O 是DB 中点,则DO OB =,B 正确;由图可知AC DB≠,C 错误;由四边形ABCD 是平行四边形,可知O 是AC 中点,OA OC =-,D 错误.故选:B .2.下列说法正确的是()A.若a b ∥ ,b c ∥,则a c∥ B.两个有共同起点,且长度相等的向量,它们的终点相同C.两个单位向量的长度相等D.若两个单位向量平行,则这两个单位向量相等【答案】C 【解析】【分析】A.由0b =判断;B.由平面向量的定义判断;C.由单位向量的定义判断; D.由共线向量判断.【详解】A.当0b = 时,满足a b ∥ ,b c ∥,而,a c 不一定平行,故错误;B.两个有共同起点,且长度相等的向量,方向不一定相同,所以它们的终点不一定相同,故错误;C.由单位向量的定义知,两个单位向量的长度相等,故正确;D.若两个单位向量平行,则方向相同或相反,但大小不一定相同,则这两个单位向量不一定相等,故错误;故选:C3.若a b ,是平面内的一组基底,则下列四组向量中能作为平面向量的基底的是()A.,a b b a --B.21,2a b a b++ C.23,64b a a b-- D.,a b a b+- 【答案】D 【解析】【分析】根据基底的知识对选项进行分析,从而确定正确答案.【详解】A 选项,()b a a b -=-- ,所以a b b a -- ,共线,不能作为基底.B 选项,1222a b a b ⎛⎫+=+ ⎪⎝⎭ ,所以12,2a b a b ++ 共线,不能作为基底.C 选项,()64223a b b a -=-- ,所以64,23a b b a --共线,不能作为基底.D 选项,易知a b a b +-,不共线,可以作为基底.故选:D4.将函数2cos 413y x π⎛⎫=-+ ⎪⎝⎭图象上各点的横坐标伸长到原来的2倍,再向左平移3π个单位,纵坐标不变,所得函数图象的一条对称轴的方程是()A.12x π=B.6x π=-C.3x π=-D.12x π=-【答案】B 【解析】【分析】根据图像的伸缩和平移变换得到2cos(2)13y x π=++,再整体代入即可求得对称轴方程.【详解】将函数2cos 413y x π⎛⎫=-+ ⎪⎝⎭图象上各点的横坐标伸长到原来的2倍,得到2cos 213y x π⎛⎫=-+ ⎪⎝⎭,再向左平移3π个单位,得到2cos[2()]12cos(2)1333y x x πππ=+-+=++,令23x k π+=π,Z k ∈,则26k x ππ=-,Z k ∈.显然,=0k 时,对称轴方程为6x π=-,其他选项不符合.故选:B5.设a ,b 是非零向量,“a a bb =”是“a b =”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B 【解析】【分析】根据向量相等、单位向量判断条件间的推出关系,结合充分、必要性定义即知答案.【详解】由a a b b =表示单位向量相等,则,a b 同向,但不能确定它们模是否相等,即不能推出a b =,由a b =表示,a b 同向且模相等,则a a b b = ,所以“a a bb =”是“a b =”的必要而不充分条件.故选:B6.已知向量,a b ,且2,52,72AB a b BC a b CD a b =+=-+=+,则下列一定共线的三点是()A.,,A B CB.,,B C DC.,,A B DD.,,A C D【答案】C 【解析】【分析】利用向量的共线来证明三点共线的.【详解】2,52,72AB a b BC a b CD a b =+=-+=+,则不存在任何R λ∈,使得AB BC λ=,所以,,A B C 不共线,A 选项错误;则不存在任何R μ∈,使得BC CD μ=,所以,,B C D 不共线,B 选项错误;由向量的加法原理知242BD BC CD a b AB =+=+=.则有//BD AB ,又BD 与AB有公共点B ,所以,,A B D 三点共线,C 选项正确;44AB BC a b AC ==-++,则不存在任何R t ∈,使得AC tCD = ,所以,,A C D 不共线,D 选项错误.故选:C .7.已知sin α=5,且α为锐角,tan β=-3,且β为钝角,则角α+β的值为()A.4π B.34π C.3π D.23π【答案】B 【解析】【分析】先求出tan α12=,再利用两角和的正切公式求出tan(α+β)=-1,判断出角α+β的范围,即可求出α+β的值.【详解】sin α,且α为锐角,则cos α5=,tan αsin 1cos 2αα==.所以tan(α+β)=tan tan 1tan tan αβαβ+-=13211(3)2--⨯-=-1.又α+β∈3(,22ππ,故α+β=34π.故选:B8.筒车亦称“水转筒车”,是一种以水流作动力,取水灌田的工具,唐陈廷章《水轮赋》:“水能利物,轮乃曲成.升降满农夫之用,低徊随匠氏之程.始崩腾以电散,俄宛转以风生.虽破浪于川湄,善行无迹;既斡流于波面,终夜有声.”如图,一个半径为4m 的筒车按逆时针方向每分钟转一圈,筒车的轴心O 距离水面的高度为2m .在筒车转动的一圈内,盛水筒P 距离水面的高度不低于4m 的时间为()A.9秒B.12秒C.15秒D.20秒【答案】D 【解析】【分析】画出示意图,结合题意和三角函数值可解出答案.【详解】假设,,A O B 所在直线垂直于水面,且4AB =米,如下示意图,由已知可得12,4OA OB OP OP ====,所以1111cos 602OB POB POB OP ∠==⇒∠=︒,处在劣弧 11PP 时高度不低于4米,转动的角速度为360660︒=︒/每秒,所以水筒P 距离水面的高度不低于4m 的时间为120206=秒,故选:D.二、多选题9.已知函数()cos f x x x =+,则下列判断正确的是()A.()f x 的图象关于直线π6x =对称 B.()f x 的图象关于点π,06⎛⎫- ⎪⎝⎭对称C.()f x 在区间2π,03⎡⎤-⎢⎥⎣⎦上单调递增 D.当π2π,33x ⎛⎫∈-⎪⎝⎭时,()()1,1f x ∈-【答案】BC 【解析】【分析】利用辅助角公式化简函数()f x 的解析式,利用正弦型函数的对称性可判断AB 选项;利用正弦型函数的单调性可判断C 选项;利用正弦型函数的值域可判断D 选项.【详解】因为()πcos 2sin 6f x x x x ⎛⎫=+=+ ⎪⎝⎭,对于A选项,ππ2sin 63f ⎛⎫==⎪⎝⎭,故函数()f x 的图象不关于直线π6x =对称,A 错;对于B 选项,π2sin 006f ⎛⎫-== ⎪⎝⎭,故函数()f x 的图象关于点π,06⎛⎫- ⎪⎝⎭对称,B 对;对于C 选项,当2π03x -≤≤时,πππ266x -≤+≤,则函数()f x 在区间2π,03⎡⎤-⎢⎥⎣⎦上单调递增,C 对;对于D 选项,当π2π33x -<<时,ππ5π666x -<+<,则1πsin 126x ⎛⎫-<+≤ ⎪⎝⎭,所以,()(]π2sin 1,26f x x ⎛⎫=+∈- ⎪⎝⎭,D 错.故选:BC.10.下图是函数()sin()(0π)f x A x ωϕϕ=+<<的部分图像,则()A.2πT =B.π3ϕ=C.π,06⎛⎫-⎪⎝⎭是()f x 的一个对称中心 D.()f x 的单调递增区间为5πππ,π1212k k ⎡⎤-++⎢⎥⎣⎦(Z k ∈)【答案】BCD 【解析】【分析】由图象可得πT =,由2πT ω=可求出ω,再将π12⎛⎝代入可求出ϕ可判断A ,B ;由三角函数的性质可判断C ,D .【详解】根据图像象得35ππ3ππ246124T T =-=⇒=⇒=ω,故A 错误;π12x =时,πππ22π2π1223k k ⨯+=+⇒=+ϕϕ,0πϕ<< ,π3ϕ∴=,故()π23f x x ⎛⎫=+ ⎪⎝⎭,故B 正确;因为πππ20663f ⎡⎤⎛⎫⎛⎫-=⋅-+= ⎪ ⎪⎢⎝⎭⎝⎭⎣⎦,所以π,06⎛⎫- ⎪⎝⎭是()f x 的一个对称中心,C 正确;令πππ2π22π232k x k -+≤+≤+,解得5ππππ1212k x k -+≤≤+,Z k ∈.故D 正确.故选:BCD .11.潮汐现象是地球上的海水受月球和太阳的万有引力作用而引起的周期性涨落现象.某观测站通过长时间观察,发现某港口的潮汐涨落规律为πcos 63y A x ω⎛⎫=++ ⎪⎝⎭(其中0A >,0ω>),其中y (单位:m )为港口水深,x (单位:h )为时间()024x ≤≤,该观测站观察到水位最高点和最低点的时间间隔最少为6h ,且中午12点的水深为8m ,为保证安全,当水深超过8m 时,应限制船只出入,则下列说法正确的是()A.π6ω=B.最高水位为12mC.该港口从上午8点开始首次限制船只出入D.一天内限制船只出入的时长为4h 【答案】AC 【解析】【分析】根据题意可求得6π=ω,可知A 正确;由12点时的水位为8m 代入计算可得4A =,即最高水位为10m ,B 选项错误;易知ππ4cos 663y x ⎛⎫=++⎪⎝⎭,解不等式利用三角函数单调性可得从上午8点开始首次开放船只出入,一天内开放出入时长为8h ,即可判断C 正确,D 错误.【详解】对于A ,依题意π62T ω==,所以6π=ω,故A 正确;对于B ,当12x =时,ππcos 126863y A ⎛⎫=⨯++=⎪⎝⎭,解得4A =,所以最高水位为10m ,故B 错误;对于CD ,由上可知ππ4cos 663y x ⎛⎫=++⎪⎝⎭,令8y ≥,解得812x ≤≤或者2024x ≤≤,所以从上午8点开始首次开放船只出入,一天内开放出入时长为8h ,故C 正确,D 错误.故选:AC.三、填空题12.设e为单位向量,2a =r ,当,a e 的夹角为π3时,a 在e 上的投影向量为______.【答案】e【解析】【分析】利用投影向量的定义计算可得结果.【详解】根据题意可得向量a 在e 上的投影向量为22π21cos 31a e e a e e e e ee e⨯⨯⋅⋅⋅=== .故答案为:e13.已知向量a 、b 满足5a = ,4b = ,a 与b 的夹角为120,若()()2ka b a b -⊥+ ,则k =________.【答案】45##0.8【解析】【分析】运用平面向量数量积公式计算即可.【详解】因为5a = ,4b = ,a 与b的夹角为120 ,所以1cos12054102a b a b ⎛⎫⋅==⨯⨯-=- ⎪⎝⎭.因为()2ka b -⊥()a b +r r ,所以()()()()222222521610215120ka b a b kab k a b k k k -⋅+=-+-⋅=-⨯--=-=,解得45k =.故答案为:45.14.已知1tan 3x =,则1sin 2cos 2x x +=______【答案】2【解析】【分析】根据二倍角公式以及齐次式即可求解.【详解】2222222211121sin 2cos sin 2sin cos 1tan 2tan 332cos 2cos sin 1tan 113x x x x x x x x x x x ⎛⎫++⨯ ⎪+++++⎝⎭====--⎛⎫- ⎪⎝⎭.故答案为:2四、解答题15.已知1a b a == ,与b 的夹角为45︒.(1)求()a b a +⋅的值;(2)求2a b -的值【答案】(1)2(2【解析】【分析】(1)先求2,a a b ⋅ ,再根据运算法则展开计算即可;(2)先计算2b,再平方,进而开方即可.【小问1详解】因为22||1,||||cos 451122a a a b a b ==⋅=︒=⨯=所以2()112a b a a a b ++⋅=⋅=+=【小问2详解】因为22||2b b ==,所以2222|2|(2)444242a b a b a b a b -=-=+⋅=+--=所以|2|a b -=16.已知函数()222cos 1f x x x =+-.(1)求函数()f x 的最小正周期;(2)若3π,π4θ⎛⎫∈⎪⎝⎭且()85f θ=-,求cos 2θ的值.【答案】(1)π(2)410-【解析】【分析】(1)利用辅助角公式化简,求出最小正周期;(2)将θ代入可求出πsin 26θ⎛⎫+ ⎪⎝⎭,结合π26+θ的范围,求出πcos 26θ⎛⎫+ ⎪⎝⎭,因为ππ2266θθ=+-,由两角差的余弦公式求出结果.【小问1详解】()2π22cos 12cos 22sin 26f x x x x x x ⎛⎫=+-=+=+ ⎪⎝⎭,所以()f x 的最小正周期2ππ2T ==【小问2详解】()π82sin 265f θθ⎛⎫=+=- ⎪⎝⎭,所以π4sin 265θ⎛⎫+=- ⎪⎝⎭,因为3π,π4θ⎛⎫∈⎪⎝⎭,1π25π3663π,θ⎛⎫∈ ⎪⎝⎭+,所以π3cos 265θ⎛⎫+== ⎪⎝⎭,所以ππππππcos 2cos 2cos 2cos sin 2sin 666666θθθθ⎛⎫⎛⎫⎛⎫=+-=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3414525210-⎛⎫=⨯+-⨯=⎪⎝⎭.17.如图,在ABC 中,6AB =,60ABC ∠=︒,D ,E 分别在边AB ,AC 上,且满足2AD DB = ,3CE EA =,F 为BC 中点.(1)若DE AB AC λμ=+,求实数λ,μ的值;(2)若8AF DE ⋅=-,求边BC 的长.【答案】(1)23λ=-,14μ=.(2)8【解析】【分析】(1)根据向量的线性运算以及平面向量的基本定理求得正确答案.(2)利用转化法化简8AF DE ⋅=-,从而求得BC 的长.【小问1详解】∵2AD DB = ,3CE EA= ,∴23AD AB = ,14AE AC = ∴1243DE AE AD AC AB =-=- ,∴23λ=-,14μ=.【小问2详解】12AF BF BA BC BA =-=- ,()1212154343412DE AC AB BC BA BA BC BA =-=-+=+ ,22115115241282412AF DE BC BA BC BA BC BC BA BA ⎛⎫⎛⎫⋅=-⋅+=-⋅- ⎪ ⎪⎝⎭⎝⎭设BC a = ,∵6AB = ,60ABC ∠=︒,221115668824212AF DE a a ⋅=-⨯⨯-⨯=- ,即2560a a --=,解得7a =-(舍)或8a =,∴BC 长为8.18.设(,)P x y 是角θ的终边上任意一点,其中0x ≠,0y ≠,并记r =cot x y θ=,sec r xθ=,csc r y θ=.(Ⅰ)求证222222sin cos tan cot sec +csc θθθθθθ+--+是一个定值,并求出这个定值;(Ⅱ)求函数()sin cos tan cot sec +csc f θθθθθθθ=++++的最小值.【答案】(Ⅰ)定值为3;(Ⅱ)min ()1f θ=-;【解析】【分析】(Ⅰ)由题可知,分别将6个三角函数分别代入,进行简单的化简,即可得到定值3;(Ⅱ)将()f x 中的未知量均用sin ,cos θθ来表示,得到1sin cos ()sin cos sin cos sin cos g θθθθθθθθθ+=+++,运用换元法设sin cos t θθ+=,化简成2()111g t t θ=-++-,再利用对勾函数的性质即可得到最值.【详解】解:(Ⅰ)222222222222222222sin cos tan cot sec +csc =y x y x r r r x y r y xθθθθθθ+--++--++2222222221113x y r y r x r x y+--⇒++=++=;(Ⅱ)由条件,1cot tan x y θθ==,1sec cos x θ=,1csc sin θθ=令()sin cos tan cot sec +csc g θθθθθθθ=++++sin cos 11sin cos +cos sin cos sin θθθθθθθθ=++++1sin cos sin cos sin cos sin cos θθθθθθθθ+=+++,令sin cos t θθ+=,则sin cos =2sin()4t πθθθ=++[2,2]∈-,1t ≠±,且21sin cos 2t θθ-=,从而2222()11t g y t t t θ==++--22(1)1t t t +=+-221111t t t t =+=-++--,令1u t =-,则21y u u =++,[21,21]u ∈---,且0u ≠,2u ≠-.所以,(,122][322,)y ∈-∞-⋃++∞.从而()221f y θ=≥-,即min ()221f θ=-.19.已知函数()2000ππ2sin sin 2sin 266f x x x x C ωωω⎛⎫⎛⎫=+++-+ ⎪ ⎪⎝⎭⎝⎭(R C ∈)有最大值为2,且相邻的两条对称轴的距离为π2(1)求函数()f x 的解析式,并求其对称轴方程;(2)将()f t 向右平移π6个单位,再将横坐标伸长为原来的24π倍,再将纵坐标扩大为原来的25倍,再将其向上平移60个单位,得到()g t ,则可以用函数()sin()H g t A t B ωϕ==++模型来模拟某摩天轮的座舱距离地面高度H 随时间t (单位:分钟)变化的情况.已知该摩天轮有24个座舱,游客在座舱转到离地面最近的位置进仓,若甲、乙已经坐在a ,b 两个座舱里,且a ,b 中间隔了3个座舱,如图所示,在运行一周的过程中,求两人距离地面高度差h 关于时间t 的函数解析式,并求最大值.【答案】(1)()π2sin 26f x x ⎛⎫=- ⎪⎝⎭,ππ32k x =+,Z k ∈(2)ππ()50sin 126f x t ⎛⎫=-⎪⎝⎭,50【解析】【分析】(1)由二倍角公式与两角和与差的正弦公式化简得()0π2sin 216f x x C ω⎛⎫=-++ ⎪⎝⎭,再结合最值及周期即可得解析式;(2)由正弦型函数的平移变换与伸缩变换得变换后的解析式为ππ50sin 60122y t ⎛⎫=-+ ⎪⎝⎭,则ππ50sin 126h H H ⎛⎫=-==- ⎪⎝⎭甲乙,再求最值即可.【小问1详解】()00001cos 2π22sin 2cos 2cos 2126x f x x C x x C ωωωω-=⨯++=-++0π2sin 216x C ω⎛⎫=-++ ⎪⎝⎭,所以2121C C ++=⇒=-,因为相邻两条对称轴的距离为π2,所以半周期为ππ22T T =⇒=,故002ππ12=⇒=ωω,()π2sin 26f x x ⎛⎫=- ⎪⎝⎭令ππππ2π6232k x k x -=+⇒=+,Z k ∈【小问2详解】()f t 向右平移π6得到π2sin 22y t ⎛⎫=- ⎪⎝⎭,将横坐标伸长为原来的24π倍,得到ππ2sin 122y t ⎛⎫=- ⎪⎝⎭,将纵坐标扩大为原来的25倍,得到ππ50sin 122y t ⎛⎫=- ⎪⎝⎭,再将其向上平移60个单位,得到ππ50sin 60122y t ⎛⎫=-+ ⎪⎝⎭游客甲与游客乙中间隔了3个座舱,则相隔了2ππ4243⨯=,令ππ50sin 60122H t ⎛⎫=-+ ⎪⎝⎭甲,则π5π50sin 60126H t ⎛⎫=-+ ⎪⎝⎭乙,则πππ5π50sin sin 122126h H H t t ⎛⎫⎛⎫=-=--- ⎪ ⎪⎝⎭⎝⎭甲乙π1πcos 12212t t =-ππ50sin 126t ⎛⎫=- ⎪⎝⎭,π12ω=,24T =,024t ≤≤,故πππ11π61266t -≤-≤,当πππ1262t -=或3π82t ⇒=或20时,max 50h =。
广西壮族自治区南宁市兴宁区南宁市第三中学2024-2025学年高一上学期10月月考(一)数学试题
南宁三中2024~2025学年度上学期高一月考(一)数学试题一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合,集合,则( )A .B .C .D .2.如果,则正确的是( )A .若a >b,则B .若a >b ,则C .若a >b ,c >d ,则a +c >b +dD .若a >b ,c >d ,则ac >bd3.设命题甲:,命题乙:,那么甲是乙的( )A .充分不必要条件B .必要不充分条件C .既充分又必要条件D .既不充分也不必要条件4.已知实数x ,y 满足,则的取值范围是( )A .B .C .D .5.若不等式的解集是或x >2},则a ,b 的值为( )A .,B .,C .,D .,6.二次函数的图象如图所示,反比例函数与正比例函数在同一坐标系中的大致图象可能是( )A .B .C .D .7.在R 上定义运算:a ⊕b =(a +1)b .已知1≤x ≤2时,存在x 使不等式(m -x )⊕(m +x )<4成立,则实数m 的取值范围为( ){}22M x x =-<<{1,0,1,2}N =-M N = {1,0,1}-{0,1,2}{}12x x -<≤{}12x x -≤≤,,,R a b c d ∈11a b<22ac bc >{}3|0x x <<{|||}12x x <-14,23x y -<<<<z x y =-{|31}z z -<<{|42}z z -<<{|32}z z -<<{|43}z z -<<-20x ax b ++>{3x x <-1a =6b =1a =-6b =1a =6b =-1a =-6b =-2y ax bxc =++ay x=()y b c x =+A.{m|-2<m<2}B.{m|-1<m<2}C.{m|-3<m<2}D.{m|1<m<2}8.若“”是“”的必要不充分条件,则实数的取值范围是()A.B.C.D.二、选择题:本题共3小题,每小题6分,共18分。
高一数学下学期第一次月考试卷(含解析)-人教版高一全册数学试题
2015-2016学年某某鄂尔多斯市准格尔旗世纪中学高一(下)第一次月考数学试卷一.选择题(每题5分,共60分)1.tan 300°+sin 450°的值为()A.1+B.1﹣C.﹣1﹣ D.﹣1+2.以下命题正确的是()A.小于90°的角是锐角B.A={α|α=k•180°,k∈Z},B={β|β=k•90°,k∈Z},则A⊆BC.﹣950°12′是第三象限角D.α,β终边相同,则α=β3.在空间直角坐标系中的点P(a,b,c),有下列叙述:①点P(a,b,c)关于横轴(x轴)的对称点是P1(a,﹣b,c);②点P(a,b,c)关于yOz坐标平面的对称点为P2(a,﹣b,﹣c);③点P(a,b,c)关于纵轴(y轴)的对称点是P3(a,﹣b,c);④点P(a,b,c)关于坐标原点的对称点为P4(﹣a,﹣b,﹣c).其中正确叙述的个数为()A.3 B.2 C.1 D.04.已知α是第二象限的角,其终边上一点为P(a,),且cosα=a,则sinα的值等于()A.B.C.D.5.函数y=2sin(﹣2x)(x∈[0,π])为增函数的区间是()A.[0,] B.[] C.[,] D.[,π]6.已知,且,则tanφ=()A.B.C.﹣D.7.已知点A(1,2,﹣1),点C与点A关于平面xOy对称,点B与点A关于x轴对称,则线段BC的长为()A.2 B.4 C.2 D.28.直线y=a(a为常数)与y=tanωx(ω>0)的相邻两支的交点距离为()A.πB.C. D.与a有关的值9.函数的图象()A.关于原点成中心对称B.关于y轴成轴对称C.关于成中心对称D.关于直线成轴对称10.已知θ∈[0,2π),|cosθ|<|sinθ|,且sinθ<tanθ,则θ的取值X围是()A.B.C.D.11.化简cosα+sinα(π<α<)得()A.sinα+cosα﹣2 B.2﹣sinα﹣cosαC.sinα﹣cosα D.cosα﹣sinα12.圆心角为60°的扇形,它的弧长为2π,则它的内切圆的半径为()A.2 B.C.1 D.二、填空题(每题5分,共20分,把答案填在题中横线上)13.函数的定义域为.14.函数y=2cos(ωx)的最小正周期是4π,则ω=.15.已知tanα=2,则tan2α的值为.16.已知sin(﹣x)=,则cos(﹣x)=.三.解答题(共70分)17.已知sinα+cosα=,α∈(0,π),求的值.18.已知函数f(x)=Asin(ωx+φ),x∈R(其中)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为.(Ⅰ)求f(x)的解析式;(Ⅱ)当,求f(x)的值域.19.sin θ和cos θ为方程2x2﹣mx+1=0的两根,求+.20.已知函数y=2acos(2x﹣)+b的定义域是[0,],值域是[﹣5,1],求a、b的值.21.函数f(x)=3sin(2x+)的部分图象如图所示.(Ⅰ)写出f(x)的最小正周期及图中x0,y0的值;(Ⅱ)求f(x)在区间[﹣,﹣]上的最大值和最小值.22.已知函数.(1)求函数f(x)的最小正周期和单调增区间;(2)函数f(x)的图象可以由函数y=sin2x(x∈R)的图象经过怎样的变换得到?2015-2016学年某某鄂尔多斯市准格尔旗世纪中学高一(下)第一次月考数学试卷参考答案与试题解析一.选择题(每题5分,共60分)1.tan 300°+sin 450°的值为()A.1+B.1﹣C.﹣1﹣ D.﹣1+【考点】诱导公式的作用.【分析】由诱导公式逐步化简可得原式等于﹣tan60°+sin90°,为可求值的特殊角,进而可得答案.【解答】解:由诱导公式可得:tan 300°+sin 450°=tan(360°﹣60°)+sin(360°+90°)=﹣tan60°+sin90°=﹣+1=1﹣,故选B2.以下命题正确的是()A.小于90°的角是锐角B.A={α|α=k•180°,k∈Z},B={β|β=k•90°,k∈Z},则A⊆BC.﹣950°12′是第三象限角D.α,β终边相同,则α=β【考点】命题的真假判断与应用.【分析】根据角的X围以及终边相同角的关系分别进行判断即可.【解答】解:A.∵0°角满足小于90°,但0°角不是锐角,故A错误,B.当k=2n时,β=k•90°=n•180°,当k=2n+1时,β=k•90°=k•180°+90°,则A⊆B成立,C.﹣950°12′=﹣4×360°+129°48′,∵129°48′是第二象限角,∴﹣950°12′是第二象限角,故C错误,D.α,β终边相同,则α=β+k•360°,k∈Z,故D错误,故选:B3.在空间直角坐标系中的点P(a,b,c),有下列叙述:①点P(a,b,c)关于横轴(x轴)的对称点是P1(a,﹣b,c);②点P(a,b,c)关于yOz坐标平面的对称点为P2(a,﹣b,﹣c);③点P(a,b,c)关于纵轴(y轴)的对称点是P3(a,﹣b,c);④点P(a,b,c)关于坐标原点的对称点为P4(﹣a,﹣b,﹣c).其中正确叙述的个数为()A.3 B.2 C.1 D.0【考点】命题的真假判断与应用.【分析】根据空间点的对称性分别进行判断即可.【解答】解:①点P(a,b,c)关于横轴(x轴),则x不变,其余相反,即对称点是P1(a,﹣b,﹣c);故①错误,②点P(a,b,c)关于yOz坐标平面的对称,则y,z不变,x相反,即对称点P2(﹣a,b,c);故②错误③点P(a,b,c)关于纵轴(y轴)的对称,则y不变,x,z相反,即对称点是P3(﹣a,b,﹣c);故③错误,④点P(a,b,c)关于坐标原点的对称,则x,y,z都为相反数,即对称点为P4(﹣a,﹣b,﹣c).故④正确,故选:C4.已知α是第二象限的角,其终边上一点为P(a,),且cosα=a,则sinα的值等于()A.B.C.D.【考点】任意角的三角函数的定义.【分析】根据三角函数的大小建立方程求出a的值即可得到结论.【解答】解:∵α是第二象限的角,其终边上一点为P(a,),且cosα=a,∴a<0,且cosα=a=,平方得a=﹣,则sinα===,故选:A.5.函数y=2sin(﹣2x)(x∈[0,π])为增函数的区间是()A.[0,] B.[] C.[,] D.[,π]【考点】复合三角函数的单调性.【分析】利用正弦函数的单调性,确定单调区间,结合x的X围,可得结论.【解答】解:由正弦函数的单调性可得≤﹣2x≤(k∈Z)∴﹣﹣kπ≤x≤﹣﹣kπk=﹣1,则故选C.6.已知,且,则tanφ=()A.B.C.﹣D.【考点】同角三角函数间的基本关系.【分析】先由诱导公式化简cos(φ)=﹣sinφ=确定sinφ的值,再根据φ的X 围确定cosφ的值,最终得到答案.【解答】解:由,得,又,∴∴tanφ=﹣故选C.7.已知点A(1,2,﹣1),点C与点A关于平面xOy对称,点B与点A关于x轴对称,则线段BC的长为()A.2 B.4 C.2 D.2【考点】空间中的点的坐标.【分析】求出对称点的坐标,然后求解距离.【解答】解:点A(1,2,﹣1),点C与点A关于平面xoy对称,可得C(1,2,1),点B与点A关于x轴对称,B(1,﹣2,1),∴|BC|==4故选:B.8.直线y=a(a为常数)与y=tanωx(ω>0)的相邻两支的交点距离为()A.πB.C. D.与a有关的值【考点】三角函数的周期性及其求法.【分析】直线y=a与正切曲线y=tanωx两相邻交点间的距离,便是此正切曲线的最小正周期.【解答】解:因为直线y=a(a为常数)与正切曲线y=tanωx相交的相邻两点间的距离就是正切函数的周期,∵y=tanωx的周期是:,∴直线y=a(a为常数)与正切曲线y=tanωx相交的相邻两点间的距离是:.故选:B.9.函数的图象()A.关于原点成中心对称B.关于y轴成轴对称C.关于成中心对称D.关于直线成轴对称【考点】正弦函数的对称性.【分析】将x=0代入函数得到f(0)=2sin(﹣)=﹣1,从而可判断A、B;将代入函数f(x)中得到f()=0,即可判断C、D,从而可得到答案.【解答】解:令x=0代入函数得到f(0)=2sin(﹣)=﹣1,故A、B不对;将代入函数f(x)中得到f()=0,故是函数f(x)的对称中心,故C 对,D不对.故选C.10.已知θ∈[0,2π),|cosθ|<|sinθ|,且sinθ<tanθ,则θ的取值X围是()A.B.C.D.【考点】三角函数的化简求值.【分析】由已知的sinθ<tanθ,移项并利用同角三角函数间的基本关系变形后得到tanθ(1﹣cosθ)大于0,由余弦函数的值域得到1﹣cosθ大于0,从而得到tanθ大于0,可得出θ为第一或第三象限,若θ为第一象限角,得到sinθ和cosθ都大于0,化简|cosθ|<|sinθ|,并利用同角三角函数间的基本关系得到tanθ大于1,利用正切函数的图象与性质可得出此时θ的X围;若θ为第三象限角,得到sinθ和cosθ都小于0,化简|cosθ|<|sinθ|,并利用同角三角函数间的基本关系得到tanθ大于1,利用正切函数的图象与性质可得出此时θ的X围,综上,得到满足题意的θ的X围.【解答】解:∵sinθ<tanθ,即tanθ﹣sinθ>0,∴tanθ(1﹣cosθ)>0,由1﹣cosθ>0,得到tanθ>0,当θ属于第一象限时,sinθ>0,cosθ>0,∴|cosθ|<|sinθ|化为cosθ<sinθ,即tanθ>1,则θ∈(,);当θ属于第三象限时,sinθ<0,cosθ<0,∴|cosθ|<|sinθ|化为﹣cosθ<﹣sinθ,即tanθ>1,则θ∈(,),综上,θ的取值X围是.故选C11.化简cosα+sinα(π<α<)得()A.sinα+cosα﹣2 B.2﹣sinα﹣cosαC.sinα﹣cosα D.cosα﹣sinα【考点】三角函数的化简求值.【分析】利用同角三角函数基本关系式、三角函数值在各个象限的符号即可得出.【解答】解:∵π<α<,∴==,同理可得=,∴原式=﹣(1﹣sinα)﹣(1﹣cosα)=﹣2+cosα+sinα.故选:A.12.圆心角为60°的扇形,它的弧长为2π,则它的内切圆的半径为()A.2 B.C.1 D.【考点】圆的标准方程.【分析】设扇形和内切圆的半径分别为R,r.由弧长公式可得2π=R,解得R.再利用3r=R=6即可求得扇形的内切圆的半径.【解答】解:设扇形和内切圆的半径分别为R,r.由2π=R,解得R=6.由题意可得3r=R=6,即r=2.∴扇形的内切圆的半径为2.故选:A.二、填空题(每题5分,共20分,把答案填在题中横线上)13.函数的定义域为.【考点】正切函数的定义域.【分析】根据正弦函数的定义域,我们构造关于x的不等式,解不等式,求出自变量x的取值X围,即可得到函数的定义域.【解答】解:要使函数的解析式有意义自变量x须满足:≠kπ+,k∈Z解得:故函数的定义域为故答案为14.函数y=2cos(ωx)的最小正周期是4π,则ω=±.【考点】三角函数的周期性及其求法.【分析】利用周期公式列出关于ω的方程,求出方程的解即可得到ω的值.【解答】解:∵=4π,∴ω=±.故答案为:±15.已知tanα=2,则tan2α的值为﹣.【考点】二倍角的正切.【分析】由条件利用二倍角的正切公式求得tan2α的值.【解答】解:∵tanα=2,∴tan2α===﹣,故答案为:﹣.16.已知sin(﹣x)=,则cos(﹣x)= ﹣.【考点】运用诱导公式化简求值.【分析】原式中的角度变形后,利用诱导公式化简,将已知等式代入计算即可求出值.【解答】解:∵sin(﹣x)=,∴cos(﹣x)=cos[+(﹣x)]=﹣sin(﹣x)=﹣.故答案为:﹣三.解答题(共70分)17.已知sinα+cosα=,α∈(0,π),求的值.【考点】三角函数的化简求值.【分析】把已知等式两边平方,利用完全平方公式及同角三角函数间的基本关系变形求出2sinαcosα的值,进而判断出sinα﹣cosα的正负,利用完全平方公式及同角三角函数间的基本关系求出sinα﹣cosα的值,联立求出sinα与cosα的值,即可确定出的值.【解答】解:把sinα+cosα=①,两边平方得:(sinα+cosα)2=1+2sinαcosα=,∴2sinαcosα=﹣,∵α∈(0,π),∴sinα>0,cosα<0,即sinα﹣cosα>0,∴(sinα﹣cosα)2=1﹣2sinαcosα=,即sinα﹣cosα=②,联立①②,解得:sinα=,cosα=﹣,则==﹣.18.已知函数f(x)=Asin(ωx+φ),x∈R(其中)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为.(Ⅰ)求f(x)的解析式;(Ⅱ)当,求f(x)的值域.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;正弦函数的定义域和值域.【分析】(1)根据最低点M可求得A;由x轴上相邻的两个交点之间的距离可求得ω;进而把点M代入f(x)即可求得φ,把A,ω,φ代入f(x)即可得到函数的解析式.(2)根据x的X围进而可确定当的X围,根据正弦函数的单调性可求得函数的最大值和最小值.确定函数的值域.【解答】解:(1)由最低点为得A=2.由x轴上相邻的两个交点之间的距离为得=,即T=π,由点在图象上的故∴又,∴(2)∵,∴当=,即时,f(x)取得最大值2;当即时,f(x)取得最小值﹣1,故f(x)的值域为[﹣1,2]19.sin θ和cos θ为方程2x2﹣mx+1=0的两根,求+.【考点】三角函数的化简求值.【分析】利用韦达定理可求得sinθ+cosθ=,sinθ•cosθ=,利用同角三角函数基本关系式即可解得m,将所求的关系式化简为sinθ+cosθ,即可求得答案.【解答】解:∵sinθ和cosθ为方程2x2﹣mx+1=0的两根,∴sinθ+cosθ=,sinθ•cosθ=,∵(sinθ+cosθ)2=sin2θ+2sinθcosθ+cos2θ=1+2sinθcosθ,∴m2=1+2×,解得:m=±2,∴+=+=sinθ+cosθ=.20.已知函数y=2acos(2x﹣)+b的定义域是[0,],值域是[﹣5,1],求a、b的值.【考点】余弦函数的定义域和值域.【分析】由求出的X围,由余弦函数的性质求出cos(2x﹣)的值域,根据解析式对a分类讨论,由原函数的值域分别列出方程组,求出a、b的值.【解答】解:由得,,∴cos(2x﹣),当a>0时,∵函数的值域是[﹣5,1],∴,解得,当a<0时,∵函数的值域是[﹣5,1],∴,解得,综上可得,或.21.函数f(x)=3sin(2x+)的部分图象如图所示.(Ⅰ)写出f(x)的最小正周期及图中x0,y0的值;(Ⅱ)求f(x)在区间[﹣,﹣]上的最大值和最小值.【考点】三角函数的周期性及其求法;正弦函数的定义域和值域.【分析】(Ⅰ)由题目所给的解析式和图象可得所求;(Ⅱ)由x∈[﹣,﹣]可得2x+∈[﹣,0],由三角函数的性质可得最值.【解答】解:(Ⅰ)∵f(x)=3sin(2x+),∴f(x)的最小正周期T==π,可知y0为函数的最大值3,x0=;(Ⅱ)∵x∈[﹣,﹣],∴2x+∈[﹣,0],∴当2x+=0,即x=时,f(x)取最大值0,当2x+=,即x=﹣时,f(x)取最小值﹣322.已知函数.(1)求函数f(x)的最小正周期和单调增区间;(2)函数f(x)的图象可以由函数y=sin2x(x∈R)的图象经过怎样的变换得到?【考点】函数y=Asin(ωx+φ)的图象变换;三角函数的周期性及其求法;正弦函数的单调性.【分析】(1)由函数的解析式求得周期,由求得x的X围,即可得到函数的单调增区间(2)由条件可得,再根据函数y=Asin(ωx+∅)的图象变换规律得出结论.【解答】解:(1)由函数,可得周期等于 T==π.由求得,故函数的递增区间是.(2)由条件可得.故将y=sin2x的图象向左平移个单位,再向上平移个单位,即可得到f(x)的图象.。
高一数学第一次月考试卷.及答案
大同四中联盟学校2020—2021学年第一学期10月月考试题高一年级数学学科命题人:本试卷共4 页 满分:150分 考试用时:120分钟第Ⅰ卷(选择题 共60分)一 .选择题(本题包括12小题、每小题5分、共60分) 1.下列各选项中,不能组成集合的是( )。
A.所有的整数 B.所有大于0的数C.所有的偶数D.高一(1)班所有长得帅的同学2.已知集合M ={x |—3< x ≤ 5},N ={x |x <—5或x > 5},则M ∪N =( )。
A.{x |x <—5或x >—3} B.{x |—5<x < 5} C.{x |—3< x < 5} D.{x |x <—3或x > 5}3.已知3 ∈ {1,a , a -2 },则实数a 的值为( )。
A.3 B.5 C.3或5 D.无解4.“1<x <2”是“x <2”成立的( )。
A. 充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.集合P ={x |x ≥ —1},集合Q ={x |x ≥0 },则P 与Q 的关系是( )。
A.P =QB.P QC.P QD.P ∩Q =⌀6.已知集合M ={x |—3< x ≤ 5 },N ={x | x > 3 },则M N =( )。
A.{x |x >—3}B.{x |—3< x ≤ 5}C.{x |3 < x ≤ 5 }D.{x |x ≤ 5}7.设全集U ={x ∈N |x ≥2},集合A ={x ∈N |x ≥},则∁U A =( )。
A.⌀B.{2}C.{1,4,6}D.{2,3,5}8.设全集U =A ∪B ,定义:A —B ={x |x ∈A 且x ∉B },集合A ,B 分别用圆表示,则图1-3-2-3中阴影部分表示A -B 的是( )。
图1-3-2-39.已知a ,b ,c ,d ∈R,则下列命题中必成立的是( )。
高一上学期第一次月考数学试题(附答案解析)
高一上学期第一次月考数学试题(附答案解析)学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、单选题(本大题共8小题,共32.0分。
在每小题列出的选项中,选出符合题目的一项)1. 已知集合A={−1,1},B={x|ax=1},若A∩B=B,则a的取值集合为( )A. {1}B. {−1}C. {−1,1}D. {−1,0,1}2. 下列存在量词命题是假命题的是( )A. 存在x∈Q,使2x−x3=0B. 存在x∈R,使x2+x+1=0C. 有的素数是偶数D. 有的有理数没有倒数3. 定义集合A,B的一种运算:A⊗B={x|x=a2−b,a∈A,b∈B},若A={−1,0},B={1,2},则A⊗B 中的元素个数为( )A. 1B. 2C. 3D. 44. 已知x,y,z为非零实数,代数式x|x|+y|y|+z|z|+xyz|xyz|的值所组成的集合是M,则下列判断正确的是( )A. 4∈MB. 2∈MC. 0∉MD. −4∉M5. 一批救灾物资随26辆汽车从某市以vkm/h的速度送达灾区,已知运送的路线长400km,为了安全起见,两辆汽车的间距不得小于(v20)2km,那么这批物资全部到达灾区最少需要时间( )A. 5 hB. 10 hC. 15 hD. 20 h6. 已知集合A={x|ax2−(a+1)x+1<0},B={x|x2−3x−4<0},且A∩B=A,则实数a的取值范围是( )A. a≤14B. 0<a≤14C. a≥14D. 14≤a<1或a>17. 如图,抛物线y=ax2+bx+c的对称轴是直线x=1,下列结论:①abc>0;②b2−4ac>0;③8a+ c<0;④5a+b+2c>0,正确的有( )A. 4个B. 3个C. 2个D. 1个8. 某单位周一、周二、周三开车上班的职工人数分别是14,10,8.若这三天中至少有一天开车上班的职工人数是20,则这三天都开车上班的职工人数的最大值是( )A. 6B. 5C. 7D. 8二、多选题(本大题共4小题,共16.0分。
2021-2022学年高一下学期第一次月考数学试题含答案 (2)
(2)问从种植起,第几年树木生长最快?
22.对于定义在D上的函数f(x),如果存在实数x0,使得f(x0)=x0,那么称x0是函数f(x)的一个不动点.已知f(x)=ax2+1.
(1)当a=-2时,求f(x)的不动点;
(2)若函数f(x)有两个不动点x1,x2,且x1<2<x2.
【答案】(1) ;(2) .
19.已知函数 .
(Ⅰ)求函数 的定义域,并判断函数 的奇偶性;
(Ⅱ)求解关于 的不等式 .
【19题答案】
【答案】(Ⅰ)定义域为 ,函数 既不是奇函数,也不是偶函数;(Ⅱ) .
20.已知函数 .
(1)求函数 的最小正周期;
(2)求函数 在区间 上 单调递增区间.
【20题答案】
A. B.
C. D.
【5题答案】
【答案】D
6. “ ”是“ ”成立的()
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件
【6题答案】
【答案】B
7.函数 的部分图象如图所示.将 图象上所有的点向右平移 个单位长度,所得图象的函数解析式是()
A. B.
C. D.
【7题答案】
① 在区间 上是单调的;
②当定义域是 时, 的值域也是 ,则称 是函数 的一个“黄金区间”.
如果 可是函数 的一个“黄金区间“,则 的最大值为()
A. B.1C. D.2
二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.
9.若 为第二象限角,则下列结论正确的是()
A B. C. D.
【9题答案】
2023-2024学年河南省郑州市高一上学期第一次月考数学质量检测模拟试题(含解析)
2023-2024学年河南省郑州市高一上册第一次月考数学试题一、单选题1.下列各命题中,真命题是()A .2,10x R x ∀∈-<B .2x N,x 1∀∈≥C .3,1x x ∃∈<Z D .2,2x Q x ∃∈=【正确答案】C【分析】分别对选项中的等式或不等式求解,依次判断是否正确即可【详解】对于选项A,210x -<,即1x >或1x <-,故A 不正确;对于选项B,当0x =时,201x =<,故B 不正确;对于选项D,x =,故D 不正确;对于选项C,当0x =时,301x =<,故C 为真命题,故选C本题考查不等式的求解,考查命题真假的判断,考查全称量词、存在性量词的应用2.已知集合{}20A xx x =-+≥∣,{10}B x x =-<∣,则A B ⋃=()A .{1}∣≤xx B .{1}∣<x x C .{01}x x ≤<∣D .{01}xx ≤≤∣【正确答案】A先求出集合A 和集合B ,然后,直接求解A B ⋃即可【详解】集合{}20A x x x =-+≥∣}{10x x =≥≥,集合{10}{1}B x x x x =-<=<∣∣,A B ⋃={1}∣≤xx 本题考查集合的运算,属于基础题3.若集合{}230A x x x =-<∣,{}1B x x =≥∣则图中阴影部分表示的集合为()A .{}0x x >∣B .{}01x x <≤∣C .{}13x x ≤<∣D .{|0<<1x x 或}3x ≥【分析】解一元二次不等式求得集合A ,通过求A B ⋂求得正确答案.【详解】()2330x x x x -=-<,解得03x <<,故{}|03A x x =<<,阴影部分表示A B ⋂,则{}|13A B x x ⋂=≤<.故选:C4.命题“x ∃∈R ,2220x x -+≤”的否定是()A .x ∃∈R ,2220x x -+≥B .x ∃∈R ,2220x x -+>C .x ∀∈R ,2220x x -+≤D .x ∀∈R ,2220x x -+>【正确答案】D【分析】根据特称命题的否定直接得出答案.【详解】因为特称命题的否定是全称命题,所以命题“x ∃∈R ,2220x x -+≤”的否定是为:x ∀∈R ,2220x x -+>,故选:D.5.设集合{}13A x x =-≤<,{}02B x x =<≤,则“a A ∈”是“a B ∈”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【正确答案】B【分析】根据已知条件,推得B A ,即可判断.【详解】解: 集合{}13A x x =-≤<,{}02B x x =<≤,B ∴A ,∴“a A ∈”是“a B ∈”的必要不充分条件.故选:B .6.若0a b <<,则下列不等式成立的是()A 2a b a b +<<<B 2a ba b+≤<<C .2a b a b +<<D .2a ba b +<≤<2a b +<,再结合0a b <<可得出结果.【详解】由已知0a b <<2a b +<,因为0a b <<,则22a ab b <<,2a b b +<,所以a b <,2a b b +<,∴2a b a b +<<.故选:C.7.若a >b ,则下列结论一定成立的是()A .a 2>b 2B .a >b +1C .a >b -1D【正确答案】C利用特殊值排除ABD ,再根据不等式的性质判断C ;【详解】解:因为a b >,对于A :当0a b >>时,22a b <,故A 错误;对于B :当0a =,12b =-时,满足a b >,但是1a b <+,故B 错误;对于D :当0a b >>D 错误;对于C :因为a b >,1b b >-,所以1a b >-,故C 正确;故选:C8.设a ,b ∈R ,则下列命题正确的是().A .若a b >,则22a b >B .若a b ¹,则22a b ≠C .若a b <,则22a b <D .若a b >,则22a b >【正确答案】D列举特殊数值,排除选项.【详解】A.1,2a b ==-时,22a b <,故A 不成立;B.当1,1a b ==-时,22a b =,故B 不成立;C.当2,1a b =-=时,22a b >,故C 不成立;D.若0a b >≥,根据函数2y x =在[)0,∞+的单调性可知,22a b >成立,故D 正确.故选:D9.不等式x2-2x -3>0的解集是()A .{x ∣-1<x <3}B .{x ∣x <-3或x >1}C .{x ∣-3<x <1}D .{x ∣x <-1或x >3}【正确答案】D 将不等式左边分解因式,根据两数相乘积为正,得到两因式同号,转化为两个一元一次不等式组,求出一元一次不等式的解集,即可得到原不等式的解集.【详解】解:2230x x -->,因式分解得:(3)(1)0x x -+>,可化为:3010x x ->⎧⎨+>⎩或3010x x -<⎧⎨+<⎩,解得:3x >或1x <-,则原不等式的解集是{|1x x <-或3}x >.故选:D .10.若2x >-,则22x x ++的最小值为()A .2B .C .2D .0【正确答案】C 将所求不等式变形为()222222x x x x +=++-++,利用基本不等式可求得22x x ++的最小值.【详解】2x >- ,则20x +>,()22222222x x x x ∴+=++-≥-=++.当且仅当()2222x x x +=>-+时,即当2x =时,等号成立,因此,当2x >-时,22x x ++的最小值为2.故选:C.在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.11.若不等式-x 2+ax-1≤0对x R ∈恒成立,则实数a 的范围为()A .{a ∣-2≤a≤2}B .{a ∣a ≤-2,或a ≥2}C .{a ∣-2<a<2}D .{a ∣a<-2,或a >2}【正确答案】A根据题意利用判别式0∆即可求得a 的取值范围.【详解】解: 不等式210x ax -+-对一切x R ∈恒成立;∴不等式210x ax -+对任意x R ∈恒成立,则240a ∆=-,22a -,∴实数a 的取值范围是[2-,2].故选:A .本题考查一元二次不等式恒成立问题:常见的处理技巧为①()200ax bx c a ++≠恒成立,则00a <⎧⎨∆≤⎩;②()200ax bx c a ++<≠恒成立,则00a <⎧⎨∆<⎩;③()200ax bx c a ++>≠恒成立,则00a >⎧⎨∆<⎩;④()200ax bx c a ++≥≠恒成立,则00a >⎧⎨∆≤⎩;12.若不等式20x ax b ++<(),a b R ∈的解集为{}|25x x <<,则a ,b 的值为()A .a =﹣7,b =10B .a =7,b =﹣10C .a =﹣7,b =﹣10D .a =7,b =10【正确答案】A 【分析】根据二元一次不等式的解集得出对应方程的实数根,由根与系数的关系求出a 、b 的值.【详解】因为不等式20x ax b ++<的解集为{}|25x x <<,所以对应方程20x ax b ++=的两个根为2和5,即2525a b +=-⎧⎨⨯=⎩,解得a =﹣7,b =10.故选:A【点评】本题考查了一元二次不等式与对应方程的关系应用问题,是基础题.二、双空题13.用符号语言表示命题:对于所有的实数x ,满足210x x -+=:__________;该命题的否定为:___________.【正确答案】x ∀∈R ,210x x -+=;0x ∃∈R ,20010x x -+≠.先根据题意写出命题的符号语言表示,再写出该命题的否定即可.【详解】解:命题“对于所有的实数x ,满足210x x -+=”的符号语言表示:x ∀∈R ,210x x -+=;该命题的否定为:0x ∃∈R ,20010x x -+≠.故x ∀∈R ,210x x -+=;0x ∃∈R ,20010x x -+≠.本题考查含有一个量词的命题的符号表示、含有一个量词的命题的否定,是基础题.三、填空题14.不等式220x x -->的解集为______.【正确答案】{}20x x -<<将所求不等式变形为()20x x +<,解此二次不等式即可得解.【详解】原不等式即为220x x +<,即()20x x +<,解得20x -<<.故答案为.{}20x x -<<解一元二次不等式时,当二次项系数为负时要先化为正,再根据判别式符号判断对应方程根的情况,然后结合相应二次函数的图象写出不等式的解集.15.已知集合{|4},{|}A x x B x x a =<=<,若“x A ∈”是“x B ∈”的必要不充分条件,则实数a 的取值范围是______.【正确答案】(,4)-∞【分析】由“x A ∈”是“x B ∈”的必要不充分条件,即集合B 是集合A 的真子集,根据集合的运算,即可求解.【详解】由题意,“x A ∈”是“x B ∈”的必要不充分条件,即集合B 是集合A 的真子集,又由{|4},{|}A x x B x x a =<=<,则4a <,即实数a 的取值范围是(,4)-∞.故答案为(,4)-∞.本题主要考查了充分条件,必要条件的应用,其中解答中把“x A ∈”是“x B ∈”的必要不充分条件,即集合B 是集合A 的真子集是解答的关键,着重考查了转化思想,以及推理与运算能力,属于基础题.16.已知0x >,0y >,若22x y +=,则xy 的最大值是______.【正确答案】12利用配凑法,结合基本不等式,求得xy 的最大值.【详解】依题意221121212222222x y xy x y +⎛⎫⎛⎫=⋅⋅≤⋅=⋅= ⎪ ⎪⎝⎭⎝⎭,当且仅当21x y ==时等号成立.故xy 的最大值为12.故答案为.12易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方四、解答题17.求下列不等式的解集:(1)23100x x -->;(2)23540x x -+->【正确答案】(1){|5x x >或}2x <-(2)∅【分析】(1)因式分解后,结合一元二次方程的根可得解集;(2)化二次项系数为正,然后由判别式判断可得答案.【详解】(1)原不等式化为()()250x x +->,解得5x >或<2x -,所以原不等式解集为{|5x x >或}2x <-;(2)原不等式化为23540x x -+<,又2(5)434230∆=--⨯⨯=-<,所以原不等式无解,解集为∅.18.已知集合2{|37},{|12200}=≤<=-+<A x x B x x x ,{|}C x x a =<.(1)求;A B ()R C A B ;(2)若A C ⋂≠∅,求a 的取值范围.【正确答案】(1){|210}A B x x ⋃=<<;(){|23710}R C A B x x x =<<≤< 或;(2)a >3.【分析】(1)先化简集合B ,再利用集合的并集、补集和交集运算求解;(2)根据A C ⋂≠∅,结合{|}C x x a =<,利用数轴求解.【详解】(1)因为集合2{|37},{|12200}{|210}A x x B x x x x x =≤<=-+<=<<,所以{|210}A B x x ⋃=<<,{|3R C A x x =<或}7x ≥,(){|23R C A B x x =<< 或710}x ≤<;(2)因为A C ⋂≠∅,且{|}C x x a =<,所以a >3,所以a 的取值范围是()3,+∞.19.(1)已知0,0a b >>,且41a b +=,求ab 的最大值;(2)已知54x <,求14245x x -+-的最大值.【正确答案】(1)116;(2)1.【分析】(1)直接利用基本不等式求出ab 的最大值;(2)先求出154254x x -+≥-,进而求出142145x x -+≤-.【详解】(1)因为0,0a b >>,且41a b +=,所以14a b =+≥116ab ≤(当且仅当4+=14=a b a b ⎧⎨⎩即1=81=2a b ⎧⎪⎪⎨⎪⎪⎩时等号成立).所以ab 的最大值为116.(2)因为54x <,所以540x ->.所以154254x x -+≥-(当且仅当15454x x -=-,即=1x 时等号成立).所以11142453543231454554x x x x x x ⎛⎫-+=-++=--++≤-+= ⎪---⎝⎭(当=1x 时等号成立).即14245x x -+-的最大值为1.20.已知集合{}22A x a x a =-≤≤+,{1B x x =≤或}4x ≥.(1)当3a =时,求A B ⋂;(2)若“x A ∈”是“R x B ∈ð”的充分不必要条件,且A ≠∅,求实数a 的取值范围.【正确答案】(1){11A B x x ⋂=-≤≤或45}x ≤≤;(2){}01a a ≤<.【分析】(1)根据两个集合交集运算性质即可解得;(2)“x A ∈”是“R x B ∈ð”的充分不必要条件即AB R ð,然后求解出集合B 的补集,根据集合间的关系列出关于a 的不等式即可解得范围.【详解】(1)当3a =时,{}15A x x =-≤≤,又{1B x x =≤或}4x ≥,{11A B x x ⋂=-≤≤或45}x ≤≤(2){1B x x =≤或}4x ≥,{}R 14B x x =<<ð.由“x A ∈”是“R x B ∈ð”的充分不必要条件,得AB R ð,.又{}22,A x a x a A =-≤≤+≠∅,222124a a a a -≤+⎧⎪∴->⎨⎪+<⎩,01a ∴≤<即实数a 的取值范围是{}01a a ≤<.:本题考查了集合交集的运算、利用集合间的关系求解参数的范围,属于中档题目,解题中需要准确的将充分条件和必要条件的关系转化为集合间的关系.。
辽宁省沈阳市东北育才中学2024-2025学年高一上学期第一次月考(10月)数学试题(含解析)
东北育才高中2024-2025学年度上学期高一年级数学科第一次月考试卷时间:120分钟 满分:150分一、单选题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是正确的.1.已知集合,则中元素个数为( )A.2B.3C.4D.62.设集合,则集合的真子集的个数为( )A.3B.4C.15D.163.命题“,不等式”为假命题的一个必要不充分条件是( )A.B.C. D.4.设,则下列命题正确的是( )A.若,则B.若,则C.若则D.若,则5.若集合,若,则实数的取值范围是( )A.B.C.D.6.对于实数,当且仅当时,规定,则不等式的解集是()A. B.C. D.7.已知,则的最小值为( )(){}(){}*,,,,,8A x y x y y x B x y x y =∈≥=+=N ∣∣A B ⋂{}{}{}1,2,3,4,5,,,A B M xx a b a A b B ====+∈∈∣M x ∃∈R 2210ax x -+≤0a >1a >102a <<2a >,a b ∈R ,x y a b >>a x b y ->-a b >11a b<,x y a b >>ax by >a b >22a b >{}30,101x A xB x ax x ⎧⎫-===+=⎨⎬+⎩⎭∣B A ⊆a 13⎧⎫-⎨⎬⎩⎭1,13⎧⎫-⎨⎬⎩⎭10,3⎧⎫-⎨⎬⎩⎭10,,13⎧⎫-⎨⎬⎩⎭x ()1n x n n ≤<+∈N []x n =[]24[]36450x x -+<{28}xx ≤<∣31522xx ⎧⎫<<⎨⎬⎩⎭{}27xx ≤≤∣{27}x x <≤∣0,0,23x y x y >>+=23x yxy+A. B.8.方程至少有一个负实根的充要条件是( )A. B.C.D.或二、多选题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,选对但不全的得部分分,有选错的得0分,9.设均为非空集合,且满足,则下列各式中正确的是( )A. B.C.D.10.下列四个命题中正确的是( )A.由所确定的实数集合为B.同时满足的整数解的集合为C.集合可以化简为D.中含有三个元素11.已知关于的不等式的解集为,则下列结论正确的是()A. B.的最大值为C.的最小值为8 D.的最小值为三、填空题:本大题共3小题,每小题5分,共15分.12.的解集是__________.13.某班举行数学、物理、化学三科竞赛,每人至少参加一科,已知参加数学竞赛的有27人,参加物理竞赛的有25人,参加化学竞赛的有27人,其中同时只参加数学、物理两科的有10人,同时只参加物理、化学两科的有7人,同时只参加数学、化学两科的有11人,而参加数学、物理、化学三科的有4人,则全班共有__________人.3-11-1+2210ax x ++=01a <≤1a <1a ≤01a <≤0a <A B U 、、A B U ⊆⊆()U A B U ⋃=ð()()U U U A B B ⋂=ððð()U A B ⋂=∅ð()()U U A B U⋃=ðð(),a b a b ab+∈R {}2,0,2-240,121x x x +>⎧⎨+≥-⎩{}1,0,1,2-(){},3216,,x y x y x y +=∈∈N N ∣()()(){}0,8,2,5,4,26,3A aa a ⎧⎫=∈∈⎨⎬-⎩⎭N Z x ()()()2323100,0a m x b m x a b +---<>>11,2⎛⎫- ⎪⎝⎭21a b +=ab 1812a b +224a b +1222150x x -->14.已知关于的不等式(其中)的解集为,若满足(其中为整数集),则使得集合中元素个数最少时的取值范围是__________.四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15.(本小题13分)已知集合为全体实数集,或.(1)若,求;(2)若,求实数的取值范围.16.(本小题15分)已知全集,集合,集合.(1)若,求实数的取值集合;(2)若集合,且集合满足条件__________(从下列三个条件中任选一个作答),求实数的取值集合.条件①是的充分不必要条件:②是的必要不充分条件:③,使得.17.(本小题15分)设,且.(1介于之间;(2)求;(3)你能设计一个比的吗?并说明理由.18.(本小题17分)对于二次函数,若,使得成立,则称为二次函数的不动点.(1)求二次函数的不动点:(2)若二次函数有两个不相等的不动点,且,求的最小值.x ()()2640mx m x --+<m ∈R A A B ⋂=Z Z B m U {2M xx =<-∣{}5},121x N x a x a >=+≤≤-∣3a =()U M N ⋃ðU N M ⊆ða U =R A x y ⎧⎪==⎨⎪⎩()(){}2440B x x m x m =---<∣B =∅m B ≠∅,A B m x A ∈x B ∈x A ∈x B ∈12,x A x B ∀∈∃∈12x x =10a >1a ≈21111a a =++12,a a 12,a a 2a 3a ()20y ax bx c a =++≠0x ∃∈R 2000ax bx c x ++=0x ()20y ax bx c a =++≠222y x x =+-()2221y x a x a =-++-12,x x 12,0x x >2112x x x x +19.(本小题17分)已知是非空数集,如果对任意,都有,则称是封闭集.(1)判断集合是否为封闭集,并说明理由:(2)判断以下两个命题的真假,并说明理由:命题:若非空集合是封闭集,则也是封闭集;命题:若非空集合是封闭集,且,则也是封闭集:(3)若非空集合是封闭集合,且为实数集,求证:不是封闭集.A ,x y A ∈,x y A xy A +∈∈A {}{}0,1,0,1BC ==-p 12,A A 12A A ⋃q 12,A A 12A A ⋂≠∅12A A ⋂A ,A ≠R R A R ð东北育才高中2024-2025学年度上学期高一年级数学科第一次月考答案【解析】1.解:在集合中,观察集合的条件,当是正整数且时,有等4个元素,则中元素个数为4个.故选C.2.解:由题意可知,集合,集合中有4个元素,则集合的真子集有个,故选C.3.解:命题“,不等式”为假命题,则命题“,不等式”为真命题,所以,解得,所以使得命题“,不等式”为假命题,则实数的取值范围为1,则命题“,不等式”为假命题的一个必要不充分条件是,故选:A.4.解:A :令,则,故错误;B :令,则,故错误;C :令,则,故错误;D :因为,所以即,故正确;故选D.5.解:由题可知:.当时,显然不成立即,则满足;B 8x y +=A ,x y y x ≥()()()()1,7,2,6,3,5,4,4A B ⋂{}5,6,7,8M =M 42115-=x ∃∈R 2210ax x -+≤x ∀∈R 2210ax x -+>0Δ440a a >⎧⎨=-<⎩1a >x ∃∈R 2210ax x -+≤a a >x ∃∈R 2210ax x -+≤0a >1,3,2,0x y a b ==-==13a x b y -=<-=0,0a b ><11a b>0,1,1,0x y a b ==-==0ax by ==a a b >…22||a b >22a b >{}3031x A xx ⎧⎫-===⎨⎬+⎩⎭0a =10…B =∅B A ⊆当时,,由可得:;综上所述实数的取值范围为.故选C.6.解:由,根据的定义可知:不等式的解集是.故选A.7.解:因为,则,当且仅当时,即当,且,等号成立,故的最小值为故选B.8.当时,方程为有一个负实根,反之,时,则于是得;当时,,若,则,方程有两个不等实根,,即与一正一负,反之,方程有一正一负的两根时,则这两根之积小于,于是得,若,由,即知,方程有两个实根,0a ≠1B x x a ⎧⎫==-⎨⎬⎩⎭B A ⊆1133a a -=⇒=-a 10,3⎧⎫-⎨⎬⎩⎭[]24[]36450x x -+<[]()[]()232150x x ⇒--<[]31522x ⇒<<[]x []24[]36450x x -+<{28}xx <∣…0,0,23x y x y >>+=()22222322111x x y y x y x xy y x y xy xy xy y x +++++===+++=+…222x y =3x =-y =23x y xy+1+0a =210x +=12x =-12x =-0,a =0a =0a ≠Δ44a =-0a <Δ0>12,x x 1210x x a=<1x 2x 1a0,0a <0a <0a >Δ0≥01a <≤12,x x必有,此时与都是负数,反之,方程两根都为负,则,解得,于是得,综上,当时,方程至少有一个负实根,反之,方程至少有一个负实根,必有.所以方程至少有一个负实根的充要条件是.故选:9.解:因为,如下图所示,则,选项A 正确:,选项B 正确:,选项正确:,选项D 错误.故选ABC.10.解:分别取同正、同负和一正一负时,可以得到的值分别为,故A 正确;由得,12122010x x a x x a ⎧+=-<⎪⎪⎨⎪=>⎪⎩1x 2x 2210ax x ++=12,x x 1212Δ4402010a x x a x x a ⎧⎪=-≥⎪⎪+=-<⎨⎪⎪=>⎪⎩01a <≤01a <≤1a ≤2210ax x ++=2210ax x ++=1a ≤2210ax x ++=1a ≤CA B U ⊆⊆()U U U ,B A A B U ⊆⋃=ððð()()UUUA B B ⋂=ððð()U A B ⋂=∅ðð()()UUUA B A U ⋃=≠ððð,a b (),a b a b ab+∈R 2,2,0-240,121,x x x +>⎧⎨+≥-⎩22x -<≤所以符合条件的整数解的集合为,故B 正确;由,可以得到符合条件的数对有,故C 正确;当时,;当时,,当时,;当时,;当时,;当时,,所以集合含有四个元素,故D 错误,故选ABC.11.解:由题意,,且方程的两根为和,所以,所以,所以A 正确;因为,所以,可得,当且仅当时取等号,所以的最大值为B 正确;,当且仅当,即时取等号,所以的最小值为C 错误;,当且仅当时取等号,所以的最小值为,所以D 正确.故选ABD.12.解:由,,{}1,0,1,2-3216,,x y x y +=∈∈N N ()()()0,8,2,5,4,22a =666332a ==∈--N 1a =663331a ==∈--N 0a =662330a ==∈--N 1a =-66331a =∉-+N 2a =-6635a =∉-N 3a =-66136a ==∈-N A 2,1,0,3-30a m +>()()232310a m x b m x +---=1-12123111,12323b m a m a m--+=-⨯=-++32,231a m b m +=-=-21,a b +=0,0a b >>21a b +=≥18ab ≤122a b ==ab 1,8()121222255549b a a b a b a b a b ⎛⎫+=++=++≥+=+= ⎪⎝⎭22b a a b =13a b ==12a b+9,22222114(2)(2)22a b a b a b +=+≥+=122a b ==224a b +1222150x x -->2||2150x x ∴-->()()530x x ∴-+>解得:或(舍去),或,即所求的解集为,故答案为.13.解:设参加数学、物理、化学三科竞赛的人分别组成集合,各集合中元素的个数如图所示,则全班人数为.故答案为43.14.解:分情况讨论:当时,,解得;当时,,当且仅当解得或;当时,,当且仅当由,解得.因为,集合中元素个数最少,所以不符合题意;所以要使集合中元素个数最少,需要,解得.故答案为:.15.(本小题13分)5x >3x <-5x ∴<-5x >()(),55,∞∞--⋃+()(),55,∞∞--⋃+,,A B C 24510711443++++++=0m =()640x -+<{}4A xx =>-∣0m <()2266640,4m m x x m m m m ⎛⎫++-+>=+-<- ⎪⎝⎭…m =26{|m A x x m +=<4}x >-0m >2664m m m m+=+≥>m =()2640m x x m ⎛⎫+-+< ⎪⎝⎭264m A x x m ⎧⎫+⎪⎪=-<<⎨⎬⎪⎪⎩⎭A B ⋂=Z B 0m ≤B 265m m +≤23m ≤≤{}23mm ∣……【答案】解:(1)当时,,所以或,又或,所以或;(2)由题可得,①当时,则,即时,此时满足;②当时,则,所以,综上,实数的取值范围为.16.(本小题15分)【答案】解:(1)若,则,解得,所以实数的取值集合为(2)集合,集合,则此时,则集合,当选择条件①时,是的充分不必要条件,有 ,则,且不能同时取等,解得,所以实数的取值集合为当选择条件②时,是的必要不充分条件,有 ,则,且不能同时取等,解得,所以实数的取值集合为当选择条件③时,,使得,有,则,解得,所以实数的取值集合为3a ={}45N xx =≤≤∣U {4N x x =<∣ð5}x >{2M xx =<-∣5}x >()U {4M N x x ⋃=<∣ð5}x >{}U 25M xx =-≤≤∣ðN =∅121a a +>-2a <U N C M ⊆N ≠∅12112215a a a a +≤-⎧⎪+≥-⎨⎪-≤⎩23a ≤≤a {}3aa ∣…B =∅244m m =+2m =m {}2{}2200{45}A xx x x x =-++>=-<<∣∣B ≠∅2,m ≠2244(2)0m m m +-=->{}244B xm x m =<<+∣x A ∈x B ∈A B 24445m m ≤-⎧⎨+≥⎩1m <-m (),1∞--x A ∈x B ∈B A 24445m m ≥-⎧⎨+≤⎩11m -<≤m (]1,1-12,x A x B ∀∈∃∈12x x =A B ⊆24445m m ≤-⎧⎨+≥⎩1m ≤-m (],1∞--17.(本小题15分)【答案】解:(1)证明:.之间.(2比.(3)令,则比.证明如下:由(2.故比18.(本小题17分)【答案】解:(1)由题意知:,,解得,所以,二次函数的不动点为和1.(2)依题意,有两个不相等的正实数根,即方程有两个不相等的正实数根,所以,解得,所以,所以))12111101a a a a ⎫=-⋅--=<⎪+⎭12a a 、11a --1a -2a ∴1a 32111a a =++3a 2a 32a a -=--3a 2a 222x x x +-=()()120x x ∴-+=122,1x x =-=222y x x =+-2-()2221x a x a x -++-=()22310x a x a -++-=()2Δ(3)810a a =+-->12302a x x ++=>1a >12102a x x -⎛⎫=> ⎪⎝⎭121231,22a a x x x x +-+==()222121221121212122x x x x x x x x x x x x x x +-++==,当且仅当,即时等号成立,所以的最小值为6.19.(本小题17分)【答案】(1)解:对于集合,因为,所以是封闭集;对于集合,因为,所以集合不是封闭集;(2)解:对命题:令,则集合是封闭集,但不是封闭集,故错误;对于命题:设,则有,又因为集合是封闭集,所以,同理可得,所以,所以是封闭集,故正确;(3)证明:假设结论成立,设,若,矛盾,所以,所以有,设且,否则,所以有,矛盾,故假设不成立,原结论成立,证毕.()()()22231(1)41162132121212a a a a a a a a a +⎛⎫-+ ⎪-+-+++⎝⎭===---1822621a a -=++≥=-1821a a -=-5a =1221x x x x +{}0B =000,000B B +=∈⨯=∈{}0B ={}1,0,1C =-()112,112,C C -+-=-∉+=∉{}1,0,1C =-p {}{}122,,3,A xx k k A x x k k ==∈==∈Z Z ∣∣12,A A 12A A ⋃q ()12,a b A A ∈⋂1,a b A ∈1A 11,a b A ab A +∈∈22,a b A ab A +∈∈()()1212,a b A A ab A A +∈⋂∈⋂12A A ⋂2a A a A ∈⇒∈2R ()a A a A -∈⇒-∈R ðða A -∈0a a A -+=∈2R R b A b A ∈⇒∈ððR b A -∈ð2()b A b A -∈⇒-∈R 0b b A -+=∈ð。
湖南省邵阳市邵东市第一中学2022-2023学年高一上学期第一次月考数学试题(含答案)
邵东一中2022年下学期高一第一次月考数学试卷时间:120分钟满分:150分一、单项选择题(本大题共8个小题,每小题5分,共40分.)1.已知集合,A B ,下列四个表述中,正确的个数是( ) ①若()∈⋃a A B ,则∈a A ; ①若()∈⋂a A B ,则()∈⋃a A B ; ①若⊆A B ,则⋃=A B B ; ①若⋃=A B A ,则⋂=A B B . A.1 B.2 C.3 D.42.设集合{31}∣=-<A xx m ,若1∈A 且2∉A ,则实数m 的取值范围是( ) A.25<<m B.25≤<m C.25<≤m D.25≤≤m3.已知集合20,6∣-⎧⎫=≥∈⎨⎬-⎩⎭x A xx Z x ,则集合A 中元素个数为( )A.3B.4C.5D.64.已知1>x ,则221+-x x 的最小值是( )A.2B.2C.D.25.若223>-x m 是14-<<x 的必要不充分条件,则实数m 的取值范围是( )A.{}33∣-mm B.{3∣-m m 或3}m C.{1∣-mm 或1}m D.{}11∣-m m 6.王昌龄是盛唐时期著名的边塞诗人,被誉为“七绝圣手”,其《从军行》传颂至今:“青海长云暗雪山,孤城遥望玉门关.黄沙百战穿金甲,不破楼兰终不还.”由此推断,最后一句“攻破楼兰”是“返还家乡”的( ) A.充分条件 B.必要条件C.充要条件D.既不充分也不必要条件 7.已知0,0>>a b ,且141+=a b,则下列结论正确的是( ) ①1>a①ab 的最小值为16①+a b 的最小值为8 ①191+-a b的最小值为2 A.①① B.①①① C.①①① D.①①8.关于x 的不等式22(1)-<ax x 恰有2个整数解,则实数a 的取值范围是( )A.3423-<≤-a 或4332<≤a B.3423-<≤-a 或4332≤<aC.3423-≤<-a 或4332<≤aD.3423-≤<-a 或4332≤<a二、多项选择题(在每小题给出的选项中,有多项符合题目要求,全部选对的得4.5分,部分选对的得2分,有选错的得0分,本大题共4个小题,共20分.)9.下列命题中,是真命题的是( ) A.2,2340∀∈-+>x x x R B.{}1,1,0,210∀∈-+>x x C.至少有一个实数x ,使20≤x D.两个无理数的和必是无理数10.下列选项中的两个集合相等的有( ).A.{}(){}2,,21,∣∣==∈==+∈P x x n n Q x x n n Z Z B.{}{}21,,21,∣∣++==-∈==+∈P xx n n Q x x n n N N C.{}21(1)0,,2∣∣⎧⎫+-=-===∈⎨⎬⎩⎭n P xx x Q x x n Z D.{}(){}1,,1∣∣==+==+P xy x Q x y y x 11.设全集+=U R,集合{∣==M xy 和{}22∣==+N y y x ,则下列结论正确的是( )A.{2}∣⋂=>M N x xB.{1}∣⋃=>M N xx C.()(){02}UU M N x x ⋃=<<∣ D.()(){01}UU M N x x ⋂=<<∣12.生活经验告诉我们,a 克糖水中有b 克糖(0,0>>a b ,且>a b ),若再添加c 克糖(0)>c (假设糖全部溶于水),则糖水会更甜,于是得出一个不等式+>+b c ba c a.下列说法一定正确的是( ) A.若0,0>>>a b m ,则++b m a m 与ba大小关系不随m 的变化而变化 B.若0,0>>-<<a b b m ,则+<+b b ma a mC.若0,0>>>>a b c d ,则++<++b d b ca d a c D.若0,0>>ab ,则111+<+++++a b a ba b a b三、填空题(本大题共4小题,每小题5分,共20分,将答案填在答题卡上)13.已知{}{}2260,20∣∣=+-==++=A xx px B x x qx ,且(){}2A B ⋂=R,则+p q 的值等于__________.14.含有三个实数的集合既可表示成,,1⎧⎫⎨⎬⎩⎭b a a ,又可表示成{}2,,0+a a b ,则20222022-a b __________. 15.关于x 的方程221++=ax x 0至少有一个负的实根的充要条件是__________. 16.对任意正数,x y ,不等式333+≤++x yk x y x y恒成立,则实数k 的取值范围是__________.四、解答题(本大题共6小题,17题10分,18至22每题12分,共70分.解答应写出文字说明、证明过程或演算步骤.)17.甲、乙两位同学在求方程组232+=⎧⎨-=-⎩ax by cx y 的解集时,甲解得正确答案为()(){},1,1∣-x y ,乙因抄错了c 的值,解得答案为()(){},2,6∣x y ,求-a ac b的值. 18.已知,,a b c 均为正实数.(1)若3++=ab bc ca ,求证:3++≥a b c ; (2)若3++=a b ab ,求ab 的最大值. 19.在①⋃=A B A ,①()⋂=∅A B R,①()⋂=B A R R 三个条件中任选一个补充在下面的问题中,并解答.设集合(){}22120,()52∣⎧⎫--⎪⎪===+=-⎨⎬⎪⎪⎩⎭x x A xB x x a x ,__________,求实数a 的取值范围. 注:如果选择多个条件分别解答,按第一个解答计分.20.某厂家拟在2021年举办某产品的促销活动,经调查测算,该产品的年销售量(即该厂的年产量)x 万件与年促销费用m 万元()0≥m 满足4(1=-+kx k m 为常数),如果不搞促销活动,则该产品的年销量只能是2万件.已知生产该产品的固定投入是8万元,每生产一万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(此处每件产品年平均成本按816+xx元来计算), (1)将该产品的利润y 万元表示为年促销费用m 万元的函数; (2)该厂家2021年的促销费用投入多少万元时,厂家的利润最大?21.已知命题{}:04,02∣∀∈≤≤≤<p x xx x a ,命题2:,20∃∈-+<q x x x a R . (1)若命题⌝p 和命题q 有且只有一个为真命题,求实数a 的取值范围; (2)若命题p 和命题q 至少有一个为真命题,求实数a 的取值范围. 22.(1)当[]2,3∈x 时,不等式210-+-ax x a 恒成立,求a 的取值范围 (2)解关于x 不等式()2325-+>-∈ax x ax a R答案一、单项选择题,1.答案:C解析:①因为()∈⋃a A B ,则∈a A 或∈a B 或∈⋂a A B ,故错误; ①因为()∈⋂a A B ,则∈a A 且∈a B ,则()∈⋃a A B ,故正确; ①因为⊆A B ,所以⋃=A B B ,故正确;①因为⋃=A B A ,所以⊆B A ,即⋂=A B B ,故正确2.【答案】C 因为集合{31}∣=-<A xx m ,而1∈A 且2∉A , 311∴⨯-<m 且321⨯-≥m ,解得25<≤m .故选:C. 3.【答案】B 由206-≥-x x 得206-≤-x x ,解得26≤<x , 所以{}20,{26,}2,3,4,56x A xx Z x x x Z x -⎧⎫=≥∈=≤<∈=⎨⎬-⎩⎭∣∣.故选:B 4.答案:A()2222121322221,10.111-++-++-++>∴->∴==---x x x x x x x x x x x x ()2(1)2133122,11-+-+==-++≥--x x x x x(当且仅当311-=-x x ,即1=x 㫝,等号成立) 5.答案:D解析:因为223>-x m 是14-<<x 的必要不充分条件,所以{14}xx -<<∣ {}223x x m >-∣, 所以2231--m ,解得11-m .故选D 6.答案:B由题意知“返还家乡”可推出“攻破楼兰”,所以“攻破楼兰”是“返还家乡”的必要条件. 7.答案:C ①140,0,11,1>>=-∴a b a a b,故①正确;①14411,164+=≥∴≤∴≥ab a b ab (当且仅当2,8==a b 时成立),故①正确; ①()14459⎛⎫+=++=++≥⎪⎝⎭b a a b a b a b a b (当且仅当3,6==a b 时成立),故①错误;①141,4+=∴=-b a a b b 代入191+-a b ,得19911214+=+-≥=-b a b b (当且仅当6=b 时成立),故①正确. 8.答案:B解析:不等式22(1)-<ax x 即不等式22(1)0--<ax x ,即不等式()()11110⎡⎤⎡⎤+---<⎣⎦⎣⎦a x a x 恰有2个整数解,()()110∴+->a a ,解得1>a 或1<-a .当1>a 时,不等式的解集为1111∣⎧⎫<<⎨⎬+-⎩⎭xx a a , 110,,212⎛⎫∈∴ ⎪+⎝⎭a 个整数解为1,2, 1231∴<≤-a ,即22133-<≤-a a ,解得4332≤<a ; 当1<-a 时,不等式的解集为1111∣⎧⎫<<⎨⎬+-⎩⎭xx a a , 11,0,212⎛⎫∈-∴ ⎪-⎝⎭a 个整数解为1,2--, 1321∴-≤<-+a ,即()()21131-+<≤-+a a ,解得3423-<≤-a .综上所述,实数a 的取值范围是3423-<≤-a 或4332≤<a 二、多项选择题9.答案:AC解析:对选项A ,因为Δ932230=-=-<,所以2,2340∀∈-+>x x x R 是真命题;对选项B ,当1=-x 时,210+<x ,故该命题为假命题;对选项C ,当0=x 时,20=x 成立,所以是真命题;对选项D (0=,所以是假命题.故选A C. 10.答案:AC 11.答案:CD因为{{}{}{}21,22∣∣∣∣===≥==+=≥M xy x x N y y x y y ,所以{}2∣⋂=≥M N x x ,{}1∣⋃=≥M N x x ,故A ,B 不正确;又{01}U M xx =<<∣, ()()()(){02},{02},{01}∣∣∣=<<⋃=<<⋂=<<UU U U U N y y M N x x M N x x ,故C ,D 正确.12.答案:ACD解析:对于A ,由题目中信息可知,若0,0>>>a b m ,则+>+b m ba m a,故A 正确; 对于()()()()()B,+-+-+-==+++b a m a b m m b a b b m a a m a a m a a m ,因为0,a b b m >>-<,所以0,0b a a m b m -<+>+>,故0+->+b b m a a m ,即+>+b b m a a m,故B 错误;对于C ,若0,0>>>>a b c d ,则0,0->+>+>c d a d b d , 由题目中信息可知,++-+>++-+b d c d b d a d c d a d ,即++<++b d b c a d a c,故C 正确;对于D ,若0,0>>a b ,则110,110++>+>++>+>a b a a b b ,所以1111,1111<<++++++a b a a b b ,所以1111+<+++++++a b a b a b a b a b ,即111+<+++++a b a ba b a b,故D 正确.三、填空题(本大题共4小题,每小题5分,共20分13.答案:143(){}22,2,2260R A B A p ⋂=∴∈∴+-=,解得1=p ,{}{}2602,3∣∴=+-==-A x x x ,又(){}2⋂=A B R ,23,3,(3)320∴-∉∴-∈∴--+=C B B q R ,解得111114,1333=+=+=q p q 14.答案:1由,,1⎧⎫⎨⎬⎩⎭b a a ,可得0,1≠≠a a (否则不满足集合中元素的互异性). 所以210a a b a b a ⎧⎪=+⎪=⎨⎪⎪=⎩或210a a a b ba⎧⎪=⎪=+⎨⎪⎪=⎩解得10a b =-⎧⎨=⎩或10=⎧⎨=⎩a b 经检验1,0=-=a b 满足题意.15.答案:1≤a(1)当0=a 时,原方程化为210+=x ,故102=-<x ,符合. (2)当0≠a 时,原方程2210++=ax x 为一元二次方程, 它有实根的充要条件为Δ0≥,即440-≥a ,所以1≤a . ①当0<a 时,2210++=ax x 至少有一个负实根恒成立. ①当01<≤a 时,2210++=ax x 至少有一个负实根,则202-<a,可得01<≤a . 综上,若方程2210++=ax x 至少有一个负的实根,则1≤a , 反之,若1≤a ,则方程至少有一个负的实根.因此,关于x 的方程2210++=ax x 至少有一个负的实根的充要条件是1≤a . 16.令3,3=+=+A x y B x y , 则()()113,388=-=-x A B y B A ,故3313333282⎛⎫+=-+≤= ⎪++⎝⎭x y B A x y x y A B ,=B 时等号成立,故333+++x y x y x y≥k . 四、解答题(本大题共6小题,17题10分,18至22每题12分,共70分.17.答案:74-=a ac b解析:将11=⎧⎨=-⎩x y 代入方程组,得232a b c -=⎧⎨+=-⎩①②将26=⎧⎨=⎩x y 代入2+=ax by ,得262+=a b ①. 联立①①①,解得71,,544==-=-a b c ,所以74-=a ac b 18.答案:证明:(1)2222222,2,2+≥+≥+≥a b ab b c bc c a ca ,三式相加可得222++≥++a b c ab bc ca ,()()2222()2222∴++=+++++≥+++++a b c a b c ab bc ca ab bc ca ab bc ca ()39=++=ab bc ca ,又,,a b c 均为正整数,3∴++≥a b c 成立.(2)3,3++=+≥∴≥+a b ab a b ab即230+≤1.1≤∴≤ab .即ab 的最大值为1.19.答案:若选①,由⋃=A B A ,得⊆B A .由题意,(){}21201,2⎧⎫--⎪⎪===⎨⎬⎪⎪⎩⎭x x A x, {}(){}222()522150∣∣=+=-=+++-=B x x a x x x a x a当集合=∅B 时,关于x 的方程()222150+++-=x a x a 没有实数根,()22Δ4(1)450∴=+--<a a ,解得3<-a ;当集合≠∅B 时,若集合B 中只有一个元素,则()22Δ4(1)450=+--=a a ,解得3=-a ,此时{}{}24402∣=-+==B xx x ,符合题意; 若集合B 中有两个元素,则{}22220,1,2,430,⎧+-==∴⎨++=⎩a a B a a 无解.综上可知,实数a 的取值范围为{}3∣≤-aa . 若选①,由()RA B ⋂=∅,得⊆B A . 若选①,由()RB A ⋂=R ,得⊆B A .同理,可得实数a 的取值范围为{}3∣≤-aa . 20.答案:(1)()163601=--≥+y m m m (2)3 解析:(1)如果不搞促销活动,则该产品的年销量只能是2万件,即当0=m 时,2=x ,将其代入41=-+kx m 中,求得:2=k 即241=-+x m ,所以()()816161.513601+=⨯--=--≥+x y x m m m x m (2)由(1)得:()163601=--≥+y m m m 即()1637137291⎡⎤=-++≤-=⎢⎥+⎣⎦y m m当且仅当()1611=++m m ,即3=m 时,等号成立,故该厂家2021年的促销费用为3万元时,厂家的利润最大21.答案:(1)若命题{}:04,02∣∀∈≤≤≤<p x xx x a 为真命题,则24>a ,即2>a . 所以若⌝p 为真命题,则2≤a .若命题2:,20∃∈-+<q x x x a R 为真命题, 则2Δ(2)410=--⨯⨯>a ,即1<a . 若⌝q 为真命题,则1≥a .①当⌝p 为真,q 为假时,⌝q 为真,即2,1,≤⎧⎨≥⎩a a 所以12≤≤a ;①当⌝p 为假,q 为真时,p 为真,即2,1,>⎧⎨<⎩a a 无解,舍去. 综上所述,当命题⌝p 和命题q 有且只有一个为真命题时,a 的取值范围为{}12∣≤≤aa . (2)解法一:①当p 真q 假时,⌝q 为真,即2,1,>⎧⎨≥⎩a a 所以2>a ;①当p 假q 真时,⌝p 为真,即2,1,≤⎧⎨<⎩a a 所以1<a ;①当p 真q 真时,2,1,>⎧⎨<⎩a a 无解,舍去.综上所述,a 的取值范围为{1∣<aa 或2}>a . 解法二:考虑,p q 至少有一个为真命题的反面,即,p q 均为假命题,即⌝p 为真,且⌝q 为真,则2,1≤⎧⎨≥⎩a a 解得12≤≤a ,即{}12∣≤≤aa , 故,p q 至少有一个为真命题时,a 的取值范围为{}12∣≤≤aa 的补集.故a 的取值范围为{1∣<aa 或2}>a . 22.(1)由题意不等式210-+-ax x a 化为()211--a x x ,当[]2,3∈x 时,[]11,2-∈x ,且[]13,4+∈x , 所以原不等式可化为a 一恒成立,设()[]2,3-∈f x x ,则()f x 的最小值为()134=f , 所以a 的取值范围是1,4∞⎛⎤- ⎥⎝⎦.解:(2)不等式2325-+>-ax x ax 可化为()2330+-->ax a x ,即()()130+->x ax ,①当0=a 时,原不等式的解集为{1}∣<-xx ; ①当0≠a 时,方程的两根为1-和3a; 当0>a 时,不等式的解集为{1∣<-xx 或3⎫>⎬⎭x a ; 当0<a 时, (i )若31>-a ,即3<-a ,原不等式的解集为31∣⎧⎫-<<⎨⎬⎩⎭xx a ; (ii )若31<-a ,即30-<<a ,原不等式的解集为31∣⎧⎫<<-⎨⎬⎩⎭xx a ; (iii )若31=-a,即3=-a ,原不等式的解集为∅, 综上所得:当0=a 时,原不等式的解集为{1}∣<-xx ; 当0>a 时,不等式的解集为{1∣<-xx 或3⎫>⎬⎭x a ; 当3<-a 时,原不等式的解集为31∣⎧⎫-<<⎨⎬⎩⎭xx a ; 当30-<<a 时,原不等式的解集为31∣⎧⎫<<-⎨⎬⎩⎭x x a ; 当3=-a 时,原不等式的解集为∅.。
2023-2024学年安徽省合肥市高一下学期第一次月考质量检测数学试题(含解析)
2023-2024学年安徽省合肥市高一下册第一次月考数学试题一、单选题1.下列五个结论:①温度有零上和零下之分,所以温度是向量;②向量a b ≠ ,则a 与b的方向必不相同;③a b > ,则a b > ;④向量a 是单位向量,向量b 也是单位向量,则向量a 与向量b共线;⑤方向为北偏西50︒的向量与方向为东偏南40︒的向量一定是平行向量.其中正确的有()A .①⑤B .④C .⑤D .②④【正确答案】C【分析】根据向量的定义即可判断①;根据不相等向量的定义即可判断②;根据向量不能比较大小即可判断③;根据共线向量的定义即可判断④⑤.【详解】温度虽有大小却无方向,故不是向量,故①错;a b ≠ ,但a 与b的方向可以相同,故②错;向量的长度可以比较大小,但向量不能比较大小,故③错;单位向量只要求长度等于1个单位长度,但方向未确定,故④错;如图,作出这两个向量,则方向为北偏西50︒的向量与方向为东偏南40︒的向量方向相反,所以这两个向量一定是平行向量,故⑤正确.故选:C.2.若在△ABC 中,AB a =,BC b = ,且||||1a b == ,||a b += ABC 的形状是()A .正三角形B .锐角三角形C .斜三角形D .等腰直角三角形【正确答案】D【分析】利用向量加法的几何意义和模长之间的关系即可判定其为等腰直角三角形.【详解】由于||||1AB a == ,||||1BC b == ,||||AC a b =+则222||a b a b +=+ ,即222||||AB BC AC += ,所以△ABC 为等腰直角三角形.故选:D .3.已知a ,b 均为单位向量,(2)(2)2a b a b +⋅-=-,则a 与b 的夹角为()A .30°B .45°C .135°D .150°【正确答案】A【分析】根据(2)(2)2a b a b +⋅-=-,求得a b ⋅=r r ,再利用向量夹角公式即可求解.【详解】因为22(2)(2)232232a b a b a a b b a b +⋅-=-⋅-=-⋅-=-,所以2a b ⋅=r r .设a与b 的夹角为θ,则cos .2||||a b a b θ⋅==又因为0°≤θ≤180°,所以θ=30°.故选:A.4.如果用,i j 分别表示x 轴和y 轴正方向上的单位向量,且()()2,3,4,2A B ,则AB可以表示为()A .23i j+ B .42i j + C .2i j - D .2i j-+ 【正确答案】C【分析】先根据向量的坐标表示求出AB,再根据正交分解即可得解.【详解】因为()()2,3,4,2A B ,所以()2,1AB =-,所以2AB i j =- .故选:C.5.设平面向量()1,2a =r ,()2,b y =- ,若a b∥,则3a b + 等于()A B C D【正确答案】A【分析】由两向量平行得出b坐标中的y ,即可求出3a b + 的值.【详解】由题意,∵()1,2a =r ,()2,b y =- ,a b∥,∴()1220y ⨯⨯--=,解得4y =-,∴()2,4b =--∴()()()33,62,41,2a b +=+--=== 故选:A.6.已知向量(2,3)u x =+ ,(,1)v x = ,当()f x u v =⋅取得最小值时,x 的值为()A .0B .1-C .2D .1【正确答案】B【分析】直接利用向量数量积的坐标化运算得到2()(1)2f x x =++,利用二次函数性质得到其最值.【详解】22()(2)323(1)2f x u v x x x x x =⋅=++=++=++,故当=1x -时,f (x )取得最小值2.故选:B.7.在如图所示的半圆中,AB 为直径,点O 为圆心,C 为半圆上一点,且30OCB ∠=︒,2AB = ,则AC等于()A .1B CD .2【正确答案】A【分析】根据OC OB =,可得30ABC OCB ∠=∠=︒,进一步得出答案.【详解】如图,连接AC ,由OC OB =,得30ABC OCB ∠=∠=︒.因为C 为半圆上的点,所以90ACB ∠=︒,所以112AC AB ==.故选:A.8.如图,在ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M N ,,若AB mAM = ,AC nAN =,则m n +=()A .1B .32C .2D .3【正确答案】C【分析】连接AO ,因为O 为BC 中点,可由平行四边形法则得1()2AO AB AC =+ ,再将其用AM,AN 表示.由M 、O 、N 三点共线可知,其表达式中的系数和122m n+=,即可求出m n +的值.【详解】连接AO ,由O 为BC 中点可得,1()222m n AO AB AC AM AN =+=+ ,M 、O 、N 三点共线,122m n∴+=,2m n ∴+=.故选:C.本题考查了向量的线性运算,由三点共线求参数的问题,熟记向量的共线定理是关键.属于基础题.二、多选题9.在平面直角坐标系中,若点A (2,3),B (-3,4),如图所示,x 轴、y 轴同方向上的两个单位向量分别为i 和j,则下列说法正确的是()A .23OA i j=+ B .34O i j B =+ C .5AB i j =-+ D .5BA i j=+ 【正确答案】AC【分析】根据图象,由平面向量的坐标运算求解.【详解】解:由图知,23OA i j =+ ,34OB i j =-+,故A 正确,B 不正确;5AB OB OA i j =-=-+ ,5A A i j B B =-=-,故C 正确,D 不正确.故选:AC10.在ABC 中,若3330b c B ===︒,,,则a 的值可以为()A 3B .23C .33D .43【正确答案】AB【分析】根据余弦定理,直接计算求值.【详解】根据2222cos b a c ac B =+-,得2339232a a =+-⨯⨯,即23360a a -+=,解得:3a =23a =故选:AB11.如图,在海岸上有两个观测点C ,D ,C 在D 的正西方向,距离为2km ,在某天10:00观察到某航船在A 处,此时测得∠ADC=30°,5分钟后该船行驶至B 处,此时测得∠ACB=60°,∠BCD=45°,∠ADB=60°,则()A .当天10:00时,该船位于观测点C 的北偏西15°方向B .当天10:00时,该船距离观测点2C .当船行驶至B 处时,该船距观测点2D .该船在由A 行驶至B 的这5min 6km【正确答案】ABD【分析】利用方位角的概念判断A ,利用正弦定理、余弦定理求解后判断BCD .【详解】A 选项中,∠ACD=∠ACB+∠BCD=60°+45°=105°,因为C 在D 的正西方向,所以A 在C 的北偏西15°方向,故A 正确.B 选项中,在△ACD 中,∠ACD=105°,∠ADC=30°,则∠CAD=45°.由正弦定理,得AC=sin sin CD ADCCAD∠∠=,故B 正确.C 选项中,在△BCD 中,∠BCD=45°,∠CDB=∠ADC+∠ADB=30°+60°=90°,即∠CBD=45°,则BD=CD=2,于是BC=C 不正确.D 选项中,在△ABC 中,由余弦定理,得AB 2=AC 2+BC 2-2AC ·BC cos ∠ACB=2+8-212=6,即,故D 正确.故选:ABD .12.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,a c ≠,tan B =ABC 的面积为则2b a c-可能取到的值为()A .B .C .D .【正确答案】AC由tan B =sin 3B =,再利用ABC 的面积为6ac =,再利用余弦定理可得22()8b a c =-+,然后代入2||b ac -中利用基本不等式可求得其最小值.【详解】解:tan B = 1cos 3B ∴=,sin 3B =,又1sin 2==S ac B 6ac ∴=,由余弦定理可得2222222cos 4()8=+-=+-=-+b a c ac B a c a c ,22()88||||||||-+∴==-+≥---b a c a c a c a c a c ,当且仅8||||-=-a c a c 等号成立,故2b a c-的最小值为AC 选项.故选:AC.关键点睛:本题考查余弦定理的应用,考查基本不等式的应用,解题的关键是根据面积得出6ac =,再利用余弦定理得出22()8b a c =-+,结合基本不等式求解.三、填空题13.已知点()1,5A --和向量()2,3a =r,若3AB a =,则点B 的坐标为________.【正确答案】()5,4【分析】根据向量线性运算的坐标表示,由OA AB OB =+求向量OB 的坐标,由此可得点B 的坐标.【详解】设O 为坐标原点,因为()1,5OA =--,()36,9AB a == ,故()5,4O A B OA B =+=,故点B 的坐标为()5,4.故答案为.()5,414.若向量()()(),3,1,4,2,1a k b c === ,已知23a b - 与c的夹角为钝角,则k 的取值范围是________.【正确答案】99,,322⎛⎫⎛⎫-∞-- ⎪ ⎪⎝⎭⎝⎭ 【分析】根据23a b - 与c 的夹角为钝角,由()230a b c -⋅< ,且23a b - 与c 的不共线求解.【详解】解:由()(),3,1,4a k b == ,得()2323,6a b k -=--.又23a b - 与c的夹角为钝角,∴()22360k --<,得3k <,若()23//a b c - ,则2312k -=-,即92k =-.当92k =-时,23a b - 与c 共线且反向,不合题意.综上,k 的取值范围为99,,322⎛⎫⎛⎫-∞-- ⎪ ⎪⎝⎭⎝⎭ ,故99,,322⎛⎫⎛⎫-∞-- ⎪ ⎪⎝⎭⎝⎭ .15.如图,设P 为ABC 内一点,且202PA PB PC ++=,则:ABP ABC S S =△△________.【正确答案】15##0.2【分析】设AB 的中点是D ,连接PD ,根据平面向量线性运算法则,得到14P C D P =-,即可得到面积比.【详解】设AB 的中点是D ,连接PD ,由202PA PB PC ++= ,可得12PA PB PC +=-,因为122PA PB PD PC +==- ,所以14P C D P =- ,所以P 为CD 的五等分点(靠近D 点),即15P D D C =,所以ABP 的面积为ABC 的面积的15.故答案为.1516.在ABC 中,3a =60A = ,求32b c +的最大值_________.【正确答案】219由正弦定理得2sin b B =,2sin c C =.代入,进行三角恒等变换可得326sin 4sin b c B C +=+219)B ϕ=+,由此可求得最大值.【详解】解:由正弦定理32sin sin sin 32ab cA B C ===,得2sin b B =,2sin c C =.326sin 4sin b c B C+=+()316sin 4sin 1206sin 4sin 22B B B B B ⎫=+︒-=++⎪⎪⎝⎭6sin 32sin B B B=++8sin)B B Bϕ=+=+)Bϕ=+,其中tan4ϕ=,所以max(32)b c+=故答案为.本题考查运用正弦定理解三角形,边角互化求关于边的最值,属于较难题.四、解答题17.已知向量12a e e=-,1243b e e=+,其中()()121,0,0,1e e==.(1)试计算a b⋅及a b+的值;(2)求向量a 与b 夹角的余弦值.【正确答案】(1)1a b⋅=,a b+(2)10【分析】(1)利用平面向量的数量积运算求解;(2)利用平面向量的夹角公式求解.【详解】(1)解:()()()1,00,11,1a=-=-,()()()41,030,14,3b=+=,∴()41311a b⋅=⨯+⨯-=,a b+(2)设a b,的夹角为θ,由cosa b a bθ⋅=⋅⋅,cos a ba bθ⋅=⋅.18.有一艘在静水中速度大小为10km/h的船,现船沿与河岸成60︒角的方向向河的上游行驶.由于受水流的影响,结果沿垂直于河岸的方向驶达对岸.设河的两岸平行,河水流速均匀.(1)设船相对于河岸和静水的速度分别为,u v,河水的流速为w,求,,u v w之间的关系式;(2)求这条河河水的流速.【正确答案】(1)u w v=+(2)河水的流速为5km/h,方向顺着河岸向下【分析】(1)根据题意可得v与u的夹角为30︒,则,,u v w三条有向线段构成一个直角三角形,其中,,O O O v u A BC w B C ====,再根据向量的加法法则即可得解;(2)结合图象,求出BC uu u r即可.【详解】(1)如图,u 是垂直到达河对岸方向的速度,v是与河岸成60︒角的静水中的船速,则v 与u的夹角为30︒,由题意知,,,u v w三条有向线段构成一个直角三角形,其中,,O O O v u A BC w B C ==== ,由向量加法的三角形法则知,OC OA OB =+,即u w v =+ ;(2)因为10km /h OB v == ,而1sin 30105km /h 2BC OB =︒=⨯= ,所以这条河河水的流速为5km /h ,方向顺着河岸向下.19.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且b sin A cos B .若b =3,sin C =2sin A ,求a ,c 的值.【正确答案】ac =【分析】由b sin Acos B 边化角求得B ,由sin C =2sin A 得c =2a ,再结合余弦定理即可求解.【详解】因为b sin Acos B .所以由正弦定理,得sin sin cos .B A A B =sin 0,sin cos A B B ≠∴ ,即tan B =π0π,=3B B <<∴ ∵sinC =2sin A ,∴由正弦定理,得c =2a ,由余弦定理得b 2=a 2+c 2-2ac cos B ,即9=a 2+4a 2-2a ·2a cosπ3,解得a c =2a =20.如图,在ABC ∆中,点D 在BC 边上,7,,cos 4210CAD AC ADB π∠==∠=-.(1)求sin C ∠的值;(2)若5BD =,求ABD ∆的面积.【正确答案】(1)45;(2)7.【详解】试题分析:(1)先由2cos 10ADB ∠=得出72sin 10ADB ∠=sin sin 4C ADB π⎛⎫∠=∠- ⎪⎝⎭展开,代入求值即可;(2)由正弦定理sin sin AD AC C ADC =∠∠得到AD 的值,再利用三角形面积公式即可.试题解析:(1)因为2cos 10ADB ∠=,所以2sin 10ADB ∠=.又因为4CAD π∠=,所以4C ADB π∠=∠-.所以722224sin sin sin cos cos sin 4441021025C ADB ADB ADB πππ⎛⎫∠=∠-=∠⋅-∠⋅=⨯+⨯= ⎪⎝⎭.(2)在ACD ∆中,由sin sin AD AC C ADC=∠∠,得74sin 2522sin 7102AC C AD ADC ⨯⋅∠==∠所以1172sin 22572210ABD S AD BD ADB ∆=⋅⋅∠=⨯=.1、两角差的正弦余弦公式;2、正弦定理及三角形面积公式.21.设两个向量,a b 满足()132,0,22a b ⎛== ⎝⎭,(1)求a b + 方向的单位向量;(2)若向量27ta b + 与向量a tb + 的夹角为钝角,求实数t 的取值范围.【正确答案】(1)57211414⎛⎫ ⎪ ⎪⎝⎭(2)17,222⎛⎫⎛⎫-⋃-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭【分析】(1)根据()12,0,,22a b ⎛== ⎝⎭,求得a b + 的坐标和模后求解;(2)根据向量27ta b + 与向量a tb + 的夹角为钝角,由()()270ta b a tb ++< ,且向量27ta b + 不与向量a tb + 反向共线求解.【详解】(1)由已知()152,0,,2222a b ⎛⎛+=+= ⎪ ⎪⎝⎭⎝⎭,所以a b +=所以14a b +=⎪⎭,即a b +方向的单位向量为1414⎛⎫ ⎪ ⎪⎝⎭;(2)由已知1a b ⋅= ,2,1a b == ,所以()()()22222722772157ta b a tb ta t a b tb t t +⋅+=++⋅+=++ ,因为向量27ta b + 与向量a tb + 的夹角为钝角,所以()()270ta b a tb ++< ,且向量27ta b + 不与向量a tb + 反向共线,设()()270ta b k a tb k +=+< ,则27t k kt =⎧⎨=⎩,解得2t =-,从而2215702t t t ⎧++<⎪⎨≠-⎪⎩,解得17,,222t ⎛⎛⎫∈--⋃-- ⎪ ⎪⎝⎭⎝⎭.22.在ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c ,1b a =+,2c a =+..(1)若2sin 3sin C A =,求ABC 的面积;(2)是否存在正整数a ,使得ABC 为钝角三角形?若存在,求出a 的值;若不存在,说明理由.【正确答案】(1)4;(2)存在,且2a =.【分析】(1)由正弦定理可得出23c a =,结合已知条件求出a 的值,进一步可求得b 、c 的值,利用余弦定理以及同角三角函数的基本关系求出sin B ,再利用三角形的面积公式可求得结果;(2)分析可知,角C 为钝角,由cos 0C <结合三角形三边关系可求得整数a 的值.【详解】(1)因为2sin 3sin C A =,则()2223c a a =+=,则4a =,故5b =,6c =,2221cos 28a b c C ab +-==,所以,C 为锐角,则sin 8C ==,因此,11sin 4522ABC S ab C ==⨯⨯△(2)显然c b a >>,若ABC 为钝角三角形,则C 为钝角,由余弦定理可得()()()()22222221223cos 022121a a a a b c a a C ab a a a a ++-++---===<++,解得13a -<<,则0<<3a ,由三角形三边关系可得12a a a ++>+,可得1a >,a Z ∈ ,故2a =.。
高中数学必修一第一章测试题附答案
高中数学必修一第一章测试题附答案稷王中学高一年级第一次月考数学试题一、选择题(本大题共12小题,每小题5分,共60分)1.集合{1,3,5,7}用描述法表示出来应为{ x | x 是不大于7的非负奇数}。
2.设集合A={ x | -4<x<3 },B={ x | x≤2 },则AB=(-4,2]。
3.设集合A={ x | -5≤x<1 },B={ x | x≤2 },则A∪B={ x | -5≤x≤2 }。
4.已知集合A={ x | x^2+x-2=0 },若B={ x | x≤a },且A⊂B,则a的取值范围是a≥1.5.A={1,2},则满足A∪B ={1,2,3}的集合B的个数为3.6.已知全集U=R,集合M={ (x,y) | y=x-1 },N={ (x,y) |y=x+1 },则N∩C(U-M)={(1,2)}。
7.设集合M={ x | -2≤x≤2 },N={ y | -2≤y≤2 },给出下列四个图形,其中能表示以集合M为定义域,N为值域的函数关系的是第三个图形。
8.已知A={1,2,3},B={2,4},定义集合A、B间的运算A*B={ x∣x∈A且x∉B },则集合A*B={1,3}。
9.与y=|x|为同一函数的是y=−|x|。
10.下列对应关系:①A={1,4,9},B={-3,-2,-1,1,2,3},f:x→√x;②A=R,B=R,f:x→1/x;③A=R,B=R,f:x→x-2;④A={-1,0,1},B={-1,0,1},f:A中的数平方。
其中是A到B的映射的是①③。
11.已知函数y=f(x)的定义域为{0,1,2,3},则函数y=f(x+1)的定义域是{1,2,3,4}。
12.若x,y∈R,f(x+y)=f(x)+f(y),f(1)=1且函数y=f(x)在R上单调,则f(x)=x。
1.(1) 2 (2) 4 (3) -4 (4) 12.(1) y=x (2) y=-x (3) y=03.解集为B。
高一下学期第一次月考数学试题(附答案)
第1页共6页高一下学期第一次月考数学试题(附答案)高一年级数学试题一、填空题(本大题共14小题,每小题5分,共70分。
请将答案填写在答题卷对应的位置上)1.由11a ,3d确定的等差数列n a ,当298na 时,n 等于▲2.ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若2c ,6b,o120B ,则a▲ .3.ABC 中,若60,2,1B c a ,则ABC 的面积为▲4.在数列{}n a 中,1a =1,12nna a ,则51a 的值为▲5.在ABC 中,1sin 3A,3cos 3B,1a ,则b▲ .6.在△ABC 中,如果sin :sin :sin 2:3:4A B C ,那么c cos 等于▲7.已知等差数列n a 的前三项为32,1,1aa a,则此数列的通项公式为▲ .8.在ABC 中,04345,22,3Bcb,那么A =▲ ;9.已知数列n a 是等差数列,若471017a a a ,45612131477a a a a a a 且13ka ,则k▲。
10.在△ABC 中,若Ac bc b a则,222▲_。
11.在△ABC 中,若B a b sin 2,则A 等于▲12.等腰三角形一腰上的高是3,这条高与底边的夹角为060,则底边长为▲13.已知等差数列n a n 的前}{项和为,0,1,211m m m n a a a m s 且若m ,3812则ms 等于▲14.在锐角△ABC 中,若2,3a b ,则边长c 的取值范围是▲。
二、解答题 (本大题共6个小题,共80分;解答应写出文字说明、证明过程或演算步骤)15.(本题满分14分)在△ABC 中,BC =a ,AC =b ,a ,b 是方程22320x x 的两个根,且2cos()1A B 。
求:(1)角C 的度数; (2)AB的长度。
16.(本题满分14分)已知等差数列n a 的公差是正数,且4,126473a a a a ,求它的前20项的和20s 的值.。
山西省太原市高一数学下学期第一次月考试卷(含解析)
山西省太原市2016—2017学年高一数学下学期第一次月考试卷一、选择题(本大题共12小题,每题3分,共36分.每小题给出的四个选项中,只有一项是符合题目要求的)1.若角θ为第四象限角,则+θ是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角2.把﹣表示成θ+2kπ(k∈Z)的形式,且使|θ|最小的θ的值是()A.B.C.D.3.如果角α的终边过点(2sin60°,﹣2cos60°),则sinα的值等于()A.B.﹣C.﹣D.﹣4.已知cosα≤sinα,则角α的终边落在第一象限内的范围是()A.(0,] B.[,)C.,k∈Z5.化简的结果为()A.﹣cos160°B.cos160°C.D.6.若角α的终边落在直线x+y=0上,则的值等于()A.2 B.﹣2 C.﹣2或2 D.07.已知a=tan(﹣),b=cosπ,c=sin(﹣),则a,b,c的大小关系是( )A.a>c>b B.a>b>c C.b>c>a D.b>a>c8.A,B,C为△ABC的三个内角,下列关系中不成立的是()①cos(A+B)=cosC②sin(2A+B+C)=sinA③④tan(A+B)=﹣tanC.A.①②B.②③C.③④D.①④9.若函数f(x)是以π为周期的奇函数,且当时,f(x)=cosx,则=()A.B.C.D.10.函数的最小正周期为4π,当f(x)取得最小值时,x的取值集合为()A.B.C.D.11.设、、,则它们的大小关系为( )A.a<c<b B.b<c<a C.a<b<c D.b<a<c12.已知函数,有以下说法:①不论ϕ取何值,函数f(x)的周期都是π;②存在常数ϕ,使得函数f(x)是偶函数;③函数f(x)在区间上是增函数;④若ϕ<0,函数f(x)的图象可由函数的图象向右平移|2ϕ|个单位长度得到.其中正确的说法有()A.①③B.②③C.②④D.①④二、填空题(本大题共4小题,每题4分,共16分.)13.已知,则= .14.函数y=3cosx(0≤x≤π)的图象与直线y=﹣3及y轴围成的图形的面积为.15.先把函数的图象上的所有点向左平移个单位长度,再把所有点的横坐标伸长到原来的倍,纵坐标不变,得到的图象对应的函数解析式是.16.给出下列命题:①函数是奇函数;②存在实数x,使sinx+cosx=2;③若α,β是第一象限角且α<β,则tanα<tanβ;④是函数的一条对称轴;⑤函数的图象关于点成中心对称.其中正确命题的序号为.三、解答题(本大题共5小题,共48分.解答应写出文字说明、证明过程或演算步骤) 17.如图,已知扇形AOB的圆心角为120°,半径长为6,求弓形ACB的面积.18.已知α是三角形的内角,且sinα+cosα=.(1)求tanα的值;(2)的值.19.已知关于x的方程2x2﹣(+1)x+m=0的两根为sin θ、cos θ,θ∈(0,2π),求:(1)+的值;(2)m的值.20.已知函数f(x)=sin(2ωx+)(x∈R,ω>0)的最小正周期为π.(1)求f(x)在上的值域,并求出取最小值时的x值;(2)求f(x)的单调递增区间.21.已知函数f(x)=Asin(ωx+φ)+B(A>0,ω>0)的一系列对应值如下表:xy﹣1131﹣113(1)根据表格提供的数据求函数f(x)的一个解析式.(2)根据(1)的结果,若函数y=f(kx)(k>0)周期为,当时,方程f (kx)=m恰有两个不同的解,求实数m的取值范围.2016-2017学年山西省太原外国语学校高一(下)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每题3分,共36分。
精品解析:福建省龙岩第一中学2022-2023学年高一上学期第一次月考数学试题(解析版)
综上,说法不正确的是①③④
故答案为:①③④
四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.
17.已知集合 ,集合 .
(1)求 , ;
(2)求 的所有子集,并求出它的非空真子集的个数.
【答案】(1) ;
(2)子集为 , , , ,非空真子集有2个
(2)根据函数新定义可知 恒成立,分类讨论 的大小,结合二次函数性质求得a的范围,即可求得 范围.
【小问1详解】
由题意函数 与 在区间 上同步,
而 , 时, ,
由 ,得 ,
所以 恒成立,即 ,故 .
【小问2详解】
①当 时,∵ 和 在 上是同步的,
∴ ,在 上恒成立,
即 , 恒成立,
∵ ,∴ , ,
∴ , ,∴ ,
(1)将y表示为x的函数;
(2)月促销费用为多少万元时,该产品的月利润最大?最大利润为多少?
【答案】(1) ,
(2)月促销费用为2万元时,该产品的月利润最大,最大为6万元
【解析】
【分析】(1)由 时, ,代入 求得 ,由利润=销售收入-生产投入-促销费用,列出函数关系,即可得出结果;
(2)由(1)知 ,利用基本不等式即可求得最大利润.
对于B, 的单调递增区间应为 , ,故B中说法错误;
对于C, 的定义域为 ,
当 , 时, 在 , 上分别单调递增,
但在定义域上不单调,故C中说法错误;
对于D, 的定义域为 ,关于原点对称,
且 ,
故 是奇函数,故D中说法正确,
故选:D.
8.已知函数 .若 ,则实数 的取值范围是().
A. B.
四川省南充重点中学2022-2023学年高一下学期第一次月考数学试题及参考答案
南充高中2022—2023学年高一下学期第一次月考数学试题(考试时间:120分钟满分:150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若集合U={0,1,2,3,4,5},A={0,2,4},B={3,4},则(C U A)∩B=( )A.{3}B.{5}C.{3,4,5}D.{1,3,4,5}2.sin210°的值为( )3.若sinαtanα<0,且则角α是( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角4.已知函数f(x)=x+log₂x,下列含有函数f(x)零点的区间是( )D.( 1,2)5.函数在[-π,π]上的图象大致为( )6.《九章算术》是一部中国古代的数学专著.全书分为九章,共收有246个问题,内容丰富,而且大多与生活实际密切联系.第一章《方田》收录了38个问题,主要讲各种形状的田亩的面积计算方法,其中将圆环或不足一匝的圆环形田地称为“环田”.书中提到这样一块“环田”:中周九十二步,外周一百二十二步,径五步,如图所示,则其所在扇形的圆心角大小为( )(单位:弧度)(注:匝,意为周,环绕一周叫一匝.)A.3B.4C.5D.67.函数的定义域为( )8.设函数,若关于x 的方程且a≠1)在区间[0,5]内恰有5个不同的根,则实数a的取值范围是()二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知三角形ABC是边长为2的等边三角形.如图,将三角形ABC的顶点A与原点重合. AB 在x轴上,然后将三角形沿着x轴顺时针滚动,每当顶点A再次回落到x轴上时,将相邻两个A 之间的距离称为“一个周期”,给出以下四个结论,其中说法正确的是( )A.一个周期是6B.完成一个周期,顶点A的轨迹是一个半圆C.完成一个周期,顶点A 的轨迹长度是D.完成一个周期,顶点A的轨迹与x 轴围成的面积是10.下列命题中真命题的为( )A.命题“∀x∈R,sinx≤1”的否定是“∃x ₀∉R,sinx₀>1 ”B.若α是第一象限角,则是第一或第三象限角C.直线是函数的图象的一条对称轴D.y=tanx的图象对称中心为(kπ,0)(k∈Z)11.下列说法正确的是( )是“sinα=sin ”的充分不必要条件B.若x∈(0,π),则的最小值为4C.函数使得f(x₁)=g(x₂)成立,则m的最大值为3D.函数y=|1+2cosx|是偶函数,且最小正周期为π12.定义设函数f(x)=min{sinx,cosx},给出f(x)以下四个论断,其中正确的是( )A.是最小正周期为2π的奇函数B.图象关于直线对称,最大值为C.是最小值为-1的偶函数D.在区间上是增函数三、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.已知0<x<π且则 sinx- cosx=14.函数的定义域为15.已知f(x)是定义域在R上的奇函数,且f( 1+x)=f(-x),若则16.关于函数f(x)=sin|x|+|sinx|有下述四个结论:①f(x)是偶函数②f(x)的最大值为2 ③f(x)在[-π,π]有4个零点④f(x)在区间单调递增⑤f(x)是周期为π的函数其中所有正确结论的编号是四、解答题:本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)已知计算下列各式的值.(1) tanα(2) sin²α-2sinαcosα+118.(本小题满分12分)(1)计算:(2)已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点的值19.(本小题满分12分)设函数(1)求函数f(x)的单调递增区间;(2)求函数f(x)在区间上的值域.20.(本小题满分12分)已知函数f(x)=2cos²x+2a+2a的最大值为.(1)求a的值;(2)当x∈R时,求函数f(x)的最小值以及取得最小值时x的集合.21.(本小题满分12分)已知函数f(x)为偶函数,函数g(x)为奇函数,且满足(Ⅰ)求函数f(x),g(x)的解析式;(Ⅱ)若函数且方程恰有三个不同的解,求实数a的取值范围.22.(本小题满分12分)已知函数f(x)=-x|x-2a|+1(x∈R).(1)当a=1时,求函数y=f(x)的零点;(2)当求函数y=f(x)在x∈[1,2]上的最大值;(3)对于给定的正数a,有一个最大的正数T(a),使x∈[0,T(a)]时,都有|f(x)|≤1,试求出这个正数T(a)的表达式.参考答案一、单选题 1-8 ABCCDDCA 二、不定选项题9.ACD 10.BC 11.AC 12.BD 三、单选题 13.14.)15.-1 16.①②④四、解答题 17.(1)解:已知sin cos 3sin cos αααα+=-,化简,得4cos 2sin αα=,所以sin tan 2cos ααα==. (2)22222222sin 2sin cos tan 2tan 222sin 2sin cos 1111sin cos tan 121ααααααααααα---⨯-+=+=+=++++1=.18.(1)(2)19. (1)()24f x x π⎛⎫=- ⎪⎝⎭,当()222242k x k k Z πππππ-≤-≤+∈,即()388k x k k Z ππππ-≤≤+∈,, 因此,函数f (x )的单调递增取间为()384k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,.(2)令π24t x =-,π3π84x ≤≤可得5π04t ≤≤,当5π4t =,即3π4x =时,min 1y ⎛==- ⎝⎭,当π2t =,即3π8x =时,max 1y ==函数()f x 的值域为⎡-⎣20. (1)()2cos22sin 212sin 2sin 2f x x a x a x a x a =++=-++22sin 2sin 21x a x a =-+++,令[]sin 1,1t x =∈-,则2()2221f t t at a =-+++,对称轴02at =, 当012at =≤-即2a ≤-时, 2()2221f t t at a =-+++在[]1,1t ∈-单调递减,所以max ()(1)22211f t f a a =-=--++=-不满足题意; 当112a-<<即22a -<<时,2()2221f t t at a =-+++在1,2a ⎡⎫-⎪⎢⎣⎭单调递增,,12a ⎛⎤ ⎥⎝⎦单调递减,所以22max1()()21222a a f t f a a ==-+++=-,即2430a a ++=解得1a =-或3a =-(舍); 当012at =≥即2a ≥时, 2()2221f t t at a =-+++在[]1,1t ∈-单调递增,所以max 1()(1)22212f t f a a ==-+++=-,解得18a =不满足题意,综上1a =-.(2)由(1)可得2()221f t t t =---在11,2⎡⎫--⎪⎢⎣⎭单调递增,1,12⎛⎤- ⎥⎝⎦单调递减,所以当1t =时函数有最小值为(1)2215f =---=-,此时sin 1t x ==,则x 的取值构成的集合为π|2π,Z 2x x k k ⎧⎫=+∈⎨⎬⎩⎭ 21.(1)因为()f x 为偶函数,()g x 为奇函数,由已知可得()()12xf xg x +---=,即()()12xf xg x ++=,所以,()()()()1122xx f x g x f x g x -+⎧-=⎪⎨+=⎪⎩, 所以()(),2222x x x xf xg x --=+=-;(2)()()()12,01121221,0x xx x h x f x g x x ⎧-≤⎡⎤=+-=-=⎨⎣⎦->⎩,作出函数()h x 的图象如下图所示:由解得,h(x)=a+1/4,h(x)=a-1/4,由图可知,22. (1)当1a =时,()2221,22121,2x x x f x x x x x x ⎧-++≥=--+=⎨-+<⎩,令2210-++=x x,解得:1x =+1舍); 令2210x x -+=,解得:1x =; ∴函数()y f x =的零点为11;(2)由题意得:()2221,221,2x ax x af x x ax x a ⎧-++≥=⎨-+<⎩,其中()()021f f a ==,30,2a ⎛⎫∈ ⎪⎝⎭,∴最大值在()()()1,2,2f f f a 中取. 当021a <≤,即102a <≤时,()f x 在[]1,2上单调递减,()()max 12f x f a ∴==;当122a a <<<,即112a <<时,()f x 在[]1,2a 上单调递增,[]2,2a 上单调递减, ()()max 21f x f a ∴==;当122a a ≤<<,即12a ≤<时,()f x 在[]1,a 上单调递减,[],2a 上单调递增,()()(){}max max 1,2f x f f ∴=;()()()()122254230f f a a a -=---=-<,()()max 254f x f a ∴==-;综上所述:()max12,0211,12354,12a a f x a a a ⎧<≤⎪⎪⎪=<<⎨⎪⎪-≤<⎪⎩;(3)()0,x ∈+∞时,0x -<,20x a -≥,()max 1f x ∴=, ∴问题转化为在给定区间内()1f x ≥-恒成立.()21f a a =-+,分两种情况讨论:当211a -+≤-时,()T a 是方程2211x ax-+=-的较小根,即a ≥()T a a =当211a -+>-时,()T a 是方程2211x ax-++=-的较大根, 即0a <()T a a =;综上所述:()a a T a a a ⎧≥⎪=⎨<⎪⎩。
2022-2023学年云南省玉溪市一中高一年级下册学期第一次月考数学试题
玉溪一中2022—2023学年下学期高一年级第一次月考数学总分:150分 考试时间:120分钟一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,则{30}A xx =-≤≤∣{1}B x x =≥-∣A B ⋃= A . B . C .D .[1,0]-[3,)-+∞(,0]-∞[1,)-+∞2.命题“,”的否定是[]1,2x ∃∈-21x < A .,B .,[]1,2x ∃∈-21x ≥[]1,2x ∃∉-21x < C .,D .,[]1,2x ∀∈-21x <[]1,2x ∀∈-21x ≥3.已知△是等边三角形,边长为1,则ABC AB BC ⋅=A .B .C .D 12-124.在平行四边形中,,,设,则ABCD 12CF CD =2CE EB =EF x AB y AD =+ x y += A .1 B . C . D .1656765.下列函数既是奇函数,又在上单调递增的是(0,)+∞ A .B .C .D .2y x =ln y x =tan y x =3y x =6.酒驾是严重危害交通安全的违法行为.根据国家有关规定:驾驶人血液中的酒精含量大于(或等于)毫克/毫升,小于毫克/毫升的情况下驾驶机动车属于饮酒驾车;含0.20.8量大于(或等于)毫克/毫升的情况下驾驶机动车属于醉酒驾车.假设某驾驶员一天0.8晚上点钟喝了一定量的酒后,其血液中酒精含量上升到了毫克/毫升.如果在停止喝酒61后,他血液中酒精含量以每小时的速度减少,那么他次日上午最早几点(结果取整10%数)开车才不构成酒驾?(参考数据:,)lg 20.301≈lg 30.477≈ A .8点B .9点C .10点D .11点7.已知为偶函数,当时,,则当时,()f x 0x >()223f x x x =--0x <()f x = A .B .C .D .223x x --+223x x +-223x x -++223x x --8.已知,,,则5log 2a =sin 55b =︒0.60.5c = A . B .C .D .c b a >>a c b >>b c a >>b a c>>二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的,全部选对得5分,部分选对得2分,有错选得0分.9.下列结论正确的有 A .三棱柱有6个顶点B .棱台的侧面是等腰梯形C .五棱锥有6个面D .正棱锥的侧面是全等的等腰三角形10.要得到函数的图象,只需要将的图象())3f x x π=+()2g x x = A .向左平移个单位长度B .向左平移个单位长度6π3πC .向右平移个单位长度D .向右平移个单位长度6π56π11.某单位为了激励员工努力工作,决定提高员工待遇,给员工分两次涨工资,现拟定了三种涨工资方案.方案甲:第一次涨幅,第二次涨幅;%a %b 方案乙:第一次涨幅,第二次涨幅;%2a b +%2ab+.其中,小明帮员工李华比较上述三种方案得到如下结论,其中正确的有0a b >> A .方案甲和方案乙工资涨得一样多B .采用方案乙工资涨得比方案丙多 C .采用方案乙工资涨得比方案甲多D .采用方案丙工资涨得比方案甲多12.已知函数,令,则()23log ,0211,22x x x f x x -⎧<≤⎪=⎨⎛⎫->⎪ ⎪⎝⎭⎩()()g x f x k =- A .若有1个零点,则或()g x 0k <1k > B .若有2个零点,则或()g x 1k =0k = C .的值域是()f x ()1,-+∞ D .若存在实数()满足,则的取值范围为,,a b c a b c <<()()()f a f b f c==abc ()2,3三、填空题:本大题共4小题,每小题5分,共20分.13.已知圆锥的侧面展开图是一个半径为2,弧长为的扇形,则该圆锥的体积为 2π.14. .()27π3227log 42⋅=(单位:米)关于时间(单位:t16.如图,在△中,,,ABC 12AD AB=13AE AC =与交于点,,,,则CD BE P 2AB =4AC =2AP BC ⋅=的值为.AB AC ⋅四、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分10分)(1)已知,求的值;tan 2α=sin cos cos sin αααα-+(2)已知,且,求的值.3sin(+)65πα=536ππα<<cos α18.(本小题满分12分)已知向量,.()3,2a =(),1b x =-(1)当,求的值;()2a b b-⊥ x (2)当,,求向量与的夹角.()8,1c =--()a b c+∥ abα19.(本小题满分12分)在△中,内角的对边分别为,且ABC ,,A B C ,,a b c.cos sin B b C =+ (1)求C ;(2)若,△的值.c =a b >ABC sin 2B 20.(本小题满分12分)设函数.()22(sin cos )1f x x x x =+--(1)求的最小正周期和最小值;()f x (2)若,求的单调递增区间.()31()42g x f x π=-()g x 21.(本小题满分12分)已知,其中,为实数.()224f x x ax b=+-a b (1)若不等式的解集是,求的值;()0f x ≤[]2,6-b a (2)若函数在区间上单调递减,求实数的取值范围.()22x xf y =(],1-∞b22.(本小题满分12分)为响应国家“乡村振兴”号召,农民老王拟将自家一块直角三角形地按如图规划成3个功能区:区域为荔枝林和放养走地鸡,区域规划BNC △CMA △为“民宿”供游客住宿及餐饮,区域规划为小型鱼塘养鱼供休闲垂钓.为安全起MNC △见,在鱼塘周围筑起护栏.已知,MNC △40m AC =,,.BC =AC BC ⊥30MCN ∠=︒(1)若,求护栏的长度(的周长);20m AM =MNC △(2)若鱼塘的面积是“民宿”的面积MNC △CMA △的长;AM (3)鱼塘的面积是否有最小值?若有,请求出其最小值;若没有,请说明理MNC △由.玉溪一中2022—2023学年下学期高一年级第一次月考数学参考答案一、单项选择题1.【答案】B 【详解】因为集合,,所以,{30}A xx =-≤≤∣{1}B x x =≥-∣[)3,A B =-+∞ 故选:B.2.【答案】DCAB3.【答案】A 【详解】.故答案为:.21cos 11cos 332AB BC AB BC πππ⎛⎫⋅=⋅⋅-=⨯⨯=- ⎪⎝⎭ 12-4.【答案】B 【详解】(1)因为,所以,1122CF CD AB ==- 2CE EB = 2233EC BC AD == 所以,所以,故.21213232EF EC CF BC CD AD AB =+=+=- 12,23x y =-=16x y +=5.【答案】D 【解析】对于A ,是偶函数,故A 错误;对于B ,是非奇非2y x =ln y x =偶函数,故B 错误;对于C ,设,其定义域为,tan y x =ππ,2x x k k ⎧⎫≠+∈⎨⎬⎩⎭Z 故C 错误.对于D ,是奇函数,在单调递π0,π(),2x x k k ⎧⎫≠+∈⎨⎭∞⊄⎩+⎬Z 3y x =(0,)+∞增,故D 正确;故选:D 6.【答案】C 【详解】假设经过小时后,驾驶员开车才不构成酒驾,则()*x x N ∈,即,,则()1110%0.2x⨯-<0.90.2x <lg 0.9lg 0.2x ∴<,,次日上午最早点,1lglg 0.2lg 51lg 2515.29lg 0.92lg 3112lg 3lg 10x -->===≈--min 16x ∴=∴10该驾驶员开车才不构成酒驾.故选:C.7.【答案】B 【详解】当时,,则,又因0x <0x ->()()()222323f x x x xx -=----=+-为是偶函数,所以.故选:B()f x ()()223x x f x f x +=--=8.【答案】C 【详解】,即,5510log2log 2a <=<=10,2a ⎛⎫∈ ⎪⎝⎭,即,sin 45sin 551b =︒<=︒<b ⎫∈⎪⎪⎭即,故.故选:C.110.620.611110.52222c ⎛⎫⎛⎫⎛⎫=<==<= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭12c ⎛∈ ⎝b c a >>二、多项选择题9.【答案】ACD 【详解】三棱柱有6个顶点,棱台的侧面是梯形,不一定是等腰梯形,五棱锥有6个面,正棱锥的侧面是全等的等腰三角形.故选:ACD.10.【答案】AD 【详解】,所以要得到的图象,只()g()66f x x x ππ=+=+()f x 需要将的图象向左平移个单位长度,又因为的最小正周期为,()gx 6π()2g x x=π所以要得到的图象,只需要将的图象向右平移个单位长度,所以选AD()f x ()g x56π11.【答案】BC 【详解】不妨设原工资为1,方案甲:两次涨幅后的价格为:;方案乙:两次涨幅后的价格为:(1%)(1%)1%%0.01%a b a b ab ++=+++;方案丙:两次涨幅后的价格为:2(1%)(1%)1%%0.01()%222a b a b a b a b +++++=+++;因为,由均值不等式(110.01%ab +=++0a b >>,当且仅当时等号成立,故,因为,所以a b +≥a b =2(2a b ab+≥a b ≠,2(2a b ab +>a b +>所以方案采用方案乙工资涨得比方案甲多,采用方案甲工资涨得比方案丙多,故选:.BC 12.【答案】BCD 【详解】由函数的图象,根据函数图2log y x =象的翻折变换,由函数的图象,根据函数图象的平移变12xy ⎛⎫= ⎪⎝⎭换,向右平移3个单位,向下平移1个单位,可得函数的图()f x 象,如下图:函数的图象可由函数经过平移变换得到,显然当或()g x ()f x 10k -<<时,函数的图象与轴存在唯一交点,故A 错误;由函数的图象,本身1k >()g x x ()f x 存在两个交点,向下平移一个单位,符合题意,故B 正确;由图象,易知C 正确;,1ab =由图象可知,解得,即,故D 正确;故选:BCD.()0,1d ∈()2,3c ∈()2,3abc c =∈三、填空题13.14.【答案】27【详解】()27π3227log 42⋅()()2314π323π4log 2+=+-+16.【答案】2【详解】令,,而BP BE λ=CP CD μ=,1()(1)33AP AB BE AB BA AC AB ACλλλλ=+=++=-+,1()(1)22AP AC CD AC CA AB AC ABμμμμ=+=++=-+ ∴,得,∴,又1213μλλμ⎧-=⎪⎪⎨⎪-=⎪⎩3545λμ⎧=⎪⎪⎨⎪=⎪⎩2155AP AB AC=+ ,∴()(21)55()2A AP BC AP AC AB AC AB B AC +⋅⋅=⋅-=-=,,,∴.故答案为:2221155225AP A BC AC AB AB C +⋅=⋅-= 2AB =4AC =2AB AC ⋅= 四、解答题17.【答案】(1)(213431cos cos[(+)]cos (+)cos sin (+)sin 666666552ππππππαααα=-=+=-+==1x =5x π4α=19.【答案】(1)(23π20.【答案】(1)最小正周期为(2),π2252,233k k ππππ⎡⎤--⎢⎥⎣⎦Z k ∈21.【答案】(1) (2)8ba =-1b ≤-【详解】(1)解:因为不等式的解集是,所以,关于的方程()0f x ≤[]2,6-x 的两根分别为、,所以,,解得,,因此,2240x ax b +-=2-6262264ab -+=-⎧⎨-⨯=-⎩2a =-3b =22.【答案】(1);(2);(3)的面积有最小值,其最60+40(2m CMN △小值是(212002m【详解】解:(1)∵,,,∴40m AC=BC =AC BC⊥tan AC B BC ==,∴,∴,∴,在中,30B =︒60A =︒280AB AC ==ACM △由余弦定理可得2222cos CM AC AM AC AM A=+-⋅⋅,则116004002402012002=+-⨯⨯⨯=CM =,∴,∵,∴222AC AM CM =+CM AB ⊥30MCN ∠=︒,∴,∴护栏的长度(tan 3020MN CM =︒=240CN MN ==的周长)为....4分MNC 204060++=+(2)设(),因为鱼塘的面积是“民宿”的面积的ACM θ∠=060θ︒<<︒MNC △CMA △,即,11sin 30sin 22CN CM CA CM θ⋅︒=⋅CN θ=,由三角形外角定理可得,在中,60BCN θ︒∠=-90CNA B BCN θ︒∠=∠+∠=-CAN △由,得,()40sin 60sin 90cos CN CA θθ==︒︒-CN =θ=1sin 22θ=由,得,所以,即.中,02120θ︒<<︒230θ=︒15θ=︒15ACM ∠=︒CAM △,由可得105AMC ∠= sin105sin15AC AM =︒︒40sin1540sin1540sin15sin105sin(9015)cos15AM ︒︒︒===︒︒+︒︒ (8)分240sin15cos1520sin3040(2m 1cos30cos 152︒︒︒===+︒︒(3)鱼塘的面积有最小值,理由如下:设,由(2)知MNC △()060ACM θθ∠=︒<<︒,中,由外角定理可得CN =90BCM θ︒∠=-BCM △,又在中,由,得120CMA B BCM θ︒∠=∠+∠=-ACM △()sin60sin 120CM CAθ=︒︒-CM =A()1300sin 302sin 120cos CMN S CM CN θθ=⋅⋅︒==︒-△,所以当且仅当,==26090θ+︒=︒即时,的面积取最小值为........12分15θ=︒CMN △(212002m。
2023—2024学年黑龙江省高三上学期第一次月考考试数学试题(含答案)
2023-2024学年黑龙江省高三上册第一次月考考试数学试题.....函数()2ln(f x x =--的单调递减区间为().(,1)-∞-B (1,1)-D7.若正数x ,y 满足35x y xy +=,则34x y +的最小值是()A .2B .3C .4D .58.已知定义在R 上的函数()f x ,其导函数()f x '满足:对任意x ∈R 都有()()f x f x '<,则下列各式恒成立的是()A .()()()()20181e 0,2018e 0f f f f <⋅<⋅B .()()()()20181e 0,2018e 0f f f f >⋅>⋅C .()()()()20181e 0,2018e 0f f f f >⋅<⋅D .()()()()20181<e 0,2018e 0f f f f ⋅>⋅二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.如图是函数()y f x =的导函数()y f x '=的图象,则下列判断正确的是()A .()f x 在()4,3--上是减函数B .()f x 在()1,2-上是减函数C .3x =-时,()f x 有极小值D .2x =时,()f x 有极小值10.对于定义在R 上的函数()f x ,下述结论正确的是()A .若()()11f x f x =+-,则()f x 的图象关于直线1x =对称B .若()f x 是奇函数,则()1f x -的图象关于点()1,0A 对称C .函数()1y f x =+与函数()1y f x =-的图象关于直线1x =对称D .若函数()1f x -的图象关于直线1x =对称,则()f x 为偶函数16.已知定义在R 上的函数f ()()2log a f x x =+,则(2022f 四、解答题:本题共6小题,共由图象可知:函数12xy=与y∴函数()213 2xf x x=+-的零点个数为故答案为.214.2【分析】根据对数函数的性质求出函数过定点坐标,再代入直线方程,即可得到。
河南省名校联考2024-2025学年高一上学期第一次月考数学试题(含解析)
河南省名校联考2024-2025学年上期高一第一次月考数学注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.本试卷主要考试内容:人教A版必修第一册前两章。
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符题目要求的.1.下列关系式正确的是A.3∈QB.—1∈NC. Z⊆ND. Q⊆R2.关于命题q:∀a<b,|a|≤|b|,下列结论正确的是A. q是存在量词命题,是真命题B. q是存在量词命题,是假命题C. q是全称量词命题,是假命题D. q是全称量词命题,是真命题3.已知集合A={x∈Z|3x―1∈Z},则用列举法表示A=A.{—2,0,2,4}B.{—2,0,1,2,4}C.{0,2,4}D.{2,4}4.已知a>0,b>0,c>0,则“a+b>c”是“a,b,c可以构成三角形的三条边”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.已知正数a,b满足1a +2b=1,则a+2b的最小值为A.9B.6C.4D.36.已知集合A={(x,y)|y=x²+ ax+1},B={(x,y)|y=2x-3},C=A∩B,若C恰有1|真子集,则实数a=A.2B.6C.2或6D.—2或67.某花卉店售卖一种多肉植物,若每株多肉植物的售价为30元,则每天可卖出25株;若每株肉植物的售价每降低1元,则日销售量增加5株.为了使这种多肉植物每天的总销售额不于1250元,则每株这种多肉植物的最低售价为A.25元B.20元C.15元D.10元【高一数学第1页(共4页)】 ·A18.学校统计某班45名学生参加音乐、科学、体育3个兴趣小组的情况,其中有20名学生参加了音乐小组,有21名学生参加了科学小组,有22名学生参加了体育小组,有24名学生只参加了1个兴趣小组,有12名学生只参加了2个兴趣小组,则3个兴趣小组都没参加的学生有A.5名B.4名C.3名D.2名二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列各组对象能构成集合的有A.郑州大学 2024 级大一新生B.我国第一位获得奥运会金牌的运动员C.体型庞大的海洋生物D.唐宋八大家10.已知a>b>0,则使得a+ca >b+cb成立的充分条件可以是A. c=-2B. c=-1C. c=1D. c=211.已知二次函数y=ax²+bx+c(a,b,c为常数,且a≠0)的部分图象如图所示,则A. a+b>0B. abc>0C.13a+b+2c>0D.不等式bx²―ax―c>0的解集为{x|-2<x<1}三、填空题:本题共3小题,每小题5分,共15分.12.已知a=10―6,b=6―2,则a ▲ b.(填“◯”或“<”)13.已知a∈R,b∈R,集合{,则(a―b)³=.14.已知m<n<0,则8nm+n ―2mm―n的最大值为▲ .四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知全集U=R,集合A={x|-2<x<3},B={x|a-1<x<2a}.(1)若a=2,求A∪B,C∪B;(2)若B⊆A,求a 的取值范围.【高一数学第2页(共4页)】 A116.(15分)给出下列两个结论:①关于x的方程.x²+mx―m+3=0无实数根;②存在0≤x≤2,使(m+1)x―3=0.(1)若结论①正确,求m 的取值范围;(2)若结论①,②中恰有一个正确,求m的取值范围.17.(15分)已知正数a,b,c 满足 abc=1.(1)若c=1,求2a +3b的最小值;(2)求a2+b2+2c2+8ac+bc的最小值.A11918.(17分)已知a∈R,函数y=ax²+(3a+2)x+2a+3.(1)当a=1时,函数y=ax²+(3a+2)x+2a+3的图象与x轴交于A(x₁,0),B(x₂,0)两点,求x31+x32;(2)求关于x的不等式y≥1的解集.19.(17分)设A是由若干个正整数组成的集合,且存在3个不同的元素a,b,c∈A,使得a-b=b-c,则称A 为“等差集”.(1)若集合A=1,3,5,9,B⊆A,且B是“等差集”,用列举法表示所有满足条件的B;(2)若集合.A=1,m,m²―1是“等差集”,求m的值;(3)已知正整数n≥3,证明:{x,x²,x³,…,x"}不是“等差集”.【高一数学第4 页(共4 页)】 A1·数学参考答案1. D 3₃∉Q,-1∉N,N ⊆Z,Q ⊆R2. C 由-2<1,|-2|>|1|,知q 是假命题,且q 是全称量词命题.3. A 因为3=1×3=(--1)×(-3),所以A={-2,0,2,4}.4. B 取a=5,b=3,c=1,满足a+b>c,此时b+c<a,a,b,c 不可以构成三角形的三条边.由a,b,c 可以构成三角形的三条边,得a+b>c.故“a+b>c”是“a,b,c 可以构成三角形的三条边”的必要不充分条件.5. A 因为 1a +2b =1,所以 a +2b =(1a +2b)(a +2b )=5+2b a+2a b.又a>0,b>0,所以 2ba + 2ab ≥22b a⋅2ab =4,当且仅当a=b=3时,等号成立,故a+2b 的最小值为9.6. D 因为C 恰有1个真子集,所以C 中只有1个元素.联立方程组 {y =x 2+ax +1,y =2x ―3,整理得 x ²+(a ―2)x +4=0,则 (a ―2)²―16=0,解得a=-2或6.7. D 设每株多肉植物的售价降低x(x∈N)元,则这种多肉植物每天的总销售额为(30-x)(25+5x)元.由(30-x)(25+5x)≥1 250,得5≤x≤20,故每株这种多肉植物的最低售价为30-20=10元.8. B 如图,由题可知 {a +b +9m +x ―20,a +c +m +z ―21,b +c +m +s ―21,a +b +c +1>22,a +b +z ―12,x +9z +z =24,则 3m=63-2(a+b+c)-(x+y+z)=15,则m=5,从而3个兴趣小组都没参加的学生有45-(a+b+c)-(x+y+z)-m=4名.9. ABD 由题可知,A ,B ,D 中的对象具有确定性,可以构成集合,C 中的对象不具有确定性,不能构成集合.10. AB 由a +c a>b +c b,得 a +c a ―b +cb=b (a +c )―a (b +c )ab=c (b ―a )ab>0.因为a>b>0,所以c<0.11. BCD 由图可知a>0,二次函数 y =ax ²+bx +c 的图象与x 轴相交于(--1,0),(2,0)两点,则 {a ―b +c =0,4a +2b +c =0,整理得 {b =―a ,c =―2a ,则 a+b=0, abc>0,A 不正确,B 正确. 由【高一数学·参考答案 第 1页(共4 页)】 ·A1·{4a―2b+c>0,9a+3b+c>0,得13a+b+2c>0,C正确.因为{b=―a,c=―2a,所以bx²―ax―c=―ax²―ax+2a>0,即x²+x―2<0,,解得-2<x<1,D正确.12.<a―b=10+2―26,因为( 10+2)2=12+45,(26)2=24,45<12(所以(10+2)2<(26)2,则10+2<26,从而a<b.13.8 由a+b,a,2=a²,2,0,得a=0或a=a².若a=0,则a²=0,,不符合集合元素的互异性.若a=a²,则a=0(舍去)或a=1,所以a+b=0,即b=-1,从而((a―b)³=8.14.―18nm+n ―2mm―n―4(m+n)―4(m―n)m+n―(m+n)+(m―n)m―n=3―[4(m―n) m+n +m+nm―n].因为m<n<0,所以4(m―n)m+n >0,m+nm―n>0,则4(m―n)m+n+m+nm―n≥24(m―n)m+n⋅m+nm―n=4,当且仅当m=3n时,等号成立,故的最大值为-(1)由a=2,得B={x|1<x<4}, ... 1分 (1)则或x≥4}. ... 3分 (3)因为A={x|-2<x<3},所以A∪B={x|-2<x<4}................................................5分(2)若B=∅,则a-1≥2a,解得a≤-1,满足B⊆A (7)若B≠∅,则由B⊆A,得分 (9)解得 (11)综上所述,a的取值范围为 (13)16.解:(1)由结论①正确,得分 (3)解得-6<m<2 (5)故当结论①正确时,m的取值范围为{m|-6<m<2}....................................6分(2)若m=-1,则原方程转化为-3=0,恒不成立. ... 7分 (7)若m≠-1,则由(m+1)x-3=0,得分 (8)从而解得 (10)当结论①正确,结论②不正确时, (12)当结论②正确,结论①不正确时,m≥2 (14)综上所述,当结论①,②中恰有一个正确时,m的取值范围为或m≥2}..........15 17.解分 (1)则 (4)当且仅当时,等号成立,故的最小值为₆ (6)(2)因为, (8)当且仅当a=b=c=1时,等号成立,... 9分 (9)所以分 (10) (12)当且仅当 ac+ bc=2时,等号成立,此时a=b=c=1, ... 14分 (14)所以的最小值为8………………………………………………………………………………15分18.解:(1)当a=1时,y=x²+5x+5.由题可知x₁,x₂;是方程x²+5x+5=0的两个实数根, (2)由{x21+5x1+5=0, x22+5x2+5=0,得{x 31=―5x21―5x1,x32=―5x22―5x2, 4分则x i+x32=―5(x21+x22)―5(x1+x2)=―5[(x1+x2)2―2x1x2]+25=―75+25=―50.6分(2)由y≥1,得ax²+(3a+2)x+2a+2≥0.当a=0时,不等式整理为………………………………………………………………………………………………………………………………………………………………………7分当a≠0时,令ax²+(3a+2)x+2a+2=(x+1)( ax+2a+2)=0,得x=---1或x=...............................................................................................................9分当a>0时,则原不等式的解集为或3x≥-1} (11)当--2<a<0时,―1<―2a+2a,则原不等式的解集为{x|―1≤x≤―2a+2a};当a=-2时,则原不等式的解集为{-1};...............................................................15分当a<-2时,则原不等式的解集为 (17)【高一数学·参考答案第3页(共4页)】 ·A1·…13分1,3,5或1,5,9,………………………………………………………………………… (1)故满足条件的B可能是{1,3,5},{1,5,9},{1,3,5,9}...........................................4分(2)解:由A 是“等差集”,得, ... 5 分 (5)且m≥2,则 (6)(舍去)或m=2 (8)当m=2时,A={1,2,3}是“等差集”,故m=2 (9)(3)证明:假设{x,x²,x³, (10)则存在1≤i<j<k≤n,其中i,j,k∈N*,使得 (11)即则分 (12)因为1≤i<j<k≤n,所以k-i>j-i,从而k-i≥j-i+1,... 13分 (13)则2xʲ⁻ⁱ=1+xᵏ⁻ⁱ≥1+xʲ⁻ⁱ⁺¹, ……………………14分则分 (15)因为x≥2,所以从而2-x>0,即x<2, (16)不是“等差集” (17)【高一数学·参考答案第 4 页(共4页)】。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河北定州中学2017-2018学年第二学期
高一第1次月考数学试卷
一、单选题
1.某四棱锥的三视图如图所示,则该四棱锥最长棱的棱长是( ).
A. 3
B.
C.
D. 2.直角三角形的两条直角边的长度分别是3, 4,以直角三角形的斜边所在直线为旋转轴,旋转一周形成几何体的体积是( ).
A. 12π
B. 144π5
C. 48π5
D. 48π 3.已知某几何体的三视图如图所示,则该几何体的体积为( )
A. 2π
B. 3π
C. 5π
D. 7π
4.利用斜二测画法画平面内一个△ABC 的直观图得到的图形是A B C ''' ,那么A B C ''' 的面积与△ABC 的面积的比是( )
A. B. C. D. 5.四面体ABCD 的四个顶点都在球O 的表面上, AB ⊥平面BCD ,三角形BCD 是边长为3的等边三角形,若AB=4,则球O 的表面积为( )
A. 36π
B. 28π
C. 16π
D. 4π
6.6.正方体的内切球与外接球的半径之比为
A. ∶1
B. ∶2
C. 1∶
D. 2∶
7.如图,在平面四边形ABCD中,.将其沿对角线
对角折成四面体ABCD,使平面平面BCD,若四面体ABCD的顶点在同一球面上,则该球的体积为()
A. B. C. D.
8.如图,网格纸的各小格都是正方形(边长为1),粗实线画出的是一个凸多面体的三视图(两个矩形,一个直角三角形),则这个几何体的表面积为()
A. B.
C. D.
9.已知等腰直角三角形的直角边的长为4,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的表面积为( )
A. B. C. D.
10.圆台上、下底面半径和母线的比为,高为,那么它的侧面积为()
A. B. C. D.
11.某个几何体的三视图如图所示(单位:m),该几何体的体积为()
A. 283-
B. 483-
C. 48+3π
D. 28+3
π 12.一个四面体的三视图如图所示,则该四面体的表面积是( )
A.
B. C. D.
二、填空题
13.如图所示,在边长为2的正方形纸片ABCD 中, AC 与BD 相交于O ,剪去AOB ,将剩余部分沿OC , OD 折叠,使OA , OB 重合,则以()A B , C , D , O 为顶点的四面体的体积为__________.
14.已知圆柱底面半径是2,高是3,则圆柱的表面积是__________.
15.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为___________
16.棱长为的正四面体的全面积为___________,体积为_________.
三、解答题
17.如图,在直三棱柱111ABC A B C -中, 90BAC ∠= , 2AB AC ==,点M 为11
AC
的中点,点N 为1AB 上一动点.
(1)是否存在一点N ,使得线段//MN 平面11BB C C ?若存在,指出点N 的位置,若不存在,请说明理由.
(2)若点N 为1AB 的中点且CM MN ⊥,求三棱锥M NAC -的体积.
18.已知边长为2的正方形ABCD 与菱形ABEF 所在平面互相垂直, M 为BC 中点.
(1)求证: EMP 平面ADF ;
(2)若60ABE ∠= ,求四面体M ACE -的体积.
参考答案
CCBAB CABDB
11.D
12.B
13 14.20π
15.
16.
17.(1)见解析(2) 3
(1)存在点N ,且N 为1AB 的中点.
证明如下:
如图,连接1A B , 1BC ,点M , N 分别为11AC , 1A B 的中点,
所以MN 为11A BC ∆的一条中位线,
//MN BC , MN ⊄平面11BB C C , 1BC ⊂平面11BB C C ,所以//MN 平面11BB C C .
(2)如图,设点D , E 分别为AB , 1AA 的中点,连接CD , DN , NE ,并设1AA a =,
则221CM a =+,
22
414a MN +=+ 284a +=, 2254a CN =+ 2204a +=,
由CM N ⊥M ,得222CM MN CN +=,解得a =
又易得NE ⊥平面11AAC C ,
1NE =,
M NAC N AMC V V --= 111332AMC S NE ∆=⋅=⨯ 21⨯=.
所以三棱锥M NAC -
18.(1)证明见解析;(2(1)∵四边形ABCD 是正方形,∴BC ∥AD .∵BC ⊄平面ADF ,AD ⊂平面ADF , ∴BC ∥平面ADF .∵四边形ABEF 是菱形,
∴BE ∥AF .
∵BE ⊄平面ADF ,AF ⊂平面ADF ,
∴BE ∥平面ADF .∵BC ∥平面ADF ,BE ∥平面ADF ,BC∩BE=B ,
∴平面BCE ∥平面ADF .
∵EM ⊂平面BCE ,∴EM ∥平面ADF .
(2)取AB 中点P ,连结PE .∵在菱形ABEF 中,∠ABE=60°,
∴△AEB 为正三角形,∴EP ⊥AB .∵AB=2,∴
∵平面ABCD ⊥平面ABEF ,平面ABCD∩平面ABEF=AB ,
∴EP ⊥平面ABCD , ∴EP 为四面体E ﹣ACM 的高.
∴.。