2019年高一下学期第一次月考数学试题

合集下载

【2019-2020】高一数学下学期第一次月考试题

【2019-2020】高一数学下学期第一次月考试题

教学资料参考范本【2019-2020】高一数学下学期第一次月考试题撰写人:__________________部门:__________________时间:__________________第Ⅰ卷一、选择题(每小题只有一个选项正确,每小题 5分,共60 分。

)1.1.在中,若,,,则为().ABC△A.B.或C.D.或2.在中,则等于().A.B.C.D.3.在△ABC中,内角A,B,C的对边分别是a,b,c,若a2﹣b2=bc,sinC=2sinB,则A=()A.30°B.60°C.120°D.150°4.在△ABC中,a,b,c分别为角A,B,C所对的边.若b=2acosC,则△ABC的形状一定是()A.等腰直角三角形B.直角三角形 C.等腰三角形D.等腰或直角三角形5.如图,要测量底部不能到达的某铁塔AB的高度,在塔的同一侧选择C、D两观测点,且在C、D两点测得塔顶的仰角分别为45°、30°.在水平面上测得∠BCD=120°,C、D两地相距600m,则铁塔AB 的高度是()A.120m B.480mC.240m D.600m6.△ABC中,已知a=x,b=2,B=60°,如果△ABC 有两组解,则x的取值范围()A.x>2 B.x<2 C.D.7.若在△ABC中,sinA:sinB:sinC=3:5:6,则sinB等于()A. B.C.D.8.已知在等比数列{an}中,a4,a8是方程x2﹣8x+9=0的两根,则a6为()A.﹣3 B.±3C.3 D.29.已知等差数列的前项和为,若,则()A.18 B.36 C.54 D.7210.已知等比数列{an}中,a1+a2=3,a3+a4=12,则a5+a6=()A.3 B.15 C.48D.6311.在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢.问:几日相逢?()A.9日 B.8日 C.16日D.12日12.已知等比数列{an}中,a3=4,a4a6=32,则的值为()A.2 B.4 C.8 D.16第Ⅱ卷二、填空题(每小题 5分,共20 分。

高一数学下学期第一次月考试卷含解析 试题

高一数学下学期第一次月考试卷含解析 试题

一中2021-2021学年高一下学期第一次月考创作人:历恰面日期:2020年1月1日数学试题一、选择题:本大题一一共12小题,每一小题5分,一共60分.在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的.1.计算的结果等于( )A. B. C. D.【答案】B【解析】【分析】由余弦的二倍角公式可得结果.【详解】由余弦的二倍角公式得应选:B【点睛】此题考察余弦二倍角公式的应用,属于简单题.2.为第二象限角,,那么的值等于A. B. C. D.【答案】A【解析】∵α为第二象限角,sin α=,所以cos α=-,那么sin=×-×=,应选A.3.设,那么等于( )A. B. C. D.【答案】B【解析】【分析】利用正弦的两角和公式可得,平方即可得到结果.【详解】,即,两边平方可得,可得,应选:B【点睛】此题考察正弦的两角和公式和正弦的二倍角公式的应用,属于简单题.4.设向量与垂直,那么等于〔〕A. B. C. D. 0【答案】D【解析】【分析】由两个向量垂直的坐标运算结合余弦的二倍角公式可得结果.【详解】向量与垂直,可得,又应选:D【点睛】此题考察两个向量垂直的坐标运算,考察余弦二倍角公式的应用,属于简单题.5.在中,,那么一定是〔〕A. 直角三角形B. 正三角形C. 等腰直角三角形D. 等腰三角形【答案】D【解析】【分析】利用正弦定理和余弦定理化简即可得到答案.【详解】,由正弦定理可得,由余弦定理得,化简得a=b,所以三角形为等腰三角形,应选:D【点睛】此题考察利用正弦定理和余弦定理判断三角形的形状,属于简单题.6.在△ABC中,A=60°,a=4,,那么B等于( )A. 45°或者135°B. 135°C. 45°D. 以上答案都不对【答案】C【解析】试题分析:由得考点:正弦定理解三角形7.在△ABC中,,,,那么AC的长为〔〕A. B. C. 或者 D.【答案】C【解析】试题分析:由余弦定理可得:,即,解得或者,应选项为C.考点:余弦定理.中,设,假设,那么三角形的形状是( )A. 锐角三角形B. 钝角三角形C. 直角三角形D. 无法确定【答案】B【解析】试题分析:如图,由即可得与的夹角为钝角,由于.所以为钝角.所以选B.考点:1.向量的和差运算.2.向量的数量积.9.假设△的三个内角满足,那么△A. 一定是锐角三角形B. 一定是直角三角形C. 一定是钝角三角形D. 可能是锐角三角形,也可能是钝角三角形【答案】C【解析】试题分析:由正弦定理得,所以C是最大的角,由余弦定理,所以C为钝角,因此三角形一定是钝角三角形考点:三角形形状的断定及正、余弦定理的应用【此处有视频,请去附件查看】10.化简( )A. B. C. D.【答案】D【解析】【分析】由正弦的二倍角公式可得,再由可得结果.【详解】又,所以sin4<0,cos4<0,那么,应选:D【点睛】此题考察正弦的二倍角公式的应用,考察三角函数值符号的判断,属于根底题.11.,那么的值是〔〕A. 1B. -1C.D. 0【答案】B【解析】试题分析:利用三角恒等变换进展化简,即,所以有;此题也可令,从而有,即,故此题正确选项为B.考点:三角函数的恒等变换.12.在中,,,,假如三角形有两解,那么的取值范围是〔〕A. B. C. D.【答案】A【解析】试题分析:由余弦定理得,即,故由题设且,解之得,所以应选A.考点:余弦定理及运用.二、填空题:本大题一一共4小题,每一小题5分,一共20分.13.函数的值域是___________________.【答案】【解析】【分析】利用余弦的二倍角公式和辅助角公式将函数进展化简,然后由正弦函数的性质可得结论.【详解】函数,所以当时函数取到最大值为,当时函数取到最小值为,即函数值域为故答案为:【点睛】此题考察余弦二倍角公式和辅助角公式的应用,考察正弦函数性质,属于根底题。

辽宁省2019-2020年高一下学期第一次月考数学试题

辽宁省2019-2020年高一下学期第一次月考数学试题

下学期高一第一次月考数学试卷时间:120分钟满分:150分第Ⅰ卷一、选择题(共12小题,每题5分,共60分)1、我国古代数学名著《数学九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得粒内夹谷粒,则这批米内夹谷约为( )A.石B.石C.石D.1365石2、如果下边程序执行后输出的结果是,那么在程序后面的“条件”应为( )A. B.C. D.3、为了考察两个变量与之间的线性关系,甲、乙两同学各自独立做了次和次试验,并且利用线性回归方法,求得回归直线分别为、.已知两人得到的试验数据中变量和的数据的平均值相等,且分别都是、,那么下列说法正确的是( )A.直线和一定有公共点B.直线和相交,但交点不一定是C.必有直线D.直线与必定重合4、某班的全体学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100].若低于60分的人数是15人,则该班的学生人数是( )A.45B.50C.55D.605、某人手表停了,他打开电视机,想利用电视机上整点显示时间来校正他的手表,则他等待不超过一刻钟的概率为( ).A. B. C. D.6、甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为,再由乙猜甲刚才所想的数字,把乙猜的数字记为,其中,若,就称甲、乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为( )A. B. C. D.7、集合,,则( )A. B.或C. D.8、从装有2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是( )A.至少有1个黑球与都是黑球B.至少有1个黑球与至少有1个红球C.恰有1个黑球与恰有2个黑球D.至少有1个黑球与都是红球9、已知实数,满足,且,则等于( )A. B.C. D.10、已知函数是定义在上的偶函数,且在区间上是增函数,令,,,则( )A. B.C. D.11、设是第二象限角,且,则是( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角12、已知是方程的根,则的值是( )A. B. C.或 D.第Ⅱ卷二、填空题(共4小题,每小题5分,共20分)13、某校早上开始上课,假设该校学生小张与小王在早上之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早分钟到校的概率为.(用数字作答)14、袋中有形状、大小都相同的只球,其中只白球,1只红球,只黄球,从中一次随机摸出只球,则这只球颜色不同的概率为15、函数的定义域为 .16、若,化简的结果是 .三、解答题(共70分)17、(本小题满分10分)计算:1.;2..18、(本小题满分12分)设,.求证:.20、(本小题满分12分)城市公交车的数量太多容易造成资源的浪费,太少又难以满足乘客的需求,为此,某市公交公司在某站台的60名候车的乘客中随机抽取15人,将他们的候车时间作为样本分成5组,如下表所示:1.估计这15名乘客的平均候车时间;2.估计这60名乘客中候车时间少于10分钟的人数;3.若从上表第三、四组的6人中选2人作进一步的问卷调查,求抽到的2人恰好来自不同组的概率.21、(本小题满分12分)近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨):1.试估计厨余垃圾投放正确的概率;2.试估计生活垃圾投放错误的概率;3.假设厨余垃圾在“厨余垃圾”箱、“可回收物” 箱、“其他垃圾”箱的投放量分别为,其中.当数据的方差最大时,写出的值(结论不要求证明),并求此时的值.(注:,其中为数据的平均数)21、(本小题满分12分)正四面体的体积为,是正四面体内部的点.1.设“”的事件为,求概率;2.设“且”的事件为,求概率.22、(本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:千元)对年销售量(单位:)和年利润(单位:千元)的影响.对近年的年宣传费和年销售量数据作了初步处理,得到下面的散点图及一些统计量的值.表中,.1.根据散点图判断,与哪一个适宜作为年销售量关于年宣传费的回归方程类型?(给出判断即可,不必说明理由)2.根据的判断结果及表中数据,建立关于的回归方程.3.已知这种产品的年利润与,的关系为.根据的结果回答下列问题:①年宣传费时,年销售量及年利润的预报值是多少?②年宣传费为何值时,年利润的预报值最大?附:对于一组数据,,…,其回归直线的斜率和截距的最小二乘估计分别为,.高一数学试卷答案一、选择题1.答案:B解析:设这批米内夹谷的个数为,则由题意并结合简单随机抽样可知,,即,故应选.2.答案:D解析:第一次循环:,此时应满足条件,再次循环;第二次循环:,应为输出的的值为,所以此时应结束循环,所后面的“条件”应为,因此选D。

高一数学下学期第一次月考试卷(含解析)-人教版高一全册数学试题

高一数学下学期第一次月考试卷(含解析)-人教版高一全册数学试题

2015-2016学年某某鄂尔多斯市准格尔旗世纪中学高一(下)第一次月考数学试卷一.选择题(每题5分,共60分)1.tan 300°+sin 450°的值为()A.1+B.1﹣C.﹣1﹣ D.﹣1+2.以下命题正确的是()A.小于90°的角是锐角B.A={α|α=k•180°,k∈Z},B={β|β=k•90°,k∈Z},则A⊆BC.﹣950°12′是第三象限角D.α,β终边相同,则α=β3.在空间直角坐标系中的点P(a,b,c),有下列叙述:①点P(a,b,c)关于横轴(x轴)的对称点是P1(a,﹣b,c);②点P(a,b,c)关于yOz坐标平面的对称点为P2(a,﹣b,﹣c);③点P(a,b,c)关于纵轴(y轴)的对称点是P3(a,﹣b,c);④点P(a,b,c)关于坐标原点的对称点为P4(﹣a,﹣b,﹣c).其中正确叙述的个数为()A.3 B.2 C.1 D.04.已知α是第二象限的角,其终边上一点为P(a,),且cosα=a,则sinα的值等于()A.B.C.D.5.函数y=2sin(﹣2x)(x∈[0,π])为增函数的区间是()A.[0,] B.[] C.[,] D.[,π]6.已知,且,则tanφ=()A.B.C.﹣D.7.已知点A(1,2,﹣1),点C与点A关于平面xOy对称,点B与点A关于x轴对称,则线段BC的长为()A.2 B.4 C.2 D.28.直线y=a(a为常数)与y=tanωx(ω>0)的相邻两支的交点距离为()A.πB.C. D.与a有关的值9.函数的图象()A.关于原点成中心对称B.关于y轴成轴对称C.关于成中心对称D.关于直线成轴对称10.已知θ∈[0,2π),|cosθ|<|sinθ|,且sinθ<tanθ,则θ的取值X围是()A.B.C.D.11.化简cosα+sinα(π<α<)得()A.sinα+cosα﹣2 B.2﹣sinα﹣cosαC.sinα﹣cosα D.cosα﹣sinα12.圆心角为60°的扇形,它的弧长为2π,则它的内切圆的半径为()A.2 B.C.1 D.二、填空题(每题5分,共20分,把答案填在题中横线上)13.函数的定义域为.14.函数y=2cos(ωx)的最小正周期是4π,则ω=.15.已知tanα=2,则tan2α的值为.16.已知sin(﹣x)=,则cos(﹣x)=.三.解答题(共70分)17.已知sinα+cosα=,α∈(0,π),求的值.18.已知函数f(x)=Asin(ωx+φ),x∈R(其中)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为.(Ⅰ)求f(x)的解析式;(Ⅱ)当,求f(x)的值域.19.sin θ和cos θ为方程2x2﹣mx+1=0的两根,求+.20.已知函数y=2acos(2x﹣)+b的定义域是[0,],值域是[﹣5,1],求a、b的值.21.函数f(x)=3sin(2x+)的部分图象如图所示.(Ⅰ)写出f(x)的最小正周期及图中x0,y0的值;(Ⅱ)求f(x)在区间[﹣,﹣]上的最大值和最小值.22.已知函数.(1)求函数f(x)的最小正周期和单调增区间;(2)函数f(x)的图象可以由函数y=sin2x(x∈R)的图象经过怎样的变换得到?2015-2016学年某某鄂尔多斯市准格尔旗世纪中学高一(下)第一次月考数学试卷参考答案与试题解析一.选择题(每题5分,共60分)1.tan 300°+sin 450°的值为()A.1+B.1﹣C.﹣1﹣ D.﹣1+【考点】诱导公式的作用.【分析】由诱导公式逐步化简可得原式等于﹣tan60°+sin90°,为可求值的特殊角,进而可得答案.【解答】解:由诱导公式可得:tan 300°+sin 450°=tan(360°﹣60°)+sin(360°+90°)=﹣tan60°+sin90°=﹣+1=1﹣,故选B2.以下命题正确的是()A.小于90°的角是锐角B.A={α|α=k•180°,k∈Z},B={β|β=k•90°,k∈Z},则A⊆BC.﹣950°12′是第三象限角D.α,β终边相同,则α=β【考点】命题的真假判断与应用.【分析】根据角的X围以及终边相同角的关系分别进行判断即可.【解答】解:A.∵0°角满足小于90°,但0°角不是锐角,故A错误,B.当k=2n时,β=k•90°=n•180°,当k=2n+1时,β=k•90°=k•180°+90°,则A⊆B成立,C.﹣950°12′=﹣4×360°+129°48′,∵129°48′是第二象限角,∴﹣950°12′是第二象限角,故C错误,D.α,β终边相同,则α=β+k•360°,k∈Z,故D错误,故选:B3.在空间直角坐标系中的点P(a,b,c),有下列叙述:①点P(a,b,c)关于横轴(x轴)的对称点是P1(a,﹣b,c);②点P(a,b,c)关于yOz坐标平面的对称点为P2(a,﹣b,﹣c);③点P(a,b,c)关于纵轴(y轴)的对称点是P3(a,﹣b,c);④点P(a,b,c)关于坐标原点的对称点为P4(﹣a,﹣b,﹣c).其中正确叙述的个数为()A.3 B.2 C.1 D.0【考点】命题的真假判断与应用.【分析】根据空间点的对称性分别进行判断即可.【解答】解:①点P(a,b,c)关于横轴(x轴),则x不变,其余相反,即对称点是P1(a,﹣b,﹣c);故①错误,②点P(a,b,c)关于yOz坐标平面的对称,则y,z不变,x相反,即对称点P2(﹣a,b,c);故②错误③点P(a,b,c)关于纵轴(y轴)的对称,则y不变,x,z相反,即对称点是P3(﹣a,b,﹣c);故③错误,④点P(a,b,c)关于坐标原点的对称,则x,y,z都为相反数,即对称点为P4(﹣a,﹣b,﹣c).故④正确,故选:C4.已知α是第二象限的角,其终边上一点为P(a,),且cosα=a,则sinα的值等于()A.B.C.D.【考点】任意角的三角函数的定义.【分析】根据三角函数的大小建立方程求出a的值即可得到结论.【解答】解:∵α是第二象限的角,其终边上一点为P(a,),且cosα=a,∴a<0,且cosα=a=,平方得a=﹣,则sinα===,故选:A.5.函数y=2sin(﹣2x)(x∈[0,π])为增函数的区间是()A.[0,] B.[] C.[,] D.[,π]【考点】复合三角函数的单调性.【分析】利用正弦函数的单调性,确定单调区间,结合x的X围,可得结论.【解答】解:由正弦函数的单调性可得≤﹣2x≤(k∈Z)∴﹣﹣kπ≤x≤﹣﹣kπk=﹣1,则故选C.6.已知,且,则tanφ=()A.B.C.﹣D.【考点】同角三角函数间的基本关系.【分析】先由诱导公式化简cos(φ)=﹣sinφ=确定sinφ的值,再根据φ的X 围确定cosφ的值,最终得到答案.【解答】解:由,得,又,∴∴tanφ=﹣故选C.7.已知点A(1,2,﹣1),点C与点A关于平面xOy对称,点B与点A关于x轴对称,则线段BC的长为()A.2 B.4 C.2 D.2【考点】空间中的点的坐标.【分析】求出对称点的坐标,然后求解距离.【解答】解:点A(1,2,﹣1),点C与点A关于平面xoy对称,可得C(1,2,1),点B与点A关于x轴对称,B(1,﹣2,1),∴|BC|==4故选:B.8.直线y=a(a为常数)与y=tanωx(ω>0)的相邻两支的交点距离为()A.πB.C. D.与a有关的值【考点】三角函数的周期性及其求法.【分析】直线y=a与正切曲线y=tanωx两相邻交点间的距离,便是此正切曲线的最小正周期.【解答】解:因为直线y=a(a为常数)与正切曲线y=tanωx相交的相邻两点间的距离就是正切函数的周期,∵y=tanωx的周期是:,∴直线y=a(a为常数)与正切曲线y=tanωx相交的相邻两点间的距离是:.故选:B.9.函数的图象()A.关于原点成中心对称B.关于y轴成轴对称C.关于成中心对称D.关于直线成轴对称【考点】正弦函数的对称性.【分析】将x=0代入函数得到f(0)=2sin(﹣)=﹣1,从而可判断A、B;将代入函数f(x)中得到f()=0,即可判断C、D,从而可得到答案.【解答】解:令x=0代入函数得到f(0)=2sin(﹣)=﹣1,故A、B不对;将代入函数f(x)中得到f()=0,故是函数f(x)的对称中心,故C 对,D不对.故选C.10.已知θ∈[0,2π),|cosθ|<|sinθ|,且sinθ<tanθ,则θ的取值X围是()A.B.C.D.【考点】三角函数的化简求值.【分析】由已知的sinθ<tanθ,移项并利用同角三角函数间的基本关系变形后得到tanθ(1﹣cosθ)大于0,由余弦函数的值域得到1﹣cosθ大于0,从而得到tanθ大于0,可得出θ为第一或第三象限,若θ为第一象限角,得到sinθ和cosθ都大于0,化简|cosθ|<|sinθ|,并利用同角三角函数间的基本关系得到tanθ大于1,利用正切函数的图象与性质可得出此时θ的X围;若θ为第三象限角,得到sinθ和cosθ都小于0,化简|cosθ|<|sinθ|,并利用同角三角函数间的基本关系得到tanθ大于1,利用正切函数的图象与性质可得出此时θ的X围,综上,得到满足题意的θ的X围.【解答】解:∵sinθ<tanθ,即tanθ﹣sinθ>0,∴tanθ(1﹣cosθ)>0,由1﹣cosθ>0,得到tanθ>0,当θ属于第一象限时,sinθ>0,cosθ>0,∴|cosθ|<|sinθ|化为cosθ<sinθ,即tanθ>1,则θ∈(,);当θ属于第三象限时,sinθ<0,cosθ<0,∴|cosθ|<|sinθ|化为﹣cosθ<﹣sinθ,即tanθ>1,则θ∈(,),综上,θ的取值X围是.故选C11.化简cosα+sinα(π<α<)得()A.sinα+cosα﹣2 B.2﹣sinα﹣cosαC.sinα﹣cosα D.cosα﹣sinα【考点】三角函数的化简求值.【分析】利用同角三角函数基本关系式、三角函数值在各个象限的符号即可得出.【解答】解:∵π<α<,∴==,同理可得=,∴原式=﹣(1﹣sinα)﹣(1﹣cosα)=﹣2+cosα+sinα.故选:A.12.圆心角为60°的扇形,它的弧长为2π,则它的内切圆的半径为()A.2 B.C.1 D.【考点】圆的标准方程.【分析】设扇形和内切圆的半径分别为R,r.由弧长公式可得2π=R,解得R.再利用3r=R=6即可求得扇形的内切圆的半径.【解答】解:设扇形和内切圆的半径分别为R,r.由2π=R,解得R=6.由题意可得3r=R=6,即r=2.∴扇形的内切圆的半径为2.故选:A.二、填空题(每题5分,共20分,把答案填在题中横线上)13.函数的定义域为.【考点】正切函数的定义域.【分析】根据正弦函数的定义域,我们构造关于x的不等式,解不等式,求出自变量x的取值X围,即可得到函数的定义域.【解答】解:要使函数的解析式有意义自变量x须满足:≠kπ+,k∈Z解得:故函数的定义域为故答案为14.函数y=2cos(ωx)的最小正周期是4π,则ω=±.【考点】三角函数的周期性及其求法.【分析】利用周期公式列出关于ω的方程,求出方程的解即可得到ω的值.【解答】解:∵=4π,∴ω=±.故答案为:±15.已知tanα=2,则tan2α的值为﹣.【考点】二倍角的正切.【分析】由条件利用二倍角的正切公式求得tan2α的值.【解答】解:∵tanα=2,∴tan2α===﹣,故答案为:﹣.16.已知sin(﹣x)=,则cos(﹣x)= ﹣.【考点】运用诱导公式化简求值.【分析】原式中的角度变形后,利用诱导公式化简,将已知等式代入计算即可求出值.【解答】解:∵sin(﹣x)=,∴cos(﹣x)=cos[+(﹣x)]=﹣sin(﹣x)=﹣.故答案为:﹣三.解答题(共70分)17.已知sinα+cosα=,α∈(0,π),求的值.【考点】三角函数的化简求值.【分析】把已知等式两边平方,利用完全平方公式及同角三角函数间的基本关系变形求出2sinαcosα的值,进而判断出sinα﹣cosα的正负,利用完全平方公式及同角三角函数间的基本关系求出sinα﹣cosα的值,联立求出sinα与cosα的值,即可确定出的值.【解答】解:把sinα+cosα=①,两边平方得:(sinα+cosα)2=1+2sinαcosα=,∴2sinαcosα=﹣,∵α∈(0,π),∴sinα>0,cosα<0,即sinα﹣cosα>0,∴(sinα﹣cosα)2=1﹣2sinαcosα=,即sinα﹣cosα=②,联立①②,解得:sinα=,cosα=﹣,则==﹣.18.已知函数f(x)=Asin(ωx+φ),x∈R(其中)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为.(Ⅰ)求f(x)的解析式;(Ⅱ)当,求f(x)的值域.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;正弦函数的定义域和值域.【分析】(1)根据最低点M可求得A;由x轴上相邻的两个交点之间的距离可求得ω;进而把点M代入f(x)即可求得φ,把A,ω,φ代入f(x)即可得到函数的解析式.(2)根据x的X围进而可确定当的X围,根据正弦函数的单调性可求得函数的最大值和最小值.确定函数的值域.【解答】解:(1)由最低点为得A=2.由x轴上相邻的两个交点之间的距离为得=,即T=π,由点在图象上的故∴又,∴(2)∵,∴当=,即时,f(x)取得最大值2;当即时,f(x)取得最小值﹣1,故f(x)的值域为[﹣1,2]19.sin θ和cos θ为方程2x2﹣mx+1=0的两根,求+.【考点】三角函数的化简求值.【分析】利用韦达定理可求得sinθ+cosθ=,sinθ•cosθ=,利用同角三角函数基本关系式即可解得m,将所求的关系式化简为sinθ+cosθ,即可求得答案.【解答】解:∵sinθ和cosθ为方程2x2﹣mx+1=0的两根,∴sinθ+cosθ=,sinθ•cosθ=,∵(sinθ+cosθ)2=sin2θ+2sinθcosθ+cos2θ=1+2sinθcosθ,∴m2=1+2×,解得:m=±2,∴+=+=sinθ+cosθ=.20.已知函数y=2acos(2x﹣)+b的定义域是[0,],值域是[﹣5,1],求a、b的值.【考点】余弦函数的定义域和值域.【分析】由求出的X围,由余弦函数的性质求出cos(2x﹣)的值域,根据解析式对a分类讨论,由原函数的值域分别列出方程组,求出a、b的值.【解答】解:由得,,∴cos(2x﹣),当a>0时,∵函数的值域是[﹣5,1],∴,解得,当a<0时,∵函数的值域是[﹣5,1],∴,解得,综上可得,或.21.函数f(x)=3sin(2x+)的部分图象如图所示.(Ⅰ)写出f(x)的最小正周期及图中x0,y0的值;(Ⅱ)求f(x)在区间[﹣,﹣]上的最大值和最小值.【考点】三角函数的周期性及其求法;正弦函数的定义域和值域.【分析】(Ⅰ)由题目所给的解析式和图象可得所求;(Ⅱ)由x∈[﹣,﹣]可得2x+∈[﹣,0],由三角函数的性质可得最值.【解答】解:(Ⅰ)∵f(x)=3sin(2x+),∴f(x)的最小正周期T==π,可知y0为函数的最大值3,x0=;(Ⅱ)∵x∈[﹣,﹣],∴2x+∈[﹣,0],∴当2x+=0,即x=时,f(x)取最大值0,当2x+=,即x=﹣时,f(x)取最小值﹣322.已知函数.(1)求函数f(x)的最小正周期和单调增区间;(2)函数f(x)的图象可以由函数y=sin2x(x∈R)的图象经过怎样的变换得到?【考点】函数y=Asin(ωx+φ)的图象变换;三角函数的周期性及其求法;正弦函数的单调性.【分析】(1)由函数的解析式求得周期,由求得x的X围,即可得到函数的单调增区间(2)由条件可得,再根据函数y=Asin(ωx+∅)的图象变换规律得出结论.【解答】解:(1)由函数,可得周期等于 T==π.由求得,故函数的递增区间是.(2)由条件可得.故将y=sin2x的图象向左平移个单位,再向上平移个单位,即可得到f(x)的图象.。

高一下学期第一次月考数学试题(解析版

高一下学期第一次月考数学试题(解析版
在 中角 所对的边分别为 __________.
(1)求角 ;
(2)求 的取值范围.
【18题答案】
【答案】(1)条件选择见解析
(2)
【解析】
【分析】(1)若选①由正弦定理得 即可求出 ;若选②由正弦定理得 即可求出 .
(2)用正弦定理得表示出 得到 利用三角函数求出 的取值范围.
【小问1详解】
若选①则由正弦定理得
【解析】
【分析】由题可得 .作差法可判断A;用基本不等式可判断B;分别化简不等式左边和右边可判断C;假设法可判断D.
【详解】如图
易知 .
A: (当 时取等号) 故A正确;
B: (当 时取等号)故B正确;
C:
又 (当 时取等号) 故C正确;
D:假设 成立



当 且 时上式不成立故D错误.
故选:ABC.
同理由 三点共线则存在实数 使得
所以 解得 所以 所以A正确.
又由 且
可得 解得 则
可得 所以B正确;
又由
当且仅当 时等号成立所以C正确.
又由 可得 所以D不正确.
故选:ABC.
12.设 分别为 中ab两边上的高 的面积记为S.当 时下列不等式正确的是( )
A. 【20题答案】
【答案】(1)
(2)
【解析】
【分析】(1)由最大值和最小值求得 的值由 以及 可得 的值再由最高点可求得 的值即可得 的解析式由正弦函数的对称中心可得 对称中心;
(2)由图象的平移变换求得 的解析式由正弦函数的性质可得 的值域令 的取值为 的值域解不等式即可求解.
【小问1详解】
由题意可得: 可得 所以
A. B.
C. D.

2019-2020学年四川省宜宾市叙州区第一中学校(原宜宾县一中)高一下学期第一次在线月考数学试卷

2019-2020学年四川省宜宾市叙州区第一中学校(原宜宾县一中)高一下学期第一次在线月考数学试卷

绝密★启用前2020年春四川省叙州区第一中学高一第一学月考试数学试题学校:___________姓名:___________班级:___________考号:___________注意事项:1、答题前填写好自己的姓名、班级、考号等信息 2、请将答案正确填写在答题卡上一、选择题:本题共12小题,每小题5分,共60分。

在每小题给的四个选项中,只有一项是符合题目要求的。

1.已知区间,则 A .B .C .D .2.已知函数,则A .B .C .D .3.函数的最小正周期为 A .B .C .D .4.已知f (x )=cos2x,则下列等式成立的 是 A .f (2π-x )=f (x ) B .f (2π+x )=f (x ) C .f (-x )=-f (x ) D .f (-x )=f (x )5.设()f x 是定义在R 上的奇函数,当0x ≤时,2()2f x x x =-,则(1)f =A .3-B .1-C .1D .36.若角θ的终边过点13(,)22-,则sin θ等于A .12B .12-C .3-D .3 7.“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点.用1S ,2S 分别表示乌龟和兔子所行的路程,t 为时间,则与故事情节相吻合的是A .B .C .D .8.为了求函数()237xf x x =+-的一个零点,某同学利用计算器得到自变量x 和函数()f x 的部分对应值,如表所示:x1.25 1.3125 1.375 1.4375 1.5 1.5625 ()f x-0.8716-0.5788-0.28130.21010.328430.64115则方程237x x +=的近似解(精确到0.1)可取为 A .1.32B .1.39C .1.4D .1.39.函数sin()2y x x π=⋅+的部分图象是A .B .C .D .10.已知函数()0.5log f x x =,则函数()22f x x -的单调减区间为A .(],1-∞B .[)1,+∞C .(]0,1D .[)1,211.定义在R 上的奇函数()f x 以5为周期,若()30f =,则在()0,10内,()0f x =的解的最少个数是 A .3B .4C .5D .712.设()f x 是R 上的周期为2的函数,且对任意的实数x ,恒有()()0f x f x --=,当[]1,0x ∈-时,()112xf x ⎛⎫=- ⎪⎝⎭,若关于x 的方程()()log 10a f x x -+=(0a >且1a ≠)恰有五个不相同的实数根,则实数a 的取值范围是 A .[]3,5B .()3,5C .[]4,6D .()4,6第II 卷 非选择题(90分)二、填空题:本题共4小题,每小题5分,共20分。

宁夏育才中学2019-2020学年高一下学期第一次月考数学试题Word版含答案 (3)

宁夏育才中学2019-2020学年高一下学期第一次月考数学试题Word版含答案 (3)

宁夏育才中学2019-2020学年下学期第一次月考高一数学试题一、选择题(本大题共12小题,每小题4分,满分48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列叙述不正确的是 ( ) A.概率是频率的稳定值,频率是概率的近似值B.发生则当M发生时,N一定N,已知事件M ⊆ C.若A,B 为互斥事件,则P(A)+P(B)<1D.若一生产厂家称,我们厂生产的产品合格率是0.98,则任取一件该产品,其是合格品的可能性大小为98%2.下列各数中最小的是 ( )A. )2(111111B. )5(222C.)4(1000D. 653.从1,2,3,4这4个数中,不放回地任意取两个数,两个数的和是奇数的概率是( ). A .32B .31 C .43 D .41 4.用“辗转相除法”求得459和357的最大公约数是: ( )A .3 B .9 C .17 D .51 5.阅读右边程序,若输入的a,b 值分别为3,-5,则输出 的a,b 值分别为( ) A.-1,4 B.3,21 C.45,21- D.3,25- 6.某厂共有1000名员工,准备选择50人参加技术评估,现将这1000名员工编号为1到1000,准备运用系统抽样的方法抽取,已知在第一部分随机抽取到的号码是15,那么在最后一部分抽到员工的编号是( )A .965B .975C .985D .9957.有5件产品,其中3件正品,2件次品,从中任取2件,则互斥而不对立的两个事件是 ( ) A .至少有1件次品与至多有1件正品 B .至少有1件次品与都是正品 C .至少有1件次品与至少有1件正品 D .恰有1件次品与恰有2件正品 8.右图是根据某赛季甲、乙两名篮球运动员每场比赛得分情况画出的茎叶图.则甲、乙两名运动员成绩比较( )INPUT a,b a=a+b b=a-b a=(a+b)/2 b=(a-b)/2 PRINT a,b ENDA 甲比乙稳定B 乙比甲稳定C 甲、乙稳定程度相同D 无法确定9.右图是容量为n 的样本的频率分布直方图,已知样本数据在[14,18)内的频数是12,则样本数据落在[6,10)的频数是( ) A. 12 B .16 C. 18 D .2010.右图给出的是计算10181614121++++的值的一个流程图,其中判断框内应填人的条件是( )A 10>iB 10≥iC 5>iD 5≥i11.如图,矩形长为6,宽为4,在矩形内随机地撒300粒黄豆,数得落在椭圆外的黄豆数为66颗,以此实验数据为依据可以估算出椭圆的面积为( )A . 5.28B . 16.32C . 17.28D .18.7212.设a,b 分别是先后抛掷一枚质地均匀的骰子得到的点数,则事件有两不等实根”“方程02=++b ax x 的概率是( )A.3619 B.3617 C. 21 D.3615二、填空题:(本大题共4小题,每小题4分,共16分)13.用秦九韶算法计算4532)(34-++=x x x x f 在2=x 的值时,3v 的值为_______________14.现从A,B,C,D,E 五人中选取三人参加一个重要会议,五人被选中的机会相等,则A 和B 同时被选中的概率是___________15.已知球O 是正方体1111D C B A ABCD -的内切球,则在正方体1111D C B A ABCD -内任取一点M,点M 在球O 外的概率是__________16.某校共有学生2000名,各年级男、 女生人数如右表。

高一数学第一次月考试题(含解析)

高一数学第一次月考试题(含解析)
【详解】证明:(Ⅰ)因为三棱柱ABC-A1B1C1中CC1⊥平面ABC,
所以CC1⊥BC.
因为AC=BC=2, ,
所以由勾股定理的逆定理知BC⊥AC.
又因为AC∩CC1=C,
所以BC⊥平面ACC1A1.
因为AM 平面ACC1A1,
所以BC⊥AM.
(Ⅱ)过N作NP∥BB1交AB1于P,连结MP,则NP∥CC1.
A. 30°B. 60°C. 120°D. 150°
【答案】A
【解析】
试题分析:先利用正弦定理化简 得 ,再由 可得 ,然后利用余弦定理表示出 ,把表示出的关系式分别代入即可求出 的值,根据A的范围,利用特殊角的三角函数值即可求出A的值.
由 及正弦定理可得 ,
故选A.
考点:正弦、余弦定理
4.如图, 是水平放置的 的直观图,则 的面积为
二、填空题(每题5分,满分20分,将答案填在答题纸上)
13.在 中,角 的对边分别为 ,若 ,则角 的值为________.
【答案】
【解析】
【分析】
根据余弦定理得到 由特殊角的三角函数值得到角B.
【详解】根据余弦定理得到 进而得到角B= .
故答案为: .
【点睛】在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说,当条件中同时出现 及 、 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.
A. 6B.
C. D. 12
【答案】D
【解析】
△OAB是直角三角形,OA=6,OB=4,∠AOB=90°,∴S△OAB= ×6×4=12.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

k , k ] ( k Z );
8
8
2
f ( x) 的最小正周期为 T

2
k ,故函数 f ( x) 的递调递增区 8
(2) 因为 f ( x) 数,又 f ( ) 8
2 cos(2 x 0, f( )
8
)在区间 [ , ] 上为增函数,在区间 [ , ] 上为减函
4
88
82
π
2 , f ( ) 2 cos( )
18. 如图,已知△ ABC中, D为 BC的中点, AE= 1 EC,AD,BE 交于点 F,设 AC a, AD b 2
( 1)用 a,b 分别表示向量 AB, EB ;
A
( 2)若 AF t AD , 求实数 t 的值.
E F
19. 已知 f ( ) sin(2
) tan(
) cos(
cos( ) tan(3 )
9. 函数 y sin x sin x 的值域是 ( )
A. 2,2
B.
0,2 C.
1,1
D.
2,0
10. 将函数 y sin 2x
的图象向左平移 个单位后,得到函数 f (x) 的图象,则 f
4
6
12
()
26
A.
B.
36 C.
3
D.
2
4
4
2
2
11. y log 1 sin( 2x ) 的单调递减区间是(
1(
0) ,其函数图象的相邻两条对称轴之间的距
62
离为 .
2 ( 1)求函数 f x 的解析式及对称中心;
( 2)将函数 f x 的图象向左平移
个单位长度,再向上平移
12
1 个单位长度得到函数 2
g( x)的图象,若关于 x 的方程 3 g x 2 mg x 2 0 在区间 0, 上有两个不相等的 2

2
4
A. k
,k k Z
B.
4
k
,k
kZ
8
8
C. k
3 ,k
8
kZ 8
3
D. k
,k
kZ
8
8
12. 若函数 f x sin x 6
0 在区间 ( π, 2π) 内没有最值,则 的取值范围是
()
A.
1 0,
12
12 ,
B.
1 0,
43
6
12 ,
C.
12 ,
33
43
D.
12 ,
33
二、填空题(每小题 5 分,共 20 分)
7
x1 x2 x3

3
⑤设函数 g x f x 2 x ,若 g 1 g
g 1 2 ,则
3
三、解答题:(本大题共 6 小题,共 70 分。解答应写出文字说明及演算步骤. 。)
17. 已知函数 f ( x)
2 cos(2 x ) , x R . 4
(1) 求函数 f ( x) 的单调增区间 ;
(2) 求函数 f ( x) 在区间 [ , ] 上的最大值,并求出取得最值时 x 的值 . 82
上有两个不同的解,则

∴方程 f ( kx)= m+1 在
时恰好有两个不同的解,则 m

22. 解( 1)∵它的函数图象的相邻两条对称轴之间的距离为

∴ = 2× .
∴ω = 1,∴ f ( x)= sin ( 2x﹣ )﹣ .
令 2x﹣ = kπ ,得 x= + ,k∈ Z,
可得函数的图象的对称中心为(
一、选择题: (本答题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有 一项是符合题目要求的。 ) 1. 下列有 4 个命题:其中正确的命题有 ( ) ( 1)第二象限角大于第一象限角; (2)不相等的角终边可以相同; ( 3)若 是第二象限角,
则 2 一定是第四象限角; ( 4)终边在 x 轴正半轴上的角是零角 .
实根,求实数 m的取值范围.
一.选择题: CCDDC CCBAD
答案
BB
二.填空题: 13. 4cm2
14. x | x
k ,k Z
6
15. a c b
16. ①③④⑤
三.解答题:
17. 解:( 1)因为 f ( x)
2 cos(2 x ) ,所以函数 4

2k 2x
2k ,得 3 k x
4
8
3
间为 [
A. 3
2
B.
C.
5
5
5
25
D.
5
5
7. 函数 y sinx 的一个单调增区间是(

A.
,
B.
3 ,
C.
44
44
3 ,
3
D.
,2
2
2
8. 在 ABC 中,若 sin A B C sin A B C , 则 ABC 必是( )
A. 等腰三角形 B .等腰或直角三角形 C. 直角三角形 D. 等腰直角三角
= max 3 , f ] 上恒


,得 ω= 1,

,解得
,令
,即
,解得


( 2)∵函数
的周期为
, k> 0,∴

∴当
时,方程 f ( kx)= m+1 恰有两个不同的解,
等价于方程 m= 2
恰有两个不同的解,
即直线 y= m与函数 y= 2
图象有两个交点

,∵
,∴

如图, s= 2sin t 在
A.(1)(2) B.(3)(4) C.(2) D.(1)(2)(3)(4) 2.如果 cos 0,且 tan 0,则 是 ( )
A. 第一象限的角 B .第二象限的角 C. 第三象限的角 D. 第四象限的角
3. 已知角 的终边经过点 (1, 2) ,则 sin ( )
A. 1
B.
2
-2 C.
5
D.
+ ,﹣ ) k∈Z
( 2)将函数 f (x)的图象向左平移
个单位长度,
可得 y= sin ( 2x+ ﹣ )﹣ = sin2 x﹣ 的图象;
再向上平移 个单位长度得到函数 g(x)= sin2 x 的图象.
若关于 x 的方程 3[ g(x) ] 2+mg( x) +2=0 在区间
上有两个不等实根,
2
4
2 cos
1,
4
故函数 f (x) 在区间 [ , ] 上的最大值为 2 ,此时 x
82
8
18. 解:( 1)由题意, D为 BC的中点,且 = ,
∵ + = 2 ,∴ = 2 ﹣ ,∴ = ﹣ = 2 ﹣ ﹣ =﹣ +2 ;
( 2)∵ = t = t ,∴ = ﹣ =﹣ +(2﹣ t ) ,
∵ =﹣ +2 , , 共线,∴
x
5
4
11 7
17
63
6
3
6
3
6
y ﹣1 1
3
1
﹣1
1
3
( 1)根据表格提供的数据求函数 f ( x)的一个解析式.
( 2)根据( 1)的结果,若函数 y=f(kx)( k> 0)周期为 2 ,当 x 3
0, 时,方程 f kx m 1 3
恰有两个不同的解,求实数 m 的取值范围.
22. 已知函数 f ( x) 3 sin 2 x
13. 扇形的周长为 8cm ,圆心角为 2 弧度,则该扇形的面积为 _______. 错误!未找到引用源。
14. 函数 y tan x
的定义域是 _______.
3
15.设 a log 1 tan70 ,b log1 sin 25 , c
2
2
cos25
1
,则它们的大小关系为 ______.
2
16. 已知函数 f x 2 sin x
,则下列命题正确的是 _________.
3
①函数 f x 的最大值为 2;②函数 f x 的图象关于点
,0 对称; 6
③函数 f x 的图象与函数 h x 2 sin x 2 的图象关于 x 轴对称; 3
④ 若 实 数 m 使 得 方 程 f x = m 在 0,2 上 恰 好 有 三 个 实 数 解 x1 , x2, x3 , 则
0
﹣1
1﹣
又∵ x∈ [ , ] ,
∴ ≤ 2x﹣ ≤ ,
即 2≤ 1+2sin( 2x﹣ )≤ 3,∴f( x) ( x) = min 2.
由题意可得: f( x)< m+2 在 x∈ [ , 成立,
∴m+2> 3,解得: m>1, ∴m的范围是( 1, +∞). 21. 解:( 1)设 f ( x)的最小正周期为 T,得
B )

D
C
( 1)将 f ( α )化为最简形式;
( 2)若 f
3 f
2
1
,且
5
0, ,求 tan 的值.
20. 已知函数 f x 1 2sin 2x 3
(Ⅰ)用五点法作图作出 f x 在 x 0, 的图象;
( 2)若不等式 f x m 2 在 x
, 上恒成立,求实数 m 的取值范围.
42
21. 已知函数 f (x)= Asin ( ω x+φ) +B,(A> 0, ω > 0, | φ | < )的一系列对应值如表: 2
5
25 5
4. 若角 的顶点为坐标原点, 始边在 x 轴的非负半轴上, 终边在直线 y
相关文档
最新文档