海大算法设计与分析考试复习题教学内容
算法设计与分析-期末考试
算法设计与分析-期末考试
本文档旨在为算法设计与分析期末考试提供有用的信息和指导。
以下是一些考试准备的建议和注意事项。
考试准备建议
1. 复课堂内容:仔细复课堂讲解和讲义,理解算法设计和分析
的基本概念和方法。
2. 完成作业和题:回顾并理解作业和题的解答过程,熟悉常用
算法的实现和应用。
3. 查阅教材:阅读教材相关章节,加深理解算法设计和分析的
原理和技巧。
4. 解决实际问题:尝试解决一些实际问题,应用算法设计和分
析的知识解决实际难题,加深对算法的理解和掌握程度。
5. 制定复计划:制定合理的复计划,合理分配时间,确保能够
复全面而有效。
考试注意事项
1. 注意题目要求:仔细阅读每道题目的要求,确保理解题目意思和要求的算法设计和分析方法。
2. 时间管理:根据考试时间分配,合理安排每道题目的答题时间,确保能够在规定时间内完成答题。
3. 表达清晰:在答题过程中,逻辑清晰,表达准确,注重对算法设计和分析原理的说明。
4. 检查答案:在完成答题后,仔细检查答案,确保没有错误和遗漏。
5. 分配时间:合理分配时间,根据题目难度和分数权重,决定每题的答题时间分配。
希望这份文档能对您的考试准备有所帮助。
祝您在算法设计与分析的期末考试中取得好成绩!。
!算法设计与分析总复习
!算法设计与分析总复习算法设计与分析是计算机科学中非常重要的一个领域,它涉及到了算法的设计、性能分析和优化等方面。
在准备考试之前,我们需要对算法设计与分析的基本概念和常用算法进行全面复习。
一、算法设计与分析基本概念1.算法的定义:算法是一系列解决特定问题的有限步骤。
2.算法的特性:算法具有明确性、有限性、确定性和输入/输出。
3.算法的正确性:算法必须能够解决问题,并得到正确的答案。
4.算法的效率:算法的时间复杂度和空间复杂度是衡量算法效率的重要指标。
二、常用算法1.排序算法:常见的排序算法包括冒泡排序、插入排序、选择排序、快速排序、归并排序等。
需要了解每种排序算法的思想、时间复杂度和空间复杂度,并能够对其进行实现和优化。
2.查找算法:常用的查找算法包括顺序查找、二分查找、哈希查找等。
需要了解每种查找算法的思想和时间复杂度,并能够对其进行实现和应用。
3. 图算法:图算法包括深度优先(DFS)、广度优先(BFS)、最短路径算法(Dijkstra算法、Floyd算法)等。
需要了解这些算法的思想、时间复杂度和应用场景,并能够对其进行实现和应用。
4.动态规划算法:动态规划算法适用于具有重叠子问题和具有最优子结构性质的问题。
需要了解动态规划算法的基本思想、时间复杂度和应用场景,并能够对具体问题进行动态规划的设计和实现。
5.贪心算法:贪心算法常用于解决最优化问题,每一步都选择当前最优解,以期最终达到全局最优解。
需要了解贪心算法的基本思想、时间复杂度和应用场景,并能够对具体问题进行贪心算法的设计和实现。
三、算法的时间复杂度和空间复杂度1. 时间复杂度:算法的时间复杂度表示算法的执行时间和输入数据规模之间的关系。
常见的时间复杂度有O(1)、O(logn)、O(n)、O(nlogn)、O(n^2)等。
需要掌握各种时间复杂度的计算方法和复杂度的比较。
2.空间复杂度:算法的空间复杂度表示算法的内存消耗和输入数据规模之间的关系。
《算法分析与设计》期末测验复习题纲(完整版)
《算法分析与设计》期末测验复习题纲(完整版)————————————————————————————————作者:————————————————————————————————日期:《算法分析与设计》期末复习题一、选择题1.算法必须具备输入、输出和( D )等4个特性。
A.可行性和安全性 B.确定性和易读性C.有穷性和安全性 D.有穷性和确定性2.算法分析中,记号O表示( B ),记号Ω表示( A )A.渐进下界B.渐进上界C.非紧上界D.紧渐进界3.假设某算法在输入规模为n时的计算时间为T(n)=3*2^n。
在某台计算机上实现并完成概算法的时间为t秒。
现有另一台计算机,其运行速度为第一台的64倍,那么在这台新机器上用同一算法在t秒内能解输入规模为多大的问题?( B )解题方法:3*2^n*64=3*2^xA.n+8 B.n+6C.n+7 D.n+54.设问题规模为N时,某递归算法的时间复杂度记为T(N),已知T(1)=1,T(N)=2T(N/2)+N/2,用O表示的时间复杂度为( C )。
A.O(logN) B.O(N)C.O(NlogN) D.O(N²logN)5.直接或间接调用自身的算法称为( B )。
A.贪心算法 B.递归算法C.迭代算法 D.回溯法6.Fibonacci数列中,第4个和第11个数分别是( D )。
A.5,89 B.3,89C.5,144 D.3,1447.在有8个顶点的凸多边形的三角剖分中,恰有( B )。
A.6条弦和7个三角形 B.5条弦和6个三角形C.6条弦和6个三角形 D.5条弦和5个三角形8.一个问题可用动态规划算法或贪心算法求解的关键特征是问题的( B )。
A.重叠子问题 B.最优子结构性质C.贪心选择性质 D.定义最优解9.下列哪个问题不用贪心法求解( C )。
A.哈夫曼编码问题 B.单源最短路径问题C.最大团问题 D.最小生成树问题10.下列算法中通常以自底向上的方式求解最优解的是( B )。
算法分析与设计考试复习题及参考答案
15..最坏情况下快速排序退化成冒泡排序,需要比较n2次。 16. 是一种依据最优化量度依次选择输入的分级处理方法。基本思 路是:首先根据题意,选取一种量度标准;然后按这种量度标准对这n 个输入排序,依次选择输入量加入部分解中。如果当前这个输入量的加 入,不满足约束条件,则不把此输入加到这部分解中。 17.回溯法的解(x1,x2,……xn)的隐约束一般指个元素之间应满 足的某种关系。 18. 将数组一分为二,分别对每个集合单独排序,然后将已排序的 两个序列归并成一个含n个元素的分好类的序列。如果分割后子问题还 很大,则继续分治,直到一个元素。 19.快速排序的基本思想是在待排序的N个记录中任意取一个记录, 把该记录放在最终位置后,数据序列被此记录分成两部分。所有关键字 比该记录关键字小的放在前一部分,所有比它大的放置在后一部分,并 把该记录排在这两部分的中间,这个过程称作一次快速排序。之后重复 上述过程,直到每一部分内只有一个记录为止。 20.在定义一个过程或者函数的时候又出现了调用本过程或者函数 的成分,既调用它自己本身,这称为直接递归。如果过程或者函数P调 用过程或者函数Q,Q又调用P,这个称为间接递归。消除递归一般要用 到栈这种数据结构。 21.哈密顿环是指一条沿着图G的N条边环行的路径,它的访问每个 节点一次并且返回它的开始位置。 22.当前选择的节点X[k]是从未到过的节点,即X[k]≠X[i](i=1,2, …,k-1),且C(X[k-1], X[k])≠∞,如果k=-1,则C(X[k], X[1]) ≠∞。 23. 思路是:最初生成树T为空,依次向内加入与树有最小邻接边 的n-1条边。处理过程:首先加入最小代价的一条边到T,根据各节点到 T的邻接边排序,选择最小边加入,新边加入后,修改由于新边所改变 的邻接边排序,再选择下一条边加入,直至加入n-1条边。 二、复杂性分析 1、 递归方程
《算法设计与分析》考试题目及答案(DOC)
Typew cleft = c - cw; // 剩余容量
Typep b = cp;
// 结点的上界
// 以物品单位重量价值递减序装入物品
while (i <= n && w[i] <= cleft) {
cleft -= w[i];
b += p[i];
i++;
} // 装满背包
if (i <= n) (b += p[i]/w[i] * cleft);
cg(n) }; B. O(g(n)) = { f(n) | 存在正常数 c 和 n0 使得对所有 n n0 有:0 cg(n)
f(n) };
C. (g(n)) = { f(n) | 对于任何正常数 c>0,存在正数和 n0 >0 使得对所有 n n0 有:0 f(n)<cg(n) };
f(n)个单位时间。用 T(n)表示该分治法解规模为|P|=n 的问题所需的计算时
间,则有:T (n)
kT (n
O(1) / m)
f
(n)
n 1 n 1
通过迭代法求得
T(n)的显式表达式为:T (n)
nlogm k
logm n1
C.最优子结构性质与重叠子问题性质 D. 预排序与递归调用
7. 回溯法在问题的解空间树中,按(D)策略,从根结点出发搜索解空间树。 A. 广度优先 B. 活结点优先 C.扩展结点优先 D. 深度优先
8. 分支限界法在问题的解空间树中,按(A)策略,从根结点出发搜索解空间 树。
A. 广度优先 B. 活结点优先 C.扩展结点优先 D. 深度优先
《算法设计与分析》复习题参考答案
《算法设计与分析》复习题参考答案一、概念题:请解释下列术语。
1.数据元素的集合。
2.队列是一个线性表,限制为只能在固定的一端进行插入,在固定的另一端进行删除。
3.对于算法a,如果存在一多项式p(),使得对a的每个大小为n的输入,a的计算时间为o(p(n)),则称a具有多项式复杂度4.二叉树的层数i与该层上的结点数n的关系为:n(i)=i2。
5.如果可满足性约化为一个问题L,则称该问题为NP-难度的。
6.算法就是一组有穷的规则,它规定了解决某一特定类型问题的一系列运算。
7.多数据单指令流8.若图的任意两个节点间均存在路径可达,则称该图为连通图。
9. 是指一个数学模型以及定义在该模型上的一组操作。
10.算法的复杂度只能用指数函数对其限界。
11.函数或过程直接或间接调用它自己。
12.和高度相同的满二叉树的每个对应的顶点编号相同的树13.由所有可行状态所构成的树。
14.如果L时NP难度的且L∈NP,则称问题L是NP-完全的。
15.算法是一个步骤的序列,满足:有穷性、可行性、确定性、输入、输出;过程不需要满足由穷性。
16.有向图的每条边有起点与终点之分,且用箭头指向边的终点。
无向图的边无起点和终点之分,边无箭头。
17.树(tree)是一个或多个结点的有限集合,,它使得:①有一个特别指定的称作根(root)的结点;②剩下的结点被分成m≥0个不相交的集合tl,…,tm,这些集合的每一个都是一棵树,并称t1,…,tm为这根的子树(subtree)。
18.P是所有可在多项式时间内用确定算法求解的判定问题的集合。
19.运算结果是唯一确定的算法20. nP是所有可在多项式时间内用不确定算法求解的判定问题的集合二、填空题1.n2.O ( n )3.最优化问题4.宽度优先搜索5.结点的最大级数6.互异7.内结点和外结点8.方形9.内部路径长度、外部路径长度10.一次11.归并分类算法12.贪心选择性质13.最优子结构14.二元归并15.最小成本生成树16.最优性17.最优决策18.可容许最大成本c19.最小成本三、程序填空题。
算法设计与分析(复习3)
作业题-算法分析题2-12
难点在于O(1)辅助空间。
将a[p+5*i]至a[p+5*i+4]的第3小元素与a[p+i]交换位置;
复杂度分析
T(n)=O(n)
//找中位数的中位数,r-p-4即上面所说的n-5 Type x = Select(a, p, p+(r-p-4)/5, (r-p-4)/10); 上述算法将每一组的大小定为5,并选取75作为是否作递归 int i=Partition(a,p,r, x), j=i-p+1; 调用的分界点。这2点保证了T(n)的递归式中2个自变量之和 if (k<=j) n/5+3n/4=19n/20=εn,0<ε<1。这是使T(n)=O(n)的关键之 return Select(a,p,i,k); 处。当然,除了5和75之外,还有其他选择。 else return Select(a,i+1,r,k-j); }
线性时间选择
下图是上述划分策略的示意图,其中n个元素 用小圆点来表示,空心小圆点为每组元素的中 位数。中位数中的中位数x在图中标出。图中 所画箭头是由较大元素指向较小元素的。
设所有元素互不相同。在这种情况下, 找出的基准x至少比3(n-5)/10个元素 大,因为在每一组中有2个元素小于 本组的中位数,而n/5个中位数中又 有(n-5)/10个小于基准x。同理,基准 x也至少比3(n-5)/10个元素小。而当 n≥75时,3(n-5)/10≥n/4所以按此基 准划分所得的2个子数组的长度都至 少缩短1/4。
线性求找出这n个 元素中第k小的元素
template<class Type> Type RandomizedSelect(Type a[],int p,int r,int k) { if (p==r) return a[p]; int i=RandomizedPartition(a,p,r), j=i-p+1; if (k<=j) return RandomizedSelect(a,p,i,k); else return RandomizedSelect(a,i+1,r,k-j); }
算法设计与分析复习要点
算法设计与分析复习要点一、单项选择题(本大题共15小题,每小题2分,共30分)二、填空题(本大题共15空,每空1分,共15分)三、分析题(本大题共5小题,每小题5分,共25分)四、综合题(本大题共4小题,1、2题每题6分,3题8分,4题10分,共30分)第2章,导引与基本数据结构:1、什么是算法, 算法的5个特性;对一个算法作出全面分析的两个阶段。
P245个特性:确定性、能行性、输入、输出、有穷性两个阶段:事前分析、事后测试2、O(g(n)),Ω(g(n)), (g(n))的含义。
3、多项式时间算法:可用多项式(函数)对其计算时间限界的算法。
4、常见的多项式限界函数所表示算法时间复杂度的排序:Ο(1) <Ο(logn) < Ο(n) < Ο(nlogn) < Ο(n2) < Ο(n3)5、指数时间算法:计算时间用指数函数限界的算法6、常见的指数时间限界函数:Ο(2n) < Ο(n!) < Ο(n n)11()2(1)11()21nn T n T n n T n =⎧=⎨-+>⎩⇒=-7、什么是算法的复杂性:是该算法所需要的计算机资源的多少,它包括时间和空间资源。
8、复习栈和队列、树、图的基本知识,了解二元树、完全二元树,满二元树、二分检索树、了解图的邻接矩阵和邻接表存储方法。
9、能写出图的深度优先序列和广度优先序列。
10、会求如下一些简单的函数的上界表达式: 3n 2+10n =O(n 2)第3、4章 递归与分治算法1、理解递归算法的优缺点,深刻理解递归算法的执行过程。
如能写出解决n 阶汉诺塔问题的解,并能分析写出3阶汉诺塔问题的递归执行轨迹。
2、递归算法的优点:结构清晰,可读性强,容易用数学归纳法来证明算法的正确性,因此它为设计算法、调试程序带来很大方便。
3、递归算法的缺点:运行效率较低,耗费的计算时间和占用的存储空间都多。
为了达到此目的,根据具体程序的特点对递归调用工作栈进行简化,尽量减少栈操作,压缩栈存储空间以达到节省计算时间和存储空间的目的。
(完整版)算法设计与分析考试题及答案,推荐文档
____________________________________。 4.若序列 X={B,C,A,D,B,C,D},Y={A,C,B,A,B,D,C,D},请给出序列
X 和 Y 的一个最长公共子序列_____________________________。 5.用回溯法解问题时,应明确定义问题的解空间,问题的解空间至
和
之分。
5、 f(n)= 6×2n+n2,f(n)的渐进性态 f(n)= O(
)
6、 贪心算法总是做出在当前看来
的选择。也就是说贪心算法并不从整体最优考
虑,它所做出的选择只是在某种意义上的
。
7、 许多可以用贪心算法求解的问题一般具有 2 个重要的性质:
性质和
性质。
二、简答题(本题 25 分,每小题 5 分)
五、算法理解题(本题 5 分) 设有 n=2k 个运动员要进行循环赛,
现设计一个满足以下要求的比赛日程表:
①每个选手必须与其他 n-1 名选手比赛各一次; ②每个选手一天至多只能赛一次;
③循环赛要在最短时间内完成。
我去(人1)如也果 就n=2k有,循人环赛!最少为需要U进R行扼几天腕; 入站内信不存在向你偶同意调剖沙 (2)当 n=23=8 时,请画出循环赛日程表。
六、算法设计题(本题 15 分) 分别用贪心算法、动态规划法、回溯法设计 0-1 背包问题。要求:说明所使用的算法
策略;写出算法实现的主要步骤;分析算法的时间。 七、算法设计题(本题 10 分)
建议收藏下载本文,以便随时学习! 通过键盘输入一个高精度的正整数 n(n 的有效位数≤240),去掉其中任意 s 个数字后, 剩下的数字按原左右次序将组成一个新的正整数。编程对给定的 n 和 s,寻找一种方案, 使得剩下的数字组成的新数最小。 【样例输入】 178543 S=4 【样例输出】 13
算法分析与设计复习题及参考答案
《算法分析与设计》课程复习资料一、名词解释:1.算法2.程序3.递归函数4.子问题的重叠性质5.队列式分支限界法6.多机调度问题7.最小生成树 二、简答题:1.备忘录方法和动态规划算法相比有何异同?简述之。
2.简述回溯法解题的主要步骤。
3.简述动态规划算法求解的基本要素。
4.简述回溯法的基本思想。
5.简要分析在递归算法中消除递归调用,将递归算法转化为非递归算法的方法。
6.简要分析分支限界法与回溯法的异同。
7.简述算法复杂性的概念,算法复杂性度量主要指哪两个方面? 8.贪心算法求解的问题主要具有哪些性质?简述之。
9.分治法的基本思想是什么?合并排序的基本思想是什么?请分别简述之。
10.简述分析贪心算法与动态规划算法的异同。
三、算法编写及算法应用分析题:1.已知有3个物品:(w1,w2,w3)=(12,10,6),(p1,p2,p3)=(15,13,10),背包的容积M=20,根据0-1背包动态规划的递推式求出最优解。
2.按要求完成以下关于排序和查找的问题。
①对数组A={15,29,135,18,32,1,27,25,5},用快速排序方法将其排成递减序。
②请描述递减数组进行二分搜索的基本思想,并给出非递归算法。
③给出上述算法的递归算法。
④使用上述算法对①所得到的结果搜索如下元素,并给出搜索过程:18,31,135。
3.已知1()*()i i k k ij r r A a +=,k =1,2,3,4,5,6,r 1=5,r 2=10,r 3=3,r 4=12,r 5=5,r 6=50,r 7=6,求矩阵链积A 1×A 2×A 3×A 4×A 5×A 6的最佳求积顺序(要求给出计算步骤)。
4.根据分枝限界算法基本过程,求解0-1背包问题。
已知n=3,M=20,(w1,w2,w3)=(12,10,6),(p1,p2,p3)=(15,13,10)。
最新海大算法设计与分析考试复习题
计算机算法设计与分析复习题一、填空题1、一个算法复杂性的高低体现在计算机运行该算法所需的时间和存储器资源上,因此算法的复杂性有 时间 复杂性和空间复杂性之分。
2、出自于“平衡子问题”的思想,通常分治法在分割原问题,形成若干子问题时,这些子问题的规模都大致 相同 。
3、使用二分搜索算法在n 个有序元素表中搜索一个特定元素,在最佳情况下,搜索的时间复杂性为O (1),在最坏情况下,搜索的时间复杂性为O ( logn )。
4、已知一个分治算法耗费的计算时间T(n),T(n)满足如下递归方程:⎩⎨⎧≥+<=22221n n O n T n O n T )()/()()( 解得此递归方可得T(n)= O ( log n n )。
5、动态规划算法有一个变形方法 备忘录方法 。
这种方法不同于动态规划算法“自底向上”的填充方向,而是“自顶向下”的递归方向,为每个解过的子问题建立了备忘录以备需要时查看,同样也可避免相同子问题的重复求解。
6.递归的二分查找算法在divide 阶段所花的时间是 O(1) ,conquer 阶段所花的时间是 T(n/2) ,算法的时间复杂度是 O( log n) 。
7.Prim 算法利用贪心 策略求解 最小生成树问题,其时间复杂度是 O(n 2) 。
8.背包问题可用 贪心法 , 回溯法 等策略求解。
9.用动态规划算法计算矩阵连乘问题的最优值所花的时间是 O(n 3) , 子问题空间大小是 O(n 2) 。
10.图的m 着色问题可用 回溯 法求解,其解空间树中叶子结点个数是m n ,解空间树中每个内结点的孩子数是 m 。
11.单源最短路径问题可用贪心法 、 分支限界 等策略求解。
12、一个算法的优劣可以用(时间复杂度)与(空间复杂度)与来衡量。
13、回溯法在问题的解空间中,按(深度优先方式)从根结点出发搜索解空间树。
14、直接或间接地调用自身的算法称为(递归算法)。
15、θ 记号在算法复杂性的表示法中表示(渐进确界或紧致界)。
算法设计与分析期末复习题-推荐下载
算法设计与分析期末考试复习题1.算法有哪些特点?为什么说一个具备了所有特征的算法,不一定就是使用的算法?2.证明下面的关系成立:(参考例题1.5--1.6)(1)logn!=Θ(nlogn) (2)2n=Θ(2n+1)1(3)n!=Θ(n n) (4)5n2-6n=Θ(n2)3.考虑下面的算法:输入:n个元素的数组A输出:按递增顺序排序的数组A1. void sort(int A[],int n)2. {23.int i,j,temp;4.for(i=0;i<n-1;i++)5.for(j=i+1;j<n;j++)6.if(A[j]<A[i]) {7.temp=A[i];8.A[i]=A[j];9.A[j]=temp;10.}11. }(1)什么时候算法所执行的元素赋值的次数最少?最少多少次?(2)什么时候算法所执行的元素赋值的次数最多?最多多少次?34.考虑下面的算法:输入:n个元素的数组A输出:按递增顺序排序的数组A1. void bubblesort(int A[],int n)2. {3.int j,i,sorted;4.i=sorted=0;5.while(i<n-1 && !sorted) {6.sorted=1;7.for(j=n-1;j>i;j--) {8.if(A[j]<A[j-1]) {9.temp=A[j];10.A[j]=A[j-1];11.A[j-1]=temp;12.sorted=0;13.}14.}15.i=i+1;16.}17. }(1)算法所执行的元素比较次数最少是多少次?什么时候达到最少?4(2)算法所执行的元素比较次数最多是多少次?什么时候达到最多?(3)算法所执行的元素赋值次数最少是多少次?什么时候达到最少?(4)算法所执行的元素赋值次数最多是多少次?什么时候达到最多?(5)用О、和Ω记号表示算法的运行时间。
《算法设计与分析》试卷及答案
《算法设计与分析》试卷及答案算法设计与分析考试复习试卷《算法设计与分析》试卷1一、多项选择题(每空2分,共20分):1、以下关于算法设计问题的叙述中正确的是__________。
A、计算机与数值问题的求解——方程式求根、插值问题、数值积分、函数逼近等有关B、利用计算机无法解决非数值问题C、计算机在解决分类、语言翻译、图形识别、解决高等代数和组合分析等方面的数学问题、定理证明、公式推导乃至日常生活中各种过程的模拟等问题中,主要进行的是判断、比较,而不是算术运算D、算法设计与分析主要研究对象是非数值问题,当然也包含某些数值问题2、算法的特征包括_________。
A、有穷性B、确定性C、输入和输出D、能行性或可行性3、以下描述是有关算法设计的基本步骤:①问题的陈述②算法分析③模型的拟制④算法的实现⑤算法的详细设计⑥文档的编制,应与其它环节交织在一起其中正确的顺序是__________。
A、①②③④⑤⑥B、①③⑤②④⑥C、②④①③⑤⑥D、⑥①③⑤②④4、以下说法正确的是__________。
A、数学归纳法可以证明算法终止性B、良序原则是证明算法的正确性的有力工具C、x = 小于或等于x的最大整数(x的低限)D、x = 小于或等于x的最大整数(x的高限)5、汉诺塔(Hanoi)问题中令h(n)为从A移动n个金片到C 上所用的次数,则递归方程为__________,其初始条件为__________,将n个金片从A柱移到C柱上的移动次数是__________;设菲波那契(Fibonacci)数列中Fn为第n个月时兔子的对数,则有递归方程为__________,其中F1=F2=__________。
A、Fn=Fn-1+Fn-2B、h(n)= 2h(n-1)+1C、1D、h(1)= 1E、h(n)=2n-1F、06、在一个有向连通图中(如下图所示),找出点A到点B的一条最短路为____ ______。
A、最短路:1→3→5→8→10,耗费:20B、最短路:1→4→6→9→10,耗费:16。
算法设计与分析复习题
算法设计与分析复习题算法设计与分析复习题算法设计与分析是计算机科学中的重要课程,它涉及到设计高效算法的能力以及对算法性能进行分析和评估的技巧。
在复习这门课程时,我们可以通过解决一些典型的算法设计与分析问题来加深对这门课程的理解和掌握。
下面,我将给出一些常见的复习题,希望能够帮助大家更好地复习算法设计与分析。
1. 排序算法排序算法是算法设计与分析中最基础的内容之一。
请你简要介绍快速排序算法的原理,并给出其时间复杂度的分析。
快速排序算法的原理是通过选择一个基准元素,将待排序序列分割成两个子序列,其中一个子序列的所有元素都小于等于基准元素,另一个子序列的所有元素都大于等于基准元素。
然后对这两个子序列分别进行递归排序,最终得到一个有序序列。
快速排序算法的时间复杂度为O(nlogn),其中n是待排序序列的长度。
这是因为在每一次分割操作中,我们需要对长度为n的序列进行一次遍历,而在最坏情况下,每次分割操作只能将序列分割成长度为1和n-1的两个子序列,这样需要进行n次分割操作。
因此,快速排序的时间复杂度为O(nlogn)。
2. 图的最短路径图的最短路径是算法设计与分析中的一个重要问题。
请你简要介绍Dijkstra算法的原理,并给出其时间复杂度的分析。
Dijkstra算法是一种用于解决单源最短路径问题的算法。
它的原理是通过维护一个距离数组,记录从起始节点到每个节点的最短路径长度。
首先,将起始节点的距离设置为0,其他节点的距离设置为无穷大。
然后,从距离数组中选择一个距离最小的节点,将其标记为已访问,并更新与其相邻节点的距离。
重复这个过程,直到所有节点都被标记为已访问。
Dijkstra算法的时间复杂度为O(V^2),其中V是图的节点数。
这是因为在每一次选择最小距离节点的操作中,需要遍历所有节点来找到距离最小的节点。
在最坏情况下,需要进行V次这样的操作。
此外,更新与相邻节点的距离的操作也需要遍历所有节点,因此总的时间复杂度为O(V^2)。
《算法分析与设计》期末考试复习题纲
选择题 算法分析与设计》期末复习题算法必须具备输入、输出和( A .可行性和安全性 丨 C.有穷性和安全性 丨 算法分析中,记号 O 表示( B A.渐进下界 C. 非紧上界 假设某算法在输入规模为 完成概算法的时间为 t 秒。
现有另一台计算机,其运行速度为第一台的 么在这台新机器上用同一算法在 题方法:3*2A 门*64=3*2仪 A . n+8 C . n+7 设问题规模为T (N )=2T (N/2)+N/2,用0表示的时间复杂度为( A . O (logN ) C . 0(NlogN ) 直接或间接调用自身的算法称为( A .贪心算法C.迭代算法Fibonacci 数列中,第A . 5, 89 C . 5, 144 在有 8 个顶点的凸多边形的三角剖分中,恰有 A . 6 条弦和 7 个三角形B C . 6 条弦和 6个三角形 D一个问题可用动态规划算法或贪心算法求解的关键特征是问题的( A 重叠子问题B C.贪心选择性质D 下列哪个问题不用贪心法求解( C A .哈夫曼编码问题 BC.最大团问题 D 下列算法中通常以自底向上的方式求解最优解的是(A .备忘录法 C.贪心法 下列算法中不能解决 A .贪心法C.回溯法 下列哪个问题可以用贪心算法求解( B. 等 4 个特性。
.确定性和易读性 .有穷性和确定性 ,记号Q 表示(A ) 渐进上界紧渐进界 D. n 时的计算时间为T (n )=3*2M 。
在某台计算机上实现并64 倍,那 B )解t 秒内能解输入规模为多大的问题? .n+6 .n+5 N 时,某递归算法的时间复杂度记为 C .O(N ) .O (N2logN ) )。
.递归算法 .回溯法 4 个和第 11 个数分别是 B D3, 3, 89 144 B .5 条弦和 .5 条弦和 )。
T(N) , )。
)。
6 个三角形 5 个三角形 .最优子结构性质 .定义最优解)。
.单源最短路径问题 .最小生成树问题 B )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
海大算法设计与分析考试复习题计算机算法设计与分析复习题一、填空题1、一个算法复杂性的高低体现在计算机运行该算法所需的时间和存储器资源上,因此算法的复杂性有 时间 复杂性和空间复杂性之分。
2、出自于“平衡子问题”的思想,通常分治法在分割原问题,形成若干子问题时,这些子问题的规模都大致 相同 。
3、使用二分搜索算法在n 个有序元素表中搜索一个特定元素,在最佳情况下,搜索的时间复杂性为O (1),在最坏情况下,搜索的时间复杂性为O ( logn )。
4、已知一个分治算法耗费的计算时间T(n),T(n)满足如下递归方程:⎩⎨⎧≥+<=22221n n O n T n O n T )()/()()( 解得此递归方可得T(n)= O ( log n n )。
5、动态规划算法有一个变形方法 备忘录方法 。
这种方法不同于动态规划算法“自底向上”的填充方向,而是“自顶向下”的递归方向,为每个解过的子问题建立了备忘录以备需要时查看,同样也可避免相同子问题的重复求解。
6.递归的二分查找算法在divide 阶段所花的时间是 O(1) ,conquer 阶段所花的时间是 T(n/2) ,算法的时间复杂度是 O( log n) 。
7.Prim 算法利用贪心 策略求解 最小生成树问题,其时间复杂度是 O(n 2) 。
8.背包问题可用 贪心法 , 回溯法 等策略求解。
9.用动态规划算法计算矩阵连乘问题的最优值所花的时间是 O(n 3) , 子问题空间大小是 O(n 2) 。
10.图的m着色问题可用回溯法求解,其解空间树中叶子结点个数是m n,解空间树中每个内结点的孩子数是 m 。
11.单源最短路径问题可用贪心法、分支限界等策略求解。
12、一个算法的优劣可以用(时间复杂度)与(空间复杂度)与来衡量。
13、回溯法在问题的解空间中,按(深度优先方式)从根结点出发搜索解空间树。
14、直接或间接地调用自身的算法称为(递归算法)。
15、 记号在算法复杂性的表示法中表示(渐进确界或紧致界)。
16、在分治法中,使子问题规模大致相等的做法是出自一种(平衡(banlancing)子问题)的思想。
17、动态规划算法适用于解(具有某种最优性质)问题。
18、贪心算法做出的选择只是(在某种意义上的局部)最优选择。
19、最优子结构性质的含义是(问题的最优解包含其子问题的最优解)。
20、回溯法按(深度优先)策略从根结点出发搜索解空间树。
21、拉斯维加斯算法找到的解一定是(正确解)。
22、按照符号O的定义O(f)+O(g)等于O(max{f(n),g(n)})。
23、二分搜索技术是运用(分治)策略的典型例子。
24、动态规划算法中,通常不同子问题的个数随问题规模呈(多项式)级增长。
25、(最优子结构性质)和(子问题重叠性质)是采用动态规划算法的两个基本要素。
26、(最优子结构性质)和(贪心选择性质)是贪心算法的基本要素。
27、(选择能产生最优解的贪心准则)是设计贪心算法的核心问题。
28、分支限界法常以(广度优先)或(以最小耗费(最大效益)优先)的方式搜索问题的解空间树。
29、贪心选择性质是指所求问题的整体最优解可以通过一系列(局部最优)的选择,即贪心选择达到。
30、按照活结点表的组织方式的不同,分支限界法包括(队列式(FIFO)分支限界法)和(优先队列式分支限界法)两种形式。
31、如果对于同一实例,蒙特卡洛算法不会给出两个不同的正确解答,则称该蒙特卡洛算法是(一致的)。
32、哈夫曼编码可利用(贪心法)算法实现。
33概率算法有数值概率算法,蒙特卡罗(Monte Carlo)算法,拉斯维加斯(Las Vegas)算法和舍伍德(Sherwood)算法34以自顶向下的方式求解最优解的有(贪心算法)35、下列算法中通常以自顶向下的方式求解最优解的是(贪心法)。
36、在对问题的解空间树进行搜索的方法中,一个活结点有多次机会成为活结点的是(回溯法)37、旅行售货员问题不能用()解决可以用回溯法解决,分支限界法,NP完全性理论与近似算法38、贪心算法不能解决(0-1背包问题 N皇后问题)。
可以解决背包问题39、投点法是(概率算法)的一种。
40、若线性规划问题存在最优解,它一定不在(可行域内部)二、简答题1、(8分)写出下列复杂性函数的偏序关系(即按照渐进阶从低到高排序):2323log !log 10n nn n n n n n n 参考解答:3210log log 23!nnn nn nn n n2、(8分)现在有8位运动员要进行网球循环赛,要设计一个满足以下要求的比赛日程表:(1) 每个选手必须与其他选手各赛一次; (2) 每个选手一天只能赛一次; (3) 循环赛一共进行n – 1天。
请利用分治法的思想,给这8位运动员设计一个合理的比赛日程。
参考解答:3、(8分)某体育馆有一羽毛球场出租,现在总共有10位客户申请租用此羽毛球场,每个客户所租用的时间单元如下表所示,s(i)表示开始租用时刻,f(i)表示结束租用时刻,10个客户的申请如下表所示:同一时刻,该羽毛球场只能租借给一位客户,请设计一个租用安排方案,在这10位客户里面,使得体育馆能尽可能满足多位客户的需求,并算出针对上表的10个客户申请,最多可以安排几位客户申请。
参考解答:将这10位客户的申请按照结束时间f(i)递增排序,如下表:⑴选择申请1(1,4)⑵依次检查后续客户申请,只要与已选择的申请相容不冲突,则选择该申请。
直到所有申请检查完毕。
申请4(5,7)、申请8(8,11)、申请10(11,13) ⑶最后,可以满足:申请1(1,4)、申请4(5,7)、申请8(8,11)、申请10(11,13)共4个客户申请。
这已经是可以满足的最大客户人数。
4、(8分)对于矩阵连乘所需最少数乘次数问题,其递归关系式为:1i k j0[,]min{[,][1,]}i k j i j m i j m i k m k j p p p i j -≤<=⎧⎪=⎨+++<⎪⎩其中m[i ,j]为计算矩阵连乘Ai …Aj 所需的最少数乘次数,p i-1为矩阵Ai 的行,i p 为矩阵Ai 的列。
现有四个矩阵,其中各矩阵维数分别为:请根据以上的递归关系,计算出矩阵连乘积A 1A 2A 3A 4所需要的最少数乘次数。
参考解答:014024034[1][1][2][4]080005010510500[1][4]min [1][2][3][4]2000060005040536000[1][3][4][4]270000503053450010500m m p p p m m m p p p m m p p p ++=++⨯⨯=⎧⎪=++=++⨯⨯=⎨⎪++=++⨯⨯=⎩=5、(8分)有这样一类特殊0-1背包问题:可选物品重量越轻的物品价值越高。
n=6,c=20,P=(4,8,15,1,6,3),W=(5,3,2,10,4,8)。
其中n为物品个数,c为背包载重量,P表示物品的价值,W表示物品的重量。
请问对于此0-1背包问题,应如何选择放进去的物品,才能使到放进背包的物品总价值最大,能获得的最大总价值多少?参考解答:因为该0-1背包问题比较特殊,恰好重量越轻的物品价值越高,所以优先取重量轻的物品放进背包。
最终可以把重量分别为2,3,4,5的三个物品放进背包,得到的价值和为15 + 8 + 6 + 4 = 33,为最大值。
6.请用英文写出三种以上能求解0-1背包问题的设计算法策略。
参考解答:Dynamic ProgrammingBacktrackBranch-and-Bound(每答对一条给一分)7.请说明动态规划方法为什么需要最优子结构性质。
参考解答:最优子结构性质是指大问题的最优解包含子问题的最优解。
动态规划方法是自底向上计算各个子问题的最优解,即先计算子问题的最优解,然后再利用子问题的最优解构造大问题的最优解,因此需要最优子结构8.请说明:(1)优先队列可用什么数据结构实现?(2)优先队列插入算法基本思想?(3)优先队列插入算法时间复杂度?参考解答:(1)堆。
(1分)(2)在小根堆中,将元素x插入到堆的末尾,然后将元素x的关键字与其双亲的关键字比较,若元素x的关键字小于其双亲的关键字,则将元素x与其双亲交换,然后再将元素x与其新双亲的关键字相比,直到元素x的关键字大于双亲的关键字,或元素x到根为止。
(4分)(3)O( log n)(1分)9..设计动态规划算法的主要步骤是怎么的?请简述。
参考解答:(1)找出最优解的性质,并刻划其结构特征。
(6分)(2)递归地定义最优值。
(3)以自底向上的方式计算出最优值。
(4)根据计算最优值时得到的信息,构造最优解。
10.分治法所能解决的问题一般具有哪几个特征?请简述。
参考解答:(1)该问题的规模缩小到一定的程度就可以容易地解决;(6分)(2)该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质;(3)利用该问题分解出的子问题的解可以合并为该问题的解;(4)原问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子问题。
11.分支限界法的搜索策略是什么?参考解答:在扩展结点处,先生成其所有的儿子结点(分支),然后再从当前的活结点表中选择下一个扩展结点。
为了有效地选择下一扩展结点,加速搜索的进程,在每一个活结点处,计算一个函数值(限界),并根据函数值,从当前活结点表中选择一个最有利的结点作为扩展结点,使搜索朝着解空间上有最优解的分支推进,以便尽快地找出一个最优解。
(6分)12算法的要特性是什么?参考解答:确定性、可实现性、输入、输出、有穷性13算法分析的目的是什么?参考解答:分析算法占用计算机资源的情况,对算法做出比较和评价,设计出额更好的算法。
14算法的时间复杂性与问题的什么因素相关?参考解答:算法的时间复杂性与问题的规模相关,是问题大小n的函数。
15算法的渐进时间复杂性的含义?参考解答:当问题的规模n趋向无穷大时,影响算法效率的重要因素是T(n)的数量级,而其他因素仅是使时间复杂度相差常数倍,因此可以用T(n)的数量级(阶)评价算法。
时间复杂度T(n)的数量级(阶)称为渐进时间复杂性。
16最坏情况下的时间复杂性和平均时间复杂性有什么不同?参考解答:最坏情况下的时间复杂性和平均时间复杂性考察的是n固定时,不同输入实例下的算法所耗时间。
最坏情况下的时间复杂性取的输入实例中最大的时间复杂度:W(n) = max{ T(n,I) } , I∈Dn平均时间复杂性是所有输入实例的处理时间与各自概率的乘积和:A(n) =∑P(I)T(n,I) I∈Dn17简述二分检索(折半查找)算法的基本过程。
参考解答:设输入是一个按非降次序排列的元素表A[i:j] 和x,选取A[(i+j)/2]与x比较,如果A[(i+j)/2]=x,则返回(i+j)/2,如果A[(i+j)/2]<x,则A[i:(i+j)/2-1]找x,否则在A[ (i+j)/2+1:j] 找x。