埋弧焊纵焊缝终端裂纹原因分析及预防措施
埋弧焊纵焊缝终端裂纹原因分析及预防措施(2021)
埋弧焊纵焊缝终端裂纹原因分析及预防措施(2021)Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management.( 安全管理 )单位:______________________姓名:______________________日期:______________________编号:AQ-SN-0176埋弧焊纵焊缝终端裂纹原因分析及预防措施(2021)一、概述在压力容器制造中,当采用埋弧焊焊接筒体纵焊缝时,经常会在纵焊缝的端部或靠近端部处产生裂纹(以下简称终端裂纹)。
对此问题已有不少人进行了研究,认为产生终端裂纹的主要原因是当焊接电弧接近纵焊缝终端时,焊缝在沿轴向膨胀变形的同时,还伴随有垂直轴向方向的横向张开变形;而筒体在卷制及制作装配过程中也存在着冷作硬化应力和组装应力;在焊接过程中,因终端定位焊缝及引弧板的拘束作用,在焊缝终端产生较大的拉伸应力;当电弧移动到终端定位焊缝和引弧板上时,由于该部位受热膨胀变形,使焊缝终端的横向拉伸应力得到松弛,拘束力减小,便使焊缝终端刚刚凝固的焊缝金属受到较大的拉应力而形成终端裂纹。
根据上述原因分析提出了两项解决的对策:一是增加引弧板的宽度以增加其拘束力;二是采用开槽的弹性拘束引弧板。
但是我们在实践中采取上述对策后,问题还是没有得到有效解决:如虽然采用了弹性拘束引弧板,但仍然会产生纵焊缝的终端裂纹,且在焊接厚度较小,钢性较小而经强制装配的筒体时也常有终端裂纹发生等;然而,当在筒体纵焊缝的延长部位带有产品试板时,虽然定位焊等情况与未带产品试板时相同,却很少产生纵缝产生终端裂纹。
经过反复试验和分析,我们认为纵缝终端裂纹的产生,虽然与终端焊缝处不可避免地存在着较大的拉伸应力有关,同时还与其他几个极为重要的原因有关。
焊接裂纹产生原因及防治措施
以下为焊接裂纹产生原因及防治措施,一起来看看吧。
1、焊接裂纹的现象在焊缝或近缝区,由于焊接的影响,材料的原子结合遭到破坏,形成新的界面而产生的缝隙称为焊接裂缝,它具有缺口尖锐和长宽比大的特征。
按产生时的温度和时间的不同,裂纹可分为:热裂纹、冷裂纹、应力腐蚀裂纹和层状撕裂。
在焊接生产中,裂纹产生的部位有很多。
有的裂纹出现在焊缝表面,肉眼就能观察到;有的隐藏在焊缝内部,通过探伤检查才能发现;有的产生在焊缝上;有的则产生在热影响区内。
值得注意的是,裂纹有时在焊接过程中产生,有时在焊件焊后放置或运行一段时间之后才出现,后一种称为延迟裂纹,这种裂纹的危害性更为严重。
2、焊接裂纹的危害焊接裂缝是一种危害大的缺陷,除了降低焊接接头的承载能力,还因裂缝末端的尖锐缺口将引起严重的应力集中,促使裂缝扩展,最终会导致焊接结构的破坏,使产品报废,甚至会引起严重的事故。
通常,在焊接接头中,裂缝是一种不允许存在的缺陷。
一旦发现即应彻底清除,进行返修焊接。
3、焊接裂纹的产生原因及防治措施由于不同裂缝的产生原因和形成机理不同,下面就热裂缝、冷裂缝和再热裂缝三类分别予以讨论。
3.1、热裂纹热裂缝一般是指高温下(从凝固温度范围附近至铁碳平衡图上的A3线以上温度)所产生的裂纹,又称高温裂缝或结晶裂缝。
热裂缝通常在焊缝内产生,有时也可能出现在热影响区。
原因:由于焊接熔池在结晶过程中存在着偏析现象,低熔点共晶和杂质在结晶过程中以液态间层存在形成偏析,凝固以后强度也较低,当焊接应力足够大时,就会将液态间层或刚凝固不久的固态金属拉开形成裂缝。
此外,如果母材的晶界上也存在有低熔点共晶和杂质,则在加热温度超过其熔点的热影响区,这些低熔点化合物将熔化而形成液态间层,当焊接拉应力足够大时,也会被拉开而形成热影响区液化裂缝。
总之,热裂缝的产生是冶金因素和力学因素综合作用的结果。
防治措施:防止产生热裂缝的措施,可以从冶金因素和力学因素两个方面入手。
控制母材及焊材有害元素、杂质含量限制母材及焊接材料(包括焊条、焊丝、焊剂和保护气体)中易偏析元素及有害杂质的含量。
焊接热裂纹的产生原因及防止方法
焊接热裂纹的产生原因及防止方法一、热裂纹产生的原因分析1、焊缝中杂质和拉应力的存在因为焊缝中的杂质在焊缝结晶过程中会形成低熔点结晶。
原因是低熔点共晶物的存在.结晶时被推挤到晶界上,形成液态薄膜,凝固收缩时焊缝金属在拉应力作用下,液态薄膜承受不了拉应力而形成裂纹。
热裂纹就轻易在焊缝金属中产生.所以要控制焊缝金属杂质的含量,减少低熔点共晶物的天生。
同时由此可见结晶裂纹的产生是低熔点共晶体和焊接拉应力共同作用的结果,二者缺一不可。
低熔点共晶体是产生结晶裂纹的内因,焊接拉应力是产生结晶裂纹的外因。
2、焊缝终端部位温度的变化埋弧焊焊接时,当焊接热源靠近纵焊缝的终端部位时,焊缝端部正常的温度场将发生变化,越靠近终端其变化越大.由于引弧板的尺寸远比筒体小,其热容量也小得多,而熄弧板与筒体之间只靠定位焊连接,故可视为大部门不连续.所以终端焊缝部位的传热前提是很差的,致使该部位局部温度升高,熔池外形发生变化,熔深也将随之变大,同时熔池在高温下停留的时间也变长,熔池凝固的速度变慢,尤其当熄弧板尺寸过小、熄弧板与筒体之间的定位焊缝过短、过薄时更为明显. 焊缝外形对结晶裂纹的形成有显著的影响。
熔宽与熔深比小易形成裂纹,熔宽与熔深比大抗结晶裂纹性较高。
3、焊接线能量的影响因为埋弧焊所采用的焊接热输入量往往比其他焊接方法要大得多,焊接线能量的大小直接影响到焊缝的成形,而焊缝的成形外形又直接决定着焊缝凝固后的晶粒分布和低熔点共晶体的存在位置及受力情况,因而对结晶裂纹产生与否影响较大。
另外,焊缝的横向收缩量远比间隙的张开量要小,使终端部位的横向拉伸力比其他焊接方法要大.这对开坡口的中厚板和不开坡口的较薄板尤为明显.4、其他情况如存在强制装配,装配质量不符合要求.二、焊缝裂纹的性质及特点终端裂纹形成的部位有时为终端,有时为距终端四周地区150mm 范围内,有时为表面裂纹,有时为内部裂纹,而大多数情况是发生在终端四周的内部裂纹.裂纹与焊缝的波纹线相垂直,露在焊缝表面的有显著的锯齿外形。
埋弧焊纵焊缝终端裂纹原因分析及预防措施(正式)
埋弧焊纵焊缝终端裂纹原因分析及预防措施(正式)Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level.编订:__________________单位:__________________时间:__________________Word格式 / 完整 / 可编辑文件编号:KG-AO-7530-73 埋弧焊纵焊缝终端裂纹原因分析及预防措施(正式)使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。
下载后就可自由编辑。
一、概述在压力容器制造中,当采用埋弧焊焊接筒体纵焊缝时,经常会在纵焊缝的端部或靠近端部处产生裂纹(以下简称终端裂纹)。
对此问题已有不少人进行了研究,认为产生终端裂纹的主要原因是当焊接电弧接近纵焊缝终端时,焊缝在沿轴向膨胀变形的同时,还伴随有垂直轴向方向的横向张开变形;而筒体在卷制及制作装配过程中也存在着冷作硬化应力和组装应力;在焊接过程中,因终端定位焊缝及引弧板的拘束作用,在焊缝终端产生较大的拉伸应力;当电弧移动到终端定位焊缝和引弧板上时,由于该部位受热膨胀变形,使焊缝终端的横向拉伸应力得到松弛,拘束力减小,便使焊缝终端刚刚凝固的焊缝金属受到较大的拉应力而形成终端裂纹。
根据上述原因分析提出了两项解决的对策:一是增加引弧板的宽度以增加其拘束力;二是采用开槽的弹性拘束引弧板。
但是我们在实践中采取上述对策后,问题还是没有得到有效解决:如虽然采用了弹性拘束引弧板,但仍然会产生纵焊缝的终端裂纹,且在焊接厚度较小,钢性较小而经强制装配的筒体时也常有终端裂纹发生等;然而,当在筒体纵焊缝的延长部位带有产品试板时,虽然定位焊等情况与未带产品试板时相同,却很少产生纵缝产生终端裂纹。
焊接中的常见缺陷的成因和防止措施
焊接中的常见缺陷的成因和防止措施焊接是保证结构强度的关键,是保证质量的关键,是保证安全和作业的重要条件。
如果焊接存在着缺陷,就有可能造成结构断裂、渗漏,甚至引起事故。
据对脆断事故调查表明,40%脆断事故是从焊缝缺陷处开始的。
在进行检验的过程中,对焊缝的检验尤为重要。
因此,应及早发现缺陷,把焊接缺陷限制在一定范围内,以确保安全。
焊接缺陷种类很多,按其位置不同,可分为外部缺陷和内部缺陷。
常见缺陷有气孔、夹渣、焊接裂纹、未焊透、未熔合、焊缝外形尺寸和形状不符合要求、咬边、焊瘤、弧坑等。
一、气孔气孔是指在焊接时,熔池中的气泡在凝固时未能逸出而形成的空穴。
产生气孔的主要原因有:坡口边缘不清洁,有水份、油污和锈迹;焊条或焊剂未按规定进行焙烘,焊芯锈蚀或药皮变质、剥落等。
此外,低氢型焊条焊接时,电弧过长,焊接速度过快;埋弧自动焊电压过高等,都易在焊接过程中产生气孔。
由于气孔的存在,使焊缝的有效截面减小,过大的气孔会降低焊缝的强度,破坏焊缝金属的致密性。
预防产生气孔的办法是:选择合适的焊接电流和焊接速度,认真清理坡口边缘水份、油污和锈迹。
严格按规定保管、清理和焙烘焊接材料。
不使用变质焊条,当发现焊条药皮变质、剥落或焊芯锈蚀时,应严格控制使用范围。
埋弧焊时,应选用合适的焊接工艺参数,特别是薄板自动焊,焊接速度应尽可能小些。
二、夹渣夹渣就是残留在焊缝中的熔渣。
夹渣也会降低焊缝的强度和致密性。
产生夹渣的原因主要是焊缝边缘有氧割或碳弧气刨残留的熔渣;坡口角度或焊接电流太小,或焊接速度过快。
在使用酸性焊条时,由于电流太小或运条不当形成“糊渣”;使用碱性焊条时,由于电弧过长或极性不正确也会造成夹渣。
进行埋弧焊封底时,焊丝偏离焊缝中心,也易形成夹渣。
防止产生夹渣的措施是:正确选取坡口尺寸,认真清理坡口边缘,选用合适的焊接电流和焊接速度,运条摆动要适当。
多层焊时,应仔细观察坡口两侧熔化情况,每一焊层都要认真清理焊渣。
封底焊渣应彻底清除,埋弧焊要注意防止焊偏。
埋弧焊收弧裂纹的预防
埋弧焊收弧裂纹的预防16MnR钢是一种具有较高强度和韧性以及良好焊接性的低合金钢,目前被广泛应用于压力容器、船体、锅炉等焊接结构的制造。
其中压力容器筒体的主对接缝主要采用效率高、劳动条件相对较好的埋弧焊。
但在对中厚板(S>20nm)16MnR钢制压力容器的焊接过程中发现其筒体纵缝焊缝终端经常出现较短的裂纹,对此一直没有较好的解决方法,只能通过返修来解决,甚至因几次返修不合格而只能报废,延长了产品的生产周期,增加了产品的制造成本。
所以,分析此裂纹的形成原因并寻求出相应措施具有十分现实的意义。
1裂纹特点1.1裂纹所处位置及形状裂纹位于筒体纵缝的末端,在进行焊接返修时发现,该裂纹位于第一道焊缝的根部,有时也扩展到焊缝的表面。
从X射线底片上观察,一般出现在距离筒节焊缝末端(不包括媳弧板上的焊缝)0~150范围内,较细,呈浅黑色且长度较短。
1.2裂纹的影响因素随着板厚的增加,焊缝终端产生裂纹的几率大。
在其它焊接工艺参数一定的情况下,焊接电流越大,焊接速度越小,产生裂纹的几率也越大。
且在焊接其它低合金钢(S>20)时,也发现有类似现象。
2终端裂纹产生原因分析2.1钢材的焊接性分析一种低合金高强钢,其叫C)E< 0.5%,其裂纹敏感性小,焊接性好,对多种厚度规格的16MnR钢板的埋弧焊工艺作焊接工艺评定时,试板从未出现过裂纹,且拉伸、弯曲等力学性能试验结果均符1998钢制压力容器要求,证明采用的焊接工艺合理。
2.2残余应力的影响压力容器筒体卷圆时,在金属内部存在冷作残余应力,在焊接过程中,母材发生再结晶时,在焊接接头区域内产生新的焊接应力。
另外,筒节卷圆时受下料尺寸精度、卷板机精度和操作者技能的影响,纵缝接头在组装定位焊时,存在着强行组装现象,导致在定位焊焊道内留下较大的拉伸应力和切应力。
2.3焊接变形的影响由于焊接接头区域加热和冷却的不均匀性,使各部分金属发生的相变过程不一样,当温度恢复到原始的均匀状态后,焊缝必然产生焊接残余应力和变形。
焊接裂纹的形成机理与预防措施
焊接裂纹的形成机理与预防措施1、产生焊接冷裂纹的原因焊接冷裂纹在焊后较低的温度下形成。
由于这种裂纹形成与氢有关,且有延迟开裂的特点,因此又称之为焊接氢致裂纹或者延迟裂纹。
产生焊接冷裂纹的三个必要条件:〔1〕氢。
氢的主要来源是焊材中的水分和焊接区域中的油污、铁锈、水以及大气中的水汽等。
这些水、铁锈或者有机物经焊接电弧的高温热作用分解成氢原子而进入焊接熔池中。
在焊接过程中氢除向大气中扩散外,余下的在焊缝中呈过饱和状态,即在焊缝中存在着扩散氢。
根据氢脆理论,这种扩散氢将向应变集中区〔如微裂纹或者缺口尖端附近〕扩散,当该区的氢浓度到达某一临界值时,裂纹便继续扩展。
〔2〕应力。
依据目前国及国际的施工水平,在球罐的组装过程中总会存在或者多或者少的强力组对,所以在组装完成后便存在着应力,这种应力在焊后整体热处理完成后也不可能彻底消除。
再加之球罐焊接是一个局部加热过程,在焊接过程中产生应力与应变的循环,因此球罐焊接后必然存在剩余应力。
〔3〕组织。
焊接热影响区组织中过硬的马氏体含量越多越容易产生冷裂纹。
3、防止产生焊接冷裂纹的措施〔1〕尽量选用对冷裂纹不敏感的材料选用在质量好的母材。
即选用碳当量低的优质钢材,特别是防止母材大型夹渣。
所以在球壳板创造前必须对板材进展严格的超声波检查,对有严重夹层等缺陷的钢材不得使用。
〔2〕尽量减少氢的来源。
第一,球罐的焊接选用低氢型焊条,必要时要采用超低氢型的焊条;第二,焊条使用前一定要按产品使用说明发展烘干,并贮存在100~150℃的恒温箱中,在使用时放入保温筒并随用随取,在保温筒存放时间不得超过4h,否那末要按原烘干温度重新烘干,重复烘干不得超过两次;第三,要彻底去除焊接坡口外表及坡口两侧20mm围的油污、水分,、铁锈及其他杂物;第四,不在雨雪天及空气相对湿度大于90%时施焊;第五,采取有效的防风措施,以防止吹弧,使焊接熔池得到有效的隔离保护。
〔3〕选用适当的焊前预热温度和预热围。
焊接裂纹产生原因及防治措施
焊接裂纹产生原因及防治措施焊接裂纹是指在焊接过程中,焊缝或焊接接头出现的裂纹现象。
焊接裂纹的产生原因有很多,主要包括材料选择不当、焊接工艺参数不合理、应力集中、焊接变形等因素。
为了防止焊接裂纹的产生,需采取相应的防治措施。
一、材料选择不当是造成焊接裂纹的主要原因之一。
不同材料的热膨胀系数、熔点和强度等性质差异较大,若选择不当,会导致焊接时产生较大的残余应力,从而引发焊接裂纹。
因此,在焊接前应对材料进行仔细选择,确保焊接材料的相容性和相似性。
二、焊接工艺参数不合理也是引起焊接裂纹的重要原因。
焊接过程中,焊接电流、电压、速度等参数的选择不当,容易造成焊接热输入过大或过小,从而导致焊接裂纹的产生。
因此,需要根据焊接材料的厚度、形状和焊接位置等因素,合理调整焊接工艺参数,以减少焊接残余应力的产生。
三、应力集中也是焊接裂纹的重要原因之一。
焊接过程中,由于材料的热膨胀和收缩不均匀,会导致焊接接头处应力集中,从而造成焊接裂纹的产生。
为了减少应力集中,可以采取适当的预热和后热处理措施,使焊接接头的温度均匀分布,减少残余应力的产生。
四、焊接变形也是引起焊接裂纹的常见原因。
焊接过程中,由于热膨胀和收缩的影响,焊接接头会发生一定的变形,如果变形过大,就会产生焊接裂纹。
为了控制焊接变形,可以采用适当的夹具和焊接顺序,使焊接接头得到良好的约束,减少变形的发生。
为了预防焊接裂纹的产生,可以采取以下防治措施:1.合理选择焊接材料,确保材料具有相似的熔点和热膨胀系数,减少焊接时的残余应力。
2.合理调整焊接工艺参数,根据焊接材料的特性和焊接位置,确定合适的焊接电流、电压和速度等参数,以减少焊接热输入和残余应力。
3.采取适当的预热和后热处理措施,使焊接接头的温度均匀分布,减少应力集中和残余应力的产生。
4.采用适当的夹具和焊接顺序,控制焊接变形,减少焊接裂纹的发生。
5.进行焊接前的材料表面处理,确保焊接接头的清洁度和表面质量,减少焊接缺陷的产生。
焊接裂纹产生原因及防治措施
焊接裂纹就其本质来分,可分为热裂纹、再热裂纹、冷裂纹、层状撕裂等。
下面仅就各种裂纹的成因、特点和防治办法进行具体的阐述。
1.热裂纹在焊接时高温下产生的,故称热裂纹,它的特征是沿原奥氏体晶界开裂。
根据所焊金属的材料不同(低合金高强钢、不锈钢、铸铁、铝合金和某些特种金属等),产生热裂纹的形态、温度区间和主要原因也各不相同。
目前,把热裂纹分为结晶裂纹、液化裂纹和多边裂纹等三大类。
1)结晶裂纹主要产生在含杂质较多的碳钢、低合金钢焊缝中(含S,P,C,Si 缝偏高)和单相奥氏体钢、镍基合金以及某些铝合金焊缝中。
这种裂纹是在焊缝结晶过程中,在固相线附近,由于凝固金属的收缩,残余液体金属不足,不能及时添充,在应力作用下发生沿晶开裂。
防治措施:在冶金因素方面,适当调整焊缝金属成分,缩短脆性温度区的范围控制焊缝中硫、磷、碳等有害杂质的含量;细化焊缝金属一次晶粒,即适当加入Mo、V、Ti、Nb等元素;在工艺方面,可以通过焊前预热、控制线能量、减小接头拘束度等方面来防治。
2)近缝区液化裂纹是一种沿奥氏体晶界开裂的微裂纹,它的尺寸很小,发生于HAZ近缝区或层间。
它的成因一般是由于焊接时近缝区金属或焊缝层间金属,在高温下使这些区域的奥氏体晶界上的低熔共晶组成物被重新熔化,在拉应力的作用下沿奥氏体晶间开裂而形成液化裂纹。
这一种裂纹的防治措施与结晶裂纹基本上是一致的。
特别是在冶金方面,尽可能降低硫、磷、硅、硼等低熔共晶组成元素的含量是十分有效的;在工艺方面,可以减小线能量,减小熔池熔合线的凹度。
3)多边化裂纹是在形成多边化的过程中,由于高温时的塑性很低造成的。
这种裂纹并不常见,其防治措施可以向焊缝中加入提高多边化激化能的元素如Mo、W、Ti等。
2、再热裂纹通常发生于某些含有沉淀强化元素的钢种和高温合金(包括低合金高强钢、珠光体耐热钢、沉淀强化高温合金,以及某些奥氏体不锈钢),他们焊后并未发现裂纹,而是在热处理过程中产生了裂纹。
埋弧焊收弧段焊缝裂纹原因解析和预防
直缝埋弧焊收弧段焊缝裂纹原因解析和预防郁俊(江苏常州 2013012)摘要:(近年来,随着电网产品的标准化设计越来越规范,装备制造业也有着飞速发展,焊接作为其中的一道特殊工序,其重要性显得越来越突出。
同时,在焊接过程中容易产生的缺陷,也越来越被重视和深入研究。
本文就直缝埋弧焊工序容易产生的收弧段裂纹进行原因解析,以及有针对性的进行预防,提出切实可行的预防措施。
)关键词:(直缝埋弧焊收弧裂纹解析和预防)0 引言随着电网标准化设计的推广,电力装备制造业经历着前所未有的机遇和挑战,在产量与质量的权衡中,往往是顾此失彼。
其中焊接作为一道特殊工序,成为装备制造的必谈话题,而焊缝的质量关系着产品有没有达到设计意图,以及有没有满足标准化设计的应用要求,焊缝质量来不得半点马虎。
其中,各制管加工单位均遇到过直缝埋弧焊管终端容易产生裂纹的问题,本文就其成因进行分析,同时用实际加工经验提出切实可行的预防措施,从源头上杜绝焊缝终端裂纹的产生。
1发生现象由专业制管厂商制造的直缝埋弧焊管,因其加工制造的质量和进度受控,加上其成本相对采购成品钢管而言较为合算,因此众多需要直缝埋弧焊管的厂家选择自行折弯制管。
目前,较为流行的是JCOE或UOE钢管成型工艺。
通过翻阅数年来的折弯钢管埋弧焊检验记录数据,以及对照专业制管厂家的实际操作结果,结合多年来的经验积累发现,自行折弯加工的直缝埋弧焊管都存在着一个普遍的焊缝问题——收弧段焊缝容易产生裂纹。
2 原因解析自行折弯加工的直缝埋弧焊钢管当焊接电弧接近纵焊缝终端时,焊缝在沿轴线向膨胀变形的同时,还伴随有垂直轴向方向的横向张开变形;而钢管在折弯卷制过程中也存在着冷作硬化应力和组装应力;在焊接过程中,因焊缝终端定位焊缝及引、熄弧板的拘束作用,在焊缝终端产生较大的拉伸应力;当电弧移动到终端定位焊缝和引、熄弧板上时,由于该部位受热膨胀变形,使焊缝终端的横向拉伸应力得到松弛,拘束力减小,便使焊缝终端刚刚凝固的焊缝金属受到较大的拉应力,从而形成终端裂纹。
埋弧焊常见焊接缺陷的成因分析及对策
埋弧焊常见焊接缺陷的成因分析及对策埋弧焊是一种常用的焊接方法,常见焊接缺陷包括气孔、夹渣、碳化物析出和裂纹等。
下面就这些常见焊接缺陷的成因进行分析,并提出相应的对策。
1.气孔气孔是由于焊口或焊丝表面含有气体、油污、水蒸汽等杂质进入焊缝内,而在焊接过程中被溶解在熔池中形成的孔洞。
气孔的成因主要有以下几个方面:1)焊接金属表面存在污染物;2)熔池热循环不充分,导致气体不能完全从焊缝中逸出;3)焊接材料或熔化金属中的气体含量过高。
对策:1)确保焊材和焊接母材的表面干净,需要进行预处理(如打磨、除油);2)控制焊接电流、电弧稳定,使熔池和热循环达到最佳状态;3)使用低气含量焊材,减少气体溶解在熔池中的机会。
2.夹渣夹渣是指焊缝中出现的包括焊渣在内的非金属夹杂物。
夹渣的成因主要是焊接过程中未能及时清理熔池中的渣滓,导致其残留在焊缝中。
对策:1)控制焊接参数,确保熔池的活动性足够高,便于渣滓从焊缝中浮出;2)焊缝宽度的设定要合理,以便焊工容易清理夹渣;3)确保焊缝两侧的金属表面干净,并采取适当的焊接技术措施,如倾斜角度、填充和推动方式等。
3.碳化物析出碳化物析出是在焊缝中由于熔化金属的冷却速度过慢,导致碳元素和金属元素结合形成的碳化物。
碳化物的成因主要有以下几个方面:1)金属元素成分不稳定,含有高碳或其他容易形成碳化物的合金元素;2)焊接过程中冷却速度过慢,导致碳和合金元素结合。
对策:1)控制焊接工艺参数,提高焊接速度,使熔池的冷却速度加快,减少碳化物的形成;2)选择含有稳定成分的焊接材料,避免含有高碳或其他容易形成碳化物的合金元素。
4.裂纹裂纹是焊接缺陷中最严重的一种,会导致焊接连接的失效。
1)焊接应力过大或应力集中,引发金属的应力超过其承受极限而发生破裂;2)低温下的氢致裂纹,由于焊材或焊接工艺中含氢元素的存在,使焊接过程中氢聚积在焊缝中导致裂纹形成。
对策:1)控制焊接应力,尤其是焊接位置的应力集中区域,采取合适的焊接顺序和焊接参数;2)确保焊接材料和焊接环境的干燥,避免氢聚积导致裂纹的形成。
有效防止埋弧焊纵焊缝终端裂纹产生的措施
有效防止埋弧焊纵焊缝终端裂纹产生的措施在压力容器制造中,当采用埋弧焊焊接筒体纵焊缝时,经常会在纵焊缝的端部或靠近端部处产生裂纹(以下简称终端裂纹)。
对此已有不少人进行了研究,以为产生终端裂纹的主要原因是当焊接电弧接近纵焊缝终端时,焊缝在沿轴向膨胀变形的同时,还伴随有垂直轴向方向的横向张开变形;而筒体在卷制及制作装配过程中也存在着冷作硬化应力和组装应力;在焊接过程中,因终端定位焊缝及引弧板的拘束作用,在焊缝终端产生较大的拉伸应力;当电弧移动到终端定位焊缝和引弧板上时,由于该部位受热膨胀变形,使焊缝终端的横向拉伸应力得到松弛,拘束力减小,便使焊缝终端刚刚凝固的焊缝金属受到较大的拉应力而形成终端裂纹。
根据上述原因分析提出了两项解决的对策:一是增加引弧板的宽度以增加其拘束力;二是采用开槽的弹性拘束引弧板。
但是在实践中采取上述对策后,问题并没有得到有效解决:如固然采用了弹性拘束引弧板,但仍然会产生纵焊缝的终端裂纹,且在焊接厚度较小,刚性较小而经强制装配的筒体时也常有终端裂纹发生等;然而,当在筒体纵焊缝的延长部位带有产品试板时,固然定位焊等情况与未带产品试板时相同,却很少产生纵缝产生终端裂纹。
经过反复试验和分析,发现纵缝终端裂纹的产生固然与终端焊缝处不可避免地存在着较大的拉伸应力有关,同时还与其他几个极为重要的原因有关。
一、终端裂纹产生的原因分析1. 终端焊缝部位温度场的变化埋弧焊焊接时,当焊接热源靠近纵焊缝的终端部位时,焊缝端部正常的温度场将发生变化,越靠近终端其变化越大。
由于引弧板的尺寸远比筒体小,其热容量也小得多,而引弧板与筒体之间只靠定位焊连接,故可视为大部分不连续。
所以终端焊缝部位的传热条件是很差的,致使该部位局部温度升高,熔池外形发生变化,熔深也将随之变大,同时熔池在高温下停留的时间也变长,熔池凝固的速度变慢,尤其当引弧板尺寸过小,引弧板与筒体之间的定位焊缝过短、过薄时更为明显。
2. 焊接热输进量的影响由于埋弧焊所采用的焊接热输进量往往比其他焊接方法要大得多,因而熔深大,熔敷金属量大,且有焊剂层的覆盖,所以熔池大,熔池凝固的速度和焊缝冷却速度都比其他焊接方法要慢,致使晶粒较粗大,偏析较严重,这些都为热裂纹的产生创造了极为有利的条件。
埋弧焊纵焊缝终端裂纹的防止措施
裂纹图1 终端裂纹对于压力容器受压元件的焊接接头,裂纹是不允许的。
对位于表面的终端裂纹,焊工都能及时处理;而有些裂纹是近表面的裂纹,不易被发现,只能通过RT检测发现之后进行返修。
不管是哪种情况,这些裂纹的出现,均会严重影响产品的生产效率,并增加企业的制造成本,同时影响产品的无图2 热裂纹的特点通过上述分析,对比嘉兴市美克斯机械制造有限公司产品上终端裂纹的部位和产生时机,初步确定此裂纹为热裂纹。
3 热裂纹产生的原因熔池结晶时所受到的拉应力是焊缝产生热裂纹的必要条件。
拉应力大小主要取决于结构形式、接头刚性、熔池冷却速度和焊接顺序。
而熔池内含有熔点比较低的共晶杂质是产生热裂纹的内在因素。
因为在熔池冷却过程中,由拉应力造成的晶粒间隙在温度高时都能被液体金属所填满,所以不会产生热裂纹。
然而温度在连续下降,柱状晶体逐渐生成,由于低熔点共晶的存在,所以就会在拉应力作用下造成晶粒间隙或已结晶的固体金属层间形成强度较低的晶间薄层,当液态的低熔点共晶又不足以填充此空隙时,则形成了裂纹。
因此,热裂纹可看成是拉应力和低熔点共晶两者联合作用而形成的。
增大任何一方面作用,都有可能促使热裂纹在焊缝中形成。
4 预防热裂纹的措施4.1 控制焊缝中有害杂质含量(1)S的影响在锅炉压力容器用钢中,S是一种极其有害的元素,FeS、Fe、FeO与S都能形成低熔点共晶体,其熔点约为988℃,大大低于Fe的熔点(1534℃)。
因此,钢中的S会降低钢材的高温塑性,加剧钢材熔焊时产生热裂纹的敏感性。
(2)P的影响 P是钢中有害的杂质元素,它以Fe的磷化物形式存在。
FeP与Fe形成低熔点共晶体分布于晶界,从而加剧了钢的热裂纹倾向。
这些低熔点共晶也会削弱晶粒间的结合力,提高钢的冷脆性,使钢在常温和低温下的冲击韧度明显下降。
(3)C的影响 C是另一种有害元素,因为它影响焊缝金属的液相温度,并具有降低焊缝金属高温延性的倾向,所以在C含量较高的钢中,C易与某些杂质形成低熔点共晶体夹杂,加剧了钢材焊接过程中的热裂倾向。
焊接裂纹产生原因及防治措施
焊接裂纹产生原因及防治措施焊接裂纹是焊接过程中常见的缺陷之一,它会降低焊接接头的强度和密封性,严重影响焊接质量。
本文将从焊接裂纹产生的原因和防治措施两个方面进行探讨。
一、焊接裂纹产生的原因1. 焊接应力过大:焊接过程中,由于材料的热膨胀和收缩,会产生焊接应力。
如果应力过大,就容易引起焊接裂纹的产生。
2. 材料的选择不当:焊接材料的选择不当,例如选择了冷脆性较大的材料,容易在焊接过程中产生裂纹。
3. 焊接参数设置不合理:焊接参数的设置是影响焊接质量的关键因素之一。
如果焊接电流过大或过小,焊接速度过快或过慢,都会导致焊接裂纹的产生。
4. 焊接时的工艺操作不当:焊接操作不规范也是焊接裂纹产生的原因之一。
例如焊接时没有进行预热、焊接过程中没有使用适当的焊接顺序等。
5. 焊接材料的质量问题:如果焊接材料本身存在缺陷,例如含有太多的杂质或气孔,也容易导致焊接裂纹的产生。
二、焊接裂纹的防治措施1. 合理控制焊接应力:通过合理的焊接参数设置和焊接顺序安排,可以减小焊接应力的产生。
此外,还可以采用局部预热、焊后热处理等方法来降低焊接应力。
2. 选择合适的焊接材料:在进行焊接工艺设计时,应根据具体情况选择合适的焊接材料,避免选择冷脆性较大的材料。
此外,还要确保焊接材料的质量,避免使用存在缺陷的材料。
3. 合理设置焊接参数:在进行焊接操作时,要根据具体情况合理设置焊接参数,如焊接电流、焊接速度等。
可以通过试验和经验总结来确定最佳的焊接参数。
4. 规范焊接操作:进行焊接操作时,要严格按照焊接工艺要求进行操作,如预热、焊接顺序等。
同时,要保证焊接设备的正常运行和维护,避免因设备故障导致焊接裂纹的产生。
5. 加强焊后检测和质量控制:焊接完成后,要进行全面的焊后检测,发现裂纹及时进行修复。
同时,要加强质量控制,确保焊接质量符合要求。
焊接裂纹的产生原因较为复杂,涉及材料、焊接参数、工艺操作等多个方面。
为了防止焊接裂纹的产生,需要从多个方面进行控制和改进,提高焊接质量。
焊接裂纹产生原因及防治
焊接裂纹产生原因及防治焊接裂纹是在焊接过程中或焊接完成后在焊缝或母材中产生的开裂缺陷。
焊接裂纹的产生原因多种多样,主要包括以下几个方面:1.焊接过程中的温度应力:焊接时,因为焊接区域发生了局部加热和冷却,导致焊接接头中的温度差异,从而造成了焊接区域的应力。
如果这种应力超过了焊接材料的强度极限,就会产生裂纹。
2.冶金因素:焊接过程中,由于温度升高,焊接材料和母材之间发生相互作用,形成了互溶区。
如果溶液比较富含低熔点的物质,就会导致物质从高温区流向低温区,从而增大了焊接接头的收缩量,引起裂纹。
3.废气、含氧量过高:当焊接环境中的氧气含量过高时,焊接时会发生氧化反应,在焊接接头中产生大量的氧化物,增大了焊接接头的收缩量,从而导致了裂纹的产生。
4.焊接过程中的振动:焊接过程中的振动会使焊接接头中的晶粒发生变化,从而影响了焊接材料的性能,使其发生了裂纹。
针对焊接裂纹的防治措施主要包括以下几个方面:1.提高焊接工艺:合理选择焊接工艺参数,如焊接电流、焊接电压和焊接速度等,以控制焊接过程中的温度和应力。
2.控制焊接过程中的温度升降速度:控制焊接过程中的升温速度和冷却速度,以避免焊接接头产生过大的应力。
3.控制焊接环境:减少焊接环境中的含氧量,避免产生氧化反应和氧化物。
4.优化焊接材料:合理选择焊接材料,根据焊接接头的要求选择合适的材料,以提高焊接接头的性能。
5.加强材料的前处理:在焊接前进行必要的预处理工作,如去污、除锈、磷化等,以提高焊接接头的质量。
综上所述,焊接裂纹的产生原因多种多样,需要综合考虑多个方面的因素来进行防治。
通过合理选择焊接工艺参数、控制焊接过程中的温度和应力、控制焊接环境、优化焊接材料以及加强材料的前处理等措施,可以有效预防和防治焊接裂纹的产生,提高焊接接头的质量。
焊缝裂纹产生的原因和解决方法
焊缝裂纹产生的原因和解决方法焊缝裂纹是焊接过程中常见的一种质量问题,主要是由于焊接应力和热应力引起的。
本文将从焊缝裂纹的原因和解决方法两个方面进行详细介绍。
焊缝裂纹产生的原因主要有以下几点:1. 焊接应力:焊接过程中,由于金属受热膨胀和冷却收缩,会产生应力。
如果焊接接头的应力超过了材料的强度极限,就会导致焊缝裂纹的产生。
2. 焊接材料的选择:焊接材料的选择直接影响着焊缝的质量。
如果选择的材料与基材的化学成分和物理性能不匹配,就会导致焊缝裂纹的产生。
3. 焊接工艺不当:焊接工艺参数的选择不合理,如焊接电流、电压、焊接速度等控制不当,都会导致焊缝裂纹的产生。
4. 焊接过程中的杂质:焊接过程中,如果焊缝中存在杂质、氧化物等,会导致焊缝的质量下降,从而容易产生裂纹。
针对焊缝裂纹产生的原因,可以采取以下解决方法:1. 控制焊接应力:通过合理的焊接工艺参数和焊接顺序,减小焊接接头的应力集中。
可以采用预热、中间退火等措施,使应力得到释放,从而减少焊缝裂纹的产生。
2. 选择合适的焊接材料:在焊接材料的选择上,应根据基材的化学成分和物理性能要求,选择与之相匹配的焊接材料。
同时,还要注意焊接材料的纯净度和含杂质的情况,以避免焊缝裂纹的产生。
3. 控制焊接工艺参数:合理选择焊接电流、电压、焊接速度等参数,保证焊接过程中的热输入和冷却速度合理。
同时,还应注意焊接过程中的保护气体和焊接速度的控制,以避免焊缝裂纹的产生。
4. 清除焊接过程中的杂质:焊接过程中要注意清除焊缝中的杂质、氧化物等,保证焊缝的质量。
可以采用机械清理、化学清洗等方法,使焊接接头表面清洁,减少焊缝裂纹的产生。
焊缝裂纹的产生主要是由于焊接应力和热应力引起的。
为了解决焊缝裂纹问题,需要从控制焊接应力、选择合适的焊接材料、控制焊接工艺参数和清除焊接过程中的杂质等方面入手。
只有采取有效的措施,才能有效预防和解决焊缝裂纹问题,提高焊接质量。
埋弧焊裂纹、夹渣产生原因
埋弧焊时可能产生的主要缺陷,除了由于所用焊接工艺参数不当造成的熔透不足、烧穿、成形不良以外,还有气孔、裂纹、夹渣等。
本节主要叙述气孔、裂纹、夹渣这几种缺陷的产生原因及其防止措施。
1. 气孔埋弧焊焊缝产生气孔的主要原因及防止措施如下:1)焊剂吸潮或不干净焊剂中的水分、污物和氧化铁屑等都会使焊缝产生气孔,在回收使用的焊剂中这个问题更为突出。
水分可通过烘干消除,烘干温度与肘间由焊剂生产厂家规定。
防止焊剂吸收水分的较好方法是正确肋储存和保管 6 采用真空式焊剂回、收器可以较有效地分离焊剂与尘土,从而减少回收焊剂在使用中产生气孔的可能性。
2) 焊接时焊剂覆盖不充分由于电弧外露并卷入空气而造成气孔。
焊接环缝时,特别是小直径的环缝,容易出现这种现象,应采取适当措施,防止焊剂散落。
想学习电焊技术的,可以到博德职业培训学校选择相关培训课程,作为一个专注培训技术型的专业学校。
坚持操作实践,排难解惑,探讨共进。
3)熔渣粘度过大焊接时溶入高温液态金属中的气体在冷却过程中将以气泡形式溢出。
如果熔渣粘度过大,气泡无法通过熔渣,被阻挡在焊缝金属表面附近而造成气孔。
通过调整焊剂的化学成分,改变熔渣的粘度即可解决。
4)电弧磁偏吹焊接时经常发生电弧磁偏吹现象,特别是在用直流电焊接时更为严重。
电弧磁偏吹会在焊缝中造成气孔。
磁偏吹的方向、受很多因素的影响,例如工件上焊接电缆的联接位置:电缆接线处接触不良、部分焊接电缆环绕接头造成的二次磁场等。
在同一条焊缝的不同部位,磁偏吹的方向也不相同。
在接近端部的一段焊缝上,磁偏吹更经常发生,因此这段焊缝气孔也较多。
为了减少磁偏吹的影响,应尽可能采用交流电源;工件上焊接电缆的联接位置尽可能远离焊缝终端;避免部分焊接电缆在工件上产生二次磁场等。
5) 工件焊接部位被污染焊接坡口及其附近的铁锈、油污或其他污物在焊接时将产生大量气体,促使气孔生成,焊接之前应予清除。
2. 裂纹通常情况下,埋弧焊接头有可能产生两种类型裂纹,即结晶裂纹和氢致裂纹。
焊接裂纹成因分析及其防治措施
焊接裂纹成因分析及其防治措施焊接裂纹是在焊接过程中产生的裂纹,其成因复杂多样。
本文将对焊接裂纹的成因进行分析,并提出相应的防治措施。
焊接裂纹的成因可以归结为以下几点:1.焊接材料问题:焊接材料的组织结构和成分不合理,或者含有一定的夹杂物和缺陷,容易引起裂纹的产生。
此外,焊接材料的降温速度过快,也容易导致裂纹的形成。
2.焊接过程问题:焊接过程中,焊接参数的选择不当,如电流、电压、焊接速度等方面的控制不准确,就会导致焊接裂纹的产生。
此外,焊接过程中产生的应力集中也是裂纹产生的重要原因。
3.焊接装置问题:焊接装置的刚性不够好,容易造成焊接变形,从而引起裂纹的产生。
针对上述原因,我们可以采取以下的防治措施:1.选择合适的焊接材料:在焊接之前,应对焊接材料进行严格的检测和评估,确保其成分和组织结构符合要求。
如果发现材料存在问题,应及时更换。
2.控制焊接参数:在焊接过程中,应根据具体情况选择合适的焊接参数,确保电流、电压、焊接速度等的准确控制。
同时,要注意焊接的降温速度,避免过快引起裂纹形成。
3.减少应力集中:在焊接过程中,应通过合适的焊接顺序和方法,尽量减少焊接产生的应力集中。
另外,可以使用适当的焊接辅助材料,如焊接夹具、预应力装置等,来缓解焊接过程中的应力。
4.加强装置刚性:焊接装置应具备足够的刚性和稳定性,避免焊接过程中产生的振动和位移,从而减少焊接变形,并防止裂纹的出现。
总结起来,要防止焊接裂纹的发生,需要从焊接材料、焊接过程和焊接装置三个方面进行综合考虑和控制。
只有合理选择材料、准确控制焊接参数、减少应力集中和加强装置刚性,才能够有效防止焊接裂纹的产生。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
埋弧焊纵焊缝终端裂纹原因分析及预防措施
【摘要】从焊缝的温度变化、受力情况以及焊接热输入能量等方面分析了埋弧焊纵焊缝端部产生裂纹的原因,制定了预防终端裂纹产生的措施。
一、概述
在压力容器制造中,当采用埋弧焊焊接简体纵焊缝时,经常会在纵焊缝的端部或靠近端部处产生裂纹(以下简称终端裂纹)。
对此问题已有不少人进行了研究,认为产生终端裂纹的主要原因是当焊接电弧接近纵焊缝终端时,焊缝在沿轴向膨胀变形的同时,还伴随有垂直轴向方向的横向张开变形;而筒体在卷制及制作装配过程中也存在着冷作硬化应力和组装应力;在焊接过程中,因终端定位焊缝及引弧板的拘束作用,在焊缝终端产生较大的拉伸应力;当电弧移动到终端定位焊缝和引弧板上时,由于该部位受热膨胀变形,使焊缝终端的横向拉仲应力得到松弛,拘束力减小,便使焊缝终端刚刚凝固的焊缝金属受到较大的拉应力而形成终端裂纹。
根据上述原因分析提出了两项解决的对策:一是增加引弧板的宽度以增加其拘束力;二是采用开槽的弹性拘束引弧板。
但是我们在实践中采取上述对策后,问题还是没有得到有效解决:如虽然采用了弹性拘束引弧板,但仍然会产生纵焊缝的终端裂纹,且在焊接厚度较小,钢性较小而经强制装配的简体时也常有终端裂纹发生等;然而,当在简体纵焊缝的延长部位带有产品试板时,虽然定位焊等情况与未带产品试板时相同,却很少产生纵缝产生终端裂纹。
经过反复试验和分析,我们认为纵缝终端裂纹的产生,虽然与终端焊缝处不可避免地存在着较大的拉伸应力有关,同时还与其他几个极为重要的原因有关。
二、终端裂纹产生的原因分析
1.终端焊缝部位温度场的变化
埋弧焊焊接时,当焊接热源靠近纵焊缝的终端部位时,焊缝端部正常的温度场将发生变化,越靠近终端其变化越大。
因为引弧板的尺寸远比筒体小,其热容量也小得多,而引弧板与筒体之间只靠定位焊连接,故可视为大部分不连续。
所以终端焊缝部位的传热条件是很差的,致使该部位局部温度升高,熔池形状发生变化,熔深也将随之变大,同时熔池在高温下停留的时间也变长,熔池凝固的速度变慢,尤其当引弧板尺寸过小,引弧板与简体之间的定位焊缝过短、过薄时更为显著。
2.焊接热输入量的影响
由于埋弧焊所采用的焊接热输入量往往比其他焊接方法要大得多,因而熔深大,熔敷金属量大,且有焊剂层的覆盖,所以熔池大,熔池凝固的速度和焊缝冷却速度都比其他焊接方法要慢,致使品粒较粗大,偏析较严重,这些都为热裂纹的产生创造了极为有利的条件。
另外,且焊缝的横向收缩量远比问隙的张开量要小,使终端部位的横向拉伸力比其他焊接方法要大。
这对开坡口的中厚板和不开坡口的较薄板尤为显著。
3.其他情况
如存在强制装配,装配质量不符合要求,母材中的S、P等杂质的含量偏高及偏析,也都会导致裂纹的产生。
三、终端裂纹的性质
终端裂纹按其性质属于热裂纹,而热裂纹按其形成的阶段又可分为结晶裂纹和亚固相裂纹。
虽然终端裂纹形成的部位有时为终端、有时为距终端附近地区150mm。
范围内,有时为表面裂纹,有时为内部裂纹,而大多数情况是发生在终端附近的内部裂纹。
由此可见,终端裂纹的性质基本上属于亚固相裂纹,也即在焊缝终端尚处于液态时,在靠近终端附近的熔池虽已凝固,但仍处于稍低于固相线以下的高温零强度状态,在终端复杂的焊接应力(主要为拉伸应力)的作用下产生裂纹,而靠近表面的焊缝表层因易于散热,温度相对较低,并已具有一定强度且塑性极好,故终端裂纹往往存在于焊缝内部而不能用肉眼发现。
四、预防措施
从上述终端裂纹产生原因分析可见,要克服埋弧焊纵缝终端裂纹最重要的措施是:1.适当地加大引弧板的尺寸
人们往往对引弧板的重要性认识不足,认为引弧板的作用只不过是将收弧时的弧坑引到焊件外而已,有时随便找一段钢板往筒体上一点焊就完事。
也有的为了节约钢材将引弧板做得很小,成为名副其实的“引弧板”,这些做法是非常错误的。
引弧板有四大作用:
(1)将引弧时的焊缝断部和收弧时的弧坑引到焊件外。
(2)加强纵缝终端部位的拘束度,承受终端部位产生的较大的拉伸应力。
(3)改善终端部位的温度场,有利于导热,不使终端部位的温度过高。
(4)改善终端部位的磁场分布,减小磁偏吹的程度。
为达到上述四个目的,引弧板必须有足够的尺寸,厚度宜与焊件相同,尺寸应视焊件的大小及钢板的厚度而定。
对于一般的压力容器,建议其长度和宽度最好不小于140mm。
2.重视引弧板的装配及定位焊
引弧板与简体之间的定位焊必须有足够的长度和厚度,一般来说定位焊缝的长度和厚度以不小于引弧板宽度和厚度的80%,为宜,且要求为连续焊,不能简单地“点”焊,在纵缝两侧,对中厚板,应保证有足够的焊缝厚度,必要时应开一定的坡口。
3.重视简体终端部位的定位焊
在简体卷圆后定位焊时,为进一步增加纵缝端部位的拘束度,在纵缝终端部位的定位焊缝长度应不小于100mm,并应有足够的焊缝厚度,且不得有裂纹、未熔合等缺陷。
4.严格控制焊接热输入量
压力容器焊接过程中必须严格控制焊接热输入量,这不仅是为了确保焊接接头力学性能的需要,而且对防止裂纹的产生有着十分重要的作用。
埋弧焊焊接电流的大小对终端裂纹的敏感性有很大的影响,因为焊接电流的大小直接与温度场和焊接热输入量相关。
5.严格控制熔池形状及焊缝成形系数
埋弧焊焊缝熔池形状及成形系数与产生焊接裂纹的敏感性有着密切的关系,因此,还应严格控制熔池的大小、形状及焊缝的成形系数。
五、结语
埋弧焊焊接简体纵缝时产生纵缝终端裂纹是极为常见的,多年来一直没有得到很好的解决。
通过试验与分析,埋弧焊纵缝终端裂纹产生的主要原因是由于该部位存在着较大的拉伸应力和特殊的温度场,二者共同作用的结果。
实践证明:采用适当地加大引弧板的尺寸,加强定位焊的质量控制,严格控制焊接热输入量及焊缝的形状等措施,能有效地防止埋弧焊终端裂纹的产生。