高中化学竞赛知识点:有机化学
高中化学竞赛有机化学基础
十八世纪前,利用天然有机物。
我国古代对天然有机物的利用:植物染料、酿酒、制醋、中草药(神农本草 经,汉末)、造纸(汉朝)
其他国家,如古代印度、巴比伦、埃及、希腊和罗马也都在染色、酿酒对天 然有机物进行了利用。埃及人用靛蓝和茜素作木乃伊裹布的染料,古犹太人祈祷 者披巾上的蓝色是从一种地中海鱼中提取出来的。
1.组成和结构之特点 有机化合物种类繁多、数目庞大(已知有七百多万种、且 还在不但增加) 但组成元素少 (C, H, O, N ,P, S, X等)
原因: 1) C原子自身相互结合能力强 2) 结合的方式多种多样(单键、双键、三键、链状、环状) 3) 同分异构现象 (构造异构、构型异构、构象异构)普遍 例如,C2H6O就可以代表乙醇和甲醚两种不同的化合物
§有机化学反应的类型和试剂的分类
一、共价键的断裂方式:
1、 均裂:成键的一对电子平均分给两个原子或原子 团。均裂生成的带单电子的原子或原子团称为自由基, 或游离基。
自由基不带电荷,呈电中性。有很高的化学活性。 自由基反应:通过共价键的均裂而进行的反应。
自由基反应一般在光或热的作用下进行。
2、异裂:成键的一对电子保留在一个原子或原子团 上。异裂生成了正离子或负离子。有机化合物异裂生 成碳正离子(R+)或碳负离子(R-)。
C 3 C 2 H C 2 H C H O C C 2 O C l2 H C 2 H H C H O C 3 C O C H C H 2 C H lH O C 3 C O 2 H C C H C H H lO
p K a 4 .8 2
4 .5 2
4 .0 6
2 .8 0
取代羧酸的酸性与-I基团离羧基的距离有关,距离越远,影响 越小。
高中化学竞赛有机题库及答案
H
H
CH3
(7)
CH2C CH
(8)
H3C
H
H
H C CH
7.将下列双烯烃化合物用系统法命名
(1)
CH3 (2)
CH3 (3)
H C
CH3
H3C
H
(4)
CC
C2H5
H
CC
H
H
(6) CH2 CHC CCH CH2
(8)
CC
CH3
(5)
C
H
(7) CH2 CH CH CH CH2C CH
H
C C CH3
(4) CH2 CH CH2 COCH2CH3
(5) CH3COCH(CH3)2
(6)
12.将下列醛酮用系统命名法命名
(1) CH3 CH COCH3
OH
Cl2CHCOCH3 (2) CH3
(7) PhCH2COCH2Ph
CH CH2CH2CH2CHO Br
H3C
CH3
CC
(3) H
C C CH
O
C6H5
(9) H3C
C
C H
C H CH3
51
8.写出下列芳香族化合物的名称 CH3
(1)
(2)
C(CH3)3
CH3 Cl
(4) H3C
(5) Br
Cl (3)
CH2Cl (6)
CH CH2 Br Br
Cl
(7) CH3O
CHO
(8)
CH2
Cl
(9)
CH2 CHCH3
Cl
HO
CH2CH3
(10)
CC
H3CH2C
OH
高中有机化学知识点总结
高中有机化学知识点总结一、有机化学基础1. 有机化合物的定义- 含有碳原子的化合物(除碳的氧化物、碳酸、碳酸盐等) - 碳原子的成键特性:碳原子可以形成四个共价键2. 碳的杂化- sp杂化:线性分子,如乙炔- sp^2杂化:平面三角形分子,如乙烯- sp^3杂化:四面体分子,如甲烷3. 有机化合物的命名- 烷烃的命名规则- 烯烃和炔烃的命名规则- 芳香烃的命名规则- 官能团的命名优先级4. 同分异构体- 构型异构:分子的三维结构不同- 立体异构:分子的空间排列不同二、有机化学反应类型1. 取代反应- 核式取代反应- 亲电取代反应- 亲核取代反应2. 加成反应- 马可尼科夫规则- 极性加成规则- 共轭加成3. 消除反应- 醇的脱水反应- 卤代烃的消除反应4. 氧化反应和还原反应- 有机化合物的氧化状态 - 氧化剂和还原剂的使用5. 重排反应- 卡宾重排- 烷基迁移三、官能团化学1. 卤代烃- 卤代反应- 卤代烃的亲核取代反应2. 醇和酚- 醇的官能团反应- 酚的酸性和反应性3. 醛和酮- 羰基的极性- 醛和酮的加成反应- 氧化和还原反应4. 羧酸和其衍生物- 羧酸的性质和反应- 酸酐、酯和酰胺的合成和水解5. 胺- 胺的命名和结构- 胺的酸碱性- 胺的反应四、生物分子化学1. 糖类- 单糖的结构和性质- 多糖的合成和水解2. 脂类- 脂肪酸和甘油的酯化反应- 磷脂的结构和功能3. 蛋白质- 氨基酸的结构和性质- 肽键的形成- 蛋白质的结构层次4. 核酸- 核苷酸的结构- DNA和RNA的合成和功能五、有机合成策略1. 逆合成分析- 目标分子的分解- 合成途径的设计2. 绿色化学原则- 原子经济性- 减少副产品和废物3. 催化剂的应用- 均相催化和非均相催化- 生物催化剂的使用六、实验技术和安全1. 有机化学实验的基本操作- 溶解、加热、冷却、萃取- 蒸馏和分馏2. 有机化合物的鉴定- 熔点和沸点的测定- 红外光谱、核磁共振和质谱3. 实验室安全- 个人防护装备的使用- 化学品的储存和处理- 应急处理措施以上总结了高中有机化学的主要知识点,涵盖了有机化学的基础理论、各类反应类型、官能团化学、生物分子化学、有机合成策略以及实验技术和安全。
化学竞赛知识点总结有机
化学竞赛知识点总结有机有机化学竞赛是一种针对有机化学知识的考试,旨在检验学生对有机化学理论知识、实验操作、解题能力和创新思维的掌握程度。
在竞赛中,学生需要熟练掌握有机化学理论知识,灵活运用化学实验技能,理解和分析有机化合物的结构与性质,解决有机化学问题,提高解题思维和创新能力。
以下是有机化学竞赛知识点的总结:一、有机化学基础知识1. 有机化合物的命名规则:包括正式命名法、通用命名法和简化命名法等,学生需要掌握各种命名规则,并能够根据给定的有机化合物结构进行正确的命名;2. 有机化合物的结构特点:包括碳链、碳环、官能团等结构特点,学生需要理解有机化合物的结构特点与性质关系;3. 有机反应的基本类型:包括加成反应、消除反应、取代反应、重排反应等,学生需要了解各种有机反应的基本类型及其特点;4. 有机化学的重要概念:包括构象、立体化学、手性等重要概念,学生需要理解这些概念在有机化学中的应用;5. 有机化学实验技术:包括有机合成实验、制备有机化合物实验、有机化合物性质表征实验等,学生需要具备操作化学仪器的基本技能,并能够按照实验要求进行操作。
二、有机化学竞赛解题技巧1. 理解题目:学生需要仔细阅读题目,理解题目要求、考察内容及解题思路;2. 总结规律:学生需要总结解题规律和方法,整理解题思路和逻辑;3. 多练习:学生需要进行大量的有机化学竞赛题目练习,熟悉解题技巧和方法;4. 主动思考:学生需要主动思考解题思路和方法,锻炼解题的创新能力;5. 多交流:学生可以参加有机化学竞赛培训班、讲座等活动,与其他竞赛学生交流、沟通,共同进步。
三、有机化学竞赛知识点练习题1. 有机化合物命名题:给出有机化合物的结构,要求学生进行正确地命名;2. 有机反应类型题:给定有机反应方程式,要求学生预测反应类型、产物结构等;3. 有机化合物结构性质题:给出有机化合物的结构,要求学生分析其性质、构象、立体化学等;4. 有机合成题:给出有机化合物的结构,要求学生设计合成方案;5. 实验操作题:给出实验操作流程,要求学生进行正确的实验操作。
高中化学竞赛有机化学要义精讲
奥林匹克竞赛有机化学要义精讲一.有机物系统命名法根据IUPAC命名法及1980年中国化学学会命名原则,按各类化合物分述如下。
1.带支链烷烃主链选碳链最长、带支链最多者。
编号按最低系列规则。
从靠侧链最近端编号,如两端号码相同时,则依次比较下一取代基位次,最先遇到最小位次定为最低系统(不管取代基性质如何)。
例如,命名为2,3,5-三甲基己烷,不叫2,4,5-三甲基己烷,因2,3,5与2,4,5对比是最低系列。
取代基次序IUPAC规定依英文名第一字母次序排列。
我国规定采用立体化学中“次序规则”:优先基团放在后面,如第一原子相同则比较下一原子。
例如,称2-甲基-3-乙基戊烷,因—CH2CH3>—CH3,故将—CH3放在前面。
2.单官能团化合物主链选含官能团的最长碳链、带侧链最多者,称为某烯(或炔、醇、醛、酮、酸、酯、……)。
卤代烃、硝基化合物、醚则以烃为母体,以卤素、硝基、烃氧基为取代基,并标明取代基位置。
编号从靠近官能团(或上述取代基)端开始,按次序规则优先基团列在后面。
例如,3.多官能团化合物(1)脂肪族选含官能团最多(尽量包括重键)的最长碳链为主链。
官能团词尾取法习惯上按下列次序,—OH>—NH2(=NH)>C≡C>C=C如烯、炔处在相同位次时则给双键以最低编号。
例如,(2)脂环族、芳香族如侧链简单,选环作母体;如取代基复杂,取碳链作主链。
例如:(3)杂环从杂原子开始编号,有多种杂原子时,按O、S、N、P顺序编号。
例如:4.顺反异构体(1)顺反命名法环状化合物用顺、反表示。
相同或相似的原子或基因处于同侧称为顺式,处于异侧称为反式。
例如,(2)Z,E命名法化合物中含有双键时用Z、E表示。
按“次序规则”比较双键原子所连基团大小,较大基团处于同侧称为Z,处于异侧称为E。
次序规则是:(Ⅰ)原子序数大的优先,如I>Br>Cl>S>P>F>O>N>C>H,未共享电子对:为最小;(Ⅱ)同位素质量高的优先,如D>H;(Ⅲ)二个基团中第一个原子相同时,依次比较第二、第三个原子;(Ⅳ)重键分别可看作(Ⅴ)Z优先于 E,R优先于S。
2020高中化学竞赛(入门篇)-基础有机化学-第01、02章 绪论、有机化合物命名(共66张PPT)
7
CH3
CH3
CH3 CH3
2,6,8-三甲基癸烷
如处于对称位置,优先考虑较简单的取代基。 1 2 34 C5H3CH62CHC7H2CHCH2CH3 3-甲基-5-乙基庚烷
CH3 CH2CH3
1 23 456 6 54 321
CH3CHCH2CHCHCH3
CH3 H3C CH3
CH3
甲苯
CH(CH3)2
CH3 CH3
异丙苯
邻二甲苯 o-二甲苯 1,2-二甲苯
CH3
CH3
CH3
间二甲苯 m-二甲苯 1,3-二甲苯
CH3
对二甲苯 p-二甲苯 1,4-二甲苯
CH3 CH3
CH3
1,2,3-三甲苯 连三甲苯
CH3 CH3
CH3
CH3
1,2,4-三甲苯 偏三甲苯
H3C
CH3
1,3,5-三甲苯 均三甲苯
命名规则:
(1)选主链:选择最长的碳链作主链,按主链的碳 原子数命名为“某烷”。
(2)编号:从靠近支链(取代基)的一端对主链进行 编号,根据支链所连碳原子的编号表示支链的位次。
65 4 3 2
CH3CH2CH2CHCH2CH3 CH3
1
3-甲基己烷
(3)命名:将支链的位次、个数、名称写在主体 名称的前面,中间用短线隔开。
654
CH3
CH3CH2CHCH2CHCH3
3 21
2-甲基-4-环己基己烷
H CH3
C2H5 H
反-1-甲基-4-乙基环己烷
C2H5 CH3 CH3
r-1,反-1,2-二甲基-反-4-乙基环己烷
桥环:共用两个或两个以上碳原子的多环烷烃
有机化学第一讲 高中化学竞赛
有机化学第一讲高中化学竞赛有机化学第一讲高中化学竞赛第一课:基本有机化学概述一、有机化和物和有机化学的涵义有机化学是研究有机化合物的来源、制备、结构、性质、应用及相关理论和方法的科学。
它是化学的一个分支。
其研究对象是有机化合物。
什么是有机化合物呢?早期化学家将所有物质按其来源分为两类,人们把从生物体(植物或动物)中获得的物质定义为有机化合物,无机化合物则被认为是从非生物或矿物中得到的。
目前,绝大多数有机物不是从天然有机物中获得的,但由于历史和习惯之间的关系,“有机”一词仍然保留下来。
2、有机化合物的特性1。
成分和结构特征有机化合物:种类繁多、数目庞大(已知有七百多万种、且还在不但增加)但组成元素少(c,h,o,n,p,s,x等)原因:1)c原子自身相互结合能力强2)有很多种结合方式(单键、双键、三键、链、环)3)同分异构现象(构造异构、构型异构、构象异构)例如,c2h6o就可以代表乙醇和甲醚两种不同的化合物、2.物理特性1)高挥发性、低熔点和沸点2)水溶性差(大多不容或难溶于水,易溶于有机溶剂)3.化学性质方面的特点1)易燃烧2)热稳定性差,易热分解(许多化合物在200~300度下分解)3)反应速度慢4)反应复杂,副作用多三、有机化合物的分类1.按基本骨架分类(1)脂肪族化合物:分子中的碳原子相互结合形成碳链或碳环。
(2)芳香化合物:碳原子连接成特殊的芳香环。
(3)杂环化合物:这类化合物具有环状结构,但是组成环的原子除碳外,还有氧.硫.氮等其他元素的原子。
2.按官能团分类官能团是决定一类化合物主要性质的原子、原子团或特殊结构。
显然,含有相同官能团的有机化合物具有相似的化学性质。
常见的官能团及相应化合物的类别CC碳-碳双键烯烃碳碳叁键cc炔烃卤素原子―x卤代烃羟基―oh醇、酚醚基COC醚o醛、CHO羰基酮等co羧基羧酸椰酰化合物rc氨基氨硝基―no2硝基化合物磺酸基―so3h磺酸巯基sh硫醇、硫酚氰基CN腈四、有机化合物结构的表示方法凯库勒公式:扩展缩写hhhcccchcchhchch切切切切切切切切切切切切切切切切切切切切切切切切切切切切切切切切切切切切切切切切切切切切切切切切切切切切切切或键线式面向对象第二讲烷烃分子中只有C和H元素的有机化合物称为碳氢化合物由碳和氢两种元素组成的饱和烃称为烷烃。
高中有机化学基础知识点归纳(全)
高中《有机化学基础》知识点一、重要的物理性质1.有机物的溶解性(1)难溶于水的有:各类烃、卤代烃、硝基化合物、酯、绝大多数高聚物、高级的(指分子中碳原子数目较多的,下同)醇、醛、羧酸等。
(2)易溶于水的有:低级的[一般指N(C)≤4]醇、(醚)、醛、(酮)、羧酸及盐、氨基酸及盐、单糖、二糖。
(它们都能与水形成氢键)。
二、重要的反应1.能使溴水(Br2/H2O)褪色的物质(1)有机物①通过加成反应使之褪色:含有、—C≡C—的不饱和化合物②通过取代反应使之褪色:酚类注意:苯酚溶液遇浓溴水时,除褪色现象之外还产生白色沉淀。
③通过氧化反应使之褪色:含有—CHO(醛基)的有机物(有水参加反应)注意:纯净的只含有—CHO(醛基)的有机物不能使溴的四氯化碳溶液褪色④通过萃取使之褪色:液态烷烃、环烷烃、苯及其同系物、饱和卤代烃、饱和酯(2)无机物①通过与碱发生歧化反应3Br2 + 6OH- == 5Br- + BrO3- + 3H2O或Br2 + 2OH- == Br- + BrO- + H2O②与还原性物质发生氧化还原反应,如H2S、S2-、SO2、SO32-、I-、Fe2+2.能使酸性高锰酸钾溶液KMnO4/H+褪色的物质1)有机物:含有、—C≡C—、—OH(较慢)、—CHO的物质苯环相连的侧链碳上有氢原子的苯的同系物(但苯不反应)2)无机物:与还原性物质发生氧化还原反应,如H2S、S2-、SO2、SO32-、Br-、I-、Fe2+3.与Na反应的有机物:含有—OH、—COOH的有机物与NaOH反应的有机物:常温下,易与—COOH的有机物反应加热时,能与卤代烃、酯反应(取代反应)与Na2CO3反应的有机物:含有—COOH的有机物反应生成羧酸钠,并放出CO2气体;与NaHCO3反应的有机物:含有—COOH的有机物反应生成羧酸钠并放出等物质的量的CO2气体。
4.既能与强酸,又能与强碱反应的物质(1)氨基酸,如甘氨酸等H2NCH2COOH + HCl → HOOCCH2NH3ClH2NCH2COOH + NaOH → H2NCH2COONa + H2O(2)蛋白质分子中的肽链的链端或支链上仍有呈酸性的—COOH和呈碱性的—NH2,故蛋白质仍能与碱和酸反应。
高中化学竞赛培训讲义有机物常识烃
有机物常识 烃【竞赛要求】有机化合物基本类型及系统命名.烷、烯、炔、环烃、芳香烃的基本性质及相互转化.异构现象.C=C 加成.马可尼科夫规则.取代反应.芳香烃取代反应及定位规则.芳香烃侧链的取代反应和氧化反应.【知识梳理】一、有机化合物的分类和命名(一)有机化合物的分类1、按基本骨架分类(1)脂肪族化合物:分子中碳原子相互结合成碳链或碳环.(2)芳香族化合物:碳原子连接成特殊的芳香环.(3)杂环化合物:这类化合物具有环状结构,但是组成环的原子除碳外,还有氧、硫、氮等其他元素的原子.2、按官能团分类官能团是决定某类化合物的主要性质的原子、原子团或特殊结构.显然,含有相同官能团的有机化合物具有相似的化学性质.表13-1 常见的官能团及相应化合物的类别 碳碳双键 烯烃碳碳叁键 炔烃 卤素原子 —X 卤代烃羟基 —OH 醇、酚 醚基 醚 醛基 醛 羰基 酮等 羧基 羧酸 酰基 酰基化合物氨基 —NH 2 胺硝基 —NO 2 硝基化合物磺酸基 —SO 3H 磺酸巯基 —SH 硫醇、硫酚氰基 —CN 腈(二)有机化合物的命名1、烷烃的命名烷烃通常用系统命名法,其要点如下:C C C C C O C C H OC OC OH OC R O(1)直链烷烃根据碳原子数称“某烷”,碳原子数由1到10用甲、乙、丙、丁、戊、己、庚、辛、壬、癸表示,如CH3CH2CH2CH3叫丁烷,自十一起用汉数字表示,如C11H24,叫十一烷. (2)带有支链烷烃的命名原则:A.选取主链.从烷烃构造式中,选取含碳原子数最多的碳链为主链,写出相当于这一碳链的直链烷烃的名称.B.从最靠近取代基的一端开始,用1、2、3、4……对主链进行编号,使取代基编号“依次最小”.C.如果有几种取代基时,应依“次序规则”排列.D.当具有相同长度的碳链可选做主链时,应选定具有支链数目最多的碳链为主.例如:2、脂环烃的命名脂环烃分为饱和的脂环烃和不饱和的脂环烃.饱和的脂环烃称为环烷烃,不饱和的脂环烃称环烯烃或环炔烃.它们的命名是在同数目碳原子的开链烃的名称之前加冠词“环”.连有取代基的环烷烃,命名时使取代基的编号最小.取代的不饱和环烃,要从重键开始编号,并使取代基有较小的位次.环之间有共同碳原子的多环化合物叫多环烃.根据环中共用碳原子的不同可分为螺环烃和桥环烃.螺环烃分子中两个碳环共有一个碳原子.螺环烃的命名是根据成环碳原子的总数称为螺某烷,在螺字后面的方括号内,用阿拉伯数字标出两个碳环除了共有碳原子以外的碳原子数目,将小的数字排在前面,编号从较小环中与螺原子(共有碳原子)相邻的一个碳原子开始,经过共有碳原子而到较大的环进行编号,在此编号规则基础上使取代基及官能团编号较小.如脂环烃分子中两个或两个以上碳环共有两个或两个以上碳原子的称为桥环烃.桥环烃中多个环共用的两个碳原子称为“桥头碳”,命名使先确定“桥”,并由桥头碳原子之一开始编号,其顺序是先经“大桥”再经“小桥”.环数大写于前,方括号内标出各桥的碳原子数,最后写某烷.如3、含单官能团化合物的命名含单官能团化合物的命名按下列步骤:(1)选择主链:选择含官能团的最长碳链为主链作为母体,称“某烯”、“某炔”、“某醇”、“某醛”、“某酸”等(而卤素、硝基、烷氧基则只作取代基),并标明官能团的位置.(2)编号:从靠近官能团(或取代基)的一端开始编号.(3)词头次序:同支链烷烃,按“次序规则”排列.如:4、含多官能团的化合物命名含多官能团的化合物按下列步骤命名:(1)选择主链(或母体):开链烃应选择含尽可能多官能团(尽量包含碳碳双键或碳碳三键)的最长碳链为主链(或母体);碳环,芳环,杂环以环核为母体.按表13-2次序优先选择一个主要官能团作词尾,即列在前面的官能团,优先选作词尾.表13-2 引用作词尾和词头的官能团名称 官能团 词 尾 词 头 (某)酸 羧基—SO 3H (某)磺酸 磺基 (某)酸(某)酯 酯基 (某)酰卤 卤甲酰基 (某)酰胺 氨基甲酰基 C OH O C OR OC X OC NH 2O—CN (某)腈氰基(某)醛甲酰基(某)酮羰基—OH (某)醇羟基—SH (某)醇(或酚)巯基—NH2 (某)胺氨基= NH (某)亚胺亚氨基(某)烯双键(某)炔三键(2)开链烃编号从靠近主要官能团(选为词尾的官能团)的一端编起;碳环化合物,芳香环使主要官能团的编号最低.而苯环上的2–位、3–位、4–位常分别用邻位、间位和对位表示.(3)不选作主要官能团的其他官能团以及取代基一律作词头.其次序排列按“次序规则” . 例如:醛基(–CHO)在羟基(–OH)前,所以优先选择–CHO 为主要官能团作词尾称“己醛”,–CH2CH3、–OH、–CH3、–Br 作词头,根据“次序规则”,其次序是甲基、乙基、羟基、溴.编号从主要官能团开始,并使取代基位次最小.所以命名为:4 –甲基–2–乙基–3–羟基–5 –溴己醛.主要官能团是– COOCH3 ,所以叫苯甲酸甲酯.– OH、– NO2作词头,其次序是硝基、羟基.编号从主要官能团开始,并使取代基位次最小.所以命名为:3 –硝基– 2 –羟基苯甲酸.二、烷烃(一)烷烃的组成和结构烷烃的通式为C n H2n+2,其分子中各元素原子间均以单键即σ–键相结合,其中的碳原子均为sp3杂化形式.由于单键可以旋转,所以烷烃的异构有碳架异构和构象异构(见第16讲立体化学).(二)烷烃的物理性质烷烃随着碳原子数增加,其熔点、沸点均呈上升趋势,常温下甲烷至丁烷为气体,戊烷至十六烷为液体,十七以上者为固体,但同碳数的异构烷烃,其溶沸点往往也有很大区别.例如:含五个碳原子的开链烷烃的三个异构体戊烷,2–甲基丁烷和新戊烷,其沸点分别为36.1℃、25℃、9℃,七熔点分别为–130℃、–160℃、–17℃.C HOCOC CC C(三)烷烃的化学性质烷烃从结构上看,没有官能团存在,因而在一般条件下它是很稳定的.只有在特殊条件下,例如光照和强热情况下,烷烃才能发生变化.这些变化包括碳链上的氢原子被取代,碳 – 碳键断裂,氧化或燃烧.烷烃的化学反应:1、取代反应CH 4 +Cl 2 CH 3Cl + HCl CH 3Cl + Cl 2 CH 2Cl 2 + HCl CH 2Cl 2 + Cl 2 CHCl 3 + HClCHCl 3 + Cl 2 CCl 4 + HCl卤素反应的活性次序为:F 2 >Cl 2 > Br 2 > I 2对于同一烷烃,不同级别的氢原子被取代的难易程度也不是相同的.大量的实验证明叔氢原子最容易被取代,伯氢原子最难被取代.卤代反应机理:实验证明,甲烷的卤代反应机理为游离基链反应,这种反应的特点是反应过程中形成一个活泼的原子或游离基.其反应过程如下:(1)链引发:在光照或加热至250 ~ 400℃时,氯分子吸收光能而发生共价键的均裂,产生两个氯原子游离基,使反应引发.Cl 2 2Cl •(2)链增长:氯原子游离基能量高,反应性能活泼.当它与体系中浓度很高的甲烷分子碰撞时,从甲烷分子中夺取一个氢原子,结果生成了氯化氢分子和一个新的游离基——甲基游离基.Cl • + CH 4 HCl + CH 3•甲基游离基与体系中的氯分子碰撞,生成一氯甲烷和氯原子游离基.CH 3• + Cl 2 CH 3Cl + Cl •反应一步又一步地传递下去,所以称为链反应.CH 3Cl + Cl • CH 2Cl • + HClCH 2Cl • + Cl 2 CH 2Cl 2 + Cl •(3)链终止:随着反应的进行,甲烷迅速消耗,游离基的浓度不断增加,游离基与游离基之间发生碰撞结合生成分子的机会就会增加.Cl • + Cl • Cl 2CH 3• + CH 3• CH 3CH 3CH 3• + Cl • CH 3Cl2、热裂反应+ CH 2=CHCH 3 CH 3CH 2CH 2CH 3 CH 3CH 3 + CH 22=CHCH 2CH 3 + H 23、异构化反应CH 3CH 2CH 2CH 3 4、氧化反应:烷烃很容易燃烧,燃烧时发出光并放出大量的热,生成CO 2和 H 2O. CH 4 + 2O 2 CO 2 + 2H 2O + 热量三、烯烃(一)烯烃的组成和结构点燃 h υh υ h υh υ h υ AlCl 3 加热、加压 CH 3CHCH 3 CH 3烯烃的通式为C n H 2n ,分子中含碳碳双键,形成双键的两个碳均发生sp 2杂化.以乙烯的形成为例:碳原子的1个2s 轨道与2个2p 轨道进行杂化,组成3个能量完全相等、性质相同的sp2杂化轨道.在形成乙烯分子时,每个碳原子各以2个sp 2杂化轨道形成2个碳氢σ键,再以1个sp 2杂化轨道形成碳碳σ键.5个σ键都在同一个平面上,2个碳原子未参加杂化的2p 轨道,垂直于5个σ键所在的平面而互相平行.这两个平行的p 轨道,侧面重叠,形成一个π键.因乙烯分子中的所有原子都在同一个平面上,故乙烯分子为平面分子.由于烯烃的双键可处于碳链的不同位置上,导致了位置异构的出现;由于π键不能自由旋转,又导致烯烃存在顺反异构(见第16讲 立体化学)(二)烯烃的性质烯烃的物理性质基本上类似于烷烃,即不溶于水而易溶于非极性溶剂,比重小于水.一般说,四个碳以下的烯为气体,十九个碳以上者为固体.烯烃于烷烃相比,分子中出现了双键官能团.由于双键中的π键重叠程度小,容易断裂,故烯烃性质活泼.烯烃的化学反应1、加成反应(1)催化加氢在催化剂作用下,烯烃与氢发生加成反应生成相应的烷烃.CH 2=CH 2 + H 2 CH 3CH 3 (2)加卤素CH 2=CH 2 + Br 2 CH 2BrCH 2Br 将乙烯通入溴的四氯化碳溶液中,溴的颜色很快褪去,常用这个反应来检验烯烃.(3)加卤化氢CH 2=CH 2 + HI CH 3CH 2I同一烯烃与不同的卤化氢加成时,加碘化氢最容易,加溴化氢次之,加氯化氢最难.(4)加硫酸(加水)烯烃能与浓硫酸反应,生成硫酸氢烷酯.硫酸氢烷酯易溶于硫酸,用水稀释后水解生成醇.工业上用这种方法合成醇,称为烯烃间接水合法.CH 3CH=CH 2 + H 2SO 4 CH 3CH(OSO 3H)CH 3 CH 3CH(OH)CH3 + H 2SO4 (5)加次卤酸烯烃与次卤酸加成,生成β– 卤代醇.由于次卤酸不稳定,常用烯烃与卤素的水溶液反应.如:CH 2=CH 2 + HOCl CH 2(OH)CH 2Cl2、氧化反应(1)被高锰酸钾氧化用碱性冷高锰酸钾稀溶液作氧化剂,反应结果使双键碳原子上各引入一个羟基,生成邻二醇. CH 2=CH 2 + KMnO 4 + H 2O CH 2(OH)CH 2(OH) + MnO 2 + KOH若用酸性高锰酸钾溶液氧化烯烃,则反应迅速发生,此时不仅π键打开,σ键也可断裂.双键断裂时,由于双键碳原子连接的烃基不同,氧化产物也不同.CH 2=CH 2 + KMnO 4 + H 2SO 4 2CO 2 + MnO 2CH 3CH=CH 2 + KMnO 4 + H 2SO 4 CH 3COOH + CO 2CH 3CH=CHCH 3 + KMnO 4 + H 2SO 4 2CH 3COOHCH 3C(CH 3)=CHCH 3 + KMnO 4 + H 2SO 4 CH 3COOH +CH 3COCH 32、臭氧化NiCCl 4Δ 碱性在低温时,将含有臭氧的氧气流通入液体烯烃或烯烃的四氯化碳溶液中,臭氧迅速与烯烃作用,生成粘稠状的臭氧化物,此反应称为臭氧化反应.如:臭氧化物在还原剂存在的条件下水解(为了避免生成的醛被过氧化氢继续氧化为羧酸),可以得到醛或酮.例如:烯烃经臭氧化再水解,分子中的CH 2= 部分变为甲醛,RCH= 部分变成醛,R 2C= 部分变成酮.这样,可通过测定反应后的生成物而推测原来烯烃的结构. 3、聚合反应4、α– H 的活性反应双键是烯烃的官能团,与双键碳原子直接相连的碳原子上的氢,因受双键的影响,表现出一定的活泼性,可以发生取代反应和氧化反应.例如,丙烯与氯气混合,在常温下是发生加成反应,生成1,2–二氯丙烷.而在500℃的高温下,主要是烯丙碳上的氢被取代,生成3–氯丙烯. CH 3CH=CH 2 + Cl 2 CH 3CHClCH 2ClCH 3CH=CH 2 + Cl 2 CH 2ClCH=CH 2(三)烯烃加成反应的反应机理1、亲电加成反应机理将乙烯通入含溴的氯化钠水溶液,反应产物除了BrCH 2CH 2Br 外,还有少量BrCH 2CH 2Cl 生成,但没有ClCH 2CH 2Cl.CH 2=CH 2 + Br 2 CH 2BrCH 2Br + CH 2BrCH 2Cl 这一实验表明,乙烯与溴的加成反应,不是简单地将乙烯的双键打开,溴分子分成两个溴原子,同时加到两个碳原子上这样一步完成的.如果是这样的话,则生成物应该只有BrCH 2CH 2Br,不应该有BrCH 2CH 2Cl,因Cl - 是不能使BrCH 2CH 2Br 转变为BrCH 2CH 2Cl 的.由此可知,乙烯与溴的加成反应不是一步完成的,而是分步进行的.当溴分子接近双键时,由于π电子的排斥,使非极性的溴–溴键发生极化,离π键近的溴原子带部分正电荷,另一溴原子带部分负电荷.带部分正电荷的溴原子对双键的亲电进攻,生成一个缺电子的碳正离子.而碳正离子中,带正电荷的碳原子的空p 轨道,可与其邻位碳原子上的溴原子带有末共用电常温 500℃ NaCl 水 C C O O O C C O 3 + C C R H H H C O R H C O H H O 3 Zn + C C R H R R C O R HC O R R O 3 Zn + CH 2 CH 2 n [CH 2CH 2] n C C Br Br C CBr +子对的p轨道相互重叠,形成一个环状的溴正离子.可用下式表示:接着溴负离子进攻溴正离子中的一个碳原子,得到加成产物.从上述的反应过程可以看出:(1)在这个有机反应过程中,有离子的生成及其变化,属于离子型反应.(2)两个溴原子的加成是分步进行的,而首先进攻碳碳双键的是溴分子中带部分正电荷的溴原子,在整个反应中,这一步最慢,是决定反应速度的一步.所以这个反应称为亲电性离子型反应,溴在这个反应中作亲电试剂.(3)两个溴原子先后分别加到双键的两侧,属于反式加成.2、马尔科夫尼要夫规则当乙烯与卤化氢加成时,卤原子或氢原子不论加到哪个碳原子上,产物都是相同的.因为乙烯是对称分子.但丙烯与卤化氢加成时,情况就不同了,有可能生成两种加成产物:CH3CH2CH2XCH3CH=CH2 + HXCH3CHXCH3实验证明,丙烯与卤化氢加成时,主要产物是2–卤丙烷.即当不对称烯烃与卤化氢加成时,氢原子主要加到含氢较多的双键碳原子上,这一规律称为马尔科夫尼可夫规则,简称马氏规则.马氏规则可用烯烃的亲电加成反应机理来解释.由于卤化氢是极性分子,带正电荷的氢离子先加到碳碳双键中的一个碳原子上,使碳碳双键中的另一个碳原子形成碳正离子,然后碳正离子再与卤素负离子结合形成卤代烷.其中第一步是决定整个反应速度的一步,在这一步中,生成的碳正离子愈稳定,反应愈容易进行.一个带电体系的稳定性,取决于所带电荷的分布情况,电荷愈分散,体系愈稳定.碳正离子的稳定性也是如此,电荷愈分散,体系愈稳定.以下几种碳正离子的稳定性顺序为:CH3+ < CH3CH2+ < (CH3)2CH+ < (CH3)3C+甲基与氢原子相比,前者是排斥电子的基团.当甲基与带正电荷的中心碳原子相连接时,共用电子对向中心碳原子方向移动,中和了中心碳原子上的部分正电荷,即使中心碳原子的正电荷分散,而使碳正离子稳定性增加.与中心碳原子相连的甲基愈多,碳正离子的电荷愈分散,其稳定性愈高.因此,上述4个碳正离子的稳定性,从左至右,逐步增加.四、炔烃(一)炔烃的组成和结构炔烃的通式为C n H2n-2,分子中含碳碳三键,形成三键的两个碳均发生sp杂化.以乙炔为例:两个碳原子采用sp杂化方式,即一个2s轨道与一个2p轨道杂化,组成两个等同的sp杂化轨道,sp杂化轨道的形状与sp2、sp3杂化轨道相似,两个sp杂化轨道的对称轴在一条直线上.两个以sp杂化的碳原子,各以一个杂化轨道相互结合形成碳碳σ键,另一个杂化轨道各与一个氢原子结合,形成碳氢σ键,三个σ键的键轴在一条直线上,即乙炔分子为直线型分子.每个碳原子还有两个末参加杂化的p轨道,它们的轴互相垂直.当两个碳原子的两p轨道分别平行时,两两侧面重叠,形成两个相互垂直的π键.由于碳碳三键为直线型,所以炔烃无顺反异构.(二)炔烃的性质炔烃的物理性质与烯烃相似,乙炔、丙炔和丁炔为气体,戊炔以上的低级炔烃为液体,高级炔烃为固体.简单炔烃的沸点、熔点和相对密度比相应的烯烃要高.炔烃难溶于水而易溶于有机溶剂.炔烃中的官能团是碳碳三键.因此三键的结构及其对分子中其他部位的影响,将决定炔烃的化学行为.炔烃的化学反应主要有:1、加成反应(1)催化加氢HC≡CH + H 2 CH 2=CH 2 CH 3CH 3 (2)加卤素 HC≡CH + Br 2 CHBr=CHBr CHBr 2CHBr 2 虽然炔烃比烯烃更不饱和,但炔烃进行亲电加成却比烯烃难.这是由于sp 杂化碳原子的电负性比sp 2杂化碳原子的电负性强,因而电子与sp 杂化碳原子结合和更为紧密,不容易提供电子与亲电试剂结合,所以叁键的亲电加成反应比双键慢.例如烯烃可使溴的四氯化碳溶液很快褪色,而炔烃却需要一两分钟才能使之褪色.故当分子中同时存在双键和三键时,与溴的加成首先发生在双键上.+ Br 2 CH 2BrCHBrC≡CH(3)加卤化氢 炔烃与卤化氢的加成,加碘化氢容易进行,加氯化氢则难进行,一般要在催化剂存在下才能进行.不对称炔烃加卤化氢时,服从马氏规则.例如:+ HI CH 3CI=CH 2 CH 3CI 2CH 3 在汞盐的催化作用下,乙炔与氯化氢在气相发生加成反应,生成氯乙烯.HC≡CH + HCl CH 2=CHCl 在光或过氧化物的作用下,炔烃与溴化氢的加成反应,得到反马氏规则的加成产物.如: (4)加水在稀酸(10℅H 2SO 4)中,炔烃比烯烃容易发生加成反应.例如,在10℅H 2SO 4和5℅硫酸汞溶液中,乙炔与水加成生成乙醛,此反应称为乙炔的水化反应或库切洛夫反应.汞盐是催化剂. HC≡CH + H 2O CH 3CHO其他的炔烃水化得到酮.如+ H 2O CH 3CH 2COCH 3 (5)加醇在碱性条件下,乙炔与乙醇发生加成反应,生成乙烯基乙醚.HC≡CH + CH 3CH 2OH CH 2=CHOCH 2CH 3 2、氧化反应炔烃被高锰酸钾或臭氧氧化时,生成羧酸或二氧化碳.如:R C≡CH + KMnO 4 RCOOH + CO 2 R C≡C R + KMnO 4 RCOOH + RCOOH 3、聚合反应在不同的催化剂作用下,乙炔可以分别聚合成链状或环状化合物.与烯烃的聚合不同的是,炔烃一般不聚合成高分子化合物.例如,将乙炔通入氯化亚铜和氯化铵的强酸溶液时,可发生二聚或三聚作用.CH CH 3C HI HgCl 2碱酸性催化剂 催化剂 H 2 Br 2CH CH CH 2 C CH CH 3CH 2C CHBr CH 3CH 2CH CH 3CH 2CH 2CH 2CHBr 2 HgSO 4 HgSO 4 CH CH 3CH 2C 酸性 Cu 2Cl 2CHCHHC≡CH + HC≡CH 乙烯基乙炔在高温下,三个乙炔分子聚合成一个苯分子.3 HC≡CH C 6H 64、炔化物的生成与三键碳原子直接相连的氢原子活泼性较大.因sp 杂化的碳原子表现出较大的电负性,使与三键碳原子直接相连的氢原子较之一般的碳氢键,显示出弱酸性,可与强碱、碱金属或某些重金属离子反应生成金属炔化物.乙炔与熔融的钠反应,可生成乙炔钠和乙炔二钠:CH≡CH + Na HC≡C Na Na C≡C Na 丙炔或其它末端炔烃与氨基钠反应,生成炔化钠:R C≡CH + NaNH 2 R C≡C Na 炔化钠与卤代烃(一般为伯卤代烷)作用,可在炔烃分子中引入烷基,制得一系列炔烃同系物.如:R C≡C Na + RX R C≡C R + NaX 末端炔烃与某些重金属离子反应,生成重金属炔化物.例如,将乙炔通入硝酸银的氨溶液或氯化亚铜的氨溶液时,则分别生成白色的乙炔银沉淀和红棕色的乙炔亚铜沉淀:HC≡CH + Ag(NH 3)2NO 3 Ag C≡C Ag + NH 4NO 3 + NH 3HC≡CH + Cu(NH 3)2Cl Cu C≡C Cu + NH 4Cl + NH 3上述反应很灵敏,现象也很明显,常用来鉴别分子中的末端炔烃.利用此反应,也可鉴别末端炔烃和三键在其他位号的炔烃.如:R C≡CH + Ag(NH 3)2NO 3 R C≡C AgR C≡C R + Ag(NH 3)2NO 3 不反应五、二烯烃(一)二烯烃的组成和分类分子中含有两个或两个以上碳碳双键的不饱和烃称为多烯烃.二烯烃的通式为C n H 2n -2,故二烯烃与同碳数的炔烃互为同分异构体.根据二烯烃中两个双键的相对位置的不同,可将二烯烃分为三类:1、累积二烯烃:两个双键与同一个碳原子相连接,即分子中含有C=C=C 结构的二烯烃称为累积二烯烃.例如:丙二烯 CH 2=C=CH 2 .2、隔离二烯烃:两个双键被两个或两个以上的单键隔开,即分子骨架为C=C –(C)n –C=C 的二烯烃称为隔离二烯烃.例如,1、4–戊二烯 CH 2=CH –CH 2–CH=CH 2.3、共轭二烯烃:两个双键被一个单键隔开,即分子骨架为C=C –C=C 的二烯烃为共轭二烯烃.例如,1,3–丁二烯 CH 2=CH –CH=CH 2.本讲重点讨论的是共轭二烯烃.(二)共轭二烯烃的结构1,3–丁二烯分子中,4个碳原子都是以sp 2杂化,它们彼此各以1个sp 2杂化轨道结合形成碳碳σ键,其余的sp 2杂化轨道分别与氢原子的s 轨道重叠形成6个碳氢σ键.分子中所有σ键和全部碳原子、氢原子都在一个平面上.此外,每个碳原子还有1个末参加杂化的与分子平面垂直的p 轨道,在形成碳碳σ键的同时,对称轴相互平行的4个p 轨道可以侧面重叠形成一个包含4个碳原子的离域键,也称大π键.像这样具有离域键的体系称为共轭体系.在共轭体系中,由于原子间的相互影响,使整个分子电子云的分布趋于平均化的倾向称为共轭效应.由π电子离域而体现的共轭效应称为π-π共轭效应.共轭效应与诱导效应是不相同的.诱导效应是由键的极性所引起的,可沿σ键传递下去,这种作用是短程的,一般只在和作用中心直接相连的碳原子中表现得最大,相隔一个原子,所受的作用力就很小了.而共轭效应是由于p 电子在整个分子轨道中的离域作用所引起的,其作用300℃ 液氨液氨Na可沿共轭体系传递.共轭效应不仅表现在使1,3–丁二烯分子中的碳碳双键健长增加,碳碳单键健长缩短,单双键趋向于平均化.由于电子离域的结果,使化合物的能量降低,稳定性增加,在参加化学反应时,也体现出与一般烯烃不同的性质.(三)1,3 –丁二烯的性质1、稳定性物质的稳定性取决于分子内能的高低,分子的内能愈低,其分子愈稳定.分子内能的高低,通常可通过测定其氢化热来进行比较.例如:CH 2=CHCH 2CH=CH 2 +2H 2 CH 3CH 2CH 2CH 2CH 3 ΔH = –255kJ ·mol -1CH 2=CHCH=CHCH 3 + 2H 2 CH 3CH 2CH 2CH 2CH 3 ΔH = –227kJ ·mol -1从以上两反应式可以看出,虽然1,4-戊二烯与1,3 – 戊二烯氢化后都得到相同的产物,但其氢化热不同,1,3 – 戊二烯的氢化热比1,4 –戊二烯的氢化热低,即1,3 – 戊二烯的内能比1,4 – 戊二烯的内能低,1,3 – 戊二烯较为稳定.2、亲电加成与烯烃相似,1,3 –丁二烯能与卤素、卤化氢和氢气发生加成反应.但由于其结构的特殊性,加成产物通常有两种.例如,1,3 –丁二烯与溴化氢的加成反应:CH 3CHBrCH=CH 2 3–溴–1–丁烯CH 2=CHCH=CH 2 + HBr CH 3CH=CHCH 2Br 1–溴–2–丁烯这说明共轭二烯烃与亲电试剂加成时,有两种不同的加成方式.一种是发生在一个双键上的加成,称为1,2–加成另一种加成方式是试剂的两部分分别加到共轭体系的两端,即加到C 1和C 4两个碳原子上,分子中原来的两个双键消失,而在C 2与C 3之间,形成一个新的双键,称为1,4–加成.共轭二烯烃能够发生1,4–加成的原因,是由于共轭体系中π电子离域的结果.当1,3–丁二烯与溴化氢反应时,由于溴化氢极性的影响,不仅使一个双键极化,而且使分子整体产生交替极化.按照不饱和烃亲电加成反应机理,进攻试剂首先进攻交替极化后电子云密度;较大的部位C 1和C 3,但因进攻C 1后生成的碳正离子比较稳定,所以H + 先进攻C 1.CH 2=CHC +HCH 3 ①CH 2=CHCH=CH 2 + H +C +H 2CH 2CH=CH 2 ②当H + 进攻C 1时,生成的碳正离子①中C 2的p 轨道与双键可发生共轭,称为p –π共轭.电子离域的结果使C 2上的正电荷分散,这种烯丙基正碳离子是比较稳定的.而碳正离子②不能形成共轭体系,所以不如碳正离子①稳定.在碳正离子①的共轭体系中,由于π电子的离域,使C 2和C 4都带上部分正电荷.反应的第二步,是带负电荷的试剂Br - 加到带正电荷的碳原子上,因C 2和C 4都带上部分正电荷,所以Br - 既可以加到C 2上,也可以加到C 4上,即发生1,2 – 加成或1,4 – 加成.3、双烯合成共轭二烯烃与某些具有碳碳双键的不饱和化合物发生1,4-加成反应生成环状化合物的反应称为双烯合成,也叫狄尔斯-阿尔德(Diels-Alder )反应.这是共轭二烯烃特有的反应,它将链状化合物转变成环状化合物,因此又叫环合反应.CH 2 CH CH CH 3 4 3 2 1δ+ δ+ 200℃+ CH 2=CH 2。
高中化学竞赛有机化学知识点
高中化学竞赛有机化学知识点高中化学竞赛有机化学知识点在现实学习生活中,大家都背过各种知识点吧?知识点就是学习的重点。
还在苦恼没有知识点总结吗?以下是店铺整理的高中化学竞赛有机化学知识点,仅供参考,希望能够帮助到大家。
高中化学竞赛有机化学知识点 1一、需水浴加热的反应有:(1)银镜反应(2)乙酸乙酯的水解(3)苯的硝化(4)糖的水解(5)酚醛树脂的制取(6)固体溶解度的测定凡是在不高于100℃的条件下反应,均可用水浴加热,其优点:温度变化平稳,不会大起大落,有利于反应的进行。
二、需用温度计的实验有:(1)实验室制乙烯(170℃)(2)蒸馏(3)固体溶解度的测定(4)乙酸乙酯的水解(70-80℃)(5)中和热的测定(6)制硝基苯(50-60℃)说明:(1)凡需要准确控制温度者均需用温度计。
(2)注意温度计水银球的位置。
三、能与Na反应的有机物有:醇、酚、羧酸等——凡含羟基的化合物。
四、能发生银镜反应的物质有:醛、甲酸、甲酸盐、甲酸酯、葡萄糖、麦芽糖——凡含醛基的物质。
五、能使高锰酸钾酸性溶液褪色的物质有:(1)含有碳碳双键、碳碳叁键的烃和烃的衍生物、苯的同系物(2)含有羟基的化合物如醇和酚类物质(3)含有醛基的化合物(4)具有还原性的无机物(如SO2、FeSO4、KI、HCl、H2O2等)六、能使溴水褪色的物质有:(1)含有碳碳双键和碳碳叁键的烃和烃的衍生物(加成)(2)苯酚等酚类物质(取代)(3)含醛基物质(氧化)(4)碱性物质(如NaOH、Na2CO3)(氧化还原――歧化反应)(5)较强的`无机还原剂(如SO2、KI、FeSO4等)(氧化)(6)有机溶剂(如苯和苯的同系物、四氯甲烷、汽油、已烷等,属于萃取,使水层褪色而有机层呈橙红色。
)七、密度比水大的液体有机物有:溴乙烷、溴苯、硝基苯、四氯化碳等。
八、密度比水小的液体有机物有:烃、大多数酯、一氯烷烃。
九、能发生水解反应的物质有:卤代烃、酯(油脂)二糖、多糖、蛋白质(肽)盐。
高中化学有机化学知识点归纳
高中化学有机化学知识点归纳有机化学是化学的一个重要分支,研究含碳的化合物的结构、性质和反应。
在高中化学学习过程中,有机化学是一个重要的内容,以下是对高中化学有机化学知识点的归纳:1. 有机化合物的命名有机化合物的命名是有机化学的基础,主要有两种命名法,一种是按照IUPAC命名法,另一种是通用命名法。
按照IUPAC命名法,有机化合物命名顺序为:找到最长碳链、确定主链的编号方向、找出取代基的位置、命名取代基、确定双键或环烷的位置等。
通用命名法则是直接根据化学结构,给予化合物一个通用名称。
2. 有机物的结构式有机物的结构式包括:分子式、结构式、分子结构式、键线结构式、空间结构式等。
结构式能直观表现出有机物的结构,有助于理解有机化合物的性质和反应。
3. 有机物的同分异构体同分异构体是指化学式相同,结构式和物理性质却不同的化合物。
同分异构体主要有链式异构体、支链异构体、环状异构体、位置异构体等。
4. 有机物的性质有机物的性质主要包括:饱和、不饱和、烷烃、烯烃、炔烃、芳香烃等。
有机物在化学反应中常常表现出特定的性质和反应活性。
5. 有机物的化学反应有机物的化学反应包括:燃烧、卤代反应、加成反应、消除反应、重排反应、酯化反应、醇醚反应等。
有机化合物在不同条件下会发生不同的化学反应。
6. 有机物的制备方法有机化合物的制备方法包括:实验室制备、化学合成、生物合成等。
根据有机物的结构和性质,可以采取不同的方法来制备有机化合物。
总的来说,高中有机化学知识点的归纳包括有机物的命名、结构式、同分异构体、性质、化学反应和制备方法等内容。
通过系统的学习和积累,可以更好地理解和掌握有机化学知识,为日后的学习和研究打下坚实的基础。
希望以上内容对您有所帮助。
高考化学有机化学重点知识点总结
高考化学有机化学重点知识点总结
一、有机化学基本概念
1. 有机物的定义和特点
2. 有机化合物的分类和命名方法
3. 有机化学中常见的官能团和官能团转化反应
二、碳链的构建和环状化合物
1. 碳链的构建:饱和和不饱和碳链的区别和构建方法
2. 碳链上的取代反应和它们的主要特点
3. 环状化合物的构建和命名方法
4. 环状化合物的稳定性和活性
三、烷烃和烯烃类化合物
1. 烷烃的命名和性质
2. 烯烃的构建和命名方法
3. 烯烃的立体化学和环状烯烃的特性
四、卤代烃和醇类化合物
1. 卤代烃的命名和性质
2. 卤代烃的取代反应和消除反应
3. 醇类化合物的命名、分类和性质
4. 醇类的酸碱性和醇酸酯的制备方法
五、醛类和酮类化合物
1. 醛类和酮类化合物的命名和性质
2. 醛类和酮类的氧化还原反应
3. 醛类和酮类的加成反应和缩合反应
六、羧酸和酯类化合物
1. 羧酸的命名和性质
2. 酯类化合物的命名和性质
3. 羧酸的还原反应和酯的酸碱性
七、胺类化合物
1. 胺类化合物的命名和性质
2. 胺的亲核取代反应和亲电取代反应
3. 氨在生物体中的重要作用
八、重要的生物大分子
1. 碳水化合物的分类和结构特点
2. 蛋白质的结构和功能
3. 脂类的结构和功能
4. 核酸的结构和功能
九、化学实验中的有机化学技术
1. 有机合成实验中的常用反应和技术方法
2. 有机化合物的分离和纯化方法
3. 有机化合物的鉴定和定量分析方法
本总结仅列举了高考有机化学的一些重点知识点,希望能对你的复习有所帮助。
如果还有其他问题,可以继续询问。
高中化学竞赛有机化学讲座
*次序规则:
a. 原子按原子序数的大小排列,同位数按原 子量大小次序排列 I,Br,Cl,S,P,O,N,C,D,H
b. 对原子团来说,首先比较第一个原子的原
子序数,如相同时则再比较第二、第三,以
此类推。
H
HO HC
C
H Cl C CH
H CC
O H CCCC H O
丁 炔 二 醛 butynedial
OO
O C H O
3- 烯 丙 基 - 2,4- 戊 二 酮 3- allyl- 2,4- pentanedione
2- 氧 代 环 己 烷 甲 醛 2- oxocyclohexanecarboxaldehyde
C H O
C l
H O
C O O H
8765
4 3 21
CH3CH2CH2CH CH CH CHCH3
CH3 6CH2 CH3 CH3 7CH2 8CH3
4, 5, 6, 7
2, 3, 4, 5*
本化合物有两根8碳的最长链,因此通过比较侧链数来确定主链。横向长链有 四个侧链,弯曲的长链只有二个侧链,多的优先,所以选横向长链为主链。主链有 两种编号方向,第一行取代基的位号是4,5,6,7,第二行取代基的位号是2,3, 4,5,根据最低系列原则,选第二行编号。该化合物的中文名称是2,3,5−三甲基 −4−丙基辛烷。注意本化合物中有两种取代基。当一个化合物中有两种或两种以上 的取代基时,中文按顺序规则确定次序,顺序规则中小的基团放在前面。所以甲基 放在丙基的前面。
Xd- ← Ad+ ←Bdd+ ← Cddd+ Yd+ → Ad- →Bdd- → Cddd由于原子或原子团电负性的影响,引起分子中电子云沿 σ键传递的效应称为诱导效应。
2024高中化学竞赛高等有机化学
2024高中化学竞赛高等有机化学目录•绪论•有机化学基础知识•烃类化合物•烃的衍生物•有机合成与反应机理•有机化学在日常生活中的应用•备考策略与技巧PART01绪论有机化学定义研究有机化合物的结构、性质、合成、反应机理及其应用的科学。
有机化合物特点种类繁多、结构复杂、性质各异。
有机化学与日常生活塑料、橡胶、纤维、染料、药物等。
有机化学概述030201通过竞赛选拔出对有机化学有浓厚兴趣和天赋的学生,为他们提供进一步深造的机会。
选拔优秀化学人才促进化学教育改革增强学生综合素质推动高中化学教育的改革和创新,提高化学教育的质量和水平。
培养学生的创新精神、实践能力和团队协作精神,提高学生的综合素质。
030201竞赛目的与意义系统学习基础知识掌握有机化学的基本概念、理论和方法,建立扎实的基础知识体系。
强化实验技能训练通过实验掌握有机化合物的合成、分离、纯化和鉴定等实验技能。
阅读相关文献和资料阅读有机化学领域的经典著作、学术论文和科普文章,了解最新研究进展和成果。
参加学术交流和讨论积极参加学术讲座、研讨会和小组讨论等活动,与同行交流学习心得和体会。
学习方法与策略PART02有机化学基础知识原子结构与化学键原子结构掌握原子的电子排布、原子半径、电离能等基本概念,理解元素周期表中元素的性质递变规律。
化学键深入理解离子键、共价键(σ键和π键)的形成及性质,了解氢键的形成及其对物质性质的影响。
分子极性理解分子的极性与化学键极性的关系,掌握判断分子极性的方法。
03分子构象与构型理解分子的构象与构型的概念,掌握判断分子构象与构型的方法。
01分子结构掌握有机化合物中常见的分子结构类型,如链状、环状、芳香族等,理解分子结构与性质的关系。
02分子间作用力了解分子间作用力的类型,如范德华力、氢键等,理解它们对物质物理性质的影响。
分子结构与分子间作用力有机化合物分类与命名有机化合物分类掌握有机化合物的分类方法,如按碳骨架分类、按官能团分类等。
高中化学竞赛有机专题六羧酸衍生物
高中化学竞赛有机专题六羧酸衍生物引言在高中化学竞赛中,有机化学是一个重要的专题。
其中,六羧酸衍生物是有机化合物中的一个重要类别。
六羧酸衍生物的研究和应用广泛存在于生物化学、有机合成、材料科学等多个领域。
本文将介绍六羧酸衍生物的基本概念、结构特点、合成方法以及相关应用。
一、六羧酸衍生物的基本概念六羧酸衍生物是指分子中含有六个羧基(-COOH)基团的有机化合物。
它们的分子结构通常具有环状或链状的特点,其中每个羧基都与相邻的羧基通过碳链连接。
由于六羧酸衍生物分子中含有多个羧基,具有很强的化学活性和反应性。
二、六羧酸衍生物的结构特点六羧酸衍生物的结构特点主要体现在其分子中羧基的位置和环状或链状结构的形态上。
其中,环状结构的六羧酸衍生物称为环型六羧酸,链状结构的六羧酸衍生物称为线型六羧酸。
无论是环型六羧酸还是线型六羧酸,它们的分子结构都呈现出高度的稳定性和几何性。
这些结构特点决定了六羧酸衍生物在有机合成和化学反应中的重要性。
三、六羧酸衍生物的合成方法六羧酸衍生物的合成主要包括两个步骤:前体合成和羧基化反应。
前体合成指通过选择适当的原料和反应条件,将化合物转化为含有羧基前体的中间体。
羧基化反应则是在前体化合物中引入羧基。
常用的合成方法包括羧酸的氢化、酰氯的水解、醛酮的氧化和羰基化合物的羧化反应等。
通过这些合成方法,可以较高效地合成各类六羧酸衍生物。
四、六羧酸衍生物的应用领域六羧酸衍生物的研究和应用广泛存在于诸多领域。
以下列举其中几个典型的应用领域:1.生物化学:六羧酸衍生物具有特殊的分子结构和化学活性,可以作为抗氧化剂、荧光探针、药物分子和催化剂等在生物化学领域中应用;2.有机合成:六羧酸衍生物作为极具反应活性的化合物,可以作为有机催化剂在合成反应中发挥重要作用;3.材料科学:六羧酸衍生物具有良好的溶解性、可调控性和稳定性,可以作为材料的前体分子用于制备纳米材料和功能材料等;4.环境保护:六羧酸衍生物可以作为吸附剂、催化剂和光催化剂等在环境污染治理和资源回收领域中应用。
高中化学竞赛知识点:有机化学
高中化学竞赛知识点:有机化学有机化学知识点1.分子式为C5H12O2的二元醇,主链碳原子有3个的结构有2种正确2.最简式为CH2O的有机物:甲酸甲酯、麦芽糖、纤维素错误,麦芽糖和纤维素都不符合3.羟基官能团可能发生反应类型:取代、消去、酯化、氧化、缩聚、中和反应正确,取代(醇、酚、羧酸);消去(醇);酯化(醇、羧酸);氧化(醇、酚);缩聚(醇、酚、羧酸);中和反应(羧酸、酚)4.常温下,pH=11的溶液中水电离产生的c(H+)是纯水电离产生的c(H+)的10^4倍错误,应该是10^(-4)5.甲烷与氯气在紫外线照射下的反应产物有4种错误,加上HCl一共5种6.醇类在一定条件下均能氧化生成醛,醛类在一定条件下均能氧化生成羧酸错误,醇类在一定条件下不一定能氧化生成醛,但醛类在一定条件下均能氧化生成羧酸7.CH4O与C3H8O在浓硫酸作用下脱水,最多可得到7种有机产物正确,6种醚一种烯8.分子式为C8H14O2,且结构中含有六元碳环的酯类物质共有7种正确9.棉花和人造丝的主要成分都是纤维素正确,棉花、人造丝、人造棉、玻璃纸都是纤维素10.等质量甲烷、乙烯、乙炔充分燃烧时,所耗用的氧气的量由多到少正确,同质量的烃类,H的比例越大燃烧耗氧越多11.分子组成为C5H10的烯烃,其可能结构有5种正确12.聚四氟乙烯的化学稳定性较好,其单体是不饱和烃,性质比较活泼错误,单体是四氟乙烯,不饱和13.酯的水解产物只可能是酸和醇;四苯甲烷的一硝基取代物有3种错误,酯的水解产物也可能是酸和酚14.甲酸脱水可得CO,CO在一定条件下与NaOH反应得HCOONa,故CO是甲酸的酸酐错误,甲酸的酸酐为:(HCO)2O15.应用取代、加成、还原、氧化等反应类型均可能在有机物分子中引入羟基正确,取代(卤代烃),加成(烯烃),还原(醛基),氧化(醛基到酸也是引入-OH)16.由天然橡胶单体(2-甲基-1,3-丁二烯)与等物质的量溴单质加成反应,有三种可能生成物正确, 1,2 1,4 3,4 三种加成方法17.苯中混有己烯,可在加入适量溴水后分液除去错误,苯和1,2-二溴乙烷可以互溶18.由2-丙醇与溴化钠、硫酸混合加热,可制得丙烯错误,会得到2-溴丙烷19.混在溴乙烷中的乙醇可加入适量氢溴酸除去正确,取代后分液20.应用干馏方法可将煤焦油中的苯等芳香族化合物分离出来错误,应当是分馏21.甘氨酸与谷氨酸、苯与萘、丙烯酸与油酸、葡萄糖与麦芽糖皆不互为同系物错误,丙烯酸与油酸为同系物22.裂化汽油、裂解气、活性炭、粗氨水、石炭酸、CCl4、焦炉气等都能使溴水褪色正确,裂化汽油、裂解气、焦炉气(加成)活性炭(吸附)、粗氨水(碱反应)、石炭酸(取代)、CCl4(萃取)23.苯酚既能与烧碱反应,也能与硝酸反应正确24.常温下,乙醇、乙二醇、丙三醇、苯酚都能以任意比例与水互溶错误,苯酚常温难溶于水25.利用硝酸发生硝化反应的性质,可制得硝基苯、硝化甘油、硝酸纤维错误,硝化甘油和硝酸纤维是用酯化反应制得的26.分子式C8H16O2的有机物X,水解生成两种不含支链的直链产物,则符合题意的X有7种正确,酸+醇的碳数等于酯的碳数27.1,2-二氯乙烷、1,1-二氯丙烷、一氯苯在NaOH醇溶液中加热分别生成乙炔、丙炔、苯炔错误,没有苯炔这种东西28.甲醛加聚生成聚甲醛,乙二醇消去生成环氧乙醚,甲基丙烯酸甲酯缩聚生成有机玻璃错误,乙二醇取代生成环氧乙醚,甲基丙烯酸甲酯加聚生成有机玻璃29.甲醛、乙醛、甲酸、甲酸酯、甲酸盐、葡萄糖、果糖、麦芽糖、蔗糖都能发生银镜反应错误,蔗糖不是还原性糖,不发生银镜反应30.乙炔、聚乙炔、乙烯、聚乙烯、甲苯、乙醛、甲酸、乙酸都能使KMnO4(H+)(aq)褪色错误,聚乙烯、乙酸不能使酸性高锰酸钾溶液褪色。
高中化学竞赛重点内容
高中化学竞赛重点内容主要包括以下几个方面:
1.基础理论:包括原子结构、分子结构、化学键和晶体结构等。
2.基础有机化学:包括有机化合物的分类、命名、性质、合成和
降解等。
3.物理化学:包括化学反应速率和化学平衡、电化学、相平衡和
胶体等。
4.无机化学:包括元素周期表中的各族元素的化学性质和反应特
性等。
5.分析化学:包括化学分析、仪器分析和光谱分析等,用于测定
化学成分和化学反应的定量分析。
6.实验技能:包括实验操作技能、实验数据处理和分析技能等。
7.综合应用:包括化学在解决实际问题中的应用,如化学与能源、
材料、环境等方面的综合应用。
在准备高中化学竞赛时,建议学生注重基础知识的掌握,同时加强实验技能的培养和实践经验的积累。
此外,学生还需要关注化学与实际生活的联系,了解化学在解决实际问题中的应用。
2024年高中化学竞赛大学有机化学课件6(附加条款版)
高中化学竞赛大学有机化学课件6(附加条款版)高中化学竞赛大学有机化学课件6一、引言化学竞赛作为高中阶段学生提高化学素养、培养化学思维的重要途径,一直受到广泛关注。
有机化学作为化学竞赛的重要组成部分,对于参赛选手来说至关重要。
本课件旨在帮助高中化学竞赛选手更好地掌握大学有机化学知识,提高竞赛成绩。
二、有机化学基本概念1.有机化合物:含有碳元素的化合物,通常与生命活动密切相关。
2.有机反应:有机化合物在一定条件下发生的化学变化,包括合成、分解、取代、加成等。
3.有机化合物结构:碳原子之间的成键方式,包括单键、双键、三键以及环状结构等。
4.有机化合物的分类:根据分子结构、官能团、反应类型等不同特点进行分类。
三、有机化学基本反应1.烷烃的卤代反应:烷烃与卤素单质在光照条件下发生取代反应,卤代烷。
2.烯烃的加成反应:烯烃与卤素单质、水、卤化氢等发生加成反应,卤代烷、醇等化合物。
3.炔烃的加成反应:炔烃与卤素单质、水、卤化氢等发生加成反应,卤代烷、醛、羧酸等化合物。
4.醇的氧化反应:醇在酸性条件下与氧化剂如酸性高锰酸钾、铬酸等反应,醛、酮等化合物。
5.醛、酮的还原反应:醛、酮与还原剂如氢气、锂铝氢化剂等反应,醇。
6.羧酸的酯化反应:羧酸与醇在酸性条件下反应,酯。
7.芳香烃的取代反应:芳香烃在一定条件下与取代基发生取代反应,取代芳香烃。
四、有机化学合成策略1.反应途径的选择:根据目标产物的结构特点,选择合适的反应途径。
2.反应条件的优化:通过调整反应温度、压力、催化剂等条件,提高反应产率和选择性。
3.保护基的应用:在合成过程中,通过引入保护基,保护敏感官能团,提高反应可控性。
4.反应顺序的安排:合理安排反应顺序,避免不必要的副反应,提高合成效率。
五、有机化学竞赛实例分析1.合成题目分析:分析题目所给的反应物和产物,确定反应类型和合成路线。
2.反应机理探讨:根据反应类型,推导反应机理,理解反应过程。
3.实验操作注意事项:分析实验操作步骤,注意实验安全,提高实验技能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中化学竞赛知识点:有机化学有机化学知识点
1.分子式为C5H12O2的二元醇,主链碳原子有3个的结构有2种
正确
2.最简式为CH2O的有机物:甲酸甲酯、麦芽糖、纤维素
错误,麦芽糖和纤维素都不符合
3.羟基官能团可能发生反应类型:取代、消去、酯化、氧化、缩聚、中和反应
正确,取代(醇、酚、羧酸);消去(醇);酯化(醇、羧酸);氧化(醇、酚);缩聚(醇、酚、羧酸);中和反应(羧酸、酚)
4.常温下,pH=11的溶液中水电离产生的c(H+)是纯水电离产生的c(H+)的10^4倍
错误,应该是10^(-4)
5.甲烷与氯气在紫外线照射下的反应产物有4种
错误,加上HCl一共5种
6.醇类在一定条件下均能氧化生成醛,醛类在一定条件下均能氧化生成羧酸
错误,醇类在一定条件下不一定能氧化生成醛,但醛类在一定条件下均能氧化生成羧酸
7.CH4O与C3H8O在浓硫酸作用下脱水,最多可得到7种有机产物
正确,6种醚一种烯
8.分子式为C8H14O2,且结构中含有六元碳环的酯类物质共有7种
正确
9.棉花和人造丝的主要成分都是纤维素
正确,棉花、人造丝、人造棉、玻璃纸都是纤维素
10.等质量甲烷、乙烯、乙炔充分燃烧时,所耗用的氧气的量由多到少
正确,同质量的烃类,H的比例越大燃烧耗氧越多
11.分子组成为C5H10的烯烃,其可能结构有5种
正确
12.聚四氟乙烯的化学稳定性较好,其单体是不饱和烃,性质比较活泼
错误,单体是四氟乙烯,不饱和
13.酯的水解产物只可能是酸和醇;四苯甲烷的一硝基取代物有3种
错误,酯的水解产物也可能是酸和酚
14.甲酸脱水可得CO,CO在一定条件下与NaOH反应得HCOONa,故CO是甲酸的酸酐
错误,甲酸的酸酐为:(HCO)2O
15.应用取代、加成、还原、氧化等反应类型均可能在有机物分子中引入羟基
正确,取代(卤代烃),加成(烯烃),还原(醛基),氧化(醛基到酸也是引入-OH)
16.由天然橡胶单体(2-甲基-1,3-丁二烯)与等物质的量
溴单质加成反应,有三种可能生成物
正确, 1,2 1,4 3,4 三种加成方法
17.苯中混有己烯,可在加入适量溴水后分液除去
错误,苯和1,2-二溴乙烷可以互溶
18.由2-丙醇与溴化钠、硫酸混合加热,可制得丙烯
错误,会得到2-溴丙烷
19.混在溴乙烷中的乙醇可加入适量氢溴酸除去
正确,取代后分液
20.应用干馏方法可将煤焦油中的苯等芳香族化合物分离出来
错误,应当是分馏
21.甘氨酸与谷氨酸、苯与萘、丙烯酸与油酸、葡萄糖与麦芽糖皆不互为同系物
错误,丙烯酸与油酸为同系物
22.裂化汽油、裂解气、活性炭、粗氨水、石炭酸、CCl4、焦炉气等都能使溴水褪色
正确,裂化汽油、裂解气、焦炉气(加成)活性炭(吸附)、粗氨水(碱反应)、石炭酸(取代)、CCl4(萃取)
23.苯酚既能与烧碱反应,也能与硝酸反应
正确
24.常温下,乙醇、乙二醇、丙三醇、苯酚都能以任意比例与水互溶
错误,苯酚常温难溶于水
25.利用硝酸发生硝化反应的性质,可制得硝基苯、硝化甘油、硝酸纤维
错误,硝化甘油和硝酸纤维是用酯化反应制得的
26.分子式C8H16O2的有机物X,水解生成两种不含支链的直链产物,则符合题意的X有7种
正确,酸+醇的碳数等于酯的碳数
27.1,2-二氯乙烷、1,1-二氯丙烷、一氯苯在NaOH醇溶液中加热分别生成乙炔、丙炔、苯炔
错误,没有苯炔这种东西
28.甲醛加聚生成聚甲醛,乙二醇消去生成环氧乙醚,甲基丙烯酸甲酯缩聚生成有机玻璃
错误,乙二醇取代生成环氧乙醚,甲基丙烯酸甲酯加聚生成有机玻璃
29.甲醛、乙醛、甲酸、甲酸酯、甲酸盐、葡萄糖、果糖、麦芽糖、蔗糖都能发生银镜反应
错误,蔗糖不是还原性糖,不发生银镜反应
30.乙炔、聚乙炔、乙烯、聚乙烯、甲苯、乙醛、甲酸、乙酸都能使KMnO4(H+)(aq)褪色
错误,聚乙烯、乙酸不能使酸性高锰酸钾溶液褪色。