反比例函数复习题及答案
中考数学复习《反比例函数》专项测试卷(带答案)
中考数学复习《反比例函数》专项测试卷(带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题1.若点()1,2A x ,()2,1B x -和()3,4C x 都在反比例函数8y x=的图像上,则1x ,2x 和3x 的大小关系是( ) A.123x x x <<B.231x x x <<C.132x x x <<D.213x x x <<2.若点()26-,在反比例函数ky x=的图象上,则下列说法正确的是( ) A.该函数的图象经过点()34--,B.该函数的图象位于第一、三象限C.当0x >时,y 的值随x 值的增大而增大D.当1x >-时,4y >3.如图,在同一平面直角坐标系中函数y ax a =+与函数ay x=的图象可能是( ) A. B. C. D.4.如图,点A 是双曲线()160y x x =-<上的一点,点B 是双曲线()60y x x=-<上的一点,AB 所在直线垂直x 轴于点C ,点M 是y 轴上一点,连接MA 、MB ,则MAB △的面积为( )A.5B.6C.10D.165.如图,点A ,B 为反比例函数()0ky x x=>的图象上的两点,且满足45AOB ∠=︒,若点A 的坐标为()3,5,则点B 的坐标是( ).A.15215,2⎛⎫ ⎪ ⎪⎝⎭B.1010,2⎛ ⎝⎭C.()8,2D.()8,36.如图,已知点A 、B 分别在反比例函数y =1x (x >0),y =-4x(x >0)的图象上,且OA⊥OB ,则OBOA的值为( )A.4B.2C.14D.127.如图,在ABC 中2AC BC == 90ACB ∠=︒ AC x ∥轴 点D 是AB 的中点 点C 、D 在(k 0,x 0)ky x=≠>的图象上 则k 的值为( )A.1-B.2-C.1D.28.已知蓄电池的电压为定值(电压三星近总度阻) 使用蓄电池时 电流(单位:A )与电阻尺(单位:Ω)是反比例函数关系 它的图象如图所示 下列说法不正确的是( )A.函数解析式为60I R=B.蓄电池的电压是C.当6ΩR =时 8A I =D.当10A I ≤时 6R ≥Ω9.如图 在平面直角坐标系中直线24y x =-+与x 轴、y 轴分别交于A 、B 两点 以AB 为边在第一象限作正方形ABCD 点D 在双曲线()0ky k x=≠上.将正方形沿x 轴负方向平移a 个单位长度后 点C 恰好落在该双曲线上 则a 的值( )A.1B.2C.3D.410.如图 直线22y x =-与x 轴 y 轴分别交于点A B 与反比例函数()0ky k x=>图像交于点C .点D 为x 轴上一点(点D 在点A 右侧) 连接BD 以BA BD 为边作ABDE E 点刚好在反比例函数图像上 设(),E m n 连接EC DC 若1()2ACED S AD AD n =+四边形 则k 的值为( )A.8B.10C.12D.1611.如图 直线y kx =与双曲线3y x -=在同一坐标系中如图所示 则不等式3x-<的解集为( )A.01x <<B.1x <-C.1x <-或01x <<D.10x -<<或1x >12.智能手机已遍及生活中的各个角落 手机拍照功能也越来越强 高档智能手机还具有调焦(调整镜头和感光芯片的距离)的功能.为了验证手机摄像头的放大率(摄像头的放大率是指成像长度与实物长度的比值 也可计算为像距与物距的比值) 小明用某透镜进行了模拟成像实验 得到如图所示的像距v 随物距u 变化的关系图像 下列说法不正确的是( )A.当物距为45.0cm 时 像距为13.0cmB.当像距为15.0cm 时 透镜的放大率为2C.物距越大 像距越小D.当透镜的放大率为1时 物距和像距均为20cm13.某商家设计了一个水箱水位自动报警仪 其电路图如图1所示 其中定值电阻110ΩR =2R 是一个压敏电阻 用绝缘薄膜包好后放在一个硬质凹形绝缘盒中放入水箱底部 受力面水平 承受水压的面积S 为0.012m 压敏电阻的阻值随所受液体压力F 的变化关系如图2所示(水深h 越深 压力F 越大) 电源电压保持6V 不变 当电路中的电流为0.3A 时 报警器(电阻不计)开始报警 水的压强随深度变化的关系图象如图3所示(参考公式:UI R=1000Pa 1kPa =).则下列说法中不正确的是( )2R F pS =A.当水箱未装水()时 压强p 为0kPaB.当报警器刚好开始报警时 水箱受到的压力F 为40NC.当报警器刚好开始报警时 水箱中水的深度h 是0.8mD.若想使水深1m 时报警 应使定值电阻1R 的阻值为 二、填空题14.一个圆柱形蓄水池的底面半径为x cm 蓄水池的侧面积为40π2cm 则这个蓄水池的高h (cm )与底面半径x (cm )之间的函数关系式为_____.15.在反比例函数12my x-=的图象上的图象在二、四象限 则m 的取值范围是_______. 16.若点()11,A y -、21,4B y ⎛⎫- ⎪⎝⎭、()31,C y 都在反比例函数21x k y +=(k 为常数)的图象上 则1y 、2y 、3y 的大小关系为_____.17.如图 点(3,1)P -是反比例函数m y x =的图象上的一点 设直线y kx =与双曲my x=的两个交点分别为P 和P 当mkx x>时 写出x 的取值范围_____.18.如图 在平面直角坐标系xOy 中正方形OABC 的边OC 、OA 分别在x 轴和y 轴上 OA =10 点D 是边AB 上靠近点A 的三等分点 将⊥OAD 沿直线OD 折叠后得到⊥OA ′D 若反比例函数y kx=(k ≠0)的图象经过A ′点 则k 的值为_____. 0m h =12Ω19.如图 在平面直角坐标系中直线12y k x =+与x 轴交于点A 与y 轴交于点B 与双曲线2(0)k y x x=>交于点C 连接OC .若52,sin 5OBC S BOC =∠=△ 则12k +的值是______.20.如图 点1A 2A 3A …在反比例函数()10y x x=>的图象上 点1B 2B 3B … n B 在y 轴上 且11212323B OA B B A B B A ∠=∠=∠=直线y x =与双曲线1y x=交于点1A 111B A OA ⊥ 2221B A B A ⊥ 3323B A B A ⊥ … 则2023B 的坐标是________.三、解答题21.如图所示 一次函数y kx b =+的图象与反比例函数my x=的图象相交于两点(1),A n (2,1)B -- 与y 轴相交于点C .(1)求反比例函数和一次函数解析式; (2)直接写出:不等式mkx b x+>解集是______; (3)依据相关数据求AOB 的面积.22.如图 菱形OABC 的边OA 在y 轴正半轴上 点B 的坐标为()48,.反比例函数11k y x=的图象经过菱形对角线AC OB ,的交点D 设直线OC 的解析式为22y k x =.(1)求反比例函数的解析式; (2)求菱形OABC 的边长;(3)请结合图象直接写出不等式120k k x x-<的解集. 23.如图▱OABC 的顶点O 与坐标原点重合 边OA 在x 轴正半轴上 60AOC ∠=︒2OC = 反比例函数()0ky x x=>的图像经过顶点C 与边AB 交于点D.(1)求反比例函数的表达式.(2)尺规作图:作OCB ∠的平分线交x 轴于点E.(保留作图痕迹 不写作法) (3)在(2)的条件下 连接DE 若DE CE ⊥ 求证:AD AE =. 24.如图 已知一次函数26y x =+与反比例函数()0ky x x=>的图象交于点()1,A m 与x 轴交于点B .(1)填空:m 的值为______ 反比例函数的解析式为______; (2)直接写出当0x >时 26kx x+<的解集; (3)点P 是线段AB 上一动点(不与A 、B 点重合) 过P 作直线PM x ∥轴交反比例函数的图象于点M 连接BM .若PMB △的面积为S 求S 的取值范围.25.如图 已知抛物线2y x bx =+与x 轴交于O (4,0)A 两点 点B 的坐标为(0,3)-. (1)求抛物线的对称轴;(2)已知点P 在抛物线的对称轴上 连接OP BP .若要使OP BP +的值最小 求出点P 的坐标;(3)将抛物线在x 轴下方的部分沿x 轴翻折 其余部分保持不变 得到一个新的图象.当直线(0)y x m m =+≠与这个新图象有两个公共点时 在反比例函数y mx=的图象中y 的值随x 怎样变化?判断并说明理由.26.如图 在平面直角坐标系中正六边形ABCDEF 的对称中心P 在反比例函数()10,0ky k x x=>>的图象上 边AB 在x 轴上 点F 在y 轴上 已知23AB =.(1)判断点E 是否在该反比例函数的图象上 请说明理由;(2)求出直线EP :()20y ax b a =+≠的解析式 并根据图象直接写出当0x >时 不等式kax b x+>的解集. 27.如图① 有一块边角料ABCDE 其中AB BC DE EA 是线段 曲线CD 可以看成反比例函数图象的一部分.测量发现:90A E ∠=∠=︒ 5AE = 1AB DE == 点C 到AB AE 所在直线的距离分别为2 4.(1)小宁把A B C D E 这5个点先描到平面直角坐标系上 记点A 的坐标为()1,0-;点B 的坐标为()1,1-.请你在图②中补全平面直角坐标系并画出图形ABCDE ; (2)求直线BC 曲线CD 的函数表达式;(3)小宁想利用这块边角料截取一个矩形MNQP 其中M N 在AE 上(点M 在点N 左侧)点P 在线段BC 上 点Q 在曲线CD 上.若矩形的面积是53则=_________.参考答案1.答案:B解析:将三点坐标分别代入函数解析式8y x=得: 182x = 解得14x =; 28-1x =解得28x =-; 384x =解得; 824-<<故选:B. 2.答案:C解析:⊥点()26-,在函数ky x=的图象上 ⊥2(6)120k =⨯-=-< ⊥函数ky x=位于第二、四象限 在每个象限内 y 的值随x 的增大增大 ⊥()341212-⨯-=≠-⊥该函数的图象不经过点()34--,把=1x -代入12y x=求得12y = ⊥当10x -<<时 12y > 综上 只有选项C 说法正确 故选:C. 3.答案:A解析:当0a >时 一次函数图像经过第一、二、三象限 反比例函数图像位于一、三象限 可知A 符合题意;32x =231x x x ∴<<当0a <时 一次函数图像经过第二、三、四象限 反比例函数图像位于二、四象限 可知B C D 不符合题意.故选:A.4.答案:A解析:如图所示 作MN BA ⊥交BA 的延长线于N则12AMB S BA MN =⋅设点A 的坐标为16a a ⎛⎫- ⎪⎝⎭, <0aAB 所在直线垂直x 轴于点CB ∴点坐标为6a a ⎛⎫- ⎪⎝⎭,16610AB a a a ⎛⎫∴=---=- ⎪⎝⎭ MN a =()11101105222ABM S AB MN a a a a ⎛⎫⎛⎫∴=⋅=⨯-⨯=⨯-⨯-= ⎪ ⎪⎝⎭⎝⎭故选:A.5.答案:A解析:将OA 绕O 点顺时针旋转90︒到OC 连接AB 、CB作AM y ⊥轴于MCN x ⊥轴于N点A 的坐标为()3,53AM ∴= 5OM =45AOB ∠=︒45BOC ∠=︒∴在AOB 和COB △中OA OC AOB COBOB OB =⎧⎪∠=∠⎨⎪=⎩(SAS)AOB COB ∴△≌△AB CB ∴=90AOM AON CON AON ∠+∠=︒=∠+∠AOM CON ∴∠=∠ 在AOM 和CON 中AOM CON AMO ONCOA OC ∠=∠⎧⎪∠=∠⎨⎪=⎩ (AAS)AOM CON ∴△≌△3CN AM ∴== 5ON OM == (5,3)C ∴-点A 为反比例函数(0)k y x x=>图象上的点 3515k ∴=⨯= 15y x ∴=设B 点的坐标为15(,)m m AB CB =22221515(3)(5)(5)(3)m m m m ∴-+-=-++解得215m =(负数舍去)15215,B ⎛∴ ⎝⎭故选A.6.答案:B解析:作AC y ⊥轴于C BD y ⊥轴于D 如图点A 、B 分别在反比例函数1(0)y x x => 4(0)y x x=->的图象上 11122OAC S ∆∴=⨯= 1|4|22OBD ∆=⨯-=OA OB ⊥90AOB ∠=︒∴90AOC BOD ∴∠+∠=︒AOC DBO ∴∠=∠Rt AOC Rt OBD ∴∆∆∽ ∴212()2AOC OBD S OA S OB ∆∆== ∴12OA OB =. ∴2OB OA=. 故答案为B. 7.答案:B解析:设(0,)A b 根据题意(2,)C b - (2,2)B b -+点D 是AB 的中点(1,1)D b ∴-+点C 、D 在(k 0,x 0)k y x=≠>的图象上 2(1)k b b ∴=-=-+解得1b =22k b ∴=-=-故选:B.8.答案:C解析:设图象过蓄电池的电压是A 、B 选项正确 不符合题意;当=6ΩR 时 (A 6010)6I ==∴C 选项错误 符合题意;当10I =时 6R =由图象知:当10A I ≤时 6R ≥Ω∴D 选项正确 不符合题意;故选:C.9.答案:B解析:作CE y ⊥轴于点E 交双曲线于点G 作DF x ⊥轴于点F在24y x =-+中令0x = 解得4y =∴B 的坐标是(0,4)令0y = 解得2x =∴A 的坐标是(2,0)kI R =(5,12)60k ∴=60I R ∴=∴60V ∴4OB ∴= 2OA =90BAD ∠=︒90BAO DAF ∴∠+∠=︒直角ABO △中90BAO OBA ∠+∠=︒DAF OBA ∴∠=∠在OAB △和FDA △中DAF OBA BOA AFD AD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩(AAS)OAB FDA ∴≌△△同理 OAB FDA BEC ≌≌△△△ 4AF OB EC ∴=== 2DF OA BE ===∴D 的坐标是(6,2) C 的坐标是(4,6)点D 在双曲线(0)k y k x=≠上 6212k ∴=⨯=∴函数的解析式是:12y x =把6y =代入12y x=得:2x = 422a ∴=-=故选B.10.答案:C解析:直线与x 轴 y 轴分别交于点A B(1,0)A ∴ (0,2)B -作EF x ⊥轴于F 如图所示:22y x =-四边形是平行四边形在和中E 点刚好在反比例函数图像上设C 的纵坐标为hABDE AE BD ∴=//DE AB DAE ADB ∴∠=∠AEF △DBO △EAF BDO AFE DOB AE BD ∠=∠⎧⎪∠=∠⎨⎪=⎩(AAS)AEF DBO ∴≌△△2EF OB ∴==AF OD =1DF OA ∴==(,)E m n 2m AD ∴=+2n =2(2)k mn AD ∴==+122AD k ∴=-//DE BC AED CED S S ∴=△△()11122222ACD CED ACD AED ACED S S S S S AD h AD AD h ∴=+=+=⋅+⋅=+四边形△△△△()12ACED S AD AD n =+四边形122h AD k ∴==-C 的纵坐标为代入得解得反比例函数图像经过点C 解得 20k =(舍去) 12k∴=故选:C.11.答案:D解析:有题意可知 当3y =时 33x= 解得=1x - ∴直线y kx =与双曲线3y x=在第二象限交点的坐标为1,3)- 由中心对称可得 直线y kx =与双曲线3y x=在第四象限交点的坐标为3)- ∴观察图象可得 不等式3kx x<的解集为10x <<或1x >. 故选:D.12.答案:B解析:由函数图象可知:当物距为45.0cm 时 像距为13.0cm 故选项A 说法正确;由函数图象可知:当像距为15.0cm 时 物距为300cm . 放大率为15.00.530.0= 故选项B 说法错误;由函数图象可知:物距越大 像距越小 故选项C 说法正确;由题意可知:当透镜的放大率为1时 物距和像距均为20cm 故选项D 说法正确 故选:B.13.答案:B解析:A.由图3得:当0h =时 0p = 故此项说法正确;122-22y x =-12222x -=-14x k =11(,2)42C k k ∴-(0)k y k x=>11(2)42k k k ∴-=112k =B.当报警器刚好开始报警时 260.310R =+ 解得210R =Ω 由图2可求得:2800R F =80010F∴= 解得80F N = 故此项说法错误; C.当报警器刚好开始报警时 由上得80F N = 则有800.01p =⨯ 8P p k a ∴= 由图3求得10p h = 810h = 解得:0.8h = 故此项说法正确;D.当报警器刚好开始报警时:1260.3R R =+ 1220R R ∴+=Ω 当1h =时 10110kPa p =⨯= 100000.01100F N ∴=⨯= 28008100R ==Ω 120812R ∴=-=Ω 故此项说法正确. 故选:B.14.答案:20h x = 解析:根据题意 得240x h ππ⋅= ⊥20h x=. 故答案为:20h x=. 15.答案:12m > 解析:由题意得 反比例函数12m y x -=的图象在二、四象限内 则120m -< 解得12m >. 故答案为12m >. 16.答案:213y y y << 解析:反比例函数2(1k k y x+=为常数) 210k +> ∴该函数图象在第一、三象限 在每个象限内y 随x 的增大而减小点1(1,)A y -、1(4B 2)y 、3(1,)C y 都在反比例函数2(1k k y x +=为常数)的图象上 114-<- 点A 、B 在第三象限 点C 在第一象限213y y y ∴<<故答案为:213y y y <<.17.答案:-3<x <0或x >3 解析:⊥直线y =kx 与双曲线y =m x的两个交点分别为P 和P ′ P (-3 1) ⊥P ′的坐标为(3 -1)当mx >kx 时 x 的取值范围为-3<x <0或x >3故答案为:-3<x <0或x >3. 18.答案:48解析:如图所示:过A '作EF OC ⊥于F 交AB 于E⊥90OA D '∠=︒90OA F DA E ∴∠'+∠'=︒⊥90A F AOF O ∠'+∠'=︒D AOF AE ∴'=∠'∠D A FO AE '=∠∠'A OF DA E ∴''∠△△设A '(m n )OF m ∴= A F n '=.正方形OABC 的边OC 、OA 分别在x 轴和y 轴上 OA =10点D 是边AB 上靠近点A 的三等分点∴ 103DE m = 10A E n '=-.310103m n m m ==-- 解得:m =6 n =8. ∴A '(6,8) ∴ 反比例函数中k =xy (0k ≠)=48 故答案为:48.19.答案:9解析:据题意可知(0,2)B 设(,)Cx y 52,sin OBC S BOC =∠=△1222x ∴⨯= 52xOC = 解得2,25x OC ==2225OC x y =+=即2425y +=得4y = 故(2,4)C 将(2,4)C 代入直线12y k x =+ 双曲线2(0)k y x x => 得到 121,8k k == 故12189k k +=+= 故答案为:9.20.答案:(0,22023解析:联立1y xy x =⎧⎪⎨=⎪⎩解得1x =由题意可知145AOB ∠=︒111B A OA ⊥11OA B ∴△为等腰直角三角形1122OB OA ∴==过2A 作22A H OB ⊥交y 轴于H 则容易得到21A H B H = 设21A H B H x == 则()2,2A x x +()21x x ∴+=解得121x = 221x =-(舍去)2121A H B H ∴== 1212222B B B H ==2222222OB ∴=+=同理可得323OB =则2n OB n =即(0,2n B n(20230,22023B ∴故答案为:(0,22023. 21.答案:(1)2y x = 1y x =+ (2)1x >或20x -<<(3)32解析:(1)反比例函数m y x =的图象过(2,1)--∴反比例函数的解析式为:2y x = 点(1),A n 在反比例函数图象上∴12n ⨯=∴2n =∴点A 的坐标为(1,2)将点A B 坐标代入一次函数y kx b =+中得221k b k b +=⎧⎨-+=-⎩解得11k b =⎧⎨=⎩∴一次函数的解析式为:1y x =+.(2)根据图象可知 不等式0m kx b x+>>的解集是:1x >或20x -<<. 故答案为:1x >或20x -<<; (3)过点A 作AG y ⊥轴于点G 过点B 作BH y ⊥轴于点H 如下图所示:一次函数1y x =+与y 轴相交于点C∴C 点坐标为(0,1)∴1OC =A 点坐标为(1,2)∴1AG =B 点坐标为(2,1)--∴2BH =∴11123222AOB AOC BOC S S S ⨯⨯=+=+=△△△. 22.答案:(1)18y x = (2)5 (3)463x <或63x << 解析:(1)⊥菱形OABC 的对角线交于点D⊥OD DB =⊥点B 的坐标为()48,⊥点D 的坐标为()24, 又⊥反比例函数11k y x=经过点D ⊥1248k =⨯= ⊥18y x =; (2)过点B 作BE y ⊥轴于点E设OA AB a == 则8AE a =- 4BE =在Rt ABE 中222BE AE AB += 即()22248x x +-= 解得:5x =⊥菱形OABC 的边长为5;(3)⊥点B 的坐标为()48, 5BC =⊥点C 的坐标为()43,代入22y k x =得:234k = 解得:234k =⊥234y x =令1y y = 则834x x = 解得:63x =±结合图象 不等式120k k x x -<的解集为463x <或463x <<.23.答案:(1))30y x =>(2)见解析(3)见解析解析:(1)过点C 作CF OA ⊥于点F 如解图所示.在Rt COF △中2OC = 60COF ∠=︒30sin 6023CF C ∴=⋅==︒1cos60212OF OC =⋅︒=⨯=.(1,3C ∴. 把(3C 代入反比例函数()0ky x x =>中得3k =∴反比例函数的表达式为)30y x =>.(2)如解图所示 所作射线CE 即为所求.(3)证明:在OABC 中//OC AB //CB OA .60AOC ∠=︒120OCB OAB ∴∠=∠=︒. CE 平分OCB ∠60OCE BCE OEC ∴∠=∠=∠=︒.DE CE ⊥90CED ∴∠=︒.180609030AED ∴∠=︒-︒-︒=︒.1801203030ADE ∴∠=︒-︒-︒=︒.AED ADE ∴∠=∠.AD AE ∴=.24.答案:(1)8 8y x= (2)01x << (3)S 的取值范围是2504S <≤ 解析:(1)⊥一次函数26y x =+的图象经过点()1,A m ⊥268m =+=⊥点()18A ,⊥反比例函数()0k y x x =>的图象经过点()18A , ⊥188k =⨯=⊥反比例函数的解析式为8y x=; 故答案为:8 8y x =;(2)观察图象得 26k x x+<的解集为1x <<; (3)设点P 的纵坐标为n ⊥点P 在线段AB 上 点M 在8y x =的图象上 ⊥0n << 点P 的横坐标为62n -⊥PM x ∥轴⊥点M 的坐标为8n n ⎛⎫ ⎪⎝⎭, ⊥862n MP n -=. ⊥()21186125322244PMBn S MP n n n n -⎛⎫=⨯⨯=⨯-⨯=--+ ⎪⎝⎭. ⊥08n << 且104-<⊥当03n <<时 S 随n 的增大而增大 当38n ≤<时 S 随n 的增大而减小. ⊥当3n =时 △的面积最大 最大值为254 ⊥S 的取值范围是2504S <≤. 25.答案:(1)抛物线的对称轴为直线2x =(2)点P 的坐标为32,2⎛⎫- ⎪⎝⎭ (3)y 的值随x 的增大而增大解析:(1)由题意得:2440b +=4b ∴=-∴函数关系式为:24y x x =-∴对称轴为:4222b x a -=-=-=; (2)由题意得:OP PB +的值最小 实际就是在同一直线一旁有两点 在直线上求点只要取O 点关于直线2x =对称的点 过AB 的直线与直线的交点就是点P设过AB 的直线为 由在上()4,0A 2x =3y kx =-()4,0B 3y kx =-得34k =334AB y x =-P 在直线2x =上332342y ∴=⨯-=-32,2P ⎛⎫∴- ⎪⎝⎭; (3)24y x x =-在x 轴下方的部分沿x 轴翻转当直线()0y x m m =+≠有两个不相同的解0∴∆> 2340m -⨯> 得94m <又0> 904m ∴<< 在反比例函数m y x=中 904m k <=< y 随x 的增大而减小. 26.答案:(1)点E 在该反比例函数的图象上 理由见解析(2)39y x =+ 323x <<解析:(1)六边形ABCDEF 为正六边形 23AB =23AB AF ∴== 60FAO =︒cos 603OA AF ∴=⋅︒= sin603AF =⋅︒=()0,3F ∴ )3,0A 连接PF PA六边形ABCDEF 为正六边形PE PF PA PB ∴=== 60EPF FPA APB ∠=∠=∠=︒EFP ∴△ FAP △ ABP △为等边三角形23AF PF ∴==()23,3P ∴ 把()23,3P 代入1k y x =得:23=解得:63k =043k ∴=-∴反比例函数表达式为163y x=. EFP △ FAP △为等边三角形∴点E 和点A 关于PF 对称)3,6E ∴ 把3x =代入163y x =得:13663y == ∴点E 在该反比例函数的图象上; (2)把()3,6E ()23,3P 代入()20y ax b a =+≠得: 6333a b a b ⎧=+⎪⎨=+⎪⎩ 解得:39a b ⎧=-⎪⎨=⎪⎩∴直线EP 的解析式为:39y x =+()3,6E ()23,3P由图可知 当323x <<时 k b x +>. 27.答案:(1)见解析(2)直线BC 的函数表达式3522y x =曲线的函数表达式4y x= (3)72 解析:(1)根据点A 的坐标为()1,0- 点B 的坐标为()1,1- 补全x 轴和y 轴 90A E ∠︒∠== 5AE = 1AB DE == 点C 到AB AE 所在直线的距离分别为2 4 ()1,4C ∴ ()4,1D根据AB BC DE EA 是线段 曲线CD 是反比例函数图象的一部分 画出图形ABCDE如图所示 (2)设线段BC 的解析式为y kx b =+ 把()1,1B - ()1,4C 代入得 14k b k b -+=⎧⎨+=⎩解得 3252k b ⎧=⎪⎪⎨⎪=⎪⎩3522y x ∴=+设曲线CD 的解析式为'k y x =把()1,4C 代入得 '41k = '4= 4y x ∴=; (3)设(),0M m 则35,22P m m ⎛⎫+ ⎪⎝⎭ 435,352222Q m m ⎛⎫ ⎪+ ⎪ ⎪+⎝⎭3522PM m ∴=+ 43522m m =-+354352222PM PQ m m m ⎛⎫ ⎪⎛⎫⋅=+- ⎪ ⎪⎝⎭ ⎪+⎝⎭23554223m m ∴--= 2915140m m ∴+-= 23m ∴= 或73m =-(舍去) 32572322PM ∴=⨯+=. 故答案为:72.。
反比例函数练习题及答案6套
反比例函数练习(1)一、判断题1.当x 与y 乘积一定时,y 就是x 的反比例函数,x 也是y 的反比例函数( ) 2.如果一个函数不是正比例函数,就是反比例函数 ( )3.y 与2x 成反比例时y 与x 并不成反比例( ) 二.填空题4.已知三角形的面积是定值S ,则三角形的高h 与底a 的函数关系式是h =__________,这时h 是a 的__________; 5.如果y 与x 成反比例,z 与y 成正比例,则z 与x 成_______; 6.如果函数222-+=k kkx y 是反比例函数,那么k =________,此函数的解析式是____ ____;7. 有一面积为60的梯形,其上底长是下底长的31,若下底长为x ,高为y ,则y 与x 的函数关系是______________;三、选择题: 8.如果函数12-=m x y 为反比例函数,则m 的值是 ( )A1- B 0 C 21 D 19.李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校。
在课堂上,李老师请学生画出自行车行进路程s 千米与行进时间t 的函数图像的示意图,同学们画出的示意图如下,你认为正确的是( )10、下列函数中,y 是x 反比例函数的是( ) (A )12+=x y (B )22x y =(C )x y 51=(D )x y =2四.辨析题(1)兄弟二人分吃一碗饺子,每人吃饺子的个数如下表:①写出兄吃饺子数y 与弟吃饺子数x 之间的函数关系式(不要求写xy 的取值范围).¥②虽然当弟吃的饺子个数增多时,兄吃的饺子数(y )在减少,但y 与x 是成反例吗(2)水池中有水若干吨,若单开一个出水口,水流速v 与全池水放光所用时t 如下表:①写出放光池中水用时t(小时)与放水速度v(吨/小时)之间的函数关系. ②这是一个反比例函数吗③与(1)的结论相比,可见并非反比例函数有可能“函数值随自变量增大而减小”,反之,所有的反比例函数都是“函数值随自变量的增大而减小吗这个问题,你可以提前探索、尝试,也可以预习下一课时”反比例函数的图象和性质,也可以等到下一节课我们共同解决.。
反比例函数的定义专项练习30题(有答案)
反比例函数定义专项练习30题(有答案)1.下列函数中,是反比例函数的为()A .y=2x+1 B.y=C.y=D.2y=x2.下列关系式中,y是x反比例函数的是()A .y=B.y=C.y=﹣D.y=3.下列函数关系中,成反比例函数的是()A.矩形的面积S一定时,长a与宽b的函数关系B.矩形的长a一定时,面积S与宽b的函数关系C.正方形的面积S与边长a的函数关系D.正方形的周长L与边长a的函数关系4.如果函数y=x2m﹣1为反比例函数,则m的值是()A .﹣1 B.0 C.D.15.下列函数,①y=2x,②y=x,③y=x﹣1,④y=是反比例函数的个数有()A .0个B.1个C.2个D.3个6.若y与成反比例,x与成正比例,则y是z的()A .正比例函数B.反比例函数C.一次函数D.二次函数7.下列关系式中,y是x的反比例函数的是()A .x(y﹣1)=1 B.y=C.y=D.y=8.下列两个变量x、y不是反比例的关系是()A.书的单价为12元,售价y(元)与书的本数x(本)B.xy=7C.当k=﹣1时,式子y=(k﹣1)x k2﹣2中的y与xD.小亮上学用的时间x(分钟)与速度y(米/分钟)9.下列各问题中,变量间是反比例函数关系的是()①三角形的面积S一定时,它的底a与这个底边上的高h的关系;②正三角形的面积与边长之间的关系;③直角三角形中两锐角间的关系;④当路程s一定时,时间t与速度v的关系.A .①②B.②③C.③④D.①④10.下列函数中,不是反比例函数的是()A .x=B.y=(k≠0)C.y=D.y=﹣11.下列函数:①y=3x;②y=;③y=x﹣1;④y=+1,是反比例函数的个数有()A .0个B.1个C.2个D.3个12.若y+b与成反比例,则y与x的函数关系式是()A .正比例B.反比例C.一次函数D.二次函数13.下列关系中的两个量,成反比例的是()A.面积一定时,矩形周长与一边长B.压力一定时,压强与受力面积C.读一本书,已读的页数与余下的页数D.某人年龄与体重14.设某矩形的面积为S,相邻的两条边长分别为x和y.那么当S一定时,给出以下四个结论:①x是y的正比例函数;②y是x的正比例函数;③x是y的反比例函数;④y是x的反比例函数其中正确的为()A .①,②B.②,③C.③,④D.①,④15.若y=是反比例函数,则m必须满足()A .m≠0B.m=﹣2 C.m=2 D.m≠﹣216.若xy≠0,x+y≠0,与x+y成反比,则(x+y)2与x2+y2()A.成正比B.成反比C.既不成正也不成反比D.的关系不确定17.将x=代入反比例函数y=﹣中,所得函数值记为y1,又将x=y1+1代入函数中,所得函数值记为y2,再将x=y2+1代入函数中,所得函数值记为y3,…,如此继续下去,则y2012的值为()A .2 B.C.D.618.下列函数关系是反比例关系的是()A.三角形的底边为一常数,则三角形的面积y与三角形这条底边上的高x的函数关系B.矩形的面积为一常数,则矩形的长与宽的函数关系C.力F为常数,则力所做的功W与物体在力F的方向上移动的距离间的函数关系D.每本作业本的价格一定,小亮所花的钱与他所买的作业本数之间的函数关系19.当m= _________ 时,函数y=(m+)是反比例函数,且函数在二、四象限.20.若关于x、y的函数y=2x k﹣4是反比例函数,则k= _________ .21.若是反比例函数,则m= _________ .22.已知函数,当m= _________ 时,它是正比例函数;当m= _________ 是,它是反比例函数.23.若反比例函数y=(2k﹣1)的图象位于二、四象限,则k= _________ .24.已知函数y=,若y=﹣3,则x的取值为_________ .25.若反比例函数,当x>0时,y随着x的增大而增大,则k的取值范围是_________ .26.已知3x=,y=x2a﹣1是反比例函数,则x a的值为_________ .27.已知y是x的反比例函数,且x=8时,y=12.(1)写出y与x之间的函数关系式;(2)如果自变量x的取值范围是2≤x≤3,求y的取值范围.28.我们知道,如果一个三角形的一边长为xcm,这边上的高为ycm,那么它的面积为:S=xycm2,现已知S=10cm2.(1)当x越来越大时,y越来越_________ ;当y越来越大时,x越来越_________ ;但无论x,y如何变化,它们都必须满足等式_________ .(2)如果把x看成自变量,则y是x的_________ 函数;(3)如果把y看成自变量,则x是y的_________ 函数.29.已知变量y与变量x之间的对应值如下表:x … 1 2 3 4 5 6 …y … 6 3 2 1.5 1.2 1 …试求出变量y与x之间的函数关系式:_________ .30.已知y=y1+y2,y1与(x﹣1)成正比例,y2与(x+1)成反比例,当x=0时,y=﹣3,当x=1时,y=﹣1.(1)求y的表达式;(2)求当x=时y的值.反比例函数定义30题参考答案:1.A、是一次函数,错误;B、不是反比例函数,错误;C、符合反比例函数的定义,正确;D、是正比例函数,错误.故选C.2.A、y=,y是x反比例函数,正确;B、不符合反比例函数的定义,错误;C、y=﹣是二次函数,不符合反比例函数的定义,错误;D,y是x+1的反比例函数,错误.故选A.3.A、a=,故是反比例函数;B、S=ab,故是正比例函数;C、S=a2,故是二次函数;D、L=4a,故是正比例函数.故选A4.∵y=x2m﹣1是反比例函数,∴2m﹣1=﹣1,解之得:m=0.故选B.5.①y=2x是正比例函数;②y=x是正比例函数;③y=x﹣1是反比例函数;④y=是反比例函数.所以共有2个.故选C.6. ∵y与成反比例,x与成正比例,∴y=,x=.∴y==.故选B.7. A、x(y﹣1)=1,不是反比例函数,错误;B、y=,不是反比例函数,错误;C、y=,不是反比例函数,错误;D、y=,是反比例函数,正确.故选D8.A、书的单价为12元,售价y(元)与书的本数x(本),此时y=12x,y与x成正比例,正确;B、y=,符合反比例函数的定义,错误;C、当k=﹣1时,y=符合反比例函数的定义,错误;D、由于路程一定,则时间和速度为反比例关系,错误.故选A.9.①a=,变量间是反比例函数关系;②正三角形的面积与边长,不是反比例函数关系;③直角三角形中两锐角,不是反比例函数关系;④t=,变量间是反比例函数关系.所以①④为反比例函数关系.故选D.10.A、B、C选项都符合反比例函数的定义;D选项不是反比例函数.故选D11.①是正比例函数;②和③是反比例函数;④不是反比例函数.所以反比例函数的个数有2个.故选C.12. ∵y+b与成反比例,∴y+b=k(x+a)(k为不等于0的常数),∴y=kx+ka﹣b,∴y与x的函数关系式是一次函数.故选C13. A选项的函数关系式是C=2a+,C与a不是反比例函数,错误;B选项,所以压力一定时,压强与受力面积成反比例,正确;C、D选项都不是反比例函数,错误.故选B.14.设某矩形的面积为S,相邻的两条边长分别为x和y.那么当S一定时,x与y的函数关系式是y=,由于S≠0,且是常数,因而这个函数是一y是x的反比例函数.同理x是y的反比例函数.正确的是:③,④.故选C15.依题意有m+2≠0,所以m≠﹣2.故选D16.∵与x+y成反比,∴=,∴=,∴xy=,∵(x+y)2=x2+y2+2xy,∴(x+y)2=x2+y2+,等式两边同除以(x+y)2得:1=∴∴(x+y)2=(x2+y2)×,∵是常数,∴(x+y)2与x2+y2成正比例函数.故选A.17.y1=﹣=﹣,把x=﹣+1=﹣带入y=﹣中得y2=﹣=2,把x=2+1=3代入反比例函数y=﹣中得y3=﹣,把x=﹣+1=代入反比例函数y=﹣得y4=﹣…,如此继续下去每三个一循环,2012=670…2,所以y2012=2.故选:A18.A、设底边为a,则y=ax,x、y成正比例函数关系,故本选项错误;B、设面积为S,长与宽分别为xy,则y=,x、y成反比例函数关系,故本选项正确;C、W=F•S,F为常数,所以,W、S成正比例函数关系,故本选项错误;D、每本作业的价格为a,则所花钱数y与作业本数x的关系为y=ax,x、y成正比例函数关系,故本选项错误.故选B.19.根据题意得:,解得:m=﹣1.故答案是:﹣120.∵y=2x k﹣4是反比例函数,∴k﹣4=﹣1,解得k=3.故答案为:321.由题意得:|m|﹣2=1且,m﹣3≠0;解得m=±3,又m≠3;∴m=﹣3.故填m=﹣322. 当为正比例函数时,m²﹣m﹣1=1,并且m2﹣1≠0,∴m=2或﹣1(舍),当为反比例函数时,m²﹣m﹣1=﹣1,并且m2﹣1≠0,∴m=0或1(舍),故答案为:2;023.∵函数y=(2k﹣1)是反比例函数,∴3k2﹣2k﹣1=﹣1,解得:k=0或,∵图象位于二、四象限,∴2k﹣1<0,解得:k<,∴k=0,故答案为:024.把y=﹣3代入所给函数解析式得:﹣3=,解得x=.故答案为:25.根据题意得:1﹣k<0解得:k>1.故答案为:k>1.26.∵3x=,∴x=﹣3,∵y=x2a﹣1是反比例函数,∴2a﹣1=﹣1,解得:a=0,则x a=(﹣3)0=1.故答案为:127.(1)设反比例函数的解析式是y=把x=8,y=12代入得:k=96.则函数的解析式是:y=;,(2)在函数y=中,令x=2和3,分别求得y的值是:48和32.因而如果自变量x的取值范围是2≤x≤3,y的取值范围是32≤x≤48.28.(1)由S=xycm2,知S=10cm2,代入化简得y=,因为20>0,图象在第一象限,所以当x越来越大时,y越来越小,当y越来越大时,x越来越小.无论x,y如何变化,它们都必须满足等式xy=20;(2)如果把x看成自变量,则y是x的反比例函数;(3)如果把y看成自变量,则x是y的反比例函数.29.观察图表可知,每对x,y的对应值的积是常数6,因而xy=6,即y=,故变量y与x之间的函数关系式:y=.故答案为:y=30.(1)∵y1与(x﹣1)成正比例,y2与(x+1)成反比例,∴y1=k1(x﹣1),y2=,∵y=y1+y2,当x=0时,y=﹣3,当x=1时,y=﹣1.∴,∴k2=﹣2,k1=1,∴y=x﹣1﹣;(2)把x=﹣代入(1)中函数关系式得,y=﹣.。
(完整版)反比例函数经典习题及答案
(完整版)反比例函数经典习题及答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN反比例函数练习题一、精心选一选!(30分)1.下列 函数中,图象经过点(11)-,的反比例函数解析式是( ) A .1y x=B .1y x-=C .2y x=D .2y x-=2. 反 比例函数2k y x=-(k 为常数,0k ≠)的图象位于( )A.第一、二象限 B.第一、三象限 C.第二、四角限 D.第三、四象限3.已知 反比例函数y =x2k -的图象位于第一、第三象限,则k 的取值范围是( ). (A )k >2 (B ) k ≥2 (C )k ≤2 (D ) k <24.反 比例函数xky =的图象如图所示,点M 是该函数图象上一点,MN 垂直于x 轴,垂足是点N ,如果S △MON =2,则k 的值为( ) (A)2 (B)-2 (C)4 (D)-45.对于反比 例函数2y x=,下列说法不正确...的是( ) A .点(21)--,在它的图象上B .它的图象在第一、三象限C .当0x >时,y 随x 的增大而增大D .当0x <时,y 随x 的增大而减小6.反比 例函数22)12(--=m xm y ,当x >0时,y 随x 的增大而增大,则m 的值时( )A 、±1B 、小于21的实数 C 、-1 D 、1 7.如 图,P 1、P 2、P 3是双曲线上的三点,过这三点分别作y 轴的垂线,得到三个三角形P 1A 1O 、P 2A 2O 、P 3A 3O ,设它们的面积分别是S 1、S 2、S 3,则( )。
A 、S 1<S 2<S 3B 、S 2<S 1<S 3C 、S 3<S 1<S 2D 、S 1=S 2=S 3 8.在同 一直角坐标系中,函数xy 2-=与x y 2=图象的交点个数为( ) A .3 B .2 C .1 D .09.已知 甲、乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km/h )的函数关系图象大致是( )OA 1 A 2 A 3 P 1 P 2 P 3xy10.如图,直线y=mx 与双曲线y=xk交于A 、B 两点,过点A 作AM ⊥x 轴,垂足为M ,连结BM,若ABM S ∆=2,则k 的值是( )A .2B 、m-2C 、mD 、4 11.在反比例函数xky =(k <0)的图象上有两点A (x 1,y 1),B (x 2,y 2),且1x >2x >0,则12y y -的值为( ) (A)正数 (B)负数 (C)非正数 (D)非负数 二、细心填一填!(30分)11.写出一个图象在第一、三象限的反比例函数的解析式 .12.已知反比例函数8y x =-的图象经过点P (a+1,4),则a=_____.13.反比例函数6y x=-图象上一个点的坐标是 .14.一个函数具有下列性质:①它的图像经过点(-1,1);②它的图像在二、四象限内; ③在每个象限内,函数值y 随自变量x 的增大而增大.则这个函数的解析式可以为 . 15.已知反比例函数的图象经过点(m ,2)和(-2,3)则m 的值为 .15.3-; 16.在ABC △的三个顶点(23)(45)(32)A B C ----,,,,,中,可能在反比例函数(0)ky k x=>的图象上的点是 . 17.在对物体做功一定的情况下,力F (牛)与此物体在力的方向上移动的距离s (米)成反比例函数关系,其图象如图所示,P (5,1)在图象上,则当力达到10牛时,物体在力的方向上移动的距离是 米.18.已知点P 在函数2y x = (x >0)的图象上,PA⊥x 轴、PB⊥y 轴,垂足分别为A 、B ,则矩形OAPB 的面积为__________. 19.已知直线mx y =与双曲线xky =的一个交点A 的坐标为(-1,-2).则m =_____;k =____;它们的另一个交点坐标是______.20.如图,过原点的直线l 与反比例函数1y x=-的图象交于M ,N 两点,根据图象猜想线段MN 的长的最小值是___________. 三、用心解一解!(60分)21.在平面直角坐标系xOy 中,直线y x =-绕点O 顺时针旋转90得到直线l .直线l 与反比例函数ky x=的图象的一个交点为(3)A a ,,试确定反比例函数的解析式.(5分)O y MNl22.如图,点A 是反比例函数图象上的一点,自点A 向y 轴作垂线,垂足为T ,已知S △AOT =4,求此函数的表达式. (5分)23.已知点P (2,2)在反比例函数xk y =(0≠k )的图象上, (Ⅰ)当3-=x 时,求y 的值;(Ⅱ)当31<<x 时,求y 的取值范围.(7分)24.如图,已知双曲线ky x=(0x >)经过矩形OABC 的边AB BC ,的中点F E ,,且四边形OEBF 的面积为2,求k 的值.(7分)25.若一次函数y =2x -1和反比例函数y =2kx的图象都经过点(1,1).(1)求反比例函数的解析式;(2)已知点A 在第三象限,且同时在两个函数的图象上,求点A 的坐标;(8分)26.已知点A (2,6)、B (3,4)在某个反比例函数的图象上. (1)求此反比例函数的解析式;(2)若直线mx y =与线段AB 相交,求m 的取值范围. (8分)y x O F AB E C27.如图正方形OABC 的面积为4,点O 为坐标原点,点B 在函数ky x=(0,0)k x << 的图象上,点P(m ,n)是函数ky x=(0,0)k x <<的图象上异于B 的任意一点,过点P 分别作x 轴、y 轴的垂线,垂足分别为E 、F .(1)设矩形OEPF 的面积为S l ,判断S l 与点P 的位置是否有关(不必说理由).(2)从矩形OEPF 的面积中减去其与正方形OABC 重合的面积,剩余面积记为S 2,写出S 2与m 的函数关系,并标明m 的取值范围.(8分)参考答案:一、1.B 2.C 3.A 4.D 5.C 6.C 7.D 8.D 9.C 10.A ;三、21.解:依题意得,直线l 的解析式为y x =.因为(3)A a ,在直线y x =上,则3a =. 即(33)A ,.又因为(33)A ,在k y x =的图象上,可求得9k =.所以反比例函数的解析式为9y x=. 22.解:设所求反比例函数的表达式为x ky =,因为S △AOT =k 21,所以k 21=4,即8±=k ,又因为图象在第二、四象限,因此8-=k ,故此函数的表达式为8y x=-;又反比例函数x y 4=在0>x 时y 值随x 值的增大而减小, ∴当31<<x 时,y 的取值范围为434<<y .24.设B 点的坐标为(2a ,2b ),则E 点的坐标为(a ,2b ),F 点的坐标为(2a ,b ),所以k =2ab .因为4ab -21×2ab ×2=2,所以2ab =2.25.(1) ∵反比例函数y =2k x 的图象经过点(1,1),∴1=2k解得k=2, ∴反比例函数的解析式为y=1x.∵点A 在第三象限,且同时在两个函数图象上, ∴A(12-,–2). 26.解:(1)设所求的反比例函数为x k y =,依题意得: 6 =2k,∴k=12. ∴反比例函数为xy 12=. (2) 设P (x ,y )是线段AB 上任一点,则有2≤x≤3,4≤y ≤6.∵m =xy, ∴34≤m ≤26.所以m 的取值范围是34≤m ≤3.27.(1) 没有关系;(2) 当P 在B 点上方时,242(20)S m m =+-<<;当P 在B 点下方时,284(2)S m m=+<-。
反比例函数考试题(含答案)
反比例函数考试题(含答案)1. 对于反比例函数 $y = \frac{k}{x}$,已知 $y = 3$ 时,$x = 6$,求 $k$ 的值。
解答:当 $y=3$,$x=6$ 时,代入原函数得:$$3 = \frac{k}{6}$$解出 $k=18$,因此反比例函数为 $y=\frac{18}{x}$。
2. 已知反比例函数 $y=\frac{6}{x}$ 的图像和 $y=-12$ 的水平渐近线,求该反比例函数图像的方程和垂直渐近线方程。
解答:由于已知 $y=-12$ 是反比例函数的水平渐近线,因此 $y$ 趋向于 $0$ 时,$x$ 的值趋近于无穷大或负无穷大,即垂直于 $x$ 轴。
反比例函数的图像为双曲线,因此垂直渐近线分别为 $x=0$ 和$y=0$。
同时,已知 $y=\frac{6}{x}$,可得 $x=\frac{6}{y}$。
将其化简可得反比例函数的图像方程为 $xy=6$。
因此该反比例函数的图像方程为 $xy=6$,垂直渐近线方程为$x=0$ 和 $y=0$。
3. 已知反比例函数 $y=\frac{12}{x-1}$ 的图像和点 $P(5, 2)$,求 $P$ 点在反比例函数图像上的对称点 $Q$ 的坐标。
解答:首先,求出点$P$ 关于直线$x=1$ 的对称点$P'(p,q)$ 的坐标。
由于直线 $x=1$ 为反比例函数 $y=\frac{12}{x-1}$ 的渐近线,因此$P$ 点到该直线的距离为 $0$。
点 $P$ 到直线 $x=1$ 的距离公式为:$$d(P, x=1)=\frac{|\ ax+by+c\ |}{\sqrt{a^2+b^2}}$$将反比例函数化为标准形式 $y=\frac{12}{x-1}$,可得:$$d(P, x=1)=\frac{|\ x-1\ |}{\sqrt{1+0}}=5-1=4$$因此,点 $P$ 到直线 $x=1$ 的距离为 $4$。
点 $P'$ 在直线$x=1$ 上,因此其 $x$ 坐标为 $1$,根据点 $P$ 和 $P'$ 的对称性,其 $y$ 坐标应该等于 $2-4=-2$。
反比例函数问题及答案
反比例函数问题及答案1. 什么是反比例函数?反比例函数是数学中的一种特殊函数形式。
它的表达式可以表示为:$y = \frac{k}{x}$,其中 $k$ 是一个常数,$x\neq 0$。
反比例函数也可以写成 $xy=k$ 的形式。
2. 反比例函数的性质- 反比例函数的图像通常会形成一个叫做双曲线的曲线。
- 当$x$ 的值趋近于零时,$y$ 的值趋近于正无穷大。
同样地,当 $x$ 的值趋近于正无穷大时,$y$ 的值趋近于零。
- 如果 $x$ 的值为正,则 $y$ 的值也为正;如果 $x$ 的值为负,则 $y$ 的值也为负。
- 反比例函数是一个单调递减函数,即随着 $x$ 的增大,$y$ 的值会减小。
3. 反比例函数的应用反比例函数在现实生活中有许多应用。
下面列举几个例子:3.1 电阻和电流根据欧姆定律,电阻和电流之间存在反比例关系。
当电阻增大时,电流会减小;当电阻减小时,电流会增大。
这可以用反比例函数来表示。
3.2 速度和时间在某些情况下,速度和时间也存在反比例关系。
例如,当你以恒定的速度行驶时,行驶的时间和速度成反比。
行驶时间越长,速度越慢;行驶时间越短,速度越快。
3.3 人均产量和劳动人口在经济学中,人均产量和劳动人口之间通常存在反比例关系。
当劳动人口增多时,人均产量会减少;当劳动人口减少时,人均产量会增加。
4. 总结反比例函数是数学中一种常见的函数形式,具有特殊的性质和应用。
通过了解反比例函数的特点,我们能更好地理解和应用它在实际问题中的意义。
在实际问题中,我们可以通过确定常数 $k$ 的值来确定具体的函数形式和图像特点。
第一章《反比例函数》(基础卷)(解析版)
2022-2023学年湘教版九年级上册期末真题单元冲关测卷(基础卷)第一章反比例函数一、选择题(每小题4分,共40分)1.(2021-2022·湖南·期末试卷)下列函数中,是反比例函数的是()A.y=5B.y=x2C.y=2x+1D.2y=xx【答案】A【解析】根据反比例函数的定义,可得答案.解:形如y=k(k≠0)的函数是反比例函数,故只有选项A符合题意.x2.(2021-2022·广东·单元测试)若函数y=(m2−1)x m2−m−3是反比例函数,则m的值是()A.±1B.2C.−1或2D.−1【答案】B【解析】因为函数y=(m2−1)x m2−m−3是反比例函数,所以m2−m−3=−1,m2−1≠0,所以m=2.3.(2021-2022·河南·月考试卷)下列关于反比例函数y=−3的结论中正确的是()xA.图象过点(1,3)B.图象在一、三象限内C.当x<0时,y随x的增大而增大D.当x>−1时,y>3【答案】C4.(2021-2022·河南·月考试卷)已知电流I(安培)、电压U(伏特)、电阻R(欧姆)之间的关系为I=U,当电压为定值时,关于R的函数图象是()RA. B. C. D.【答案】A5.(2021-2022·广东·单元测试)已知反比例函数y=kx的图象经过点P(3,−4),则这个反比例函数的解析式为()A.y=12x B.y=−12xC.y=3xD.y=4x【答案】B【解析】将P(3,−4)代入y=kx,得k=3×(−4)=−12.故反比例函数解析式为y=−12x.6.(2021-2022·安徽·期末试卷)若点A(−3,2)关于x轴的对称点A′恰好在反比例函数y=kx(k≠0)的图象上,则k的值为()A.−5B.−1C.6D.−6【答案】C7.(2021-2022·广东·同步练习)如图,点P在反比例函数y=kx(k≠0)的图象上,PA⊥x轴于点A ,△PAO的面积为2,则k的值为()A.1B.2C.4D.6【答案】C【解析】根据反比例函数系数k的几何意义可知,△PAO的面积=12|k|,再根据图象所在象限求出k的值既可.解:依据比例系数k的几何意义可得,△PAO的面积=1|k|,2即1|k|=2,解得,k=±4,由于函数图象位于第一、三象限,故k=4.28.(2021-2022·广东·月考试卷)若点A(−3,y1),B(−1,y2),C(3,y3)都在反比例函数y=k(k>0)的x图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y3>y1>y2C.y2>y1>y3D.y1>y3>y2【答案】B9.(2021-2022·安徽·月考试卷)已知正比例函数y=k1x和反比例函数y=k2,在同一直角坐标x系下的图象如图所示,其中符合k1⋅k2>0的是()A.①②B.①④C.②③D.③④【答案】B【解析】根据正比例函数和反比例函数的图象逐一判断即可.10.(2021-2022·广东·单元测试)如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(4a,a)是反比例函数y=k(k>0)的图象上与正方形的一个交点,若x图中阴影部分的面积等于16,则k的值为( )A.16B.1C.4D.−16【答案】C【解析】根据正方形的对称性及反比例函数的的对称性,由割补法可以得出阴影部分的面积就是一个小正方形的面积,又阴影部分的面积是16,故一个小正方形边长为4,根据点的坐标与图形的性质即可得出|4a=4,求解得出a的值,再根据反比例函数图象上的点的坐标特点即可求出k的值.解:如图:∵图中阴影部分的面积等于16,∴正方形OABC的面积=16.∵P点坐标为(4a, a),∴OA=OC=4a,∴4a×4a=16,∴a=1(a=−1舍去),∴P点坐标为(4, 1).把P(4, 1)代入y=kx,得k=4×1=4.二、填空题(本题共计6小题,每题4分,共计24分)11.(2021-2022·广东·期末试卷)若函数y=mx m2+3m−1是反比例函数,则m=________.【答案】−3【解析】直接利用反比例函数的定义分析得出即可.【解答】解:∵函数y=mx m2+3m−1是反比例函数,∴m2+3m−1=−1且m≠0,解得:m=−3.12.(2020-2021·湖南·期中试卷)已知反比例函数y=(m−2)x m2−10的图象,在每一象限内y随x 的增大而减小,则反比例函数的解析式为________.【答案】y=1x【解析】根据反比例函数的定义得到得m−2≠0m2−10=−1,可解得m=3或−3,再根据反比例函数的性质得到m−2>0,则m=3,然后把m=3代入y=(m−2)x m2−10即可.解:根据题意得m−2≠0,m2−10=−1,解得m=3或−3,∵反比例函数在每一象限内y随x的增大而减小,∴m−2>0,∴m>2, ∴m=3,∴y=(3−2)x−1=1x,13.(2021-2022·全国·中考复习)计划修建铁路1200km,那么铺轨天数y(d)是每日铺轨量x的________比例函数解,其表达式为________.【答案】反,y=1200x【解析】本题考查反比例函数的定义.解:故答案为:反,y=1200x.14.(2021-2022·河南·中考复习)已知函数y=−1x,当自变量的取值为−1<x<0或x≥2时,函数值y的取值为________.【答案】y>1或−12≤y<0解:画出函数y=−1x的图象,如图所示:当x=−1时,y=1,当x=2时,y=−12.由图象可得:当−1<x<0时,y>1,当x≥2时,−12≤y<0.15.(2021-2022·河南·月考试卷)已知(−3, y1),(−2, y2),(1, y3)是抛物线y=3x2+12x+m上的点,则y1,y2,y3的大小关系为________.A.y2<y3<y1B.y1<y2=y3C.y2<y1<y3D.y3<y2<y1【答案】C【解析】利用二次函数解析式求出其对称轴,再利用二次函数的对称性可得到点(−3,y1)关于对称轴对称的点的坐标(−1y1);利用二次函数的增减性比较−2,−1,1的大小关系,就可得到y1,y2,y3的大小关系.解:A(−3,y1),B(−2,y2),C(1,y3)在二次函数y=3x2+12x+m的图象上,=−2,开口向上,y=3x2+12x++m的对称轴x=−b2a∴当x=−3与x=−1关于x=−2对称,:A在对称轴左侧,y随x的增大而减小,则y1>y2C在对称轴右侧,y随x的增大而增大,1>−1, ∵y3>y1, ∵y3>y1>y216.(2021-2022·河南·中考复习)如图,在平面直角坐标系中,菱形OBCD的边OB在x轴正半的图象经过菱形OB-CD对角线的交点A,若点D的坐标为(6,8),则k 轴上,反比例函数y=kx的值为________.【答案】32解:∵点D的坐标为(6, 8),∴OD==10,∵四边形OBCD是菱形,∴OB=OD=10,∴点B的坐标为:(10, 0),∵AB=AD,即A是BD的中点,∴点A的坐标为:(8, 4),的图象上,∵点A在反比例函数y=kx∴k=xy=8×4=32.三、解答题(本题共计8小题,每题10分,共计86分)17.(2021-2022·广东·单元测试)已知函数y=(m2+2m)x m2−m−1.(1)如果y是x的正比例函数,求m的值;(2)如果y是x的反比例函数,求出m的值,并写出此时y与x的函数关系式.解:(1)由y=(m2+2m)x m2−m−1是正比例函数,得m2−m−1=1且m2+2m≠0,解得m=2或m=−1;(2)由y=(m2+2m)x m2−m−1是反比例函数,得m2−m−1=−1且m2+2m≠0,解得m=1,.故y与x的函数关系式y=3x18.(2020·广东·单元测试)已知函数y=(k−2)x k2−5为反比例函数.(1)求k的值;(2)它的图象在第________象限内,在各象限内,y随x增大而________;(填变化情况)时,y的取值范围.(3)求出−2≤x≤−12解:由题意得:k2−5=−1,解得:k=±2,∵k−2≠0,∴k=−2;∵k=−2<0,∴反比例函数的图象在二、四象限,在各象限内,y随着x增大而增大;故答案为:二、四,增大;∵反比例函数表达式为y=−4,x时,y=8,∴当x=−2时,y=2,当x=−12时,2≤y≤8.∴当−2≤x≤−1219.(2021-2022·吉林·月考试卷)如图,在平面直角坐标系xOy中,一次函数y=x+b的图象与在第一象限内的图象交于点C,连接CO x轴交于点A(−4,0),与y轴交于点B,与反比例函数y=kx.(1)求b的值;(2)若S△OBC=2,则k的值是________.解:(1)∵一次函数y=x+b经过点A(−4,0)∴0=−4+b∴b=4.∴B(0,4).(2)∵S△OBC=2 ∴1×4×x C=2 ∴x C=12∴点C横坐标为1.把x=1代入y=x+4得,y=5 ∴C(1,5).∵反比例函数y=k过点C,∴k=1×5=5,x20.(2021-2022·甘肃·月考试卷)如图,一次函数y=kx+b与反比例函数y=m的图象相交于xA(−1, 4),B(2, n)两点,直线AB交x轴于点D.(1)求一次函数与反比例函数的表达式;(2)过点B 作BC ⊥y 轴,垂足为C ,连接AC 交x 轴于点E ,求△AED 的面积S · .解:(1)把A(−1, 4)代入反比例函数y =mx 得,m =−1×4=−4所以反比例函数的解析式为y =4x ;把B(2, n)代入y =−4x 得,2n =−4.解得n =−2,所以B 点坐标为(2, −2),把A(−1, 4)和B(2, −2)代入一次函数y =kx +b 得{−k +b =42k +b =−2,解得{k =−2b =2,所以一次函数的解析式为y =−2x +2;(2)∵ BC ⊥y 轴,垂足为C ,B(2, −2),∴ C 点坐标为(0, −2).设直线AC 的解析式为y =px +q ,∵ A(−1, 4),C(0, −2),∴ {−p +q =4q =−2,解得{p =−6q =−2∴ 直线AC 的解析式为y =−6x−2,当y =0时,−6x−2=0,解得x =−13,∴ E 点坐标为(−13, 0),∵ 直线AB 的解析式为y =−2x +2,∴ 直线AB 与x 轴交点D 的坐标为(1, 0)·∴ DE =1−(−13)=43,∴ △AED 的面积s =12×43×4=83.21.(2021-2022·山东·月考试卷)Rt△OAB在直角坐标系内的位置如图所示,BA⊥OA,反比例函数y=k(k≠0)在第一象限内的图像与AB交于点C(8,1)与OB交于点D(4,m).x(1)求该反比例函数的解析式及图像为直线OB的正比例函数解析式;(2)求BC的长., 解得:k=8,解:(1)将点C(8,1)代入反比例函数解析式中,得1=k8∴反比例函数解析式为y=8,x,解得:m=2,将点D(4,m)代入反比例函数解析式中,得m=84∴点D(4,2),设直线OB的正比例函数解析式为y=ax,将点D(4,2)代入,得2=4a,解得:a=1,2∴直线OB的解析式为y=1x;2(2)∵BA⊥OA即BC⊥x轴,∴点B的横坐标等于点C的横坐标8,将x=8代入y=1x中,解得y=4,∴点B的坐标为(8, 4),2∴AB=4,∵点C(8,1),∴AC=1,∴BC=AB−AC=3.22.(2021-2022·河南·月考试卷)如图,平行四边形OABC的边OA在x轴上,点D是对角线OB 的中点,反比例函数y=k(x>0)的图象经过点D.点B的坐标为(10,4),点C的坐标为(3,4)x(1)求反比例函数的解析式;(2)求平行四边形OABC 的周长.解:(1)过点D 作DE ⊥x 轴于点E ,过点B 作BF ⊥x 轴于点F ,∵ 点D 是OB 的中点∴ 点E 是OF 的中点,且DE =12BF ,∴ OE =5, DE =2 ∴ 点D 的坐标为(5,2).∵ 反比例函数y =k x (x >0)的图象经过点D ,∴ 2=k 5,解得k =10,∴ 反比例函数的解析式为y =10x .(2)∵ 点B 的坐标为 (10,4),点C 的坐标为 (3,4) ,∴ BC =10−3=7.由勾股定理易得OC ==5,所以平行四边形OABC 的周长为 (5+7)×2=24.23.(2021-2022·山东·月考试卷)如图,在平面直角坐标系中,直线y =x +2与双曲线y =k x 交于A ,B 两点,已知点A 的横坐标为1.(1)求k 的值; (2)求△OAB 的面积;(3)直接写出关于x 的不等式x +2>k x 的解集.解:(1)∵ 点A 的横坐标为1,∴ 将x =1二代入y =x +2中,得y =3,∴ 点A 的坐标为(1,3),∵ 直线y =x +2与双曲线y =k x 交于A ,B 两点∴ 将A (1,3)代入y =k x 中,得k =3.(2)∵直线y=x+2与双曲线y=3x交于A,B两点∴解y=x+2y=3x,得x=1x=−3∴点A的坐标为(1,3)点B的坐标为(−3,−1)∵如图,直线y=x+2与y轴交于点C∴点C的坐标为(0,2),∴OC=2,∴S△OAB=CO⋅(x A−x B)2=2×[1−(−3)]2=4,即△OAB的面积为4.(3)x>1或−3<x<0.24.(2021-2022·安徽·月考试卷)校园里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10∘C,加热到100∘C停止加热,水温开始下降,此时水温y(∘C)与开机后用时x(min)成反比例关系,直至水温降至40∘C,饮水机关机,饮水机关机后即刻自动开机,重复上述自动程序.若在水温为40∘C时接通电源,水温y(∘C)与时间x(min)的关系如图所示:(1)分别写出图中水温上升和下降阶段y与x之间的函数关系式;(2)小明同学想喝高于50∘C的水,请问他最多需要等待多长时间?解:(1)观察图象,可知:当x=6(min)时,水温y=100(∘C),当0≤x≤6时,设y关于x的函数关系式为:y=kx+b,b=40,6k+b=100,得k=10,b=40,即当0≤x≤6时,y关于x的函数关系式为y=10x+40;当x>6时,设y=ax,100=a6,得a=600,即当x>6时,y关于x的函数关系式为y=600x,∴ y与x的函数关系式为:y=10x+40,600x.(2)将y=50代入y=10x+40,得x=1,∴P(1,50),将y=50代入y=600x,得x=12,∴M(12,50),当y=40时,x1=0,x2=15,∴Q(15,40),因为饮水机关机即刻自动开机,重复上述自动程序,如图,∴N(16,50),∴MN=4,∴他最多要等4分钟.。
中考数学复习专题09反比例函数
反比例函数一、单选题1.(2021·山西)已知反比例函数6y x=,则下列描述不正确的是( ) A .图象位于第一,第三象限 B .图象必经过点34,2⎛⎫⎪⎝⎭C .图象不可能与坐标轴相交D .y 随x 的增大而减小【答案】D【分析】根据反比例函数图像的性质判断即可. 【详解】解:A 、反比例函数6y x=,0k >,经过一、三象限,此选项正确,不符合题意; B 、将点34,2⎛⎫⎪⎝⎭代入6y x =中,等式成立,故此选项正确,不符合题意;C 、反比例函数不可能坐标轴相交,此选项正确,不符合题意;D 、反比例函数图像分为两部分,不能一起研究增减性,故此选项错误,符合题意;故选:D . 【点睛】本题主要考查反比例函数图像的性质,熟知反比例函数的图像的性质是解题关键.2.(2021·四川达州市)在反比例函数21k y x+=(k 为常数)上有三点()11,A x y ,()22,B x y ,()33,C x y ,若1230x x x <<<,则1y ,2y ,3y 的大小关系为( ) A .123y y y << B .213y y y << C .132y y y << D .321y y y <<【答案】C【分析】根据k >0判断出反比例函数的增减性,再根据其坐标特点解答即可. 【详解】解:∵210k +>,∴反比例函数图象的两个分支在第一、三象限,且在每个象限内y 随x 的增大而减小, ∵B (x 2,y 2),C (x 3,y 3)是双曲线ky x=上的两点,且320x x >>,∴点B 、C 在第一象限,0<y 3<y 2,∵A (x 1,y 1)在第三象限,∵y 1<0,∴132y y y <<.故选:C .【点睛】本题考查了由反比例函数图象的性质判断函数图象上点的坐标特征,理解基本性质是解题关键.3.(2021·浙江杭州市)已知1y 和2y 均是以x 为自变量的函数,当x m =时,函数值分别为1M 和2M ,若存在实数m ,使得120M M +=,则称函数1y 和2y 具有性质P .以下函数1y 和2y 具有性质P 的是( )A .212y x x =+和21y x =--B .212y x x =+和21y x =-+C .11y x =-和21y x =--D .11y x=-和21y x =-+【答案】A【分析】根据题中所给定义及一元二次方程根的判别式可直接进行排除选项.【详解】解:当x m =时,函数值分别为1M 和2M ,若存在实数m ,使得120M M +=, 对于A 选项则有210m m +-=,由一元二次方程根的判别式可得:241450b ac -=+=>,所以存在实数m ,故符合题意;对于B 选项则有210m m ++=,由一元二次方程根的判别式可得:241430b ac -=-=-<,所以不存在实数m ,故不符合题意; 对于C 选项则有110m m---=,化简得:210m m ++=,由一元二次方程根的判别式可得:241430b ac -=-=-<,所以不存在实数m ,故不符合题意; 对于D 选项则有110m m--+=,化简得:210m m -+=,由一元二次方程根的判别式可得:241430b ac -=-=-<,所以不存在实数m ,故不符合题意;故选A .【点睛】本题主要考查一元二次方程根的判别式、二次函数与反比例函数的性质,熟练掌握一元二次方程根的判别式、二次函数与反比例函数的性质是解题的关键.4.(2021·天津)若点()()()1235,,1,,5,A y B y C y -都在反比例函数5y x=-的图象上,则123,,y y y 的大小关系是( ) A .123y y y << B .231y y y <<C .132y y y <<D .312y y y <<【答案】B【分析】将A 、B 、C 三点坐标代入反比例函数解析式,即求出123、、y y y 的值,即可比较得出答案.【详解】分别将A 、B 、C 三点坐标代入反比例函数解析式得:1515y =-=-、2551y =-=-、3515y =-=-.则231y y y <<.故选B . 【点睛】本题考查比较反比例函数值.掌握反比例函数图象上的点的坐标满足其解析式是解答本题的关键.5.(2021·四川乐山市)如图,直线1l 与反比例函数3(0)y x x=>的图象相交于A 、B 两点,线段AB 的中点为点C ,过点C 作x 轴的垂线,垂足为点D .直线2l 过原点O 和点C .若直线2l 上存在点(,)P m n ,满足APB ADB ∠=∠,则m n +的值为( )A .3B .3或32C .3+3D .3【答案】A【分析】根据题意,得()1,3A ,()3,1B ,直线2l :y x =;根据一次函数性质,得m n =;根据勾股定理,得PC =连接PA ,PB ,FB ,根据等腰三角形三线合一性质,得()2,2C ,OC AB ⊥;根据勾股定理逆定理,得90ABD ∠=︒;结合圆的性质,得点A 、B 、D 、P 共圆,直线2l 和AB 交于点F ,点F 为圆心;根据圆周角、圆心角、等腰三角形的性质,得2FC =;分PC PF FC =+或PC PF FC =-两种情况,根据圆周角、二次根式的性质计算,即可得到答案.【详解】根据题意,得3,33A ⎛⎫ ⎪⎝⎭,33,3B ⎛⎫⎪⎝⎭,即()1,3A ,()3,1B∵直线2l 过原点O 和点C ∴直线2l :y x = ∵(,)P m n 在直线2l 上∴m n = ∴PC =连接PA ,PB ,FB ∴PA PB =,线段AB 的中点为点C ∴()2,2C ,OC AB ⊥ 过点C 作x 轴的垂线,垂足为点D ∴()2,0D ∴AD ==,AB ==BD ==∴222AD AB BD =+ ∴90ABD ∠=︒∴点A 、B 、D 、P 共圆,直线2l 和AB 交于点F ,点F为圆心∴cos BD ADB AD ∠==∵AC BC =,12FB FA AD ==∴12BFC AFB ∠=∠ ∵APB ADB ∠=∠,且12APB AFB ∠=∠ ∴APB ADB BFC ∠=∠=∠∴cos cos FC APB BFC FB ∠=∠===FC = ∴PC PF FC =+或PC PF FC =- 当PC PF FC =-时,APB ∠和ADB ∠位于直线AB 两侧,即180APB ADB ∠+∠=︒ ∴PC PF FC=-不符合题意∴22PC PF FC =+=+,且2m <∴)2PC m==-)22m -=∴32m =∴23m n m +==A .【点睛】本题考查了圆、等腰三角形、反比例函数、一次函数、三角函数、勾股定理、二次根式的知识;解题的关键是熟练掌握圆心角、圆周角、等腰三角形三线合一、三角函数、勾股定理的性质,从而完成求解.6.(2021·重庆)如图,在平面直角坐标系中,菱形ABCD 的顶点D 在第二象限,其余顶点都在第一象限,AB ∥X 轴,AO ⊥AD ,AO =A D .过点A 作AE ⊥CD ,垂足为E ,DE =4CE .反比例函数()0ky x x=>的图象经过点E ,与边AB 交于点F ,连接OE ,OF ,EF .若118EOFS=,则k 的值为( )A .73B .214C .7D .212【答案】A【分析】延长EA 交x 轴于点G ,过点F 作x 轴的垂线,垂足分别为H ,则可得△DEA ≌△AGO ,从而可得DE =AG ,AE =OG ,若设CE =a ,则DE =AG =4a ,AD =DC =DE +CE =5a ,由勾股定理得AE =OG =3a ,故可得点E 、A 的坐标,由AB 与x 轴平行,从而也可得点F 的坐标,根据EOFEOGFOHEGHF SSS S=+-梯形 ,即可求得a 的值,从而可求得k 的值.【详解】如图,延长EA 交x 轴于点G ,过点F 作x 轴的垂线,垂足分别为H∵四边形ABCD 是菱形∴CD =AD =AB ,CD ∥AB ∵AB ∥x 轴,AE ⊥CD ∴EG ⊥x 轴,∠D +∠DAE =90゜∵OA ⊥AD ∴∠DAE +∠GAO =90゜∴∠GAO =∠D ∵OA =OD ∴△DEA ≌△AGO (AAS )∴DE =AG ,AE =OG设CE =a ,则DE =AG =4CE =4a ,AD =AB =DC =DE +CE =5a在Rt △AED 中,由勾股定理得:AE =3a ∴OG =AE =3a ,GE =AG +AE =7a ∴A (3a ,4a ),E (3a ,7a ) ∵AB ∥x 轴,AG ⊥x 轴,FH ⊥x 轴∴四边形AGHF 是矩形 ∴FH =AG =3a ,AF =GH∵E点在双曲线()0ky x x=>上∴221k a= 即221a y x=∵F 点在双曲线221a y x =上,且F 点的纵坐标为4a ∴214a x = 即214a OH =∴94a GH OH OG =-=∵EOFEOGFOHEGHF SSS S=+-梯形∴1191211137(74)4224248a a a a a a a ⨯⨯++⨯-⨯⨯= 解得:219a = ∴217212193k a ==⨯= 故选:A .【点睛】本题是反比例函数与几何的综合题,考查了菱形的性质,矩形的判定与性质,三角形全等的判定与性质等知识,关键是作辅助线及证明△DEA ≌△AGO ,从而求得E 、A 、F 三点的坐标.7.(2021·江苏扬州市)如图,点P 是函数()110,0k y k x x =>>的图像上一点,过点P 分别作x 轴和y 轴的垂线,垂足分别为点A 、B ,交函数()220,0ky k x x=>>的图像于点C 、D ,连接OC 、OD 、CD 、AB ,其中12k k >,下列结论:①//CD AB ;②122OCDk kS -=;③()21212DCPk k Sk -=,其中正确的是( )A .①②B .①③C .②③D .①【答案】B 【分析】设P (m ,1k m),分别求出A ,B ,C ,D 的坐标,得到PD ,PC ,PB ,P A 的长,判断PD PB和PCPA 的关系,可判断①;利用三角形面积公式计算,可得△PDC 的面积,可判断③;再利用OCD OAPB OBD OCA DPC S S S S S =---△△△△计算△OCD 的面积,可判断②.【详解】解:∵PB ⊥y 轴,P A ⊥x 轴,点P 在1k y x =上,点C ,D 在2k y x =上,设P (m ,1km), 则C (m ,2k m ),A (m ,0),B (0,1k m ),令12k km x =,则21k m x k =,即D (21k m k ,1k m ),∴PC =12k k m m -=12k k m -,PD =21k m m k -=()121m k k k -,∵()121121m k k k k k PD PB m k --==,121211k k k k PC m k PA k m--==,即PD PCPB PA=, 又∠DPC =∠BP A ,∴△PDC ∽△PBA ,∴∠PDC =∠PBC ,∴CD ∥AB ,故①正确;△PDC 的面积=12PD PC ⨯⨯=()1212112m k k k k k m --⨯⨯=()21212k k k-,故③正确; OCDOAPB OBD OCA DPC S S S S S =---△△△△=()112221222112k k k k k k ----=()2121122k k k k k ---=()()21121112222k k k k k k k ---=()22112211222k k k k k k ---=221212k k k -,故②错误;故选B . 【点睛】此题主要考查了反比例函数的图象和性质,k 的几何意义,相似三角形的判定和性质,解题关键是表示出各点坐标,得到相应线段的长度.8.(2021·浙江宁波市)如图,正比例函数()1110y k x k =<的图象与反比例函数()2220k y k x=<的图象相交于A ,B 两点,点B 的横坐标为2,当12y y >时,x 的取值范围是( )A .2x <-或2x >B .20x -<<或2x >C .2x <-或02x <<D .20x -<<或02x << 【答案】C【分析】根据轴对称的性质得到点A 的横坐标为-2,利用函数图象即可确定答案. 【详解】解:∵正比例函数与反比例函数都关于原点对称,∴点A 与点B 关于原点对称, ∵点B 的横坐标为2,∴点A 的横坐标为-2,由图象可知,当2x <-或02x <<时,正比例函数()1110y k x k =<的图象在反比例函数()2220k y k x=<的图象的上方,∴当2x <-或02x <<时,12y y >,故选:C . 【点睛】此题考查正比例函数与反比例函数的性质及相交问题,函数值的大小比较,正确理解图象是解题的关键.9.(2021·浙江金华市)已知点()()1122,,,A x y B x y 在反比例函数12y x=-的图象上.若120x x <<,则( ) A .120y y << B .210y y <<C .120y y <<D .210y y <<【答案】B【分析】根据反比例函数的图象与性质解题. 【详解】解:反比例函数12y x=-图象分布在第二、四象限,当0x <时,0y > 当0x >时,0y < 120x x <<120y y ∴>>故选:B .【点睛】本题考查反比例函数的图象与性质,是重要考点,难度较易,掌握相关知识是解题关键.10.(2021·江苏连云港市)关于某个函数表达式,甲、乙、丙三位同学都正确地说出了该函数的一个特征.甲:函数图像经过点(1,1)-;乙:函数图像经过第四象限; 丙:当0x >时,y 随x 的增大而增大.则这个函数表达式可能是( )A .y x =-B .1y x=C .2yxD .1y x=-【答案】D【分析】根据所给函数的性质逐一判断即可.【详解】解:A .对于y x =-,当x =-1时,y =1,故函数图像经过点(1,1)-;函数图象经过二、四象限;当0x >时,y 随x 的增大而减小.故选项A 不符合题意;B .对于1y x=,当x =-1时,y =-1,故函数图像不经过点(1,1)-;函数图象分布在一、三象限;当0x >时,y 随x 的增大而减小.故选项B 不符合题意; C .对于2yx ,当x =-1时,y =1,故函数图像经过点(1,1)-;函数图象分布在一、二象限;当0x >时,y 随x 的增大而增大.故选项C 不符合题意;D .对于1y x=-,当x =-1时,y =1,故函数图像经过点(1,1)-;函数图象经过二、四象限;当0x >时,y 随x 的增大而增大.故选项D 符合题意;故选:D【点睛】本题考查的是一次函数、二次函数以及反比例函数性质,熟知相关函数的性质是解答此题的关键.11.(2021·浙江温州市)如图,点A ,B 在反比例函数ky x=(0k >,0x >)的图象上,AC x⊥轴于点C ,BD x ⊥轴于点D ,BE y ⊥轴于点E ,连结AE .若1OE =,23OC OD =,AC AE =,则k 的值为( )A .2B .2C .94D .【答案】B【分析】设OD =m ,则OC =23m ,设AC =n ,根据213m n m =⨯求得32n =,在Rt △AEF 中,运用勾股定理可求出m =2,故可得到结论.【详解】解:如图,设OD =m ,∵23OC OD =∴OC =23m∵BD x ⊥轴于点D ,BE y ⊥轴于点E ,∴四边形BEOD 是矩形∴BD =OE =1∴B (m ,1)设反比例函数解析式为ky x=,∴k =m ×1=m 设AC =n ∵AC x ⊥轴∴A (23m ,n )∴23m n k m ==,解得,n =32,即AC =32∵AC =AE ∴AE =32在Rt △AEF 中,23EF OC m ==,31122AF AC FC =-=-=由勾股定理得,222321()()()232m =+ 解得,2m =(负值舍去)∴2k =故选:B 【点睛】此题考查了反比例函数的性质、待定系数法求函数的解析式.此题难度较大,注意掌握数形结合思想与方程思想的应用.12.(2021·浙江嘉兴市)已知三个点()11,x y ,()22,x y ,()33,x y 在反比例函数2y x=的图象上,其中1230x x x <<<,下列结论中正确的是( )A .2130y y y <<<B .1230y y y <<<C .3210y y y <<<D .3120y y y <<< 【答案】A【分析】根据反比例函数图像的增减性分析解答. 【详解】解:反比例函数2y x=经过第一,三象限,在每一象限内,y 随x 的增大而减小, ∴当1230x x x <<<时,2130y y y <<<故选:A .【点睛】本题考查反比例函数的图像性质,掌握反比例函数的图像性质,利用数形结合思想解题是关键.13.(2021·重庆)如图,在平面直角坐标系中,矩形ABCD 的顶点A ,B 在x 轴的正半轴上,反比例函数(0,0)ky k x x=>>的图象经过顶点D ,分别与对角线AC ,边BC 交于点E ,F ,连接EF ,AF .若点E 为AC 的中点,AEF 的面积为1,则k 的值为( )A .125B .32C .2D .3【答案】D【分析】设D 点坐标为()ka a,,表示出E 、F 、B 点坐标,求出ABF 的面积,列方程即可求解.【详解】解:设D 点坐标为()ka a,,∵四边形ABCD 是矩形,则A 点坐标为(0)a ,,C 点纵坐标为k a,∵点E 为AC 的中点,则E 点纵坐标为022k k a a+=,∵点E 在反比例函数图象上,代入解析式得2k ka x=,解得,2x a =, ∴E 点坐标为(2)2k a a ,,同理可得C 点坐标为(3)ka a,,∵点F 在反比例函数图象上,同理可得F 点坐标为(3)3ka a,,∵点E 为AC 的中点,AEF 的面积为1, ∴2ACFS=,即122CF AB ⋅=,可得,1()(3)223k ka a a a--=,解得3k =,故选:D .【点睛】本题考查了反比例函数的性质和矩形的性质,解题关键是设出点的坐标,依据面积列出方程.14.(2021·四川自贡市)已知蓄电池的电压为定值,使用蓄电池时,电流O (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示.下列说法正确的是( )A .函数解析式为13I R=B .蓄电池的电压是18VC .当10A I ≤时, 3.6R ≥ΩD .当6R =Ω时,4A I = 【答案】C【分析】将将()4,9代入UI R=求出U 的值,即可判断A ,B ,D ,利用反比例函数的增减性可判断C .【详解】解:设U I R=,将()4,9代入可得36I R =,故A 错误;∴蓄电池的电压是36V ,故B 错误;当10A I ≤时, 3.6R ≥Ω,该项正确; 当当6R =Ω时,6A I =,故D 错误,故选:C .【点睛】本题考查反比例函数的实际应用,掌握反比例函数的图象与性质是解题的关键. 15.(2021·浙江丽水市)一杠杆装置如图,杆的一端吊起一桶水,水桶对杆的拉力的作用点到支点的杆长固定不变.甲、乙、丙、丁四位同学分别在杆的另一端竖直向下施加压力F F F F 丁乙甲丙、、、,将相同重量的水桶吊起同样的高度,若 F F F F <<<甲丁丙乙,则这四位同学对杆的压力的作用点到支点的距离最远的是( )A .甲同学B .乙同学C .丙同学D .丁同学【答案】B【分析】根据物理知识中的杠杆原理:动力×动力臂=阻力×阻力臂,力臂越大,用力越小,即可求解.【详解】解:由物理知识得,力臂越大,用力越小,根据题意,∵ F F F F <<<甲丁丙乙,且将相同重量的水桶吊起同样的高度, ∴乙同学对杆的压力的作用点到支点的距离最远,故选:B .【点睛】本题考查反比例函数的应用,属于数学与物理学科的结合题型,立意新颖,掌握物理中的杠杆原理是解答的关键. 二、填空题1.(2021·浙江绍兴市)如图,在平面直角坐标系中,正方形ABCD 的顶点A 在x 轴正半轴上,顶点B ,C 在第一象限,顶点D 的坐标5(,2)2. 反比例函数k y x=(常数0k >,0x >)的图象恰好经过正方形ABCD 的两个顶点,则k 的值是_______.【答案】5或22.5【分析】先设一个未知数用来表示出B 、C 两点的坐标,再利用反比例函数图像恰好经过B 、C 、D 的其中两个点进行分类讨论,建立方程求出未知数的值,符合题意时进一步求出k 的值即可.【详解】解:如图所示,分别过B 、D 两点向x 轴作垂线,垂足分别为F 、E 点,并过C 点向BF 作垂线,垂足为点G ;∵正方形ABCD ,∴∠DAB =90°,AB =BC =CD =DA ,∴∠DAE +∠BAF =90°, 又∵∠DAE +∠ADE =90°,∠BAF +∠ABF =90°, ∴∠DAE =∠ABF ,∠ADE =∠BAF ,∴ADE ≌BAF ,同理可证△ADE ≌△BAF ≌△CBG ;∴DE =AF =BG ,AE =BF =CG ;设AE =m ,∵点D 的坐标 (52,2) ,∴OE=52,DE =AF =BG =2,∴B (92m +,m ),C (92,2m +), ∵5252⨯=,当()9252m +=时,809m =-<,不符题意,舍去;当952m m ⎛⎫+= ⎪⎝⎭时,由0m ≥解得m =,符合题意;故该情况成立,此时 5k =; 当()99222m m m ⎛⎫+=+ ⎪⎝⎭时,由 0m ≥解得3m =,符合题意,故该情况成立,此时()93222.52k =⨯+=;故答案为:5或22.5.【点睛】本题综合考查了全等三角形的判定与性质、正方形的性质、反比例函数的图像与性质、解一元二次方程等内容,解题的关键是牢记相关概念与性质,能根据题意建立相等关系列出方程等,本题涉及到了分类讨论和数形结合的思想方法等. 2.(2021·湖南)在反比例函数3m y x-=的图象的每一支曲线上,函数值y 随自变量x 的增大而增大,则m 的取值范围是________. 【答案】m <3【分析】根据反比例函数的增减性,列出关于m 的不等式,进而即可求解. 【详解】解:∵在反比例函数3m y x-=的图象的每一支曲线上,函数值y 随自变量x 的增大而增大,∴m -3<0,即:m <3.故答案是:m <3.【点睛】本题主要考查反比例函数的性质,掌握反比例函数ky x=,在反比例函数的图象的每一支曲线上,函数值y 随自变量x 的增大而增大,则k <0,是解题的关键.3.(2021·湖北武汉市)已知点()1,A a y ,()21,B a y +在反比例函数21m y x +=(m是常数)的图象上,且12y y <,则a 的取值范围是__________. 【答案】10a -<<【分析】根据反比例函数的增减性解答.【详解】解:∵210m +>,∴图象经过第一、三象限,在每个象限内,y 随着x 的增大而减小,∵点()1,A a y ,()21,B a y +在反比例函数21m y x+=(m是常数)的图象上,且12y y <,1a a <+ ,∴010a a <⎧⎨+>⎩,∴10a -<<,故答案为:10a -<<. 【点睛】此题考查反比例函数的性质:当0k >时,在每个象限内y 随着x 的增大而增大;当0k <时,在每个象限内y 随x 的增大而减小.4.(2021·湖南株洲市)点()11,A x y 、()121,B x y +是反比例函数ky x=图像上的两点,满足:当1>0x 时,均有12y y <,则k 的取值范围是__________.【答案】k <0【分析】先分析该两点所在的图像的象限和增减性,最后确定k 的取值范围即可. 【详解】解:因为当10x >时,110x +>,说明A 、B 两点同时位于第一或第四象限, ∵当10x >时,均有12y y <,∴在该图像上,y 随x 的增大而增大, ∴A 、B 两点同时位于第四象限,所以k <0,故答案为:k <0.【点睛】本题考查了反比例函数的图像和性质,解决本题的关键是理解并牢记反比例函数的图像和性质,能根据点的坐标情况分析其图像特点等,涉及了数形结合的思想方法. 5.(2021·陕西)若()11,A y ,()23,B y 是反比例函数2112m y m x -⎛⎫=< ⎪⎝⎭图象上的两点,则1y 、2y 的大小关系是1y ______2y (填“>”、“=”或“<”) 【答案】<【分析】先根据不等式的性质判断2-10m <,再根据反比例函数的增减性判断即可. 【详解】解:∵12m <∴1222m <⨯即2-10m < ∴反比例函数图像每一个象限内,y 随x 的增大而增大∵1<3∴1y <2y 故答案为:<.【点睛】本题考查反比例函数的增减性、不等式的性质、熟练掌握反比例函数的性质是关键. 6.(2021·浙江宁波市)在平面直角坐标系中,对于不在坐标轴上的任意一点(),A x y ,我们把点11,B x y ⎛⎫⎪⎝⎭称为点A 的“倒数点”.如图,矩形OCDE 的顶点C 为()3,0,顶点E 在y 轴上,函数()20=>y x x的图象与DE 交于点A .若点B 是点A 的“倒数点”,且点B 在矩形OCDE 的一边上,则OBC 的面积为_________.【答案】14或32【分析】根据题意,点B 不可能在坐标轴上,可对点B 进行讨论分析:①当点B 在边DE 上时;②当点B 在边CD 上时;分别求出点B 的坐标,然后求出OBC 的面积即可.【详解】解:根据题意,∵点11,B x y ⎛⎫⎪⎝⎭称为点(),A x y 的“倒数点”,∴0x ≠,0y ≠,∴点B 不可能在坐标轴上; ∵点A 在函数()20=>y x x 的图像上,设点A 为2(,)x x ,则点B 为1(,)2x x , ∵点C 为()3,0,∴3OC =,①当点B 在边DE 上时;点A 与点B 都在边DE 上,∴点A 与点B 的纵坐标相同,即22xx =,解得:2x =, 经检验,2x =是原分式方程的解;∴点B 为1(,1)2,∴OBC 的面积为:133122S =⨯⨯=;②当点B 在边CD 上时;点B 与点C 的横坐标相同,∴13x =,解得:13x =,经检验,13x =是原分式方程的解;∴点B 为1(3,)6,∴OBC 的面积为:1113264S =⨯⨯=;故答案为:14或32.【点睛】本题考查了反比例函数的图像和性质,矩形的性质,解分式方程,坐标与图形等知识,解题的关键是熟练掌握反比例函数的性质,运用分类讨论的思想进行分析.7.(2021·云南)若反比例函数的图象经过点()1,2-,则该反比例函数的解析式(解析式也称表达式)为_________.【答案】2y x=-【分析】先设ky x=,再把已知点的坐标代入可求出k 值,即得到反比例函数的解析式. 【详解】解:设反比例函数的解析式为ky x =(k ≠0),∵函数经过点(1,-2),∴21k -=,得k =-2,∴反比例函数解析式为2y x =-,故答案为:2y x=-. 【点睛】此题比较简单,考查的是用待定系数法求反比例函数的解析式,是中学阶段的重点. 三、解答题1.(2021·湖北随州市)如图,一次函数1y kx b =+的图象与x 轴、y 轴分别交于点A ,B ,与反比例函数2my x=(0m >)的图象交于点()1,2C ,()2,D n .(1)分别求出两个函数的解析式;(2)连接OD ,求BOD 的面积. 【答案】(1)22y x=,13y x =-+;(2)3 【分析】(1)将点C 、D 的横、纵坐标代入反比例函数的解析式,求得m 、n 的值,从而点D 纵坐标已知,将点C 、D 的横、纵坐标代入一次函数的解析式,求得k 、b 的值,从而两个函数解析式可求;(2)求出点B 的坐标,可知OB 的长,利用三角形的面积公式可求三角形BOD 的面积. 【详解】解:(1)∵双曲线2my x=(m >0)过点C (1,2)和D (2,n ), ∴212mm n ⎧=⎪⎪⎨⎪=⎪⎩,解得,21m n =⎧⎨=⎩.∴反比例函数的解析式为22y x =.∵直线1y kx b =+过点C (1,2)和D (2,1),∴221k b k b +=⎧⎨+=⎩,解得,13k b =-⎧⎨=⎩.∴一次函数的解析式为13y x =-+.(2)当x =0时,y 1=3,即B (0,3).∴3OB =.如图所示,过点D 作DE ⊥y 轴于点E .∵D (2,1),∴DE =2.∴1132322BOD S OB DE ==⨯⨯=△.【点睛】本题考查了待定系数法求函数解析式、二元一次方程组、三角形的面积等知识点,熟知解析式、点坐标、线段长三者的相互转化是解题的关键.2.(2021·湖北恩施州)如图,在平面直角坐标系中,Rt ABC 的斜边BC 在x 轴上,坐标原点是BC 的中点,30ABC ∠=︒,4BC =,双曲线ky x=经过点A .(1)求k ;(2)直线AC 与双曲线y =D .求ABD △的面积.【答案】(1)k =(2)ABD △的面积【分析】(1)过点A 作AE ⊥x 轴于点E ,由题意易得2,60AC ACB =∠=︒,进而可得1,==CE AE (A ,最后问题可求解;(2)由(1)可先求出直线AC 的解析式为y =+,然后联立直线AC 的解析式与反比例函数y =D 的坐标,最后利用割补法求解三角形的面积即可.【详解】解:(1)过点A 作AE ⊥x 轴于点E ,如图所示:∵30ABC ∠=︒,4BC =,90BAC ∠=︒, ∴122AC BC ==,60ACB ∠=︒,∴30EAC ∠=︒,∴112EC AC ==, ∴在Rt △AEC中,AE ==∵点O 是BC 的中点,∴OC =2,∴OE =1,∴(A,∴1k == (2)由(1)可得:(A ,()2,0C ,∴设直线AC 的解析式为y kx b =+,则把点A 、C代入得:20k b k b ⎧+=⎪⎨+=⎪⎩k b ⎧=⎪⎨=⎪⎩,∴直线AC的解析式为y =+,联立y =+与反比例函数y =+=, 解得:123,1x x ==-(不符合题意,舍去),∴点(3,D ,∴142ABDABCBCDSSS=+=⨯⨯=【点睛】本题主要考查反比例函数与几何的综合及含30°直角三角形的性质、勾股定理,熟练掌握反比例函数与几何的综合及含30°直角三角形的性质、勾股定理是解题的关键. 3.(2021·四川广安市)如图,一次函数()1y kx b k 0=+≠的图象与反比例函数()2my m 0x=≠的图象交于()1,A n -,()3,2B -两点.(1)求一次函数和反比例函数的解析式;(2)点P 在x 轴上,且满足ABP △的面积等于4,请直接写出点P 的坐标.【答案】(1)124y x =-+,26y x=-;(2)(1,0)或(3,0)【分析】(1)根据点B 坐标求出m ,得到反比例函数解析式,据此求出点A 坐标,再将A ,B 代入一次函数解析式;(2)设点P 的坐标为(a ,0),求出直线AB 与x 轴交点,再结合△ABP 的面积为4得到关于a 的方程,解之即可.【详解】解:(1)由题意可得:点B (3,-2)在反比例函数2my x=图像上, ∴23m-=,则m =-6,∴反比例函数的解析式为26y x=-, 将A (-1,n )代入26y x=-,得:661n =-=-,即A (-1,6),将A ,B 代入一次函数解析式中,得236k b k b -=+⎧⎨=-+⎩,解得:24k b =-⎧⎨=⎩,∴一次函数解析式为124y x =-+;(2)∵点P 在x 轴上,设点P 的坐标为(a ,0),∵一次函数解析式为124y x =-+,令y =0,则x =2,∴直线AB 与x 轴交于点(2,0), 由△ABP 的面积为4,可得:()1242A B y y a ⨯-⨯-=,即18242a ⨯⨯-=,解得:a =1或a =3, ∴点P 的坐标为(1,0)或(3,0).【点睛】本题考查一次函数和反比例函数相交的有关问题;通常先求得反比例函数解析式;较复杂三角形的面积可被x 轴或y 轴分割为2个三角形的面积和.4.(2021·浙江杭州市)在直角坐标系中,设函数11ky x =(1k 是常数,10k >,0x >)与函数22y k x=(2k 是常数,20k ≠)的图象交于点A ,点A 关于y 轴的对称点为点B .(1)若点B 的坐标为()1,2-,①求1k ,2k 的值.②当12y y <时,直接写出x 的取值范围. (2)若点B 在函数33k y x=(3k 是常数,30k ≠)的图象上,求13k k +的值. 【答案】(1)①12k =,22k =;②1x >;(2)0【分析】(1)①根据点A 关于y 轴的对称点为点B ,可求得点A 的坐标是()1,2,再将点A 的坐标分别代入反比例函数、正比例函数的解析式中,即可求得12k =,22k =;②观察图象可解题;(2)将点B 代入33k y x=,解得3k 的值即可解题. 【详解】解(1)①由题意得,点A 的坐标是()1,2, 因为函数11k y x=的图象过点A ,所以12k =,同理22k =. ②由图象可知,当12y y <时,反比例函数的图象位于正比例函数图象的下方,即当12y y <时,1x >.(2)设点A 的坐标是()00,x y ,则点B 的坐标是()00,x y -,所以100k x y =,300k x y =-,所以310k k +=.【点睛】本题考查关于y 轴对称的点的特征、待定系数法求反比例函数、正比例函数的解析式等知识,是重要考点,难度较易,掌握相关知识是解题关键.5.(2021·山东临沂市)已知函数()()()31 31131x x y x x x x ⎧≤-⎪⎪=-⎨⎪⎪≥⎩<<(1)画出函数图象;列表:描点,连线得到函数图象:(2)该函数是否有最大或最小值?若有,求出其值,若没有,简述理由; (3)设1122(,),(,)x y x y 是函数图象上的点,若120x x +=,证明:120y y +=.【答案】(1)见解析;(2)有,当1x =时,最大值为3;当1x =-时,函数有最小值3-;(3)见解析【分析】(1)选取特殊值,代入函数解析式,求出y 值,列表,在图像中描点,画出图像即可; (2)观察图像可得函数的最大值;(3)根据120x x +=,得到1x 和2x 互为相反数,再分111x -<<,11x ≤-,11x ≥,分别验证120y y +=.【详解】解:(1)列表如下:函数图像如图所示:(2)根据图像可知:当x =1时,函数有最大值3;当1x =-时,函数有最小值3-; (3)∵1122(,),(,)x y x y 是函数图象上的点,120x x +=,∴1x 和2x 互为相反数, 当111x -<<时,211x -<<,∴113y x =,223y x =,∴()1212123330y y x x x x +=+=+=; 当11x ≤-时,21x ≥,则()121212123330x x y y x x x x ++=+==; 同理:当11x ≥时,21x ≤-,()121212123330x x y y x x x x ++=+==,综上:120y y +=.【点睛】本题主要考查正比例函数,反比例函数的图像和性质,描点法画函数图像,准确画出图像,理解120x x +=是解题的关键.6.(2021·安徽)已知正比例函数(0)y kx k =≠与反比例函数6y x=的图象都经过点A (m ,2).(1)求k ,m 的值;(2)在图中画出正比例函数y kx =的图象,并根据图象,写出正比例函数值大于反比例函数值时x 的取值范围.【答案】(1),k m 的值分别是23和3;(2)30x -<<或3x > 【分析】(1)把点A (m ,2)代入6y x=求得m 的值,从而得点A 的坐标,再代入(0)y kx k =≠求得k 值即可;(2)在坐标系中画出y kx =的图象,根据正比例函数(0)y kx k =≠的图象与反比例函数6y x=图象的两个交点坐标关于原点对称,求得另一个交点的坐标,观察图象即可解答. 【详解】(1)将(,2)A m 代入6y x=得62m =, 3m ∴=, (3,2)A ∴,将(3,2)A 代入y kx =得23k =, 23k ∴=, ,k m ∴的值分别是23和3.(2)正比例函数23y x =的图象如图所示,∵正比例函数(0)y kx k =≠与反比例函数6y x=的图象都经过点A (3,2),∴正比例函数(0)y kx k =≠与反比例函数6y x=的图象的另一个交点坐标为(-3,-2), 由图可知:正比例函数值大于反比例函数值时x 的取值范围为30x -<<或3x >.【点睛】本题是正比例函数与反比例函数的综合题,利用数形结合思想是解决问题的关键. 7.(2021·浙江)已知在平面直角坐标系xOy 中,点A 是反比例函数1(0)y x x=>图象上的一个动点,连结,AO AO 的延长线交反比例函数(0,0)ky k x x=><的图象于点B ,过点A 作AE y ⊥轴于点E .(1)如图1,过点B 作BF x ⊥轴于点F ,连结EF .①若1k =,求证:四边形AEFO 是平行四边形;②连结BE ,若4k =,求BOE △的面积.(2)如图2,过点E 作//EP AB ,交反比例函数(0,0)ky k x x=><的图象于点P ,连结OP .试探究:对于确定的实数k ,动点A 在运动过程中,POE △的面积是否会发生变化?请说明理由. 【答案】(1)①证明见解析,②1;(2)不改变,见解析【分析】(1)①计算得出AE OF a ==,利用平行四边形的判定方法即可证明结论;②证明AEO BDO ∽,利用反比例函数k 的几何意义求得212()2AO BO=,即可求解; (2)点A 的坐标为1()a a ,,点P 的坐标为()k b b,,可知四边形AEGO 是平行四边形,由AEO GHP ∽,利用相似三角形的性质得到关于ba 的一元二次方程,利用三角形的面积公式即可求解.【详解】(1)①证明:设点A 的坐标为1()a a,,则当1k =时,点B 的坐标为1()a a--,,AE OF a ∴==,AE y ⊥轴,//AE OF ∴,∴四边形AEFO 是平行四边形; ②解:过点B 作BD y ⊥轴于点D ,AE y ⊥轴,//AE BD ∴,AEO BDO ∴∽, 2()AEO BDOSAO SBO∴=, ∴当4k =时,则212()2AO BO=,即12AO BO =.21BOEAOES S∴==;(2)解 不改变. 理由如下:过点P 作PH x ⊥轴于点H PE ,与x 轴交于点G ,设点A 的坐标为1()a a ,,点P 的坐标为()k b b,,则1kAE a OE PH a b ===-,,,OH =b ,由题意,可知四边形AEGO 是平行四边形,∴OG =AE =a ,∠HPG =∠OEG =∠EOA ,且∠PHG =∠OEA =90°,∴AEO GHP ∽, AE EOGH a b GH PH=--=,,即1a a k ab b=---, ∴1b a k a b +=,2()0b b k a a ∴+-=,解得12b a -±=, a b ,异号,0k ≥,b a ∴=,111()22POEb S b a a ∴=⨯⨯-=-⨯=∴对于确定的实数k ,动点A 在运动过程中,POE △的面积不会发生变化.。
中考数学总复习《反比例函数的性质》练习题及答案
中考数学总复习《反比例函数的性质》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.对于反比例函数y=2x,下列说法正确是()A.图象经过点(2,﹣1)B.图象位于第二、四象限C.图象是中心对称图形D.当x<0时,y随x的增大而增大2.对于反比例函数y=2x,下列说法不正确的是()A.当x<0时,y随x的增大而减小B.点(-2,-1)在它的图象上C.它的图象在第一、三象限D.当x>0时,y随x的增大而增大3.如图,过y轴上任意一点P,作x轴的平行线,分别与反比例函数y=4x和y=2x的图象交于A点和B点,若C为x轴上任意一点,连接AC,BC,则△ABC的面积为()A.3B.4C.5D.64.已知反比例函数y=k x的图象如图所示,则一次函数y=kx+k的图象经过()A.第一、二、三象限B.第二、三、四象限C.第一、二、四象限D.第一、三、四象限5.若点M(﹣3,a),N(4,﹣6)在同一个反比例函数的图象上,则a的值为()A.8B.﹣8C.﹣7D.56.函数y=1x+√x的图象在()A.第一象限B.第一、三象限C.第二象限D.第二、四象限7.图所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是A.当x=3时,EC<EM B.当y=9时,EC>EMC.当x增大时,EC·CF的值增大。
D.当y增大时,BE·DF的值不变。
8.已知函数y=−k 2+1x的图象经过点P1(x1,y1),P2(x2,y2),如果x2<0<x1,那么()A.0<y2<y1B.y1>0>y2C.y2<y1<0D.y1<0<y29.已知双曲线y=k−1x向右平移2个单位后经过点(4,1),则k的值等于()A.1B.2C.3D.510.对于反比例函数y=k x(k≠0),下列说法正确的是()A.当k>0时,y随x增大而增大B.当k<0时,y随x增大而增大C.当k>0时,该函数图象在二、四象限D.若点(1,2)在该函数图象上,则点(2,1)也必在该函数图象上11.下列关于反比例函数y=8x的描述,正确的是()A.它的图象经过点(12,4)B.图象的两支分别在第二、四象限C.当x>2时,0<y<4D.x>0时,y随x的增大而增大12.反比例函数y= 1x的图象的两个分支分别位于()象限.A.一、二B.一、三C.二、四D.一、四二、填空题13.如图,已知点A、B在双曲线y= k x(x>0)上,AC△x轴于点C,BD△y轴于点D,AC与BD 交于点P,P是AC的中点,若△ABP的面积为3,则k=.14.如图,矩形ABCD的顶点A和对称中心在反比例函数y=k x(k≠0,x>0)的图象上,若矩形ABCD的面积为16,则k的值为.15.已知反比例函数y= k x(k为常数,k≠0)的图象位于第一、第三象限,写出一个符合条件的k的值为.16.若反比例函数y=﹣mx的图象经过点(﹣3,﹣2),则当x<0时,y随x的增大而.17.若点(4,m)与点(5,n)都在反比例函数y=8x(x≠0)的图象上,则m n(填>,<或=).18.如图,A(1,1),B(2,2),双曲线y= k x与线段AB有公共点,则k的取值范围是。
初中数学反比例函数知识点总复习含解析
初中数学反比例函数知识点总复习含解析一、选择题1.如图,在平面直角坐标系中,点B在第一象限,BA⊥x轴于点A,反比例函数y=kx (x>0)的图象与线段AB相交于点C,且C是线段AB的中点,若△OAB的面积为3,则k的值为()A.13B.1 C.2 D.3【答案】D 【解析】【分析】连接OC,如图,利用三角形面积公式得到S△AOC=12S△OAB=32,再根据反比例函数系数k的几何意义得到12|k|=32,然后利用反比例函数的性质确定k的值.【详解】连接OC,如图,∵BA⊥x轴于点A,C是线段AB的中点,∴S△AOC=12S△OAB=32,而S△AOC=12|k|,∴12|k|=32,而k>0,∴k=3.故选:D.此题考查反比例函数系数k的几何意义,解题关键在于掌握在反比例函数y=kx图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.2.如图,菱形OABC的顶点C的坐标为(3,4),顶点A在x轴的正半轴上.反比例函数kyx=(x>0)的图象经过顶点B,则k的值为A.12 B.20 C.24 D.32【答案】D【解析】【分析】【详解】如图,过点C作CD⊥x轴于点D,∵点C的坐标为(3,4),∴OD=3,CD=4.∴根据勾股定理,得:OC=5.∵四边形OABC是菱形,∴点B的坐标为(8,4).∵点B在反比例函数(x>0)的图象上,∴.故选D.3.下列函数中,当x>0时,函数值y随自变量x的增大而减小的是()A.y=x2B.y=x C.y=x+1 D.1 yx =【解析】【分析】需根据函数的性质得出函数的增减性,即可求出当x >0时,y 随x 的增大而减小的函数.【详解】解:A 、y =x 2是二次函数,开口向上,对称轴是y 轴,当x >0时,y 随x 的增大而增大,错误;B 、y =x 是一次函数k =1>0,y 随x 的增大而增大,错误;C 、y =x+1是一次函数k =1>0,y 随x 的增大而减小,错误;D 、1y x=是反比例函数,图象无语一三象限,在每个象限y 随x 的增大而减小,正确; 故选D .【点睛】本题综合考查了二次函数、一次函数、反比例函数的性质,熟练掌握函数的性质是解题的关键.4.如图,点P 是反比例函数(0)k y k x=≠的图象上任意一点,过点P 作PM x ⊥轴,垂足为M . 连接OP . 若POM ∆的面积等于2. 5,则k 的值等于 ( )A .5-B .5C . 2.5-D .2. 5【答案】A【解析】【分析】 利用反比例函数k 的几何意义得到12|k|=2,然后根据反比例函数的性质和绝对值的意义确定k 的值.【详解】解:∵△POM 的面积等于2.5,∴12|k|=2.5, 而k <0,∴k=-5,故选:A .【点睛】本题考查了反比例函数系数k 的几何意义:在反比例函数y=k x 图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.也考查了反比例函数的性质.5.如图,反比例函数11k y x=的图象与正比例函数22y k x =的图象交于点(2,1),则使y 1>y 2的x 的取值范围是( )A .0<x <2B .x >2C .x >2或-2<x <0D .x <-2或0<x <2【答案】D【解析】【分析】 先根据反比例函数与正比例函数的性质求出B 点坐标,由函数图象即可得出结论.【详解】∵反比例函数与正比例函数的图象均关于原点对称,∴A 、B 两点关于原点对称.∵A (2,1),∴B (-2,-1).∵由函数图象可知,当0<x <2或x <-2时函数y 1的图象在y 2的上方,∴使y 1>y 2的x 的取值范围是x <-2或0<x <2.故选D.6.如图,A ,B 是反比例函数y=4x在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4,则△OAB 的面积是( )A .4B .3C .2D .1【答案】B【解析】【分析】先根据反比例函数图象上点的坐标特征及A ,B 两点的横坐标,求出A (2,2),B (4,1).再过A ,B 两点分别作AC ⊥x 轴于C ,BD ⊥x 轴于D ,根据反比例函数系数k 的几何意义得出S △AOC =S △BOD =12×4=2.根据S 四边形AODB =S △AOB +S △BOD =S △AOC +S 梯形ABDC ,得出S △AOB =S 梯形ABDC ,利用梯形面积公式求出S 梯形ABDC =12(BD+AC )•CD=12×(1+2)×2=3,从而得出S △AOB =3.【详解】∵A ,B 是反比例函数y=4x在第一象限内的图象上的两点, 且A ,B 两点的横坐标分别是2和4,∴当x=2时,y=2,即A (2,2),当x=4时,y=1,即B (4,1),如图,过A ,B 两点分别作AC ⊥x 轴于C ,BD ⊥x 轴于D , 则S △AOC =S △BOD =12×4=2, ∵S 四边形AODB =S △AOB +S △BOD =S △AOC +S 梯形ABDC ,∴S △AOB =S 梯形ABDC ,∵S 梯形ABDC =12(BD+AC )•CD=12×(1+2)×2=3, ∴S △AOB =3,故选B .【点睛】本题考查了反比例函数()0k y k x=≠中k 的几何意义,反比例函数图象上点的坐标特征,梯形的面积,熟知反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 与k 的关系为S=12|k|是解题的关键.7.给出下列函数:①y =﹣3x +2:②y =3x ;③y =﹣5x:④y =3x ,上述函数中符合条件“当x >1时,函数值y 随自变量x 增大而增大”的是( )A .①③B .③④C .②④D .②③【答案】B【解析】【分析】分别利用一次函数、正比例函数、反比例函数的增减性分析得出答案.【详解】解:①y =﹣3x +2,当x >1时,函数值y 随自变量x 增大而减小,故此选项不符合题意; ②y =3x,当x >1时,函数值y 随自变量x 增大而减小,故此选项不符合题意; ③y =﹣5x,当x >1时,函数值y 随自变量x 增大而增大,故此选项符合题意; ④y =3x ,当x >1时,函数值y 随自变量x 增大而增大,故此选项符合题意; 故选:B .【点睛】 此题考查一次函数、正比例函数、反比例函数,正确把握相关性质是解题关键. 8.若一个圆锥侧面展开图的圆心角是270°,圆锥母线l 与底面半径r 之间的函数关系图象大致是( )A .B .C .D .【答案】A【解析】【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长得到2πr=270180l π⋅⋅,整理得l=43r (r >0),然后根据正比例函数图象求解.【详解】 解:根据题意得2πr=270180l π⋅⋅,所以l=43r (r >0), 即l 与r 为正比例函数关系,其图象在第一象限.故选A .【点睛】本题考查圆锥的计算;函数的图象.9.如图,ABDC Y 的顶点,A B 的坐标分别是()(), 0,3 1, 0A B -,顶点,C D 在双曲线k y x=上,边BD 交y 轴于点E ,且四边形ACDE 的面积是ABE ∆面积的3倍,则k 的值为:( )A .6-B .4-C .3-D .12-【答案】A【解析】【分析】 过D 作DF//y 轴,过C 作//CF x 轴,交点为F ,利用平行四边形的性质证明,DCF ABO ∆≅∆利用平移写好,C D 的坐标,由四边形ACDE 的面积是ABE ∆面积的3倍,得到2,DB BE =利用中点坐标公式求横坐标,再利用反比例函数写D 的坐标,列方程求解k .【详解】解:过D 作DF//y 轴,过C 作//CF x 轴,交点为F ,则,CF DF ⊥ABDC QY ,,CDF BAO ∴∠∠的两边互相平行,,AB DC =CDF BAO ∴∠=∠,90,DFC BOA ∠=∠=︒Q,DCF ABO ∴∆≅∆,,CF BO DF AO ∴==设(,),k C m m由()(), 0,3 1, 0A B -结合平移可得:(1,3)k D m m++, Q 四边形ACDE 的面积是ABE ∆面积的3倍, 11()322BD BE DE CA h h BE ∴+=⨯⨯,,,BD BE h h AC BD ==Q3DE AC BE ∴+=,4,DE BD BE BE ∴++=2,DB BE ∴=(1,3),(1,0),0,E k D m B x m++=Q ∴ 由中点坐标公式知:110,2m ++= 2m ∴=- ,(1,)1k D m m ++Q , 3212k k ∴=+-+-, 6.k ∴=-故选A .【点睛】本题考查的是反比例函数的图像与性质,平行四边形的性质,平移性质,中点坐标公式,掌握以上知识点是解题关键.10.如图,二次函数2y ax bx c =++的图象如图所示,则一次函数y ax c =+和反比例函数b y x=在同平面直角坐标系中的图象大致是( )A .B .C .D .【答案】D【解析】【分析】直接利用二次函数图象经过的象限得出a ,b ,c 的值取值范围,进而利用一次函数与反比例函数的性质得出答案.【详解】∵二次函数y=ax 2+bx+c 的图象开口向下,∴a <0,∵二次函数y=ax 2+bx+c 的图象经过原点,∴c=0,∵二次函数y=ax 2+bx+c 的图象对称轴在y 轴左侧,∴a ,b 同号,∴b <0,∴一次函数y=ax+c ,图象经过第二、四象限,反比例函数y=b x图象分布在第二、四象限, 故选D .【点睛】此题主要考查了反比例函数、一次函数、二次函数的图象,正确把握相关性质是解题关键.11.如图,在平面直角坐标系中,等腰直角三角形ABC 的顶点A 、B 分别在x 轴、y 轴的正半轴上,90ABC ∠=︒,CA x ⊥轴,点C 在函数()0k y x x=>的图象上,若1AB =,则k 的值为( )A .1B .22C 2D .2【答案】A【解析】【分析】根据题意可以求得 OA 和 AC 的长,从而可以求得点 C 的坐标,进而求得 k 的 值,本题得以解决.【详解】Q 等腰直角三角形ABC 的顶点A 、B 分别在x 轴、y 轴的正半轴上,90ABC ∠=︒,CA ⊥x 轴,1AB =,45BAC BAO ︒∴∠=∠=, 2OA OB ∴==,2AC =, ∴点C 的坐标为2,22⎛⎫ ⎪ ⎪⎝,Q 点C 在函数()0k y x x=>的图象上, 2212k ∴=⨯=, 故选:A .【点睛】本题考查反比例函数图象上点的坐标特征、等腰直角三角形,解答本题的关键 是明确题意,利用数形结合的思想解答.12.如图所示,已知()121,,2,2A y B y ⎛⎫ ⎪⎝⎭为反比例函数1y x =图象上的两点,动点(),0P x 在x 轴正半轴上运动,当AP BP -的值最大时,连结OA ,AOP ∆的面积是 ( )A .12B .1C .32D .52【答案】D【解析】【分析】先根据反比例函数解析式求出A ,B 的坐标,然后连接AB 并延长AB 交x 轴于点P ',当P 在P '位置时,PA PB AB -=,即此时AP BP -的值最大,利用待定系数法求出直线AB 的解析式,从而求出P '的坐标,进而利用面积公式求面积即可.【详解】当12x=时,2y=,当2x=时,12y=,∴11(,2),(2,)22A B.连接AB并延长AB交x轴于点P',当P在P'位置时,PA PB AB-=,即此时AP BP-的值最大.设直线AB的解析式为y kx b=+,将11(,2),(2,)22A B代入解析式中得122122k bk b⎧+=⎪⎪⎨⎪+=⎪⎩解得152kb=-⎧⎪⎨=⎪⎩,∴直线AB解析式为52y x=-+.当0y=时,52x=,即5(,0)2P',115522222AOP AS OP y'∴=⋅=⨯⨯=V.故选:D.【点睛】本题主要考查一次函数与几何综合,掌握待定系数法以及找到AP BP-何时取最大值是解题的关键.13.如图,若直线2y x n=-+与y轴交于点B,与双曲线()2y xx=-<交于点(),1A m,则AOBV的面积为()A .6B .5C .3D .1.5【答案】C【解析】【分析】 先根据题意求出A 点坐标,再求出一次函数解析式,从而求出B 点坐标,则问题可解.【详解】解:由已知直线2y x n =-+与y 轴交于点B ,与双曲线()20y x x =-<交于点(),1A m ∴21m=-则m=-2 把A (-2,1)代入到2y x n =-+,得()122n =-⨯-+∴n=-3∴23y x =--则点B (0,-3)∴AOB V 的面积为132=32⨯⨯ 故应选:C【点睛】本题考查的是反比例函数与一次函数的综合问题,解题关键是根据题意应用数形结合思想.14.如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A 在反比例函数y=6x(x >0)的图象上,则经过点B 的反比例函数解析式为( )A .y=﹣6xB .y=﹣4xC .y=﹣2xD .y=2x【解析】【分析】直接利用相似三角形的判定与性质得出13 BCOAODSS= VV,进而得出S△AOD=3,即可得出答案.【详解】过点B作BC⊥x轴于点C,过点A作AD⊥x轴于点D,∵∠BOA=90°,∴∠BOC+∠AOD=90°,∵∠AOD+∠OAD=90°,∴∠BOC=∠OAD,又∵∠BCO=∠ADO=90°,∴△BCO∽△ODA,∵BOAO=tan30°=3,∴13BCOAODSS=VV,∵12×AD×DO=12xy=3,∴S△BCO=12×BC×CO=13S△AOD=1,∵经过点B的反比例函数图象在第二象限,故反比例函数解析式为:y=﹣2x.故选C.【点睛】此题主要考查了相似三角形的判定与性质,反比例函数数的几何意义,正确得出S△AOD=2是解题关键.15.若反比例函数()2221my m x-=-的图象在第二、四象限,则m的值是()A.-1或1 B.小于12的任意实数 C.-1 D.不能确定【解析】【分析】根据反比例函数的定义列出方程221m -=-且210m -<求解即可.【详解】解:22(21)m y m x -=-Q 是反比例函数,∴221m -=-,210m -≠,解之得1m =±.又因为图象在第二,四象限,所以210m -<, 解得12m <,即m 的值是1-. 故选:C .【点睛】 对于反比例函数()0k y k x=≠.(1)0k >,反比例函数图像分布在一、三象限;(2)k 0< ,反比例函数图像分布在第二、四象限内.16.当0x <时,反比例函数2y x=-的图象( ) A .在第一象限,y 随x 的增大而减小 B .在第二象限,y 随x 的增大而增大C .在第三象限,y 随x 的增大而减小D .在第四象限,y 随x 的增大而减小 【答案】B【解析】【分析】 反比例函数2y x =-中的20k =-<,图像分布在第二、四象限;利用0x <判断即可. 【详解】解:Q 反比例函数2y x=-中的20k =-<, ∴该反比例函数的图像分布在第二、四象限;又0x <Q ,∴图象在第二象限且y 随x 的增大而增大.故选:B .【点睛】 本题主要考查的是反比例函数的性质,对于反比例函数()0k y k x=≠,(1)0k >,反比例函数图像分布在一、三象限;(2)k 0< ,反比例函数图像分布在第二、四象限内.17.已知反比例函数2y x =-,下列结论不正确的是 A .图象必经过点(-1,2)B .y 随x 的增大而增大C .图象在第二、四象限内D .若x >1,则y >-2 【答案】B【解析】【分析】此题可根据反比例函数的性质,即函数所在的象限和增减性对各选项作出判断.【详解】解: A 、把(-1,2)代入函数解析式得:2=-21-成立,故点(-1,2)在函数图象上,故选项正确;B 、由k=-2<0,因此在每一个象限内,y 随x 的增大而增大,故选项不正确;C 、由k=-2<0,因此函数图象在二、四象限内,故选项正确;D 、当x=1,则y=-2,又因为k=-2<0,所以y 随x 的增大而增大,因此x >1时,-2<y <0,故选项正确;故选B .【点睛】本题考查反比例函数的图像与性质.18.如图,A 、C 是函数1y x=的图象上任意两点,过点A 作y 轴的垂线,垂足为B ,过点C 作y 轴的垂线,垂足为D .记Rt AOB ∆的面积为1S ,Rt COD ∆的面积为2S ,则1S 和2S 的大小关系是( )A .12S S >B .12S S <C .12=S SD .由A 、C 两点的位置确定【答案】C【解析】【分析】 根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=12k|.【详解】由题意得:S1=S2=12|k|=12.故选:C.【点睛】本题主要考查了反比例函数y=kx中k的几何意义,即图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=12|k|,是经常考查的一个知识点;这里体现了数形结合的思想.19.如图,直线y=k和双曲线y=kx相交于点P,过点P作PA0垂直于x轴,垂足为A0,x 轴上的点A0,A1,A2,…A n的横坐标是连续整数,过点A1,A2,…A n:分别作x轴的垂线,与双曲线y=kx(k>0)及直线y=k分别交于点B1,B2,…B n和点C1,C2,…C n,则n nn nA BC B 的值为()A.11n+B.11n-C.1nD.11n-【答案】C【解析】【分析】由x轴上的点A0,A1,A2,…,A n的横坐标是连续整数,则得到点An(n+1,0),再分别表示出∁n(n+1,k),B n(n+1,kn1+),根据坐标与图形性质计算出A n B n=kn1+,B n∁n =k﹣kn1+,然后计算n nn nA BB C.【详解】∵x轴上的点A0,A1,A2,…,A n的横坐标是连续整数,∴An(n+1,0),∵∁n A n⊥x轴,∴∁n (n +1,k ),B n (n +1,k n 1+), ∴A nB n =k n 1+,B n ∁n =k ﹣k n 1+, ∴n n n n A B B C =11k n k k n +-+=1n . 故选:C .【点睛】考查了反比例函数与一次函数的交点问题,解题关键是抓住了反比例函数与一次函数图象的交点坐标满足两函数解析式.20.如图,,A B 是双曲线k y x=上两点,且,A B 两点的横坐标分别是1-和5,ABO -∆的面积为12,则k 的值为( )A .3-B .4-C .5-D .6-【答案】C【解析】【分析】 分别过点A 、B 作AD ⊥x 轴于点D ,BE ⊥x 轴于点E ,根据S △AOB =S 梯形ABED +S △AOD - S △BOE =12,故可得出k 的值.【详解】分别过点A 、B 作AD ⊥x 轴于点D ,BE ⊥x 轴于点E ,∵双曲线k y x=的图象的一支在第二象限 ∴k<0,∵A ,B 两点在双曲线k y x=的图象上,且A ,B 两点横坐标分别为:-1,-5, ∴A (-1,-k ),B (-5, 5k -) ∴S △AOB =S 梯形ABED +S △AOD - S △BOE =1||11||(||)(51)1||525225k k k k ⨯+⨯-+⨯⨯-⨯⨯=12||5k =12, 解得,k=-5故选:C .【点睛】 本题考查反比例函数系数k 的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.。
完整版)反比例函数练习题含答案
完整版)反比例函数练习题含答案测试1 反比例函数的概念一、填空题1.一般的,形如 y=k/x 的函数称为反比例函数,其中x是自变量,y是因变量。
自变量x的取值范围是x≠0.2.写出下列各题中所要求的两个相关量之间的函数关系式,并指出函数的类别。
1) 商场推出分期付款购电脑活动,每台电脑元,首付4000元,以后每月付y元,x个月全部付清,则y=(8000+)/x,是反比例函数。
2) 某种灯的使用寿命为1000小时,它的使用天数y与平均每天使用的小时数x之间的关系式为 y=1000/x,是反比例函数。
3) 设三角形的底边、对应高、面积分别为a、h、S。
当a=10时,S与h的关系式为 S=10h/2,是正比例函数;当S=18时,a与h的关系式为 h=36/a,是反比例函数。
4) 某工人承包运输粮食的总数是w吨,每天运x吨,共运了y天,则 y=w/x,是反比例函数。
3.下列各函数 y=1/(k2+1)、y=x/(x5+x12)、y=14-3x、y=2x和y=3x-1 中,是y关于x的反比例函数的有:①y=1/(k2+1)、② y=x/(x5+x12)、③ y=2x。
4.若函数 y=m/(x-1) (m是常数) 是反比例函数,则 m=1,解析式为 y=1/(x-1)。
5.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知400度近视眼镜片的焦距为0.25m,则 y=1000/x。
二、选择题6.已知函数 y=3x/(kx+1),当x=1时,y=-3,那么这个函数的解析式是 y=3x/(3k+1)。
(解析:由 y=-3=3/(3k+1) 可得 k=-1/3,代入原式得 y=3x/(3x-1)。
)7.已知 y 与 x 成反比例,当 x=3 时,y=4,那么 y=3 时,x 的值等于 4/3.三、解答题8.已知 y 与 x 成反比例,当 x=2 时,y=3.1) 求y 与x 的函数关系式:y=k/x,代入已知条件得k=6,因此函数关系式为 y=6/x。
中考数学复习《反比例函数》专题练习-附带参考答案
中考数学复习《反比例函数》专题练习-附带参考答案一、选择题1.下列函数关系式中,y 是x 的反比例函数的是( )A .y =x +3B .y =x 3C .y =3x 2D .y =3x 2.若反比例函数y=6x 的图像经过点(﹣2,a ),则a 的值是( )A .6B .﹣2C .﹣3D .3 3.已知反比例函数y =−1x ,下列结论不正确...的是( ) A .该函数图象经过点(−1,1)B .该函数图象位于第二、四象限C .y 的值随着x 值的增大而增大D .该函数图象关于原点成中心对称 4.反比例函数(其中),当时,y 随x 的增大而增大,那么m 的取值范围是( ) A . B .C .D . 5.在同一直角坐标系中,函数y =−kx +k 与y =k x (k ≠0)的大致图象可能为( )A .B .C .D .6.反比例函数y =6x 图象上有三个点(x 1,y 1),(x 2,y 2),(x 3,y 3)其中y 1<y 2<0<y 3,则x 1,x 2,x 3的大小关系是( )A .x 1<x 2<x 3B .x 3<x 1<x 2C .x 2<x 1<x 3D .x 3<x 2<x 1 7.如图,A 、B 是第二象限内双曲线y =k x 上的点,A 、B 两点的横坐标分别是a ,3a ,线段AB 的延长线交x轴于点C ,S △AOC =12.则k 的值为( )A .﹣6B .﹣5C .﹣4D .﹣38.如图,矩形OABC与反比例函数y1=k1x(k1是非零常数,x>0)的图象交于点M,N,与反比例函数y2=k2x(k2是非零常数,x>0)的图象交于点B,连接OM,ON.若四边形OMBN的面积为3,则k1﹣k2=()A.3 B.﹣3 C.32D.−32二、填空题9.已知点A(−3,2)在反比例函数y=kx的图象上,则k的值为.10.若点P1(﹣1,m),P2(﹣2,n)在反比例函数y=kx(k<0)的图象上,则m n.(填“>”,“<”或“=”)11.正比例函数y=k1x(k1≠0)和反比例函数y= k2x(k2≠0)的一个交点为(m,n),则另一个交点为12.如图,在平面直角坐标系中,点A是x轴上任意一点,BC∥x轴,分别交y=2x (x>0),y=kx(x<0)的图象于B,C两点,若△ABC的面积是3,则k的值为.13.如图,在平面直角坐标系中,过点M(-3,2)分别作x轴、y轴的垂线与反比例函数y=4x的图象交于A,B两点,则四边形MAOB的面积为.三、解答题14.如图,一次函数的图象与反比例函数的图象在第一象限交于点,与轴的负半轴交于点,且.(1)求一次函数与反比例函数的表达式;(2)请直接写出不等式的解集.15.1896年,挪威生理学家古德贝发现,每个人有一条腿迈出的步子比另一条腿迈出的步子长的特点,这就导致每个人在蒙上眼睛行走时,虽然主观上沿某一方向直线前进,但实际上走出的是一个大圆圈!这就是有趣的“嗐转圈”现象.经研究,某人蒙上眼睛走出的大圆圈的半径y/米是其两腿迈出的步长之差x/厘米(x>0)的反比例函数,y与x之间有如表关系:请根据表中的信息解决下列问题:(1)求出y与x之间的函数解析式;(2)若某人蒙上眼睛走出的大圆圈的半径为35米,则其两腿迈出的步长之差是多少厘米?(k>0).16.如图,设反比例函数的解析式为y=3kx(1)若反比例函数与正比例函数y=2x的图象有一个交点的纵坐标为2,求k的值;(2)若反比例函数的图象与过点M (﹣2,0)的直线l :y =kx+b 的图象交于A 、B 两点,如图,当△ABO 的面积为12时,求直线l 的解析式.17.某医药研究所研制了一种新药,在试验药效时发现:成人按规定剂量服用后,检测到从第10分钟起每分钟每毫升血液中含药量增加0.3微克,第100分钟达到最高,接着开始衰退.血液中含药量y (微克)与时间x (分钟)的函数关系如图,并发现衰退时y 与x 成反比例函数关系.(1) ; (2)分别求出当和时,y 与x 之间的函数关系式; (3)如果每毫升血液中含药量不低于12微克时是有效的,求一次服药后的有效时间是多少分钟?18.如图,一次函数 y ax b =+ 的图象与反比例函数 k y x=的图象交于第一象限C ,D 两点,坐标轴交于A 、B 两点,连结OC ,OD (O 是坐标原点).(1)利用图中条件,求反比例函数的解析式和m 的值;(2)求△DOC 的面积.(3)双曲线上是否存在一点P ,使得△POC 和△POD 全等?若存在,给出证明并求出点P 的坐标;若不存在,说明理由.参考答案1.B2.C3.C4.A5.D6.C7.A8.B9.k=-610.>11.(-m,-n).12.−413.1014.(1)解:点在反比例函数的图象上反比例函数解析式为;OA=OB,点在轴负半轴上点.把点、代入中得解得:一次函数的解析式为;(2) 15.(1)解:设y 与x 之间的函数解析式为y =k x 将(2,7)代入得7=k 2∴k =14∴y 与x 之间的函数解析式为y =14x . (2)解:当y =35时,即14x =35,解得x =0.4∴某人蒙上眼睛走出的大圆圈的半径为35米,其两腿迈出的步长之差是0.4厘米.16.(1)解:∵反比例函数与正比例函数y =2x 的图象有一个交点的纵坐标为2 把y =2代入y =2x 求得x =1∴反比例函数与正比例函数y =2x 的图象交点的坐标为(1,2)把(1,2)代入y =3k x (k >0),得到3k =2 ∴k =23;(2)解:把M (﹣2,0)代入y =kx+b ,可得b =2k∴y =kx+2k解{y =3k x y =kx +2k 得{x =−3y =−k 或{x =1y =3k∴B (﹣3,﹣k ),A (1,3k )∵△ABO 的面积为12∴12•2•3k+12•2•k =12解得k =3∴直线l 的解析式为y =3x+6.17.(1)27(2)解:当时,设y 与x 之间的函数关系式为∵经过点 ∴解得:,∴解析式为;当时,y 与x 之间的函数关系式为∵经过点∴解得:∴函数的解析式为; (3)解:令解得:令,解得:∴分钟 ∴服药后能持续175分钟.18.(1)∵点C (1,2)在反比例函数 图象上 ∴k=2∴反比例函数解析式为 2y x= ∵点B (2,m )在反比例函数 图象上 ∴m= 22=1. (2)如图,过点C 作⊥OA 于E ,过点D 作DF ⊥OA 于 Fk y x =2y x =∵C (1,2),D (2,1)∴CE=2,DF=1∵C 、D 在一次函数 的图象上∴221a b a b +=⎧⎨+=⎩解得: 13a b =-⎧⎨=⎩∴一次函数解析式为y=-x+3当y=0时,x=3∴A 点坐标为(3,0)∴OA=3∴DOC S =S △AOC -S △AOD = 1122OA CE OA DF ⋅-⋅ = 11323122⨯⨯-⨯⨯ =1.5.(3)设点P 坐标为(n , 2n )∵C (2,1),D (1,2)∴OC=OD∵△POC 和△POD 全等∴PC=PD ∴222222(1)(2)(2)(1)n n n n -+-=-+-解得: 2n =∴P (, )或P ( 2 , ) ∴双曲线上存在一点P ,使得△POC 和△POD 全等,P ( , )或P ( , ). y ax b =+222-2222。
中考数学总复习《反比例函数》练习题(附答案)
中考数学总复习《反比例函数》练习题(附答案)班级:___________姓名:___________考号:_____________一、单选题1.一次函数y1=k1x+b(k1≠0)与反比例函数y2=k2x(k2≠0)的图象交于点A(−1,−2),点B(2,1).当y1<y2时,x的取值范围是()A.x<−1B.−1<x<0或x>2 C.0<x<2D.0<x<2或x<−12.关于函数y=−2x,下列说法中正确的是()A.图像位于第一、三象限B.图像与坐标轴没有交点C.图像是一条直线D.y的值随x的值增大而减小3.如图,在直角坐标系中,点A是双曲线y= 3x(x>0)上的一个动点,点B是x轴正半轴上的一个定点,当点A的横坐标逐渐增大时,△OAB的面积将会()A.逐渐减小B.不变C.逐渐增大D.先减小后增大4.在同一平面直角坐标系中,反比例函数y=-8x与一次函数y=-x+2交于A,B两点,O为坐标原点,则△AOB的面积为()A.2B.6C.10D.85.如图,△ABC的三个顶点分别为A(1,2),B(4,2),C(4,4).若反比例函数y= k x在第一象限内的图象与△ABC有交点,则k的取值范围是()A.1≤k≤4B.2≤k≤8C.2≤k≤16D.8≤k≤166.如图,过反比例函数y= 1x(x>0)的图象上任意两点A、B分别作x轴的垂线,垂足分别为C、D,连接OA、OB,设AC与OB的交点为E,△AOE与梯形ECDB的面积分别为S1、S2,比较它们的大小,可得()A.S1>S2B.S1=S2C.S l<S2D.大小关系不能确定7.某村耕地总面积为50公顷,且该村人均耕地面积y(单位:公顷/人)与总人口x(单位:人)的函数图象如图所示,则下列说法正确的是()A.该村人均耕地面积随总人口的增多而增多B.该村人均耕地面积y与总人口x成正比例C.若该村人均耕地面积为2公顷,则总人口有100人D.当该村总人口为50人时,人均耕地面积为1公顷8.在同一直角坐标系中,函数y=kx+1与y=−k x(k≠0)的图象大致是()A.B.C.D.9.如图,在平面直角坐标系xOy中,函数y=kx+b(k≠0)与y= mx(m≠0)的图象相交于点A(-2,3),B(6,-1),则不等式kx+b>mx的解集为()A.x<−2B.−2<x<0或x>6 C.x<6D.0<x<6或x<−210.已知两个函数y1=k1x+b与y2= k2x的图象如图所示,其中A(-1,2),B(2,-1),则不等式k1x+b>k2x的解集为()A.x<−1或x>2B.x<−1或0<x<2 C.−1<x<2D.−1<x<0或0<x<211.在反比例函数y=−3x图象上有三个点A(x1,y1)、B(x2,y2)、C(x3,y3),若x1<0<x2<x3,则下列结论正确的是()A.y3<y2<y1B.y1<y3<y2C.y2<y3<y1D.y3<y1<y2 12.图所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是A.当x=3时,EC<EM B.当y=9时,EC>EMC.当x增大时,EC·CF的值增大。
反比例函数单元测试卷含答案
反比例函数单元测试卷含答案一、选择题1. 反比例函数的一般形式是:A. y = kxB. y = ax + bC. y = k/xD. y = mx + c答案: C2. 当x为0时,反比例函数的值为:A. 0B. 1C. 无定义D. 任意值答案: C3. 若反比例函数的k值为正数,x趋近于无穷大,y会趋近于:A. 正无穷大B. 负无穷大C. 0D. 不存在极限答案: B4. 反比例函数的图像是一条:A. 直线B. 抛物线C. 余弦曲线D. 双曲线答案: D5. 若反比例函数的x值为正数,y值为负数,那么k值是:A. 正数B. 负数C. 零D. 无法确定答案: B二、计算题1. 已知反比例函数y = 5/x,当x = 2时,求y的值。
答案: 2.52. 已知反比例函数y = 3/x,当y = 6时,求x的值。
答案: 0.5三、简答题1. 什么是反比例函数?答案: 反比例函数是一种函数关系,当自变量x的值增大时,因变量y的值会减小,并且二者之间呈现出一种倒数关系。
它的一般形式为y = k/x,其中k为常数。
2. 反比例函数的图像有什么特点?答案: 反比例函数的图像是一条双曲线。
当x趋近于无穷大或无穷小时,函数的值趋近于零。
两支曲线的对称轴为y轴,并在y 轴上有一个渐近线。
3. 如何确定反比例函数的常数k的值?答案: 可以通过已知点的坐标进行求解。
将已知的x和y的值代入反比例函数的一般形式中,解方程得到k的值。
以上就是反比例函数单元测试卷的答案。
希望能对你的学习有所帮助!。
(完整版)反比例函数练习题及答案
反比例函数综合一.选择题(共23小题)1.如图,点A,B在双曲线y=(x>0)上,点C在双曲线y=(x>0)上,若AC∥y轴,BC∥x 轴,且AC=BC,则AB等于()A.B.2C.4 D.3第1题第2题第3题第5题2.如图,曲线C2是双曲线C1:y=(x>0)绕原点O逆时针旋转45°得到的图形,P是曲线C2上任意一点,点A在直线l:y=x上,且PA=PO,则△POA的面积等于()A.B.6 C.3 D.123.反比例函数y=的图象如图所示,点A是该函数图象上一点,AB垂直于x轴垂足是点B,如果S△AOB=1,则k的值为()A.1 B.﹣1 C.2 D.﹣24.在同一平面直角坐标系中,函数y=kx(k>0)与y=(k>0)的图象可能是()A.B.C.D.5.如图,在平面直角坐标系xOy中,反比例函数y=的图象经过点T.下列各点P(4,6),Q(3,﹣8),M(2,﹣12),N(,48)中,在该函数图象上的点有()A.4个B.3个C.2个D.1个6.已知反比例函数y=(k≠0)过点A(a,y1),B(a+1,y2),若y2>y1,则a的取值范围为()A.﹣1<a B.﹣1<a<0 C.a<1 D.0<a<17.如图,双曲线y=与直线y=kx+b交于点M,N,并且点M的坐标为(1,3),点N的纵坐标为﹣1.根据图象信息可得关于x不等式<kx+b的解为()A.x<﹣3 B.﹣3<x<0 C.﹣3<x<1 D.﹣3<x<0 或x>1第7题第9题第11题第12题8.点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y39.如图,A、B是双曲线y=(k>0)上的点,A、B两点的横坐标分别是a、3a,线段AB的延长=3.则k的值为()线交x轴于点C,若S△AOCA.2 B.1.5 C.4 D.610.已知点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=(k<0)的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y2<y1D.y3<y1<y211.如图,点A(m,1),B(2,n)在双曲线y=(k≠0),连接OA,OB.若S△ABO=8,则k的值是()A.﹣12 B.﹣8 C.﹣6 D.﹣412.如图,反比例函数与正比例函数的图象交于A、B两点,过点A作AC⊥x轴于点C.若△ABC 的面积是8,则这个反比例函数的解析式是()A.y=B.y=C.y=D.y=13.如图,在平面直角坐标系中,函数y=的图象与函数y=x的图象相交于A,B两点,点C是函数y=的图象右支上一点,连结AC,BC,若∠C=90°,则点C的坐标为()A.(2,4)B.(3,6)C.(4,2)D.(,)第13题第14题第15题第16题14.如图,直线y=x﹣3与x轴交于点A,与双曲线y=(k≠0)在第一象限内交于点B,过点A 作AC⊥x轴,交该双曲线于点C,若AB=AC,则k的值是()A.B.C.D.15.如图,在平面直角坐标系中,点A、B分别在第二象限和第一象限,AB与x轴平行,∠AOB=90°,OA=3,OB=4,函数y=(x<0)和y=(x>0)的图象分别经过点AB,则的值为()A.B.﹣C.D.﹣16.如图,在平面直角坐标系中,反比例函数y=(k≠0)经过▱ABCD的顶点B、D,点A的坐标为(0,﹣1),AB∥x轴,CD经过点(0,2),▱ABCD的面积是18,则点D的坐标是()A.(﹣2,2)B.(3,2)C.(﹣3,2)D.(﹣6,1)17.如图,点M是反比例函数y=(x>0)图象上任意一点,MN⊥y轴于N,点P是x轴上的动点,则△MNP的面积为()A.1 B.2 C.4 D.不能确定第17题第18题18.如图,已知点A(0,4),B (1,4),点B在双曲线y=(k>0)上,在AB的延长线上取一点C,过C的直线交双曲线于点D,交x轴正半轴于点E,且CD=DE,则线段CE长度的取值范围是()A.4≤CE<4B.4≤CE<2C.2<CE<4 D.4<CE<219.如图,已知点A(2,3)和点B(0,2),点A在反比例函数y=的图象上,作射线AB,交反比例函数图象于另一点M,再将射线AB绕点A按逆时针方向旋转45°,交反比例函数图象于点C,则CM的长度为()A.5 B.6 C.4D.5第19题第20题第21题第23题20.如图,在平面直角坐标系中,点A是x轴正半轴上的一个定点,点P是双曲线y=(x>0)上的一个动点,PB⊥y轴于点B,当点P的横坐标逐渐增大时,四边形OAPB的面积将会()A.逐渐增大B.不变C.逐渐减小D.先增大后减小21.如图,一次函数y1=x+1的图象与反比例函数y2=的图象交于A、B两点,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D,连接AO、BO,下列说法正确的是()A.点A和点B关于原点对称B.当x<1时,y1>y2C.S△AOC=S△BOD D.当x>0时,y1、y2都随x的增大而增大22.函数y=k(x﹣1)与y=﹣在同一直角坐标系内的图象大致是()A.B.C.D.23.如图,点A,C都在函数y=(x>0)的图象上,点B,D都在x轴上,且使得△OAB,△BCD 都是等边三角形,则点C的坐标是()A.(+1,﹣)B.(+1,﹣1)C.(+1,﹣)D.(+1,﹣)二.填空题(共9小题)24.如图,点M是函数图象上的一点,直线l:y=x,过点M分别作MA⊥y轴,MB⊥l,A,B为垂足,则MA•MB=.第24题第25题第30题第31题25.如图将直线向左平移m个单位,与双曲线交于点A,与x轴交于点B,则OB2﹣OA2+AB2=.26.如果反比例函数y=(m﹣3)的图象在第二、四象限,那么m=.27.已知双曲线y=(k≠0)上有一点P,PA⊥x轴于A,点O为坐标原点,且S△PAO=12,则此反比例函数的解析式为.28.反比例函数的图象同时过A(﹣2,a)、B(﹣3,b)、C(1,c)三点,则a、b、c 的大小关系是.29.函数y=(m2﹣m)x m2﹣3m+1是反比例函数,则m的值是,它的图象分布在象限,在每一个象限内,y随x的增大而.30.如图,A、B是反比例函数y=上两点,AC⊥y轴于C,BD⊥x轴于D,AC=BD=OC,S四边形=14,则k=.ABDC31.如图,B为双曲线y=(x>0)上一点,直线AB平行于y轴交直线y=x于点A,若OB2﹣AB2=12,则k=.32.如图,正比例函数y=x与反比例函数y=的图象相交于A,C两点,AB⊥x轴于B,CD⊥x轴于D,则四边形ABCD的面积为.三.解答题(共8小题)33.如图1,在平面直角坐标系中,四边形AOBC是矩形,点C的坐标为(4,3),反比例函数y=(k>0)的图象与矩形AOBC的边AC、BC分别相交于点E、F,将△CEF沿EF对折后,C点恰好落在OB上.(1)求证:△AOE与△BOF的面积相等;(2)求反比例函数的解析式;(3)如图2,P点坐标为(2,﹣3),在反比例函数y=的图象上是否存在点M、N(M在N的左侧),使得以O、P、M、N为顶点的四边形是平行四边形?若存在,求出点M、N的坐标;若不存在,请说明理由.34.如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A、C分别在坐标轴上,顶点B的坐标为(4,2),M、N分别是AB、BC的中点.(1)若反比例函数y=(x>0)的图象经过点M,求该反比例函数的解析式,并通过计算判断点N 是否在该函数的图象上;(2)若反比例函数y=(x>0)的图象与△MNB(包括边界)有公共点,请直接写出m的取值范围.35.如图,反比例函数y=﹣与一次函数y=﹣x+2的图象交于A、B两点.(1)求A、B两点的坐标;(2)观察图象,直接写出x为何值时,一次函数值大于反比例函数?(3)求△AOB的面积.36.如图,反比例函数y1=的图象与一次函数y2=kx+b的图象交于A(m,3),B(﹣3,n)、两点.(1)求一次函数的解析式及△AOB的面积;(2)根据图象直接写出不等式的解集;(3)若点P是坐标轴上的一点,且满足△PAB面积等于△AOB的面积的2倍,直接写出点P的坐标.37.如图,若直线y=kx+b(k≠0)与x轴交于点,与双曲线在第二象限交于点B,且OA=OB,△OAB的面积为(1)求直线AB的解析式及双曲线的解析式;(2)求tan∠ABO的值.38.已知反比例函数y=和一次函数y=2x﹣1,其中一次函数的图象经过(a,b),(a+k,b+k+2)两点.(1)求反比例函数的解析式?(2)已知A在第一象限,是两个函数的交点,求A点坐标?(3)利用②的结果,请问:在x轴上是否存在点P,使△AOP为等腰三角形?39.如图,双曲线y=在第一象限的一支上有一点C(1,5),过点C的直线y=﹣kx+b(k>0)与x 轴交于点A(a,0).(1)求点A的横坐标a与k的函数关系式(不写自变量取值范围).(2)当该直线与双曲线在第一象限的另一个交点D的横坐标是9时,求△COA的面积.40.如图,一次函数y=ax+b的图象与反比例函数的图象交于M、N两点.(1)利用图中条件,求反比例函数和一次函数的解析式;(2)连接OM、ON,求三角形OMN的面积.(3)连接OM,在x轴的正半轴上是否存在点Q,使△MOQ是等腰三角形,若存在,请直接写出所有符合条件的点Q的坐标,若不存在,说明理由.参考答案一.选择题(共23小题)1.如图,点A,B在双曲线y=(x>0)上,点C在双曲线y=(x>0)上,若AC∥y轴,BC∥x 轴,且AC=BC,则AB等于(B)A.B.2C.4 D.3设C(a,),则B(3a,),A(a,),∵AC=BC,∴﹣=3a﹣a,解得a=1,(负值已舍去)∴C(1,1),B(3,1),A(1,3),∴AC=BC=2,∴Rt△ABC中,AB=2,2.如图,曲线C2是双曲线C1:y=(x>0)绕原点O逆时针旋转45°得到的图形,P是曲线C2上任意一点,点A在直线l:y=x上,且PA=PO,则△POA的面积等于(B)A.B.6 C.3 D.12解:如图,将C2及直线y=x绕点O逆时针旋转45°,则得到双曲线C3,直线l与y轴重合.双曲线C3,的解析式为y=﹣过点P作PB⊥y轴于点B∵PA=PB∴B为OA中点.∴S△PAB=S△POB=3∴△POA的面积是6由反比例函数比例系数k的性质,S△POB3.反比例函数y=的图象如图所示,点A是该函数图象上一点,AB垂直于x轴垂足是点B,如果S△AOB=1,则k的值为(D)A.1 B.﹣1 C.2 D.﹣24.在同一平面直角坐标系中,函数y=kx(k>0)与y=(k>0)的图象可能是(C)A.B.C.D.5.如图,在平面直角坐标系xOy中,反比例函数y=的图象经过点T.下列各点P(4,6),Q(3,﹣8),M(2,﹣12),N(,48)中,在该函数图象上的点有(C)A.4个B.3个C.2个D.1个第5题第7题第9题6.已知反比例函数y=(k≠0)过点A(a,y1),B(a+1,y2),若y2>y1,则a的取值范围为(B)A.﹣1<a B.﹣1<a<0 C.a<1 D.0<a<17.如图,双曲线y=与直线y=kx+b交于点M,N,并且点M的坐标为(1,3),点N的纵坐标为﹣1.根据图象信息可得关于x不等式<kx+b的解为(D)A.x<﹣3 B.﹣3<x<0 C.﹣3<x<1 D.﹣3<x<0 或x>18.点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是(D)A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y39.如图,A、B是双曲线y=(k>0)上的点,A、B两点的横坐标分别是a、3a,线段AB的延长线交x轴于点C,若S△AOC=3.则k的值为(B)A.2 B.1.5 C.4 D.6解:如图,分别过点A、B作AF⊥y轴于点F,AD⊥x轴于点D,BG⊥y轴于点G,BE⊥x轴于点E,∵k>0,点A是反比例函数图象上的点,∴S△AOD =S△AOF=|k|,∵A、B两点的横坐标分别是a、3a,∴AD=3BE,∴点B是AC的三等分点,∴DE=2a,CE=a,∴S△AOC =S梯形ACOF﹣S△AOF=(OE+CE+AF)×OF﹣|k|=×5a×﹣|k|=3,解得k=1.5.10.已知点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=(k<0)的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是(D)A.y1<y2<y3B.y2<y1<y3C.y3<y2<y1D.y3<y1<y211.如图,点A(m,1),B(2,n)在双曲线y=(k≠0),连接OA,OB.若S△ABO=8,则k的值是(C)A.﹣12 B.﹣8 C.﹣6 D.﹣4第11题第12题解:过A作y轴的垂线,过B作x轴的垂线,交于点C,连接OC,设A(k,1),B(2,k),则AC=2﹣k,BC=1﹣k,∵S△ABO=8,∴S△ABC﹣S△ACO﹣S△BOC=8,即(2﹣k)(1﹣k)﹣(2﹣k)×1﹣(1﹣k)×2=8,解得k=±6,∵k<0,∴k=﹣6,12.如图,反比例函数与正比例函数的图象交于A、B两点,过点A作AC⊥x轴于点C.若△ABC 的面积是8,则这个反比例函数的解析式是(C)A.y=B.y=C.y=D.y=13.如图,在平面直角坐标系中,函数y=的图象与函数y=x的图象相交于A,B两点,点C是函数y=的图象右支上一点,连结AC,BC,若∠C=90°,则点C的坐标为(A)A.(2,4)B.(3,6)C.(4,2)D.(,)解:函数y=的图象与函数y=x的图象相交于A,B两点,解方程组,可得,,∴B(4,2),A(﹣4,﹣2),∴OB=AO=2,又∵∠ACB=90°,∴OC=AB=2,设C(a,),则OC==2,解得a=2,或a=4(舍去),∴C(2,4),14.如图,直线y=x﹣3与x轴交于点A,与双曲线y=(k≠0)在第一象限内交于点B,过点A 作AC⊥x轴,交该双曲线于点C,若AB=AC,则k的值是(D)A.B.C.D.解:如图,过B作BD⊥OA于D,则∠ADB=∠AOE=90°,由直线y=x﹣3,可得A(4,0),E(0,﹣3),∴AO=4,OE=3,AE=5,设点C的坐标为(4,),则AC=AB=,由△AOE∽△ADB,可得==,即==,∴AD=,BD=,∴B(4+,),∵双曲线y=(k≠0)经过点B,∴(4+)×k=k,解得k=,15.如图,在平面直角坐标系中,点A、B分别在第二象限和第一象限,AB与x轴平行,∠AOB=90°,OA=3,OB=4,函数y=(x<0)和y=(x>0)的图象分别经过点AB,则的值为(D)A.B.﹣C.D.﹣解:∵AB与x轴平行,∴AB⊥y轴,即∠AHO=∠OHB=90°,∵∠AOB=90°,∴∠AOH+∠BOH=∠AOH+∠OAH=90°,∴∠OAH=∠BOH,∴△AOH∽△OBH,∴=,即=,又∵k1<0,∴=﹣,16.如图,在平面直角坐标系中,反比例函数y=(k≠0)经过▱ABCD的顶点B、D,点A的坐标为(0,﹣1),AB∥x轴,CD经过点(0,2),▱ABCD的面积是18,则点D的坐标是(C)A.(﹣2,2)B.(3,2)C.(﹣3,2)D.(﹣6,1)解:如图,∵点A的坐标为(0,﹣1),AB∥x轴,反比例函数y=(k≠0)经过▱ABCD的顶点B,∴点B的坐标为(﹣k,﹣1),即AB=﹣k,又∵点E(0,2),∴AE=2+1=3,又∵平行四边形ABCD的面积是18,∴AB×AE=18,∴﹣k×3=18,∴k=﹣6,∴y=﹣,∵CD经过点(0,2),∴令y=2,可得x=﹣3,∴点D的坐标为(﹣3,2),17.如图,点M是反比例函数y=(x>0)图象上任意一点,MN⊥y轴于N,点P是x轴上的动点,则△MNP的面积为(A)A.1 B.2 C.4 D.不能确定第17题第18题18.如图,已知点A(0,4),B (1,4),点B在双曲线y=(k>0)上,在AB的延长线上取一点C,过C的直线交双曲线于点D,交x轴正半轴于点E,且CD=DE,则线段CE长度的取值范围是(A)A.4≤CE<4B.4≤CE<2C.2<CE<4 D.4<CE<2解:如图1,过D作DF⊥OA于F,∵点A(0,4),B (1,4),∴AB⊥y轴,AB=1,OA=4,∵CD=DE,∴AF=OF=2,∵点B在双曲线y=(k>0)上,∴k=1×4=4,∴反比例函数的解析式为:y=,∵过点C的直线交双曲线于点D,∴D点的纵坐标为2,把y=2代入y=得,x=2,∴D(2,2),当O与E重合时,如图2,∵DF=2,∴AC=4,∵OA=4,∴CE=4,当CE⊥x轴时,CE=OA=4,∴4≤CE<4,19.如图,已知点A(2,3)和点B(0,2),点A在反比例函数y=的图象上,作射线AB,交反比例函数图象于另一点M,再将射线AB绕点A按逆时针方向旋转45°,交反比例函数图象于点C,则CM的长度为(D)A.5 B.6 C.4D.5第19题第20题第21题解:如图,过A作AD⊥y轴于D,将AB绕着点B顺时针旋转90°,得到A'B,过A'作A'H⊥y轴于H,由AB=BA',∠ADB=∠BHA'=90°,∠BAD=∠A'BH,可得△ABD≌△BA'H,∴BH=AD=2,又∵OB=2,∴点H与点O重合,点A'在x轴上,∴A'(1,0),又∵等腰Rt△ABA'中,∠BAA'=45°,而∠BAC=45°,∴点A'在AC上,由A(2,3),A'(1,0),可得直线AC的解析式为y=3x﹣3,解方程组,可得或,∴C(﹣1,﹣6),由点A(2,3)和点B(0,2),可得直线AB 的解析式为y=x+2,解方程组,可得或,∴M(﹣6,﹣1),∴CM==5,20.如图,在平面直角坐标系中,点A是x轴正半轴上的一个定点,点P是双曲线y=(x>0)上的一个动点,PB⊥y轴于点B,当点P的横坐标逐渐增大时,四边形OAPB的面积将会(C)A.逐渐增大B.不变C.逐渐减小D.先增大后减小21.如图,一次函数y1=x+1的图象与反比例函数y2=的图象交于A、B两点,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D,连接AO、BO,下列说法正确的是(C)A.点A和点B关于原点对称B.当x<1时,y1>y2C.S△AOC=S△BOD D.当x>0时,y1、y2都随x的增大而增大解:A、,∵把①代入②得:x+1=,解得:x2+x﹣2=0,(x+2)(x﹣1)=0,x1=﹣2,x2=1,代入①得:y1=﹣1,y2=2,∴B(﹣2,﹣1),A(1,2),∴A、B不关于原点对称,故本选项错误;B、当﹣2<x<0或x>1时,y1>y2,故本选项错误;C、∵S△AOC=×1×2=1,S△BOD=×|﹣2|×|﹣1|=1,∴S△BOD=S△AOC,故本选项正确;D、当x>0时,y1随x的增大而增大,y2随x的增大而减小,故本选项错误;22.函数y=k(x﹣1)与y=﹣在同一直角坐标系内的图象大致是(A)A.B.C.D.23.如图,点A,C都在函数y=(x>0)的图象上,点B,D都在x轴上,且使得△OAB,△BCD都是等边三角形,则点C的坐标是(A)A.(+1,﹣)B.(+1,﹣1)C.(+1,﹣)D.(+1,﹣)第23题第24题解:如图,作AE⊥OB于E,CF⊥BD于F,∵△OAB,△BCD均为正三角形,A在反比例函数y=,∴A的横坐标是1,纵坐标是,∴OE=EB=1,OA=2OE=2,AE=,设BF=m,则C(2+m,m),代入y=,得:m2+2m﹣1=0,解得:m=﹣1±,∵m>0,∴m=﹣1+,∴点C的坐标为:(1+,).二.填空题(共9小题)24.如图,点M是函数图象上的一点,直线l:y=x,过点M分别作MA⊥y轴,MB⊥l,A,B为垂足,则MA•MB=.解:延长AM,交直线y=x于点D,设M(x,x+)则△AOD是等腰直角三角形,即∠ADO=45°,∴OA=AD=x+,AM=x,∴MD=AD﹣AM=,∵MB⊥l,∴MB=BD,∴△BDM是等腰直角三角形,∴MB2+BD2=MD2,∴MB=MD,∴MB=×=,∴MA•MB=x•=.25.如图将直线向左平移m个单位,与双曲线交于点A,与x轴交于点B,则OB2﹣OA2+AB2=.解:由题意知:平移后的直线解析式为:y=(x+m);设A(x,y),易知:B(﹣m,0),则有:OB2﹣OA2+AB2=m2﹣(x2+y2)+[(m+x)2+y2],联立y=(x+m),整理得:原式=﹣2x2﹣2mx;由于直线y=(x+m)与交于点A,联立两个函数解析式得:(x+m)=﹣,即x2+mx+2=0,得﹣x2﹣mx=2;故所求代数式=﹣2x2﹣2mx=4.故答案为:4.26.如果反比例函数y=(m﹣3)的图象在第二、四象限,那么m=1.【解答】解:根据题意m2﹣6m+4=﹣1,解得m=1或5,又m﹣3<0,m<3,所以m=1.故答案为:1.27.已知双曲线y=(k≠0)上有一点P,PA⊥x轴于A,点O为坐标原点,且S△PAO=12,则此反比例函数的解析式为y=﹣或y=.【解答】解:设点P的坐标为(x,y).∵P(x,y)在反比例函数y=kx(k≠0)的图象,∴k=xy,=12,∵S△PAO∴|xy|=12,∴|xy|=24,∴xy=±24,∴k=±24,∴y=﹣或y=.故答案为:y=﹣或y=.28.反比例函数的图象同时过A(﹣2,a)、B(﹣3,b)、C(1,c)三点,则a、b、c的大小关系是a>b>c.【解答】解:∵k<0,∴此函数的图象在二、四象限,∵﹣2<0,﹣3<0,1>0,∴A、B两点在第二象限,C点在第三象限,∴a>0,b>0,c<0,∵﹣2>﹣3,∴a>b>0,∴a>b>c.故答案为a>b>c.29.函数y=(m2﹣m)x m2﹣3m+1是反比例函数,则m的值是2,它的图象分布在第一、三象限,在每一个象限内,y随x的增大而减小.【解答】解:由题意得:m2﹣3m+1=﹣1,且m2﹣m≠0,解得:m=2,∵m2﹣m=4﹣2=2>0,∴图象分布在第一、三象限,在每一个象限内,y随x的增大而减小,故答案为:2;第一、三;减小.30.如图,A、B是反比例函数y=上两点,AC⊥y轴于C,BD⊥x轴于D,AC=BD=OC,S四边形=14,则k=16.ABDC【解答】解:如图,分别延长CA,DB交于点E,根据AC⊥y轴于C,BD⊥x轴于D,AC=BD=OC,知△CED为直角三角形,且点A与点B的纵横坐标正好相反,设点A的坐标为(x A,y A),则点B的坐标为(y A,x A),点E的坐标为(y A,y A),四边形ACDB的面积为△CED的面积减去△AEB的面积.CE=ED=y A,AE=BE=y﹣y A,∴S ACDB=S△CED﹣S△AEB=[y A•y A﹣(y A﹣y A)(y A﹣y A)]=y A2=14,∵y A>0,∴y A=8,点A的坐标为(2,8),∴k=2×8=16.故答案为:16.31.如图,B为双曲线y=(x>0)上一点,直线AB平行于y轴交直线y=x于点A,若OB2﹣AB2=12,则k=6.【解答】解:如图,延长AB交x轴于点C,设点C的横坐标为a,则点B的纵坐标为,点A的纵坐标为a,所以,AB=a﹣,∵AB平行于y轴,∴AC⊥OC,在Rt△BOC中,OB2=OC2+BC2=a2+()2,∵OB2﹣AB2=12,∴a2+()2﹣(a﹣)2=12,整理得,2k=12,解得k=6.故答案为:6.32.如图,正比例函数y=x与反比例函数y=的图象相交于A,C两点,AB⊥x轴于B,CD⊥x轴于D,则四边形ABCD的面积为2.【解答】解:根据反比例函数的对称性可知:OB=OD,AB=CD,∵四边形ABCD的面积等于S△ADB +S△BDC,∵A(1,1),B(1,0),C(﹣1,﹣1),D(﹣1,0)∴S△ADB=(DO+OB)×AB=×2×1=1,S△BDC=(DO+OB)×DC=×2×1=1,∴四边形ABCD的面积=2.故答案为:2.三.解答题(共8小题)33.如图1,在平面直角坐标系中,四边形AOBC是矩形,点C的坐标为(4,3),反比例函数y=(k>0)的图象与矩形AOBC的边AC、BC分别相交于点E、F,将△CEF沿EF对折后,C点恰好落在OB上.(1)求证:△AOE与△BOF的面积相等;(2)求反比例函数的解析式;(3)如图2,P点坐标为(2,﹣3),在反比例函数y=的图象上是否存在点M、N(M在N的左侧),使得以O、P、M、N为顶点的四边形是平行四边形?若存在,求出点M、N的坐标;若不存在,请说明理由.【解答】解:(1)∵点E、F均是反比例函数y=上的点,四边形AOBC是矩形,∴AE⊥y轴,BC⊥x轴,∴S△AOE =S△BOF=;(2)∵C坐标为(4,3),∴设E(,3),F(4,),如图1,将△CEF沿EF对折后,C点恰好落在OB边上的G点,作EH⊥OB,垂足为H,∵∠EGH+∠HEG=90°∠EGH+∠FGB=90°,∴∠HEG=∠FGB,又∵∠EHG=∠GBF=90°,∴△EGH∽△GFB,∴=,∴GB==,在Rt△GBF中,GF2=GB2+BF2,即(3﹣)2=()2+()2,解得k=,∴反比例函数的解析式为:y=;(3)存在.当OP是平行四边形的边时,如图2所示:平行四边形OPMN,可以看成线段PN沿PO的方向平移至OM处所得.设N(a,),∵P(2,﹣3)的对应点O(0,0),∴M(a﹣2,+3),代入反比例解析式得:(a﹣2)(+3)=,整理得4a2﹣8a﹣7=0,解得a=,当a=时,==,﹣2=,+3=,∴N(,),M(,)(舍去)或N(,),M(,).当OP为对角线时,如图3所示:设M(a,),N(b,),∵P(2,﹣3),∴,解得,,∴M(,),N(,)(舍去)或M(,),N(,),综上所述:M(,)N(,);或M(,),N(,).34.如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A、C分别在坐标轴上,顶点B的坐标为(4,2),M、N分别是AB、BC的中点.(1)若反比例函数y=(x>0)的图象经过点M,求该反比例函数的解析式,并通过计算判断点N 是否在该函数的图象上;(2)若反比例函数y=(x>0)的图象与△MNB(包括边界)有公共点,请直接写出m的取值范围.【解答】解:(1)∵顶点B的坐标为(4,2),M、N分别是AB、BC的中点,∴M点的坐标为(2,2),把M(2,2)代入反比例函数y=(m≠0)得,m=2×2=4,∴反比例函数的解析式为y=;∵M、N分别为矩形OABC的边AB、BC的中点,且M(2,2),B点坐标为(4,2),∴N点坐标为(4,1),∵4×1=4,∴点N在函数y=的图象上;(2)4≤m≤8.35.如图,反比例函数y=﹣与一次函数y=﹣x+2的图象交于A、B两点.(1)求A、B两点的坐标;(2)观察图象,直接写出x为何值时,一次函数值大于反比例函数?(3)求△AOB的面积.【解答】解:(1)联立两函数解析式得:,解得:或,即A(﹣2,4),B(4,﹣2);(2)根据图象得:当x<﹣2或0<x<4时,一次函数值大于反比例函数值.(3)令y=﹣x+2中x=0,得到y=2,即D(0,2),∴OD=2,∴S△AOB =S△AOC+S△BOC=×2×2+×2×4=6.36.如图,反比例函数y1=的图象与一次函数y2=kx+b的图象交于A(m,3),B(﹣3,n)、两点.(1)求一次函数的解析式及△AOB的面积;(2)根据图象直接写出不等式的解集;(3)若点P是坐标轴上的一点,且满足△PAB面积等于△AOB的面积的2倍,直接写出点P的坐标.【解答】解:(1)∵反比例函数y1=的图象与一次函数y2=kx+b的图象交于A(m,3),B(﹣3,n)、两点,将A与B坐标代入反比例解析式得:m=1,n=﹣1,∴A(1,3)、B(﹣3,﹣1),代入一次函数解析式得:,解得:k=1,b=2,∴一次函数的解析式为y=x+2,∵直线y=x+2与x轴、y轴的交点坐标为(﹣2,0)、(0,2),∴S△AOB=×2×(1+3)=4;(2)∵A(1,3),B(﹣3,﹣1),观察图象可知,当x<﹣3或0<x<1时,一次函数的图象在反比例函数图象的下方,∴不等式的解集是x<﹣3或0<x<1.(3)∵S△AOB=4,∴S△PAB =2S△AOB=8,设P1(p,0),即OP1=|p+2|,S△ABP1=S△AP1C+S△P1BC=|p+2|×3+|p+2|×1=8,解得:p=﹣6或p=2,则P1(﹣6,0)、P2(2,0),同理可得P3(0,6)、P4(0,﹣2).37.如图,若直线y=kx+b(k≠0)与x轴交于点,与双曲线在第二象限交于点B,且OA=OB,△OAB的面积为(1)求直线AB的解析式及双曲线的解析式;(2)求tan∠ABO的值.【解答】解:(1)∵直线y=kx+b(k≠0)与x轴交于点A,∴OA=,又∵OA=OB,∴OB=,过点B作BM⊥x轴于点M,∵△OAB的面积为,即OA•BM=,∴BM=2,在Rt△OBM中可求OM=1.5,∴B(﹣1.5,2),再根据待定系数法可得:,解得:k=﹣,b=,∴直线AB的解析式为:y=﹣x+;再将点B代入函数y=得:m=﹣3,∴双曲线的解析式为:y=﹣;(2)∵OA=OB,∴∠ABO=∠BAM,在Rt△ABM中,BM=2,∴MO=,AM=+=4,∴tan∠ABO=tan∠BAM==.38.已知反比例函数y=和一次函数y=2x﹣1,其中一次函数的图象经过(a,b),(a+k,b+k+2)两点.(1)求反比例函数的解析式?(2)已知A在第一象限,是两个函数的交点,求A点坐标?(3)利用②的结果,请问:在x轴上是否存在点P,使△AOP为等腰三角形?【解答】解:(1)∵一次函数y=2x﹣1的图象经过(a,b),(a+k,b+k+2)两点,代入得:,解得:k=2,代入反比例函数的解析式得:y==,∴反比例函数的解析式是y=.(2)解方程组得:,,∴两函数的交点坐标是(﹣,﹣2),(1,1),∵交点A在第一象限,∴A(1,1).(3)在x轴上存在点P,使△AOP为等腰三角形,理由是:分为三种情况:①以O为圆心,以OA为半径作圆,交x轴于两点C、D,此时OA=0C=0D,∴当P于C或D重合时,△AOP是等腰三角形,此时P的坐标是(,0),(﹣,0);②以A为圆心,以OA为半径作圆,交x轴于点E,此时OA=AE,∴当P于E重合时,△AOP是等腰三角形,此时P的坐标是(2,0);③作OA的垂直平分线交x轴于F,此时AF=OF,∴当P于F重合时,△AOP是等腰三角形,此时P的坐标是(1,0);∴存在4个点P,使△AOP是等腰三角形.39.如图,双曲线y=在第一象限的一支上有一点C(1,5),过点C的直线y=﹣kx+b(k>0)与x 轴交于点A(a,0).(1)求点A的横坐标a与k的函数关系式(不写自变量取值范围).(2)当该直线与双曲线在第一象限的另一个交点D的横坐标是9时,求△COA的面积.【解答】解:(1)把C(1,5)代入直线y=﹣kx+b(k>0)得:﹣k+b=5,则b=5+k;把(a,0)代入直线y=﹣kx+b(k>0)得:﹣ak+b=0,把b=5+k代入﹣ak+b=0,得:﹣ak+5+k=0,解得:a=;(2)把x=9代入y=得:y=,则D的坐标是(9,),设直线AC的解析式是y=﹣kx+b,把C、D两点代入,得,解得:,则AC的解析式是:y=﹣x+.令y=0,解得:x=10.则OA=10,则△COA的面积=×10×5=25.40.如图,一次函数y=ax+b的图象与反比例函数的图象交于M、N两点.(1)利用图中条件,求反比例函数和一次函数的解析式;(2)连接OM、ON,求三角形OMN的面积.(3)连接OM,在x轴的正半轴上是否存在点Q,使△MOQ是等腰三角形,若存在,请直接写出所有符合条件的点Q的坐标,若不存在,说明理由.【解答】解:(1)把N(﹣1,﹣4)代入y=得:k=4,∴y=,把M(2,m)代入得:m=2,∴M(2,2),把N(﹣1,﹣4),M(2,2)代入y=ax+b得:,解得:a=2,b=﹣2,∴y=2x﹣2,答:反比例函数的解析式是y=,一次函数的解析式是y=2x﹣2.(2)设MN交x轴于C,y=2x﹣2,当y=0时,x=1,∴C(1,0),OC=1,∴△MON的面积是S=S△MOC +S△NOC=×1×2+×1×|﹣4|=3,答:三角形MON的面积是3.(3)当OM=OQ时,Q的坐标是(2,0);当OM=MQ时,Q的坐标是(4,0);当OQ=QM时,Q的坐标是(2,0);答:在x轴的正半轴上存在点Q,使△MOQ是等腰三角形,所有符合条件的点Q的坐标是(2,0)或(4,0)或(2,0).第31页(共31页)。
(完整版)反比例函数试题及答案(最新整理)
反比例函数一、选择题1.(2016·黑龙江大庆)已知A(x1,y1)、B(x2,y2)、C(x3,y3)是反比例函数y=上的三点,若x1<x2<x3,y2<y1<y3,则下列关系式不正确的是( )A.x1•x2<0 B.x1•x3<0 C.x2•x3<0 D.x1+x2<0【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数y=和x1<x2<x3,y2<y1<y3,可得点A,B在第三象限,点C在第一象限,得出x1<x2<0<x3,再选择即可.【解答】解:∵反比例函数y=中,2>0,∴在每一象限内,y随x的增大而减小,∵x1<x2<x3,y2<y1<y3,∴点A,B在第三象限,点C在第一象限,∴x1<x2<0<x3,∴x1•x2<0,故选A.【点评】本题考查了反比例函数图象上点的坐标特征,解答此题的关键是熟知反比例函数的增减性,本题是逆用,难度有点大.2.(2016·湖北十堰)如图,将边长为10的正三角形OAB放置于平面直角坐标系xOy中,C 是AB边上的动点(不与端点A,B重合),作CD⊥OB于点D,若点C,D都在双曲线y=上(k>0,x>0),则k的值为( )A.25B.18C.9D.9【考点】反比例函数图象上点的坐标特征;平行线的性质;等边三角形的性质.【分析】过点A作AE⊥OB于点E,根据正三角形的性质以及三角形的边长可找出点A、B、E 的坐标,再由CD⊥OB,AE⊥OB可找出CD∥AE,即得出,令该比例=n,根据比例关系找出点D、C的坐标,利用反比例函数图象上点的坐标特征即可得出关于k、n的二元一次方程组,解方程组即可得出结论.【解答】解:过点A作AE⊥OB于点E,如图所示.∵△OAB为边长为10的正三角形,∴点A的坐标为(10,0)、点B的坐标为(5,5),点E的坐标为(,).∵CD⊥OB,AE⊥OB,∴CD∥AE,∴.设=n(0<n<1),∴点D的坐标为(,),点C的坐标为(5+5n,5﹣5n).∵点C、D均在反比例函数y=图象上,∴,解得:.故选C.【点评】本题考查了反比例函数图象上点的坐标特征、平行线的性质以及等边三角形的性质,解题的关键是找出点D、C的坐标.本题属于中档题,稍显繁琐,解决该题型题目时,巧妙的借助了比例来表示点的坐标,根据反比例函数图象上点的坐标特征找出方程组是关键.3. (2016·新疆)已知A(x1,y1),B(x2,y2)是反比例函数y=(k≠0)图象上的两个点,当x1<x2<0时,y1>y2,那么一次函数y=kx﹣k的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限【考点】反比例函数图象上点的坐标特征;一次函数图象与系数的关系.【分析】首先根据x1<x2<0时,y1>y2,确定反比例函数y=(k≠0)中k的符号,然后再确定一次函数y=kx﹣k的图象所在象限.【解答】解:∵当x1<x2<0时,y1>y2,∴k>0,∴﹣k<0,∴一次函数y=kx﹣k的图象经过第一、三、四象限,∴不经过第二象限,故选:B.【点评】此题主要考查了反比例函数图象上点的坐标特征以及一次函数图象与系数的关系,解决此题的关键是确定k的符号.4. (2016·云南)位于第一象限的点E在反比例函数y=的图象上,点F在x轴的正半轴上,O是坐标原点.若EO=EF,△EOF的面积等于2,则k=( )A.4 B.2 C.1 D.﹣2【考点】反比例函数系数k的几何意义.【分析】此题应先由三角形的面积公式,再求解k即可.【解答】解:因为位于第一象限的点E在反比例函数y=的图象上,点F在x轴的正半轴上,O 是坐标原点.若EO=EF,△EOF的面积等于2,所以,解得:xy=2,所以:k=2,故选:B【点评】主要考查了反比例函数系数k的几何意义问题,关键是由三角形的面积公式,再求解k.5. (2016·四川达州·3分)下列说法中不正确的是( )A.函数y=2x的图象经过原点B.函数y=的图象位于第一、三象限C .函数y=3x ﹣1的图象不经过第二象限D .函数y=﹣的值随x 的值的增大而增大【考点】正比例函数的性质;一次函数的性质;反比例函数的性质.【分析】分别利用正比例函数以及反比例函数的定义分析得出答案.【解答】解:A 、函数y=2x 的图象经过原点,正确,不合题意;B 、函数y=的图象位于第一、三象限,正确,不合题意;C 、函数y=3x ﹣1的图象不经过第二象限,正确,不合题意;D 、函数y=﹣的值,在每个象限内,y 随x 的值的增大而增大,故错误,符合题意.故选:D .6. (2016·四川乐山·3动时,点C 图象上运动,若tan ()A 2()C 6答案:D解析:连结CO 所以,CO ⊥AB ,因为tan 作AE ⊥x 轴,CD ⊥x 轴于则有△OCD ∽△OEA 设C (m ,n ),则有A 所以,k n m =解①②得:k =87. (2016·四川凉山州·4分)二次函数y=ax2+bx+c(a≠0)的图象如图,则反比例函数与一次函数y=bx﹣c在同一坐标系内的图象大致是( )A.B.C.D.【考点】反比例函数的图象;一次函数的图象;二次函数的图象.【分析】根据二次函数的图象找出a、b、c的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论.【解答】解:观察二次函数图象可知:开口向上,a>0;对称轴大于0,﹣>0,b<0;二次函数图象与y轴交点在y轴的正半轴,c >0.∵反比例函数中k=﹣a<0,∴反比例函数图象在第二、四象限内;∵一次函数y=bx﹣c中,b<0,﹣c<0,∴一次函数图象经过第二、三、四象限.故选C.8. (2016,湖北宜昌,15,3分)函数y=的图象可能是( )A.B.C.D.【考点】反比例函数的图象.【分析】函数y=是反比例y=的图象向左移动一个单位,根据反比例函数的图象特点判断即可.【解答】解:函数y=是反比例y=的图象向左移动一个单位,即函数y=是图象是反比例y=的图象双曲线向左移动一个单位.故选C【点评】此题是反比例函数的图象,主要考查了反比例函数的图象是双曲线,掌握函数图象的平移是解本题的关键.9. (2016吉林长春,8,3分)如图,在平面直角坐标系中,点P(1,4)、Q(m,n)在函数y=(x>0)的图象上,当m>1时,过点P分别作x轴、y轴的垂线,垂足为点A,B;过点Q分别作x轴、y轴的垂线,垂足为点C、D.QD交PA于点E,随着m的增大,四边形ACQE的面积( )A.减小B.增大C.先减小后增大D.先增大后减小【考点】反比例函数系数k的几何意义.【分析】首先利用m和n表示出AC和AQ的长,则四边形ACQE的面积即可利用m、n表示,然后根据函数的性质判断.【解答】解:AC=m﹣1,CQ=n,则S四边形ACQE=AC•CQ=(m﹣1)n=mn﹣n.∵P (1,4)、Q (m ,n )在函数y=(x >0)的图象上,∴mn=k=4(常数).∴S 四边形ACQE =AC •CQ=4﹣n ,∵当m >1时,n 随m 的增大而减小,∴S 四边形ACQE =4﹣n 随m 的增大而增大.故选B .【点评】本题考查了二次函数的性质以及矩形的面积的计算,利用n 表示出四边形ACQE 的面积是关键.10. (2016兰州,2,4分)反比例函数的图像在()。
(完整版)反比例函数练习题及答案
反比例函数综合一.选择题(共23小题)1.如图,点A,B在双曲线y=(x>0)上,点C在双曲线y=(x>0)上,若AC∥y轴,BC∥x 轴,且AC=BC,则AB等于()A.B.2C.4 D.3第1题第2题第3题第5题2.如图,曲线C2是双曲线C1:y=(x>0)绕原点O逆时针旋转45°得到的图形,P是曲线C2上任意一点,点A在直线l:y=x上,且PA=PO,则△POA的面积等于()A.B.6 C.3 D.123.反比例函数y=的图象如图所示,点A是该函数图象上一点,AB垂直于x轴垂足是点B,如果S△AOB=1,则k的值为()A.1 B.﹣1 C.2 D.﹣24.在同一平面直角坐标系中,函数y=kx(k>0)与y=(k>0)的图象可能是()A.B.C.D.5.如图,在平面直角坐标系xOy中,反比例函数y=的图象经过点T.下列各点P(4,6),Q(3,﹣8),M(2,﹣12),N(,48)中,在该函数图象上的点有()A.4个B.3个C.2个D.1个6.已知反比例函数y=(k≠0)过点A(a,y1),B(a+1,y2),若y2>y1,则a的取值范围为()A.﹣1<a B.﹣1<a<0 C.a<1 D.0<a<17.如图,双曲线y=与直线y=kx+b交于点M,N,并且点M的坐标为(1,3),点N的纵坐标为﹣1.根据图象信息可得关于x不等式<kx+b的解为()A.x<﹣3 B.﹣3<x<0 C.﹣3<x<1 D.﹣3<x<0 或x>1第7题第9题第11题第12题8.点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y39.如图,A、B是双曲线y=(k>0)上的点,A、B两点的横坐标分别是a、3a,线段AB的延长=3.则k的值为()线交x轴于点C,若S△AOCA.2 B.1.5 C.4 D.610.已知点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=(k<0)的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y2<y1D.y3<y1<y211.如图,点A(m,1),B(2,n)在双曲线y=(k≠0),连接OA,OB.若S△ABO=8,则k的值是()A.﹣12 B.﹣8 C.﹣6 D.﹣412.如图,反比例函数与正比例函数的图象交于A、B两点,过点A作AC⊥x轴于点C.若△ABC 的面积是8,则这个反比例函数的解析式是()A.y=B.y=C.y=D.y=13.如图,在平面直角坐标系中,函数y=的图象与函数y=x的图象相交于A,B两点,点C是函数y=的图象右支上一点,连结AC,BC,若∠C=90°,则点C的坐标为()A.(2,4)B.(3,6)C.(4,2)D.(,)第13题第14题第15题第16题14.如图,直线y=x﹣3与x轴交于点A,与双曲线y=(k≠0)在第一象限内交于点B,过点A 作AC⊥x轴,交该双曲线于点C,若AB=AC,则k的值是()A.B.C.D.15.如图,在平面直角坐标系中,点A、B分别在第二象限和第一象限,AB与x轴平行,∠AOB=90°,OA=3,OB=4,函数y=(x<0)和y=(x>0)的图象分别经过点AB,则的值为()A.B.﹣C.D.﹣16.如图,在平面直角坐标系中,反比例函数y=(k≠0)经过▱ABCD的顶点B、D,点A的坐标为(0,﹣1),AB∥x轴,CD经过点(0,2),▱ABCD的面积是18,则点D的坐标是()A.(﹣2,2)B.(3,2)C.(﹣3,2)D.(﹣6,1)17.如图,点M是反比例函数y=(x>0)图象上任意一点,MN⊥y轴于N,点P是x轴上的动点,则△MNP的面积为()A.1 B.2 C.4 D.不能确定第17题第18题18.如图,已知点A(0,4),B (1,4),点B在双曲线y=(k>0)上,在AB的延长线上取一点C,过C的直线交双曲线于点D,交x轴正半轴于点E,且CD=DE,则线段CE长度的取值范围是()A.4≤CE<4B.4≤CE<2C.2<CE<4 D.4<CE<219.如图,已知点A(2,3)和点B(0,2),点A在反比例函数y=的图象上,作射线AB,交反比例函数图象于另一点M,再将射线AB绕点A按逆时针方向旋转45°,交反比例函数图象于点C,则CM的长度为()A.5 B.6 C.4D.5第19题第20题第21题第23题20.如图,在平面直角坐标系中,点A是x轴正半轴上的一个定点,点P是双曲线y=(x>0)上的一个动点,PB⊥y轴于点B,当点P的横坐标逐渐增大时,四边形OAPB的面积将会()A.逐渐增大B.不变C.逐渐减小D.先增大后减小21.如图,一次函数y1=x+1的图象与反比例函数y2=的图象交于A、B两点,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D,连接AO、BO,下列说法正确的是()A.点A和点B关于原点对称B.当x<1时,y1>y2C.S△AOC=S△BOD D.当x>0时,y1、y2都随x的增大而增大22.函数y=k(x﹣1)与y=﹣在同一直角坐标系内的图象大致是()A.B.C.D.23.如图,点A,C都在函数y=(x>0)的图象上,点B,D都在x轴上,且使得△OAB,△BCD 都是等边三角形,则点C的坐标是()A.(+1,﹣)B.(+1,﹣1)C.(+1,﹣)D.(+1,﹣)二.填空题(共9小题)24.如图,点M是函数图象上的一点,直线l:y=x,过点M分别作MA⊥y轴,MB⊥l,A,B为垂足,则MA•MB=.第24题第25题第30题第31题25.如图将直线向左平移m个单位,与双曲线交于点A,与x轴交于点B,则OB2﹣OA2+AB2=.26.如果反比例函数y=(m﹣3)的图象在第二、四象限,那么m=.27.已知双曲线y=(k≠0)上有一点P,PA⊥x轴于A,点O为坐标原点,且S△PAO=12,则此反比例函数的解析式为.28.反比例函数的图象同时过A(﹣2,a)、B(﹣3,b)、C(1,c)三点,则a、b、c 的大小关系是.29.函数y=(m2﹣m)x m2﹣3m+1是反比例函数,则m的值是,它的图象分布在象限,在每一个象限内,y随x的增大而.30.如图,A、B是反比例函数y=上两点,AC⊥y轴于C,BD⊥x轴于D,AC=BD=OC,S四边形=14,则k=.ABDC31.如图,B为双曲线y=(x>0)上一点,直线AB平行于y轴交直线y=x于点A,若OB2﹣AB2=12,则k=.32.如图,正比例函数y=x与反比例函数y=的图象相交于A,C两点,AB⊥x轴于B,CD⊥x轴于D,则四边形ABCD的面积为.三.解答题(共8小题)33.如图1,在平面直角坐标系中,四边形AOBC是矩形,点C的坐标为(4,3),反比例函数y=(k>0)的图象与矩形AOBC的边AC、BC分别相交于点E、F,将△CEF沿EF对折后,C点恰好落在OB上.(1)求证:△AOE与△BOF的面积相等;(2)求反比例函数的解析式;(3)如图2,P点坐标为(2,﹣3),在反比例函数y=的图象上是否存在点M、N(M在N的左侧),使得以O、P、M、N为顶点的四边形是平行四边形?若存在,求出点M、N的坐标;若不存在,请说明理由.34.如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A、C分别在坐标轴上,顶点B的坐标为(4,2),M、N分别是AB、BC的中点.(1)若反比例函数y=(x>0)的图象经过点M,求该反比例函数的解析式,并通过计算判断点N 是否在该函数的图象上;(2)若反比例函数y=(x>0)的图象与△MNB(包括边界)有公共点,请直接写出m的取值范围.35.如图,反比例函数y=﹣与一次函数y=﹣x+2的图象交于A、B两点.(1)求A、B两点的坐标;(2)观察图象,直接写出x为何值时,一次函数值大于反比例函数?(3)求△AOB的面积.36.如图,反比例函数y1=的图象与一次函数y2=kx+b的图象交于A(m,3),B(﹣3,n)、两点.(1)求一次函数的解析式及△AOB的面积;(2)根据图象直接写出不等式的解集;(3)若点P是坐标轴上的一点,且满足△PAB面积等于△AOB的面积的2倍,直接写出点P的坐标.37.如图,若直线y=kx+b(k≠0)与x轴交于点,与双曲线在第二象限交于点B,且OA=OB,△OAB的面积为(1)求直线AB的解析式及双曲线的解析式;(2)求tan∠ABO的值.38.已知反比例函数y=和一次函数y=2x﹣1,其中一次函数的图象经过(a,b),(a+k,b+k+2)两点.(1)求反比例函数的解析式?(2)已知A在第一象限,是两个函数的交点,求A点坐标?(3)利用②的结果,请问:在x轴上是否存在点P,使△AOP为等腰三角形?39.如图,双曲线y=在第一象限的一支上有一点C(1,5),过点C的直线y=﹣kx+b(k>0)与x 轴交于点A(a,0).(1)求点A的横坐标a与k的函数关系式(不写自变量取值范围).(2)当该直线与双曲线在第一象限的另一个交点D的横坐标是9时,求△COA的面积.40.如图,一次函数y=ax+b的图象与反比例函数的图象交于M、N两点.(1)利用图中条件,求反比例函数和一次函数的解析式;(2)连接OM、ON,求三角形OMN的面积.(3)连接OM,在x轴的正半轴上是否存在点Q,使△MOQ是等腰三角形,若存在,请直接写出所有符合条件的点Q的坐标,若不存在,说明理由.参考答案一.选择题(共23小题)1.如图,点A,B在双曲线y=(x>0)上,点C在双曲线y=(x>0)上,若AC∥y轴,BC∥x 轴,且AC=BC,则AB等于(B)A.B.2C.4 D.3设C(a,),则B(3a,),A(a,),∵AC=BC,∴﹣=3a﹣a,解得a=1,(负值已舍去)∴C(1,1),B(3,1),A(1,3),∴AC=BC=2,∴Rt△ABC中,AB=2,2.如图,曲线C2是双曲线C1:y=(x>0)绕原点O逆时针旋转45°得到的图形,P是曲线C2上任意一点,点A在直线l:y=x上,且PA=PO,则△POA的面积等于(B)A.B.6 C.3 D.12解:如图,将C2及直线y=x绕点O逆时针旋转45°,则得到双曲线C3,直线l与y轴重合.双曲线C3,的解析式为y=﹣过点P作PB⊥y轴于点B∵PA=PB∴B为OA中点.∴S△PAB=S△POB=3∴△POA的面积是6由反比例函数比例系数k的性质,S△POB3.反比例函数y=的图象如图所示,点A是该函数图象上一点,AB垂直于x轴垂足是点B,如果S△AOB=1,则k的值为(D)A.1 B.﹣1 C.2 D.﹣24.在同一平面直角坐标系中,函数y=kx(k>0)与y=(k>0)的图象可能是(C)A.B.C.D.5.如图,在平面直角坐标系xOy中,反比例函数y=的图象经过点T.下列各点P(4,6),Q(3,﹣8),M(2,﹣12),N(,48)中,在该函数图象上的点有(C)A.4个B.3个C.2个D.1个第5题第7题第9题6.已知反比例函数y=(k≠0)过点A(a,y1),B(a+1,y2),若y2>y1,则a的取值范围为(B)A.﹣1<a B.﹣1<a<0 C.a<1 D.0<a<17.如图,双曲线y=与直线y=kx+b交于点M,N,并且点M的坐标为(1,3),点N的纵坐标为﹣1.根据图象信息可得关于x不等式<kx+b的解为(D)A.x<﹣3 B.﹣3<x<0 C.﹣3<x<1 D.﹣3<x<0 或x>18.点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是(D)A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y39.如图,A、B是双曲线y=(k>0)上的点,A、B两点的横坐标分别是a、3a,线段AB的延长线交x轴于点C,若S△AOC=3.则k的值为(B)A.2 B.1.5 C.4 D.6解:如图,分别过点A、B作AF⊥y轴于点F,AD⊥x轴于点D,BG⊥y轴于点G,BE⊥x轴于点E,∵k>0,点A是反比例函数图象上的点,∴S△AOD =S△AOF=|k|,∵A、B两点的横坐标分别是a、3a,∴AD=3BE,∴点B是AC的三等分点,∴DE=2a,CE=a,∴S△AOC =S梯形ACOF﹣S△AOF=(OE+CE+AF)×OF﹣|k|=×5a×﹣|k|=3,解得k=1.5.10.已知点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=(k<0)的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是(D)A.y1<y2<y3B.y2<y1<y3C.y3<y2<y1D.y3<y1<y211.如图,点A(m,1),B(2,n)在双曲线y=(k≠0),连接OA,OB.若S△ABO=8,则k的值是(C)A.﹣12 B.﹣8 C.﹣6 D.﹣4第11题第12题解:过A作y轴的垂线,过B作x轴的垂线,交于点C,连接OC,设A(k,1),B(2,k),则AC=2﹣k,BC=1﹣k,∵S△ABO=8,∴S△ABC﹣S△ACO﹣S△BOC=8,即(2﹣k)(1﹣k)﹣(2﹣k)×1﹣(1﹣k)×2=8,解得k=±6,∵k<0,∴k=﹣6,12.如图,反比例函数与正比例函数的图象交于A、B两点,过点A作AC⊥x轴于点C.若△ABC 的面积是8,则这个反比例函数的解析式是(C)A.y=B.y=C.y=D.y=13.如图,在平面直角坐标系中,函数y=的图象与函数y=x的图象相交于A,B两点,点C是函数y=的图象右支上一点,连结AC,BC,若∠C=90°,则点C的坐标为(A)A.(2,4)B.(3,6)C.(4,2)D.(,)解:函数y=的图象与函数y=x的图象相交于A,B两点,解方程组,可得,,∴B(4,2),A(﹣4,﹣2),∴OB=AO=2,又∵∠ACB=90°,∴OC=AB=2,设C(a,),则OC==2,解得a=2,或a=4(舍去),∴C(2,4),14.如图,直线y=x﹣3与x轴交于点A,与双曲线y=(k≠0)在第一象限内交于点B,过点A 作AC⊥x轴,交该双曲线于点C,若AB=AC,则k的值是(D)A.B.C.D.解:如图,过B作BD⊥OA于D,则∠ADB=∠AOE=90°,由直线y=x﹣3,可得A(4,0),E(0,﹣3),∴AO=4,OE=3,AE=5,设点C的坐标为(4,),则AC=AB=,由△AOE∽△ADB,可得==,即==,∴AD=,BD=,∴B(4+,),∵双曲线y=(k≠0)经过点B,∴(4+)×k=k,解得k=,15.如图,在平面直角坐标系中,点A、B分别在第二象限和第一象限,AB与x轴平行,∠AOB=90°,OA=3,OB=4,函数y=(x<0)和y=(x>0)的图象分别经过点AB,则的值为(D)A.B.﹣C.D.﹣解:∵AB与x轴平行,∴AB⊥y轴,即∠AHO=∠OHB=90°,∵∠AOB=90°,∴∠AOH+∠BOH=∠AOH+∠OAH=90°,∴∠OAH=∠BOH,∴△AOH∽△OBH,∴=,即=,又∵k1<0,∴=﹣,16.如图,在平面直角坐标系中,反比例函数y=(k≠0)经过▱ABCD的顶点B、D,点A的坐标为(0,﹣1),AB∥x轴,CD经过点(0,2),▱ABCD的面积是18,则点D的坐标是(C)A.(﹣2,2)B.(3,2)C.(﹣3,2)D.(﹣6,1)解:如图,∵点A的坐标为(0,﹣1),AB∥x轴,反比例函数y=(k≠0)经过▱ABCD的顶点B,∴点B的坐标为(﹣k,﹣1),即AB=﹣k,又∵点E(0,2),∴AE=2+1=3,又∵平行四边形ABCD的面积是18,∴AB×AE=18,∴﹣k×3=18,∴k=﹣6,∴y=﹣,∵CD经过点(0,2),∴令y=2,可得x=﹣3,∴点D的坐标为(﹣3,2),17.如图,点M是反比例函数y=(x>0)图象上任意一点,MN⊥y轴于N,点P是x轴上的动点,则△MNP的面积为(A)A.1 B.2 C.4 D.不能确定第17题第18题18.如图,已知点A(0,4),B (1,4),点B在双曲线y=(k>0)上,在AB的延长线上取一点C,过C的直线交双曲线于点D,交x轴正半轴于点E,且CD=DE,则线段CE长度的取值范围是(A)A.4≤CE<4B.4≤CE<2C.2<CE<4 D.4<CE<2解:如图1,过D作DF⊥OA于F,∵点A(0,4),B (1,4),∴AB⊥y轴,AB=1,OA=4,∵CD=DE,∴AF=OF=2,∵点B在双曲线y=(k>0)上,∴k=1×4=4,∴反比例函数的解析式为:y=,∵过点C的直线交双曲线于点D,∴D点的纵坐标为2,把y=2代入y=得,x=2,∴D(2,2),当O与E重合时,如图2,∵DF=2,∴AC=4,∵OA=4,∴CE=4,当CE⊥x轴时,CE=OA=4,∴4≤CE<4,19.如图,已知点A(2,3)和点B(0,2),点A在反比例函数y=的图象上,作射线AB,交反比例函数图象于另一点M,再将射线AB绕点A按逆时针方向旋转45°,交反比例函数图象于点C,则CM的长度为(D)A.5 B.6 C.4D.5第19题第20题第21题解:如图,过A作AD⊥y轴于D,将AB绕着点B顺时针旋转90°,得到A'B,过A'作A'H⊥y轴于H,由AB=BA',∠ADB=∠BHA'=90°,∠BAD=∠A'BH,可得△ABD≌△BA'H,∴BH=AD=2,又∵OB=2,∴点H与点O重合,点A'在x轴上,∴A'(1,0),又∵等腰Rt△ABA'中,∠BAA'=45°,而∠BAC=45°,∴点A'在AC上,由A(2,3),A'(1,0),可得直线AC的解析式为y=3x﹣3,解方程组,可得或,∴C(﹣1,﹣6),由点A(2,3)和点B(0,2),可得直线AB 的解析式为y=x+2,解方程组,可得或,∴M(﹣6,﹣1),∴CM==5,20.如图,在平面直角坐标系中,点A是x轴正半轴上的一个定点,点P是双曲线y=(x>0)上的一个动点,PB⊥y轴于点B,当点P的横坐标逐渐增大时,四边形OAPB的面积将会(C)A.逐渐增大B.不变C.逐渐减小D.先增大后减小21.如图,一次函数y1=x+1的图象与反比例函数y2=的图象交于A、B两点,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D,连接AO、BO,下列说法正确的是(C)A.点A和点B关于原点对称B.当x<1时,y1>y2C.S△AOC=S△BOD D.当x>0时,y1、y2都随x的增大而增大解:A、,∵把①代入②得:x+1=,解得:x2+x﹣2=0,(x+2)(x﹣1)=0,x1=﹣2,x2=1,代入①得:y1=﹣1,y2=2,∴B(﹣2,﹣1),A(1,2),∴A、B不关于原点对称,故本选项错误;B、当﹣2<x<0或x>1时,y1>y2,故本选项错误;C、∵S△AOC=×1×2=1,S△BOD=×|﹣2|×|﹣1|=1,∴S△BOD=S△AOC,故本选项正确;D、当x>0时,y1随x的增大而增大,y2随x的增大而减小,故本选项错误;22.函数y=k(x﹣1)与y=﹣在同一直角坐标系内的图象大致是(A)A.B.C.D.23.如图,点A,C都在函数y=(x>0)的图象上,点B,D都在x轴上,且使得△OAB,△BCD都是等边三角形,则点C的坐标是(A)A.(+1,﹣)B.(+1,﹣1)C.(+1,﹣)D.(+1,﹣)第23题第24题解:如图,作AE⊥OB于E,CF⊥BD于F,∵△OAB,△BCD均为正三角形,A在反比例函数y=,∴A的横坐标是1,纵坐标是,∴OE=EB=1,OA=2OE=2,AE=,设BF=m,则C(2+m,m),代入y=,得:m2+2m﹣1=0,解得:m=﹣1±,∵m>0,∴m=﹣1+,∴点C的坐标为:(1+,).二.填空题(共9小题)24.如图,点M是函数图象上的一点,直线l:y=x,过点M分别作MA⊥y轴,MB⊥l,A,B为垂足,则MA•MB=.解:延长AM,交直线y=x于点D,设M(x,x+)则△AOD是等腰直角三角形,即∠ADO=45°,∴OA=AD=x+,AM=x,∴MD=AD﹣AM=,∵MB⊥l,∴MB=BD,∴△BDM是等腰直角三角形,∴MB2+BD2=MD2,∴MB=MD,∴MB=×=,∴MA•MB=x•=.25.如图将直线向左平移m个单位,与双曲线交于点A,与x轴交于点B,则OB2﹣OA2+AB2=.解:由题意知:平移后的直线解析式为:y=(x+m);设A(x,y),易知:B(﹣m,0),则有:OB2﹣OA2+AB2=m2﹣(x2+y2)+[(m+x)2+y2],联立y=(x+m),整理得:原式=﹣2x2﹣2mx;由于直线y=(x+m)与交于点A,联立两个函数解析式得:(x+m)=﹣,即x2+mx+2=0,得﹣x2﹣mx=2;故所求代数式=﹣2x2﹣2mx=4.故答案为:4.26.如果反比例函数y=(m﹣3)的图象在第二、四象限,那么m=1.【解答】解:根据题意m2﹣6m+4=﹣1,解得m=1或5,又m﹣3<0,m<3,所以m=1.故答案为:1.27.已知双曲线y=(k≠0)上有一点P,PA⊥x轴于A,点O为坐标原点,且S△PAO=12,则此反比例函数的解析式为y=﹣或y=.【解答】解:设点P的坐标为(x,y).∵P(x,y)在反比例函数y=kx(k≠0)的图象,∴k=xy,=12,∵S△PAO∴|xy|=12,∴|xy|=24,∴xy=±24,∴k=±24,∴y=﹣或y=.故答案为:y=﹣或y=.28.反比例函数的图象同时过A(﹣2,a)、B(﹣3,b)、C(1,c)三点,则a、b、c的大小关系是a>b>c.【解答】解:∵k<0,∴此函数的图象在二、四象限,∵﹣2<0,﹣3<0,1>0,∴A、B两点在第二象限,C点在第三象限,∴a>0,b>0,c<0,∵﹣2>﹣3,∴a>b>0,∴a>b>c.故答案为a>b>c.29.函数y=(m2﹣m)x m2﹣3m+1是反比例函数,则m的值是2,它的图象分布在第一、三象限,在每一个象限内,y随x的增大而减小.【解答】解:由题意得:m2﹣3m+1=﹣1,且m2﹣m≠0,解得:m=2,∵m2﹣m=4﹣2=2>0,∴图象分布在第一、三象限,在每一个象限内,y随x的增大而减小,故答案为:2;第一、三;减小.30.如图,A、B是反比例函数y=上两点,AC⊥y轴于C,BD⊥x轴于D,AC=BD=OC,S四边形=14,则k=16.ABDC【解答】解:如图,分别延长CA,DB交于点E,根据AC⊥y轴于C,BD⊥x轴于D,AC=BD=OC,知△CED为直角三角形,且点A与点B的纵横坐标正好相反,设点A的坐标为(x A,y A),则点B的坐标为(y A,x A),点E的坐标为(y A,y A),四边形ACDB的面积为△CED的面积减去△AEB的面积.CE=ED=y A,AE=BE=y﹣y A,∴S ACDB=S△CED﹣S△AEB=[y A•y A﹣(y A﹣y A)(y A﹣y A)]=y A2=14,∵y A>0,∴y A=8,点A的坐标为(2,8),∴k=2×8=16.故答案为:16.31.如图,B为双曲线y=(x>0)上一点,直线AB平行于y轴交直线y=x于点A,若OB2﹣AB2=12,则k=6.【解答】解:如图,延长AB交x轴于点C,设点C的横坐标为a,则点B的纵坐标为,点A的纵坐标为a,所以,AB=a﹣,∵AB平行于y轴,∴AC⊥OC,在Rt△BOC中,OB2=OC2+BC2=a2+()2,∵OB2﹣AB2=12,∴a2+()2﹣(a﹣)2=12,整理得,2k=12,解得k=6.故答案为:6.32.如图,正比例函数y=x与反比例函数y=的图象相交于A,C两点,AB⊥x轴于B,CD⊥x轴于D,则四边形ABCD的面积为2.【解答】解:根据反比例函数的对称性可知:OB=OD,AB=CD,∵四边形ABCD的面积等于S△ADB +S△BDC,∵A(1,1),B(1,0),C(﹣1,﹣1),D(﹣1,0)∴S△ADB=(DO+OB)×AB=×2×1=1,S△BDC=(DO+OB)×DC=×2×1=1,∴四边形ABCD的面积=2.故答案为:2.三.解答题(共8小题)33.如图1,在平面直角坐标系中,四边形AOBC是矩形,点C的坐标为(4,3),反比例函数y=(k>0)的图象与矩形AOBC的边AC、BC分别相交于点E、F,将△CEF沿EF对折后,C点恰好落在OB上.(1)求证:△AOE与△BOF的面积相等;(2)求反比例函数的解析式;(3)如图2,P点坐标为(2,﹣3),在反比例函数y=的图象上是否存在点M、N(M在N的左侧),使得以O、P、M、N为顶点的四边形是平行四边形?若存在,求出点M、N的坐标;若不存在,请说明理由.【解答】解:(1)∵点E、F均是反比例函数y=上的点,四边形AOBC是矩形,∴AE⊥y轴,BC⊥x轴,∴S△AOE =S△BOF=;(2)∵C坐标为(4,3),∴设E(,3),F(4,),如图1,将△CEF沿EF对折后,C点恰好落在OB边上的G点,作EH⊥OB,垂足为H,∵∠EGH+∠HEG=90°∠EGH+∠FGB=90°,∴∠HEG=∠FGB,又∵∠EHG=∠GBF=90°,∴△EGH∽△GFB,∴=,∴GB==,在Rt△GBF中,GF2=GB2+BF2,即(3﹣)2=()2+()2,解得k=,∴反比例函数的解析式为:y=;(3)存在.当OP是平行四边形的边时,如图2所示:平行四边形OPMN,可以看成线段PN沿PO的方向平移至OM处所得.设N(a,),∵P(2,﹣3)的对应点O(0,0),∴M(a﹣2,+3),代入反比例解析式得:(a﹣2)(+3)=,整理得4a2﹣8a﹣7=0,解得a=,当a=时,==,﹣2=,+3=,∴N(,),M(,)(舍去)或N(,),M(,).当OP为对角线时,如图3所示:设M(a,),N(b,),∵P(2,﹣3),∴,解得,,∴M(,),N(,)(舍去)或M(,),N(,),综上所述:M(,)N(,);或M(,),N(,).34.如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A、C分别在坐标轴上,顶点B的坐标为(4,2),M、N分别是AB、BC的中点.(1)若反比例函数y=(x>0)的图象经过点M,求该反比例函数的解析式,并通过计算判断点N 是否在该函数的图象上;(2)若反比例函数y=(x>0)的图象与△MNB(包括边界)有公共点,请直接写出m的取值范围.【解答】解:(1)∵顶点B的坐标为(4,2),M、N分别是AB、BC的中点,∴M点的坐标为(2,2),把M(2,2)代入反比例函数y=(m≠0)得,m=2×2=4,∴反比例函数的解析式为y=;∵M、N分别为矩形OABC的边AB、BC的中点,且M(2,2),B点坐标为(4,2),∴N点坐标为(4,1),∵4×1=4,∴点N在函数y=的图象上;(2)4≤m≤8.35.如图,反比例函数y=﹣与一次函数y=﹣x+2的图象交于A、B两点.(1)求A、B两点的坐标;(2)观察图象,直接写出x为何值时,一次函数值大于反比例函数?(3)求△AOB的面积.【解答】解:(1)联立两函数解析式得:,解得:或,即A(﹣2,4),B(4,﹣2);(2)根据图象得:当x<﹣2或0<x<4时,一次函数值大于反比例函数值.(3)令y=﹣x+2中x=0,得到y=2,即D(0,2),∴OD=2,∴S△AOB =S△AOC+S△BOC=×2×2+×2×4=6.36.如图,反比例函数y1=的图象与一次函数y2=kx+b的图象交于A(m,3),B(﹣3,n)、两点.(1)求一次函数的解析式及△AOB的面积;(2)根据图象直接写出不等式的解集;(3)若点P是坐标轴上的一点,且满足△PAB面积等于△AOB的面积的2倍,直接写出点P的坐标.【解答】解:(1)∵反比例函数y1=的图象与一次函数y2=kx+b的图象交于A(m,3),B(﹣3,n)、两点,将A与B坐标代入反比例解析式得:m=1,n=﹣1,∴A(1,3)、B(﹣3,﹣1),代入一次函数解析式得:,解得:k=1,b=2,∴一次函数的解析式为y=x+2,∵直线y=x+2与x轴、y轴的交点坐标为(﹣2,0)、(0,2),∴S△AOB=×2×(1+3)=4;(2)∵A(1,3),B(﹣3,﹣1),观察图象可知,当x<﹣3或0<x<1时,一次函数的图象在反比例函数图象的下方,∴不等式的解集是x<﹣3或0<x<1.(3)∵S△AOB=4,∴S△PAB =2S△AOB=8,设P1(p,0),即OP1=|p+2|,S△ABP1=S△AP1C+S△P1BC=|p+2|×3+|p+2|×1=8,解得:p=﹣6或p=2,则P1(﹣6,0)、P2(2,0),同理可得P3(0,6)、P4(0,﹣2).37.如图,若直线y=kx+b(k≠0)与x轴交于点,与双曲线在第二象限交于点B,且OA=OB,△OAB的面积为(1)求直线AB的解析式及双曲线的解析式;(2)求tan∠ABO的值.【解答】解:(1)∵直线y=kx+b(k≠0)与x轴交于点A,∴OA=,又∵OA=OB,∴OB=,过点B作BM⊥x轴于点M,∵△OAB的面积为,即OA•BM=,∴BM=2,在Rt△OBM中可求OM=1.5,∴B(﹣1.5,2),再根据待定系数法可得:,解得:k=﹣,b=,∴直线AB的解析式为:y=﹣x+;再将点B代入函数y=得:m=﹣3,∴双曲线的解析式为:y=﹣;(2)∵OA=OB,∴∠ABO=∠BAM,在Rt△ABM中,BM=2,∴MO=,AM=+=4,∴tan∠ABO=tan∠BAM==.38.已知反比例函数y=和一次函数y=2x﹣1,其中一次函数的图象经过(a,b),(a+k,b+k+2)两点.(1)求反比例函数的解析式?(2)已知A在第一象限,是两个函数的交点,求A点坐标?(3)利用②的结果,请问:在x轴上是否存在点P,使△AOP为等腰三角形?【解答】解:(1)∵一次函数y=2x﹣1的图象经过(a,b),(a+k,b+k+2)两点,代入得:,解得:k=2,代入反比例函数的解析式得:y==,∴反比例函数的解析式是y=.(2)解方程组得:,,∴两函数的交点坐标是(﹣,﹣2),(1,1),∵交点A在第一象限,∴A(1,1).(3)在x轴上存在点P,使△AOP为等腰三角形,理由是:分为三种情况:①以O为圆心,以OA为半径作圆,交x轴于两点C、D,此时OA=0C=0D,∴当P于C或D重合时,△AOP是等腰三角形,此时P的坐标是(,0),(﹣,0);②以A为圆心,以OA为半径作圆,交x轴于点E,此时OA=AE,∴当P于E重合时,△AOP是等腰三角形,此时P的坐标是(2,0);③作OA的垂直平分线交x轴于F,此时AF=OF,∴当P于F重合时,△AOP是等腰三角形,此时P的坐标是(1,0);∴存在4个点P,使△AOP是等腰三角形.39.如图,双曲线y=在第一象限的一支上有一点C(1,5),过点C的直线y=﹣kx+b(k>0)与x 轴交于点A(a,0).(1)求点A的横坐标a与k的函数关系式(不写自变量取值范围).(2)当该直线与双曲线在第一象限的另一个交点D的横坐标是9时,求△COA的面积.【解答】解:(1)把C(1,5)代入直线y=﹣kx+b(k>0)得:﹣k+b=5,则b=5+k;把(a,0)代入直线y=﹣kx+b(k>0)得:﹣ak+b=0,把b=5+k代入﹣ak+b=0,得:﹣ak+5+k=0,解得:a=;(2)把x=9代入y=得:y=,则D的坐标是(9,),设直线AC的解析式是y=﹣kx+b,把C、D两点代入,得,解得:,则AC的解析式是:y=﹣x+.令y=0,解得:x=10.则OA=10,则△COA的面积=×10×5=25.40.如图,一次函数y=ax+b的图象与反比例函数的图象交于M、N两点.(1)利用图中条件,求反比例函数和一次函数的解析式;(2)连接OM、ON,求三角形OMN的面积.(3)连接OM,在x轴的正半轴上是否存在点Q,使△MOQ是等腰三角形,若存在,请直接写出所有符合条件的点Q的坐标,若不存在,说明理由.【解答】解:(1)把N(﹣1,﹣4)代入y=得:k=4,∴y=,把M(2,m)代入得:m=2,∴M(2,2),把N(﹣1,﹣4),M(2,2)代入y=ax+b得:,解得:a=2,b=﹣2,∴y=2x﹣2,答:反比例函数的解析式是y=,一次函数的解析式是y=2x﹣2.(2)设MN交x轴于C,y=2x﹣2,当y=0时,x=1,∴C(1,0),OC=1,∴△MON的面积是S=S△MOC +S△NOC=×1×2+×1×|﹣4|=3,答:三角形MON的面积是3.(3)当OM=OQ时,Q的坐标是(2,0);当OM=MQ时,Q的坐标是(4,0);当OQ=QM时,Q的坐标是(2,0);答:在x轴的正半轴上存在点Q,使△MOQ是等腰三角形,所有符合条件的点Q的坐标是(2,0)或(4,0)或(2,0).第31页(共31页)。
中考数学《反比例函数》专项练习(附答案解析)
中考数学《反比例函数》专项练习(附答案解析)一、综合题1.已知:如图1,函数y1=kx 和y2=xk(k>1)的图象相交于点A和点B .(1)求点A和点B的坐标(用含k的式子表示);(2)如图2,点C的坐标为(1,k),点D是第一象限内函数y1的图象上的动点,且在点A的右侧,直线AC、BC、AD、BD分别与x轴相交于点E、F、G、H .①判定△CEF的形状,并说明理由;②点D在运动的过程中,∠CAD和∠CBD的度数和是否变化?如果变化,说明理由;如果不变,求出∠CAD和∠CBD的度数和.2.在平面直角坐标系中,我们把横坐标和纵坐标相等的点叫“梦之点”,例如点(1,1),(-2,-2),(√2,√2),…都是“梦之点”,显然“梦之点”有无数个.(1)若点P(2,m)是反比例函数y=nx(n为常数,n≠0)的图象上的“梦之点”,求这个反比例函数的解析式;(2)函数y=3kx+s-1(k,s为常数)的图象上存在“梦之点”吗?若存在,请求出“梦之点”的坐标,若不存在,说明理由.3.如图,点A是坐标原点,点D是反比例函数y=6x(x>0)图象上一点,点B在x轴上,AD=BD,四边形ABCD是平行四边形,BC交反比例函数y=6x(x>0)图象于点E.(1)平行四边形BCD 的面积等于 ;(2)设D 点横坐标为m ,试用m 表示点E 的坐标;(要有推理和计算过程) (3)求 CE:EB 的值; (4)求 EB 的最小值.4.如图,一次函数y=kx+b 的图象与反比例函数y= mx 的图象交于点A (﹣3,m+8),B (n ,﹣6)两点.(1)求一次函数与反比例函数的解析式; (2)求△AOB 的面积.5.已知双曲线y=1x (x >0),直线l 1:y ﹣√2=k (x ﹣√2)(k <0)过定点F 且与双曲线交于A ,B 两点,设A (x 1,y 1),B (x 2,y 2)(x 1<x 2),直线l 2:y=﹣x+√2. (1)若k=﹣1,求△OAB 的面积S ; (2)若AB=52√2,求k 的值;(3)设N (0,2√2),P 在双曲线上,M 在直线l 2上且PM ∥x 轴,求PM+PN 最小值,并求PM+PN 取得最小值时P 的坐标.(参考公式:在平面直角坐标系中,若A (x 1,y 1),B (x 2,y 2)则A ,B 两点间的距离为AB=√(x 1−x 2)2+(y 1−y 2)2)6.已知反比例函数y=1−2mx( m为常数)的图象在一、三象限.(1)求m的取值范围.(2)如图,若该反比例函数的图象经过▱ ABCD的顶点D,点A,B的坐标分别为(0,3),(-2,0).①求出反比例函数表达式;②设点P是该反比例函数图象上的一点,若OD=OP,则P点的坐标为▲ .若以D,O,P为顶点的三角形是等腰三角形,则满足条件的点P的个数为▲ .7.绘制函数y=x+1x的图象,我们经历了如下过程:确定自变量x的取值范围是x≠0;列表﹣﹣描点﹣﹣连线,得到该函数的图象如图所示.x …-4 -3 -2 -1 −12−13−141413121 2 3 4 …y …−414−313−212−2−212−313−4144143132122 212313414…观察函数图象,回答下列问题:(1)函数图象在第象限;(2)函数图象的对称性是A.既是轴对称图形,又是中心对称图形B.只是轴对称图形,不是中心对称图形C.不是轴对称图形,而是中心对称图形D.既不是轴对称图形,也不是中心对称图形(3)在x>0时,当x=时,函数y有最(大,小)值,且这个最值等于;在x<0时,当x=时,函数y有最(大,小)值,且这个最值等于;=−2x+1是否有实数解?说明理由.(4)方程x+1x8.菱形ABCD在平面直角坐标系中的位置如图所示,对角线AC与BD的交点E恰好在y轴上,过点D和BC的中点H的直线交AC于点F,线段DE,CD的长是方程x2﹣9x+18=0的两根,请解答下列问题:(1)求点D的坐标;(k≠0)的图象经过点H,则k= ;(2)若反比例函数y= kx(3)点Q在直线BD上,在直线DH上是否存在点P,使以点F,C,P,Q为顶点的四边形是平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.9.设P(x,0)是x轴上的一个动点,它与原点的距离为y1.(1)求y1关于x的函数解析式,并画出这个函数的图象;的图象与函数y1的图象相交于点A,且点A的纵坐标为2.(2)若反比例函数y2=kx①求k的值;②结合图象,当y1>y2时,写出x的取值范围.10.受新冠肺炎疫情的影响,运城市某化工厂从2020年1月开始产量下降.借此机会,为了贯彻“发展循环经济,提高工厂效益”的绿色发展理念;管理人员对生产线进行为期5个月的升级改造,改造期间的月利润与时间成反比例函数;到5月底开始恢复全面生产后,工厂每月的利润都比前一个月增加10万元.设2020年1月为第1个月,第x个月的利润为y万元,其图象如图所示,试解决下列问题:(1)分别写出该化工厂对生产线进行升级改造前后,y与x的函数表达式.(2)到第几个月时,该化工厂月利润才能再次达到100万元?(3)当月利润少于50万元时,为该化工厂的资金紧张期,问该化工厂资金紧张期共有几个月?11.(如图,四边形ABCD在平面直角坐标系的第一象限内,其四个顶点分别在反比例函数y1=nx 与y2=4nx的图象上,对角线AC⊥BD于点P,AC⊥x轴于点N(2,0)(1)若CN=12,试求n的值;(2)当n=2,点P是线段AC的中点时,试判断四边形ABCD的形状,并说明理由;(3)直线AB与y轴相交于E点.当四边形ABCD为正方形时,请求出OE的长度.12.如图点A、B分别在x,y轴上,点D在第一象限内,DC⊥x轴于点C,AO=CD=2,AB=DA= √5,反比例函数y= kx(k>0)的图象过CD的中点E.(1)求证:△AOB≌△DCA;(2)求k的值;(3)△BFG和△DCA关于某点成中心对称,其中点F在y轴上,试判断点G是否在反比例函数的图象上,并说明理由.13.如图所示,一次函数y=kx+b的图象与x轴、y轴分别交于点A、B,且与反比例函数y=m的图象在第二象限交于点C,CD⊥x轴,垂足为点D.若OB=2OA=3OD= x12 .(1)求一次函数与反比例函数的解析式;(2)若两函数图象的另一个交点为E,连结DE,求△CDE的面积;(3)直接写出不等式kx+b≤m的解集.x与y2= 14.某校九年级数学小组在课外活动中,研究了同一坐标系中两个反比例函数y1=k1xk2(k2>k1>0)在第一象限图象的性质,经历了如下探究过程:x操作猜想:(1)如图①,当k1=2,k2=6时,在y轴的正方向上取一点A作x轴的平行线交y1于点B,交y2于点C .当OA=1时,AB=,BC=,BC AB =;当OA=3时,AB=,BC=,BCAB=;当OA=a时,猜想BCAB=(2)在y轴的正方向上任意取点A作x轴的平行线,交y1于点B、交y2于点C,请用含k1、k2的式子表示BCAB的值,并利用图②加以证明.(3)如图③,若k2=12,BCAB =12,在y轴的正方向上分别取点A、D(OD>OA)作x轴的平行线,交y1于点B、E,交y2于点C、F,是否存在四边形ADFB是正方形?如果存在,求OA的长和点B的坐标;如果不存在,请说明理由.15.如图,直线y=2x+2与y轴交于A点,与反比例函数y=kx(x>0)的图象交于点M,过M作MH⊥x轴于点H,且tan∠AHO=2.(1)求H点的坐标及k的值;(2)点P在y轴上,使△AMP是以AM为腰的等腰三角形,请直接写出所有满足条件的P 点坐标;(3)点N(a,1)是反比例函数y=kx(x>0)图象上的点,点Q(m,0)是x轴上的动点,当△MNQ的面积为3时,请求出所有满足条件的m的值.16.如图,双曲线y1=k1x与直线y2=xk2的图象交于A、B两点.已知点A的坐标为(4,1),点P(a,b)是双曲线y1=k1x上的任意一点,且0<a<4.(1)分别求出y1、y2的函数表达式;(2)连接PA、PB,得到△PAB,若4a=b,求三角形ABP的面积;(3)当点P在双曲线y1=k1x上运动时,设PB交x轴于点E,延长PA交x轴于点F,判断PE与PF的大小关系,并说明理由.参考答案与解析1.【答案】(1)解:由题意,联立{y=kxy=xk,解得{x=ky=1或{x=−ky=−1,∵点A在第一象限,点B在第二象限,且k>1,∴A(k,1),B(−k,−1)(2)解:①△CEF是等腰直角三角形,理由如下:设直线BC的解析式为y=k0x+b0,将点B(−k,−1),C(1,k)代入得:{−kk0+b0=−1k0+b0=k,解得{k0=1b0=k−1,则直线BC的解析式为y=x+k−1,当y=0时,x+k−1=0,解得x=1−k,即F(1−k,0),同理可得:点E的坐标为E(1+k,0),∴CF=√(1−k−1)2+(0−k)2=√2k,CE=√(1+k−1)2+(0−k)2=√2k,EF=1+k−(1−k)=2k,∴CE=CF,CE2+CF2=4k2=EF2,∴△CEF是等腰直角三角形;②由题意,设点D的坐标为D(m,km),则m>k>1,∵△CEF是等腰直角三角形,∴∠CFE=∠CEF=45°,∴∠BFH=∠AEG=135°,设直线BD的解析式为y=k1x+b1,将点B(−k,−1),D(m,km )代入得:{−kk1+b1=−1mk1+b1=km,解得{k1=1mb1=k−mm,则直线BD的解析式为y=1m x+k−mm,当y=0时,1m x+k−mm=0,解得x=m−k,即H(m−k,0),同理可得:点G的坐标为G(k+m,0),∴DH=√(m−k−m)2+(0−km )2=km√1+m2,DG=√(k+m−m)2+(0−km )2=km√1+m2,∴DH=DG,∴∠DHG=∠DGH,∵∠DHG=∠BHF,∴∠DGH=∠BHF,∴∠CAD+∠CBD=∠AEG+∠DGH+∠CBD,=∠BFH+∠BHF+∠CBD,=180°,即∠CAD与∠CBD的度数和不变,度数和为180°2.【答案】(1)解:根据题意,“梦之点”就是有关函数图象与直线y=x的交点,其坐标就是对应的方程组的解.由题意可得:m=2由点P(2, 2)在反比例函数y=nx图象上,可得n=2×2=4故所求的反比例函数的解析式为y=4x(2)解:由题意可得:(Ⅰ)当k=0时,y=s−1,此时“梦之点”的坐标为(s−1, s−1 ) . (Ⅱ)当k≠0 时, (3k−1)x=1−s显然,此方程的解的情况决定函数y=3kx+s−1的图象上“梦之点”的存在情况,当k=13, s≠1时,方程无解,不存在“梦之点”;当k=13, s=1时,方程有无数个解,此时存在无数个“梦之点”,“梦之点”的坐标可表示为(ℎ,ℎ)(ℎ为任意实数);当k≠13时,得{x=1−s3k−1y=1−s3k−1,即“梦之点”的坐标为(1−s3k−1, 1−s3k−1)3.【答案】(1)12(2)解:由题意D(m,6m),由(1)可知AB=2m,∵四边形ABCD是平行四边形,∴CD=AB=2m,∴C(3m,6m) .∵B(2m,0),C(3m,6m),∴直线BC的解析式为y=6m2x−12m,由{y=6xy=6m2x−12m,解得{x=(√2+1)my=6√2−6m或{x=(1−√2)my=6(1+√2)m(舍弃),∴E((√2+1)m,6√2−6m);(3)解:作EF⊥x轴于F,CG⊥x轴于G . ∵EF//CG,∴CE BE=FG BF=√2+1)m (√2+1)m−2m =√2√2−1=√2 ;(4)解:∵CEBE =√2 ∴BE =√2+1 ,要使得 BE 最小,只要 AD 最小, ∵AD =√m 2+36m 2=√(m −6m )2+12 ,∴AD 的最小值为 2√3 , ∴BE 的最小值为√3√2+1=2√6−2√3 .4.【答案】(1)解:将A (﹣3,m+8)代入反比例函数y= mx 得,m −3=m+8,解得m=﹣6, m+8=﹣6+8=2,所以,点A 的坐标为(﹣3,2), 反比例函数解析式为y=﹣ 6x ,将点B (n ,﹣6)代入y=﹣ 6x 得,﹣ 6n =﹣6, 解得n=1,所以,点B 的坐标为(1,﹣6),将点A (﹣3,2),B (1,﹣6)代入y=kx+b 得, {−3k +b =2k +b =−6 , 解得 {k =−2b =−4,所以,一次函数解析式为y=﹣2x ﹣4; (2)解:设AB 与x 轴相交于点C , 令﹣2x ﹣4=0解得x=﹣2, 所以,点C 的坐标为(﹣2,0), 所以,OC=2, S △AOB =S △AOC +S △BOC , = 12 ×2×3+ 12 ×2×1,=3+1, =4.5.【答案】(1)解:当k=-1时,l 1:y=﹣x+2√2, 联立得,{y =−x +2√2y =1x ,化简得x 2﹣2√2x+1=0, 解得:x 1=√2﹣1,x 2=√2+1,设直线l 1与y 轴交于点C ,则C (0,2√2). S △OAB =S △AOC ﹣S △BOC =12•2√2•(x 2﹣x 1)=2√2;(2)解:根据题意得:{y −√2=k(x −√2)y =1x 整理得:kx 2+√2(1﹣k )x ﹣1=0(k <0), ∵△=[√2(1﹣k )]2﹣4×k ×(﹣1)=2(1+k 2)>0, ∴x 1、x 2 是方程的两根, ∴{x 1+x 2=√2(k−1)k x 1·x 2=−1k①, ∴AB=√(x 1−x 2)2+(y 1−y 2)2=√(x 1−x 2)2+(1x 1−1x 2)2=√(x 1−x 2)2(1+1x 12·x 22)=√[(x 1+x 2)2−4x 1x 2](1+1x 12·x 22),将①代入得,AB=√2(k 2+1)2k 2=√2(k 2+1)−k (k <0),∴√2(k 2+1)−k =5√22,整理得:2k2+5k+2=0,解得:k=﹣2,或 k=12;(3)解:∵直线l1:y﹣√2=k(x﹣√2)(k<0)过定点F, ∴ F(√2,√2).如图:设P(x,1x ),则M(﹣1x+√2,1x),则PM=x+1x ﹣√2=√(x+1x−√2)2=√x2+1x2−2√2(x+1x)+4,∵PF=√(x−√2)2+(1x −√2)2=√x2+1x2−2√2(x+1x)+4,∴PM=PF.∴PM+PN=PF+PN≥NF=2,当点P在NF上时等号成立,此时NF的方程为y=﹣x+2√2,由(1)知P(√2﹣1,√2+1),∴当P(√2﹣1,√2+1)时,PM+PN最小值是2.6.【答案】(1)解:根据题意,得1−2m>0,解得m<12,∴m的取值范围是m<12.(2)解:①∵四边形ABCD是平行四边形,A(0,3),B(−2,0),∴D(2,3) .把D(2,3)代入y=1−2mx ,得3=1−2m2,∴1−2m=6 .∴反比例函数表达式为y=6x;②(3,2)或(-2,-3)或(-3,-2);4 7.【答案】(1)一、三(2)C(3)1;小;2;−1;大;−2(4)解:方程x + 1x =﹣2x +1没有实数解,理由为:y =x + 1x 与y =﹣2x +1在同一直角坐标系中无交点.8.【答案】(1)解:x 2﹣9x+18=0, (x ﹣3)(x ﹣6)=0, x=3或6, ∵CD >DE , ∴CD=6,DE=3, ∵四边形ABCD 是菱形,∴AC ⊥BD ,AE=EC= √62−32 =3 √3 , ∴∠DCA=30°,∠EDC=60°, Rt △DEM 中,∠DEM=30°, ∴DM= 12 DE= 32 , ∵OM ⊥AB ,∴S 菱形ABCD = 12 AC •BD=CD •OM , ∴12×6√3×6 =6OM ,OM=3 √3 , ∴D (﹣ 32 ,3 √3 ) (2)解:(3)解:如图1,①∵DC=BC ,∠DCB=60°, ∴△DCB 是等边三角形, ∵H 是BC 的中点,∴DH⊥BC,∴当Q与B重合时,如图1,四边形CFQP是平行四边形,∵FC=FB,∴∠FCB=∠FBC=30°,∴∠ABF=∠ABC﹣∠CBF=120°﹣30°=90°,∴AB⊥BF,CP⊥AB,Rt△ABF中,∠FAB=30°,AB=6,∴FB=2 √3 =CP,,√3);∴P(92②如图2,∵四边形QPFC是平行四边形,∴CQ∥PH,由①知:PH⊥BC,∴CQ⊥BC,Rt△QBC中,BC=6,∠QBC=60°,∴∠BQC=30°,∴CQ=6 √3,连接QA,∵AE=EC,QE⊥AC,∴QA=QC=6 √3,∴∠QAC=∠QCA=60°,∠CAB=30°,∴∠QAB=90°,∴Q(﹣92,6 √3),由①知:F(32,2 √3),由F到C的平移规律可得P到Q的平移规律,则P(﹣92﹣3,6 √3﹣√3),即P(﹣152,5 √3);③如图3,四边形CQFP是平行四边形,同理知:Q(﹣92,6 √3),F(32,2 √3),C(92,3 √3),∴P(212,﹣√3);综上所述,点P的坐标为:(92,√3)或(﹣152,5 √3)或(212,﹣√3).9.【答案】(1)解:由题意y1=|x|.函数图象如图所示:(2)解:①当点A在第一象限时,由题意A(2,2),∴2=k2,∴k=4.同法当点A在第二象限时,k=−4,②观察图象可知:当k>0时,x>2时,y1>y2或x<0时,y1>y2.当k<0时,x<−2时,y1>y2或x>0时,y1>y2.10.【答案】(1)解:由题意得,设前5个月中y= kx,把x=1,y=100代入得,k=100,∴y与x之间的函数关系式为y= 100x(0<x<5,且x为整数),把x=5代入,得y=20,由题意设5月份以后y与x的函数关系式为y=10x+b,把x=5,y=20代入得,20=10×5+b,解得:b=-30,∴y与x之间的函数关系式为y=10x-30(x>5且x为整数);(2)解:在函数y=10x−30中,令y=100,得10x−30=100解得:x=13答:到第13个月时,该化工厂月利润再次达到100万元.(3)解:在函数y=100x中,当y=50时,x=2,∵100>0,y随x的增大而减小,∴当y<50时,x>2在函数y=10x−30中,当y<50时,得10x−30<50解得:x<8∴2<x<8且x为整数;∴x可取3,4,5,6,7;共5个月.答:该化工厂资金紧张期共有5个月.11.【答案】(1)解:∵点N的坐标为(2,0),CN⊥x轴,且CN=12,∴点C的坐标为(2,12).∵点C在反比例函数y1=nx的图象上,∴n=2×12=1.(2)解:四边形ABCD为菱形,理由如下:当n=2时,y1=nx=2x,y2=4nx=8x.当x=2时,y1=2x=1,y2=8x=4,∴点C的坐标为(2,1),点A的坐标为(2,4).∵点P是线段AC的中点,∴点P 的坐标为(2, 52 ). 当y = 52 时, 2x = 52 , 8x = 52 , 解得:x = 45 ,x = 165 ,∴点B 的坐标为( 45 , 52 ),点D 的坐标为( 165 , 52 ), ∴BP =2﹣ 45 = 65 ,DP = 165 ﹣2= 65 , ∴BP =DP .又∵AP =CP ,AC ⊥BD , ∴四边形ABCD 为菱形.(3)解:∵四边形ABCD 为正方形, ∴AC =BD ,且点P 为线段AC 及BD 的中点. 当x =2时,y 1= 12 n ,y 2=2n ,∴点A 的坐标为(2,2n ),点C 的坐标为(2, 12 n ),AC = 32 n , ∴点P 的坐标为(2, 54 n ).同理,点B 的坐标为( 45 , 54 n ),点D 的坐标为( 165 , 54 n ),BD = 125 . ∵AC =BD , ∴32 n = 125 , ∴n = 85 ,∴点A 的坐标为(2, 165 ),点B 的坐标为( 45 ,2). 设直线AB 的解析式为y =kx+b (k ≠0),将A (2, 165 ),B ( 45 ,2)代入y =kx+b ,得: {2k +b =16545k +b =2 ,解得: {b =65k =1 ,∴直线AB 的解析式为y =x+ 65 . 当x =0时,y =x+ 65 = 65 , ∴点E 的坐标为(0, 65 ),∴当四边形ABCD为正方形时,OE的长度为6.512.【答案】(1)证明:∵点A、B分别在x,y轴上,点D在第一象限内,DC⊥x轴,∴∠AOB=∠DCA=90°,在Rt△AOB和Rt△DCA中,AO=CD,AB=DA∴Rt△AOB≌Rt△DCA(HL)(2)解:在Rt△ACD中,CD=2,AD= √5,∴AC= =1,∴OC=OA+AC=2+1=3,∴D点坐标为(3,2),∵点E为CD的中点,∴点E的坐标为(3,1),k=3×1=3(3)解:点G在反比例函数的图象上.理由如下:∵△BFG和△DCA关于某点成中心对称,∴△BFG≌△DCA,∴FG=CA=1,BF=DC=2,∠BFG=∠DCA=90°,而OB=AC=1,∴OF=OB+BF=1+2=3,∴G点坐标为(1,3),∵1×3=3,∴G(1,3)在反比例函数y= 的图象上13.【答案】(1)解:∵OB =2OA =3OD =12 ∴OA =6,OD =4 ∴A(6,0),B(0,12)把 A(6,0),B(0,12) 分别代入 y =kx +b 得: {6k +b =0b =12 ,解之得: m =−4×20=−80 ∴一次函数的解析式为 y =−2x +12 令 x =−4 ,则 y =20 ∴C(−4,20)把 C(−4,20) 代入 y =mx 得:m =−4×20=−80∴反比例函数的解析式为 y =−80x ; (2)解:解方程组 {y =−2x +12y =−80x 得: {x 1=−4y 1=20,{x 2=10y 2=−8∴E(10,−8)∴S ΔCDE =S ΔADC +S ΔADE=12AD ⋅(CD +|y E |)=12×(4+6)×(20+8) =140(3)解:如图:当x <-4时, y =mx 的图象在 y =kx +b 的下方,即 kx +b > mx ; 当 −4 ≤ x <0 时, y =mx 的图象在 y =kx +b 的上方,即 kx +b ≤ mx ; 当0<x <10时, y =mx 的图象在 y =kx +b 的下方,即 kx +b > mx ; 当 x ≥10时, y =mx 的图象在 y =kx +b 的上方,即 kx +b ≤ mx ; 综上可得,不等式 kx +b ≤ mx 的解集为 −4 ≤ x <0 或 x ≥10. 14.【答案】(1)2;4;2;23;43;2;2 数学思考: (2)BCAB =k 2−k 1k 1证明:∵AB ·OA =k 1 , AC ·OA =k 2 , ∴AC ·OA −AB ·OA =BC ·OA =k 2−k 1 ,∴BCAB =BC·OAAB·OA=k2−k1k1.推广应用:(3)解:若四边形ADFB是正方形,设点B的坐标为(a,b)(a>0,b>0),则有DF=DA=AB=a,OA=b,OD=a+b,∴点F的坐标为(a,a+b) .∵k2=12,BCAB =k2−k1k1=12,∴12−k1k1=12,解得:k1=8 .∵点B在y=8x 图象上,点F在y=12x图象上,∴ab=8,a (a+b)=12,∴a2=12−8=4,∴a=2,∴b=4,∴OA=4,点B的坐标为(2,4) .15.【答案】(1)解:由y=2x+2可知A(0,2),即OA=2,∵tan∠AHO=2,∴OH=1,∴H(1,0),∵MH⊥x轴,∴点M的横坐标为1,∵点M在直线y=2x+2上,∴点M的纵坐标为4,即M(1,4),∵点M在y=kx上,∴k=1×4=4;(2)解:①当AM=AP时,∵A(0,2),M(1,4),∴AM=√5,则AP=AM=√5,∴此时点P的坐标为(0,2﹣√5)或(0,2+ √5);②若AM=PM时,设P(0,y),则PM=√(1−0)2+(4−y)2,∴√(1−0)2+(4−y)2=√5,解得y=2(舍)或y=6,此时点P的坐标为(0,6),综上所述,点P的坐标为(0,6)或(0,2+ √5),或(0,2﹣√5);(3)解:∵点N(a,1)在反比例函数y=4x(x>0)图象上,∴a=4,∴点N(4,1),延长MN交x轴于点C,设直线MN的解析式为y=mx+n,则有{m+n=44m+n=1,,解得{m=−1n=5,∴直线MN的解析式为y=﹣x+5.∵点C是直线y=﹣x+5与x轴的交点,∴点C的坐标为(5,0),OC=5,∵S△MNQ=3,∴S△MNQ =S△MQC﹣S△NQC=12×QC×4﹣12×QC×1=32QC=3,∴QC=2,∵C(5,0),Q(m,0),∴|m﹣5|=2,∴m=7或3,故答案为7或3.16.【答案】(1)解:把点A(4,1)代入双曲线y1=k1x得k1=4,∴双曲线的解析式为y1=4x;把点A(4,1)代入直线y2=x k2得k2=4,∴直线的解析式为y2=14x(2)解:∵点P(a,b)在y1=4x的图象上,∴ab=4,∵4a=b,∴4a2=4,则a=±1,∵0<a<4,∴a=1,∴点P的坐标为(1,4),又∵双曲线y1=4x 与直线y2=14x的图象交于A、B两点,且点A的坐标为(4,1),∴点B的坐标为(−4,−1),过点P作PG∥y轴交AB于点G,如图所示,把x=1代入y2=14x,得到y=14,∴点G的坐标为(1,14),∴PG =4−14=154 , ∴S △ABP =12 PG ( x A −x B )=12×154×8=15 (3)解:PE=PF .理由如下:∵点P ( a , b )在 y 1=4x 的图象上,∴b =4a ,∵点B 的坐标为( −4 , −1 ), 设直线PB 的表达式为 y =mx +n , ∴{am +n =4a −4m +n =−1, ∴{m =1a n =4a −1, ∴直线PB 的表达式为 y =1a x +4a −1 , 当 y =0 时, x =a −4 ,∴E 点的坐标为( a −4 ,0), 同理:直线PA 的表达式为 y =−1a x +4a +1 , 当 y =0 时, x =a +4 ,∴F 点的坐标为( a +4 ,0),过点P 作PH ⊥x 轴于H ,如图所示,∵P 点坐标为(,∴H 点的坐标为( a ,0),∴EH =x H −x E =a −(a −4)=4 , FH =x F −x H =a +4−a =4 , ∴EH=FH ,∴PE=PF .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
xyOA 图 2九年级数学上第五章反比例函数一、选择题 题号 1 2 3 4 5 6 7 8 9 10 答案1、(2010内蒙呼和浩特)已知:点A (x 1,y 1)、B (x 2,y 2)、C (x 3,y 3)是函数y=-x3图像上的三点,且x 1<0<x 2<x 3则y 1、y 2、y 3的大小关系是( ) A .y 1< y 2< y 3 B. y 2<y 3<y 1 C. y 3<y 2<y 1 D.无法确定2、已知函数1y x=的图象如图所示,当x≥-1时,y 的取值范围是( ) <-1≤-1C. y≤-1或y >0D. y <-1或y≥03、(2010吉林)反比例函数xky =的图象如图所示,则k 的值可能是( ) A .-1B .21C .1D .24、(2010云南曲靖)函数y=kx-k 与y )0(≠=k xk在同一坐标系中的大致图像是( )5、(2010湖北黄石)如图,反比例函数xk=y (k >0)与一次函数b x 21y +=的图象相交于两点A (1x ,1y ),B (2x ,2y ),线段AB 交y 轴与C ,当|1x -2x |=2 且AC = 2BC 时,k 、b 的值分别为( ) =21,b =2 =94,b =1 C.k =13,b =13 =94,b =13 6、(2010辽宁大连)如图2,反比例函数11k y x=和正比例函数22y k x = 的图像都经过点(1,2)A -,若12y y >,则x 的取值范围是( ) A. 10x -<< B. 11x -<< C. 1x <-或01x << D. 10x -<<或1x >AOy xB COAB Cxyy =x y1 xOA BC7、(2010 广西玉林、防城港)直线l 与双曲线C 在第一象限相交于A 、B 两点, 其图象信息如图4所示,则阴影部分(包括边界)横、纵坐标都是整数的点 (俗称格点)有( )A .4个B .5 个C .6个D .8个 8、(2010四川攀枝花)如图,等腰直角三角形ABC 位于第一象限,AB=AC=2, 直角顶点A 在直线y = x 上,其中A 点的横坐标为1,且两条直角边AB 、AC 分 别平行于x 轴、y 轴。
若双曲线y =xk(k ≠0)与△ABC 的边有交点,则k 的取值 范围是( )A .1<k <2B .1≤k ≤3C .1≤k ≤4D .1≤k <49、(2010鄂尔多斯)定义新运算: a ⊕b=⎪⎩⎪⎨⎧≠>-≤-)0()(1b b a ba b a a 且,则函数y=3⊕x 的图象大致是10、(2010辽宁本溪)如图所示,已知菱形OABC ,点C 在x 轴上,直线y =x经过点A ,菱形OABC 2.若反比例函数的图象经过点B ,则此 反比例函数表达式为( ) A .1y x=B .2y =C .21y +=D .21y +180° 二、填空题、(2010内蒙赤峰)已知反比例函数xy 2=,当-4≤x ≤-1时,y 的最大值是___________.12、(2010广西河池)如图3,Rt △ABC 在第一象限,90BAC ∠=o,AB=AC=2, 点A 在直线y x =上,其中点A 的横坐标为1,且AB ∥x 轴, AC ∥y 轴,若双曲线ky x=()0k ≠与△ABC 有交点,则k 的 取值范围是 .D OCA PB yxB AOCy x 13、(2010福建南平)函数y= 4x 和y=1x 在第一象限内的图像如图,点P 是y= 4x的图像上一动点,PC ⊥x 轴于点C ,交y=1x 的图像于点B.给出如下结论:①△ODB 与△OCA 的面积 相等;②PA 与PB 始终相等;③四边形PAOB 的面积大小不会发生变化; ④CA= 13AP.其中所有正确结论的序号是______________.14、(2010广西南宁)如图7所示,点1A 、2A 、3A 在x 轴上,且32211A A A A OA ==,分别过点1A 、2A 、3A 作y 轴的平行线,与分比例函数)0(8>=x xy 的图像分别 交于点1B 、2B 、3B ,分别过点1B 、 2B 、3B 作x 轴的平行线,分别与y 轴交于点1C 、2C 、3C ,连接1OB 、2OB 、3OB ,那么图中阴影部分的面积之和为 .15、(2010吉林长春)双曲线111ky k 0x=(>)与直线222y (0)k b k =+>的一个交点的横坐标为2,当x =3时,1y 2y (填“>”“<”或“=”). 16、(2010 广西钦州市)反比例函数ky x=(k >0)的图象与经过原点的直线l 相交于A 、B 两点,已知A 点的坐标为(2,1),那么B 点的坐标为 17、(2010陕西西安)已知),(),,(2211y x B y x A 都在反比例函数xy 6=的图象上。
若 421-=x x ,则21y y 的值为18、(2010湖北恩施自治州)在同一直角坐标系中,正比例函数x k y 1=的图象与反比例函数xk y 2=的图象有公共点,则21k k 0(填“>”、“=”或“<”). 19、(2010湖北武汉)直线y =3x b +与y 轴交于点A ,与双曲线y =kx在第一象限交于点B ,C 两点,且AB ⋅AC =4,则k = . 三、解答题20、(2010广东广州,23,12分)已知反比例函数y =8m x-(m 为常数)的 图象经过点A (-1,6).(1)求m 的值;OMxyA(2)如图9,过点A 作直线AC 与函数y =8m x-的图象交于点B ,与 x 轴交于点C ,且AB =2BC ,求点C 的坐标.21、(2010甘肃兰州)(本题满分9分)如图,P 1是反比例函数y =xk(k>0),在第一象限图像上的一点,点A 1 的坐标为(2,0).(1)当点P 1的横坐标逐渐增大时,△P 1O A 1的面积 将如何变化?(2)若△P 1O A 1与△P 2 A 1 A 2均为等边三角形,求 此反比例函数的解析式及A 2点的坐标.22、(2010山东济宁)如图,正比例函数12y x =的图象与反比例函数ky x=(0)k ≠在第一象限的图象交于A 点,过A 点作x 轴的垂线,垂足为M ,已知OAM ∆的面积为1.(1)求反比例函数的解析式;(2)如果B 为反比例函数在第一象限图象上的点(点B 与点A 不重合),且B 点的横坐标为1,在x 轴上求一点P ,使PA PB +最小.23、(2010 山东省德州) ●探究 (1) 在图1中,已知线段AB ,CD ,其中点分别为E ,F . ①若A (-1,0), B (3,0),则E 点坐标为__________;②若C (-2,2), D (-2,-1),则F 点坐标为__________; (2)在图2中,已知线段AB 的端点坐标为A (a ,b ) ,B (c ,d ), 求出图中AB 中点D 的坐标(用含a ,b ,c ,d 的代数式表示),并给出求解过程. ●归纳 无论线段AB 处于直角坐标系中的哪个位置,当其端点坐标为A (a ,b ),B (c ,d ), AB 中点为D (x ,y ) 时,x =_________,y =___________.(不必证明)●运用 在图2中,一次函数2-=x y 与反比例函数xy 3=的图象交点为A ,B . xy y =xy =x -2AB OO xy D B 第22题图2A第22题图1O x yD B A C①求出交点A ,B 的坐标;②若以A ,O ,B ,P 为顶点的四边形是平行四边形, 请利用上面的结论求出顶点P 的坐标. 答案 一、选择1、B2、C3、B4、C5、D6、D7、B8、C9、B 10、C 二、填空 11、21-12、41≤≤k 13、①③④ 14、949 15、< 16、(-2,-1) 17、—9 18、> 19 三、解答20、解:(1)∵ 图像过点A (-1,6),861m -=-. ∴ m -8-1=6 (2)分别过点A 、B 作x 轴的垂线,垂足分别为点D 、E ,由题意得,AD =6,OD =1,易知,AD ∥BE ,∴△CBE ∽△CAD ,∴CB BECA AD=. ∵AB =2BC ,∴13CB CA =∴136BE=,∴BE =2.即点B 的纵坐标为2当y =2时,x =-3,易知:直线AB 为y =2x +8,∴C (-4,0) 21、(1)解:(1)△P 1OA 1的面积将逐渐减小.(2)作P 1C ⊥OA 1,垂足为C ,因为△P 1O A 1为等边三角形,所以OC=1,P 1C=3,所以P 1)3,1(.代入x ky =,得k=3,所以反比例函数的解析式为x y 3=.作P 2D ⊥A 1 A 2,垂足为D 、设A 1D=a ,则OD=2+a ,P 2D=3a ,所以P 2)3,2(a a +. 代入x y 3=,得33)2(=⋅+a a ,化简得0122=-+a a 解的:a=-1±2 ∵a >0∴21+-=a 所以点A 2的坐标为﹙22,0﹚22、解:(1) 设A 点的坐标为(a ,b ),则k b a =.∴ab k =.∵112ab =,∴112k =.∴2k =.∴反比例函数的解析式为2y x =(2) 由212y x y x⎧=⎪⎪⎨⎪=⎪⎩ 得2,1.x y =⎧⎨=⎩ ∴A 为(2,1),设A 点关于x 轴的对称点为C ,则C 点的坐标为(2,1-).令直线BC 的解析式为y mx n =+.∵Bxy y =x3y =x -2A B O P为(1,2)∴2,12.m n m n =+⎧⎨-=+⎩∴3,5.m n =-⎧⎨=⎩∴BC 的解析式为35y x =-+,当0y =时,53x =.∴P 点为(53,0).23、解: 探究 (1)①(1,0);②(-2,21); (2)过点A ,D ,B 三点分别作x 轴的垂线,垂足分别为A ',D ',B ' ,则A A '∥B B '∥C C '.∵D 为AB 中点,由平行线分线段成比例定理得,A 'D '=D 'B '.∴O D '=22c a a c a +=-+.即D 点的横坐标是2ca +同理可得D 点的纵坐标是2db +.∴AB 中点D 的坐标为(2c a +,2d b +).归纳:2c a +,2d b +.运用 ①由题意得⎪⎩⎪⎨⎧=-=x y x y 32.,解得⎩⎨⎧==13y x .,或⎩⎨⎧-=-=31y x .,. ∴即交点的坐标为A (-1,-3),B (3,1) .②以AB 为对角线时,由上面的结论知AB 中点M 的坐标为(1,-1) .∵平行四边形对角线互相平分,∴OM =OP ,即M 为OP 的中点.∴P 点坐标为(2,-2) .同理可得分别以OA ,OB 为对角线时,点P 坐标分别为(4,4) ,(-4,-4) . ∴满足条件的点P 有三个,坐标分别是(2,-2) ,(4,4) ,(-4,-4) .。