第一章 二次函数 单元测试(6)

合集下载

浙教版九年级上册:第一章 二次函数 单元测试(含答案)

浙教版九年级上册:第一章 二次函数 单元测试(含答案)

第1章综合测评卷一、选择题(每题3分,共30分)1.下列各式中,y 是x 的二次函数的是(C ).A.x 2+2y 2=2B.x=y 2C.3x 2-2y=1D.21x +2y-3=02.对于二次函数y=(x-1)2+3的图象,下列说法正确的是(C ).A.开口向下B.对称轴是直线x=-1C.顶点坐标是(1,3)D.与x 轴有两个交点(第3题)3.如图所示,一边靠墙(墙有足够长),其他三边用12m 长的篱笆围成一个矩形(ABCD)花园,这个矩形花园的最大面积是(C ).A.16m 2 B.12m 2 C.18m 2D.以上都不对4.如果抛物线y=mx 2+(m-3)x-m+2经过原点,那么m 的值等于(C ).A.0B.1C.2D.35.如图所示,直线x=1是抛物线y=ax 2+bx+c 的对称轴,那么有(D ).A.abc >0B.b <a+cC.a+b+c <0D.c <2b(第5题)(第6题)(第7题)(第8题)6.已知二次函数的图象(0≤x ≤3)如图所示.关于该函数在所给自变量的取值范围内,下列说法中正确的是(C ).A.有最小值0,有最大值3B.有最小值-1,有最大值0C.有最小值-1,有最大值3D.有最小值-1,无最大值7.如图所示,抛物线y=ax 2+bx+c 的顶点为点P(-2,2),与y 轴交于点A(0,3).若平移该抛物线使其顶点P 由(-2,2)移动到(1,-1),此时抛物线与y 轴交于点A ′,则AA ′的长度为(A ).A.343 B.241 C.32D.38.如图所示,某建筑物有一抛物线形的大门,小强想知道这道门的高度,他先测出门的宽度AB=8m ,然后用一根长4m 的小竹竿CD 竖直地接触地面和门的内壁,测得AC=1m ,则门高OE 为(B ).A.9mB.764m C.8.7m D.9.3m9.已知二次函数y=x 2+bx+c 与x 轴只有一个交点,且图象过A(x 1,m),B(x 1+n ,m)两点,则m ,n 满足的关系为(D ).A.m=21n B.m=41n C.m=21n 2D.m=41n 210.已知二次函数y=-(x-1)2+5,当m ≤x ≤n 且mn <0时,y 的最小值为2m ,最大值为2n ,则m+n 的值为(D ).A.25 B.2 C.23 D.21(第10题答图)【解析】二次函数y=-(x-1)2+5的大致图象如答图所示:①当m ≤0≤x ≤n <1时,当x=m 时y 取最小值,即2m=-(m-1)2+5,解得m=-2或m=2(舍去).当x=n 时y 取最大值,即2n=-(n-1)2+5,解得n=2或n=-2(均不合题意,舍去).②当m ≤0≤x ≤1≤n 时,当x=m 时y 取最小值,由①知m=-2.当x=1时y 取最大值,即2n=-(1-1)2+5,解得n=25,或x=n 时y 取最小值,x=1时y 取最大值,2m=-(n-1)2+5,n=25,∴m=811.∵m <0,∴此种情形不合题意.∴m+n=-2+25=21.故选D.二、填空题(每题4分,共24分)11.如果某个二次函数的图象经过平移后能与y=3x 2的图象重合,那么这个二次函数的表达式可以是y=3(x+2)2+3(只要写出一个).12.如图所示,抛物线y=ax 2+bx+c(a >0)的对称轴是过点(1,0)且平行于y 轴的直线.若点P(5,0)在抛物线上,则9a-3b+c 的值为.(第12题)(第13题)(第14题)(第15题)13.如图所示,抛物线y=ax 2+bx+c 与x 轴相交于点A ,B(m+2,0),与y 轴相交于点C ,点D 在该抛物线上,坐标为(m ,c),则点A 的坐标是(-2,0).14.如图所示,将两个正方形并排组成矩形OABC ,OA 和OC 分别落在x 轴和y 轴的正半轴上.正方形EFMN 的边EF 落在线段CB 上,过点M ,N 的二次函数的图象也过矩形的顶点B ,C ,若三个正方形边长均为1,则此二次函数的表达式为y=-34x 2+38x+1.15.某种工艺品利润为60元/件,现降价销售,该种工艺品销售总利润w(元)与降价x(元)的函数关系如图所示.这种工艺品的销售量y (件)关于降价x (元)的函数表达式为y=60+x.16.已知抛物线y=a(x-1)(x+a2)的图象与x 轴交于点A ,B ,与y 轴交于点C ,若△ABC 为等腰三角形,则a 的值是2或34或251 .三、解答题(共66分)17.(6分)已知抛物线的顶点坐标是(2,-3),且经过点(1,-25).(1)求这个抛物线的函数表达式,并作出这个函数的大致图象.(2)当x 在什么范围内时,y 随x 的增大而增大?当x 在什么范围内时,y 随x 的增大而减小?【答案】(1)设抛物线的函数表达式为y=a (x-2)2-3,把(1,-25)代入,得-25=a-3,即a=21.∴抛物线的函数表达式为y=21x 2-2x-1.图略.(2)∵抛物线对称轴为直线x=2,且a>0,∴当x ≥2时,y 随x 的增大而增大;当x ≤2时,y 随x 的增大而减小.18.(8分)今有网球从斜坡点O 处抛出,网球的运动轨迹是抛物线y=4x-21x 2的图象的一段,斜坡的截线OA 是一次函数y=21x 的图象的一段,建立如图所示的平面直角坐标系.(第18题)(1)求网球抛出的最高点的坐标.(2)求网球在斜坡上的落点A 的竖直高度.【答案】(1)∵y=4x-21x 2=-21(x-4)2+8,∴网球抛出的最高点的坐标为(4,8).(2)由题意得4x-21x 2=21x,解得x=0或x=7.当x=7时,y=21×7=27.∴网球在斜坡的落点A的垂直高度为27.19.(8分)若直线y=x+3与二次函数y=-x 2+2x+3的图象交于A ,B 两点,(1)求A ,B 两点的坐标.(2)求△OAB 的面积.(3)x 为何值时,一次函数的值大于二次函数的值?【答案】(1)由题意得⎩⎨⎧++-=+=3232x x y x y ,解得⎩⎨⎧==30y x 或⎩⎨⎧==41y x .∴A ,B 两点的坐标分别为(0,3),(1,4).(2)∵A ,B 两点的坐标是(0,3),(1,4),∴OA=3,OA 边上的高线长是1.∴S △OAB =21×3×1=23.(3)当x <0或x >1时,一次函数的值大于二次函数的值.20.(10分)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A ,B ,C ,D ,E 中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫的距离为x(km),乘坐地铁的时间y 1(min)是关于x 的一次函数,其关系如下表所示:地铁站A B C D E x(km)89111.513y 1(min)182222528(1)求y 1关于x 的函数表达式.(2)李华骑单车的时间也受x 的影响,其关系可以用y 2=21x 2-11x+78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.【答案】(1)设y 1=kx+b ,将(8,18),(9,20)代入,得⎩⎨⎧=+=+209188b k b k ,解得⎩⎨⎧==22b k .∴y 1关于x 的函数表达式为y 1=2x+2.(2)设李华从文化宫回到家所需的时间为y.则y=y 1+y 2=2x+2+21x 2-11x+78=21x 2-9x+80.∴当x=9时,y 有最小值,y min =2149802142⨯-⨯⨯=39.5.∴李华应选择在B 站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5min.21.(10分)已知二次函数y=ax 2+bx+21(a >0,b <0)的图象与x 轴只有一个公共点A.(1)当a=21时,求点A 的坐标.(2)过点A 的直线y=x+k 与二次函数的图象相交于另一点B ,当b ≥-1时,求点B 的横坐标m 的取值范围.【答案】(1)∵二次函数y=ax 2+bx+21(a >0,b <0)的图象与x 轴只有一个公共点A ,∴Δ=b 2-4a×21=b 2-2a=0.∵a=21,∴b 2=1.∵b <0,∴b=-1.∴二次函数的表达式为y=21x 2-x+21.当y=0时,21x 2-x+21=0,解得x 1=x 2=1,∴A(1,0).(2)∵b 2=2a ,∴a=21b 2,∴y=21b 2x 2+bx+21=21(bx+1)2.当y=0时,x=-b 1,∴A (-b 1,0).将点A (-b 1,0)代入y=x+k ,得k=b 1.由⎪⎪⎩⎪⎪⎨⎧+=++=b x y bx x b y 1212122消去y 得21b 2x 2+(b-1)x+21-b 1=0,解得x 1=-b 1,x2=22b b -.∵点A 的横坐标为-b 1,∴点B 的横坐标m=22b b -.∴m=22b b -=2(21b -b 21)=2(b 1-41)2-81.∵2>0,∴当b 1<41时,m 随b1的增大而减小.∵-1≤b <0,∴b 1≤-1.∴m ≥2×(-1-41)2-81=3,即m ≥3.22.(12分)设函数y=kx 2+(2k+1)x+1(k 为实数).(1)写出符合条件的两个函数,使它们的图象不全是抛物线,并在同一平面直角坐标系内,用描点法画出这两个函数的图象.(2)根据所画的函数图象,提出一个对任意实数k ,函数的图象都具有的特征的猜想,并给予证明.(3)对任意负实数k ,当x<m 时,y 随着x 的增大而增大,试求出m 的一个值.【答案】(1)如:y=x+1,y=x 2+3x+1,图略.(2)不论k 取何值,函数y=kx 2+(2k+1)x+1的图象必过定点(0,1),(-2,-1),且与x 轴至少有1个交点.证明如下:由y=kx 2+(2k+1)x+1,得k(x 2+2x)+(x -y+1)=0.当x 2+2x=0,x -y+1=0,即x=0,y=1,或x=-2,y=-1时,上式对任意实数k 都成立,∴函数的图象必过定点(0,1),(-2,-1).∵当k=0时,函数y=x+1的图象与x 轴有一个交点;当k ≠0时,Δ=(2k+1)2-4k=4k 2+1>0,函数图象与x 轴有两个交点,∴函数y=kx 2+(2k+1)x+1的图象与x 轴至少有1个交点.(3)只要写出的m ≤-1就可以.∵k<0,∴函数y=kx 2+(2k+1)x+1的图象在对称轴直线x=-k k 212+的左侧,y 随x 的增大而增大.由题意得m ≤-k k 212+.∵当k<0时,k k 212+=-1-k21>-1.∴m ≤-1.23.(12分)如图1所示,点P(m ,n)是抛物线y=41x 2-1上任意一点,l 是过点(0,-2)且与x 轴平行的直线,过点P 作直线PH ⊥l ,垂足为点H .【特例探究】(1)当m=0时,OP=1,PH=1;当m=4时,OP=5,PH=5.【猜想验证】(2)对任意m ,n ,猜想OP 与PH 的大小关系,并证明你的猜想.【拓展应用】(3)如图2所示,图1中的抛物线y=41x 2-1变成y=x 2-4x+3,直线l 变成y=m(m <-1).已知抛物线y=x 2-4x+3的顶点为点M ,交x 轴于A ,B 两点,且点B 坐标为(3,0),N 是对称轴上的一点,直线y=m(m <-1)与对称轴交于点C ,若对于抛物线上每一点都满足:该点到直线y=m 的距离等于该点到点N 的距离.①用含m 的代数式表示MC ,MN 及GN 的长,并写出相应的解答过程.②求m 的值及点N 的坐标.(第23题)【答案】(1)1,1,5,5.(2)猜想:OP=PH.证明:设PH 交x 轴于点Q ∵P 在y=41x 2-1上,∴P (m ,41m 2-1),PQ=∣41m 2-1∣,OQ=|m|.∵△OPQ 是直角三角形,∴OP=22OQ PQ +=222141m m +⎪⎭⎫ ⎝⎛+=22141⎪⎭⎫ ⎝⎛+m =14m 2+1.∵PH=yp-(-2)=(41m 2-1)-(-2)=41m 2+1,∴OP=PH.(3)①∵M (2,-1),∴CM=MN=-m-1.GN=CG-CM-MN=-m-2(-m-1)=2+m.②点B 的坐标是(3,0),BG=1,GN=2+m.由勾股定理得BN=22GN BG +=()2221m ++.∵对于抛物线上每一点都有:该点到直线y=m 的距离等于该点到点N 的距离,∴1+(2+m )2=(-m )2,解得m=-45.∵GN=2+m=2-45=43,∴N (2,-43).。

浙教版九年级数学上册第一章二次函数单元测试卷含答案

浙教版九年级数学上册第一章二次函数单元测试卷含答案

第一章 二次函数单元测试卷(本试卷共三大题,26个小题 试卷分值:150分 考试时间:120分钟) 姓名: 班级: 得分:一、填空题(本题有10个小题,每小题4分,共40分) 1.抛物线2(1)3y x =-+的对称轴是( ) A .直线1x =B .直线3x =C .直线1x =-D .直线3x =-2.用配方法将2611y x x =-+化成2()y a x h k =-+的形式为 ( ) A .2(3)2y x =++ B .2(3)2y x =-- C .2(6)2y x =-- D .2(3)2y x =-+3.若二次函数c x x y ++=22配方后为7)(2++=h x y ,则c 、h 的值分别为( ) A .8、-1 B .8、1 C .6、-1 D .6、1 4.二次函数y =2(x -1)2+3的图像的顶点坐标是( )A .(1,3)B .(-1,3)C .(1,-3)D .(-1,-3)5.已知二次函数2y 3=-+x x m (m 为常数)的图象与x 轴的一个交点为(1,0),则关于x 的一元二次方程230-+=x x m 的两实数根是( )A .x 1=1,x 2=-2B .x 1=1,x 2=2C .x 1=1,x 2=0D .x 1=1,x 2=3 6.二次函数2(1)2y x =-+的最小值是( ) A .2-B .2C .1-D .17.抛物线24y x x =-的对称轴是 ( ) A .x =-2B .x =4C .x =2D .x =-48.已知二次函数y =2(x -3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x =-3;③其图象顶点坐标为(3,-1);④当x <3,y 随x 的增大而减小.则其中说法正确的有( )A .1个B .2个C .3个D .4个9.已知二次函数y =ax 2+bx +c 的图象如图,①abc >0;②b <a +c ;③4a +2b +c >0;④2c <3b ;⑤a +b >m (am +b )(m ≠1),其中结论正确的有( )A . ③④B . ③⑤C . ③④⑤D . ②③④⑤ 10.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,则正比例函数y =(b +c )x 的图象与反比例函数的图象在同一坐标系中大致是( )O O O O O y y yy y xxxxx-11A .B .C .D .二、认真填一填 (本题有8个小题, 每小题4分, 共32分) 11.抛物线22(1)2y x =-++的顶点的坐标是12.进价为30元/件的商品,当售价为40元/件时,每天可销售40件,售价每涨1元,每天少销售1件,当售价为 元时每天销售该商品获得利润最大,最大利润是 ___________元.13.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y (m )与水平距离x (m )之间的关系为y =-112(x -4)2+3,由此可知铅球推出的距离是________m .14.请你写出一个抛物线的表达式,此抛物线满足对称轴是y 轴,且在y 轴的左侧部分是上升的,那么这个抛物线表达式可以是 .15.将抛物线y =(x +2)2-3的图像向上平移5个单位,得到函数解析式为 .16.若函数y =a (x -h )2+k 的图象经过原点,最小值为8,且形状与抛物线y =-2x 2-2x +3相 同,则此函数关系式______.17.周长为16cm 的矩形的最大面积为____,此时矩形边长为____,实际上此时矩形是 18.如图,抛物线y =ax 2+1与双曲线y =xm的交点A 的横坐标是2,则关于x 的不等式xm+ax 2+1<0的解集是 .三、解答题(本题有8个小题,共78分.解答应写出文字说明,证明过程或推演步骤.) 19.(6分)已知抛物线c bx x y ++=2经过点(1,-4)和(-1,2).求抛物线解析式.20.(8分)如图,抛物线y =21x 2+bx -2与x 轴交于A 、B 两点,与y 轴交于C 点, 且A (一1,0).(1)求抛物线的解析式及顶点D 的坐标; (2)若将上述抛物线先向下平移3个单位,再向右平移2个单位,请直接写出平移后的抛物线的解析式.21.(8分)某商店如果将进货价为8元的商品按每件10元售出,每天可销售200件,现在采用提高售价,减少进货量的方法增加利润,已知这种商品每涨价1元,其销量就减少20件。

二次函数单元综合测试(Word版 含答案)

二次函数单元综合测试(Word版 含答案)

二次函数单元综合测试(Word版含答案)一、初三数学二次函数易错题压轴题(难)1.如图,二次函数y=ax2+bx+c交x轴于点A(1,0)和点B(3,0),交y轴于点C,抛物线上一点D的坐标为(4,3)(1)求该二次函数所对应的函数解析式;(2)如图1,点P是直线BC下方抛物线上的一个动点,PE//x轴,PF//y轴,求线段EF的最大值;(3)如图2,点M是线段CD上的一个动点,过点M作x轴的垂线,交抛物线于点N,当△CBN是直角三角形时,请直接写出所有满足条件的点M的坐标.【答案】(1)y=x2﹣4x+3;(2)EF的最大值为24;(3)M点坐标为可以为(2,3),(552+,3),(552-,3).【解析】【分析】(1)根据题意由A、B两点坐标在二次函数图象上,设二次函数解析式的交点式,将D点坐标代入求出a的值,最后将二次函数的交点式转化成一般式形式.(2)由题意可知点P在二次函数图象上,坐标为(p,p2﹣4p+3).又因为PF//y轴,点F 在直线BC上,P的坐标为(p,﹣p+3),在Rt△FPE中,可得FE2PF,用纵坐标差的绝对值可求线段EF的最大值.(3)根据题意求△CBN是直角三角形,分为∠CBN=90°和∠CNB=90°两类情况计算,利用三角形相似知识进行分析求解.【详解】解:(1)设二次函数的解析式为y=a(x﹣b)(x﹣c),∵y=ax2+bx+与x轴r的两个交点A、B的坐标分别为(1,0)和(3,0),∴二次函数解析式:y=a(x﹣1)(x﹣3).又∵点D(4,3)在二次函数上,∴(4﹣3)×(4﹣1)a=3,∴解得:a=1.∴二次函数的解析式:y=(x﹣1)(x﹣3),即y=x2﹣4x+3.(2)如图1所示.因点P 在二次函数图象上,设P (p ,p 2﹣4p+3).∵y =x 2﹣4x+3与y 轴相交于点C ,∴点C 的坐标为(0,3).又∵点B 的坐标为B (3,0),∴OB =OC∴△COB 为等腰直角三角形.又∵PF//y 轴,PE//x 轴,∴△PEF 为等腰直角三角形.∴EF 2PF .设一次函数的l BC 的表达式为y =kx+b ,又∵B (3,0)和C (0,3)在直线BC 上,303k b b +=⎧⎨=⎩, 解得:13k b =-⎧⎨=⎩, ∴直线BC 的解析式为y =﹣x+3.∴y F =﹣p+3.FP =﹣p+3﹣(p 2﹣4p+3)=﹣p 2+3p .∴EF 2p 22.∴线段EF 的最大值为,EF max 42-24. (3)①如图2所示:若∠CNB =90°时,点N 在抛物线上,作MN//y 轴,l//x 轴交y 轴于点E ,BF ⊥l 交l 于点F .设点N 的坐标为(m ,m 2﹣4m+3),则点M 的坐标为(m ,3),∵C 、D 两点的坐标为(0,3)和(4,3),∴CD ∥x 轴.又∵∠CNE =∠NBF ,∠CEN =∠NFB =90°,∴△CNE ∽△NBF .∴CE NE =NF BF, 又∵CE =﹣m 2+4m ,NE =m ;NF =3﹣m ,BF =﹣m 2+4m ﹣3,∴24m m m-+=2343m m m --+-, 化简得:m 2﹣5m+5=0.解得:m 1=552+,m 2=552-. ∴M 点坐标为(55+,3)或(55-,3) ②如图3所示:当∠CBN =90°时,过B 作BG ⊥CD ,∵∠NBF =∠CBG ,∠NFB =∠BGC =90°,∴△BFN ∽△CGB .∵△BFN 为等腰直角三角形,∴BF =FN ,∴0﹣(m 2﹣4m+3)=3﹣m .∴化简得,m 2﹣5m+6=0.解得,m =2或m =3(舍去)∴M 点坐标为,(2,3). 综上所述,满足题意的M 点坐标为可以为(2,3),(552+,3),(552-,3). 【点睛】本题考查待定系数法求解函数解析式,二次函数和三角函数求值,三角形相似等相关知识点;同时运用数形结合和分类讨论的思想探究点在几何图形上的位置关系.2.在平面直角坐标系中,抛物线22(0)y ax bx a =++≠经过点(2,4)A --和点(2,0)C ,与y 轴交于点D ,与x 轴的另一交点为点B .(1)求抛物线的解析式;(2)如图1,连接BD ,在抛物线上是否存在点P ,使得2PBC BDO ∠=∠?若存在,请求出点P 的坐标;若不存在,请说明理由;(3)如图2,连接AC ,交y 轴于点E ,点M 是线段AD 上的动点(不与点A ,点D 重合),将CME △沿ME 所在直线翻折,得到FME ,当FME 与AME △重叠部分的面积是AMC 面积的14时,请直接写出线段AM 的长. 【答案】(1)22y x x =-++;(2)存在,(23,209)或(103,529-);(3)5或 【解析】【分析】(1)根据点A 和点C 的坐标,利用待定系数法求解;(2)在x 轴正半轴上取点E ,使OB=OE ,过点E 作EF ⊥BD ,垂足为F ,构造出∠PBC=∠BDE ,分点P 在第三象限时,点P 在x 轴上方时,点P 在第四象限时,共三种情况分别求解;(3)设EF 与AD 交于点N ,分点F 在直线AC 上方和点F 在直线AC 下方时两种情况,利用题中所给面积关系和中线的性质可得MN=AN ,FN=NE ,从而证明四边形FMEA 为平行四边形,继而求解.【详解】解:(1)∵抛物线22(0)y ax bx a =++≠经过点A (-2,-4)和点C (2,0),则44220422a b a b -=-+⎧⎨=++⎩,解得:11a b =-⎧⎨=⎩, ∴抛物线的解析式为22y x x =-++;(2)存在,理由是:在x 轴正半轴上取点E ,使OB=OE ,过点E 作EF ⊥BD ,垂足为F ,在22y x x =-++中,令y=0,解得:x=2或-1,∴点B 坐标为(-1,0),∴点E 坐标为(1,0),可知:点B 和点E 关于y 轴对称,∴∠BDO=∠EDO ,即∠BDE=2∠BDO ,∵D (0,2),∴=,在△BDE 中,有12×BE ×OD=12×BD ×EF ,即2×EF ,解得:,∴,∴tan ∠BDE=EF DF =55÷=43, 若∠PBC=2∠BDO ,则∠PBC=∠BDE ,∵BE=2,则BD 2+DE 2>BE 2,∴∠BDE 为锐角,当点P 在第三象限时,∠PBC 为钝角,不符合;当点P 在x 轴上方时,∵∠PBC=∠BDE ,设点P 坐标为(c ,22c c -++),过点P 作x 轴的垂线,垂足为G ,则BG=c+1,PG=22c c -++,∴tan ∠PBC=PG BG =221c c c -+++=43, 解得:c=23, ∴22c c -++=209, ∴点P 的坐标为(23,209);当点P 在第四象限时,同理可得:PG=22c c --,BG=c+1,tan ∠PBC=PG BG =221c c c --+=43, 解得:c=103, ∴22c c -++=529-, ∴点P 的坐标为(103,529-), 综上:点P 的坐标为(23,209)或(103,529-);(3)设EF 与AD 交于点N ,∵A (-2,-4),D (0,2),设直线AD 表达式为y=mx+n ,则422m n n -=-+⎧⎨=⎩,解得:32m n =⎧⎨=⎩, ∴直线AD 表达式为y=3x+2,设点M 的坐标为(s ,3s+2),∵A (-2,-4),C (2,0),设直线AC 表达式为y=m 1x+n 1,则11114202m n m n -=-+⎧⎨=+⎩,解得:1112m n =⎧⎨=-⎩, ∴直线AC 表达式为y=x-2,令x=0,则y=-2,∴点E 坐标为(0,-2),可得:点E 是线段AC 中点,∴△AME 和△CME 的面积相等,由于折叠,∴△CME ≌△FME ,即S △CME =S △FME ,由题意可得:当点F 在直线AC 上方时,∴S △MNE =14S △AMC =12S △AME =12S △FME , 即S △MNE = S △ANE = S △MNF ,∴MN=AN ,FN=NE ,∴四边形FMEA 为平行四边形, ∴CM=FM=AE=12AC=221442+22 ∵M (s ,3s+2), ()()2223222s s -++=解得:s=45-或0(舍),∴M (45-,25-), ∴AM=22422455⎛⎫⎛⎫-++-+ ⎪ ⎪⎝⎭⎝⎭=6105,当点F 在直线AC 下方时,如图,同理可得:四边形AFEM 为平行四边形,∴AM=EF ,由于折叠可得:CE=EF ,∴AM=EF=CE=22,综上:AM 的长度为105或22 【点睛】 本题是二次函数综合题,涉及到待定系数法,二次函数的图像和性质,折叠问题,平行四边形的判定和性质,中线的性质,题目的综合性很强.难度很大,对学生的解题能力要求较高.3.如图,抛物线()250y ax bx a =+-≠经过x 轴上的点1,0A 和点B 及y 轴上的点C ,经过B C 、两点的直线为y x n =+.(1)求抛物线的解析式.(2)点P 从A 出发,在线段AB 上以每秒1个单位的速度向B 运动,同时点E 从B 出发,在线段BC 上以每秒2个单位的速度向C 运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t 秒,求t 为何值时,PBE △的面积最大并求出最大值. (3)过点A 作AM BC ⊥于点M ,过抛物线上一动点N (不与点B C 、重合)作直线AM 的平行线交直线BC 于点Q .若点A M N Q 、、、为顶点的四边形是平行四边形,求点N 的横坐标.【答案】(1)265y x x =-+- (2)2t =;2(3)5412或4或5412【解析】【分析】(1)先确定A 、B 、C 三点的坐标,然后用待定系数法解答即可;(2)先求出AB 、BC 的长并说明△BOC 是等腰直角三角形,再求出点P 到BC 的高d 为()24542d BP sin t =⋅︒=-,则12PBE S BE d =⨯⨯)()122244222t t t =⨯⨯-=-,再根据二次函数的性质即可确定最大值; (3)先求出2454222AM AB sin =⋅︒=⨯=N 作直线AM 的平行线交直线BC 于点,Q 则,再说明四边形AMNQ 是平行四边形,得到22NQ AM ==;再过点N 作NH x ⊥轴,交x 轴于点,G 交BC 于点,H 结合题意说明NQH 为等腰直角三角形,求得22884NH NQ HQ =+=+=;设()2,65N m m m -+-,则(),0G m , (),5H m m -,最后分点N 在x 轴上方时、点N 在x 轴下方且5m >时和1m <三种情况解答即可.【详解】解:()1因为直线y x n =+经过B C 、两点,且点B 在x 轴上,点C 在y 轴上, ∵()(),,00,B n C n -∴抛物线25y ax bx =+-经过点1,0A ,点(),0B n -,点()0,C n ,∴250505a b an bn n +-=⎧⎪--=⎨⎪-=⎩,解得51,6n a b =-⎧⎪=-⎨⎪=⎩所以抛物线的解析式为265y x x =-+-.()2∵()()()1,05,0,0,,5,A B C -∴4,AB BC BOC ==为等腰直角三角形,∴45,ABC ∠=由题意得4,2,02BP t BE t t =-=<≤点P 到BE的距离()4542d BP sin t =⋅︒=- 所以12PBE S BE d =⨯⨯)()1244222t t t t =⨯⨯-=-; ∵二次函数()()42f t t =-的函数图象开口向下,零点为0和4, ∴0422t +==时, ∴()()()22422maxf t f ==⨯⨯-=即2t =时,PBE △的面积最大,且最大值为()3由题意得454AM AB sin =⋅︒== 过点N 作直线AM 的平行线交直线BC 于点,Q 则,NQ BC ⊥ ∵点,A M N Q 、、为顶点的四边形是平行四边形,∴NQ AM ==过点N 作NH x ⊥轴,交x 轴于点,G 交BC 于点,H∵:5BC l y x =-,∴NQH 为等腰直角三角形,∴22884,NH NQ HQ =+=+=设()2,65N m m m -+-, 则(),0G m ,(),5H m m -,①点N 在x 轴上方时,此时()()2655,NH m m m =-+---∴()()26554m m m -+---=,即()()140,m m --=解得1m =(舍,因为此时点N 与点A 重合)或4m =;②点N 在x 轴下方且5m >时,此时()()2565,NH m m m =---+- ∴()()25654m m m ---+-=,即2540,m m --=解得54152m -=<(舍)或5412m +=③点N 在x 轴下方且1m <时,此时()()2565,NH m m m =---+- ∴()()25654m m m ---+-=,即2540,m m --=解得5412m -=或5412m +=(舍)综上所述,5414,2m m +==,5412m -=符合题意, 即若点,A M N Q 、、为顶点的四边形是平行四边形, 点N 的横坐标为541-或4或541+.【点睛】本题主要考查了二次函数的性质、平行四边形的判定与性质,掌握二次函数的性质以及分类讨论思想是解答本题的关键4.对于函数y =ax 2+(b+1)x+b ﹣2(a ≠0),若存在实数x0,使得a 20x +(b+1)x 0+b ﹣2=x0成立,则称x 0为函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点. (1)当a =2,b =﹣2时,求y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点;(2)若对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点,求实数a 的取值范围;(3)在(2)的条件下,若y =ax 2+(b+1)x+b ﹣2(a ≠0)的图象上A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点,且直线y =﹣x+2121a +是线段AB 的垂直平分线,求实数b 的取值范围.【答案】(1)不动点是﹣1或2;(2)a 的取值范围是0<a <2;(3)b 的取值范围是﹣4≤b <0. 【解析】 【分析】(1)将a =2,b =﹣2代入函数y =ax 2+(b+1)x+b ﹣2(a ≠0),得y =2x 2﹣x ﹣4,然后令x =2x 2﹣x ﹣4,求出x 的值,即y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点;(2)对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点,可以得到x =ax 2+(b+1)x+b ﹣2(a ≠0)时,对于任何实数b 都有△>0,然后再设t =△,即可求得a 的取值范围;(3)根据y =ax 2+(b+1)x+b ﹣2(a ≠0)的图象上A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点,可知点A 和点B 均在直线y =x 上,然后设出点A 和点B 的坐标,从而可以得到线段AB 的中点坐标,再根据直线y =﹣x+2121a +是线段AB 的垂直平分线,从而可以求得b 的取值范围. 【详解】解:(1)当a =2,b =﹣2时, 函数y =2x 2﹣x ﹣4, 令x =2x 2﹣x ﹣4, 化简,得x 2﹣x ﹣2=0 解得,x 1=2,x 2=﹣1,即y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点是﹣1或2; (2)令x =ax 2+(b+1)x+b ﹣2, 整理,得 ax 2+bx+b ﹣2=0,∵对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点,∴△=b 2﹣4a (b ﹣2)>0,设t =b 2﹣4a (b ﹣2)=b 2﹣4ab+8a ,对于任何实数b ,t >0, 故(﹣4a )2﹣4×1×8a <0, 解得,0<a <2,即a 的取值范围是0<a <2; (3)由题意可得, 点A 和点B 在直线y =x 上, 设点A (x 1,x 1),点B (x 2,x 2),∵A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点, ∴x 1,x 2是方程ax 2+bx+b ﹣2=0的两个根, ∴x 1+x 2=﹣b a, ∵线段AB 中点坐标为(122x x +,122x x+), ∴该中点的坐标为(2b a -,2b a-), ∵直线y =﹣x+2121a +是线段AB 的垂直平分线,∴点(2b a -,2ba -)在直线y =﹣x+2121a +上, ∴2ba -=21221b a a ++∴﹣b =221a a ≤+4,(当a =2时取等号)∴0<﹣b∴﹣4≤b <0,即b 的取值范围是﹣4≤b <0. 【点睛】本题是一道二次函数综合题、主要考查新定义、二次函数的性质、二次函数图象上点的坐标特征、一次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.5.在平面直角坐标系中,二次函数22y ax bx =+-的图象与x 轴交于点(4,0)A -,(1,0)B ,与y 轴交于点C .(1)求此抛物线的解析式;(2)点P 是抛物线22y ax bx =+-上的任意一点,过点P 作x 轴的垂线PD ,直线PD交直线AC 于点D .①是否存在点P ,使得PAC ∆的面积是ABC ∆面积的45?若存在,求出点P 的坐标;若不存在,请说明理由.②点Q 是坐标平面内的任意一点,若以O ,C ,Q ,D 为顶点的四边形是菱形时,请直接写出点Q 的坐标. 【答案】(1)213222y x x =+- (2)①存在,点P 的坐标为(22,12)-+-,(222,12)--+,(2,3)--②1816,55Q ⎫⎛-- ⎪⎝⎭,2(2,1)Q -,34525Q ⎝⎭,44525Q ⎛ ⎝⎭【解析】 【分析】(1)将(4,0)A -,(1,0)B 两点坐标代入解析式中求解即可; (2)①先求出△PAC 的面积为4,再求出直线AC 的解析式为122y x =--.设点P 的横坐标为(t ,213222t t +-),利用21442∆∆∆=-=⋅=+=PAC PDC PDA S S S OA PD t t 即可求解; ②先设出D 点坐标,然后再按对角线分成三种情况讨论即可求解. 【详解】解:(1)由题意得,将(4,0)A -,(1,0)B 两点坐标代入解析式中:1642020a b a b --=⎧⎨+-=⎩,解得:1232a b ⎧=⎪⎪⎨⎪=⎪⎩. ∴此抛物线的解析式为213222y x x =+-, 故答案为213222y x x =+-. (2)①存在点P ,使得PAC ∆的面积是ABC ∆面积的45.理由如下: 作出如下所示示意图:∵点(4,0)A -,(1,0)B , ∴4OA =,5AB =, 令0x =,则2y =-, ∴(0,2)C -,∴2OC =, ∴1152522ABC S AB OC ∆=⋅=⨯⨯=, ∴445545PAC ABC S S ∆∆==⨯=, 设直线AC 的解析式为y mx n =+,则有402m n n -+=⎧⎨=-⎩,解得:122m n ⎧=-⎪⎨⎪=-⎩,∴直线AC 的解析式为122y x =--.设点P 的横坐标为t ,则其纵坐标为213222t t +-, 即213,222P t t t ⎫⎛+- ⎪⎝⎭. ∵PD x ⊥轴,则点D 的坐标为1,22t t ⎫⎛-- ⎪⎝⎭. ∴2213112222222PD t t t t t ⎫⎛=+----=+ ⎪⎝⎭. ∵22111424222PAC PDC PDA S S S OA PD t t t t ∆∆∆=-=⋅=⨯⨯+=+. ∴244t t +=,即2440t t +-=或2440t t ++=, 解得:1222t =-+,2222t =--,32t =-.∴点P 的坐标为(222,12)-+-,(222,12)--+,(2,3)--, 故答案为:(222,12)-+-或(222,12)--+或(2,3)--. ②分类讨论:情况一:当OC 为菱形的对角线时,此时DO=DC ,即D 点在线段OC 的垂直平分线, ∴D 点坐标(-2,-1),将△OCD 沿y 轴翻折,此时四边形ODCQ 为菱形,故此时Q 点坐标为(2,-1),如下图一所示,情况二:当OQ 为对角线时,DO=DQ ,如下图二所示,DQ=OC=OD=2,设D 点坐标1,22⎛⎫-- ⎪⎝⎭x x ,则EO=-x ,DE=122x +,在Rt △EDO 中,由勾股定理可知:EO²+ED²=DO², 故221(2)42++=x x ,解得80(),5舍==-x x ,此时Q 点坐标为816,55⎛⎫-- ⎪⎝⎭,情况三:当OD 为对角线时,OC=OQ=2,如下图三所示:设D 点坐标1,22⎛⎫-- ⎪⎝⎭m m ,则EO=|m|,DE=122m +,QE=2-(122m +)=12m , 在Rt △QDO 中,由勾股定理可知:QE²+EO²=QO², 故221()()42+=m m ,解得124545,==-m m ,此时Q 点坐标为4525,⎛⎫- ⎪ ⎪⎝⎭或4525,55⎛⎫- ⎪ ⎪⎝⎭, 综上所述,Q 点的坐标为1816,55Q ⎫⎛-- ⎪⎝⎭,2(2,1)Q -,34525,55Q ⎫⎛-⎪ ⎝⎭,44525,Q ⎫⎛-⎪ ⎝⎭.故答案为1816,55Q ⎫⎛-- ⎪⎝⎭,2(2,1)Q -,34525,Q ⎫⎛-⎪ ⎝⎭,44525,Q ⎫⎛-⎪ ⎝⎭.【点睛】本题考查了待定系数法求二次函数解析式,三角形的面积问题,菱形的存在性问题等,属于综合题,具有一定的难度,熟练掌握二次函数的图形及性质是解决本题的关键.6.如图,已知点()1,2A 、()()5,0B n n >,点P 为线段AB 上的一个动点,反比例函数()0ky x x=>的图像经过点P .小明说:“点P 从点A 运动至点B 的过程中,k 值逐渐增大,当点P 在点A 位置时k 值最小,在点B 位置时k 值最大.”(1)当1n =时.①求线段AB 所在直线的函数表达式.②你完全同意小明的说法吗?若完全同意,请说明理由;若不完全同意,也请说明理由,并求出正确的k 的最小值和最大值.(2)若小明的说法完全正确,求n 的取值范围.【答案】(1)①1944y x =-+;②不完全同意小明的说法;理由见详解;当92x =时,k 有最大值8116;当1x =时,k 有最小值2;(2)109n ≥;【解析】 【分析】(1)①直接利用待定系数法,即可求出函数的表达式; ②由①得直线AB 为1944y x =-+,则21944k x x =-+,利用二次函数的性质,即可求出答案;(2)根据题意,求出直线AB 的直线为21044n n y x --=+,设点P 为(x ,kx),则得到221044n n k x x --=-,讨论最高项的系数,再由一次函数及二次函数的性质,得到对称轴52ba -≥,即可求出n 的取值范围. 【详解】解:(1)当1n =时,点B 为(5,1), ①设直线AB 为y ax b =+,则251a b a b +=⎧⎨+=⎩,解得:1494a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴1944y x =-+; ②不完全同意小明的说法;理由如下: 由①得1944y x =-+, 设点P 为(x ,kx),由点P 在线段AB 上则 1944k x x =-+, ∴22191981()444216k x x x =-+=--+; ∵104-<,∴当92x =时,k 有最大值8116; 当1x =时,k 有最小值2;∴点P 从点A 运动至点B 的过程中,k 值先增大后减小,当点P 在点A 位置时k 值最小,在92x =的位置时k 值最大. (2)∵()1,2A 、()5,B n , 设直线AB 为y ax b =+,则25a b a b n +=⎧⎨+=⎩,解得:24104n a n b -⎧=⎪⎪⎨-⎪=⎪⎩, ∴21044n ny x --=+, 设点P 为(x ,kx),由点P 在线段AB 上则 221044n n k x x --=-, 当204n -=,即n=2时,2k x =,则k 随x 的增大而增大,如何题意; 当n≠2时,则对称轴为:101042242n n x n n --==--;∵点P 从点A 运动至点B 的过程中,k 值逐渐增大,当点P 在点A 位置时k 值最小,在点B 位置时k 值最大.即k 在15x ≤≤中,k 随x 的增大而增大; 当204n ->时,有 ∴20410124n n n -⎧>⎪⎪⎨-⎪≤⎪-⎩,解得:26n n >⎧⎨≥-⎩,∴不等式组的解集为:2n >; 当204n -<时,有∴2410524nnn-⎧<⎪⎪⎨-⎪≥⎪-⎩,解得:1029n≤<,∴综合上述,n的取值范围为:109n≥.【点睛】本题考查了二次函数的性质,反比例函数的性质,一次函数的性质,以及解不等式组,解题的关键是熟练掌握所学的知识,掌握所学函数的性质进行解题,注意利用分类讨论的思想进行分析.7.定义:函数l与l'的图象关于y轴对称,点(),0P t是x轴上一点,将函数l'的图象位于直线x t=左侧的部分,以x轴为对称轴翻折,得到新的函数w的图象,我们称函数w是函数l的对称折函数,函数w的图象记作1F,函数l的图象位于直线x t=上以及右侧的部分记作2F,图象1F和2F合起来记作图象F.例如:如图,函数l的解析式为1y x=+,当1t=时,它的对称折函数w的解析式为()11y x x=-<.(1)函数l的解析式为21y x=-,当2t=-时,它的对称折函数w的解析式为_______;(2)函数l的解析式为1²12y x x=--,当42x-≤≤且0t=时,求图象F上点的纵坐标的最大值和最小值;(3)函数l的解析式为()2230y ax ax a a=--≠.若1a=,直线1y t=-与图象F有两个公共点,求t的取值范围.【答案】(1)()212y x x=+<-;(2)F的解析式为2211(0)211(0)2y x x xy x x x⎧=--≥⎪⎪⎨⎪=--+<⎪⎩;图象F上的点的纵坐标的最大值为32y=,最小值为3y=-;(3)当3t=-,312t<≤,352t+<<时,直线1y t=-与图象F有两个公共点.【解析】【分析】(1)根据对折函数的定义直接写出函数解析式即可;(2)先根据题意确定F的解析式,然后根据二次函数的性质确定函数的最大值和最小值即可;(3)先求出当a=1时图像F的解析式,然后分14t-=-、点(),1t t-落在223()y x x x t=--≥上和点(),1t t-落在()223y x x x t=--+<上三种情况解答,最后根据图像即可解答.【详解】解:(1)()212y x x=+<-(2)F的解析式为2211(0)211(0)2y x x xy x x x⎧=--≥⎪⎪⎨⎪=--+<⎪⎩当4x=-时,3y=-,当1x=-时,32y=,当1x=时,32y=-,当2x=时,1y=,∴图象F上的点的纵坐标的最大值为32y=,最小值为3y=-.(3)当1a=时,图象F的解析式为2223()23()y x x x ty x x x t⎧=--≥⎨=--+<⎩∴该函数的最大值和最小值分别为4和-4;a:当14t-=-时,3t=-,∴当3t=-时直线1y t=-与图象F有两个公共点;b:当点(),1t t-落在223()y x x x t=--≥上时,2123t t t-=--,解得1t=232t=c:当点(),1t t-落在()223y x x x t=--+<上时,2123t t t-=--+,解得34t=-(舍),41t=14t-=,∴55t=∴当31712t -<≤或31752t +<<时,直线1y t =-与图象F 有两个公共点; 综上所述:当3t =-,3171t -<≤,3175t +<<时,直线1y t =-与图象F 有两个公共点.【点睛】 本题属于二次函数综合题,考查了“称折函数”的定义、二次函数的性质、解二元一次方程等知识,弄清题意、灵活运用所学知识是解答本题的关键.8.如图,在平面直角坐标系中,抛物线2(0)y ax bx c a =++≠交x 轴于点(2,0),(3,0)A B -,交y 轴于点C ,且经过点(6,6)D --,连接,AD BD .(1)求该抛物线的函数关系式;(2)△ANM 与ABD ∆是否相似?若相似,请求出此时点M 、点N 的坐标;若不存在,请说明理由;(3)若点P 是直线AD 上方的抛物线上一动点(不与点,A D 重合),过P 作//PQ y 轴交直线AD 于点Q ,以PQ 为直径作⊙E ,则⊙E 在直线AD 上所截得的线段长度的最大值等于 .(直接写出答案)【答案】(1)2113442y x x =--+;(2)点M (0,32)、点N (34,0)或点M (0,32),N (-3,0)或点M (-1,32)、点N (-3,0)或N (14-,0)、M (-1,32);(3)QH 有最大值,当x=2-时,其最大值为125. 【解析】【分析】(1)用交点式函数表达式得:y=a (x-2)(x+3),将点D 坐标代入上式即可求解; (2)分∠MAB=∠BAD 、∠MAB=∠BDA ,两种大情况、四种小情况,分别求解即可; (3)根据题意,利用二次函数的性质和三角函数,QH=PQcos ∠PQH=35PQ=352113(442x x --+33)42x -+=23392055x x --+,即可求解.【详解】解:(1)用交点式函数表达式得:y=a (x-2)(x+3),将点D 坐标代入上式并解得:14a =-, 故函数的表达式为:2113442y x x =--+…①, 则点C (0,32);(2)由题意得:AB=5,AD=10,BD=,①∠MAN=∠ABD 时,(Ⅰ)当△ANM ∽△ABD 时,直线AD 所在直线的k 值为34,则直线AM 表达式中的k 值为34-, 则直线AM 的表达式为:3(2)4y x =--,故点M (0,32), AD AB AM AN =,则AN=54,则点N (34,0); (Ⅱ)当△AMN ∽△ABD 时,同理可得:点N (-3,0),点M (0,32), 故点M (0,32)、点N (34,0)或点M (0,32),N (-3,0); ②∠MAN=∠BDA 时,(Ⅰ)△ABD ∽△NMA 时, ∵AD ∥MN ,则tan ∠MAN=tan ∠BDA=12, AM :y=12-(x-2),则点M (-1,32)、点N (-3,0); (Ⅱ)当△ABD ∽△MNA 时,AD BDAM AN ==, 解得:AN=94, 故点N (14-,0)、M (-1,32); 故:点M (-1,32)、点N (-3,0)或N (14-,0)、M (-1,32);综上,点M (0,32)、点N (34,0)或点M (0,32),N (-3,0)或点M (-1,32)、点N (-3,0)或N (14-,0)、M (-1,32); (3)如图所示,连接PH ,由题意得:tan ∠PQH=43,则cos ∠PQH=35, 则直线AD 的表达式为:y=3342x -, 设点P (x ,2113442x x --+),则点Q (x ,3342x -), 则QH=PQcos ∠PQH=35PQ=352113(442x x --+33)42x -+ =23392055x x --+ =2312(2)205x -++, ∵3020-<, 故QH 有最大值,当x=2-时,其最大值为125. 【点睛】本题考查的是二次函数综合应用,涉及到一次函数、圆的基本知识,解直角三角形,相似三角形的判定和性质,其中(2)需要分类求解共四种情况,避免遗漏.9.如图,直线3y x 与x 轴、y 轴分别交于点A ,C ,经过A ,C 两点的抛物线2y ax bx c =++与x 轴的负半轴的另一交点为B ,且tan 3CBO ∠=(1)求该抛物线的解析式及抛物线顶点D 的坐标;(2)点P 是射线BD 上一点,问是否存在以点P ,A ,B 为顶点的三角形,与ABC 相似,若存在,请求出点P 的坐标;若不存在,请说明理由【答案】(1)243y x x =++,顶点(2,1)D --;(2)存在,52,33P ⎛⎫-- ⎪⎝⎭或(4,3)-- 【解析】【分析】(1)利用直线解析式求出点A 、C 的坐标,从而得到OA 、OC ,再根据tan ∠CBO=3求出OB ,从而得到点B 的坐标,然后利用待定系数法求出二次函数解析式,整理成顶点式形式,然后写出点D 的坐标;(2)根据点A 、B 的坐标求出AB ,判断出△AOC 是等腰直角三角形,根据等腰直角三角形的性质求出AC ,∠BAC=45°,再根据点B 、D 的坐标求出∠ABD=45°,然后分①AB 和BP 是对应边时,△ABC 和△BPA 相似,利用相似三角形对应边成比例列式求出BP ,过点P 作PE ⊥x 轴于E ,求出BE 、PE ,再求出OE 的长度,然后写出点P 的坐标即可;②AB 和BA 是对应边时,△ABC 和△BAP 相似,利用相似三角形对应边成比例列式求出BP ,过点P 作PE ⊥x 轴于E ,求出BE 、PE ,再求出OE 的长度,然后写出点P 的坐标即可.【详解】解:(1)令y=0,则x+3=0,解得x=-3,令x=0,则y=3,∴点A (-3,0),C (0,3),∴OA=OC=3,∵tan ∠CBO=3OC OB=, ∴OB=1,∴点B (-1,0),把点A 、B 、C 的坐标代入抛物线解析式得, 93003a b c a b c c -+=⎧⎪-+=⎨⎪=⎩,解得:143a b c =⎧⎪=⎨⎪=⎩,∴该抛物线的解析式为:243y x x =++,∵y=x 2+4x+3=(x+2)2-1,∴顶点(2,1)D --;(2)∵A (-3,0),B (-1,0),∴AB=-1-(-3)=2,∵OA=OC,∠AOC=90°,∴△AOC是等腰直角三角形,∴AC=2OA=32,∠BAC=45°,∵B(-1,0),D(-2,-1),∴∠ABD=45°,①AB和BP是对应边时,△ABC∽△BPA,∴AB ACBP BA=,即2322BP=,解得BP=223,过点P作PE⊥x轴于E,则BE=PE=23×22=23,∴OE=1+23=53,∴点P的坐标为(-53,-23);②AB和BA是对应边时,△ABC∽△BAP,∴AB ACBA BP=,即2322=,解得BP=32过点P作PE⊥x轴于E,则BE=PE=32×22=3, ∴OE=1+3=4, ∴点P 的坐标为(-4,-3);综合上述,当52,33P ⎛⎫--⎪⎝⎭或(4,3)--时,以点P ,A ,B 为顶点的三角形与ABC ∆相似;【点睛】本题是二次函数综合题型,主要利用了直线与坐标轴交点的求解,待定系数法求二次函数解析式,等腰直角三角形的判定与性质,相似三角形的判定与性质,难点在于(2)要分情况讨论.10.在平面直角坐标系中,二次函数y =ax 2+bx +2的图象与x 轴交于A (﹣3,0),B (1,0)两点,与y 轴交于点C .(1)求这个二次函数的关系解析式;(2)点P 是直线AC 上方的抛物线上一动点,是否存在点P ,使△ACP 的面积最大?若存在,求出点P 的坐标;若不存在,说明理由;(3)在平面直角坐标系中,是否存在点Q ,使△BCQ 是以BC 为腰的等腰直角三角形?若存在,直接写出点Q 的坐标;若不存在,说明理由;【答案】(1)224233y x x =--+;(2)存在,点P 35,22⎛⎫- ⎪⎝⎭,使△PAC 的面积最大;(3)存在点Q ,使△BCQ 是以BC 为腰的等腰直角三角形.Q 点坐标为:Q 1(2,3),Q 2(3,1),Q 3(﹣1,﹣1),Q 4(﹣2,1).【解析】【分析】(1)直接把点A (﹣3,0),B (1,0)代入二次函数y =ax 2+bx+2求出a 、b 的值即可得出抛物线的解析式;(2)设点P 坐标为(m ,n ),则n =﹣23m 2﹣43m+2,连接PO ,作PM ⊥x 轴于M ,PN ⊥y 轴于N .根据三角形的面积公式得出△PAC 的表达式,再根据二次函数求最大值的方法得出其顶点坐标即可;(3)以BC 为边,在线段BC 两侧分别作正方形,正方形的其他四个顶点均可以使得“△BCQ 是以BC 为腰的等腰直角三角形”,因此有四个点符合题意要求,再过Q 1点作Q 1D ⊥y 轴于点D ,过点Q 2作Q 2E ⊥x 轴于点E ,根据全等三角形的判定定理得出△Q 1CD ≌△CBO ,△CBO ≌△BQ 2E ,故可得出各点坐标.【详解】(1)∵抛物线y =ax 2+bx+2过点A (﹣3,0),B (1,0),∴093202a b a b =-+⎧⎨=++⎩ 2343a b ⎧=-⎪⎪⎨⎪=-⎪⎩解得 ∴二次函数的关系解析式为y =﹣23x 2﹣43x+2; (2)存在.∵如图1所示,设点P 坐标为(m ,n ),则n =﹣23m 2﹣43m+2. 连接PO ,作PM ⊥x 轴于M ,PN ⊥y 轴于N .则PM =﹣23m 2﹣43m+2.,PN =﹣m ,AO =3. ∵当x =0时,y =﹣23×0﹣43×0+2=2, ∴OC =2,∴S △PAC =S △PAO +S △PCO ﹣S △ACO =12AO•PM+12CO•PN ﹣12AO•CO =12×3×(﹣23m 2﹣43m+2)+12×2×(﹣m )﹣12×3×2 =﹣m 2﹣3m∵a =﹣1<0∴函数S △PAC =﹣m 2﹣3m 有最大值∴当m =﹣2b a =﹣32时,S △PAC 有最大值. ∴n =﹣23m 2﹣43m+2=﹣23×(﹣32)2﹣43×(﹣32)+2=52, ∴存在点P (﹣32,52),使△PAC 的面积最大.(3)如图2所示,以BC 为边在两侧作正方形BCQ 1Q 2、正方形BCQ 4Q 3,则点Q 1,Q 2,Q 3,Q 4为符合题意要求的点.过Q 1点作Q 1D ⊥y 轴于点D ,过点Q 2作Q 2E ⊥x 轴于点E , ∵∠1+∠2=90°,∠2+∠3=90°,∠3+∠4=90°,∴∠1=∠3,∠2=∠4,在△Q 1CD 与△CBO 中,∵11324Q C BC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△Q 1CD ≌△CBO ,∴Q 1D =OC =2,CD =OB =1,∴OD =OC+CD =3,∴Q 1(2,3);同理可得Q 4(﹣2,1);同理可证△CBO ≌△BQ 2E ,∴BE =OC =2,Q 2E =OB =1,∴OE =OB+BE =1+2=3,∴Q 2(3,1),同理,Q 3(﹣1,﹣1),∴存在点Q ,使△BCQ 是以BC 为腰的等腰直角三角形.Q 点坐标为:Q 1(2,3),Q 2(3,1),Q 3(﹣1,﹣1),Q 4(﹣2,1).【点睛】本题考查的是二次函数综合题,涉及到用待定系数法求二次函数解析式,二次函数极值、全等三角形的判定与性质,正方形及等腰直角三角形的性质等知识,涉及面较广,难度较大.。

九年级数学下册第一章《二次函数》单元测试题-湘教版(含答案)

九年级数学下册第一章《二次函数》单元测试题-湘教版(含答案)

九年级数学下册第一章《二次函数》单元测试题-湘教版(含答案)一、单选题1.二次函数y=(x-3)2+1的最小值是( )A .3B .-3C .1D .-12.将二次函数 2(1)y x =- 的图象向左平移1个单位长度, 再向上平移2个单位后, 所得图象 的函数解析式是( )A .2(2)2y x =-+B .2(2)2y x =--C .22y x =-D .22y x =+3.抛物线y=2(x-1)2-2的对称轴是( ) A .直线 1x =- B .直线 1x = C .直线 2x = D .直线 2x =- 4.已知二次函数 223y x x =-++ ,当x≥2时,y 的取值范围是( )A .y≥3B .y≤3C .y >3D .y <35.如果抛物线 ()22y a x =+ 开口向下,那么 a 的取值范围为( )A .2a >B .2a <C .2a >-D .2a <-6.二次函数y=x 2-2x+2的图象顶点在第( )象限.A .一B .二C .三D .四7.在下列函数中,其图象与x 轴没有交点的是( )A .y=2xB .y=﹣3x+1C .y=x 2D .y= 1x8.如图,已知抛物线2y ax bx c =++的对称轴在y 轴右侧,抛物线与x 轴交于点()20A -,和点B ,与y 轴的负半轴交于点C ,且2OB OC =,则下列结论:①0a b c->;②241b ac -=;③14a =;④21cb =-.其中正确的有( )A .1个B .2个C .3个D .4个9.函数 2y ax 3ax 1(a 0)=++> 的图象上有三个点分别为 ()1A 3y -, , ()2B 1y -, ,31C y 2⎛⎫ ⎪⎝⎭, ,则 1y , 2y , 3y 的大小关系为( ) A .123y y y <<B .213y y y <<C .321y y y <<D .1y , 2y , 3y 的大小不确定10.已知a ,b 是抛物线y =(x ﹣c )(x ﹣c ﹣d )﹣3与x 轴交点的横坐标,a <b ,则|a ﹣c|+|c ﹣b|化简的结果是( )A .b ﹣aB .a ﹣bC .a+b ﹣2cD .2c ﹣a ﹣b二、填空题11.二次函数 ()2223y x =-+- 的对称轴是直线 .12.教练对小明推铅球的录像进行技术分析,发现铅球行进高度 ()m y 与水平距离 ()m x 之间的关系为 ()215312y x =--+ ,由此可知铅球推出的距离是 m . 13.二次函数()223y mx mx m =+--的图象如图所示,则m 的取值范围是 .14.如图,在△ABC 中,AB=AC=10,点D 是边BC 上一动点(不与B ,C 重合),△ADE=△B=α,DE 交AC 于点E ,且cosα= 45.下列结论: ①△ADE△△ACD ; ②当BD=6时,△ABD 与△DCE 全等;③△DCE 为直角三角形时,BD 为8; ④0<CE≤6.4.其中正确的结论是 .(把你认为正确结论的序号都填上)三、解答题15.如图,在△ABC 中,△B=90°,AB=12,BC=24,动点P 从点A 开始沿边AB 向终点B 以每秒2个单位长度的速度移动,动点Q 从点B 开始沿边BC 以每秒4个单位长度的速度向终点C 移动,如果点P 、Q 分别从点A 、B 同时出发,那么△PBQ 的面积S 随出发时间t (s )如何变化?写出函数关系式及t 的取值范围.16.在一块等腰直角三角形铁皮上截一块矩形铁皮,如图,已有的铁皮是等腰直角三角形ABC,它的底边AB长20厘米.要截得的矩形EFGD的边FG在AB上,顶点E、D分别在边CA、CB上,设EF的长为x厘米,矩形EFGD的面积为y平方厘米,试写出y关于x的函数解析式及定义域,并求当EF的长为4厘米时所截得的矩形的面积,17.在平面直角坐标系中,二次函数的图象经过A(-2,0),B(4,0),C(1,3)三点.求这个二次函数的解析式.18.如图所示,已知边长为4的正方形钢板有一个角锈蚀,其中AF=2,BF=1。

第一章 二次函数 单元测试卷(含答案)2024-2025学年浙教版数学九年级上册

第一章 二次函数 单元测试卷(含答案)2024-2025学年浙教版数学九年级上册

二次函数单元测试卷一、选择题(每题3分,共30分)1.下列各式中,y是x的二次函数的是( )A.y=1x2B.y=x2+1x+1C.y=2x2−1D.y=x2−12.一个二次函数图象的顶点坐标是(2,4),且过另一点(0,−4),则这个二次函数的解析式为( )A.y=−2(x+2)2+4B.y=2(x+2)2−4C.y=−2(x−2)2+4D.y=2(x−2)2−43.已知A(−1,y1),B(1,y2),C(3,y3)三点都在抛物线y=x2−3x+m上,则y1、y2、y3的大小关系为( )A.y1<y2<y3B.y2<y3<y1C.y2<y1<y3D.y3<y2<y14.将抛物线y=3x2+2先向左平移2个单位长度,再向下平移3个单位长度,则得到的抛物线的解析式为( )A.y=3(x−2)2−1B.y=3(x−2)2+5C.y=3(x+2)2−1D.y=3(x+2)2+55.在同一直角坐标系中,函数y=ax2+b与y=ax+b(a,b都不为0)的图象的相对位置可以是( )A.B.C.D.6.若m<n<0,且关于x的方程a x2−2ax+3−m=0(a<0)的解为x1,x2(x1<x2),关于x的方程a x2−2ax+3−n=0(a<0)的解为x3,x4(x3<x4).则下列结论正确的是( )A.x3<x1<x2<x4B.x1<x3<x4<x2C.x1<x2<x3<x4D.x3<x4<x1<x27.已知二次函数y=a x2+bx+c满足以下三个条件:①b2a>4c,②a−b+c<0,③b<c,则它的图象可能是( )A.B.C.D.8.小明在解二次函数y=a x2+bx+c时,只抄对了a=1,b=4,求得图象过点(−1,0).他核对时,发现所抄的c比原来的c值大2.则抛物线与x轴交点的情况是( )A.只有一个交点B.有两个交点C.没有交点D.不确定9.已知二次函数y=x2−bx+1,当−32≤x≤12时,函数y有最小值12,则b的值为( )A.−2或32B.−116或32C.±2D.−2或−11610.如图,把二次函数y=a x2+bx+c(a≠0)的图象在x轴上方的部分沿着x轴翻折,得到的新函数叫做y=a x2+bx+c(a≠0)的“陷阱”函数.小明同学画出了y=a x2+bx+c(a≠0)的“陷阱”函数的图象,如图所示并写出了关于该函数的4个结论,其中正确结论的个数为( )①图象具有对称性,对称轴是直线x=1;②由图象得a=1,b=−2,c=−3;③该“陷阱”函数与y轴交点坐标为(0,−3);④y=−a x2−bx−c(a≠0)的“陷阱”函数与y=a x2+bx+c(a≠0)的“陷阱”函数的图象是完全相同的.A.1B.2C.3D.4二、填空题(每题4分,共24分)11.若y=(m2+m)x m2+1−x+3是关于x的二次函数,则m= .12.如图所示,某大桥有一段抛物线形的拱梁,抛物线的解析式为y=ax2+bx.小强骑自行车从拱梁一端沿直线匀速穿过拱梁部分的桥面OC,当小强骑自行车行驶10 s时和26 s时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC共需 s. 13.二次函数y=ax2+bx+c的图象与x轴交于A,B两点,顶点为C,其中点A,C坐标如图所示,则一元二次方程ax2+bx+c=0的根是 第12题图第13题图第16题图14.若把二次函数y=x2−2x−2化为y=(x−ℎ)2+k的形式,其中ℎ,k为常数,则ℎ+k= .15.y关于x的二次函数y=a x2+a2,在−1≤x≤1时有最大值6,则2a= .16.如图,在平面直角坐标系中,抛物线y=1x2−3x与x轴的正半轴交于点E.矩形ABCD2的边AB在线段OE上,点C、D在抛物线上,则矩形ABCD周长的最大值为 .三、综合题(17-20、22每题6分,21、23每题8分,共46分)17.已知点M为二次函数y=−(x−m)2+4m+1图象的顶点,直线y=kx+5分别交x轴正半轴,y轴于点A,B.(1)判断顶点M是否在直线y=4x+1上,并说明理由;(2)如图,若二次函数图象也经过点A,B,且kx+5>−(x−m)2+4m+1,根据图象,直接写出x的取值范围.18.如图,二次函数y=a x2+2ax+c的图象与x轴交于A,B两点(点A在点B的左侧),与y轴正半轴交于点C,且OA=OC=3.(1)求二次函数及直线AC的解析式.(2)P是抛物线上一点,且在x轴上方,若∠ABP=45°,求点P的坐标.19.为了振兴乡村经济,增加村民收入,某村委会干部带领村民把一片坡地改造后种植了优质葡萄,今年正式上市销售,并在网上直播推销优质葡萄.在销售的30天中,第一天卖出20千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出4千克.第x天的售价为y元/千克,y关于x的函数解析式为y={mx−76m(1≤x<20,x为正整数),n(20≤x≤30,x为正整数),且第12天的售价为32元/千克,第26天的售价为25元/千克.已知种植销售葡萄的成本是18元/千克,每天的利润是W元.(1)m= ,n= ;(2)销售优质葡萄第几天时,当天的利润最大?最大利润是多少?20.如图,△ABC中,AC=BC,∠ACB=90°,A(−2,0),C(6,0),反比例函数y=kx (k≠0,x>0)的图象与AB交于点D(m,4),与BC交于点E.(1)求m,k的值;(2)点P为反比例函数y=kx(k≠0,x>0)图象上一动点(点P在D,E之间运动,不与D,E重合),过点P作PM∥AB,交y轴于点M,过点P作PN∥x轴,交BC于点N,连接MN,求△PMN面积的最大值,并求出此时点P的坐标.21.如图,已知二次函数y=a x2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B(3,0).点P是直线BC上方的抛物线上一动点.(1)求二次函数y=a x2+2x+c的表达式;(2)连接PO,PC,并把ΔPOC沿y轴翻折,得到四边形POP′C.若四边形POP′C为菱形,请求出此时点P的坐标;(3)当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.22.根据以下素材,探索完成任务.如何设计跳长绳方案素材1图1是集体跳长绳比赛,比赛时,各队跳绳10人,摇绳2人,共计12人.图2是绳甩到最高处时的示意图,可以近似的看作一条抛物线,正在甩绳的甲、乙两位队员拿绳的手间距6米,到地面的距离均为1米,绳子最高点距离地面2.5米.素材2某队跳绳成员有6名男生和4名女生,男生身高1.70米至1.80米,女生身高1.66米至1.68米.跳长绳比赛时,可以采用一路纵队或两路纵队并排的方式安排队员位置,但为了保证安全,人与人之间距离至少0.5米.问题解决任务1确定长绳形状在图2中建立合适的直角坐标系,并求出抛物线的函数表达式.任务2探究站队方式当该队以一路纵队的方式跳绳时,绳子能否顺利的甩过所有队员的头顶?任务3拟定位置方案为了更顺利的完成跳绳,现按中间高两边低的方式居中安排站位.请在你所建立的坐标系中,求出左边第一位跳绳队员横坐标的最大取值范围.23.如图,对称轴为直线x=−1的抛物线y=a x2+bx+c(a≠0)与x轴相交于A,B两点,其中点A的坐标为(−3,0),且点(2,5)在抛物线y=a x2+bx+c上.(1)求抛物线的解析式;(2)点C为抛物线与y轴的交点;①点P在抛物线上,且S△POC=4S△BOC,求点P点坐标;②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.答案解析部分1.【答案】C2.【答案】C3.【答案】B4.【答案】C5.【答案】A6.【答案】B7.【答案】D8.【答案】B9.【答案】A10.【答案】C11.【答案】112.【答案】3613.【答案】x1=-2,x2=114.【答案】-215.【答案】2或−616.【答案】1317.【答案】(1)解:点M在直线y=4x+1上,∵y=−(x−m)2+4m+1,∴点M坐标为(m,4m+1),把x=m代入y=4x+1上得y=4m+1,∴点M(m,4m+1)在直线y=4x+1上;(2)解:把x=0代入y=kx+5,可得y=5,∴点B坐标为(0,5),把(0,5)代入y=−(x−m)2+4m+1,可得5=−m2+4m+1,解得m1=m2=2,∴y=−(x−2)2+9,把y=0代入y=−(x−2)2+9,可得0=−(x−2)2+9,解得x1=−1,x2=5,∵点A在x轴正半轴上,∴点A坐标为(5,0),∴x<0或x>5时,kx+5>−(x−m)2+4m+1.18.【答案】(1)解:∵OA=OC=3,∴点A(−3,0),C(0,3),∴{9a−6a+c=0c=3,解得{a=−1c=3,∴二次函数的解析式为y=−x2−2x+3,设直线AC的解析式为y=kx+b(k≠0),将点A(−3,0),C(0,3)代入,得{−3k+b=0b=3,解得{k=1b=3,∴直线AC的解析式为y=x+3;(2)解:如图,过点B作BP⊥AC交抛物线于点P,∵OA=OC,OA⊥OC,∴∠CAB=45°,∴∠ABP=45°,∴直线PB可以看作由直线y=-x向右平移得到,∴设PB的解析式为y=−x+m,∵二次函数的表达式为y=−x2−2x+3,令y=0,即−x2−2x+3=0,解得x1=−3,x2=1,∴点B(1,0),代入y=−x+m,得m=1,∴PB的解析式为y=−x+1,联立得{y=−x2−2x+3y=−x+1,解得{x=1y=0或{x=−2 y=3,∴点P的坐标为(−2,3).19.【答案】(1)−12;25(2)解:由(1)知第x天的销售量为20+4(x−1)=(4x+16)千克.当1≤x<20时,W=(4x+16)(−12x+38−18)=−2x2+72x+320=−2(x−18)2+968,∴当x=18时,W取得最大值,最大值为968.当20≤x≤30时,W=(4x+16)(25−18)=28x+112.∵a=28>0,∴W随x的增大而增大,∴W最大=28×30+112=952.∵968>952,∴当x=18时,W最大=968.答:销售优质葡萄第18天时,当天的利润最大,最大利润是968元.20.【答案】(1)解:∵A(−2,0),C(6,0),∴AC=8.又∵AC=BC,∴BC=8.∵∠ACB=90°,∴点B(6,8).设直线AB的函数表达式为y=ax+b,将A(−2,0),B(6,8)代入y=ax+b,得{a=1,b=2.∴直线AB的函数表达式为y=x+2.将点D(m,4)代入y=x+2,得m=2.∴D(2,4).将D(2,4)代入y=kx,得k=8.(2)解:延长NP交y轴于点Q,交AB于点L.∵AC=BC,∠BCA=90°,∴∠BAC=45°.∵PN∥x轴,∴∠BLN=∠BAC=45°,∠NQM=90°.∵AB∥MP,∴∠MPL=∠BLP=45°,∴∠QMP=∠QPM=45°,∴QM=QP.设点P 的坐标为(t ,8t),(2<t <6),则PQ =t ,PN =6−t .∴MQ =PQ =t .∴S △PMN =12⋅PN ⋅MQ =12⋅(6−t)⋅t =−12(t−3)2+92.∴当t =3时,S △PMN 有最大值92,此时P(3,83).21.【答案】(1)解:将点B 和点C 的坐标代入 y =a x 2+2x +c ,得 {c =39a +6+c =0 ,解得 a =−1 , c =3 .∴ 该二次函数的表达式为 y =−x 2+2x +3 .(2)解:若四边形POP′C 是菱形,则点P 在线段CO 的垂直平分线上;如图,连接PP′,则PE ⊥CO ,垂足为E ,∵ C (0,3),∴ E(0, 32 ),∴ 点P 的纵坐标等于 32 .∴−x 2+2x +3=32 ,解得 x 1=2+102, x 2=2−102(不合题意,舍去),∴ 点P 的坐标为( 2+102, 32 ).(3)解:过点P 作y 轴的平行线与BC 交于点Q ,与OB 交于点F ,设P (m , −m 2+2m +3 ),设直线BC 的表达式为 y =kx +3 ,则 3k +3=0 , 解得 k =−1 .∴直线BC 的表达式为 y =−x +3 .∴Q 点的坐标为(m , −m +3 ),∴QP =−m 2+3m .当 −x 2+2x +3=0 ,解得 x 1=−1,x 2=3 ,∴ AO=1,AB=4,∴ S 四边形ABPC =S △ABC +S △CPQ +S △BPQ= 12AB ⋅OC +12QP ⋅OF +12QP ⋅FB = 12×4×3+12(−m 2+3m)×3当 m =32时,四边形ABPC 的面积最大.此时P 点的坐标为 (32,154) ,四边形ABPC 的面积的最大值为 758.22.【答案】解:任务一:以左边摇绳人与地面的交点为原点,地面所在直线为 x 轴,建立直角坐标系,如图:由已知可得, (0,1) , (6,1) 在抛物线上,且抛物线顶点的纵坐标为 2.5 ,设抛物线解析式为 y =a x 2+bx +c ,∴{c =136a +6b +c =14ac−b 24a=52 ,解得 {a =−16b =1c =1,∴抛物线的函数解析式为 y =−16x 2+x +1 ;任务二:∵y =−16x 2+x +1=−16(x−3)2+52,∴抛物线的对称轴为直线 x =3 ,10 名同学,以直线 x =3 为对称轴,分布在对称轴两侧,男同学站中间,女同学站两边,对称轴左侧的 3 位男同学所在位置横坐标分布是 3−0.5×12=114 , 114−0.5=94和 94−0.5=74,当 x =74 时, y =−16×(74−3)2+52=21596≈2.24>1.8 ,∴绳子能顺利的甩过男队员的头顶,同理当 x =34 时, y =−16×(34−3)2+52=5332≈1.656<1.66 ,∴绳子不能顺利的甩过女队员的头顶;∴绳子不能顺利的甩过所有队员的头顶;任务三:两路并排,一排 5 人,当 y =1.66 时, −16x 2+x +1=1.66 ,解得 x =3+3145 或 x =3−3145,但第一位跳绳队员横坐标需不大于 2 (否则第二、三位队员的间距不够 0.5 米)∴3−3145<x ≤2 .23.【答案】(1)解:∵抛物线的对称轴为直线x =−1,又∵点A(−3,0)与(2,5)在抛物线上,∴{9a−3b +c =04a +2b +c =5−b 2a=−1,解得{a =1b =2c =−3,∴抛物线的解析式为y =x 2+2x−3;(2)解:①由(1)知,二次函数的解析式为y =x 2+2x−3,∴抛物线与y 轴的交点C 的坐标为(0,−3),与x 轴的另一交点为B(1,0),则OC =3,OB =1,设P 点坐标为(x ,x 2+2x−3),∵S △POC =4S △BOC ,∴12×3×|x|=4×12×3×1,∴|x|=4,则x =±4,当x =4时,x 2+2x−3=16+8−3=21,当x =−4时,x 2+2x−3=16−8−3=5,∴点P 的坐标为(4,21)或(−4,5);②如图,设直线AC 的解析式为y =kx +t ,将A(−3,0),C(0,−3)代入得{−3k +t =0t =−3,解得{k =−1t =−3,∴直线AC 的解析式为y =−x−3,设Q 点坐标为(x ,−x−3),−3≤x ≤0,则D 点坐标为(x ,x 2+2x−3),∴QD =(−x−3)−(x 2+2x−3)=−x 2−3x =−(x +32)2+94,∴当x =−32时,线段QD 的长度有最大值94.。

浙教版九年级数学上册 第一章 二次函数单元测试卷及答案

浙教版九年级数学上册  第一章 二次函数单元测试卷及答案

第一章二次函数姓名:_______________班级:_______________学号:_______________(总分:100分考试时间:60分钟考试难度:0.60)一、填空题(每空3分,共15分)1、二次函数的最小值是.2、如图为长方形时钟钟面示意图,时钟的中心在长方形对角线的交点上,长方形的宽为20厘米,钟面数字2在长方形的顶点处,则长方形的长为_________厘米。

(第2题图)(第5题图)3、将抛物线向右平移1个单位,再向上平移3个单位,则所得抛物线的表达式为。

4、自由下落物体的高度(米)与下落的时间(秒)的关系为.现有一铁球从离地面米高的建筑物的顶部作自由下落,到达地面需要的时间是秒.5、已知二次函数()与一次函数的图象相交于点A(-2,4),B(8,2)(如图所示),则能使成立的的取值范围是.二、选择题(每题3分,共30分)6、正比例函数的图像经过二、四象限,则抛物线的大致图像是()7、函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为()A.1 B.2 C.3 D.4(第7题图)(第8题图)8、如图所示,二次函数的图像经过点(-1,2),且与轴交点的横坐标分别为,,其中,,下列结论:①;②;③;④.其中正确的有( )A.1个B.2个C.3个D.4个9、已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=a,x2=b(a<b),则二次函数y=x2+mx+n中,当y<0时,x的取值范围是()A.x<a B.x>b C.a<x<b D.x<a或x>b10、某公园草坪的防护栏是由100段形状相同的抛物线形组成的.为了牢固起见,每段护栏需要间距0.4 m加设一根不锈钢的支柱,防护栏的最高点距底部0.5 m(如图),则这条防护栏需要不锈钢支柱的总长度至少为( )A.1.6 m B.100 m C.160 m D.200 m(第10题图)(第11题图)11、如图,某校的围墙由一段相同的凹曲拱组成,其拱状图形为抛物线的一部分,栅栏的跨径AB以相同间隔0.2米用5根立柱加固,拱高OC为0.36米,则立柱EF的长()A.0.4米 B. 0.16米 C. 0.2米 D.0.24米12、绿茵场上,足球运动员将球踢出,球的飞行高度(米)与前行距离(米)之间的关系为:,那么当足球落地时距离原来的位置有( )A.25米B.35米C.45米D.50米13、已知M、N两点关于y轴对称,且点M在双曲线上,点N在直线y=x+3上,设点M的坐标为(a,b),则二次函数y=-abx2+(a+b)x ()A. 有最小值,且最小值是B. 有最大值,且最大值是C. 有最大值,且最大值是D. 有最小值,且最小值是14、某广场有一喷水池,水从地面喷出,如图,以水平地面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-x2+4x(单位:米)的一部分,则水喷出的最大高度是( )A.4米B.3米C.2米D.1米(第14题图)(第15题图)15、我们在跳绳时,绳甩到最高处的形状可近似地看成是抛物线.如图2236所示,正在甩绳的甲、乙两名学生拿绳的手间距为4 m,距地面均为1 m,学生丙、丁分别站在距甲拿绳的手水平距离1 m,2.5 m处,绳子在甩到最高处时刚好通过他们的头顶.已知学生丙的身高是1.5 m,则学生丁的身高为()A.1.5 m B.1.625 m C.1.66 m D.1.67 m三、解答题(每题11分,共55分)16、已知:在Rt△ABO中,∠OAB=90°,∠BOA=30°,AB=2,若以O为坐标原点,OA所在直线为轴,建立如图所示平面直角坐标系,点B在第一象限内,将Rt△ABO沿OB折叠后,点A落在第一象限内的点C处.(1)求点C的坐标;(2)若抛物线经过C、A两点,求此抛物线的解析式;(3)若上述抛物线的对称轴与OB交于点D,点P为线段DB上一动点,过P 作轴的平行线,交抛物线于点M,问:是否存在这样的点P,使得四边形CDPM为很等腰梯形?若存在,请求出此时点P的坐标;若不存在,请说明理由.17、如图,抛物线y=ax2+bx+c交x轴于点A(-3,0),点B(1,0),交y轴于点E(0,-3)。

浙教版九年级上册数学第一章《二次函数》单元测试(含答案)

浙教版九年级上册数学第一章《二次函数》单元测试(含答案)

浙教版九年级上册数学二次函数一、单选题1.二次函数得顶点坐标是()A.B.C.D.2.二次函数y=x2﹣6x﹣4的顶点坐标为()A.(3,5)B.(3,﹣13)C.(3,﹣5)D.(3,13)3.抛物线经过点(﹣2,0),且对称轴为直线x=1,其部分图象如图所示.对于此抛物线有如下四个结论:①;②>;③若n>m>0,则时的函数值小于时的函数值;④点(,0)一定在此抛物线上.其中正确结论的个数是()A.4个B.3个C.2个D.1个4.如图,已知抛物线y=ax2+bx+c经过点(﹣1,0),以下结论:①2a+b>0;②a+c<0;③4a+2b+c>0;④b2﹣5a2>2ac.其中正确的是()A.①②B.③④C.②③④D.①②③④5.飞机着陆后滑行的距离s(米)关于滑行的时间t(米)的函数解析式是s=60t﹣1.5t2,则飞机着陆后滑行到停止下列,滑行的距离为()A.500米B.600米C.700米D.800米6.已知二次函数(其中m>0),下列说法正确的是()A.当x>2时,都有y随着x的增大而增大B.当x<3时,都有y随着x的增大而减小C.若x<n时,都有y随着x的增大而减小,则D.若x<n时,都有y随着x的增大而减小,则7.已知:二次函数,其中正确的个数为()①当时,y随x的增大而减小;②若图象与x轴有交点,则;③当时,不等式的解集是;④若将图象向上平移1个单位,再向左平移3个单位后过点(1,-2),则 .A.1个B.2个C.3个D.4个8.二次函数的图象如图所示,则点在()A.第一象限B.第二象限C.第三象限D.第四象限9.新定义:在平面直角坐标系中,对于点P(m,n)和点P′(m,n′),若满足m≥0时,n′=n-4;m<0时,n′=-n,则称点P′(m,n′)是点P(m,n)的限变点.例如:点P1(2,5)的限变点是P1′(2,1),点P2(-2,3)的限变点是P2′(-2,-3).若点P(m,n)在二次函数y=-x2+4x+2的图象上,则当-1≤m≤3时,其限变点P′的纵坐标n'的取值范围是()A.B.C.D.10.如图,二次函数(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).下列结论:①ab<0,②>4a,③0<b<1,④当x>﹣1时,y>0,其中正确结论的个数是()A.4个B.3个C.2个D.1个11.已知直线y=kx+b经过点A(0,6),且平行于直线y=-2x.(1)求该函数的解析式,并画出它的图象;(2)如果这条直线经过点P(m,2),求m的值;(3)若O为坐标原点,求直线OP的解析式;(4)求直线y=kx+b和直线OP与坐标轴所围成的图形的面积.。

九年级数学上册第一章《二次函数》单元测试题-浙教版(含答案)

九年级数学上册第一章《二次函数》单元测试题-浙教版(含答案)

九年级数学上册第一章《二次函数》单元测试题-浙教版(含答案)一.选择题:(本题共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!1.函数221m m y mx --=是关于x 的二次函数,则m 的值是( )A .3B .1-C .3-D .1-或3 2.在半径为4cm 的圆中,挖去了一个半径为xcm 的圆面,剩下一个圆环的面积为ycm 2,则y 与x 的函数关系式为( )A .216y x ππ=-+B .24y x π=-C .2(2)y x π=-D .2(4)y x =-+ 3.已知二次函数y =ax 2+4x +c ,当x 等于﹣2时,函数值是﹣1;当x =1时,函数值是5.则此二次函数的表达式为( )A .y =2x 2+4x ﹣1B .y =x 2+4x ﹣2C .y =-2x 2+4x +1D .y =2x 2+4x +14.将二次函数()2452--=x y 的图象沿x 轴向左平移2个单位长度,再沿y 轴向上平移3个单位长度,得到的函数表达式是( )A .()2772--=x yB .()2172--=x yC .()2732--=x yD .()2132--=x y 5.函数y =﹣x 2﹣2x+m 的图象上有两点A (1,y 1),B (2,y 2),则( )A .y 1<y 2B .y 1>y 2C .y 1=y 2D .y 1、y 2的大小不确定6.已知点 A (a ,2)、B (b ,2)、C (c ,7)都在抛物线()212--=x y 上,点A 在点B 左侧,下列选项正确的是( )A .若0<c ,则b c a << B.若0<c ,则c b a <<C .若0>c ,则b c a <<D .若0>c ,则c b a <<7.在同一坐标系中,函数y =ax 2+b 与y =bx 2+ax 的图象只可能是( )8.如图抛物线y =ax 2+bx +c (a ≠0)经过点(3,0)且对称轴为直线x =1.有四个结论:①ac <0;②b 2﹣4ac =0;③a ﹣b +c =0;④若m >n >0,则x =1﹣m 时的函数值小于x =1+n 时的函数值,其中正确的结论个数是( )A .1B .2C .3D .49.如图,二次函数y =ax 2+bx +c (a ≠0)图象的一部分与x 轴的一个交点坐标为(1,0),对称轴为直线x =﹣1,结合图象给出下列结论:①a +b +c =0;②a ﹣2b +c <0;③关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的两根分别为﹣3和1;④若点(﹣4,y 1),(﹣2,y 2),(3,y 3)均在二次函数图象上,则y 1<y 2<y 3;⑤a ﹣b <m (am +b )(m 为任意实数).其中正确的结论有( )A .1个B .2个C .3个D .4个 10.如图1,在菱形ABCD 中,060=∠A ,动点P 从点A 出发,沿折线CB DC AD →→方向匀速运动,运动到点B 停止.设点P 的运动路程为x ,APB ∆的面积为y ,y 与x 的函数图象如图2所示,则AB 的长为( ) A.3 B.32 C. 33 D. 34二.填空题(本题共6小题,每题4分,共24分)温馨提示:填空题必须是最简洁最正确的答案!11.已知二次函数2y x bx c =++的图象经过()1,1与()2,3两点,则这个二次函数的表达式为__________12.已知抛物线y =ax 2+bx +c 过(﹣1,1)和(5,1)两点,那么该抛物线的对称轴是直线13.将抛物线y =x 2﹣2x +3向左平移2个单位长度,所得抛物线为14.已知二次函数y =2x 2﹣4x ﹣1在0≤x ≤a 时,y 取得的最大值为15,则a 的值为____________15.某食品零售店新上架一款冷饮产品,每个成本为8元,在销售过程中,每天的销售量y (个)与销售价格x (元/个)的关系如图所示,当10≤x ≤20时,其图象是线段AB ,则该食品零售店每天销售这款冷饮产品的最大利润为 元(利润=总销售额﹣总成本).16.抛物线y =ax 2+bx +c 的部分图象如图所示,对称轴为直线x =﹣1,直线y =kx +c 与抛物线都经过点(﹣3,0).下列说法:①ab >0;②4a +c >0;③若(﹣2,y 1)与(21,y 2)是抛物线上的两个点,则y 1<y 2;④方程ax 2+bx +c =0的两根为x 1=﹣3,x 2=1;⑤当x =﹣1时,函数y =ax 2+(b ﹣k )x有最大值.其中正确的是___________________(填序号)三.解答题(共6题,共66分)温馨提示:解答题应将必要的解答过程呈现出来!17.(本题6分)已知二次函数y=x2﹣4x+c(c是常数)的图象与x轴只有一个交点,求c的值及这个交点的坐标.18(本题8分)设二次函数y1=2x2+bx+c(b,c是常数)的图象与x轴交于A,B两点.(1)若A,B两点的坐标分别为(1,0),(2,0),求函数y)的表达式及其图象的对称轴.(2)若函数y1的表达式可以写成心=2(x-h)2-2(h是常数)的形式,求b+c的最小值.19.(本题8分)已知二次函数y=ax2+bx﹣6(a≠0)的图象经过点A(4,﹣6),与y轴交于点B,顶点为C(m,n).(1)求点B的坐标;(2)求证:4a+b=0;(3)当a>0时,判断n+6<0是否成立?并说明理由.20(本题10分)已知函数y=-x2+bx+c(b,c为常数)的图象经过点(0,﹣3),(﹣6,﹣3).(1)求b,c的值;(2)当﹣4≤x≤0时,求y的最大值;(3)当m≤x≤0时,若y的最大值与最小值之和为2,求m的值.21.(本题10分)已知抛物线L1:y=a(x+1)2-4(a≠0)经过点A(1,0).(1)求抛物线L1的函数表达式.(2)将抛物线L1向上平移m(m>0)个单位得到抛物线L2.若抛物线L2的顶点关于坐标原点O的对称点在抛物线L 1上,求m 的值.(3)把抛物线L 1向右平移n (n >0)个单位得到抛物线L 3,若点B (1,y 1),C (3,y 2)在抛物线L 3上,且y 1>y 2,求n 的取值范围.22(本题12分)如图,已知抛物线()()a x x ay +-=21 ()0>a 与x 轴交于点B 、C ,与y 轴交于点E ,且点B 在点C 的左侧.(1)若抛物线过点M (﹣2,﹣2),求实数a 的值;(2)在(1)的条件下,解答下列问题;①求出△BCE 的面积;②在抛物线的对称轴上找一点H ,使CH +EH 的值最小,直接写出点H 的坐标.23(本题12分).如图,已知抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =﹣1,且抛物线与x轴交于A 、B 两点,与y 轴交于C 点,其中A (1,0),C (0,3).(1)若直线y =mx +n 经过B 、C 两点,求直线BC 和抛物的解析式;(2)在抛物线的对称轴x =﹣1上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)点Q 为BC 上一动点,过Q 作x 轴垂线交抛物线于点P (点P 在第二象限),求线段PQ 长度最大值.参考答案三.选择题:(本题共10小题,每小题3分,共30分)温馨提示:每一题的四个答案中只有一个是正确的,请将正确的答案选择出来!1.答案:D解析:∵函数221m m y mx --=是关于x 的二次函数,∴2212m m --=,且0m ≠,由2212m m --=得,3m =或1m =-,∴m 的值是3或-1,故选择:D .2.答案:A解析:圆的面积公式是2S r π=,原来的圆的面积=2416ππ⋅=,挖去的圆的面积=2x π,∴圆环面积216y x ππ=-.故选择:A .3.答案:A 解析:根据题意得48145a c a c -+=-⎧⎨++=⎩, 解得:21a c =⎧⎨=-⎩, ∴抛物线解析式为y =2x 2+4x ﹣1.故选择:A .4.答案:D解析:由二次函数()2452--=x y 的图象沿x 轴向左平移2个单位长度,再沿y 轴向上平移3个单位长度,得到的函数表达式是()()2133242522--=+-+-=x x y ; 故选择:D.5.答案:B 解析:∵图象的对称轴为直线01,122<-=-=---=a x , ∴在对称轴左侧y 随x 的增大而增大,在对称轴右侧y 随x 的增大而减小,∵图象上有两点A (1,y 1),B (2,y 2),-1<1<2,∴y1>y2,故选择:B.6.答案:D解析:∵抛物线y=(x−1)2−2,a>0∴该抛物线的对称轴为直线x=1,抛物线开口向上,当x>1时,y随x的增大而增大,当x<1时,y随x的增大而减小,∵点A(a,2),B(b,2),C(c,7)都在抛物线y=(x−1)2−2上,点A在点B左侧,∴a<b若c<0,则c<a<b,故A、B均不符合题意;若c>0,则a<b<c,故C不符合题意,D符合题意;故选择:D.7.答案:D解析:A、两个函数的开口方向都向上,那么a>0,b>0,可得第一个函数的对称轴是y轴,与y轴交于正半轴,第二个函数的对称轴在y轴的左侧,故本选项错误;B、两个函数的开口方向都向下,那么a<0,b<0,可得第一个函数的对称轴是y轴,与y轴交于负半轴,第二个函数的对称轴在y轴的左侧,故本选项错误;C、D、两个函数一个开口向上,一个开口向下,那么a,b同号,可得第二个函数的对称轴在y轴的右侧,故C错误,D正确,故选择:D.8.答案:C解析:∵抛物线开口向下,∴a<0,∵抛物线交y轴的正半轴,∴c>0,∴ac<0,故①正确;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故②错误;∵抛物线的对称轴为直线x=1,而点(3,0)关于直线x=1的对称点的坐标为(﹣1,0),∴a ﹣b +c =0,故③正确;∵抛物线开口向下,对称轴为直线x =1,∴横坐标是1﹣m 的点的对称点的横坐标为1+m ,∵若m >n >0,∴1+m >1+n ,∴x =1﹣m 时的函数值小于x =1+n 时的函数值,故④正确.故选择:C .9.答案:C解析:①∵二次函数y =ax 2+bx +c (a ≠0)图象的一部分与x 轴的一个交点坐标为(1,0), ∴a +b +c =0,故①正确; ②∵抛物线的对称轴为直线12-=-=a b x , ∴b =2a ,∵抛物线开口向上,与y 轴交于负半轴,∴a >0,c <0,∴a ﹣2b +c =c ﹣3a <0,故②正确;③由对称得:抛物线与x 轴的另一交点为(﹣3,0),∴关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的两根分别为﹣3和1,故③正确;④∵对称轴为直线x =﹣1,且开口向上,∴离对称轴越近,y 值越小,∵|﹣4+1|=3,||﹣2+1|=1,|3+1|=4,∵点(﹣4,y 1),(﹣2,y 2),(3,y 3)均在二次函数图象上,∴y 2<y 1<y 3,故④不正确;⑤∵x =﹣1时,y 有最小值,∴a ﹣b +c ≤am 2+bm +c (m 为任意实数),∴a ﹣b ≤m (am +b ),故⑤不正确.所以正确的结论有①②③,共3个.故选择:C .10.答案:B解析:在菱形ABCD 中,060=∠A ,∴△ABD 为等边三角形,设a AB =,由图2可知,△ABD 的面积为33, ∴33432==∆a S ABD , 解得:32=a故选择:B四.填空题(本题共6小题,每题4分,共24分)温馨提示:填空题必须是最简洁最正确的答案!11.答案:21y x x =-- 解析:把(1,1)与(2,3)分别代入y =x 2+bx +c 得11423b c b c ++=⎧⎨++=⎩,解得11b c =-⎧⎨=⎩; 所以二次函数的解析式为21y x x =--;12.答案:2=x解析:∵抛物线y =ax 2+bx +c 过(﹣1,1)和(5,1)两点,∴对称轴为2251=+-=x , 故答案为:x =2.13.答案:()212++=x y 解析:将抛物线y =x 2﹣2x +3=(x ﹣1)2+2向左平移2个单位长度得到解析式:y =(x +1)2+2, 故答案为:y =(x +1)2+2.14.答案:4解析:∵二次函数y =2x 2﹣4x ﹣1=2(x ﹣1)2﹣3,∴抛物线的对称轴为x =1,顶点(1,﹣3),∴当y =﹣3时,x =1,当y =15时,2(x ﹣1)2﹣3=15,解得x =4或x =﹣2,∵当0≤x ≤a 时,y 的最大值为15,∴a =4,15.答案:121解析:当10≤x ≤20时,设y =kx +b ,把(10,20),(20,10)代入可得: ⎩⎨⎧=+=+10202010b k b k 解得⎩⎨⎧=-=301b k , ∴每天的销售量y (个)与销售价格x (元/个)的函数解析式为y =﹣x +30,设该食品零售店每天销售这款冷饮产品的利润为w 元,w =(x ﹣8)y =(x ﹣8)(﹣x +30)=﹣x 2+38x ﹣240=﹣(x ﹣19)2+121,∵﹣1<0,∴当x =19时,w 有最大值为121,故答案为:121.16.答案:①④,解析:∵抛物线的开口方向向下,∴a <0.∵抛物线的对称轴为直线x =﹣1, ∴12-=-ab , ∴b =2a ,b <0.∵a <0,b <0,∴ab >0,∴①的结论正确;∵抛物线y =ax 2+bx +c 经过点(﹣3,0),∴9a ﹣3b +c =0,∴9a ﹣3×2a +c =0,∴3a +c =0.∴4a +c =a <0,∴②的结论不正确;∵抛物线的对称轴为直线x =﹣∴点(﹣2,y 1)关于直线x =﹣1对称的对称点为(0,y 1), ∵a <0,∴当x >﹣1时,y 随x 的增大而减小. ∵21>0>﹣1, ∴y 1>y 2.∴③的结论不正确;∵抛物线的对称轴为直线x =﹣1,抛物线经过点(﹣3,0), ∴抛物线一定经过点(1,0),∴抛物线y =ax 2+bx +c 与x 轴的交点的横坐标为﹣3,1, ∴方程ax 2+bx +c =0的两根为x 1=﹣3,x 2=1,∴④的结论正确;∵直线y =kx +c 经过点(﹣3,0),∴﹣3k +c =0,∴c =3k .∵3a +c =0,∴c =﹣3a ,∴3k =﹣3a ,∴k =﹣a .∴函数y =ax 2+(b ﹣k )x=ax 2+(2a +a )x =ax 2+3ax =2216923a x a +⎪⎭⎫ ⎝⎛+, ∵a <0,∴当x =﹣23时,函数y =ax 2+(b ﹣k )x 有最大值, ∴⑤的结论不正确.综上,结论正确的有:①④,三.解答题(共6题,共66分)温馨提示:解答题应将必要的解答过程呈现出来!17.解析:∵二次函数c x x y +-=42的图象与x 轴只有一个交点,∴方程042=+-c x x 只有一个实数根,∴()044422=--=-=∆c ac b , 4=∴c ,∴0442=+-x x ,解得2=x ,∴二次函数c x x y +-=42的图象与x 轴的交点坐标为(2,0).18.解析:(1)由题意,得y 1=2(x-1)(x-2). 图象的对称轴是直线23=x (2)由题意,得y 1=2x 2-4hx+2h 2-2,∴b+c=2h 2-4h-2,=2(h-1)2-4,∴当h=1时,b+c 的最小值是-4.(3)解:由题意,得y=y 1-y 2=2(x-m)(x-m-2)-(x-m)=(x-m)[2(x-m)-5],∵函数y 的图象经过点(x 0,0),∴(x 0-m)[2(x 0-m)-5]=0,∴x 0-m=0,或x 0-m =25.19.解析:(1)∵x =0时,y =﹣6∴点B 坐标为(0,﹣6)(2)证明:∵二次函数的图象经过点A (4,﹣6)∴16a +4b ﹣6=﹣6∴4a +b =0(3)当a >0时,n +6<0成立,理由如下: ∵a b a b a n 4642422--=--= ∴ab n 462-=+ ∵a >0,4a +b =0即b ≠0∴b 2>0 ∴042<-ab ∴n +6<0成立20.解析:(1)把(0,-3),(-6,-3)代入c bx x y ++-=2,得b =-6,c=-3(2)∵()633622++-=---=x x x y , 又∵-4≤x ≤0,∴当x =-3时,y 有最大值为6.(3)①当-3<m ≤0时,当x =0时,y 有最小值为-3,当x =m 时,y 有最大值为,∴ +(-3)=2, ∴m =-2或m =-4(舍去).②当m ≤-3时,当x =-3时y 有最大值为6,∵y 的最大值与最小值之和为2,∴y 最小值为-4,∴ =-4,∴m =103--或m =103+-(舍去).综上所述,m =-2或 103-- .21.解析:(1)∵ y=a(x+1)2-4(a ≠0)经过点A(1,0),∴0=a ·22-4,∴a=1,∴y=(x+1)2-4.(2)解:∵将L 1的图象向上平移了m 个单位得到L 2 ,∴设L 2的解析式为y=(x+1)2-4+m ,∴顶点坐标为(-1,m-4),∵L 2的顶点关于原点O 的对称点在L 1的图象上,∴(1,4-m )在L 1的图象上,∴4-m=(1+1)2-4,∴m=4.(3)解: ∵抛物线L 1的图象向右平移了n 个单位得到L 3,∴设L 3的解析式为y=(x+1-n )2-4,∴抛物线开口向上,对称轴为x=n-1,∵B (1,y 1),C (3,y 2)都在抛物线L 3上,且y 1>y 2,∴B 、C 两点的中点坐标在对称轴的左侧,∴(1+3)÷2<n-1,∴n >3.22.解析:(1)将M (﹣2,﹣2)代入抛物线解析式得:()()a a +---=-22212, 解得:a =4;(2)①由(1)抛物线解析式()()4241+-=x x y , 当y =0时,得:()()42410+-=x x , 解得:x 1=2,x 2=﹣4,∵点B 在点C 的左侧,∴B (﹣4,0),C (2,0),当x =0时,得:y =﹣2,即E (0,﹣2), ∴62621=⨯⨯=∆BCE S ; ②由抛物线解析式()()4241+-=x x y ,得对称轴为直线x =﹣1, 根据C 与B 关于抛物线对称轴直线x =﹣1对称,连接BE ,与对称轴交于点H ,即为所求, 设直线BE 解析式为y =kx +b ,将B (﹣4,0)与E (0,﹣2)代入得:⎩⎨⎧-==+-204b b k ,解得:⎪⎩⎪⎨⎧-=-=221b k∴直线BE 解析式为221--=x y , 将x =﹣1代入得:23221-=-=y 则H (﹣1,23-).23.解析:(1)依题意得: ⎪⎪⎩⎪⎪⎨⎧==++-=-3012c c b a a b ,解得:⎪⎩⎪⎨⎧=-=-=321c b a ,∴抛物线解析式为y =﹣x 2﹣2x +3,∵对称轴为直线x =﹣1,且抛物线经过A (1,0),∴把B (﹣3,0)、C (0,3)分别代入直线y =mx +n , 得⎩⎨⎧==+-303n n m , 解得:⎩⎨⎧==31n m , ∴直线y =mx +n 的解析式为y =x +3;(2)设直线BC 与对称轴x =﹣1的交点为M ,则此时MA +MC 的值最小. 把x =﹣1代入直线y =x +3得,y =2,∴M (﹣1,2),即当点M 到点A 的距离与到点C 的距离之和最小时M 的坐标为(﹣1,2);(3)设Q (a ,a +3),此时P (a ,﹣a 2﹣2a +3),∴PQ =﹣a 2﹣2a +3﹣(a +3)=﹣a 2﹣3a =﹣(a +23)2+49. ∴该抛物线顶点坐标是(﹣23,49),且开口向下, ∴当a =﹣23时,PQ 取最大值49.。

浙教版初中数学九年级上册第一单元《二次函数》单元测试卷(标准难度)(含答案解析)

浙教版初中数学九年级上册第一单元《二次函数》单元测试卷(标准难度)(含答案解析)

浙教版初中数学九年级上册第一单元《二次函数》单元测试卷考试范围:第一章;考试时间:120分钟;总分:120分学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1.下列函数关系中是二次函数的是( )A. 正三角形面积S与边长a的关系B. 直角三角形两锐角A与B的关系C. 矩形面积一定时,长y与宽x的关系D. 等腰三角形顶角A与底角B的关系2.已知二次函数y=(k−3)x2+2x+1的图像与x轴有交点,则k的取值范围是( )A. k<4B. k≤4且k≠3C. k<4,且k≠3D. k≤43.对于关于x的函数y=(m+1)x m2−m+3x,下列说法错误的是( )A. 当m=−1时,该函数为正比例函数B. 当m2−m=1时,该函数为一次函数C. 当该函数为二次函数时,m=2或m=−1D. 当该函数为二次函数时,m=24.将抛物线y=x2+3x+2向右平移a单位正好经过原点,则a的值为( )A. a=1B. a=2C. a=−1或a=1D. a=1或a=25.二次函数y=x2的图象平移后经过点(2,0),则下列平移方法正确的是( )A. 向左平移2个单位,向下平移2个单位B. 向左平移1个单位,向上平移2个单位C. 向右平移1个单位,向下平移1个单位D. 向右平移2个单位,向上平移1个单位6.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b<0;③b2−4ac>0;④a+b+c>0,其中正确的个数是( )A. 1B. 2C. 3D. 47.如图,抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=1,下列结论:①abc>0;②b2−4ac>0;③8a+c<0;④5a+b+2c>0,正确的有( )A. 4个B. 3个C. 2个D. 1个8.抛物线y=x2−2x−3的顶点坐标是( )A. (1,−4)B. (2,−4)C. (−1,4)D. (−2,−3)9.二次函数y=ax2+bx+c的图象如图所示,有如下结论:①abc>0;②2a+b=0;③3b−2c<0;④am2+bm≥a+b(m为实数).其中正确结论的个数是( )A. 1个B. 2个C. 3个D. 4个10.某商品的进价为每件20元,现在的售价为每件40元,每星期可卖出200件.市场调查反映:如调整价格,每涨价1元,每星期要少卖出5件.则每星期售出商品的利润y(单位:元)与每件涨价x(单位:元)之间的函数关系式是( )A. y=(200−5x)(40−20+x)B. y=(200+5x)(40−20−x)C. y=200(40−20−x)D. y=200−5x11.用长8米的铝合金条制成如图形状的矩形窗框,使窗户的透光面积最大,那么这个窗户的最大透光面积是( )A. 64m225B. 4m23C. 83m2D. 4m212.已知二次函数y=x2−x+√28,若x=a时,y<0;则当x=a−1时,对应的函数值范围判断合理的是( )A. y<0B. 0<y<√28C. √28<y<16+√28D. y>4+√28第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13.若y=(m−3)x2+3x−4是关于x的二次函数,则m的取值范围是.14.若函数y=−9(x+3)2+1−k的顶点在x轴上,则k=______.15.如图,在平面直角坐标系中,点A(2,4)在抛物线y=ax2上,过点A作y轴的垂线,交抛物线于另一点B,点C、D在线段AB上,分别过点C、D作x轴的垂线交抛物线于E、F两点.当四边形CDFE为正方形时,线段CD的长为______ .16.如图,某扶贫单位为了提高贫困户的经济收入,购买了29m的铁栅栏,准备用这些铁栅栏为贫困户靠墙(墙长15m)围建一个矩形养鸡舍,门MN宽1m,该鸡舍的最大面积可以达到m2.三、解答题(本大题共9小题,共72.0分。

二次函数单元测试卷(含答案)

二次函数单元测试卷(含答案)

二次函数单元测试卷一、选择题(每小题3分,共30分)1. 当-2≤ x ≦1,二次函数y=-(x-m )2+ m 2+1有最大值4,则实数m 值为( )A.-47B. 3或-3C.2或-3D. 2或3或-47 2. 函数22y mx x m =+-(m 是常数)的图像与x 轴的交点个数为()A. 0个 B .1个 C .2个 D .1个或2个3. 关于二次函数2y ax bx c =++的图像有下列命题:①当0c =时,函数的图像经过原点;②当0c >,且函数的图像开口向下时,方程20ax bx c ++=必有两个不相等的实根;③函数图像最高点的纵坐标是244ac b a -;④当0b =时,函数的图像关于y 轴对称.其中正确命题的个数是()A. 1个B .2个C .3个D .4个4. 关于x 的二次函数22(81)8y mx m x m =+++的图像与x 轴有交点,则m 的范围是( )A .116m <-B .116m -≥且0m ≠C .116m =-D .116m >-且0m ≠5. 下列二次函数中有一个函数的图像与x 轴有两个不同的交点,这个函数是( ) A .2y x =B .24y x =+C .2325y x x =-+D .2351y x x =+-6. 若二次函数2y ax c =+,当x 取1x 、2x (12x x ≠)时,函数值相等,则当x 取12x x +时,函数值为( )A .a c +B .a c -C .c -D .c7. 下列二次函数中有一个函数的图像与坐标轴有一个交点,这个函数是( ) A .1x y 2—=B .24y x =+ C .1x 2x y 2+=— D .2351y x x =+-8. 抛物线2321y x x =-+-的图象与坐标轴交点的个数是( )A .没有交点B .只有一个交点C .有且只有两个交点D .有且只有三个交点9. 函数2y ax bx c =++的图象如图所示,那么关于x 的一元二次方程230ax bx c ++-=的根的情况是()A .有两个不相等的实数根B .有两个异号的实数根C .有两个相等的实数根D .没有实数根10..若把函数y=x 的图象用E (x ,x )记,函数y=2x+1的图象用E (x ,2x+1)记,……则 E (x ,122+-x x )可以由E (x ,2x )怎样平移得到?A .向上平移1个单位B .向下平移1个单位C .向左平移1个单位D .向右平移1个单位 二、填空题(每小题3分,共24分) 11. 抛物线2283y x x =--与x 轴有个交点,因为其判别式24b ac -=0,相应二次方程23280x x -+=的根的个数为.12. 关于x 的方程25mx mx m ++=有两个相等的实数根,则相应二次函数25y mx mx m =++-与x 轴必然相交于点,此时m =.13. 抛物线2(21)6y x m x m =---与x 轴交于两点1(0)x ,和2(0)x ,,若121249x x x x =++,要使抛物线经过原点,应将它向右平移个单位.14.如图所示,函数2(2)(5)y k x k =-+-的图像与x 轴只有一个交点,则交点的横坐标0x =.15. 已知二次函数212y x bx c =-++,关于x 的一元二次方程2102x bx c -++=的两个实 根是1-和5-,则这个二次函数的解析式为16. 若函数y=(m ﹣1)x 2﹣4x+2m 的图象与x 轴有且只有一个交点,则m 的值为 17.y =x2-k 2与抛物线y =x 2+2x +2-2k 的交点在第 象限.18. 将二次三项式x 2+16x+100化成(x+p )2+q 的形式应为 三、解答题(本大题共7小题,共66分)19..(7分)已知一个二次函数的图象经过点(0,0),(1,﹣3),(2,﹣8),求函数解析式。

第1章 二次函数数学九年级下册-单元测试卷-湘教版(含答案)

第1章 二次函数数学九年级下册-单元测试卷-湘教版(含答案)

第1章二次函数数学九年级下册-单元测试卷-湘教版(含答案)一、单选题(共15题,共计45分)1、二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,则下列四个结论错误的是()A.c>0B.2a+b=0C.b 2﹣4ac>0D.a﹣b+c>02、已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象经过点(﹣1,1)B.当a=﹣2时,函数图象与x 轴没有交点C.若a<0,函数图象的顶点始终在x轴的下方D.若a >0,则当x≥1时,y随x的增大而增大3、抛物线与y轴的交点坐标为()A.(7,0)B.(-7,0)C.(0,7)D.(0,-7)4、抛物线的对称轴是()A.直线B.直线C.直线D.直线5、直角坐标平面上将二次函数y=x2-2的图象向左平移1个单位,再向上平移1个单位,则其顶点为()A.(0,0)B.(1,-1)C.(0,-1)D.(-1,-1)6、已知y=bx﹣c与抛物线y=ax2+bx+c在同一直角坐标系中的图象可能是()A. B. C.D.7、二次函数图像的顶点坐标是()A. B. C. D.8、二次函数y=﹣(x﹣1)2+2的顶点坐标是()A.(1,﹣2)B.(1,2)C.(﹣1,2)D.(﹣1,﹣2)9、已知抛物线和直线l在同一直角坐标系中的图像如图所示,抛物线的对称轴为直线x=﹣1,P1(x1, y1),P2(x2, y2)是抛物线上的点,P3(x3, y3)是直线l上的点,且x3<﹣1<x1<x2,则y1, y2, y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y1<y2D.y2<y1<y310、已知关于x的方程|x2+ax|=4有四个不相等的实数根,则a的取值范围是()A. 或B. 或C.D.11、二次函数y=ax2+bx+c的图象如图所示,若M=4a+2b+c,N=a-b+c,P=4a+2b则()A.M>0,N>0,P>0B.M>0,N<0,P>0C.M<0,N>0,P>0 D.M<0,N>0,P<012、若抛物线y=x2-4x-12与x轴交于点A,B,与y轴交于点C,则△ABC的面积为()A.24B.36C.48D.9613、下列函数关系中,满足二次函数关系的是()A.距离一定时,汽车行驶的速度与时间之间的关系B.在弹性限度内,弹簧的长度与所挂物体的质量之间的关系C.等边三角形的周长与边长之间的关系D.圆心角为100°的扇形面积与半径之间的关系14、二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b<0;②c>0;③a+c <b;④b2-4ac>0,其中正确的个数是( )A.1B.2C.3D.415、将抛物线y=﹣2x2﹣1向上平移若干个单位,使抛物线与坐标轴有三个交点,如果这些交点能够成等边三角形,那么平移的距离为()A.1个单位B. 个单位C. 个单位D. 个单位二、填空题(共10题,共计30分)16、已知函数y= (m+3)x2+2x+1的图象与x轴只有一个公共点,则m的值为________.17、如图,正方形EFGH的顶点在边长为2的正方形的边上.若设AE=x,正方形EFGH的面积为y,则y与x的函数关系为________.18、抛物线y=2(x﹣1)2﹣1与y轴的交点坐标是________19、二次函数y=x2+(k+4)x+k的图象与x轴两个交点间的最短距离为________。

《二次函数》单元测试卷 (含答案)

《二次函数》单元测试卷 (含答案)

《二次函数》单元测试卷 (含答案)考生姓名:______________ 考号:______________时间限制:90分钟一、选择题(每小题2分,共30分)(每小题2分,共30分)1. 下列函数中,是二次函数的是()A. y = x + 2B. y = 2x^2 + 3x + 1C. y = 1/xD. y = √x2. 设二次函数 f(x) = 2x^2 + 5x - 3,那么它的判别式为()A. -13B. 17C. 29D. -393. 若二次函数的图象与x轴有两个交点,则该二次函数的判别式必须为()A. 大于0B. 等于0C. 小于0D. 无法确定4. 已知二次函数 f(x) = 3x^2 + 4x + 2,那么它的对称轴为()A. x = -2/3B. x = -4/3C. x = 4/3D. x = 2/35. 设函数 f(x) = ax^2 + bx + c,若a > 0,则函数图象开口向()A. 上B. 下C. 左D. 右...二、填空题(每小题3分,共30分)(每小题3分,共30分)1. 设二次函数 f(x) = 2x^2 - 5x + 3,那么它的顶点坐标为()答案:(5/4, 37/8)2. 若二次函数 y = ax^2 + bx + c 的顶点坐标为 (2, -3),则 a + b+ c 的值为()答案:-53. 设二次函数 f(x) = -x^2 + 4x + 5,那么它的对称轴的方程为()答案:x = 24. 若二次函数的图象与y轴相交于点 (0, 6),则该二次函数必定为()答案:f(x) = 2x^2 + 35. 设二次函数 f(x) = ax^2 + bx + c,若a > 0,则函数的值域为()答案:( -∞, f(c) ]...三、解答题(共40分)(共40分)1. 解方程 3x^2 - 2x - 1 = 0解答:首先,我们可以求出这个二次方程的判别式:Δ = b^2 - 4ac = (-2)^2 - 4*3*(-1) = 4 + 12 = 16因为判别式大于0,所以方程有两个不相等的实根。

第1章 二次函数数学九年级下册-单元测试卷-湘教版(含答案)

第1章 二次函数数学九年级下册-单元测试卷-湘教版(含答案)

第1章二次函数数学九年级下册-单元测试卷-湘教版(含答案)一、单选题(共15题,共计45分)1、已知二次函数y=ax2+b x+c(a≠0)的图象如图,则下列结论中正确的是()A.ac>0B.当x>1时,y随x的增大而增大 C.2a+b=1 D.方程a x2+bx+c=0有一个根是x=32、抛物线y=ax2+bx+c经过点A(3,0),对称轴是直线x=1,则a+b+c的值为()A. B.1 C.0 D.3、二次函数y=(x﹣a)(x﹣b)﹣2,(a<b)的图象与x轴交点的横坐标为m,n,且m <n,则a,b,m,n的大小关系是()A.a<m<n<bB.a<m<b<nC.m<a<b<nD.m<a<n<b4、如图,若a<0,b>0,c<0,则抛物线y=ax2+bx+c的大致图象为()A. B. C. D.5、如图是二次函数y=ax2+bx+c的图象的一部分,对称轴是直线x=1.①b2>4ac;②b<0;③y随x的增大而减小;④若(﹣2,y1),(5,y2)是抛物线上的两点,则y1<y2,上述4个判断中,正确的是()A.①②④B.①④C.①③④D.②③④6、将抛物线y=2x2的图象先向右平移2个单位,再向上平移3个单位后,得到的抛物线的解析式是()A.y=2(x﹣2)2﹣3B.y=2(x﹣2)2+3C.y=2(x+2)2﹣3 D.y=2(x+2)2+37、将函数y=﹣x2+2的图象向右平移3个单位后再向上平移1个单位,得到的图象的函数表达式是()A.y=﹣(x﹣3)2+3B.y=﹣(x+3)2+3C.y=﹣(x+3)2+1 D.y=﹣(x﹣3)2+18、若,,为二次函数的图象上的三点,则,,的大小关系是.A. B. C. D.9、把抛物线y=-2x2先向右平移1个单位长度,再向上平移2个单位长度后,所得函数的表达式为()A.y=-2(x+1)2+2B.y=-2(x+1)2-2C.y=-2(x-1)2+2 D.y=-2(x-1)2-210、下列图形中,阴影部分的面积为2的有()个A.4个B.3个C.2个D.1个11、二次函数y=(x﹣4)2+3 的最小值是()A.2B.3C.4D.512、已知函数y=x2-2x-2的图象如图所示,根据其中提供的信息,可求得使y≥1成立的x 的取值范围是()A.-1≤x≤3B.-3≤x≤1C.x≥-3D.x≤-1或x≥313、在同一坐标系中,一次函数y=ax+b与二次函数y=ax2﹣b的图象可能是()A. B. C. D.14、描点法画函数图象是研究陌生函数的基本方法.对于函数,下列说法:①图象经过;②当时,有最小值;③随的增大而增大;④该函数图象关于直线对称;正确的是()A.①②B.①②④C.①②③④D.②③④15、将抛物线y=x2﹣4x+3向上平移至顶点落在x轴上,如图所示,则两条抛物线、对称轴和y轴围成的图形的面积S(图中阴影部分)是()A.1B.2C.3D.4二、填空题(共10题,共计30分)16、设函数的图象与轴有个交点,函数的图象与轴有个交点,则所有可能的数对是________.17、如图,直线y= x+4 与x轴、y轴分别交于A、B两点,∠ABC=60°,BC与x 轴交于点C.动点P从A点出发沿AC向点C运动(不与A、C重合),同时动点Q从C点出发沿C-B-A向点A运动(不与C、A重合) ,动点P的运动速度是每秒1个单位长度,动点Q的运动速度是每秒2个单位长度.若当△APQ的面积最大时,y轴上有一点M,第二象限内存在一点N,使以A、Q、M、N为顶点的四边形为菱形, 则点N的坐标为________18、将抛物线图象向右平移2个单位再向下平移3个单位,所得图象的解析式为________.19、把抛物线向左平移1个单位,然后向下平移3个单位,则平移后抛物线的解析式为________ .20、当m=________时,函数是二次函数.21、把抛物线先向左平移1个单位,再向下平移2个单位,平移后抛物线的表达式是________.22、函数y=ax2+bx+c的三项系数分别为a、b、c,则定义[a,b,c]为该函数的“特征数”.如:函数y=x2+3x﹣2的“特征数”是[1,3,﹣2],函数y=﹣x+4的“特征数”是[0,﹣1,4].如果将“特征数”是[2,0,4]的函数图象向左平移3个单位,得到一个新的函数图象,那么这个新图象相应的函数表达式是________ .23、抛物线上有两点,,若, 则与的大小关系是________.24、二次函数y=x2+4x+5(﹣3≤x≤0)的最小值是________.25、抛物线过点,且,则抛物线的对称轴是________.三、解答题(共5题,共计25分)26、将抛物线y=x2﹣4x+4沿y轴向下平移9个单位,所得新抛物线与x轴正半轴交于点B,与y轴交于点C,顶点为D.求:(1)点B、C、D坐标;(2)△BCD的面积.27、已知如图,矩形OABC的长OA=,宽OC=1,将△AOC沿AC翻折得△APC.(1)求∠PCB的度数(2)若P,A两点在抛物线y=x2+bx+c上,求b,c的值,并说明点C在此抛物线上;(3)(2)中的抛物线与矩形OABC边CB相交于点D,与x轴相交于另外一点E,若点M是x轴上的点,N是y轴上的点,以点E、M、D、N为顶点的四边形是平行四边形,试求点M、N的坐标.28、已知:二次函数y=(n﹣1)x2+2mx+1图象的顶点在x轴上.(1)请写出m与n的关系式,并判断已知中函数图象的开口方向;(2)是否存在整数m,n的值,使函数图象的对称轴与x轴的交点横坐标为整数?若存在,请求出m,n的值;若不存在,请说明理由;(3)若y关于x的函数关系式为y=nx2﹣m2x﹣2n﹣2①当n≠0时,求该函数必过的定点坐标;②探索这个函数图象与坐标轴有两个交点时n的值.29、如图,正方形ABCD中,AB=12,AE=AB,点P在BC上运动(不与B,C重合),过点P作PQ⊥EP,交CD于点Q,求在点P运动的过程中,BP多长时,CQ有最大值,并求出最大值.30、已知二次函数的顶点坐标为(1,4),且其图象经过点(-2,-5),求此二次函数的解析式。

数学九年级上学期《二次函数》单元测试(含答案)

数学九年级上学期《二次函数》单元测试(含答案)

人教版数学九年级上学期《二次函数》单元测试考试总分: 120 分考试时间: 120 分钟一、选择题(共10 小题,每小题 3 分,共30 分)1.函数(是常数)是二次函数的条件是( )A .B .C .D .2.如图,二次函数的图象经过点和,下列关于此二次函数的叙述,正确的是( )A . 当时,的值小于B . 当时,的值大于C . 当时,的值等于D . 当时,的值大于3.函数的图象大致为( )A .B .C .D .4.已知二次函数(h为常数),在自变量x的值满足1≤x≤3的条件下,与其对应的函数值y的最小值为5,则h的值为( ).A . 1或-5B . -1或5C . 1或-3D . 1或35.抛物线的顶点坐标是( )A . (3, 1)B . (-3, 1)C . (1, -3)D . (1, 3)6.二次函数的图象的对称轴是直线,其图象的一部分如图所示则:①;②;③;④;⑤当时,.其中判断正确的有( )个.A . 2B . 3C . 4D . 57.如图所示为二次函数的图象,在下列选项中错误的是( )A .B . 时,随的增大而增大C .D . 方程的根是,8.二次函数、、是常数的大致图象如图所示,抛物线交轴于点,.则下列说法中,正确的是( )A . ABC >0 B . B -2A =0C . 3A +C >0D . 9A +6B +4C >09.二次函数的图象如图所示,若点,是图象上的两点,则与的大小关系是( )A . y1<y2B . y1=y2C . y1>y2D . 不能确定10.物体在地球的引力作用下做自由下落运动,它的运动规律可以表示为:.其中表示自某一高度下落的距离,表示下落的时间,是重力加速度.若某一物体从一固定高度自由下落,其运动过程中下落的距离和时间函数图象大致为( )A .B .C .D .二、填空题(共10 小题,每小题 3 分,共30 分)11.已知某商品销售利润(元)与该商品销售单价(个)满足,则该商品获利最多为________元.12.已知二次函数y=A x 2+B x +C 中,函数y与自变量x的部分对应值如下表:x …-4-3-2-10…y…3-2-5-6-5…则x<-2时, y的取值范围是▲ .13.已知二次函数(为常数),当取不同的值时,其图象构成一个“抛物线系”.如图分别是当,,,时二次函数的图象,它们的顶点在一条直线上,则这条直线的解析式是________.14.将二次函数配方成的形式,则y=_________________.15.如图所示,二次函数的图象经过点,且与轴交点的横坐标分别为、,其中,,下列结论:①;②;③;④.其中正确的结论有________.(填写正确结论的序号)16.已知二次函数的图象如图所示,下列结论:①;②;③;④;⑤;⑥当时,随的增大而增大.其中正确的说法有________(写出正确说法的序号)17.如图,已知点,,…,在函数位于第二象限的图象上,点,,…,在函数位于第一象限的图象上,点,,…,在轴的正半轴上,若四边形、,…,都是正方形,则正方形的边长为________.18.二次函数的部分对应值如下表:…………①抛物线的顶点坐标为;②与轴的交点坐标为;③与轴的交点坐标为和;④当时,对应的函数值为.以上结论正确的是________.19.已知点、三点都在抛物线的图象上,则、的大小关系是________.(填“、、”)20.如图,是二次函数的图象的一部分,给出下列命题:①;②;③的两根分别为和;④.其中正确的命题是________.(只要求填写正确命题的序号)三、解答题(共6 小题,每小题10 分,共60 分)21.某校为绿化校园,在一块长为米,宽为米的长方形空地上建造一个长方形花圃,如图设计这个花圃的一边靠墙(墙长大于米),并在不靠墙的三边留出一条宽相等的小路,设小路的宽为米,花圃面积为为平方米,求关于的函数解析式,并写出函数的定义域.22.某企业是一家专门生产季节性产品的企业,经过调研预测,它一年中获得的利润(万元)和月份之间满足函数关系式.若利润为万元,求的值.哪一个月能够获得最大利润,最大利润是多少?当产品无利润时,企业会自动停产,企业停产是哪几个月份?23.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为米的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设的长度为米,矩形区域的面积为米.求证:;求与之间的函数关系式,并写出自变量的取值范围;为何值时,有最大值?最大值是多少?24.已知二次函数的图象与坐标轴交点的坐标分别为,,.求此函数的解析式;求抛物线的开口方向、对称轴及顶点坐标;根据图象直接写出时的取值范围.25.如图,已知二次函数的图象过点和点,对称轴为直线.求该二次函数的关系式和顶点坐标;结合图象,解答下列问题:①当时,求函数的取值范围.②当时,求的取值范围.26.在平面直角坐标系中,平行四边形如图放置,点、的坐标分别是、,将此平行四边形绕点顺时针旋转,得到平行四边形.如抛物线经过点、、,求此抛物线的解析式;在情况下,点是第一象限内抛物线上的一动点,问:当点在何处时,的面积最大?最大面积是多少?并求出此时的坐标;在的情况下,若为抛物线上一动点,为轴上的一动点,点坐标为,当、、、构成以作为一边的平行四边形时,求点的坐标.参考答案一、选择题(共10 小题,每小题 3 分,共30 分)1.函数(是常数)是二次函数的条件是( )A .B .C .D .[答案]D[解析]试题解析:根据二次函数定义中对常数A ,B ,C 的要求,只要A ≠0,B ,C 可以是任意实数,故选D .2.如图,二次函数的图象经过点和,下列关于此二次函数的叙述,正确的是()A . 当时,的值小于B . 当时,的值大于C . 当时,的值等于D . 当时,的值大于[答案]B[解析][分析]根据抛物线与y轴的交点位置对A 进行判断;根据二次函数的性质,当x=-2时,y=1,则x=-3时,y>1,于是可对B 进行判断;根据图象,当x=5时,不能确定函数值等于0,则可对C 进行判断;根据二次函数图象上点的坐标特征对D 进行判断.[详解]解:A 、抛物线与y轴的交点在x轴下方,且在点(1,-1)上方,所以x=0时,-1<y<0,所以A 选项错误;B 、当x=-3时,y>1,所以B 选项正确;C 、当x=5时,不能确定函数值等于0,所以C 选项错误;D 、当x=1时,y=-1,所以D 选项错误.故选:B .[点睛]本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.3.函数的图象大致为()A .B .C .D .[答案]B[解析]分析:本题考查二次函数的图形问题.解析:函数的二次项系数为-1,所以开口向下,抛物线与y轴的交点为(0,1).故选B .4.已知二次函数(h为常数),在自变量x的值满足1≤x≤3的条件下,与其对应的函数值y的最小值为5,则h的值为().A . 1或-5B . -1或5C . 1或-3D . 1或3[答案]B[解析]分析:由解析式可知该函数在x=h时取得最小值1、x>h时,y随x的增大而增大、当x<h时,y随x的增大而减小,根据1≤x≤3时,函数的最小值为5可分如下两种情况:①若h<1≤x≤3,x=1时,y取得最小值5;②若1≤x≤3<h,当x=3时,y取得最小值5,分别列出关于h的方程求解即可.详解:本题主要考查二次函数的性质和最值,根据二次函数的性质和最值分类讨论是解题的关键.5.抛物线的顶点坐标是()A . (3, 1)B . (-3, 1)C . (1, -3)D . (1, 3)[答案]A[解析][分析]直接根据二次函数的顶点式可得出结论.[详解]解:∵抛物线的解析式为:y=2(x-3)2+1,∴其顶点坐标为(3,1).故选:A .[点睛]本题考查的是二次函数的性质,熟知二次函数的顶点式是解答此题的关键.6.二次函数的图象的对称轴是直线,其图象的一部分如图所示则:①;②;③;④;⑤当时,.其中判断正确的有()个.A . 2B . 3C . 4D . 5[答案]C[解析][分析]由抛物线的开口方向判断A 与0的关系,由抛物线与y轴的交点判断C 与0的关系,然后根据对称轴判定B 与0的关系以及2A +B =0;当x=-1时,y=A -B +C ;然后由图象确定当x取何值时,y>0.[详解]解:①∵开口向下,∴A <0,∵对称轴在y轴右侧,∴->0,∴B >0,∵抛物线与y轴交于正半轴,∴C >0,∴A B C <0,故正确;②∵对称轴为直线x=1,抛物线与x轴的一个交点横坐标在2与3之间,∴另一个交点的横坐标在0与-1之间;∴当x=-1时,y=A -B +C <0,故正确;③∵对称轴x=-=1,∴2A +B =0;故正确;④∵2A +B =0,∴B =-2A ,∵当x=-1时,y=A -B +C <0,∴A -(-2A )+C =3A +C <0,故正确;⑤如图,当-1<x<3时,y不只是大于0.故错误.∴正确的有4个.故选:C .[点睛]此题考查图象与二次函数系数之间的关系.此题难度适中,注意掌握数形结合思想的应用.7.如图所示为二次函数的图象,在下列选项中错误的是()A .B . 时,随的增大而增大C .D . 方程的根是,[答案]C[解析][分析]由抛物线的开口方向判断A 的符号,由抛物线与y轴的交点得出C 的值,根据开口方向及对称轴判断二次函数的增减性,然后根据图象经过的点的情况进行推理,进而对所得结论进行判断.[详解]解:A 、由二次函数的图象开口向上可得A >0,由抛物线与y轴交于x轴下方可得C <0,所以A C <0,正确;B 、由A >0,对称轴为x=1,可知x>1时,y随x的增大而增大,正确;C 、把x=1代入y=A x2+B x+C 得,y=A +B +C ,由函数图象可以看出x=1时二次函数的值为负,错误;D 、由二次函数的图象与x轴交点的横坐标是-1或3,可知方程A x2+B x+C =0的根是x1=-1,x2=3,正确.故选:C .[点睛]由图象找出有关A ,B ,C 的相关信息以及抛物线的交点坐标,会判断二次函数的增减性,会利用特殊值代入法求得特殊的式子,如:y=A +B +C ,y=A -B +C ,然后根据图象判断其值.8.二次函数、、是常数的大致图象如图所示,抛物线交轴于点,.则下列说法中,正确的是()A . ABC >0 B . B -2A =0C . 3A +C >0D . 9A +6B +4C >0[答案]D[解析][分析]由抛物线的开口方向判断A 与0的关系,由抛物线与y轴的交点判断C 与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.[详解]解:A 、∵根据图示知,抛物线开口方向向下,∴A <0;∵抛物线交x轴于点(-1,0),(3,0),∴对称轴x==-=1,∴B =-2A >0.∵根据图示知,抛物线与y轴交于正半轴,∴C >0,∴A B C <0.故本选项错误;B 、∵对称轴x==-=1,∴B =-2A ,∴B +2A =0.故本选项错误;C 、根据图示知,当x=-1时,y=0,即A -B +C =A +2A +C =3A +C =0.故本选项错误;D 、∵A <0,C >0,∴-3A >0,4C >0,∴-3A +4C >0,∴9A +6B +4C =9A -12A +4C =-3A +4C >0,即9A +6B +4C >0.故本选项正确.故选:D .[点睛]本题考查了二次函数图象与系数的关系.二次函数y=A x2+B x+C 系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.9.二次函数的图象如图所示,若点,是图象上的两点,则与的大小关系是()A . y1<y2B . y1=y2C . y1>y2D . 不能确定[答案]C[解析][分析]直接利用二次函数的性质得出其增减性,再利用A ,B 点横坐标得出答案.[详解]解:如图所示:x>-3时,y随x的增大而减小,∵1<2,∴y1>y2.故选:C .[点睛]此题主要考查了二次函数的性质,正确得出二次函数增减性是解题关键.10.物体在地球的引力作用下做自由下落运动,它的运动规律可以表示为:.其中表示自某一高度下落的距离,表示下落的时间,是重力加速度.若某一物体从一固定高度自由下落,其运动过程中下落的距离和时间函数图象大致为()A .B .C .D .[答案]B[解析][分析]先根据函数关系式为h=gt2确定图象属于那一类函数的图象,再根据g、t的取值范围确定图象的具体形状.[详解]解:t为未知数,关系式h=gt2为二次函数,∵g为正常数∴抛物线开口方向向上,排除C 、D ;又∵时间t不能为负数,∴图象只有右半部分.故选:B .[点睛]根据关系式判断属于哪一类函数,关键要会判断未知数及未知数的指数的高低.二、填空题(共10 小题,每小题 3 分,共30 分)11.已知某商品销售利润(元)与该商品销售单价(个)满足,则该商品获利最多为________元.[答案][解析][分析]由题意知利润y(元)与销售的单价x(元)之间的关系式,化为顶点式求出y的最大值.[详解]解:利润y(元)与销售的单价x(元)之间的关系为y=-20x2+1400x-2000=-20(x-35)2+22500.∵-20<0∴当x=35元时,y最大为22500元.即该商品获利最多为22500元.故答案为:22500.[点睛]本题考查二次函数的实际应用,借助二次函数的顶点式解决实际问题.12.已知二次函数y=A x2+B x+C 中,函数y与自变量x的部分对应值如下表:x …-4-3-2-10…y…3-2-5-6-5…则x<-2时, y的取值范围是▲.[答案]y>-5[解析]考点:待定系数法求二次函数解析式;二次函数的性质.分析:根据图表知二次函数的顶点坐标是(-1,-6),可将二次函数的解析式设为顶点式,任取一点坐标代入即可求得二次函数的解析式,然后根据二次函数的性质填空.解:由图表知,二次函数的顶点坐标是(-1,-6),可设二次函数的解析式为:y=A (x+1)2-6;∵二次函数经过点(0,-5),∴-5=A -6,解得,A =1,∴二次函数的解析式为:y=(x+1)2-6;∴当x<-2时,y>-5;故答案为:y>-5.13.已知二次函数(为常数),当取不同的值时,其图象构成一个“抛物线系”.如图分别是当,,,时二次函数的图象,它们的顶点在一条直线上,则这条直线的解析式是________.[答案][解析][分析]已知抛物线的顶点式,写出顶点坐标,用x、y代表顶点的横坐标、纵坐标,消去A 得出x、y的关系式.[详解]解:y=x2-4A x+4A 2+A -1=(x-2A ) 2+A -1,∴抛物线顶点坐标为:(2A ,A -1),设x=2A ①,y=A -1②,①-②×2,消去A 得,x-2y=2,即y=x-1.故答案为:y=x-1.[点睛]此题主要考查了根据顶点式求顶点坐标的方法,消元的思想.主要利用x、y代表顶点的横坐标、纵坐标,消去A 得出是解题关键.14.将二次函数配方成的形式,则y=_________________.[答案][解析]试题解析:利用配方法将一次项和二次项组合,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式,即=x2-2x+1+2=(x-1)2+2.15.如图所示,二次函数的图象经过点,且与轴交点的横坐标分别为、,其中,,下列结论:①;②;③;④.其中正确的结论有________.(填写正确结论的序号)[答案]①②[解析][分析]由抛物线的开口方向判断A 与0的关系,由抛物线与y轴的交点判断C 与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.[详解]解:①根据图象知,当x=-2时,y<0,即4A -2B +C <0;故①正确;②∵该函数图象的开口向下,∴A <0;又∵对称轴-1<x=-<0,∴2A -B <0,故②正确;③∵A <0,-<0,∴B <0.∵抛物线交y轴与正半轴,∴C >0.∴A B C >0,故③错误.④∵y=>2,A <0,∴4A C -B 2<8A ,即B 2+8A >4A C ,故④错误.综上所述,正确的结论有①②.故答案为:①②.[点睛]本题主要考查对二次函数图象与系数的关系,抛物线与x轴的交点,二次函数图象上点的坐标特征等知识点的理解和掌握,掌握相关性质是解题的关键.16.已知二次函数的图象如图所示,下列结论:①;②;③;④;⑤;⑥当时,随的增大而增大.其中正确的说法有________(写出正确说法的序号)[答案]②④⑤[解析][分析]由抛物线的开口方向判断A 与0的关系,由抛物线与y轴的交点得出C 的值,然后根据抛物线与x轴交点的个数及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断.[详解]解:①由二次函数的图象开口向下可得A <0,由抛物线与y轴交于x轴上方可得C >0,由对称轴0<x<1,得出B >0,则A B C <0,故①错误;②∵对称轴0<x<1,-<1,A <0,∴-B >2A ,∴2A +B <0,故②正确;③把x=-1时代入y=A x2+B x+C =A -B +C ,结合图象可以得出y>0,即A -B +C >0,故③错误;④把x=-1时代入y=A x2+B x+C =A -B +C ,结合图象可以得出y>0,即A -B +C >0,A +C >B ,∵B >0,∴A +C >0,故④正确;⑤∵图象与x轴有两个交点,∴B 2-4A C >0,∴B 2>4A C ,故⑤正确;⑥当x>1时,y随x的增大而减小,故⑥错误;故答案为:②④⑤.[点睛]此题主要考查了图象与二次函数系数之间的关系,二次函数与方程之间的转换,会利用特殊值代入法求得特殊的式子,如:y=A +B +C ,然后根据图象判断其值.17.如图,已知点,,…,在函数位于第二象限的图象上,点,,…,在函数位于第一象限的图象上,点,,…,在轴的正半轴上,若四边形、,…,都是正方形,则正方形的边长为________.[答案][解析][分析]根据正方形对角线平分一组对角可得OB 1与y轴的夹角为45°,然后表示出OB 1的解析式,再与抛物线解析式联立求出点B 1的坐标,然后求出OB 1的长,再根据正方形的性质求出OC 1,表示出C 1B 2的解析式,与抛物线联立求出B 2的坐标,然后求出C 1B 2的长,再求出C 1C 2的长,然后表示出C 2B 3的解析式,与抛物线联立求出B 3的坐标,然后求出C 2B 3的长,从而根据边长的变化规律解答即可.[详解]解:∵OA 1C 1B 1是正方形,∴OB 1与y轴的夹角为45°,∴OB 1的解析式为y=x联立,解得或,∴点B 1(1,1),OB 1==,∵OA 1C 1B 1是正方形,∴OC 1=OB 1=×=2,∵C 1A 2C 2B 2是正方形,∴C 1B 2的解析式为y=x+2,联立,解得,或,∴点B 2(2,4),C 1B 2==2,∵C 1A 2C 2B 2是正方形,∴C 1C 2= C 1B 2=×2=4,∴C 2B 3的解析式为y=x+(4+2)=x+6,联立,解得,或,∴点B 3(3,9),C 2B 3==3,…,依此类推,正方形C 2010A 2011C 2011B 2011的边长C 2010B 2011=2011.故答案为:2011.[点睛]本题考查了二次函数的对称性,正方形的性质,表示出正方形的边长所在直线的解析式,与抛物线解析式联立求出正方形的顶点的坐标,从而求出边长是解题的关键.18.二次函数的部分对应值如下表:…………①抛物线的顶点坐标为;②与轴的交点坐标为;③与轴的交点坐标为和;④当时,对应的函数值为.以上结论正确的是________.[答案]①②④[解析][分析]由上表得与y轴的交点坐标为(0,-8);与x轴的一个交点坐标为(-2,0);函数图象有最低点(1,-9);有抛物线的对称性可得出可得出与x轴的另一个交点坐标为(4,0);当x=-1时,对应的函数值y为-5.从而可得出答案.[详解]根据上表可画出函数的图象,由图象可得,①抛物线的顶点坐标为(1,-9);②与y轴的交点坐标为(0,-8);③与x轴的交点坐标为(-2,0)和(4,0);④当x=-1时,对应的函数值y为-5.故答案是:①②④.[点睛]考查了用函数图象法求一元二次方程的近似根,体现了数形结合的思想方法.19.已知点、三点都在抛物线的图象上,则、的大小关系是________.(填“、、”)[答案][解析][分析]本题需先根据已知条件求出二次函数的图象的对称轴,再根据点A 、B 的横坐标的大小即可判断出y1与y2的大小关系.[详解]解:∵二次函数y=x2+2的图象的对称轴是y轴,在对称轴的左面y随x的增大而减小,∵点A (-4,y1)、B (-3,y2)是二次函数y=x2+2的图象上两点,-4<-3,∴y1>y2.故答案为:y1>y2.[点睛]本题主要考查了二次函数图象上点的坐标特征,在解题时要能灵活应用二次函数的图象和性质以及点的坐标特征是本题的关键.20.如图,是二次函数的图象的一部分,给出下列命题:①;②;③的两根分别为和;④.其中正确的命题是________.(只要求填写正确命题的序号)[答案]①③[解析][分析]由图象可知过(1,0),代入得到A +B +C =0;根据-=-1,推出B =2A ;根据图象关于对称轴对称,得出与X 轴的交点是(-3,0),(1,0);由A -2B +C =A -2B -A -B =-3B <0,根据结论判断即可.[详解]解:由图象可知:过(1,0),代入得:A +B +C =0,∴①正确;-=-1,∴B =2A ,∴②错误;根据图象关于对称轴x=-1对称,与X轴的交点是(-3,0),(1,0),∴③正确;∵B =2A >0,∴-B <0,∵A +B +C =0,∴C =-A -B ,∴A -2B +C =A -2B -A -B =-3B <0,∴④错误.故答案为:①③.[点睛]本题主要考查对二次函数与X轴的交点,二次函数图象上点的坐标特征,二次函数图象与系数的关系等知识点的理解和掌握,能根据图象确定系数的正负是解此题的关键.三、解答题(共6 小题,每小题10 分,共60 分)21.某校为绿化校园,在一块长为米,宽为米的长方形空地上建造一个长方形花圃,如图设计这个花圃的一边靠墙(墙长大于米),并在不靠墙的三边留出一条宽相等的小路,设小路的宽为米,花圃面积为为平方米,求关于的函数解析式,并写出函数的定义域.[答案][解析][分析]设小路的宽为x米,那么长方形花圃的长为(15-2x),宽为(10-x),花圃面积为y平方米,根据长方形面积公式即可列出方程,进而求出函数的定义域.[详解]解:设小路的宽为米,那么长方形花圃的长为,宽为,根据题意得,由,解得.[点睛]本题考查了根据实际问题列二次函数关系式,关键是设出小路的宽,表示出长方形花圃的长和宽,根据面积这个等量关系可列出方程.22.某企业是一家专门生产季节性产品的企业,经过调研预测,它一年中获得的利润(万元)和月份之间满足函数关系式.若利润为万元,求的值.哪一个月能够获得最大利润,最大利润是多少?当产品无利润时,企业会自动停产,企业停产是哪几个月份?[答案](1)或;(2)月能够获得最大利润,最大利润是万;(3) 该企业一年中应停产的月份是月、月、月[解析][分析](1)把y=21代入,求出n的值即可;(2)根据解析式,利用配方法求出二次函数的最值即可;(3)根据解析式,求出函数值y等于0时对应的月份,依据开口方向以及增减性,再求出y小于0时的月份即可解答.[详解]解:由题意得:,解得:或;,∵,∴开口向下,有最大值,即时,取最大值,故月能够获得最大利润,最大利润是万;)∵,当时,或者.又∵图象开口向下,∴当时,,当时,,当时,,则该企业一年中应停产的月份是月、月、月.[点睛]此题主要考查了二次函数的应用,难度一般,解答本题的关键是熟练运用配方法求二次函数的最大值,借助二次函数解决实际问题.23.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为米的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设的长度为米,矩形区域的面积为米.求证:;求与之间的函数关系式,并写出自变量的取值范围;为何值时,有最大值?最大值是多少?[答案](1)见解析;(2)y=;(3)当时,有最大值,最大值为平方米[解析][分析](1)根据三个矩形面积相等,得到矩形A EFD 面积是矩形B C FE面积的2倍,可得出A E=2B E;(2)设B E=A ,则有A E=2A ,表示出A 与2A ,进而表示出y与x的关系式,并求出x的范围即可;(3)利用二次函数的性质求出y的最大值,以及此时x的值即可.[详解]解:∵三块矩形区域的面积相等,∴矩形面积是矩形面积的倍,又∵是公共边,∴;设,则,∴,∴,,∴,∵,∴,∴∵,且二次项系数为,∴当时,有最大值,最大值为平方米.[点睛]此题考查了二次函数的应用,以及列代数式,熟练掌握二次函数的性质是解本题的关键.24.已知二次函数的图象与坐标轴交点的坐标分别为,,.求此函数的解析式;求抛物线的开口方向、对称轴及顶点坐标;根据图象直接写出时的取值范围.[答案](1)函数的解析式即;(2)抛物线的开口向上,对称轴为直线=1, 顶点坐标;(3)当时,.[解析][分析](1)设抛物线的解析式为y=A (x-x1)(x-x2),再把A (-1,0),B (3,0),C (0,-3)代入即可得出此函数的解析式;(2)根据A 的符号判断抛物线的开口方向、由顶点公式得出对称轴及顶点坐标;(3)由题意把函数转化为不等式,得x2-2x-3>0,从而求出x的取值范围.[详解]解:设抛物线的解析式为,把,,代入得,解得,∴此函数的解析式即;∵,∴抛物线的开口向上,对称轴为直线,,顶点坐标;∵,即图象在轴的下方,∴由图象可知:当时,.[点睛]本题考查了二次函数的性质,以及用待定系数法求二次函数的解析式,求抛物线的顶点坐标的方法,是中考的常见题型.25.如图,已知二次函数的图象过点和点,对称轴为直线.求该二次函数的关系式和顶点坐标;结合图象,解答下列问题:①当时,求函数的取值范围.②当时,求的取值范围.[答案](1)抛物线的顶点坐标为;(2)①当时,;②当时,或.[解析][分析](1)把A 点和C 点坐标代入y=A x2+B x+C 得到两个方程,再加上对称轴方程即可得到三元方程组,然后解方程组求出A 、B 、C 即可得到抛物线解析式,再把解析式配成顶点式即可得到顶点坐标;(2)①先分别计算出x为-1和2时的函数值,然后根据二次函数的性质写出对应的函数值的范围;②先计算出函数值为3所对应的自变量的值,然后根据二次函数的性质写出y<3时,x的取值范围.[详解]解:根据题意得,解得,所以二次函数关系式为,因为,所以抛物线的顶点坐标为;①当时,;时,;而抛物线的顶点坐标为,且开口向下,所以当时,;②当时,,解得或,所以当时,或.[点睛]本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.也考查了二次函数的性质.26.在平面直角坐标系中,平行四边形如图放置,点、的坐标分别是、,将此平行四边形绕点顺时针旋转,得到平行四边形.如抛物线经过点、、,求此抛物线的解析式;在情况下,点是第一象限内抛物线上的一动点,问:当点在何处时,的面积最大?最大面积是多少?并求出此时的坐标;在的情况下,若为抛物线上一动点,为轴上的一动点,点坐标为,当、、、构成以作为一边的平行四边形时,求点的坐标.[答案](1)抛物线的解析式为:;(2) 当时,的面积最大,最大值,的坐标为:;(3) 点的坐标为:,,,[解析][分析](1)由平行四边形A B OC 绕点O顺时针旋转90°,得到平行四边形A ′B ′O C ′,且点A 的坐标是(0,4),可求得点A ′的坐标,然后利用待定系数法即可求得经过点C 、A 、A ′的抛物线的解析式;(2)首先连接A A ′,设直线A A ′的解析式为:y=kx+B ,利用待定系数法即可求得直线A A ′的解析式,再设点M的坐标为:(x,-x2+3x+4),继而可得△A MA ′的面积,继而求得答案;(3)分别从B Q为边与B Q为对角线去分析求解即可求得答案.[详解]解:∵平行四边形绕点顺时针旋转,得到平行四边形,且点的坐标是,∴点的坐标为:,∵点、的坐标分别是、,抛物线经过点、、,。

浙教版九年级上册第一章 二次函数 单元测试卷及答案

浙教版九年级上册第一章 二次函数 单元测试卷及答案

浙教版九年级上册第一章二次函数单元测试卷班级__________ 姓名__________ 得分_________一、选择题(本题有10小题,每小题3分,共30分)1.已知抛物线y=(m-1)x2经过点(-1,-2),那么m的值是()A.1 B.-1 C.2 D.-22.抛物线y=-3x2-x+4与坐标轴的交点的个数是()A.3 B.2 C.1 D.03.将抛物线y=x2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为()A.y=(x+2)2-5 B.y=(x+2)2+5 C.y=(x-2)2-5 D.y=(x-2)2+54.若二次函数y=ax2(a≠0)的图象经过点M(2,-3),则它也经过()A.M'(-2,-3) B.M'(-2,3) C.M'(-3,-2) D.M'(-3,2)5.二次函数y=-x2+1的图象与x轴交于A,B两点,与y轴相交于点C.下列说法中,错误的是()A.△ABC是等腰三角形B.点C的坐标是(0,1)C.AB的长为2 D.y随x的增大而减小6.将二次函数y=x2-2x+3化为y=(x-h)2+k的形式,结果为()A.y=(x+1)2+4 B.y=(x-1)2+4 C.y=(x+1)2+2 D.y=(x-1)2+27.将二次函数y=-(x-k)2+k+1的图象向右平移1个单位,再向上平移2个单位后,顶点在直线y=2x+1上,则k的值为()A.2 B.1 C.0 D.-18.二次函数y=ax2+bx的图象如图所示,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为()A.-3 B.3 C.-6 D.99.如图,已知正方形ABCD的边长为4,E是BC边上的一个动点,AE⊥EF,EF交DC于F,设BE=x,FC=y,则当点E从点B运动到点C时,y关于x的函数图象是()10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确是()A.abc>0B.2a+b<0C.3a+c<0D.ax2+bx+c-3=0,有两个不相等的实数根二、填空题(本题有8小题,每小题3分,共24分)11.已知二次函数y=x2-2x-3与y轴交点坐标是__________.12.如图所示的抛物线是二次函数y=ax2-3x+a2-1的图象,那么a的值是__________.13.若抛物线y=ax2+bx+c的顶点是A(2,1),且经过点B(1,0),则抛物线的函数表达式为__________.14.请写出一个对称轴为直线x=1,且图象开口向上的二次函数表达式:__________.15.把二次函数y=(x-1)2+2的图象绕原点旋转180°后得到的图象的表达式为__________.16.如图,直线y=mx+n与抛物线y=ax2+bx+c交于A(-1,p),B(4,q)两点,则关于x的不等式mx+n>ax2+bx+c的解集是__________.17.如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx(a>0)的顶点为C,与x轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交于点B.若四边形ABOC是正方形,则b的值是__________.18.已知二次函数y=x2-mx-1,当x<4时,函数值y随x的增大而减小,则m的取值范围是__________.三、解答题(本题有6题,共46分)19.(本题6分)如图所示,已知二次函数y=x2-4x+3.(1)用配方法求其图象的顶点C的坐标,并描述该函数的函数值随自变量的增减而变化的情况.(2)求函数图象与x轴的交点A,B的坐标及△ABC的面积.20.(本题6分)已知二次函数图象的顶点坐标为(1,-1),且过原点(0,0),求该函数表达式.21.(本题8分)课本中有一个例题.有一个窗户形状如图①,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6 m,如何设计这个窗户能使透光面积最大?这个例题的答案是当窗户半圆的半径约为0.35 m时,透光面积的最大值约为1.05 m2.我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图②,材料总长仍为6 m,利用图③,解答下列问题:(1)若AB为1 m,求此时窗户的透光面积;(2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.①②③22.(本题8分)一列火车在A城的正北240 km处,以120 km/h的速度驶向A城.同时,一辆汽车在A 城的正东120 km处,以120 km/h速度向正西方向行驶.假设火车和汽车的行驶方向和速度都保持不变,问何时火车与汽车之间的距离最近?当火车与汽车距离最近时,汽车是否已过铁路与公路的交叉口?(火车与汽车的长度忽略不计)23.(本题8分)学校计划用地面砖铺设教学楼前矩形广场的地面ABCD,已知矩形广场地面的长为100米,宽为80米.图案设计如图所示:广场的四角为小正方形,阴影部分为四个矩形,四个矩形的宽都为小正方形的边长,阴影部分铺绿色地面砖,其余部分铺白色地面砖.(1)要使铺白色地面砖的面积为5200平方米,那么矩形广场四角的小正方形的边长为多少米?(2)如果铺白色地面砖的费用为每平方米30元,铺绿色地面砖的费用为每平方米20元,当广场四角小正方形的边长为多少米时,铺广场地面的总费用最少?最少费用是多少?24点C,E.(1)求抛物线的函数表达式;(2)若点C为OA的中点,求BC的长;(3)以BC,BE为边构造矩形BCDE,设点D的坐标为(m,n),求出m,n之间的关系式.第一章二次函数单元测试·答案一、选择题(本题有10小题,每小题3分,共30分)1.已知抛物线y=(m-1)x2经过点(-1,-2),那么m的值是()A.1 B.-1 C.2 D.-2【答案】B2.抛物线y=-3x2-x+4与坐标轴的交点的个数是()A.3 B.2 C.1 D.0【答案】A3.将抛物线y=x2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为()A.y=(x+2)2-5 B.y=(x+2)2+5 C.y=(x-2)2-5 D.y=(x-2)2+5【答案】A【解析】根据“左加右减,上加下减”的规律可知,将抛物线y=x2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为y=(x+2)2-5,故选A.4.若二次函数y=ax2(a≠0)的图象经过点M(2,-3),则它也经过()A.M'(-2,-3) B.M'(-2,3) C.M'(-3,-2) D.M'(-3,2)【答案】A【解析】二次函数y=ax2的图象关于y轴对称.关于y轴对称的点的横坐标互为相反数,纵坐标相同,故选A.5.二次函数y=-x2+1的图象与x轴交于A,B两点,与y轴相交于点C.下列说法中,错误的是()A.△ABC是等腰三角形B.点C的坐标是(0,1)C.AB的长为2 D.y随x的增大而减小【答案】D6.将二次函数y=x2-2x+3化为y=(x-h)2+k的形式,结果为()A.y=(x+1)2+4 B.y=(x-1)2+4 C.y=(x+1)2+2 D.y=(x-1)2+2【答案】D【解析】y=x2-2x+3=x2-2x+1+2=(x-1)2+2.7.将二次函数y=-(x-k)2+k+1的图象向右平移1个单位,再向上平移2个单位后,顶点在直线y=2x+1上,则k的值为()A.2 B.1 C.0 D.-1【答案】C8.二次函数y=ax2+bx的图象如图所示,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为()A.-3 B.3 C.-6 D.9【答案】B9.如图,已知正方形ABCD的边长为4,E是BC边上的一个动点,AE⊥EF,EF交DC于F,设BE=x,FC=y,则当点E从点B运动到点C时,y关于x的函数图象是()【答案】A【解析】连结AF,由题意EC=4-x,FD=4-y,在Rt △AEF 中,AE 2+EF 2=AF 2,即x 2+42+y 2+(4-x )2=42+(4-y )2, 化简得y =-14x 2+x =-14(x -2)2+1,∵0≤x ≤4,∴选A .10.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论正确是( ) A .abc >0 B .2a +b <0 C .3a +c <0D .ax 2+bx +c -3=0,有两个不相等的实数根【答案】C【解析】由二次函数图象开口向下可知,a <0,由“左同右异”可知b >0,由图象与y 轴交于正半轴可知c >0,故abc <0,故A 选项错误;由图象可知,对称轴为直线x =1,即-b2a =1,则b =-2a ,故2a +b =0,故B 选项错误;当x =-1时,y =a -b +c =a +2a +c =3a +c ,由图象与x 轴交于x 轴下方可知,当x =-1时,y <0,即3a +c <0,故C 选项正确;当y =3时,ax 2+bx +c =3,即ax 2+bx +c -3=0,由图象可知,当y =3时,x =1,故ax 2+bx +c -3=0有两个相等的实数根,故D 选项错误.故选C .二、填空题(本题有8小题,每小题3分,共24分)11.已知二次函数y =x 2-2x -3与y 轴交点坐标是__________.【答案】(0,-3)12.如图所示的抛物线是二次函数y =ax 2-3x +a 2-1的图象,那么a 的值是__________.【答案】-1【解析】由图象可知,抛物线经过原点(0,0),∴a2-1=0,解得a=±1.∵图象开口向下,∴a<0,∴a=-1.13.若抛物线y=ax2+bx+c的顶点是A(2,1),且经过点B(1,0),则抛物线的函数表达式为__________.【答案】y=-x2+4x-3【解析】设抛物线的函数表达式为y=a(x-2)2+1(a≠0),将B(1,0)代入y=a(x-2)2+1,得a=-1.∴函数表达式为y=-(x-2)2+1,即y=-x2+4x-3.14.请写出一个对称轴为直线x=1,且图象开口向上的二次函数表达式:__________.【答案】y=x2-2x15.把二次函数y=(x-1)2+2的图象绕原点旋转180°后得到的图象的表达式为__________.【答案】y=-(x+1)2-2【解析】二次函数y=(x-1)2+2的顶点坐标为(1,2),开口向上,绕原点旋转180°后得到的二次函数图象的顶点坐标为(-1,-2),开口向下,所以旋转后的新函数图象的表达式为y=-(x+1)2-2.16.如图,直线y=mx+n与抛物线y=ax2+bx+c交于A(-1,p),B(4,q)两点,则关于x的不等式mx +n>ax2+bx+c的解集是__________.【答案】x<-1或x>4【解析】由函数图象可知:在点A的左侧和点B的右侧,一次函数的函数值都大于二次函数的函数值,∵A(-1,p),B(4,q),∴关于x的不等式mx+n>ax2+bx+c的解集是x<-1或x>4.17.如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx(a>0)的顶点为C,与x轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交于点B.若四边形ABOC是正方形,则b的值是__________.【答案】-2 【解析】由抛物线y =ax 2+bx可知,点C 的横坐标为-b 2a ,纵坐标为-b 24a.∵四边形ABOC 是正方形, ∴-b 2a =-⎝⎛⎭⎫-b 24a .∴b =-2.18.已知二次函数y =x 2-mx -1,当x <4时,函数值y 随x 的增大而减小,则m 的取值范围是__________. 【答案】m ≥8三、解答题(本题有6题,共46分)19.(本题6分)如图所示,已知二次函数y =x 2-4x +3.(1)用配方法求其图象的顶点C 的坐标,并描述该函数的函数值随自变量的增减而变化的情况. (2)求函数图象与x 轴的交点A ,B 的坐标及△ABC 的面积.【答案】解:(1)y =x 2-4x +3=x 2-4x +4-4+3=(x -2)2-1. ∴顶点C 的坐标是(2,-1).当x ≤2时,y 随x 的增大而减小;当x ≥2时,y 随x 的增大而增大. (2)令x 2-4x +3=0,解得x 1=3,x 2=1. ∴点A 的坐标是(1,0),点B 的坐标是(3,0). ∴S △ABC =12AB ×h =12×2×1=1.20.(本题6分)已知二次函数图象的顶点坐标为(1,-1),且过原点(0,0),求该函数表达式.【答案】解:∵二次函数图象的顶点坐标为(1,-1), ∴可设为y =a (x -1)2-1(a ≠0).∵当x =0时,y =0,∴0=a ×(0-1)2-1,解得a =1. ∴该函数表达式为y =(x -1)2-1. 21.(本题8分)课本中有一个例题.有一个窗户形状如图①,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6 m ,如何设计这个窗户能使透光面积最大?这个例题的答案是当窗户半圆的半径约为0.35 m 时,透光面积的最大值约为1.05 m 2.我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图②,材料总长仍为6 m ,利用图③,解答下列问题:(1)若AB 为1 m ,求此时窗户的透光面积;(2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.①②③【答案】解:(1)由题意,得AD =54 m ,∴S =54 m 2;(2)设AB =x (m ),则AD =12×⎝⎛⎭⎫6-3x -x 2=⎝⎛⎭⎫3-74x m , ∵3-74x >0,∴0<x <127.设窗户面积为S (m 2),由题意,得S =AB ·AD =x ⎝⎛⎭⎫3-74x =-74x 2+3x =-74⎝⎛⎭⎫x -672+97, 当x =67 m 时,S 最大值=97m 2>1.05 m 2.∴与课本中的例题比较,现在窗户透光面积的最大值变大.22.(本题8分)一列火车在A 城的正北240 km 处,以120 km /h 的速度驶向A 城.同时,一辆汽车在A城的正东120 km 处,以120 km /h 速度向正西方向行驶.假设火车和汽车的行驶方向和速度都保持不变,问何时火车与汽车之间的距离最近?当火车与汽车距离最近时,汽车是否已过铁路与公路的交叉口?(火车与汽车的长度忽略不计) 【答案】解:如答图,设经过t h ,火车到达B 处,汽车到达C 处,则AB =|240-120t |, AC =|120-120t |, 在Rt △ABC 中, BC =AB 2+AC 2=(240-120t )2+(120-120t )2 =1202(2-t )2+1202(1-t )2 =1202t 2-6t +5=1202⎝⎛⎭⎫t -322+12. 当t =32 h 时,BC 之间的距离最小,此时BC =12012=602, ∵当t =32 h 时,汽车运动的距离为120×32=180(km )>120(km ),∴汽车已过铁路与公路的交叉口.答:当经过32h 时汽车与火车的距离最近,此时汽车已过铁路与公路的交叉口.23.(本题8分)学校计划用地面砖铺设教学楼前矩形广场的地面ABCD ,已知矩形广场地面的长为100米,宽为80米.图案设计如图所示:广场的四角为小正方形,阴影部分为四个矩形,四个矩形的宽都为小正方形的边长,阴影部分铺绿色地面砖,其余部分铺白色地面砖.(1)要使铺白色地面砖的面积为5200平方米,那么矩形广场四角的小正方形的边长为多少米? (2)如果铺白色地面砖的费用为每平方米30元,铺绿色地面砖的费用为每平方米20元,当广场四角小正方形的边长为多少米时,铺广场地面的总费用最少?最少费用是多少?【答案】解:(1)设矩形广场四角的小正方形的边长为x米,根据题意,得4x2+(100-2x)(80-2x)=5200,整理,得x2-45x+350=0,解得x1=35,x2=10.经检验,x1=35,x2=10均符合题意.所以,要使铺白色地面砖的面积为5200平方米,则矩形广场四角的小正方形的边长为35米或10米.(2)设铺矩形广场地面的总费用为y元,广场四角的小正方形的边长为x米,则y=30×[4x2+(100-2x)(80-2x)]+20×[2x(100-2x)+2x(80-2x)],即y=80x2-3600x+240000,配方,得y=80(x-22.5)2+199500.当x=22.5时,y的值最小,最小值为199500元.所以,当矩形广场四角的小正方形的边长为22.5米时,所铺广场地面的总费用最少,最少费用为24点C,E.(1)求抛物线的函数表达式;(2)若点C为OA的中点,求BC的长;(3)以BC,BE为边构造矩形BCDE,设点D的坐标为(m,n),求出m,n之间的关系式.【答案】解:(1)∵点A(a,12)在直线y=2x上,∴12=2a,解得:a=6,又∵点A是抛物线y=12x2+bx上的一点,将点A(6,12)代入y=12x2+bx,可得b=-1,∴抛物线表达式为y=12x2-x.(2)∵点C是OA的中点,∴点C的坐标为(3,6),把y=6代入y=12x2-x,解得:x1=1+13,x2=1-13(舍去),故BC=1+13-3=13-2.(3)∵直线OA的表达式为:y=2x,点D的坐标为(m,n),∴点E的坐标为(12n,n),点C的坐标为(m,2m),∴点B的坐标为(12n,2m),把点B(12n,2m)代入y=12x2-x,可得m=116n2-14n,。

2020-2021学年九年级上册数学第1章《二次函数》单元测试卷(有答案)

2020-2021学年九年级上册数学第1章《二次函数》单元测试卷(有答案)

2020-2021学年九年级上册数学第 1章《二次函数》单元测试卷式是()1. 卜列关于X 的函数一定为二次函数的是( A . y=4xB , y= 5x2 - 3xC. y=ax 2+bx+cD , y=x 3-2x+12.将二次函数y= 2x 2+5的图象先向左平移 3个单位,再向下平移 1个单位,则平移后的函数关系A. y=2 (x+3) 2+6 B . y=2 (x+3) 2+4 C. y=2 (x- 3) 2+6D. y=2 (x-3) 2+43. 如图,某农场拟建一间矩形奶牛饲养室,打算一边利用房屋现有的墙(墙足够长) ,其余三边除大门外用栅栏围成,栅栏总长度为 50m,门宽为2m.若饲养室长为 xm,占地面积为ym 2,则关于x 的函数表达式为(:2+26x (2<x<52)B. C. -2 .y= - . x +50x (2w x< 52) y= - x 2+52x (2< x< 52) - 2 一 一 一 __________ y=一方x2+27x- 52 (2<x< 52)(aw0)在同一坐标系中的图象可能是(D .5.以下抛物线的顶点坐标为(2, 0)的是(10.如图,已知顶点为(-3, -6)的抛物线y=ax 2+bx+c 经过点(-1, -4),则下列结论:-1;⑤若点(-2, m ) , (- 5, n )在抛物线上,则 m>n,其中正确的个数共有(二.填空题⑥y= ( x+1 ) 2- x 2.这六个式子中,二次函数有12.把二次函数 y=x 2- 4x+5化为y=a (x —h ) 2+k 的形式,那么h+k=A . y= 3x 2+2B . y= 3x2 - 2C. y=3 (x — 2) 2D. y=3 (x+2) 26.二次函数y= ax 2+bx+c 的图象如图所示,其对称轴是x=-1, 卜列结论中正确的是(8.二次函数C. 2a+b=0D. a - b+c>2 (x-1) 2+b (aw0)的图象经过点(0, 2) a+b 的值是( B. - 1C. 2D. 3 x 2- 2x+c 在-3< x< 2的范围内有最大值为一5, 则c 的值是(B. 3C. - 3D. - 69.二次函数 y=ax 2—2ax+b 中,当—1wxw 4 时,—2wyw3,贝U b — a 的值为( B. - 6或 7C. 3D. 3 或—2①b 2>4ac ;② ax 2+bx+c< - 6;③ 9a- 3b+c= - 6;④关于 x 的二次方程 ax 2+ bx+ c= - 4 的根为B. 2个C. 3个D. 4个11.观察:① y = 6x 2;② y=- 3x 2+5;③2 1y=200x 2+400x+200;④ y=x 3-2x;⑤ ¥二工 二.(只填序号)13. 一名男生参加抛实心球测试,已知球的高度 y (m )与水平距离 x (m )之间的关系是7.二次函数 y= a2B. 4ac< b -114 .已知抛物线的顶点坐标是(-2, 3),其图象是由抛物线 y=-8x 2+1平移得到的,则该抛物线的解析式为.15 .抛物线y=a (x- h) 2+k (a<0)经过(-1,3)、( 5, 3)两点,则关于 x 的不等式a (x- h -1) 2+k<3的解集为.16 .已知二次函数 y=ax 2+bx+c (aw0, a, b, c,为常数),对称轴为直线 x=1,它的部分自变量x 与函数值y 的对应值如下表.请写出ax 2+bc+c= 0的一个正数解的近似值 (精确到0.1)x - 0.4 — 0.3 — 0.2 — 0.117 .若函数y=x 2+2x+m 的图象与x 轴没有交点,则 m 的取值范围是 .18 .已知二次函数 y=ax 2+ (a-1) x- 2a+1,当1vxv3时,y 随x 的增大而减小,则 a 的取值范围是.19 .如果二次函数y=a (x-1) 2(aw0)的图象在它的对称轴右侧部分是上升的,那么a 的取值范围是.20 .小甬是一个喜欢探究钻研的同学,他在和同学们一起研究某条抛物线y=-/父2的性质时,将一个直角三角板的直角顶点置于平面直角坐标系的原点 O,两直角边与该抛物线交于A, B 两点 (如图),对该抛物线,小甬将三角板绕点 O 旋转任意角度时惊奇地发现,交点A, B 的连线段总经过一个固定的点,则该点的坐标是三.解答题21 .已知二次函数 y=2x 2+4x- 6,(1)将二次函数的解析式化为y= a (x-h) 2+k 的形式.(2)写出二次函数图象的开口方向、对称轴、顶点坐标. 22 .已知二次函数(k 为常数),求k 的值.__ 1 2 产12工m,则这名男生抛实心球的成绩是3m.y= ax 2+ bx+c0.920.38—0.12—0.5823.在平面直角坐标系xOy中,抛物线y= ax2+4ax+4a-4 (aw0)的顶点为A.(1)求顶点A的坐标;(2)过点(0, 5)且平行于x轴的直线1,与抛物线y=ax2+4ax+4-4 (aw 0)交于B、C两点.①当a=1时,求线段BC的长;②当线段BC的长不小于8时,直接写出a的取值范围.532 -11— I I E II」] ■ I J 、-5 一4 4-2 口, 1 2 3 4 5x-2~-3-4-5 _____________24.已知二次函数的图象y=- x2+bx+c如图所示,它与轴的交点坐标为(- 1,0), (3, 0)(1)求b, c的值;(2)根据图象,直接写出函数值y<0时,自变量x的取值范围.25.二次函数y=ax2+bx+c (aw0)与一次函数y=x+k (kw0)的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0的两个根;(2)写出不等式ax2+bx+c- x- k< 0的解集;(3)写出二次函数值y随x的增大而减小的自变量x的取值范围;(4)若方程ax2+bx+c= m有两个不等的实数根,求m的取值范围;26.如图,一段长为45m的篱笆围成一个一边靠墙的矩形花园,墙长为27m,设花园的面积为sm2,平行于墙的边为xm.若x不小于17m,(1)求出s关于x的函数关系式;(2)求s的最大值与最小值.花园27.在平面直角坐标系xOy中,二次函数y = x2-2mx+1图象与y轴的交点为A,将点A向右平移4个单位长度,向上平移1个单位长度得到点B.(1)直接写出点A的坐标为,点B的坐标为;(2)若函数y=x2-2mx+1的图象与线段AB恰有一个公共点,求m的取值范围.参考答案与试题解析・选择题1.解:A、是一次函数,故此选项不符合题意;B、是二次函数,故此选项符合题意;C、当a=0时不是二次函数,故此选项不符合题意;D、不是二次函数,故此选项不符合题意;故选:B.2.解:根据“左加右减,上加下减”的法则可知,将抛物线y= 2x2+5向左平移3个单位,再向下平移1个单位,那么所得到抛物线的函数关系式是y=2 (x+3) 2+4.故选:B.3.解:y关于x的函数表达式为:y=g (50+2-x) x b-l= ---- x+26x (2W x<52).故选:A.4,解:①当a>0时,二次函数y= ax2-a的图象开口向上、对称轴为y轴、顶点在y轴负半轴,一次函数y= ax - a (aw0)的图象经过第一、三、四象限,且两个函数的图象交于y轴同一点;②当a<0时,二次函数y= ax2-a的图象开口向下、对称轴为y轴、顶点在y轴正半轴,一次函数y=ax-a (aw0)的图象经过第一、二、四象限,且两个函数的图象交于y轴同一点.对照四个选项可知D正确.故选:D.5.解:抛物线y= 3x2+2的顶点为(0, 2);抛物线y= 3x2-2的顶点为(0, - 2);抛物线y=3 (x-2) 2的顶点为(2, 0);抛物线y=3 (x+2) 2的顶点为(-2, 0);故选:C.6.解:A、由抛物线的开口向下知a<0,对称轴在y轴的左侧,a、b同号,即b<0,与y轴的交点为在y轴的正半轴上,. 0,因此abc>0,故错误;B、抛物线与x轴有两个交点,b2 - 4ac>0,即4acv b2,故正确;C、对称轴为x= ----- --= - 1,得2a = b,23.2a- b= 0,故错误;D、•.当x= - 1 时,y>0• -a- b+c>0,故错误.故选:B.7.解:二.二次函数y=a (x- 1) 2+b (aw0)的图象经过点(0, 2),a+b = 2.故选:C.8.解:把二次函数y= - x2-2x+c转化成顶点坐标式为y= - (x+1) 2+c+l,又知二次函数的开口向下,对称轴为x=- 1,故当x= - 1时,二次函数有最大值为- 5,故-1+2+c= - 5,故c= - 6.故选:D.2 29.解::抛物线y=ax — 2ax+b=a (x—1) +b- a,「•顶点(1, b - a)当a>0 时,当-1WxW4 时,—2WyW3,函数有最小值,b - a= - 2,当a<0 时,当—1wxw4 时,—2wyw3,函数有最大值,b - a= 3,故选:D.10.解:二•抛物线与x轴有2个交点,•・△= b2- 4ac>0,即b2>4ac,所以①正确;•.•抛物线的顶点坐标为(-3, - 6),即x= - 3时,函数有最小值,•.ax2+bx+c> - 6,所以②错误;•.•抛物线的顶点坐标为(-3, - 6),•••9a-3b+c= - 6,所以③正确;•••抛物线y= ax2+bx+c 经过点(-1, - 4),而抛物线的对称轴为直线x= - 3,.二点(-1, - 4)关于直线x= - 3的对称点(-5, - 4)在抛物线上,••・关于x的一元二次方程ax2+bx+c= - 4的两根为-5和-1 ,所以④错误;•••抛物线开口向上,对称轴为直线x= - 3,而点(-2, m) , ( - 5, n)在抛物线上,: - 3 - ( - 5) > - 2 - ( - 3),m<n,所以⑤错误.故选:B.二.填空题11.解:这六个式子中,二次函数有:①y=6x2;②y=- 3x2+5;③y= 200x2+400x+200;故答案为:①②③.12.解:y=x —4x+5= ( x _ 2) 2+1,. .h=2, k= 1,h+k=2+1= 3.故答案为:3.13.解:•••一名男生参加抛实心球测试,已知球的高度y (m)与水平距离x (m)之间的关系是7T小亭卷i 2: 1・・・当y=0,则0 = - y;5-x2+Vx+—, _L 乙O R-J解得:x1= 10, x2= - 2,,这名男生抛实心球的成绩为10m,故答案为:10.14.解:,•,该抛物线是由抛物线y= - 8x2+1平移得到的,a= - 8,又•••抛物线的顶点坐标是(- 2, 3),该抛物线的解析式为y=- 8 (x+2) 2+3.故答案为:y=- 8 (x+2) 2+3.15.解:二.抛物线y=a (x-h) 2+k (a>0)经过(-1, 3) , ( 5, 3)两点,,大致图象如图所示:•1-y= a (x- h- 1) 2+k (a>0)经过(0, 3) , (6, 3)两点则关于x的不等式a (x-h-1) 2+kW3的解集为:x< 0或x>6.故答案为:*^0或*>6.16.解:由表可知,当x= - 0.2时,y的值最接近0, 所以,方程ax2+bx+c= 0一个解的近似值为-0.2, 设正数解的近似值为a,.•.对称轴为直线x=1,一+(一。

20212022学年浙教版九年级上册数学第1章二次函数单元测试卷含答案.docx

20212022学年浙教版九年级上册数学第1章二次函数单元测试卷含答案.docx

2021-2022学年浙教新版九年级上数学《二次函数》单元测试卷选择题1.若函数y=(,疟+巾)..^-2^1是二次函数,那么m的值是()A. 2B. - 1 或3C. 3D. -1±^22.函数y—ax2+bx+c(ci, b, c是常数)是二次函数的条件是()A.。

乂0, Z?尹0,。

乂0B. a<0, 乂0,。

乂0C. 3>0, Z?乂0, c乂0D. 617^03.二次函数y=ax1+bx+c的图象如图所示,根据图象可得a, b, c与0的大小关系是()A. a>0, b<0, cVOB. a>0, b>0, c>0C. a<0, b<0, c<0D. a<0, b>0, c<04.二次函数y= - (x- 2) 2 - 3的图象的顶点坐标是( )A. (2, 3)B. (2, - 3)C. ( -2, 3)D. (-2, -3)5.如图,当沥>0时,函数y=ax1与函数y=bx+a的图象大致是()6.若二次函数y= (m+1)x2 - iwc+m2 - 2m- 3的图象经过原点,则m的值必为()A. - 1 或3B. - 1C. 3D. -3或1A.开口向下B.顶点坐标是(1, 2)C.对称轴是直线x= - 1D.有最大值是29.如果函数y=(m-2) x m -2+2x-7是二次函数,则"Z的取值范围是()A. m= +2B. m=2C. m= -2D.机为全体实数10.在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax1+c的图象大致为()二.填空题11.已知函数^= (m+2) x m(w+1)是二次函数,则秫=・12.如果函数、=(A-3)产'-3蚌2+版+1是二次函数,那么上的值一定是・13.若函数y=(m-3) x m'~7是二次函数,则成的值为.'214.若直线y=m (m为常数)与函数y=l ' 的图象恒有三个不同的交点,则常数4(X〉2)Xm的取值范围是.15.如图所示四个二次函数的图象中,分别对应的是®y=ax2;②y=*2;®y=cx1;®y=dx2.则。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数测试题06
姓名 学号 一、选择题:(每题4分,共40分) 1.与抛物线2
1352
y x x =-
+-的形状大小开口方向相同,只有位置不同的抛物线是
( )
A .2135422y x x =-+-
B .2
1782y x x =--+
C .2
16102
y x x =++ D .235y x x =-+-
2、y=x 2-1可由下列哪一个函数的图象向右平移1个单位,下平移2个单位得到( ) A 、y=(x-1)2+1 B 、y=(x+1)2+1 C 、y=(x-1)2-3
D 、y=(x+1)2+3
3.二次函数2
y x bx c =++的图象上有两点(3,-8)和(-5,-8),则此拋物线的对称轴是
A .x =4 B. x =3 C. x =-5 D. x =-1。

4.抛物线221y x mx m =--+的图象过原点,则m 为( ) A .0
B .1
C .-1
D .±1
5.把二次函数221y x x =--配方成顶点式为( ) A 2(1)y x =-
B.2(1)2y x =--
C.2(1)1y x =++ D .2(1)2y x =+-
6.直角坐标平面上将二次函数y =-2(x -1)2
-2的图象向左平移1个单位,再向上平移1个单位,则其顶点为
( )
A.(0,0)
B.(1,-2)
C.(0,-1)
D.(-2,1) 7.函数263y kx x =-+的图象与x 轴有交点,则k 的取值范围是 ( )
A .3k <
B .k<3 且≠0
C .k ≥3 D.k ≥3且≠0 8、已知二次函数y=(k 2-1)x 2+2kx-4与x 轴的一个交点A(-2,0),则k 值为( ) A 、2 B 、-1
C 、2或-1
D 、任何实数
10.已知反比例函数x
k
y =
的图象如右图所示,则二次函数2
2
2k x kx y +-=的图象大致为 ( )
A B C D 二、填空题:(每小题4分,共24分)
11.抛物线26(1)2y x =+-可由抛物线262y x =-向 平移 个单位得到.
12.顶点为(-2,-5)且过点(1,-14)的抛物线的解析式为 .
13.对称轴是y 轴且过点A (1,3)、点B (-2,-6)的抛物线的解析式为 .
14.抛物线()()
22
24y x m x m =+-+-的顶点在原点,则=m .
15.抛物线
22y x x m
=--+,若其顶点在x 轴上,
则=m .
16.二次函数2y ax bx c =++的值永远为负值的条件是a 0, ac b 42- 0. 三、解答题:(共54分)
17、(6分)已知二次函数的图象顶点是(-1,2),且经过(1,-3),求这个二次函数。

18(6分).如图,在同一直角坐标系中,二次函数的图象与两坐标轴分别交于点A (-1,0)、点B (3,0)和点C (0,-3),一次函数的图象与抛物线交于B 、C 两点。

⑴求一次函数与二次函数的解析式根据图象直接回答列下列问题: (2)当自变量x 时,一次函数值大于二次函数值.
19、抛物线y=3x-x 2+4与x 轴交点为A ,B ,顶点为C ,求△ABC 的面积。

y O
x y O x y
O x
y O x 1
-1 -3 3 x y O A B C
20.一男生推铅球,铅球出手后运动的高度y (m ),与水平距离x(m)之间的函数关系是 y=2125
1233
x x -++, 求该生能推几米?
21、(10分)如图有一座抛物线形拱桥,桥下面在正常水位是AB 宽20m ,水位上升3m 就达到警戒线CD ,这是水面宽度为10m 。

(1)在如图的坐标系中求抛物线的解析式。

(2) 若洪水到来时,水位以每小时0.2m 的速度上升,从警戒线开始,再持续多少小时才能到拱桥顶?
22.(10分)炮弹的运行轨道若不计空气阻力是一条抛物线.现测得我军炮位A 与射击目标B 的水平距离为600cm ,炮弹运行的最大高度为1200m . (l )求此抛物线的解析式.
(2)若在A 、B 之间距离A 点500m 处有一高350cm 的障碍物,计算炮弹能否越过障碍物.
23.(10分)某商人如果将进货价为8元的商品按每件10元出售,每天可销售100件,现采用提高售出价,减少进货量的办法增加利润,已知这种商品每涨价1元其销售量就要减少10件,问他将售出价定为多少元时,才能使每天所赚的利润最大?并求出最大利润.
24.(10分)设二次函数y=ax 2
+bx+c 的图像与x 轴交于点A 、B ,与y 轴交于点C ,若AC=20,∠ACB=90°,S ΔACB =150,求二次函数的解析式。

25.(10分)如图,在一块三角形区域ABC 中,∠C=90°,边AC=8,BC=6,现要在△ABC 内建造一个矩形水池DEFG ,如图的设计方案是使DE 在AB 上。

⑴求△ABC 中AB 边上的高h;
⑵设DG=x,当x 取何值时,水池DEFG 的面积最大? ⑶实际施工时,发现在AB 上距B 点1.85的M 处有一棵大树,问:这棵大树是否位于最大矩形水池的边上?如果在,为保护大树,请设计出另外的方案,使三角形区域中欲建的最大矩形水池能避开大树。

26、(12分)如图,已知抛物线2
34
y x bx c =-++与坐标轴交于A B C ,,三点,点A 的横坐标为1-,过
点(03)C ,的直线3
34y x t
=-+与x 轴交于点Q ,点P 是线段BC 上的一个动点,PH OB ^于点H .若5PB t =,且01t <<. (1)确定b c ,的值:
(2)写出点B Q P ,,的坐标(其中Q P ,用含t 的
式子表示):
(3)依点P 的变化,是否存在t 的值,使PQB △为等腰三角形?若存在,求出所有t 的值;若不存在,说明理由.
y C A
O Q
H
B P
x
A B
C
D E F
G。

相关文档
最新文档