第五次大联考试卷 数学 沪科版

合集下载

全国大联考2025届高三第五次模拟考试数学试卷含解析

全国大联考2025届高三第五次模拟考试数学试卷含解析

全国大联考2025届高三第五次模拟考试数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若,则( ) A . B . C . D .2.双曲线22221(0,0)x y a b a b -=>>的左右焦点为12,F F ,一条渐近线方程为:b l y x a=-,过点1F 且与l 垂直的直线分别交双曲线的左支及右支于,P Q ,满足11122OP OF OQ =+,则该双曲线的离心率为( ) A .10 B .3 C .5D .2 3.已知F 为抛物线y 2=4x 的焦点,过点F 且斜率为1的直线交抛物线于A ,B 两点,则||FA|﹣|FB||的值等于( )A .82B .8C .42D .44.函数()()sin f x x θ=+在[]0,π上为增函数,则θ的值可以是( )A .0B .2πC .πD .32π 5.一个正三棱柱的正(主)视图如图,则该正三棱柱的侧面积是( )A .16B .12C .8D .6 6.抛物线的焦点为F ,准线为l ,A ,B 是抛物线上的两个动点,且满足23AFB π∠=,设线段AB 的中点M 在l 上的投影为N ,则MN AB 的最大值是( )A 3B .33C .32D 37.设0.380.3log 0.2,log 4,4a b c ===,则( ) A .c b a << B .a b c <<C .a c b <<D .b a c << 8.已知变量的几组取值如下表:若y 与x 线性相关,且ˆ0.8yx a =+,则实数a =( ) A .74 B .114 C .94 D .1349.若复数z 满足(1)12i z i +=+,则||z =( )A .2B .32C .2D .1210.点M 在曲线:3ln G y x =上,过M 作x 轴垂线l ,设l 与曲线1y x =交于点N ,3OM ON OP +=,且P 点的纵坐标始终为0,则称M 点为曲线G 上的“水平黄金点”,则曲线G 上的“水平黄金点”的个数为( )A .0B .1C .2D .311.已知六棱锥P ABCDEF -各顶点都在同一个球(记为球O )的球面上,且底面ABCDEF 为正六边形,顶点P 在底面上的射影是正六边形ABCDEF 的中心G ,若PA AB =,则球O 的表面积为( ) A .163π B .94π C .6πD .9π 12.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,D 是AB 的中点,若1CD =,且1sin 2a b A ⎛⎫- ⎪⎝⎭()()sin sin c b C B =+-,则ABC 面积的最大值是( )A .5B .15CD .5二、填空题:本题共4小题,每小题5分,共20分。

江苏省新高考基地学校2024届高三下学期第五次大联考数学试题含答案

江苏省新高考基地学校2024届高三下学期第五次大联考数学试题含答案

2024届新高考基地学校第五次大联考数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑如需改动用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}2{1,0,1,4},log (1)2A B xx =-=+<∣,则A B ⋂=()A.{}0,1 B.{}0,4 C.{}0,1,4 D.{}1,0,1,4-2.在下列函数中,是奇函数且在()0,∞+上是增函数的是()A.12y x = B.13y x =C.23y x = D.1y x -=3.在()n a b +的展开式中,若第4项与第5项的二项式系数之和等于第10项与第11项的二项式系数之和,则n =()A.16B.15C.14D.134.若1cos 1sin 3ββ-=,则tan β=()A.13 B.34 C.43 D.35.设等比数列{}n a 的前n 项和为566,16,21n S a a S +==,则2S =()A.1 B.4 C.8 D.256.将函数()πsin (0)3f x x ωω⎛⎫=+> ⎪⎝⎭的图象向右平移π4个单位后,所得图象关于y 轴对称则ω的最小值为()A.23 B.53 C.103 D.1137.蒙古包是我国蒙古族牧民居住的房子,适于牧业生产和游牧生活.如图所示的蒙古包由圆柱和圆锥组合而成,其中圆柱的高为2m ,底面半径为4m,O 是圆柱下底面的圆心.若圆锥的侧面与以O 为球心,半径为4m的球相切,则圆锥的侧面积为()A.2B.2C.220πmD.240πm 8.已知过抛物线2:4C y x =的焦点F 的直线与C 相交于,A B 两点,y 轴上一点P 满足PA PF ⊥,则OP OB ⋅= ()A.1 B.2 C.-1 D.-2二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.设12,z z 为复数,则下列结论正确的是()A.1212z z z z =B.1212z z z z +=+C.若12z z =,则2212z z =D.“12z z <"是“120z z -<"的充分不必要条件10.某校团委为泙价5个社团暑期开展活动的情况,在各社团中分别抽取部分社员进行调查.若各社团抽取的社员人数的平均数为8,方差为4,则各社团被抽取的社员人数的最大值可能为()A.13B.12C.11D.1011.在平面四边形ABCD 中,1,AB BC AB BC ==⊥,将ACD 沿AC 折起,使D 到达点P 的位置.已知三棱锥P ABC -的外接球的球心M 恰是AP 的中点,则下列结论正确的是()A.,AP BM 与平面ABC 所成的角相等B.2222AC BP AP AB +=+C.二面角B AP C --的大小可能为30D.若45PBC ∠= ,则球M 的表面积为3π三、填空题:本题共3小题,每小题5分,共15分.12.曲线31y x x=-的切线斜率的最小值为__________.13.已知过坐标原点O 且异于坐标轴的直线交椭圆2222:1(0)x y E a b a b+=>>于,P A 两点,过OP 的中点Q 作x 轴的垂线,垂足为C ,直线AC 交椭圆于另一点B ,直线,,PA PB AB 的斜率分别为123,,k k k ,则13k k =__________;若1212k k =-,则E 的离心率为__________.14.在ABC 中,2,1,120,AB AC BAC M ∠=== 为BC 的中点,延长AM 与ABC 的外接圆交于点D ,则BD CD +=__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知函数()()2sin ,0,πf x ax x x =-∈.(1)若1a =,求()f x 的极小值;(2)若()f x 是单调函数,求a 的取值范围.16.(15分)设数列{}n a 的前n 项的和为5,5n S S =.(1)若{}n a 是公差为d 的等差数列,且679,,a a a 成等比数列,求d ;(2)若2n n S n a =,求证:6n S <.17.(15分)某厂家生产一种产品,已知产品的质量指标ξ服从正态分布()290,,N σξ不低于85的产品视为合格品,且合格率为80%,厂家将合格品按每箱100件包装出厂.某经销商购进一批该产品分等级销售,质量指标ξ高于95的为“一等品”,其余的为“二等品”(1)从一箱产品中任取1件,求该产品是“一等品”的概率;(2)从一箱产品中任取3件,记“一等品”的件数为X ,求X 的分布列与数学期望.18.(17分)如图,在三棱锥P ABC -中,PA ⊥底面,ABC D 为AB 上一点,且平面PAB ⊥平面,PCD AC BC PD ===P ABC -的体积为23.(1)求证:D为AB的中点;(2)求直线PB与平面PCD所成角的正弦值.19.(17分)已知M为等轴双曲线2222Γ:1(0,0)x y a ba b-=>>上一点,且M到Γ的两条渐近线的距离之积等于12.(1)求Γ的方程;(2)设点P在第一象限,且在渐近线的上方,,A B分别为Γ的左、右顶点,直线,PA PB分别与y轴交于点,C D.过点P作Γ的两条切线,分别与y轴交于点,E F(E在F的上方),证明:CE DF=.2024届新高考基地学校第五次大联考数学参考答案与解析一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】A{}{13},0,1B x x A B =-<<⋂=∣,选A.2.【答案】B 13y x =奇函数且在()0,∞+ ,选B.3.【答案】D 34910C C C C ,13n n n n n +=+∴=,选D.4.【答案】B2122sin 1332tan ,tan 12342sin cos 1229βββββ⨯====-,选B 5.【答案】A24264,,S S S S S --成等比数列,6421,21165S S ==-=,()()()2222642225,516,1S S S S S S S ∴-=-∴-=⋅∴=,选A.6.【答案】C πππππsin sin 44343f x x x ωωω⎡⎤⎛⎫⎛⎫⎛⎫-=-+=-+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦关于y 轴对称,则πππ2π,4,,13433k k k k ωω-=+∴=--∈=-Z 时,min 103ω=,选C.7.【答案】C设1,(PO h PA l h ==为圆锥高,l 为母线长),OM PA ⊥ 以O 为球心,半径为4的球与圆锥侧面相切,4OM ∴=在POA 中,()11244222POA S h l h l =+⋅=⋅⇒+= ①,且222216,(2)16,5,ππ4520πh l l l l S rl +=∴-+==∴==⨯⨯=侧,选:C8.【答案】D()()()11221,,,,,0,x my A x y B x y P t =+214x my y x=+⎧⎨=⎩消x 可得21212440,4,4y my y y m y y --=+==-()()22221111111,1,042y y PA PF x y t t x ty t ty t t ⎛⎫⋅=--=-+=-+=-= ⎪⎝⎭ 112,2,22y y t OP OB y =⋅==- 选D .9.【答案】ABD 1212z z z z =,A 对.1212z z z z +=+,B 对.12z z =,如1i 1i +=-,则21z 不一定等于22,z C 错."12z z <"表示12,z z 都是实数一定有"120z z -<"充分,120z z -<,若12,z z 不是实数,则12,z z 无大小,不必要,D 对.10.【答案】BC()512345118,405i i x x x x x x x ==++++=∴=∑()()()()()2222221234518888845S x x x x x ⎡⎤=-+-+-+-+-=⎣⎦()()()()()22222123458888820x x x x x ∴-+-+-+-+-=,不妨设5x 最大1 若513x =,则()()()()2222123488885x x x x -+-+-+-=-不可能,A 错.2 若512x =,则()()()()2222123488884,7,7,7,7,12x x x x -+-+-+-=满足,B 对.3 若511x =,则()()()()2222123488881Γ,5,7,8,9,11x x x x -+-+-+-=满足,C 对4 若510x =,则,()()()()4422222123411888816,240,30i i i i x x x x xx==-+-+-+-===∑∑,无正整数解,选BC.11.【答案】ABDM 为三棱锥P ABC -外接球球心,12MC MB MA MP AP ∴====90ABP ACP ∠∠∴== ,又AB AC ⊥ ,而,AB BP AB ⊥∴⊥平面BCP ,AB PC ∴⊥,又,PC AC PC ⊥∴⊥ 平面ABC ,设P 到底面的距离为,h M ∴到底面的距离为2h ,设,AP BM 与平面ABC 所成角分别为,αβ,22sin ,sin sin sin 2h h h h AP AP BM AP αβαβαβ∴====∴=⇒=,A 正确.对于B ,()()222222222220,B AP AB AC BP AP BP AB AC AB AC +-+=-+-=-=正确.对于C ,法一:由最大角定理知,二面角B AP C --的大小θ大于等于AB 与平面APC 所成的角,45θ∴≥ ,C 错.法二:设AP x =,由1222cos 1APQ ABP S S S S θ⋅=== 投原cos45,4522θ=<=∴> ,C 错.对于D ,将三棱锥补成正方体,可知正方体的外接球半径32R =,也为三棱锥外接球,34π3π,4S D ∴=⋅=表正确,选:AB D.三、填空题:本题共3小题,每小题5分,共15分.12.【答案】()2213f x x x =+≥',即切线斜率最小值13.【答案】32;3令()00,P x y ,则()00000,,,0,,222x y x Q C A x y ⎛⎫⎛⎫--⎪ ⎪⎝⎭⎝⎭,00011312000300231,,,3222AC y y y k k k k k k x x x k x --====∴==---2222321222222126,,,3333b b bc k k k k e a a a a =-=-∴==∴=即14.【答案】213如图建系,()()(30,0,1,0,3,0,2A C B M ⎛⎫- ⎪ ⎪⎝⎭,2210535310,0334300D F D F E x y x y D E F F ⎧=-⎧=⎪⎪⎪⎪∴++=∴=-+--=⎨⎨⎪⎪-++==⎪⎪⎩⎩2200,33033x x x y x y y ⎧==⎧⎪⎪∴⎨⎨+--==⎪⎪⎩⎩,即530,3D ⎛⎫ ⎪ ⎪⎝⎭72821.33DB DC +==四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(1)1a =时,()()π2sin ,12cos 03f x x x f x x x =-=='-⇒=当π03x <<时,()()0,f x f x '< ;当ππ3x <<时,()()0,f x f x '>πππ()23323f x f ⎛⎫∴==-⨯= ⎪⎝⎭极小值(2)()2cos f x a x=-'若()f x 在()0,π上 ,则()0f x '≥,即2cos a x ≥对()0,πx ∀∈恒成立2a ⇒≥若()f x 在()0,π上 ,则()0f x '≤,即2cos a x ≤对()0,πx ∀∈恒成立2a ⇒≤-a ∴的取值范围为][(),22,∞∞--⋃+.16.(1)由题意知()(()()()1512211169755121552586a d S a d a d a d a d a a a ⎧-⎧+==+=⎪⎪⇒⎨⎨++=+⎪⎪⎩=⎩①②由②知14a d =-或0d =当14a d =-时,1212a d =⎧⎪⎨=-⎪⎩;当100d a =⎧⎨=⎩时也符合.综上:0d =或12-(2)2n n S n a = ①211(1)n n S n a ++=+②,②-①2211(1)n n n a n a n a ++⇒=+-,()221122n n n n a n n n a n a a n ++∴+=⇒=+2n ∴≥时,()12111121123121131n n n n n a a a n n n a a a a a a a n n n n n -+----=⋅⋅=⋅⋅⋅=+-+ 而()5116,3,151n a a a n n n =∴=∴==+也符合上式,()61n a n n ∴=+()2666111n n S n n n∴==<++.17.(1)()90,(95)(85)1850.2P X P X P X μ=>=<=-≥=记事件A 为该产品为合格品,事件B 为该产品是一等品()()()0.210.84P AB P B A P A ∴===∣,∴该产品是一等品的概率为14.(2)X 的所有可能取值为0,1,2,3()()321332713270,1C 4644464P X P X ⎛⎫⎛⎫=====⋅⨯= ⎪ ⎪⎝⎭⎝⎭()()2323139112C ,34464464P X P X ⎛⎫⎛⎫==⋅⨯==== ⎪ ⎪⎝⎭⎝⎭X ∴的分布列如下:X0123P 27642764964164X 的数学期望()2718336464644E X =++=.或由13,4X B ⎛⎫~ ⎪⎝⎭的二项分布()34E X =.18.(1)证明:过A 作AM PD ⊥于点,M 平面PAB ⊥平面,PCD 平面PAB ⋂平面,PCD PD AM =∴⊥平面,PCD AM CD ∴⊥又PA ⊥ 底面,,,ABC PA CD AM PA A CD ∴⊥⋂=∴⊥ 平面PAD CD AB ∴⊥,又,AC BC D =∴ 为AB 的中点(2)设22,3,3AD x PA x CD x =∴=-=-,()22212333233P ABC V x x x x x -∴=⋅⋅-⋅-=⇒-=()2(1)20,1,1,2x x x AD PA ⇒-+=∴=∴==如图建系,()()()()1,0,2,1,0,0,0,2,0,0,0,0P B C D ∴-((()2,0,2,2,2,0PB DP DC ∴=--==设平面PCD 的一个法向量(),,n x y z = ()0202,0,1020n DP x z n n DC y ⎧⎧⋅=+=⎪⎪∴⇒⇒=-⎨⎨⋅==⎪⎪⎩⎩ 设直线PB 与平面PCD 所成角为||21,sin 3||||63PB n PB n θθ⋅∴===⋅ 19.(1)设()2220000,,M x y x y a -=,双曲线渐近线y x=±200001,12222x y x y a a +-∴⋅==∴=,Γ∴的方程为221x y -=.(2)设()()()0000,,0,1,0,1,0P x y x y A B -<-∴直线PA 方程()001,1y y x PB x =++方程()00000001,0,,111y y y y x GC D x x x θ⎛⎫⎛⎫-=- ⎪ ⎪-+-⎝⎭⎝⎭设过P 且与双曲线221x y -=相切的直线为()00y k x x y =-+()()()22222200000000221222101y k x x y k x k x ky x kx y k x y x y ⎧=-+⇒-+-+---=⎨-=⎩()2220000Δ448440x k x y k y =--++=,即()22200001210x k x y k y --++=设,PE PF 的斜率分别为12,,k k PE ∴方程()()1000100,y k x x y E y k x =-+⇒-同理()000020200020,,111C D y y y F y k x y y x x x --+=-=+--()20000120022002222,11E F C D E F x y y y y y k k x y y y y y x x -+=-+=-=∴+=+--,E C D F E C D F y y y y y y y y CE DF ∴-=-⇒-=-∴=。

2022年上海市五校联考高三下学期第五次调研考试数学试题含解析

2022年上海市五校联考高三下学期第五次调研考试数学试题含解析

2021-2022高考数学模拟试卷含解析请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.据国家统计局发布的数据,2019年11月全国CPI (居民消费价格指数),同比上涨4.5%,CPI 上涨的主要因素是猪肉价格的上涨,猪肉加上其他畜肉影响CPI 上涨3.27个百分点.下图是2019年11月CPI 一篮子商品权重,根据该图,下列结论错误的是( )A .CPI 一篮子商品中所占权重最大的是居住B .CPI 一篮子商品中吃穿住所占权重超过50%C .猪肉在CPI 一篮子商品中所占权重约为2.5%D .猪肉与其他畜肉在CPI 一篮子商品中所占权重约为0.18% 2.某四棱锥的三视图如图所示,则该四棱锥的体积为( )A .23B .43C .2D .43.若函数()ln f x x x h =-++,在区间1,e e ⎡⎤⎢⎥⎣⎦上任取三个实数a ,b ,c 均存在以()f a ,f b ,()f c 为边长的三角形,则实数h 的取值范围是( )A .11,1e ⎛⎫-- ⎪⎝⎭B .11,3e e ⎛⎫--⎪⎝⎭C .11,e ⎛⎫-+∞⎪⎝⎭D .()3,e -+∞4.函数()sin (0)f x x ωω=>的图象向右平移12π个单位得到函数()y g x =的图象,并且函数()g x 在区间[,]63ππ上单调递增,在区间[,]32ππ上单调递减,则实数ω的值为( )A .74B .32C .2D .545.函数()sin()(0)4f x A x πωω=+>的图象与x 轴交点的横坐标构成一个公差为3π的等差数列,要得到函数()cos g x A x ω=的图象,只需将()f x 的图象( )A .向左平移12π个单位 B .向右平移4π个单位 C .向左平移4π个单位 D .向右平移34π个单位 6.在5678(1)(1)(1)(1)x x x x -+-+-+-的展开式中,含3x 的项的系数是( ) A .74B .121C .74-D .121-7.为比较甲、乙两名高中学生的数学素养,对课程标准中规定的数学六大素养进行指标测验(指标值满分为100分,分值高者为优),根据测验情况绘制了如图所示的六大素养指标雷达图,则下面叙述不正确的是( )A .甲的数据分析素养优于乙B .乙的数据分析素养优于数学建模素养C .甲的六大素养整体水平优于乙D .甲的六大素养中数学运算最强8.()f x 是定义在()0,∞+上的增函数,且满足:()f x 的导函数存在,且()()f x x f x '<,则下列不等式成立的是( )A .()()221f f <B .()()3344ff <C .()()2334f f <D .()()3223f f <9.已知数列{}n a 对任意的*n N ∈有111(1)n n a a n n +=-++成立,若11a =,则10a 等于( )A .10110B .9110C .11111D .1221110.已知i 为虚数单位,若复数z 满足5i 12iz =-+,则z =( ) A .1i +B .1i -+C .12i -D .12i +11.函数()1ln1xf x x-=+的大致图像为( ) A . B .C .D .12.已知集合{}|0A x x =<,{}2|120B x x mx =+-=,若{}2AB =-,则m =( )A .4B .-4C .8D .-8二、填空题:本题共4小题,每小题5分,共20分。

2025届上海市静安区、青浦区高三第五次模拟考试数学试卷含解析

2025届上海市静安区、青浦区高三第五次模拟考试数学试卷含解析

2025届上海市静安区、青浦区高三第五次模拟考试数学试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.为实现国民经济新“三步走”的发展战略目标,国家加大了扶贫攻坚的力度.某地区在2015 年以前的年均脱贫率(脱离贫困的户数占当年贫困户总数的比)为70%.2015年开始,全面实施“精准扶贫”政策后,扶贫效果明显提高,其中2019年度实施的扶贫项目,各项目参加户数占比(参加该项目户数占 2019 年贫困户总数的比)及该项目的脱贫率见下表: 实施项目种植业养殖业工厂就业服务业参加用户比40% 40% 10% 10%脱贫率95% 95% 90% 90%那么2019年的年脱贫率是实施“精准扶贫”政策前的年均脱贫率的( ) A .2728倍 B .4735倍 C .4835倍 D .75倍 2.已知向量(1,2),(3,1)a b =-=-,则( ) A .a ∥b B .a ⊥bC .a ∥(a b -)D .a ⊥( a b -)3.函数的图象可能是下列哪一个?( )A .B .C .D .4.函数()y f x =满足对任意x ∈R 都有()()2f x f x +=-成立,且函数()1y f x =-的图象关于点()1,0对称,()14f =,则()()()201620172018f f f ++的值为( )A .0B .2C .4D .15.如图,在正四棱柱1111ABCD A B C D -中,12AB AA =,E F ,分别为AB BC ,的中点,异面直线1AB 与1C F 所成角的余弦值为m ,则( )A .直线1A E 与直线1C F 异面,且2m =B .直线1A E 与直线1C F 共面,且2m =C .直线1A E 与直线1C F 异面,且3m =D .直线1AE 与直线1CF 共面,且3m = 6.等比数列{}n a 的各项均为正数,且384718a a a a +=,则3132310log log log a a a +++=( )A .12B .10C .8D .32log 5+7. “tan 2θ=”是“4tan 23θ=-”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件8.已知函数()[]010x x f x x x ⎧≥⎪=⎨⎪⎩,,<([]x 表示不超过x 的最大整数),若()0f x ax -=有且仅有3个零点,则实数a 的取值范围是( ) A .12,23⎛⎤⎥⎝⎦B .12,23⎡⎫⎪⎢⎣⎭C .23,34⎡⎫⎪⎢⎣⎭D .23,34⎛⎤⎥⎝⎦9. 若数列{}n a 满足115a =且1332n n a a +=-,则使10k k a a +⋅<的k 的值为( ) A .21B .22C .23D .2410.曲线(2)xy ax e =+在点(0,2)处的切线方程为2y x b =-+,则ab =( ) A .4-B .8-C .4D .811.复数2(1)i i +的模为( ).A .12B .1C .2D .2212.ABC ∆ 的内角,,A B C 的对边分别为,,a b c ,已知22cos a c b A +=,则角B 的大小为( )A .23π B .3π C .6πD .56π 二、填空题:本题共4小题,每小题5分,共20分。

上海市部分重点中学2025届高考数学五模试卷含解析

上海市部分重点中学2025届高考数学五模试卷含解析

上海市部分重点中学2025届高考数学五模试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.刘徽是我国魏晋时期伟大的数学家,他在《九章算术》中对勾股定理的证明如图所示.“勾自乘为朱方,股自乘为青方,令出入相补,各从其类,因就其余不移动也.合成弦方之幂,开方除之,即弦也”.已知图中网格纸上小正方形的边长为1,其中“正方形ABCD 为朱方,正方形BEFG 为青方”,则在五边形AGFID 内随机取一个点,此点取自朱方的概率为( )A .1637B .949C .937D .3112.用数学归纳法证明,则当时,左端应在的基础上加上( )A .B .C .D .3.给甲、乙、丙、丁四人安排泥工、木工、油漆三项工作,每项工作至少一人,每人做且仅做一项工作,甲不能安排木工工作,则不同的安排方法共有( ) A .12种B .18种C .24种D .64种4.已知||3a =,||2b =,若()a ab ⊥-,则向量a b +在向量b 方向的投影为( ) A .12B .72C .12-D .72-5.已知等比数列{}n a 的前n 项和为n S ,且满足122n n S λ+=+,则λ的值是( )A .4B .2C .2-D .4-6.胡夫金字塔是底面为正方形的锥体,四个侧面都是相同的等腰三角形.研究发现,该金字塔底面周长除以2倍的塔高,恰好为祖冲之发现的密率355≈π.设胡夫金字塔的高为,假如对胡夫金字塔进行亮化,沿其侧棱和底边布设单条灯带,则需要灯带的总长度约为 A .24(4)2h 2π+π+B .216(2)4h π+π+C .2(8421)h π+π+D .2(2216)h π+π+7.已知复数21iz i =-,则z 的虚部为( ) A .-1B .i -C .1D .i8.若双曲线22214x y a -=的离心率为3,则双曲线的焦距为( )A .26B .25C .6D .89.《周易》是我国古代典籍,用“卦”描述了天地世间万象变化.如图是一个八卦图,包含乾、坤、震、巽、坎、离、艮、兑八卦(每一卦由三个爻组成,其中“”表示一个阳爻,“”表示一个阴爻).若从含有两个及以上阳爻的卦中任取两卦,这两卦的六个爻中都恰有两个阳爻的概率为( )A .13B .12C .23D .3410.已知抛物线2:4C y x =和点()2,0D ,直线2x ty =-与抛物线C 交于不同两点A ,B ,直线BD 与抛物线C 交于另一点E .给出以下判断:①直线OB 与直线OE 的斜率乘积为2-; ②//AE y 轴;③以BE 为直径的圆与抛物线准线相切. 其中,所有正确判断的序号是( ) A .①②③B .①②C .①③D .②③11.在正方体1111ABCD A B C D -中,点P 、Q 分别为AB 、AD 的中点,过点D 作平面α使1//B P 平面α,1//A Q 平面α若直线B D ⋂平面M α=,则1MD 的值为( )A .14B .13C .12D .2312.已知z 的共轭复数是z ,且12z z i =+-(i 为虚数单位),则复数z 在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限二、填空题:本题共4小题,每小题5分,共20分。

上海市徐汇、松江、金山区2025届高考数学五模试卷含解析

上海市徐汇、松江、金山区2025届高考数学五模试卷含解析

上海市徐汇、松江、金山区2025届高考数学五模试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.二项式522x x ⎛⎫- ⎪⎝⎭的展开式中,常数项为( )A .80-B .80C .160-D .1602.已知直四棱柱1111ABCD A B C D -的所有棱长相等,60ABC ︒∠=,则直线1BC 与平面11ACC A 所成角的正切值等于( ) A .64B .104C .55D .1553.已知三棱柱111ABC A B C -的所有棱长均相等,侧棱1AA ⊥平面ABC ,过1AB 作平面α与1BC 平行,设平面α与平面11ACC A 的交线为l ,记直线l 与直线,,AB BC CA 所成锐角分别为αβγ,,,则这三个角的大小关系为( )A .αγβ>>B .αβγ=>C .γβα>>D .αβγ>= 4.中,如果,则的形状是( )A .等边三角形B .直角三角形C .等腰三角形D .等腰直角三角形5.复数12z i =+,若复数12,z z 在复平面内对应的点关于虚轴对称,则12z z 等于( ) A .345i+-B .345i+ C .34i -+D .345i-+ 6.已知三棱锥P ABC -的四个顶点都在球O 的球面上,PA ⊥平面ABC ,ABC ∆是边长为3,若球O的表面积为20π,则直线PC 与平面PAB 所成角的正切值为( ) A .34B .73C .377D .747.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”意思为有一个人要走378里路,第一天健步行走,从第二天起脚痛,每天走的路程为前一天的一半,走了六天恰好到达目的地,请问第二天比第四天多走了( ) A .96里B .72里C .48里D .24里8.已知向量a ,b 满足4a =,b 在a 上投影为2-,则3a b -的最小值为( ) A .12B .10C .10D .29.已知函数()2xf x x a =+⋅,()ln 42xg x x a -=-⋅,若存在实数0x ,使()()005f x g x -=成立,则正数a 的取值范围为( )A .(]01,B .(]04,C .[)1+∞,D .(]0,ln2 10.已知半径为2的球内有一个内接圆柱,若圆柱的高为2,则球的体积与圆柱的体积的比为( ) A .43B .916C .34D .16911.执行程序框图,则输出的数值为( )A .12B .29C .70D .16912.设集合1,2,6,2,2,4,26{}{}{|}A B C x R x ==-=∈-<<,则()A B C = ( )A .{}2B .{1,2,4}C .{1,2,4,6}D .{|15}x x ∈-≤≤R二、填空题:本题共4小题,每小题5分,共20分。

上海市高一下学期数学第五次联考试卷

上海市高一下学期数学第五次联考试卷

上海市高一下学期数学第五次联考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共11题;共22分)1. (2分)以下程序运行时输出的结果是()A . 12,15B . 12,9C . 12,21D . 21,122. (2分)一袋中装有5个白球,3个红球,现从袋中往外取球,每次任取一个,取出后记下颜色,若为红色停止,若为白色则继续抽取,停止时袋中抽取的白球的个数为随机变量ξ,则 =()A .B .C .D .3. (2分)下列有关回归直线方程的叙述:①反映与x之间的函数关系;②反映y与x之间的函数关系;③表示与x之间的不确定关系;④表示最接近y与x之间真实关系的一条直线.其中正确的是()A . ①②B . ②③C . ③④D . ①④4. (2分) (2017高一上·山西期末) 某班有60名学生,学号为1~60号,现从中抽取5位同学参加一项活动,用系统抽样的方法确定的抽样号码可能为()A . 5,10,15,20,25B . 5,12,31,39,57C . 6,16,26,36,46D . 6,18,30,42,545. (2分)已知菱形ABCD的边长为4,,若在菱形内任取一点,则该点到菱形的四个顶点的距离大于1的概率()A .B .C .D .6. (2分)(2018·曲靖模拟) 计算机是将信息转换成二进制进行处理的.二进制即“缝二进一”,如表示二进制数,将它转化成十进制形式是,那么将二进制数转化成十进制形式是()A .B .C .D .7. (2分)从甲口袋摸出一个红球的概率是,从乙口袋中摸出一个红球的概率是,则是()A . 2个球不都是红球的概率B . 2个球都是红球的概率C . 至少有一个红球的概率D . 2个球中恰好有1个红球的概率8. (2分)数据﹣5,3,2,﹣3,3的平均数,众数,中位数,方差分别是()A . 0,3,3,11.2B . 0,3,2,56C . 0,3,2,11.2D . 0,2,3,569. (2分) (2016高一下·湖南期中) 在1000个有机会中奖的号码(编号为000~999)中,按照随机抽取的方法确定后两位数为88的号码为中奖号码,该抽样运用的抽样方法是()A . 简单随机抽样B . 系统抽样C . 分层抽样D . 抽签法10. (2分)阅读如图所示的程序:INPUT xIF x<0 THENy=x+3ELSEIF x>0 THENy=x+5ELSEy=0END IFEND IFPRINT yEND如果输入x=-2,则输出的结果y为()A . 0B . 1C . 2D . 311. (2分)已知Ω={(x,y)|x+y≤6,x≥0,y≥0},A={(x,y)|x≤4,y≥0,x﹣2y≥0},若向区域Ω上随机投一点P,则点P落入区域A的概率为()A .B .C .D .二、填空题 (共4题;共4分)12. (1分)(2018·雅安模拟) 某企业节能降耗技术改造后,在生产某产品过程中记录的产量(吨)与相应的生产能耗(吨)的几组对应数据如表所示.若根据表中数据得出的线性回归方程为,则表中空格处的值为________.13. (1分)(2020·宿迁模拟) 已知一组数据4,5,6,6,9,则该组数据的方差是________.14. (1分)某程序的框图如图所示,执行该程序,若输入10,则输出的S为________15. (1分)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种可能性大小相同,那么三辆汽车经过这个十字路口,至少有两辆车向左转的概率为 ________.三、解答题 (共6题;共40分)16. (5分)结合图形,说明下列程序的功能.17. (10分)设关于x的一元二次方程x2+2ax+b2=0.(1)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.(2)若a是从区间[0,3]任取的一个数,b是从区间[0,2]任取的一个数,求上述方程有实根的概率.18. (5分) (2018高一下·商丘期末) 某班同学利用春节进行社会实践,对本地岁的人群随机抽取人进行了一次生活习惯是否符合低碳观念的调查,将生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图。

上海市宝山区2019-2020学年中考第五次大联考数学试卷含解析

上海市宝山区2019-2020学年中考第五次大联考数学试卷含解析

上海市宝山区2019-2020学年中考第五次大联考数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,等腰直角三角形的顶点A、C分别在直线a、b上,若a∥b,∠1=30°,则∠2的度数为()A.30°B.15°C.10°D.20°2.如图,AB∥CD,DE⊥BE,BF、DF分别为∠ABE、∠CDE的角平分线,则∠BFD=()A.110°B.120°C.125°D.135°3.若M(2,2)和N(b,﹣1﹣n2)是反比例函数y=kx的图象上的两个点,则一次函数y=kx+b的图象经过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限4.如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为( )A.45︒B.50︒C.60︒D.75︒5.如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=23,则四边形MABN的面积是()A.3B.123C.183D.2436.在一次男子马拉松长跑比赛中,随机抽取了10名选手,记录他们的成绩(所用的时间)如下:选手 1 2 3 4 5 6 7 8 9 10时间(min) 129 136 140 145 146 148 154 158 165 175由此所得的以下推断不正确...的是( ) A .这组样本数据的平均数超过130 B .这组样本数据的中位数是147C .在这次比赛中,估计成绩为130 min 的选手的成绩会比平均成绩差D .在这次比赛中,估计成绩为142 min 的选手,会比一半以上的选手成绩要好 7.下列说法中,正确的是( ) A .不可能事件发生的概率为0 B .随机事件发生的概率为12C .概率很小的事件不可能发生D .投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次8.如图,将△ABC 沿着DE 剪成一个小三角形ADE 和一个四边形D'E'CB ,若DE ∥BC ,四边形D'E'CB 各边的长度如图所示,则剪出的小三角形ADE 应是( )A .B .C .D .9.某校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同.设每个笔记本的价格为x 元,则下列所列方程正确的是( ) A .2003503x x =- B .2003503x x =+ C .2003503x x=+ D .2003503x x=- 10.如图所示,点E 在AC 的延长线上,下列条件中能判断AB ∥CD 的是( )A .∠3=∠AB .∠D=∠DCEC .∠1=∠2D .∠D+∠ACD=180°11.如图,在ABC V 中,D 、E 分别在边AB 、AC 上,//DE BC ,//EF CD 交AB 于F ,那么下列比例式中正确的是( )A .AF DEDF BC= B .DF AF DB DF = C .EF DE CD BC = D .AF ADBD AB= 12.如图,点A 是反比例函数y=kx的图象上的一点,过点A 作AB ⊥x 轴,垂足为B .点C 为y 轴上的一点,连接AC ,BC .若△ABC 的面积为3,则k 的值是( )A .3B .﹣3C .6D .﹣6二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,四边形ABCD 内接于⊙O ,BD 是⊙O 的直径,AC 与BD 相交于点E ,AC=BC ,DE=3,AD=5,则⊙O 的半径为___________.14.使得关于x 的分式方程111x k kx x +-=+-的解为负整数,且使得关于x 的不等式组322144x x x k+≥-⎧⎨-≤⎩有且仅有5个整数解的所有k 的和为_____.15.若一次函数y=﹣2(x+1)+4的值是正数,则x 的取值范围是_______. 16.分解因式:2x +xy =_______.17.如图所示,某办公大楼正前力有一根高度是15米的旗杆ED ,从办公楼顶点A 测得族杆顶端E 的俯角α是45°,旗杆底端D 到大楼前梯坎底端C 的距离DC 是20米,梯坎坡长BC 是13米,梯坎坡度i=1:2.4,则大楼AB 的高度的为_____米.18.如图,已知正方形ABCD 的边长为4,⊙B 的半径为2,点P 是⊙B 上的一个动点,则PD ﹣12PC 的最大值为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,矩形ABCD 中,点P 是线段AD 上一动点, O 为BD 的中点, PO 的延长线交BC 于Q .(1)求证: OP OQ =;(2)若=8AD cm ,6AB cm =,P 从点A 出发,以l /cm s 的速度向D 运动(不与D 重合).设点P 运动时间为()t s ,请用t 表示PD 的长;并求t 为何值时,四边形PBQD 是菱形.20.(6分)综合与探究如图1,平面直角坐标系中,抛物线y=ax 2+bx+3与x 轴分别交于点A (﹣2,0),B (4,0),与y 轴交于点C ,点D 是y 轴负半轴上一点,直线BD 与抛物线y=ax 2+bx+3在第三象限交于点E (﹣4,y )点F 是抛物线y=ax 2+bx+3上的一点,且点F 在直线BE 上方,将点F 沿平行于x 轴的直线向右平移m 个单位长度后恰好落在直线BE 上的点G 处.(1)求抛物线y=ax 2+bx+3的表达式,并求点E 的坐标; (2)设点F 的横坐标为x (﹣4<x <4),解决下列问题: ①当点G 与点D 重合时,求平移距离m 的值; ②用含x 的式子表示平移距离m ,并求m 的最大值;(3)如图2,过点F 作x 轴的垂线FP ,交直线BE 于点P ,垂足为F ,连接FD .是否存在点F ,使△FDP 与△FDG 的面积比为1:2?若存在,直接写出点F 的坐标;若不存在,说明理由.21.(6分)化简求值:212(1)211xx x x-÷-+++,其中31x=-.22.(8分)当前,“精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要“建档立卡”.某初级中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A1,A2,A3,A4,现对A1,A2,A3,A4统计后,制成如图所示的统计图.求七年级已“建档立卡”的贫困家庭的学生总人数;将条形统计图补充完整,并求出A1所在扇形的圆心角的度数;现从A1,A2中各选出一人进行座谈,若A1中有一名女生,A2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.23.(8分)为了提高学生书写汉字的能力,增强保护汉子的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为(分),且,将其按分数段分为五组,绘制出以下不完整表格:组别成绩(分)频数(人数)频率一 2 0.04二10 0.2三14 b四 a 0.32五8 0.16请根据表格提供的信息,解答以下问题:(1)本次决赛共有名学生参加;(2)直接写出表中a= ,b= ;(3)请补全下面相应的频数分布直方图;(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为.24.(10分)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:四边形BFDE是平行四边形.25.(10分)(1)计算:﹣1412+(12)﹣2﹣(π51.(2)解不等式组3(1)72513x xxx--≤⎧⎪⎨--⎪⎩p①②,并把它的解集在数轴上表示出来.26.(12分)由于雾霾天气趋于严重,我市某电器商城根据民众健康需求,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.完成下列表格,并直接写出月销售量y(台)与售价x(元/台)之间的函数关系式及售价x的取值范围;售价(元/台)月销售量(台)400 200250x(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?27.(12分)如图,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.判断直线MN与⊙O的位置关系,并说明理由;若OA=4,∠BCM=60°,求图中阴影部分的面积.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】分析:由等腰直角三角形的性质和平行线的性质求出∠ACD=60°,即可得出∠2的度数.详解:如图所示:∵△ABC是等腰直角三角形,∴∠BAC=90°,∠ACB=45°,∴∠1+∠BAC=30°+90°=120°,∵a∥b,∴∠ACD=180°-120°=60°,∴∠2=∠ACD-∠ACB=60°-45°=15°;故选B.点睛:本题考查了平行线的性质、等腰直角三角形的性质;熟练掌握等腰直角三角形的性质,由平行线的性质求出∠ACD的度数是解决问题的关键.2.D【解析】【分析】【详解】如图所示,过E作EG∥AB.∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°.又∵DE ⊥BE ,BF ,DF 分别为∠ABE ,∠CDE 的角平分线, ∴∠FBE+∠FDE=12(∠ABE+∠CDE )=12(360°﹣90°)=135°, ∴∠BFD=360°﹣∠FBE ﹣∠FDE ﹣∠BED=360°﹣135°﹣90°=135°. 故选D .【点睛】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线. 3.C 【解析】 【分析】把(2,2)代入k y x =得k=4,把(b ,﹣1﹣n 2)代入ky x=得,k=b (﹣1﹣n 2),即 241b n=--根据k 、b 的值确定一次函数y=kx+b 的图象经过的象限. 【详解】解:把(2,2)代入ky x=, 得k=4,把(b ,﹣1﹣n 2)代入ky x=得: k=b (﹣1﹣n 2),即241b n =--,∵k=4>0,241b n =--<0,∴一次函数y=kx+b 的图象经过第一、三、四象限, 故选C . 【点睛】本题考查了反比例函数图象的性质以及一次函数经过的象限,根据反比例函数的性质得出k ,b 的符号是解题关键. 4.C【解析】 【分析】根据平行四边形的性质和圆周角定理可得出答案. 【详解】根据平行四边形的性质可知∠B=∠AOC , 根据圆内接四边形的对角互补可知∠B+∠D=180°, 根据圆周角定理可知∠D=12∠AOC , 因此∠B+∠D=∠AOC+12∠AOC=180°, 解得∠AOC=120°, 因此∠ADC=60°. 故选C 【点睛】该题主要考查了圆周角定理及其应用问题;应牢固掌握该定理并能灵活运用. 5.C 【解析】连接CD ,交MN 于E ,∵将△ABC 沿直线MN 翻折后,顶点C 恰好落在AB 边上的点D 处, ∴MN ⊥CD ,且CE=DE .∴CD=2CE . ∵MN ∥AB ,∴CD ⊥AB .∴△CMN ∽△CAB .∴2CMN CAB S CE 1S CD 4∆∆⎛⎫== ⎪⎝⎭. ∵在△CMN 中,∠C=90°,MC=6,NC=3CMN 11S ?CM CN 62?3?6?322∆=⋅=⨯⨯=∴CAB CMN S 4S 46?3?24?3∆∆==⨯=.∴CAB CMN MABN S S S 24?36?318?3∆∆=-==四边形C . 6.C 【解析】分析:要求平均数只要求出数据之和再除以总个数即可;对于中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可求解.详解:平均数=(129+136+140+145+146+148+154+158+165+175)÷10=149.6(min),故这组样本数据的平均数超过130,A正确,C错误;因为表中是按从小到大的顺序排列的,一共10名选手,中位数为第五位和第六位的平均数,故中位数是(146+148)÷2=147(min),故B正确,D正确.故选C.点睛:本题考查的是平均数和中位数的定义.要注意,当所给数据有单位时,所求得的平均数和中位数与原数据的单位相同,不要漏单位.7.A【解析】试题分析:不可能事件发生的概率为0,故A正确;随机事件发生的概率为在0到1之间,故B错误;概率很小的事件也可能发生,故C错误;投掷一枚质地均匀的硬币100次,正面向上的次数为50次是随机事件,D错误;故选A.考点:随机事件.8.C【解析】【分析】利用相似三角形的性质即可判断.【详解】设AD=x,AE=y,∵DE∥BC,∴△ADE∽△ABC,∴AD AE DE AB AC BC==,∴6121614x yx y==++,∴x=9,y=12,故选:C.【点睛】考查平行线的性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.B【解析】试题分析:设每个笔记本的价格为x元,根据“用200元购买笔记本的数量与用350元购买笔袋的数量相同”这一等量关系列出方程即可.考点:由实际问题抽象出分式方程10.C【解析】【分析】由平行线的判定定理可证得,选项A,B,D能证得AC∥BD,只有选项C能证得AB∥CD.注意掌握排除法在选择题中的应用.【详解】A.∵∠3=∠A,本选项不能判断AB∥CD,故A错误;B.∵∠D=∠DCE,∴AC∥BD.本选项不能判断AB∥CD,故B错误;C.∵∠1=∠2,∴AB∥CD.本选项能判断AB∥CD,故C正确;D.∵∠D+∠ACD=180°,∴AC∥BD.故本选项不能判断AB∥CD,故D错误.故选:C.【点睛】考查平行线的判定,掌握平行线的判定定理是解题的关键.11.C【解析】【分析】根据平行线分线段成比例定理和相似三角形的性质找准线段的对应关系,对各选项分析判断.【详解】A、∵EF∥CD,DE∥BC,∴AF AEDF EC=,AE DEAC BC=,∵CE≠AC,∴AF DEDF BC≠,故本选项错误;B、∵EF∥CD,DE∥BC,∴AF AEDF EC=,AE ADEC BD=,∴AF ADDF BD=,∵AD≠DF,∴DF AFDB DF≠,故本选项错误;C、∵EF∥CD,DE∥BC,∴DE AEBC AC=,EF AECD AC=,∴EF DECD BC=,故本选项正确;D、∵EF∥CD,DE∥BC,∴AD AEAB AC=,AF AEAD AC=,∴AF ADAD AB=,∵AD≠DF,∴AF ADBD AB≠,故本选项错误.故选C.【点睛】本题考查了平行线分线段成比例的运用及平行于三角形一边的直线截其它两边,所得的新三角形与原三角形相似的定理的运用,在解答时寻找对应线段是关健.12.D【解析】试题分析:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△CAB=3,而S△OAB=|k|,∴|k|=3,∵k<0,∴k=﹣1.故选D.考点:反比例函数系数k的几何意义.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.15 2【解析】【分析】如图,作辅助线CF;证明CF⊥AB(垂径定理的推论);证明AD⊥AB,得到AD∥OC,△ADE∽△COE;得到AD:CO=DE:OE,求出CO的长,即可解决问题.【详解】如图,连接CO并延长,交AB于点F;∵AC=BC,∴CF⊥AB(垂径定理的推论);∵BD是⊙O的直径,∴AD⊥AB;设⊙O的半径为r;∴AD∥OC,△ADE∽△COE,∴AD:CO=DE:OE,而DE=3,AD=5,OE=r-3,CO=r ,∴5:r=3:(r-3),解得:r=152, 故答案为152. 【点睛】该题主要考查了相似三角形的判定及其性质、垂径定理的推论等几何知识点的应用问题;解题的关键是作辅助线,构造相似三角形,灵活运用有关定来分析、判断.14.12.1【解析】【分析】 依据分式方程11x k k x x +-+-=1的解为负整数,即可得到k >12,k≠1,再根据不等式组322144x x x k +≥-⎧⎨-≤⎩有1个整数解,即可得到0≤k <4,进而得出k 的值,从而可得符合题意的所有k 的和.【详解】 解分式方程11x k k x x +-+-=1,可得x=1-2k , ∵分式方程11x k k x x +-+-=1的解为负整数, ∴1-2k <0,∴k >12, 又∵x≠-1,∴1-2k≠-1,∴k≠1,解不等式组322144x x x k +≥-⎧⎨-≤⎩,可得344x k x ≥-⎧⎪⎨+≤⎪⎩, ∵不等式组322144x x x k +≥-⎧⎨-≤⎩有1个整数解, ∴1≤44k +<2, 解得0≤k <4, ∴12<k <4且k≠1, ∴k 的值为1.1或2或2.1或3或3.1,∴符合题意的所有k 的和为12.1,故答案为12.1.【点睛】本题考查了解一元一次不等式组、分式方程的解,解题时注意分式方程中的解要满足分母不为0的情况.15.x<1【解析】【分析】根据一次函数的性质得出不等式解答即可.【详解】因为一次函数y=﹣2(x+1)+4的值是正数,可得:﹣2(x+1)+4>0,解得:x<1,故答案为x<1.【点睛】本题考查了一次函数与一元一次不等式,根据题意正确列出不等式是解题的关键.x x+y.16.()【解析】【分析】将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.【详解】+=+.直接提取公因式x即可:2x xy x(x y)17.42【解析】【分析】延长AB交DC于H,作EG⊥AB于G,则GH=DE=15米,EG=DH,设BH=x米,则CH=2.4x米,在Rt△BCH中,BC=13米,由勾股定理得出方程,解方程求出BH=5米,CH=12米,得出BG、EG的长度,证明△AEG是等腰直角三角形,得出AG=EG=12+20=32(米),即可得出大楼AB的高度.【详解】延长AB交DC于H,作EG⊥AB于G,如图所示:则GH=DE=15米,EG=DH,∵梯坎坡度i=1:2.4,∴BH:CH=1:2.4,设BH=x米,则CH=2.4x米,在Rt△BCH中,BC=13米,由勾股定理得:x2+(2.4x)2=132,解得:x=5,∴BH=5米,CH=12米,∴BG=GH-BH=15-5=10(米),EG=DH=CH+CD=12+20=32(米),∵∠α=45°,∴∠EAG=90°-45°=45°,∴△AEG是等腰直角三角形,∴AG=EG=32(米),∴AB=AG+BG=32+10=42(米);故答案为42【点睛】本题考查了解直角三角形的应用-坡度、俯角问题;通过作辅助线运用勾股定理求出BH,得出EG是解决问题的关键.18.1【解析】分析: 由PD−12PC=PD−PG≤DG,当点P在DG的延长线上时,PD−12PC的值最大,最大值为DG=1.详解: 在BC上取一点G,使得BG=1,如图,∵221PBBG==,422BCPB==,∴PB BC BG PB=, ∵∠PBG =∠PBC ,∴△PBG ∽△CBP , ∴12PG BG PC PB ==, ∴PG =12PC , 当点P 在DG 的延长线上时,PD−12PC 的值最大,最大值为DG1. 故答案为1点睛: 本题考查圆综合题、正方形的性质、相似三角形的判定和性质等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决,题目比较难,属于中考压轴题.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19. (1)证明见解析;(2) PD=8-t ,运动时间为74秒时,四边形PBQD 是菱形. 【解析】【分析】(1)先根据四边形ABCD 是矩形,得出AD ∥BC ,∠PDO=∠QBO ,再根据O 为BD 的中点得出△POD ≌△QOB ,即可证得OP=OQ ;(2)根据已知条件得出∠A 的度数,再根据AD=8cm ,AB=6cm ,得出BD 和OD 的长,再根据四边形PBQD 是菱形时,利用勾股定理即可求出t 的值,判断出四边形PBQD 是菱形.【详解】(1)∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠PDO=∠QBO ,又∵O 为BD 的中点,∴OB=OD ,在△POD 与△QOB 中, PDO QBO OD OBPOD QOB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△POD ≌△QOB ,∴OP=OQ ;(2)PD=8-t ,∵四边形PBQD 是菱形,∴BP=PD= 8-t,∵四边形ABCD是矩形,∴∠A=90°,在Rt△ABP中,由勾股定理得:AB2+AP2=BP2,即62+t2=(8-t)2,解得:t=74,即运动时间为74秒时,四边形PBQD是菱形.【点睛】本题考查了矩形的性质,菱形的性质,全等三角形的判定与性质,勾股定理等,熟练掌握相关知识是解题关键.注意数形结合思想的运用.20.(3)(﹣4,﹣6);(3-3;②4;(2)F的坐标为(﹣3,03).【解析】【分析】(3)先将A(﹣3,0),B(4,0),代入y=ax3+bx+2求出a,b的值即可求出抛物线的表达式,再将E 点坐标代入表达式求出y的值即可;(3)①设直线BD的表达式为y=kx+b,将B(4,0),E(﹣4,﹣6)代入求出k,b的值,再将x=0代入表达式求出D点坐标,当点G与点D重合时,可得G点坐标,GF∥x轴,故可得F的纵坐标,再将y=﹣2代入抛物线的解析式求解可得点F的坐标,再根据m=FG即可得m的值;②设点F与点G的坐标,根据m=FG列出方程化简可得出m的二次函数关系式,再根据二次函数的图象可得m的取值范围;(2)分别分析当点F在x轴的左侧时与右侧时的两种情况,根据△FDP与△FDG的面积比为3:3,故PD:DG=3:3.已知FP∥HD,则FH:HG=3:3.再分别设出F,G点的坐标,再根据两点关系列出等式化简求解即可得F的坐标.【详解】解:(3)将A(﹣3,0),B(4,0),代入y=ax3+bx+2得:4230 16430 a ba b-+=⎧⎨++=⎩,解得:3834ab⎧=-⎪⎪⎨⎪=⎪⎩,∴抛物线的表达式为y=﹣38x3+34x+2,把E(﹣4,y)代入得:y=﹣6,∴点E的坐标为(﹣4,﹣6).(3)①设直线BD的表达式为y=kx+b,将B(4,0),E(﹣4,﹣6)代入得:4046 k bk b+=⎧⎨-+=-⎩,解得:3k4b3⎧=⎪⎨⎪=-⎩,∴直线BD的表达式为y=34x﹣2.把x=0代入y=34x﹣2得:y=﹣2,∴D(0,﹣2).当点G与点D重合时,G的坐标为(0,﹣2).∵GF∥x轴,∴F的纵坐标为﹣2.将y=﹣2代入抛物线的解析式得:﹣38x3+34x+2=﹣2,解得:+3或x=+3.∵﹣4<x<4,∴点F,﹣2).∴3.②设点F的坐标为(x,﹣38x3+34x+2),则点G的坐标为(x+m,34(x+m)﹣2),∴﹣38x3+34x+2=34(x+m)﹣2,化简得,m=﹣12x3+4,∵﹣12<0,∴m有最大值,当x=0时,m的最大值为4.(2)当点F在x轴的左侧时,如下图所示:∵△FDP与△FDG的面积比为3:3,∴PD:DG=3:3.∵FP∥HD,∴FH:HG=3:3.设F的坐标为(x,﹣38x3+34x+2),则点G的坐标为(﹣3x,﹣32x﹣2),∴﹣38x3+34x+2=﹣32x﹣2,整理得:x3﹣6x﹣36=0,解得:x=﹣3或x=4(舍去),∴点F的坐标为(﹣3,0).当点F在x轴的右侧时,如下图所示:∵△FDP与△FDG的面积比为3:3,∴PD:DG=3:3.∵FP∥HD,∴FH:HG=3:3.设F的坐标为(x,﹣38x3+34x+2),则点G的坐标为(3x,32x﹣2),∴﹣38x3+34x+2=32x﹣2,整理得:x3+3x﹣36=0,解得:17﹣3或x=17﹣3(舍去),∴点F17﹣33179.综上所述,点F 的坐标为(﹣3,0﹣3,92). 【点睛】 本题考查了二次函数的应用,解题的关键是熟练的掌握二次函数的应用.21 【解析】分析:先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可. 详解:原式2112,2111x x x x x x -+⎛⎫=÷- ⎪++++⎝⎭2112,211x x x x x -+-=÷+++ ()211,11x x x x -+=⋅-+ 1.1x =+当1x =时,113x ==+ 点睛:考查分式的混合运算,掌握运算顺序是解题的关键.22.(1)15人;(2)补图见解析.(3)12. 【解析】【分析】(1)根据三班有6人,占的百分比是40%,用6除以所占的百分比即可得总人数;(2)用总人数减去一、三、四班的人数得到二班的人数即可补全条形图,用一班所占的比例乘以360°即可得A 1所在扇形的圆心角的度数;(3)根据题意画出树状图,得出所有可能,进而求恰好选出一名男生和一名女生的概率.【详解】解:(1)七年级已“建档立卡”的贫困家庭的学生总人数:6÷40%=15人; (2)A 2的人数为15﹣2﹣6﹣4=3(人)补全图形,如图所示,A 1所在圆心角度数为:215×360°=48°;(3)画出树状图如下:共6种等可能结果,符合题意的有3种∴选出一名男生一名女生的概率为:P=31 62 .【点睛】本题考查了条形图与扇形统计图,概率等知识,准确识图,从图中发现有用的信息,正确根据已知画出树状图得出所有可能是解题关键.23.(1)50;(2)a=16,b=0.28;(3)答案见解析;(4)48%.【解析】试题分析:(1)根据第一组别的人数和百分比得出样本容量;(2)根据样本容量以及频数、频率之间的关系得出a和b的值,(3)根据a的值将图形补全;(4)根据图示可得:优秀的人为第四和第五组的人,将两组的频数相加乘以100%得出答案.试题解析:(1)2÷0.04=50(2)50×0.32=16 14÷50=0.28(3)(4)(0.32+0.16)×100%=48%考点:频数分布直方图24.证明见解析【详解】∵四边形ABCD是平行四边形,∴AD//BC,AD=BC,∵AE=CF∴AD-AE=BC-CF即DE=BF∴四边形BFDE是平行四边形.25.(1)5;(2)﹣2≤x<﹣12.【解析】【分析】(1)原式第一项利用乘方的意义计算,第二项利用特殊角的三角函数值以及二次根式的乘法计算,第三项利用负整数指数幂法则计算,最后一项利用零指数幂法则计算,然后根据实数的运算法则计算即可得到结果;(2)先求出两个不等式的解集,再找出解集的公共部分即可.【详解】(1)原式312341, =-+⨯+-1341,=-++-=5;(2)解不等式①得,x≥﹣2,解不等式②得,12x<-,所以不等式组的解集是122x-≤<-.用数轴表示为:【点睛】本题考查了实数的混合运算,特殊角的三角函数值,负整数指数幂,零指数幂,不等式组的解法,是综合题,但难度不大,计算时要注意运算符号的处理以及解集公共部分的确定.26.(1)390,1-5x,y=-5x+1(300≤x≤2);(2)售价定位320元时,利润最大,为3元.【解析】(1)根据题中条件可得390,1-5x ,若销售价每降低10元,月销售量就可多售出50千克,即可列出函数关系式;根据供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售即可求出x 的取值.(2)用x 表示y ,然后再用x 来表示出w ,根据函数关系式,即可求出最大w.【详解】(1)依题意得:y =200+50×40010x -. 化简得:y =-5x +1.(2)依题意有:∵30052200450x x ≥⎧⎨-+≥⎩, 解得300≤x≤2.(3)由(1)得:w =(-5x +1)(x -200)=-5x 2+3200x -440000=-5(x -320)2+3.∵x =320在300≤x≤2内,∴当x =320时,w 最大=3.即售价定为320元/台时,可获得最大利润为3元.【点睛】本题考查了利润率问题的数量关系的运用,一次函数的解析式的运用,二次函数的解析式的运用,一元二次方程的解法的运用,解答时求出二次函数的解析式时关键.27.(1)相切;(2)163π- 【解析】试题分析:(1)MN 是⊙O 切线,只要证明∠OCM=90°即可.(2)求出∠AOC 以及BC ,根据S 阴=S 扇形OAC ﹣S △OAC 计算即可. 试题解析:(1)MN 是⊙O 切线.理由:连接OC .∵OA=OC ,∴∠OAC=∠OCA ,∵∠BOC=∠A+∠OCA=2∠A ,∠BCM=2∠A ,∴∠BCM=∠BOC ,∵∠B=90°,∴∠BOC+∠BCO=90°,∴∠BCM+∠BCO=90°,∴OC⊥MN,∴MN是⊙O切线.(2)由(1)可知∠BOC=∠BCM=60°,∴∠AOC=120°,在RT△BCO中,OC=OA=4,∠BCO=30°,∴BO=12OC=2,BC=23∴S阴=S扇形OAC﹣S△OAC=2120411642343 36023ππ-⨯⨯=-g.考点:直线与圆的位置关系;扇形面积的计算.。

上海市嘉定区2019-2020学年中考第五次大联考数学试卷含解析

上海市嘉定区2019-2020学年中考第五次大联考数学试卷含解析

上海市嘉定区2019-2020学年中考第五次大联考数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.计算(-18)÷9的值是( )A.-9 B.-27 C.-2 D.22.从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是S甲2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,你认为派谁去参赛更合适()A.甲B.乙C.丙D.丁3.下列运算中正确的是( )A.x2÷x8=x−6B.a·a2=a2C.(a2)3=a5D.(3a)3=9a3 4.如图是一个由5个相同的正方体组成的立体图形,它的俯视图是()A.B.C.D.5.2018年,我国将加大精准扶贫力度,今年再减少农村贫困人口1000万以上,完成异地扶贫搬迁280万人.其中数据280万用科学计数法表示为( )A.2.8×105B.2.8×106C.28×105D.0.28×1076.如图,在菱形ABCD中,AB=BD,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H.给出如下几个结论:①△AED≌△DFB;②S四边形BCDG=;③若AF=2DF,则BG=6GF;④CG与BD一定不垂直;⑤∠BGE的大小为定值.其中正确的结论个数为()A.4 B.3 C.2 D.17.如图,△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于12AC的长为半径画弧,两弧相交于点M,N作直线MN,交BC于点D,连结AD,则∠BAD的度数为()A .65°B .60°C .55°D .45°8.如果23510a a +-=,那么代数式()()()5323+232a a a a +--的值是( ) A .6 B .2C .-2D .-69.25-的倒数的绝对值是( ) A .25-B .25C .52-D .5210.如图所示,二次函数y=ax 2+bx+c (a≠0)的图象经过点(﹣1,2),且与x 轴交点的横坐标分别为x 1、x 2,其中﹣2<x 1<﹣1,0<x 2<1.下列结论:①4a ﹣2b+c <0;②2a ﹣b <0;③abc <0;④b 2+8a <4ac . 其中正确的结论有( )A .1个B .2个C .3个D .4个11.如图,图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,按此规律,则第(n )个图形中面积为1的正方形的个数为( )A .()12n n + B .()22n n + C .()32n n + D .()42n n +12.如图,四边形ABCD 内接于⊙O ,AD ∥BC ,BD 平分∠ABC ,∠A =130°,则∠BDC 的度数为( )A.100°B.105°C.110°D.115°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在比例尺为1:50000的地图上,量得甲、乙两地的距离为12厘米,则甲、乙两地的实际距离是______千米.14.如图,在△ABC中,BC=7,32AC=,tanC=1,点P为AB边上一动点(点P不与点B重合),以点P为圆心,PB 为半径画圆,如果点C在圆外,那么PB的取值范围______.15.△ABC的顶点都在方格纸的格点上,则sinA=_ ▲ .16.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=23+.其中正确的序号是(把你认为正确的都填上).17.圆锥的底面半径为6㎝,母线长为10㎝,则圆锥的侧面积为______cm218.函数12yx=,当x<0时,y随x的增大而_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知反比例函数y=kx(x>0)的图象与一次函数y=﹣12x+4的图象交于A和B(6,n)两点.求k和n的值;若点C(x,y)也在反比例函数y=kx(x>0)的图象上,求当2≤x≤6时,函数值y的取值范围.20.(6分)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B,与y轴交于C(0,3),直线y=12x-+m经过点C,与抛物线的另一交点为点D,点P是直线CD上方抛物线上的一个动点,过点P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.(1)求抛物线解析式并求出点D的坐标;(2)连接PD,△CDP的面积是否存在最大值?若存在,请求出面积的最大值;若不存在,请说明理由;(3)当△CPE是等腰三角形时,请直接写出m的值.21.(6分)2013年我国多地出现雾霾天气,某企业抓住商机准备生产空气净化设备,该企业决定从以下两个投资方案中选择一个进行投资生产,方案一:生产甲产品,每件产品成本为a元(a为常数,且40<a<100),每件产品销售价为120元,每年最多可生产125万件;方案二:生产乙产品,每件产品成本价为80元,每件产品销售价为180元,每年可生产120万件,另外,年销售x万件乙产品时需上交0.5x2万元的特别关税,在不考虑其它因素的情况下:(1)分别写出该企业两个投资方案的年利润y1(万元)、y2(万元)与相应生产件数x(万件)(x为正整数)之间的函数关系式,并指出自变量的取值范围;(2)分别求出这两个投资方案的最大年利润;(3)如果你是企业决策者,为了获得最大收益,你会选择哪个投资方案?22.(8分)某校初三进行了第三次模拟考试,该校领导为了了解学生的数学考试情况,抽样调查了部分学生的数学成绩,并将抽样的数据进行了如下整理.(1)填空m=_______,n=_______,数学成绩的中位数所在的等级_________.(2)如果该校有1200名学生参加了本次模拟测,估计D等级的人数;(3)已知抽样调查学生的数学成绩平均分为102分,求A级学生的数学成绩的平均分数.①如下分数段整理样本等级等级分数段各组总分人数A110120X <≤ P4B100110X <≤843 n C90100X <≤ 574 mD8090X <≤1712②根据上表绘制扇形统计图23.(8分)随着交通道路的不断完善,带动了旅游业的发展,某市旅游景区有A 、B 、C 、D 、E 等著名景点,该市旅游部门统计绘制出2017年“五•一”长假期间旅游情况统计图,根据以下信息解答下列问题:2017年“五•一”期间,该市周边景点共接待游客 万人,扇形统计图中A 景点所对应的圆心角的度数是 ,并补全条形统计图.根据近几年到该市旅游人数增长趋势,预计2018年“五•一”节将有80万游客选择该市旅游,请估计有多少万人会选择去E 景点旅游?甲、乙两个旅行团在A 、B 、D 三个景点中,同时选择去同一景点的概率是多少?请用画树状图或列表法加以说明,并列举所用等可能的结果. 24.(10分)先化简,再求值:1+÷(1﹣),其中x=2cos30°+tan45°.25.(10分)如图,在平面直角坐标系中,函数的图象经过点,直线与x 轴交于点.求的值;过第二象限的点作平行于x 轴的直线,交直线于点C ,交函数的图象于点D .①当时,判断线段PD 与PC 的数量关系,并说明理由;②若,结合函数的图象,直接写出n 的取值范围.26.(12分)解方程组220y xx y =⎧⎨+-=⎩. 27.(12分)正方形ABCD 的边长是10,点E 是AB 的中点,动点F 在边BC 上,且不与点B 、C 重合,将△EBF 沿EF 折叠,得到△EB′F . (1)如图1,连接AB′.①若△AEB′为等边三角形,则∠BEF 等于多少度.②在运动过程中,线段AB′与EF 有何位置关系?请证明你的结论. (2)如图2,连接CB′,求△CB′F 周长的最小值.(3)如图3,连接并延长BB′,交AC 于点P ,当BB′=6时,求PB′的长度.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】 【分析】直接利用有理数的除法运算法则计算得出答案.【详解】解:(-18)÷9=-1.故选:C.【点睛】此题主要考查了有理数的除法运算,正确掌握运算法则是解题关键.2.A【解析】【分析】根据方差的概念进行解答即可.【详解】由题意可知甲的方差最小,则应该选择甲.故答案为A.【点睛】本题考查了方差,解题的关键是掌握方差的定义进行解题.3.A【解析】【分析】根据同底数幂的除法法则:底数不变,指数相减;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘进行计算即可.【详解】解:A、x2÷x8=x-6,故该选项正确;B、a•a2=a3,故该选项错误;C、(a2)3=a6,故该选项错误;D、(3a)3=27a3,故该选项错误;故选A.【点睛】此题主要考查了同底数幂的乘除法、幂的乘方和积的乘方,关键是掌握相关运算法则.4.C【解析】【分析】根据俯视图的概念可知, 只需找到从上面看所得到的图形即可.【详解】解: 从上面看易得: 有2列小正方形, 第1列有2个正方形, 第2列有2个正方形,故选C. 【点睛】考查下三视图的概念; 主视图、 左视图、 俯视图是分别从物体正面、 左面和上面看所得到的图形; 5.B 【解析】分析:科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.详解:280万这个数用科学记数法可以表示为62.810,⨯ 故选B.点睛:考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键. 6.B 【解析】试题分析:①∵ABCD 为菱形,∴AB=AD ,∵AB=BD ,∴△ABD 为等边三角形,∴∠A=∠BDF=60°,又∵AE=DF ,AD=BD ,∴△AED ≌△DFB ,故本选项正确;②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD ,即∠BGD+∠BCD=180°,∴点B 、C 、D 、G 四点共圆,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°,∴∠BGC=∠DGC=60°,过点C 作CM ⊥GB 于M ,CN ⊥GD 于N (如图1),则△CBM ≌△CDN (AAS ),∴S 四边形BCDG =S 四边形CMGN ,S 四边形CMGN =2S △CMG ,∵∠CGM=60°,∴GM=CG ,CM=CG ,∴S 四边形CMGN =2S △CMG =2××CG×CG=,故本选项错误;③过点F 作FP ∥AE 于P 点(如图2),∵AF=2FD ,∴FP :AE=DF :DA=1:3,∵AE=DF ,AB=AD ,∴BE=2AE ,∴FP :BE=FP :AE=1:6,∵FP ∥AE ,∴PF ∥BE ,∴FG :BG=FP :BE=1:6,即BG=6GF ,故本选项正确;④当点E ,F 分别是AB ,AD 中点时(如图3),由(1)知,△ABD ,△BDC 为等边三角形,∵点E ,F 分别是AB ,AD 中点,∴∠BDE=∠DBG=30°,∴DG=BG ,在△GDC 与△BGC 中,∵DG=BG ,CG=CG ,CD=CB ,∴△GDC ≌△BGC ,∴∠DCG=∠BCG ,∴CH ⊥BD ,即CG ⊥BD ,故本选项错误; ⑤∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°,为定值,故本选项正确; 综上所述,正确的结论有①③⑤,共3个,故选B .考点:四边形综合题.7.A【解析】【分析】根据线段垂直平分线的性质得到AD=DC,根据等腰三角形的性质得到∠C=∠DAC,求得∠DAC=30°,根据三角形的内角和得到∠BAC=95°,即可得到结论.【详解】由题意可得:MN是AC的垂直平分线,则AD=DC,故∠C=∠DAC,∵∠C=30°,∴∠DAC=30°,∵∠B=55°,∴∠BAC=95°,∴∠BAD=∠BAC-∠CAD=65°,故选A.【点睛】此题主要考查了线段垂直平分线的性质,三角形的内角和,正确掌握线段垂直平分线的性质是解题关键.8.A【解析】【分析】将所求代数式先利用单项式乘多项式法则、平方差公式进行展开,然后合并同类项,最后利用整体代入思想进行求值即可.【详解】∵3a2+5a-1=0,∴3a2+5a=1,∴5a(3a+2)-(3a+2)(3a-2)=15a2+10a-9a2+4=6a2+10a+4=2(3a2+5a)+4=6,故选A.【点睛】本题考查了代数式求值,涉及到单项式乘多项式、平方差公式、合并同类项等,利用整体代入思想进行解题是关键.9.D【解析】 【分析】直接利用倒数的定义结合绝对值的性质分析得出答案. 【详解】 解:−25的倒数为−52,则−52的绝对值是:52. 故答案选:D. 【点睛】本题考查了倒数的定义与绝对值的性质,解题的关键是熟练的掌握倒数的定义与绝对值的性质. 10.C 【解析】 【分析】首先根据抛物线的开口方向可得到a <0,抛物线交y 轴于正半轴,则c >0,而抛物线与x 轴的交点中,﹣2<x 1<﹣1、0<x 2<1说明抛物线的对称轴在﹣1~0之间,即x=﹣2ba>﹣1,可根据这些条件以及函数图象上一些特殊点的坐标来进行判断 【详解】由图知:抛物线的开口向下,则a <0;抛物线的对称轴x=﹣2ba>﹣1,且c >0; ①由图可得:当x=﹣2时,y <0,即4a ﹣2b+c <0,故①正确; ②已知x=﹣2ba>﹣1,且a <0,所以2a ﹣b <0,故②正确; ③抛物线对称轴位于y 轴的左侧,则a 、b 同号,又c >0,故abc >0,所以③不正确;④由于抛物线的对称轴大于﹣1,所以抛物线的顶点纵坐标应该大于2,即:244ac b a>2,由于a <0,所以4ac ﹣b2<8a ,即b 2+8a >4ac ,故④正确; 因此正确的结论是①②④. 故选:C . 【点睛】本题主要考查对二次函数图象与系数的关系,抛物线与x 轴的交点,二次函数图象上点的坐标特征等知识点的理解和掌握,能根据图象确定与系数有关的式子的正负是解此题的关键. 11.C 【解析】 【分析】由图形可知:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n 个图形中面积为1的正方形有2+3+4+…+n+1=()32n n+.【详解】第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+(n+1)=()32n n+个.【点睛】本题考查了规律的知识点,解题的关键是根据图形的变化找出规律.12.B【解析】【分析】根据圆内接四边形的性质得出∠C的度数,进而利用平行线的性质得出∠ABC的度数,利用角平分线的定义和三角形内角和解答即可.【详解】∵四边形ABCD内接于⊙O,∠A=130°,∴∠C=180°-130°=50°,∵AD∥BC,∴∠ABC=180°-∠A=50°,∵BD平分∠ABC,∴∠DBC=25°,∴∠BDC=180°-25°-50°=105°,故选:B.【点睛】本题考查了圆内接四边形的性质,关键是根据圆内接四边形的性质得出∠C的度数.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.6【解析】【分析】本题可根据比例线段进行求解.【详解】解:因为在比例尺为1:50000的地图上甲,乙两地的距离12cm,所以,甲、乙的实际距离x满足12:x=1:50000,即x=1250000⨯=600000cm=6km.故答案为6.【点睛】本题主要考查比例尺和比例线段的相关知识.14.35 08 <<PB【解析】分析:根据题意作出合适的辅助线,然后根据题意即可求得PB的取值范围.详解:作AD⊥BC于点D,作PE⊥BC于点E.∵在△ABC 中,BC=7,AC=32,tanC=1,∴AD=CD=3,∴BD=4,∴AB=5,由题意可得,当PB=PC时,点C恰好在以点P为圆心,PB为半径圆上.∵AD⊥BC,PE⊥BC,∴PE∥AD,∴△BPE∽△BDA,∴BE BPBD BA=,即7245BP=,得:BP=358.故答案为0<PB<358.点睛:本题考查了点与圆的位置关系、解直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.15.5【解析】【分析】在直角△ABD中利用勾股定理求得AD的长,然后利用正弦的定义求解.【详解】在直角△ABD中,BD=1,AB=2,则22AB BD+2221+5则sinA=BDAD55.5.16.①②④【解析】分析:∵四边形ABCD 是正方形,∴AB=AD 。

上海市黄浦区2019-2020学年中考第五次大联考数学试卷含解析

上海市黄浦区2019-2020学年中考第五次大联考数学试卷含解析

上海市黄浦区2019-2020学年中考第五次大联考数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图1,在△ABC中,D、E分别是AB、AC的中点,将△ADE沿线段DE向下折叠,得到图1.下列关于图1的四个结论中,不一定成立的是()A.点A落在BC边的中点B.∠B+∠1+∠C=180°C.△DBA是等腰三角形D.DE∥BC2.下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.3.点P(1,﹣2)关于y轴对称的点的坐标是()A.(1,2)B.(﹣1,2)C.(﹣1,﹣2)D.(﹣2,1)4.若正比例函数y=3x的图象经过A(﹣2,y1),B(﹣1,y2)两点,则y1与y2的大小关系为()A.y1<y2B.y1>y2C.y1≤y2D.y1≥y25.方程=的解为( )A.x=3 B.x=4 C.x=5 D.x=﹣56.已知⊙O的半径为3,圆心O到直线L的距离为2,则直线L与⊙O的位置关系是()A.相交B.相切C.相离D.不能确定7.小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A.12B.13C.14D.348.已知在四边形ABCD中,AD//BC,对角线AC、BD交于点O,且AC=BD,下列四个命题中真命题是( )A .若AB=CD ,则四边形ABCD 一定是等腰梯形;B .若∠DBC=∠ACB ,则四边形ABCD 一定是等腰梯形;C .若AO CO OB OD =,则四边形ABCD 一定是矩形; D .若AC ⊥BD 且AO=OD ,则四边形ABCD 一定是正方形.9.下列二次根式中,最简二次根式的是( )A .15B .0.5C .5D .5010.在3-,1-,0,1这四个数中,最小的数是( )A .3-B .1-C .0D .111.下列运算中正确的是( )A .x 2÷x 8=x −6B .a·a 2=a 2C .(a 2)3=a 5D .(3a )3=9a 312.如图,扇形AOB 中,半径OA =2,∠AOB =120°,C 是弧AB 的中点,连接AC 、BC,则图中阴影部分面积是 ( )A .4233π- B .2233π- C .433π- D .233π- 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.计算2(252)-的结果等于__________.14.如图,点A ,B ,C 在⊙O 上,四边形OABC 是平行四边形,OD ⊥AB 于点E ,交⊙O 于点D ,则∠BAD=_______°.15.如图,等边△ABC 的边长为6,∠ABC ,∠ACB 的角平分线交于点D ,过点D 作EF ∥BC ,交AB 、CD 于点E 、F ,则EF 的长度为_____.16.如图,将一个长方形纸条折成如图的形状,若已知∠2=55°,则∠1=____.17.如图,将直线y=x向下平移b个单位长度后得到直线l,l与反比例函数y=5x(x>0)的图象相交于点A,与x轴相交于点B,则OA2﹣OB2的值为_____.18.化简:①16=_____;②2(5)-=_____;③510⨯=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图1,在平面直角坐标系xOy中,抛物线y=ax2+bx﹣32与x轴交于点A(1,0)和点B(﹣3,0).绕点A旋转的直线l:y=kx+b1交抛物线于另一点D,交y轴于点C.(1)求抛物线的函数表达式;(2)当点D在第二象限且满足CD=5AC时,求直线l的解析式;(3)在(2)的条件下,点E为直线l下方抛物线上的一点,直接写出△ACE面积的最大值;(4)如图2,在抛物线的对称轴上有一点P,其纵坐标为4,点Q在抛物线上,当直线l与y轴的交点C 位于y轴负半轴时,是否存在以点A,D,P,Q为顶点的平行四边形?若存在,请直接写出点D的横坐标;若不存在,请说明理由.20.(6分)如图,已知BD是△ABC的角平分线,点E、F分别在边AB、BC上,ED∥BC,EF∥AC.求证:BE=CF.21.(6分)十八届五中全会出台了全面实施一对夫妇可生育两个孩子的政策,这是党中央站在中华民族长远发展的战略高度作出的促进人口长期均衡发展的重大举措. 二孩政策出台后,某家庭积极响应政府号召,准备生育两个小孩(假设生男生女机会均等,且与顺序无关).(1)该家庭生育两胎,假设每胎都生育一个小孩,求这两个小孩恰好都是女孩的概率;(2)该家庭生育两胎,假设第一胎生育一个小孩,且第二胎生育一对双胞胎,求这三个小孩中恰好是2女1男的概率.22.(8分)如图,AB是⊙O的直径,点E是»AD上的一点,∠DBC=∠BED.(1)求证:BC是⊙O的切线;(2)已知AD=3,CD=2,求BC的长.23.(8分)如图,在△ABC中,∠ACB=90°,O是AB上一点,以OA为半径的⊙O与BC相切于点D,与AB交于点E,连接ED并延长交AC的延长线于点F.(1)求证:AE=AF;(2)若DE=3,sin∠BDE=13,求AC的长.24.(10分)一位运动员推铅球,铅球运行时离地面的高度y(米)是关于运行时间x(秒)的二次函数.已知铅球刚出手时离地面的高度为53米;铅球出手后,经过4秒到达离地面3米的高度,经过10秒落到地面.如图建立平面直角坐标系.(Ⅰ)为了求这个二次函数的解析式,需要该二次函数图象上三个点的坐标.根据题意可知,该二次函数图象上三个点的坐标分别是____________________________;(Ⅱ)求这个二次函数的解析式和自变量x的取值范围.25.(10分)如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)求证:CD是⊙O的切线;(2)过点B作⊙O的切线交CD的延长线于点E,BC=6,.求BE的长.26.(12分)为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的32倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.甲、乙两工程队每天能改造道路的长度分别是多少米?若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?27.(12分)2018年春节,西安市政府实施“点亮工程”,开展“西安年·最中国”活动,元宵节晚上,小明一家人到“大唐不夜城”游玩,看美景、品美食。

上海市青浦区2019-2020学年中考第五次大联考数学试卷含解析

上海市青浦区2019-2020学年中考第五次大联考数学试卷含解析

上海市青浦区2019-2020学年中考第五次大联考数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列说法: ①;②数轴上的点与实数成一一对应关系; ③﹣2是的平方根;④任何实数不是有理数就是无理数; ⑤两个无理数的和还是无理数; ⑥无理数都是无限小数, 其中正确的个数有( ) A .2个B .3个C .4个D .5个2.若二次函数22y x x m =-+的图像与x 轴有两个交点,则实数m 的取值范围是( ) A .m 1≥B .1m £C .1m >D .1m <3.已知函数y =ax 2+bx+c 的图象如图所示,则关于x 的方程ax 2+bx+c ﹣4=0的根的情况是A .有两个相等的实数根B .有两个异号的实数根C .有两个不相等的实数根D .没有实数根4.一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球、3个白球.从布袋中一次性摸出两个球,则摸出的两个球中至少有一个红球的概率是( ) A .12B .23C .25D .7105.对于点A (x 1,y 1),B (x 2,y 2),定义一种运算:()()1212A B x x y y ⊕=+++.例如,A (-5,4),B (2,﹣3),()()A B 52432⊕=-++-=-.若互不重合的四点C ,D ,E ,F ,满足C D D E E F F D ⊕=⊕=⊕=⊕,则C ,D ,E ,F 四点【 】A .在同一条直线上B .在同一条抛物线上C .在同一反比例函数图象上D .是同一个正方形的四个顶点 6.计算±81 ) A .±3B .±9C .3D .97.如图,已知直线//AB CD ,点E ,F 分别在AB 、CD 上,:3:4CFE EFB ∠∠=,如果∠B =40°,那么BEF ∠=( )A .20°B .40°C .60°D .80°8.已知二次函数(m 为常数)的图象与x 轴的一个交点为(1,0),则关于x 的一元二次方程2x 3x m 0-+=的两实数根是 A .x 1=1,x 2=-1 B .x 1=1,x 2=2 C .x 1=1,x 2=0D .x 1=1,x 2=39.如图,Rt △AOB 中,∠AOB=90°,OA 在x 轴上,OB 在y 轴上,点A 、B 的坐标分别为(3,0),(0,1),把Rt △AOB 沿着AB 对折得到Rt △AO′B ,则点O′的坐标为( )A .3522(,)B .332(,) C .2352(,)D .4332(,)10.我国作家莫言获得诺贝尔文学奖之后,他的代表作品《蛙》的销售量就比获奖之前增长了180倍,达到2100000册.把2100000用科学记数法表示为( ) A .0.21×108B .21×106C .2.1×107D .2.1×10611.下列计算正确的是( ) A .3a 2﹣6a 2=﹣3 B .(﹣2a )•(﹣a )=2a 2 C .10a 10÷2a 2=5a 5 D .﹣(a 3)2=a 612.由五个相同的立方体搭成的几何体如图所示,则它的左视图是( )A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在临桂新区建设中,需要修一段全长2400m的道路,为了尽量减少施工对县城交通工具所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度.若设原计划每天修路xm,则根据题意可得方程.14.关于x的一元二次方程x2+bx+c=0的两根为x1=1,x2=2,则x2+bx+c分解因式的结果为_____.15.如图,在△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B= ______16.甲,乙两家汽车销售公司根据近几年的销售量分别制作了如图所示的统计图,从2014~2018年,这两家公司中销售量增长较快的是_____公司(填“甲”或“乙”).17.已知点P(2,3)在一次函数y=2x-m的图象上,则m=_______.18.如图,数轴上点A、B、C所表示的数分别为a、b、c,点C是线段AB的中点,若原点O是线段AC 上的任意一点,那么a+b-2c= ______ .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.20.(6分)如图,,,,,交于点.求的值.21.(6分)某学校准备采购一批茶艺耗材和陶艺耗材.经查询,如果按照标价购买两种耗材,当购买茶艺耗材的数量是陶艺耗材数量的2倍时,购买茶艺耗材共需要18000元,购买陶艺耗材共需要12000元,且一套陶艺耗材单价比一套茶艺耗材单价贵150元.求一套茶艺耗材、一套陶艺耗材的标价分别是多少元?学校计划购买相同数量的茶艺耗材和陶艺耗材.商家告知,因为周年庆,茶艺耗材的单价在标价的基础上降价2m元,陶艺耗材的单价在标价的基础降价150元,该校决定增加采购数量,实际购买茶艺耗材和陶艺耗材的数量在原计划基础上分别增加了2.5m%和m%,结果在结算时发现,两种耗材的总价相等,求m的值.22.(8分)老师布置了一个作业,如下:已知:如图1ABCDY的对角线AC的垂直平分线EF交AD于点F,交BC于点E,交AC于点O.求证:四边形AECF是菱形.某同学写出了如图2所示的证明过程,老师说该同学的作业是错误的.请你解答下列问题:能找出该同学错误的原因吗?请你指出来;请你给出本题的正确证明过程.23.(8分)列方程解应用题:某市今年进行水网升级,1月1日起调整居民用水价格,每立方米水费上涨13,小丽家去年12月的水费是15元,而今年5月的水费则是30元.已知小丽家今年5月的用水量比去年12月的用水量多5m3,求该市今年居民用水的价格.24.(10分)如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(2,2),B(4,0),C (4,﹣4).请在图中,画出△ABC向左平移6个单位长度后得到的△A1B1C1;以点O为位似中心,将△ABC缩小为原来的12,得到△A2B2C2,请在图中y轴右侧,画出△A2B2C2,并求出∠A2C2B2的正弦值.25.(10分)如图,已知()()()3,3,2,1,1,2A B C ------是直角坐标平面上三点.将ABC ∆先向右平移3个单位,再向上平移3个单位,画出平移后的图形111A B C ∆;以点()0,2为位似中心,位似比为2,将111A B C ∆放大,在y 轴右侧画出放大后的图形222A B C ∆;填空:222A B C ∆面积为 .26.(12分)已知抛物线y=x 2﹣6x+9与直线y=x+3交于A ,B 两点(点A 在点B 的左侧),抛物线的顶点为C ,直线y=x+3与x 轴交于点D .(1)求抛物线的顶点C 的坐标及A ,B 两点的坐标;(2)将抛物线y=x 2﹣6x+9向上平移1个单位长度,再向左平移t (t >0)个单位长度得到新抛物线,若新抛物线的顶点E 在△DAC 内,求t 的取值范围;(3)点P (m ,n )(﹣3<m <1)是抛物线y=x 2﹣6x+9上一点,当△PAB 的面积是△ABC 面积的2倍时,求m ,n 的值.27.(12分)某校学生会准备调查六年级学生参加“武术类”、“书画类”、“棋牌类”、“器乐类”四类校本课程的人数.(1)确定调查方式时,甲同学说:“我到六年级(1)班去调查全体同学”;乙同学说:“放学时我到校门口随机调查部分同学”;丙同学说:“我到六年级每个班随机调查一定数量的同学”.请指出哪位同学的调查方式最合理. 类别 频数(人数) 频率 武术类 0.25 书画类 20 0.20 棋牌类15b器乐类合计 a 1.00(2)他们采用了最为合理的调查方法收集数据,并绘制了如图所示的统计表和扇形统计图.请你根据以上图表提供的信息解答下列问题:①a=_____,b=_____;②在扇形统计图中,器乐类所对应扇形的圆心角的度数是_____;③若该校六年级有学生560人,请你估计大约有多少学生参加武术类校本课程.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据平方根,数轴,有理数的分类逐一分析即可.【详解】①∵,∴是错误的;②数轴上的点与实数成一一对应关系,故说法正确;③∵=4,故-2是的平方根,故说法正确;④任何实数不是有理数就是无理数,故说法正确;⑤两个无理数的和还是无理数,如和是错误的;⑥无理数都是无限小数,故说法正确;故正确的是②③④⑥共4个;故选C.【点睛】本题考查了有理数的分类,数轴及平方根的概念,有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,分数可以化为有限小数或无限循环小数;无理数是无限不循环小数,其中有开方开不尽的数,如等,也有π这样的数.2.D【解析】【分析】由抛物线与x轴有两个交点可得出△=b2-4ac>0,进而可得出关于m的一元一次不等式,解之即可得出m 的取值范围.【详解】∵抛物线y=x2-2x+m与x轴有两个交点,∴△=b2-4ac=(-2)2-4×1×m>0,即4-4m>0,解得:m<1.故选D.【点睛】本题考查了抛物线与x轴的交点,牢记“当△=b2-4ac>0时,抛物线与x轴有2个交点”是解题的关键.3.A【解析】【分析】根据抛物线的顶点坐标的纵坐标为4,判断方程ax2+bx+c﹣4=0的根的情况即是判断函数y=ax2+bx+c的图象与直线y=4交点的情况.【详解】∵函数的顶点的纵坐标为4,∴直线y=4与抛物线只有一个交点,∴方程ax2+bx+c﹣4=0有两个相等的实数根,故选A.【点睛】本题考查了二次函数与一元二次方程,熟练掌握一元二次方程与二次函数间的关系是解题的关键.4.D【解析】【分析】画出树状图得出所有等可能的情况数,找出恰好是两个红球的情况数,即可求出所求的概率.【详解】画树状图如下:一共有20种情况,其中两个球中至少有一个红球的有14种情况, 因此两个球中至少有一个红球的概率是:710. 故选:D . 【点睛】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比. 5.A 。

上海市金山区2019-2020学年中考第五次大联考数学试卷含解析

上海市金山区2019-2020学年中考第五次大联考数学试卷含解析

上海市金山区2019-2020学年中考第五次大联考数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知⊙O 的半径为5,弦AB=6,P 是AB 上任意一点,点C 是劣弧»AB 的中点,若△POC 为直角三角形,则PB 的长度( ) A .1B .5C .1或5D .2或42.若分式方程1x aa x -=+无解,则a 的值为( ) A .0 B .-1C .0或-1D .1或-13.已知A (,1y ),B (2,2y )两点在双曲线32my x +=上,且12y y >,则m 的取 值范围是( ) A .m 0>B .m 0<C .3m 2>-D .3m 2<-4.如图所示,a ∥b ,直线a 与直线b 之间的距离是( )A .线段PA 的长度B .线段PB 的长度C .线段PC 的长度D .线段CD 的长度5.下列说法正确的是( )A .掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件B .甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是2=0.4S 甲,2=0.6S 乙,则甲的射击成绩较稳定 C .“明天降雨的概率为12”,表示明天有半天都在降雨 D .了解一批电视机的使用寿命,适合用普查的方式6.某商场试销一种新款衬衫,一周内售出型号记录情况如表所示: 型号(厘米) 38 39 40 41 42 43 数量(件)25303650288商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是( ) A .平均数B .中位数C .众数D .方差7.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b c y x++=在同一坐标系内的图象大致为( )A .B .C .D .8.不等式3x <2(x+2)的解是( ) A .x >2B .x <2C .x >4D .x <49.在△ABC 中,∠C =90°,tanA =,△ABC 的周长为60,那么△ABC 的面积为( )A .60B .30C .240D .12010.在2016年泉州市初中体育中考中,随意抽取某校5位同学一分钟跳绳的次数分别为:158,160,154,158,170,则由这组数据得到的结论错误..的是( ) A .平均数为160B .中位数为158C .众数为158D .方差为20.311.如图,直线,AB CD 被直线EF 所截,155∠=o ,下列条件中能判定//AB CD 的是( )A .235∠=oB .245∠=oC .255∠=oD .2125∠=o12.如图,在菱形ABCD 中,M ,N 分别在AB ,CD 上,且AM =CN ,MN 与AC 交于点O ,连接BO .若∠DAC =26°,则∠OBC 的度数为( )A .54°B .64°C .74°D .26°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知一组数据3,4,6,x ,9的平均数是6,那么这组数据的方差等于________. 14.如图,点 A 是反比例函数 y =﹣4x(x <0)图象上的点,分别过点 A 向横轴、纵轴作垂线段,与坐标轴恰好围成一个正方形,再以正方形的一组对边为直径作两个半圆,其余部分涂上阴影,则阴影部分的面积为______.15.如图,甲、乙两船同时从港口出发,甲船以60海里/时的速度沿北偏东60°方向航行,乙船沿北偏西30°方向航行,半小时后甲船到达点C,乙船正好到达甲船正西方向的点B,则乙船的航程为______海里(结果保留根号).16.如图,AB为⊙O的弦,C为弦AB上一点,设AC=m,BC=n(m>n),将弦AB绕圆心O旋转一周,若线段BC扫过的面积为(m2﹣n2)π,则mn=______17.Rt△ABC中,AD为斜边BC上的高,若, 则ABBC.18.从三角形(非等腰三角形)一个顶点引出一条射线与对边相交,该顶点与该交点间的线段把这个三角形分割成两个小三角形,如果其中一个小三角形是等腰三角形,另一个与原三角形相似,那么我们把这条线段叫做这个三角形的完美分割线,如图,在△ABC中,DB=1,BC=2,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,则CD的长为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:员工管理人员普通工作人员人员结构总经理部门经理科研人员销售人员高级技工中级技工勤杂工员工数(名) 1 3 2 3 24 1每人月工资(元)21000 8400 2025 2200 1800 1600 950请你根据上述内容,解答下列问题:该公司“高级技工”有 名;所有员工月工资的平均数x 为2500元,中位数为 元,众数为 元;小张到这家公司应聘普通工作人员.请你回答右图中小张的问题,并指出用(2)中的哪个数据向小张介绍员工的月工资实际水平更合理些;去掉四个管理人员的工资后,请你计算出其他员工的月平均工资y (结果保留整数),并判断y 能否反映该公司员工的月工资实际水平.20.(6分)爸爸和小芳驾车去郊外登山,欣赏美丽的达子香(兴安杜鹃),到了山下,爸爸让小芳先出发6min ,然后他再追赶,待爸爸出发24min 时,妈妈来电话,有急事,要求立即回去.于是爸爸和小芳马上按原路下山返回(中间接电话所用时间不计),二人返回山下的时间相差4min ,假设小芳和爸爸各自上、下山的速度是均匀的,登山过程中小芳和爸爸之间的距离s (单位:m )关于小芳出发时间t (单位:min )的函数图象如图,请结合图象信息解答下列问题: (1)小芳和爸爸上山时的速度各是多少? (2)求出爸爸下山时CD 段的函数解析式;(3)因山势特点所致,二人相距超过120m 就互相看不见,求二人互相看不见的时间有多少分钟?21.(6分)(1)如图①已知四边形ABCD 中,AB a =,BC=b ,90B D ∠=∠=︒,求: ①对角线BD 长度的最大值;②四边形ABCD 的最大面积;(用含a ,b 的代数式表示)(2)如图②,四边形ABCD 是某市规划用地的示意图,经测量得到如下数据:20cm AB =,30cm BC =,120B ∠=︒,195A C ∠+∠=︒,请你利用所学知识探索它的最大面积(结果保留根号)22.(8分)将二次函数2241y x x =+-的解析式化为2()y a x m k =++的形式,并指出该函数图象的开口方向、顶点坐标和对称轴.23.(8分)某学校为弘扬中国传统诗词文化,在九年级随机抽查了若干名学生进行测试,然后把测试结果分为4个等级;A 、B 、C 、D ,对应的成绩分别是9分、8分、7分、6分,并将统计结果绘制成两幅如图所示的统计图.请结合图中的信息解答下列问题:(1)本次抽查测试的学生人数为 ,图①中的a 的值为 ; (2)求统计所抽查测试学生成绩数据的平均数、众数和中位数.24.(10分)有大小两种货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨. 请问1辆大货车和1辆小货车一次可以分别运货多少吨? 目前有33吨货物需要运输,货运公司拟安排大小货车共计10辆,全部货物一次运完,其中每辆大货车一次运费花费130元,每辆小货车一次运货花费100元,请问货运公司应如何安排车辆最节省费用? 25.(10分)如图,一次函数y=kx+b 的图象与反比例函数y= m x(x >0)的图象交于A (2,﹣1),B (12,n )两点,直线y=2与y 轴交于点C .(1)求一次函数与反比例函数的解析式; (2)求△ABC 的面积.26.(12分)如图,在平面直角坐标系中,点1O 的坐标为()4,0-,以点1O 为圆心,8为半径的圆与x 轴交于A ,B 两点,过A 作直线l 与x 轴负方向相交成60o 的角,且交y 轴于C 点,以点()213,5O 为圆心的圆与x 轴相切于点D .(1)求直线l 的解析式;(2)将2O e 以每秒1个单位的速度沿x 轴向左平移,当2O e 第一次与1O e 外切时,求2O e 平移的时间. 27.(12分)如图,小明的家在某住宅楼AB 的最顶层(AB ⊥BC ),他家的后面有一建筑物CD (CD ∥AB ),他很想知道这座建筑物的高度,于是在自家阳台的A 处测得建筑物CD 的底部C 的俯角是43°,顶部D 的仰角是25°,他又测得两建筑物之间的距离BC 是28米,请你帮助小明求出建筑物CD 的高度(精确到1米).参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】 【分析】由点C 是劣弧AB 的中点,得到OC 垂直平分AB ,求得DA=DB=3,根据勾股定理得到OD==1,若△POC 为直角三角形,只能是∠OPC=90°,则根据相似三角形的性质得到PD=2,于是得到结论. 【详解】∵点C 是劣弧AB 的中点, ∴OC 垂直平分AB , ∴DA=DB=3,∴OD=22534-=,若△POC 为直角三角形,只能是∠OPC=90°, 则△POD ∽△CPD , ∴PD CDOD PD=, ∴PD 2=4×1=4, ∴PD=2, ∴PB=3﹣2=1, 根据对称性得,当P 在OC 的左侧时,PB=3+2=5, ∴PB 的长度为1或5.故选C . 【点睛】考查了圆周角,弧,弦的关系,勾股定理,垂径定理,正确左侧图形是解题的关键. 2.D 【解析】试题分析:在方程两边同乘(x +1)得:x -a =a(x +1), 整理得:x(1-a)=2a ,当1-a =0时,即a =1,整式方程无解, 当x +1=0,即x =-1时,分式方程无解, 把x =-1代入x(1-a)=2a 得:-(1-a)=2a , 解得:a =-1, 故选D .点睛:本题考查了分式方程的解,解决本题的关键是熟记分式方程无解的条件. 3.D 【解析】 【分析】∵A (1-,1y ),B (2,2y )两点在双曲线32my x+=上, ∴根据点在曲线上,点的坐标满足方程的关系,得1232m 32my y 12++==-,.∵12y y >,∴32m 32m >12++-,解得3m 2<-.故选D. 【详解】请在此输入详解! 4.A 【解析】分析:从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离,由此可得出答案.详解:∵a ∥b ,AP ⊥BC∴两平行直线a 、b 之间的距离是AP 的长度 ∴根据平行线间的距离相等∴直线a 与直线b 之间的距离AP 的长度 故选A.点睛:本题考查了平行线之间的距离,属于基础题,关键是掌握平行线之间距离的定义. 5.B 【解析】 【分析】利用事件的分类、普查和抽样调查的特点、概率的意义以及方差的性质即可作出判断. 【详解】解: A 、掷一枚均匀的骰子,骰子停止转动后,6点朝上是可能事件,此选项错误;B 、甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是S 甲2=0.4,S 乙2=0.6,则甲的射击成绩较稳定,此选项正确;C 、“明天降雨的概率为12”,表示明天有可能降雨,此选项错误; D 、解一批电视机的使用寿命,适合用抽查的方式,此选项错误; 故选B . 【点睛】本题考查方差;全面调查与抽样调查;随机事件;概率的意义,掌握基本概念是解题关键. 6.B 【解析】分析:商场经理要了解哪些型号最畅销,所关心的即为众数.详解:根据题意知:对商场经理来说,最有意义的是各种型号的衬衫的销售数量,即众数. 故选:C .点睛:此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.根据二次函数图象开口向上得到a>0,再根据对称轴确定出b ,根据二次函数图形与x 轴的交点个数,判断24b ac -的符号,根据图象发现当x=1时y=a+b+c<0,然后确定出一次函数图象与反比例函数图象的情况,即可得解. 【详解】∵二次函数图象开口方向向上, ∴a>0,∵对称轴为直线02bx a=->, ∴b<0,二次函数图形与x 轴有两个交点,则24b ac ->0, ∵当x=1时y=a+b+c<0,∴24y bx b ac =+-的图象经过第二四象限,且与y 轴的正半轴相交, 反比例函数a b cy x++=图象在第二、四象限, 只有D 选项图象符合. 故选:D. 【点睛】考查反比例函数的图象,一次函数的图象,二次函数的图象,掌握函数图象与系数的关系是解题的关键. 8.D 【解析】 【分析】不等式先展开再移项即可解答. 【详解】解:不等式3x <2(x+2), 展开得:3x <2x+4, 移项得:3x-2x <4, 解之得:x <4. 故答案选D. 【点睛】本题考查了解一元一次不等式,解题的关键是熟练的掌握解一元一次不等式的步骤.由tanA的值,利用锐角三角函数定义设出BC与AC,进而利用勾股定理表示出AB,由周长为60求出x 的值,确定出两直角边,即可求出三角形面积.【详解】如图所示,由tanA=,设BC=12x,AC=5x,根据勾股定理得:AB=13x,由题意得:12x+5x+13x=60,解得:x=2,∴BC=24,AC=10,则△ABC面积为120,故选D.【点睛】此题考查了解直角三角形,锐角三角函数定义,以及勾股定理,熟练掌握勾股定理是解本题的关键.10.D【解析】解:A.平均数为(158+160+154+158+170)÷5=160,正确,故本选项不符合题意;B.按照从小到大的顺序排列为154,158,158,160,170,位于中间位置的数为158,故中位数为158,正确,故本选项不符合题意;C.数据158出现了2次,次数最多,故众数为158,正确,故本选项不符合题意;D.这组数据的方差是S2=15[(154﹣160)2+2×(158﹣160)2+(160﹣160)2+(170﹣160)2]=28.8,错误,故本选项符合题意.故选D.点睛:本题考查了众数、平均数、中位数及方差,解题的关键是掌握它们的定义,难度不大.11.C【解析】试题解析:A 、由∠3=∠2=35°,∠1=55°推知∠1≠∠3,故不能判定AB ∥CD ,故本选项错误; B 、由∠3=∠2=45°,∠1=55°推知∠1≠∠3,故不能判定AB ∥CD ,故本选项错误; C 、由∠3=∠2=55°,∠1=55°推知∠1=∠3,故能判定AB ∥CD ,故本选项正确; D 、由∠3=∠2=125°,∠1=55°推知∠1≠∠3,故不能判定AB ∥CD ,故本选项错误; 故选C .12.B 【解析】 【分析】根据菱形的性质以及AM =CN ,利用ASA 可得△AMO ≌△CNO ,可得AO =CO ,然后可得BO ⊥AC ,继而可求得∠OBC 的度数. 【详解】∵四边形ABCD 为菱形, ∴AB ∥CD ,AB =BC ,∴∠MAO =∠NCO ,∠AMO =∠CNO , 在△AMO 和△CNO 中,MAO NCO AM CNAMO CNO ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AMO ≌△CNO(ASA), ∴AO =CO , ∵AB =BC , ∴BO ⊥AC , ∴∠BOC =90°, ∵∠DAC =26°,∴∠BCA =∠DAC =26°, ∴∠OBC =90°﹣26°=64°. 故选B . 【点睛】13.5.2 【解析】分析:首先根据平均数求出x 的值,然后根据方差的计算法则进行计算即可得出答案. 详解:∵平均数为6, ∴(3+4+6+x+9)÷5=6, 解得:x=8, ∴方差为:()()()()()22222136******** 5.25⎡⎤-+-+-+-+-=⎣⎦. 点睛:本题主要考查的是平均数和方差的计算法则,属于基础题型.明确计算公式是解决这个问题的关键. 14.4﹣π 【解析】 【分析】由题意可以假设A (-m ,m ),则-m 2=-4,求出点A 坐标即可解决问题. 【详解】由题意可以假设A (-m ,m ), 则-m 2=-4, ∴m=≠±2, ∴m=2,∴S 阴=S 正方形-S 圆=4-π, 故答案为4-π. 【点睛】本题考查反比例函数图象上的点的特征、正方形的性质、圆的面积公式等知识,解题的关键是灵活运用所学知识解决问题15. 【解析】 【分析】本题可以求出甲船行进的距离AC ,根据三角函数就可以求出AB ,即可求出乙船的路程. 【详解】由已知可得:AC=60×0.5=30海里, 又∵甲船以60海里/时的速度沿北偏东60°方向航行,乙船沿北偏西30°, ∴∠BAC=90°,又∵乙船正好到达甲船正西方向的B 点, ∴∠C=30°,∴答:乙船的路程为103海里.故答案为103海里.【点睛】本题主要考查的是解直角三角形的应用-方向角问题及三角函数的定义,理解方向角的定义是解决本题的关键.16.152 +【解析】【分析】先确定线段BC过的面积:圆环的面积,作辅助圆和弦心距OD,根据已知面积列等式可得:S=πOB2-πOC2=(m2-n2)π,则OB2-OC2=m2-n2,由勾股定理代入,并解一元二次方程可得结论.【详解】如图,连接OB、OC,以O为圆心,OC为半径画圆,则将弦AB绕圆心O旋转一周,线段BC扫过的面积为圆环的面积,即S=πOB2-πOC2=(m2-n2)π,OB2-OC2=m2-n2,∵AC=m,BC=n(m>n),∴AM=m+n,过O作OD⊥AB于D,∴BD=AD=12AB=2m n+,CD=AC-AD=m-2m n+=2m n-,由勾股定理得:OB2-OC2=(BD2+OD2)-(CD2+OD2)=BD2-CD2=(BD+CD)(BD-CD)=mn,∴m2-n2=mn,m2-mn-n2=0,m=52n n ±,∵m>0,n>0,∴5 n n +∴152mn+=,故答案为15+.【点睛】此题主要考查了勾股定理,垂径定理,一元二次方程等知识,根据旋转的性质确定线段BC扫过的面积是解题的关键,是一道中等难度的题目.17.1 2【解析】【分析】利用直角三角形的性质,判定三角形相似,进一步利用相似三角形的面积比等于相似比的性质解决问题.【详解】如图,∵∠CAB=90°,且AD⊥BC,∴∠ADB=90°,∴∠CAB=∠ADB,且∠B=∠B,∴△CAB∽△ADB,∴(AB:BC)1=△ADB:△CAB,又∵S△ABC=4S△ABD,则S△ABD:S△ABC=1:4,∴AB:BC=1:1.18.3 2【解析】【分析】设AB=x,利用△BCD∽△BAC,得BCBA=BDBC,列出方程即可解决问题.【详解】∵△BCD∽△BAC,∴BC=BD,∵x>0,∴x=4,∴AC=AD=4-1=3,∵△BCD∽△BAC,∴CDAC=BDBC=12,∴CD=32.故答案为3 2【点睛】本题考查相似三角形的判定和性质、等腰三角形的性质等知识,解题的关键是利用△BCD∽△BAC解答.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)16人;(2)工中位数是1700元;众数是1600元;(3)用1700元或1600元来介绍更合理些.(4)y能反映该公司员工的月工资实际水平.【解析】【分析】(1)用总人数50减去其它部门的人数;(2)根据中位数和众数的定义求解即可;(3)由平均数、众数、中位数的特征可知,平均数易受极端数据的影响,用众数和中位数映该公司员工的月工资实际水平更合适些;(4)去掉极端数据后平均数可以反映该公司员工的月工资实际水平.【详解】(1)该公司“高级技工”的人数=50﹣1﹣3﹣2﹣3﹣24﹣1=16(人);(2)工资数从小到大排列,第25和第26分别是:1600元和1800元,因而中位数是1700元;在这些数中1600元出现的次数最多,因而众数是1600元;(3)这个经理的介绍不能反映该公司员工的月工资实际水平.用1700元或1600元来介绍更合理些.(4)2500502100084003171346y⨯--⨯=≈(元).y能反映该公司员工的月工资实际水平.20.(1)小芳上山的速度为20m/min,爸爸上山的速度为28m/min;(2)爸爸下山时CD段的函数解析式为y=12x﹣288(24≤x≤40);(3)二人互相看不见的时间有7.1分钟.【解析】(2)根据爸爸及小芳的速度结合点C 的横坐标(6+24=30),可得出点C 的坐标,由点D 的横坐标比点E 少4可得出点D 的坐标,再根据点C 、D 的坐标利用待定系数法可求出CD 段的函数解析式;(3)根据点D 、E 的坐标利用待定系数法可求出DE 段的函数解析式,分别求出CD 、DE 段纵坐标大于120时x 的取值范围,结合两个时间段即可求出结论. 详解:(1)小芳上山的速度为120÷6=20(m/min ), 爸爸上山的速度为120÷(21﹣6)+20=28(m/min ).答:小芳上山的速度为20m/min ,爸爸上山的速度为28m/min . (2)∵(28﹣20)×(24+6﹣21)=72(m ), ∴点C 的坐标为(30,72);∵二人返回山下的时间相差4min ,44﹣4=40(min ), ∴点D 的坐标为(40,192).设爸爸下山时CD 段的函数解析式为y=kx+b , 将C (30,72)、D (40,192)代入y=kx+b ,307240192k b k b +=⎧⎨+=⎩,解得:12228k b =⎧⎨=-⎩. 答:爸爸下山时CD 段的函数解析式为y=12x ﹣288(24≤x≤40). (3)设DE 段的函数解析式为y=mx+n , 将D (40,192)、E (44,0)代入y=mx+n ,40192440m n m n +=⎧⎨+=⎩,解得:482112m n =-⎧⎨=⎩, ∴DE 段的函数解析式为y=﹣48x+2112(40≤x≤44). 当y=12x ﹣288>120时,34<x≤40; 当y=﹣48x+2112>120时,40≤x <41.1. 41.1﹣34=7.1(min ).答:二人互相看不见的时间有7.1分钟.点睛:本题考查了一次函数的应用、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,解题的关键是:(1)根据数量关系,列式计算;(2)根据点C 、D 的坐标,利用待定系数法求出CD 段的函数解析式;(3)利用一次函数图象上点的坐标特征分别求出CD 、DE 段纵坐标大于120时x 的取值范围.21.(122+2ab4a b +;(2)+475.【解析】(1)①由条件可知AC 为直径,可知BD 长度的最大值为AC 的长,可求得答案;②连接AC ,求得AD 2+CD 2,利用不等式的性质可求得AD•CD 的最大值,从而可求得四边形ABCD 面积的最大值; (2)连接AC ,延长CB ,过点A 做AE ⊥CB 交CB 的延长线于E ,可先求得△ABC 的面积,结合条件可求得∠D =45°,且A 、C 、D 三点共圆,作AC 、CD 中垂线,交点即为圆心O ,当点D 与AC 的距离最大时,△ACD 的面积最大,AC 的中垂线交圆O 于点D',交AC 于F ,FD'即为所求最大值,再求得 △ACD′的面积即可. 【详解】(1)①因为∠B =∠D =90°,所以四边形ABCD 是圆内接四边形,AC 为圆的直径,则BD 长度的最大值为AC ,此时BD =22a +b ,②连接AC ,则AC 2=AB 2+BC 2=a 2+b 2=AD 2+CD 2,S △ACD =12AD ⋅CD≤14(AD 2+CD 2)=14(a 2+b 2),所以四边形ABCD 的最大面积=14(a 2+b 2)+12ab =22+2ab4a b +;(2)如图,连接AC ,延长CB ,过点A 作AE ⊥CB 交CB 的延长线于E ,因为AB =20,∠ABE =180°-∠ABC =60°,所以AE =AB ⋅sin60°=103,EB =AB ⋅cos60°=10,S △ABC =12AE ⋅BC =1503,因为BC =30,所以EC =EB +BC =40,AC =22+AE EC =1019,因为∠ABC =120°,∠BAD +∠BCD =195°,所以∠D =45°,则△ACD 中,∠D 为定角,对边AC 为定边,所以,A 、C 、D 点在同一个圆上,做AC 、CD 中垂线,交点即为圆O ,如图,当点D 与AC 的距离最大时,△ACD 的面积最大,AC 的中垂线交圆O 于点D’,交AC 于F ,FD’即为所求最大值,连接OA 、OC ,∠AOC =2∠AD’C =90°,OA =OC ,所以△AOC ,△AOF 等腰直角三角形,AO =OD’=38OF =AF =2AC=19=3819S △ACD’=12AC ⋅D’F =19(38192475,所以S max =S △ABC +S △ACD =32+475. 【点睛】本题为圆的综合应用,涉及知识点有圆周角定理、不等式的性质、解直角三角形及转化思想等.在(1)中注意直径是最长的弦,在(2)中确定出四边形ABCD 面积最大时,D 点的位置是解题的关键.本题考查知识点较多,综合性很强,计算量很大,难度适中. 22.开口方向:向上;点坐标:(-1,-3);称轴:直线1x =-.【分析】将二次函数一般式化为顶点式,再根据a 的值即可确定该函数图像的开口方向、顶点坐标和对称轴. 【详解】解:()2221y x x =+-,()222121y x x =++--, ()2213y x =+-,∴开口方向:向上,顶点坐标:(-1,-3),对称轴:直线1x =-. 【点睛】熟练掌握将一般式化为顶点式是解题关键.23.(1)50、2;(2)平均数是7.11;众数是1;中位数是1. 【解析】 【分析】(1)根据A 等级人数及其百分比可得总人数,用C 等级人数除以总人数可得a 的值; (2)根据平均数、众数、中位数的定义计算可得. 【详解】(1)本次抽查测试的学生人数为14÷21%=50人,a%=1250×100%=2%,即a=2. 故答案为50、2;(2)观察条形统计图,平均数为1492081274650⨯+⨯+⨯+⨯=7.11.∵在这组数据中,1出现了20次,出现的次数最多,∴这组数据的众数是1. ∵将这组数据从小到大的顺序排列,其中处于中间的两个数都是1,∴882+=1,∴这组数据的中位数是1. 【点睛】本题考查了众数、平均数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数. 24.(1)1辆大货车一次可以运货4吨,1辆小货车一次可以运货32吨;(2)货运公司应安排大货车8辆时,小货车2辆时最节省费用. 【解析】 【分析】(1)设1辆大货车和1辆小货车一次可以分别运货x 吨和y 吨,根据“3辆大货车与4辆小货车一次可以(2)因运输33吨且用10辆车一次运完,故10辆车所运货不低于10吨,所以列不等式,大货车运费高于小货车,故用大货车少费用就小进行安排即可. 【详解】(1)解:设1辆大货车一次可以运货x 吨,1辆小货车一次可以运货y 吨,依题可得:34182617x y x y +=⎧⎨+=⎩ , 解得:432x y =⎧⎪⎨=⎪⎩.答:1辆大货车一次可以运货4吨,1辆小货车一次可以运货32吨. (2)解:设大货车有m 辆,则小货车10-m 辆,依题可得: 4m+32(10-m )≥33 m≥0 10-m≥0 解得:365≤m≤10, ∴m=8,9,10;∴当大货车8辆时,则小货车2辆; 当大货车9辆时,则小货车1辆; 当大货车10辆时,则小货车0辆;设运费为W=130m+100(10-m )=30m+1000, ∵k=30〉0,∴W 随x 的增大而增大, ∴当m=8时,运费最少, ∴W=130×8+100×2=1240(元),答:货运公司应安排大货车8辆时,小货车2辆时最节省费用. 【点睛】考查了二元一次方程组和一元一次不等式的应用,体现了数学建模思想,考查了学生用方程解实际问题的能力,解题的关键是根据题意建立方程组,并利用不等式求解大货车的数量,解题时注意题意中一次运完的含义,此类试题常用的方法为建立方程,利用不等式或者一次函数性质确定方案. 25.(1)y=2x ﹣5,2y x=-;(2)214.【解析】【详解】试题分析:(1)把A 坐标代入反比例解析式求出m 的值,确定出反比例解析式,再将B 坐标代入求出n 的值,确定出B 坐标,将A 与B 坐标代入一次函数解析式求出k 与b 的值,即可确定出一次函数解析式; (2)用矩形面积减去周围三个小三角形的面积,即可求出三角形ABC 面积. 试题解析:(1)把A (2,﹣1)代入反比例解析式得:﹣1=2m,即m=﹣2,∴反比例解析式为2y x =-,把B (12,n )代入反比例解析式得:n=﹣4,即B (12,﹣4),把A 与B 坐标代入y=kx+b 中得:21{142k b k b +=-+=-,解得:k=2,b=﹣5,则一次函数解析式为y=2x ﹣5;(2)如图, S △ABC =1113121266323222224⨯-⨯⨯-⨯⨯-⨯⨯= 考点:反比例函数与一次函数的交点问题;一次函数及其应用;反比例函数及其应用. 26.(1)直线l 的解析式为:3123y x =-(2)2O e 平移的时间为5秒. 【解析】 【分析】(1)求直线的解析式,可以先求出A 、C 两点的坐标,就可以根据待定系数法求出函数的解析式. (2)设⊙O 2平移t 秒后到⊙O 3处与⊙O 1第一次外切于点P ,⊙O 3与x 轴相切于D 1点,连接O 1O 3,O 3D 1. 在直角△O 1O 3D 1中,根据勾股定理,就可以求出O 1D 1,进而求出D 1D 的长,得到平移的时间. 【详解】(1)由题意得OA 4812=-+=, ∴A 点坐标为()12,0-.∵在Rt ΔAOC 中,OAC 60∠=︒,OC OAtan OAC 12tan60123∠==⨯︒=∴C 点的坐标为(0,123-. 设直线l 的解析式为y kx b =+,得123 012bk b⎧-=⎪⎨=-+⎪⎩,解得1233bk⎧=-⎪⎨=-⎪⎩,∴直线l的解析式为:y3x123=--.(2)如图,设2Oe平移t秒后到3Oe处与1Oe第一次外切于点P,3Oe与x轴相切于1D点,连接13O O,31O D.则1313O O O P PO8513=+=+=,∵31O D x⊥轴,∴31O D5=,在131RtΔO O D中,2225111331O D O O O D13512=-=-=.∵11O D O O OD41317=+=+=,∴1111D D O D O D17125=-=-=,∴5t51==(秒),∴2Oe平移的时间为5秒.【点睛】本题综合了待定系数法求函数解析式,以及圆的位置关系,其中两圆相切时的辅助线的作法是经常用到的.27.39米【解析】【分析】过点A作AE⊥CD,垂足为点E,在Rt△ADE中,利用三角函数求出DE的长,在Rt△ACE中,求出C E的长即可得.【详解】解:过点A作AE⊥CD,垂足为点E,由题意得,AE= BC=28,∠EAD=25°,∠EAC=43°,在Rt △ADE 中,∵tan DE EAD AE∠=,∴tan25280.472813.2DE =︒⨯=⨯≈, 在Rt △ACE 中,∵tan CE EAC AE ∠=,∴tan43280.932826CE =︒⨯=⨯≈, ∴13.22639DC DE CE =+=+≈(米),答:建筑物CD 的高度约为39米.。

初中数学沪科版大联考试卷

初中数学沪科版大联考试卷

考试时间:120分钟满分:100分一、选择题(每题3分,共30分)1. 已知a=3,b=-2,则下列选项中正确的是()A. a+b < 0B. a-b > 0C. a×b < 0D. a÷b > 02. 下列各数中,无理数是()A. 0.1010010001...B. √9C. 0.333...D. 2.43. 下列各数中,平方根有理数是()A. 9B. -16C. 0D. √24. 下列各数中,立方根是整数的是()A. 8B. -27C. 0D. √645. 下列等式中,正确的是()A. (a+b)² = a² + b²B. (a-b)² = a² - b²C. (a+b)³ = a³ + b³D. (a-b)³ = a³ - b³6. 下列函数中,自变量的取值范围正确的是()A. y = 2x + 3,x∈RB. y = √(x-1),x∈RC. y = x² - 2x + 1,x∈RD. y = 1/x,x∈R7. 下列方程中,无解的是()A. 2x + 3 = 7B. 3x - 4 = 5C. 5x + 2 = 0D. 2x - 3 = 58. 下列不等式中,正确的是()A. 2x + 3 > 5B. 3x - 4 < 5C. 5x + 2 > 0D. 2x - 3 < 59. 下列函数中,单调递增的是()A. y = 2x + 3B. y = -2x + 3C. y = x²D. y = 1/x10. 下列各数中,绝对值最小的是()A. 3B. -2C. 0D. -3二、填空题(每题3分,共30分)1. 若a=3,b=-2,则a² + b² = _______。

沪科版九年级数学第五次月考测试卷(包含答案)

沪科版九年级数学第五次月考测试卷(包含答案)

九年级数学第五次月考试卷 (150分)一、选择(答案填写在下面表格中,写在别处不得分)(每小题4分,满分40分)题号 1 2 3 4 5 6 7 8 9 10 答案1.下列函数不属于二次函数的是( )。

A.y=(x -1)(x+2) B.y=21(x+1)2 C.y=2(x+3)2-2x 2 D.y=1-3x 22.下列函数中,当x >0时,y 随x 的增大而减小的是( )。

A.x y = B.x y 1=C.xy 1-= D.2x y = 3. 一个斜坡的坡角为30°,则这个斜坡的坡度为( )。

A . 1:2 B. 3 :2 C. 1: 3 D. 3 :14.已知锐角α满足2sin(α+20°)=1,则锐角α的度数为( )。

A.10° B.25° C.40° D.45° 5.已知cosA >21,则锐角∠A 的取值范围是( )。

A. 0°<∠A <30° B. 30°<∠A < 90° C. 0°<∠A < 60° D. 60°<∠A < 90° 6.已知2x=3y ,则下列比例式成立的是 ( ) A.2x =y 3 B.2x =3yC.3x =2y D.y x =327.如果两个相似三角形的面积之比为9:4,那么这两个三角形对应边上的高之比为( ) A.9:4 B.3:2 C.2:3 D.81:16 8.计算tan60°-2sin45°-2cos30°的结果是( ) A.-2 B.23-2 C.-3 D.-2 9.下列各图中,是中心对称图形的是( )10.如图,⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长为3,则弦AB 的长是( ) A .4 B .6 C .7 D .8二、填空题(每小题5分,满分20分)学校刘集乡中心学校 班级 姓名 座号(考号)…… …………密……………………封……………………线………………11.3与4的比例中项是______ 。

江苏省南通市基地学校2023届高三第五次大联考数学试题及答案解析

江苏省南通市基地学校2023届高三第五次大联考数学试题及答案解析

江苏省南通市基地学校2023届高三第五次大联考数学试题及答案解析一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若集合M ={x |x =k π,k ∈Z },N ={x |x =k2π,k ∈Z },则()A .M ∩N =B .M ∩N =NC .M ∪N =ZD .M ∪N =N2.已知z =a +i ,且z 2+2z +b =0,其中a ,b 为实数,则()A .a =1,b =2B .a =-1,b =2C .a =1,b =0D .a =-1,b =03.双曲函数起初用来描述一些物理运动过程,后来又大量应用于计算机科学、经济和金融领域.若双曲正切函数为tan h x =e x -e -xe x +e -x,则tan h x ()A .是偶函数,且在R 上单调递减B .是偶函数,且在R 上单调递增C .是奇函数,且在R 上单调递减D .是奇函数,且在R 上单调递增4.设a ,b 是两个单位向量,若a +b 在b 上的投影向量为23b ,则cos<a ,b >=()A .-13B .13C .-223D .2235.甲、乙两所学校各有3名志愿者参加一次公益活动,活动结束后,站成前后两排合影留念,每排3人,若每排同一个学校的两名志愿者不相邻,则不同的站法种数有()A .36B .72C .144D .2886.中国古代建筑的主要受力构件是梁,其截面的基本形式是矩形.如图,将一根截面为圆形的木材加工制成截面为矩形的梁,设与承载重力的方向垂直的宽度为x ,与承载重力的方向平行的高度为y ,记矩形截面抵抗矩W =16xy 2.根据力学原理,截面抵抗矩越大,梁的抗弯曲能力越强,则宽x 与高y 的最佳之比应为()A .12B .22C .1D .27.已知函数f (x )=sin(ωx +φ)(ω>0,|φ|<π2)的最小正周期为T ,f ′(x )是f (x )的导函数,设g(x )=f (x )+f ′(x ),若g (x )是奇函数,且g (x )的最大值为5,则f (T8)=()A .-1010B .1010C .-55D .558.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为23,左顶点是A ,左、右焦点分别是F 1,F 2,M 是C 在第一象限上的一点,直线MF 1与C 的另一个交点为N .若MF 2∥AN ,且△ANF 2的周长为72a ,则直线MN 的斜率为()A .53B .157C .237D .56二、选择题:本题共4小题,每小题5分,共20分。

江苏省南通市新高考基地学校4月第五次大联考数学试卷及答案

江苏省南通市新高考基地学校4月第五次大联考数学试卷及答案

2023届高三基地学校第五次大联考数学2023.04本试卷共6页,22小题,满分150分.考试时间120分钟.注意事项z1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上.将条形码横贴在答题卡‘‘条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目:选项的答案信息点涂黑:如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上E如需改动,先划掉原来的答案,然后再写上新答案:不准使用铅笔和涂改液.不按以上要求作答无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题z本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.M ={对X =阳,k E Z}, N =」x x =ι,kEZ� l若集合l.. J ,则〈〉A.MnN=②MUN=NB.MnN=NC.MUN=Z2.己知z=α+i ,且三+2z+b=0,其中。

、b为实数,则(|α=lA.斗lb =2(α=-1h=O|α=-1 Iα=lB.斗C.斗l b =2lb =OD.D.3.双幽函数起初用来描述一些物理运动过程,后来又大量应用于计算,机科学、经济和金融-xe -e 领域.若双脚正切函数为tanhx=,则阳由x ( ).- 巳”+e ”A.是偶函数,且在R上单调i远减B.是偶函数,且在R上单调i远增C.是奇函数,且在R上单调递减D.是奇函数,且在R上单调递增4设仇b是两个单位向盘,如+b 在b 上的投影向最为:6,则cos(a,E)=cA . -- B. ..!_ .」二.../‘/') 2、/233335.甲、乙两所学校备有3名志愿、者参加一次公益活动,活动结束后,站成前后两排合影留念,每排3人,若每排同一个学校的两名志愿者不相邻,则不同的鸟飞法手中数有(A. 36B. 72c. 144。

安徽省淮北市“五校联考”2023-2024学年八年级下学期期中考试数学试卷(含解析)

安徽省淮北市“五校联考”2023-2024学年八年级下学期期中考试数学试卷(含解析)

八年级数学(沪科版)卷二一、选择题(本大题共10小题,每小题4分,满分40分)1. 下列二次根式中,是最简二次根式的是()A. B. C. D.答案:D解析:详解:解:A、被开方数含有分母,不是最简二次根式,不符合题意;B、被开方数含有能开得尽方的因数,不是最简二次根式,不符合题意;C、被开方数含有能开得尽方的因数,不是最简二次根式,不符合题意;D、是最简二次根式,符合题意;故选:D.2. 若代数式有意义,则x的取值范围是()A. B. C. D.答案:C解析:详解:解:∵代数式有意义,∴,∴,故选:C.3. 计算的结果是()A. B. C. D.答案:C详解:解:,故选:C.4. 若关于一元二次方程有实数根,则实数的值可能是()A. 10B. 8C. 5D. 2答案:D解析:详解:解:关于的一元二次方程有实数根,且,即且,,且故选:D.5. 据统计,2021年和2023年我省粮食产量分别为亿斤和亿斤.设2021年至2023年我省粮食产量的年平均增长率为,依题意可列方程为()A. B.C. D.答案:B解析:详解:解:设2021年至2023年我省粮食产量的年平均增长率为,由题意得,,故选:B.6. 将一元二次方程配方成的形式,则的平方根是( )A. B. C. D.解析:详解:解:,∴,∴,∴的平方根是,故选:B.7. 如图,在平面直角坐标系中,点,,以点为圆心,长为半径画弧,交轴的正半轴于点,则点的横坐标介于()A. 和之间B. 和之间C. 和之间D. 和之间答案:C解析:详解:解:∵点坐标为,,点、均在以点为圆心,以为半径的圆上,,∵,∴,点在轴的正半轴上,点的横坐标介于和之间.8. 在中,,,的对边分别是a,b,c.下列条件不能说明是直角三角形的是()A. B.C. D. ,,答案:D解析:详解:A、,,,,,是直角三角形,故此选项正确,不符合题意;B、设,则,,,是直角三角形,故此选项正确,不符合题意;C、,,,是直角三角形,故此选项正确,不符合题意;D、,,,,不是直角三角形,故此选项错误,符合题意.故选D.9. 国是较早了解勾股定理的国家之一.据《周髀算经》记载,勾股定理的公式与证明是在西周由商高发现的,故又称之为“商高定理”;三国时代的蒋铭祖对勾股定理作出了详细注释,并给出了另外一个证明.下面四幅图中,不能证明勾股定理的是()A. B. C. D.答案:C解析:详解:解:A.大正方形的面积为:,也可看作是4个直角三角形和一个小正方形组成,则其面积为:,∴,∴故本选项不符合题意;B.梯形的面积为:,也可看作是2个直角三角形和一个等腰直角三角形组成,则其面积为:,∴,可以证明勾股定理,故本选项不符合题意;C.图形中不涉及直角三角形,故无法证明勾股定理,故本选项符合题意;D.图中图形面积等于边长为c的正方形面积,加上两个直角边分别为a、b的长方形面积,即其面积为:,也可看作是一个梯形面积加上一个等腰直角三角形的面积,则其面积为:,∴,∴故本选项不符合题意;故选:C.10. 阿进同学有一块长,宽的长方形纸板,他想制作一个有盖的长方体盒子.为了合理使用材料,他设计了如图所示的裁剪方案,空白部分为裁剪下来的边角料,其中左侧两个空白部分为正方形.如果裁剪并折出底面积为的有盖盒子(盒盖与盒底的大小形状相同),那么裁去的左侧正方形的边长是()A. B. C. D.答案:D解析:详解:解:设裁去左侧正方形的边长为,则折成的长方体盒子的底面长为,由题意得,整理得:,解得:(不合题意,舍去)∴折成有盖盒子,裁去左侧的正方形边长是,故选:D.二、填空题(本大题共4小题,每小题5分,满分20分)11. 计算:______________.答案:解析:详解:解:原式.故答案为:.12. 《九章算术》中记载了这样一个问题:“今有立木,系索其末,委地三尺.引索却行,去本八尺而索尽,问索长几何?”译文:“令有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺(1尺).牵着绳索(绳索头与地面接触)退行,在距木根部8尺处时绳索用尽.问绳索长是多少?”设绳索长为x尺,则根据题意可列方程为__________.答案:解析:详解:设绳索长为尺,可列方程:,故答案为:.13. 如图所示的是一块长方体木块,长,宽,高,棱上的点处有一滴蜂蜜,,如果一只蚂蚁要从长方体木块的顶点处,沿着长方体的表面爬行到点处吃蜂蜜,那么蚂蚁需要爬行的最短路径的长是_________答案:解析:详解:解:第一种情况:把我们所看到的上面和右面组成一个平面,,,,,,,则所走的最短路径的长是;第二种情况:把我们看到的前面与右面组成一个长方形,,,,,所以走的最短路径的长是;第三种情况:把我们所看到的上面和后面组成一个长方形,,,,,则所走的最短路径的长是;,所走的最短路径的长是.故答案为:.14. 定义:如果关于x的一元二次方程有两个实数根为,且满足,则称这样的方程为“倍根方程”.(1)方程__________________ (选填“是”或“不是”)“倍根方程”.(2)若是“倍根方程”,则_________答案:①. 是②. 或解析:详解:解:(1)∵,∴,解得,∴,∴方程是“倍根方程”.故答案为:是;(2)解方程得,∵是“倍根方程”,∴或,故答案为:或.三、(本大题共2小题,每小题8分,满分16分)15. 计算.(1)(2)答案:(1)(2)2解析:小问1详解:解:原式;小问2详解:解:原式.16. 选择适当的方法解方程.(1)(2)答案:(1)(2)解析:小问1详解:解:∵,∴,∴,∴或,解得;小问2详解:解:∵,∴,∴,∴,∴,解得.四、(本大题共2小题,每小题8分,满分16分)17. 2024年中央广播电视总台春节联欢晚会的主题为“龙行龘龘,欣欣家国”.某商场以80元/件的进价购进一款印有“龘”字图案的卫衣.试销发现:当售价为120元/件时,平均每天能卖出60件;若这种卫衣的售价每下降5元,则平均每天能多售出20件.该商场要使销售此款卫衣平均每天的利润为3000元,且尽可能让利于消费者,每件卫衣应降价多少元?答案:元解析:详解:解:设每件的售价应降低元,根据题意,得.解得:,.因为要尽可能让利于消费者,所以,答:每件的售价应降低元.18. 以3,4,5为边长的三角形是直角三角形,称3,4,5为勾股数组.记为(3,4,5),类似地,还可得到下列勾股数组:(8,6,10),(15,8,17),(24,10,26)等.(1)根据上述四组勾股数的规律,写出第六组勾股数;(2)用含(且为整数)的数学等式描述上述勾股数组的规律,并证明.答案:(1)第六组勾股数为(48,14,50);(2)规律:第n组勾股数为(n2-1,2n,n2+1);证明见详解.解析:详解:(1)第一组中间数为4=2×2,第二组中间数为6=2×3,第三组中间数为8=2×4,第四组中间数为10=2×5,第五组中间数为12=2×6,第六组中间数为14=2×7,两头的两数差二,设较小的数为x,另一个数为x+2则(x+2)2-x2=142,解得x=48∴第六组勾股数为(48,14,50);(2)规律:中间数规律是2n(n≥2)设第一个数为x,第三个数为x+2则,解得,第n组勾股数为(n2-1,2n,n2+1);证明:(n2-1)2+(2n)2=n4-2n2+1+4n2=n4+2n2+1,(n2+1)2=n4+2n2+1,∴(n2-1)2+(2n)2 =(n2+1)2.五、(本大题共2小题,每小题10分,满分20分)19. 如图,从一张面积为的正方形纸板的四个角上各剪掉一个面积为的小正方形,将剩余部分制作成一个无盖的长方体盒子.(1)原来大正方形的边长为________;剪掉的四个小正方形的边长为________.(结果用最简二次根式表示)(2)分别求这个长方体盒子的底面边长和体积.(结果精确到0.1,参考数据:,,)答案:(1)4,(2)这个长方体盒子的底面边长为4.5cm,体积为解析:小问1详解:解:大正方形的边长为;剪掉的四个小正方形的边长为cm.故答案为:4,;小问2详解:这个长方体盒子的底面边长为,这个长方体盒子的体积为.答:这个长方体盒子的底面边长为4.5cm,体积为.20. 已知关于x的方程.(1)若原方程有两个不相等的实数根,求n的取值范围.(2)若n为符合条件的最小整数,且该方程的较大根是较小根的5倍,求m的值.答案:(1)(2)解析:小问1详解:解:∵方程,∴,∵原方程有两个不相等的实数根,∴,∴,解得;小问2详解:解:∵,n为符合条件的最小整数,∴,∴原方程为,即,∴,即,解得或,∵该方程的较大根是较小根的5倍,∴,∴.六、(本题满分12分)21. 如图所示的是2024年1月的日历表,用虚线方框按如图所示的方法任意圈出四个数,设这四个数从小到大依次为a,b,c,d.请解答下列问题.(1)若用含有a的式子分别表示出b,c,d,则,,;按这种方法所圈出的四个数中,的最大值为.(2)若虚线方框中最大数与最小数的乘积为180,求最小数.(3)虚线方框中最大数与最小数的乘积与这四个数的和能为124吗?若能,请求出最小数;若不能,请说明理由.答案:(1);;;(2)10 (3)方框中最大数与最小数的乘积与这四个数的和不能为124,理由见解析解析:小问1详解:解:由题意得,;∵a是正整数,∴也是正整数,∴当a越大时,b也越大,根据日历的特点可知a的最大值为23,此时b的值为24,∴的最大值为;故答案为:;;;;小问2详解:解:根据题意得:,整理得:,解得:,(不符合题意,舍去).∴最小数是10;小问3详解:解:方框中最大数与最小数的乘积与这四个数的和不能为124,理由如下:假设方框中最大数与最小数的乘积与这四个数的和能为124,根据题意得:,整理得:,解得:,(不符合题意,舍去),∵时,在最后一列,假设不成立,即方框中最大数与最小数的乘积与这四个数的和不能为124.七、(本题满分12分)22 阅读下面材料,解答下列问题.一般地,设平面内任意两点,,这两点之间的距离当两点所在的直线在坐标轴上或平行于坐标轴或垂直于坐标轴时,两点之间的距离公式可简化为或.(1)已知点,,求,两点之间的距离.(2)已知点,所在的直线平行于轴,点的纵坐标为,,两点之间的距离为,求点的纵坐标.(3)已知各顶点的坐标分别为,,,请判断的形状,并说明理由.答案:(1)A,B两点间的距离为13(2)A的纵坐标为6或(3)为等腰直角三角形解析:小问1详解:解:,即A,B两点间的距离为13.小问2详解:∵点A,B所在的直线平行于y轴,点B的纵坐标为2,A,B两点间的距离为4,∴A的纵坐标为或者.即点A的纵坐标为6或.小问3详解:为等腰直角三角形.理由如下:∵,,,∴,且∴为等腰直角三角形.八、(本题满分14分)23. 阅读下面计算过程:;;.解答下列问题.(1)仿照上面的解题过程化简:(2)请直接写出的化简结果:.(3)利用上面的规律,请化简.(4)利用(2)中的结论比较与的大小,并说明理由.答案:(1),(2)(3)(4)解析:小问1详解:解:,故答案为:,.小问2详解:解:由题目计算过程可得:,故答案为:;小问3详解:解:原式.小问4详解:解:∵理由如下,根据(2)中的规律可得:,,∵,∴,∴.。

上海市普陀区2019-2020学年中考第五次大联考数学试卷含解析

上海市普陀区2019-2020学年中考第五次大联考数学试卷含解析

上海市普陀区2019-2020学年中考第五次大联考数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如果一元二次方程2x2+3x+m=0有两个相等的实数根,那么实数m的取值为()A.m>98B.m89f C.m=98D.m=892.一个几何体的三视图如图所示,该几何体是()A.直三棱柱B.长方体C.圆锥D.立方体3.如图,桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是()A.B.C.D.4.如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b-1)x +c的图象可能是()A. B.C.D.5.下列四个几何体,正视图与其它三个不同的几何体是()A.B.C .D .6.如图,矩形ABCD 中,AB=10,BC=5,点E ,F ,G ,H 分别在矩形ABCD 各边上,且AE=CG ,BF=DH ,则四边形EFGH 周长的最小值为( )A .55B .105C .103D .1537.如图是某几何体的三视图,则该几何体的全面积等于( )A .112B .136C .124D .848.如图,ABC V 内接于O e ,若A 40∠=o ,则BCO (∠= )A .40oB .50oC .60oD .80o9.已知⊙O 及⊙O 外一点P ,过点P 作出⊙O 的一条切线(只有圆规和三角板这两种工具),以下是甲、乙两同学的作业:甲:①连接OP ,作OP 的垂直平分线l ,交OP 于点A ; ②以点A 为圆心、OA 为半径画弧、交⊙O 于点M ; ③作直线PM ,则直线PM 即为所求(如图1).乙:①让直角三角板的一条直角边始终经过点P;②调整直角三角板的位置,让它的另一条直角边过圆心O,直角顶点落在⊙O上,记这时直角顶点的位置为点M;③作直线PM,则直线PM即为所求(如图2).对于两人的作业,下列说法正确的是( )A.甲乙都对B.甲乙都不对C.甲对,乙不对D.甲不对,已对10.一元二次方程x2﹣5x﹣6=0的根是()A.x1=1,x2=6 B.x1=2,x2=3 C.x1=1,x2=﹣6 D.x1=﹣1,x2=611.若反比例函数kyx=的图像经过点1(,2)2A-,则一次函数y kx k=-+与kyx=在同一平面直角坐标系中的大致图像是()A.B.C.D.12.若关于x的一元二次方程x(x+2)=m总有两个不相等的实数根,则()A.m<﹣1 B.m>1 C.m>﹣1 D.m<1二、填空题:(本大题共6个小题,每小题4分,共24分.)13.数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.(以上材料来源于《古证复原的原则》《吴文俊与中国数学》和《古代世界数学泰斗刘徽》)请根据上图完成这个推论的证明过程.证明:S矩形NFGD=S△ADC-(S△ANF+S△FGC),S矩形EBMF=S△ABC-(______________+______________).易知,S△ADC=S△ABC,______________=______________,______________=______________.可得S矩形NFGD=S矩形EBMF.14.如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(3a,a)是反比例函数kyx=(k>0)的图象上与正方形的一个交点.若图中阴影部分的面积等于9,则这个反比例函数的解析式为 ▲ .15.分解因式39a a -=________,221218x x -+=__________.16.每年农历五月初五为端午节,中国民间历来有端午节吃粽子、赛龙舟的习俗.某班同学为了更好地了解某社区居民对鲜肉粽(A )豆沙粽(B )小枣粽(C )蛋黄粽(D )的喜爱情况,对该社区居民进行了随机抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).分析图中信息,本次抽样调查中喜爱小枣粽的人数为________;若该社区有10000人,估计爱吃鲜肉粽的人数约为________.17.同学们设计了一个重复抛掷的实验:全班48人分为8个小组,每组抛掷同一型号的一枚瓶盖300次,并记录盖面朝上的次数,下表是依次累计各小组的实验结果.1组1~2组1~3组1~4组1~5组1~6组1~7组1~8组盖面朝上次数 16533548363280194911221276盖面朝上频率0.5500.5580.5370.5270.5340.5270.5340.532根据实验,你认为这一型号的瓶盖盖面朝上的概率为____,理由是:____. 1825____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)阅读下列材料:数学课上老师布置一道作图题:已知:直线l和l外一点P.求作:过点P的直线m,使得m∥l.小东的作法如下:作法:如图2,(1)在直线l上任取点A,连接PA;(2)以点A为圓心,适当长为半径作弧,分别交线段PA于点B,直线l于点C;(3)以点P为圆心,AB长为半径作弧DQ,交线段PA于点D;(4)以点D为圆心,BC长为半径作弧,交弧DQ于点E,作直线PE.所以直线PE就是所求作的直线m.老师说:“小东的作法是正确的.”请回答:小东的作图依据是________.20.(6分)未成年人思想道德建设越来越受到社会的关注,辽阳青少年研究所随机调查了本市一中学100名学生寒假中花零花钱的数量(钱数取整数元),以便引导学生树立正确的消费观.根据调查数据制成了频分组频数频率0.5~50.5 0.150.5~20 0.2100.5~150.5200.5 30 0.3200.5~250.5 10 0.1率分布表和频率分布直方图(如图).(1)补全频率分布表;(2)在频率分布直方图中,长方形ABCD的面积是;这次调查的样本容量是;(3)研究所认为,应对消费150元以上的学生提出勤俭节约的建议.试估计应对该校1000名学生中约多少名学生提出这项建议.21.(6分)如图,在平面直角坐标系中,O为坐标原点,△AOB是等腰直角三角形,∠AOB=90°,点A (2,1).(1)求点B的坐标;(2)求经过A、O、B三点的抛物线的函数表达式;(3)在(2)所求的抛物线上,是否存在一点P,使四边形ABOP的面积最大?若存在,求出点P的坐标;若不存在,请说明理由.22.(8分)问题情境:课堂上,同学们研究几何变量之间的函数关系问题:如图,菱形ABCD的对角线AC,BD相交于点O,AC=4,BD=1.点P是AC上的一个动点,过点P作MN⊥AC,垂足为点P(点M在边AD、DC上,点N在边AB、BC上).设AP的长为x(0≤x≤4),△AMN的面积为y.建立模型:(1)y与x的函数关系式为:_(02)_(24)xyx--≤≤⎧=⎨--<≤⎩,解决问题:(1)为进一步研究y随x变化的规律,小明想画出此函数的图象.请你补充列表,并在如图的坐标系中画出此函数的图象:x 0 121321523724y 0 189815878(3)观察所画的图象,写出该函数的两条性质: .23.(8分)如图,在平面直角坐标系中,矩形OABC 的顶点A ,C 分别在x 轴,y 轴的正半轴上,且OA=4,OC=3,若抛物线经过O ,A 两点,且顶点在BC 边上,对称轴交BE 于点F ,点D ,E 的坐标分别为(3,0),(0,1).(1)求抛物线的解析式;(2)猜想△EDB 的形状并加以证明;(3)点M 在对称轴右侧的抛物线上,点N 在x 轴上,请问是否存在以点A ,F ,M ,N 为顶点的四边形是平行四边形?若存在,请求出所有符合条件的点M 的坐标;若不存在,请说明理由.24.(10分)已知P 是O e 的直径BA 延长线上的一个动点,∠P 的另一边交O e 于点C 、D ,两点位于AB 的上方,AB =6,OP=m ,1sin 3P =,如图所示.另一个半径为6的1O e 经过点C 、D ,圆心距1OO n =.(1)当m=6时,求线段CD 的长;(2)设圆心O 1在直线AB 上方,试用n 的代数式表示m ;(3)△POO 1在点P 的运动过程中,是否能成为以OO 1为腰的等腰三角形,如果能,试求出此时n 的值;如果不能,请说明理由.25.(10分)如图1,已知直线l :y=﹣x+2与y 轴交于点A ,抛物线y=(x ﹣1)2+m 也经过点A ,其顶点为B ,将该抛物线沿直线l 平移使顶点B 落在直线l 的点D 处,点D 的横坐标n (n >1).(1)求点B 的坐标;(2)平移后的抛物线可以表示为 (用含n 的式子表示);(3)若平移后的抛物线与原抛物线相交于点C ,且点C 的横坐标为a . ①请写出a 与n 的函数关系式.②如图2,连接AC ,CD ,若∠ACD=90°,求a 的值.26.(12分)如图,矩形ABCD 的两边AD 、AB 的长分别为3、8,E 是DC 的中点,反比例函数my x=的图象经过点E ,与AB 交于点F .若点B 坐标为(6,0)-,求m 的值及图象经过A 、E 两点的一次函数的表达式;若2AF AE -=,求反比例函数的表达式.27.(12分)如图,一次函数y kx b =+的图象与反比例函数my x=的图象交于()A 2,3-,B ()4,n 两点.(1)求一次函数与反比例函数的解析式;(2)结合图形,直接写出一次函数大于反比例函数时自变量x 的取值范围.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】试题解析:∵一元二次方程2x2+3x+m=0有两个相等的实数根,∴△=32-4×2m=9-8m=0,解得:m=98.故选C.2.A【解析】【分析】根据三视图的形状可判断几何体的形状.【详解】观察三视图可知,该几何体是直三棱柱.故选A.本题考查了几何体的三视图和结构特征,根据三视图的形状可判断几何体的形状是关键.3.C【解析】【分析】根据左视图是从左面看所得到的图形进行解答即可.【详解】从左边看时,圆柱和长方体都是一个矩形,圆柱的矩形竖放在长方体矩形的中间.故选:C.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.4.A【解析】【分析】由一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,得出方程ax2+(b-1)x+c=0有两个不相等的根,进而得出函数y=ax2+(b-1)x+c与x轴有两个交点,根据方程根与系数的关系得出函数y=ax2+(b-1)x+c的对称轴x=-12ba>0,即可进行判断.【详解】点P在抛物线上,设点P(x,ax2+bx+c),又因点P在直线y=x上,∴x=ax2+bx+c,∴ax2+(b-1)x+c=0;由图象可知一次函数y=x 与二次函数y=ax 2+bx+c 交于第一象限的P 、Q 两点, ∴方程ax 2+(b-1)x+c=0有两个正实数根. ∴函数y=ax 2+(b-1)x+c 与x 轴有两个交点,又∵-2ba >0,a >0 ∴-12b a -=-2b a +12a>0∴函数y=ax 2+(b-1)x+c 的对称轴x=-12b a->0, ∴A 符合条件, 故选A . 5.C 【解析】 【分析】根据几何体的三视图画法先画出物体的正视图再解答. 【详解】解:A 、B 、D 三个几何体的主视图是由左上一个正方形、下方两个正方形构成的, 而C 选项的几何体是由上方2个正方形、下方2个正方形构成的, 故选:C . 【点睛】此题重点考查学生对几何体三视图的理解,掌握几何体的主视图是解题的关键. 6.B 【解析】作点E 关于BC 的对称点E′,连接E′G 交BC 于点F ,此时四边形EFGH 周长取最小值,过点G 作GG′⊥AB 于点G′,如图所示,∵AE=CG ,BE=BE′, ∴E′G′=AB=10, ∵GG′=AD=5,∴E′G=2255E G GG ''+'=,∴C 四边形EFGH =2E′G=105,故选B .【点睛】本题考查了轴对称-最短路径问题,矩形的性质等,根据题意正确添加辅助线是解题的关键. 7.B【解析】试题解析:该几何体是三棱柱.如图:22543-=,326⨯=,全面积为:164257267247042136.2⨯⨯⨯+⨯⨯+⨯=++= 故该几何体的全面积等于1.故选B.8.B【解析】【分析】根据圆周角定理求出BOC ∠,根据三角形内角和定理计算即可.【详解】解:由圆周角定理得,BOC 2A 80∠∠==o ,OB OC =Q ,BCO CBO 50∠∠∴==o ,故选:B .【点睛】本题考查的是三角形的外接圆与外心,掌握圆周角定理、等腰三角形的性质、三角形内角和定理是解题的关键.9.A【分析】(1)连接OM,OA,连接OP,作OP的垂直平分线l可得OA=MA=AP,进而得到∠O=∠AMO,∠AMP=∠MPA,所以∠OMA+∠AMP=∠O+∠MPA=90°,得出MP是⊙O的切线,(1)直角三角板的一条直角边始终经过点P,它的另一条直角边过圆心O,直角顶点落在⊙O上,所以∠OMP=90°,得到MP是⊙O的切线.【详解】证明:(1)如图1,连接OM,OA.∵连接OP,作OP的垂直平分线l,交OP于点A,∴OA=AP.∵以点A为圆心、OA为半径画弧、交⊙O于点M;∴OA=MA=AP,∴∠O=∠AMO,∠AMP=∠MPA,∴∠OMA+∠AMP=∠O+∠MPA=90°,∴OM⊥MP,∴MP是⊙O的切线;(1)如图1.∵直角三角板的一条直角边始终经过点P,它的另一条直角边过圆心O,直角顶点落在⊙O上,∴∠OMP=90°,∴MP是⊙O的切线.故两位同学的作法都正确.故选A.【点睛】本题考查了复杂的作图,重点是运用切线的判定来说明作法的正确性.10.D【解析】【分析】本题应对原方程进行因式分解,得出(x-6)(x+1)=1,然后根据“两式相乘值为1,这两式中至少有一式值为1.”来解题.【详解】x2-5x-6=1(x-6)(x+1)=1x1=-1,x2=6故选D.本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的提点灵活选用合适的方法.本题运用的是因式分解法.11.D【解析】【分析】 甶待定系数法可求出函数的解析式为:1y x =-,由上步所得可知比例系数为负,联系反比例函数,一次函数的性质即可确定函数图象.【详解】解:由于函数k y x =的图像经过点1,22A ⎛⎫- ⎪⎝⎭,则有 1k ,=- ∴图象过第二、四象限,∵k=-1,∴一次函数y=x-1,∴图象经过第一、三、四象限,故选:D .【点睛】本题考查反比例函数的图象与性质,一次函数的图象,解题的关键是求出函数的解析式,根据解析式进行判断;12.C【解析】【分析】将关于x 的一元二次方程化成标准形式,然后利用Δ>0,即得m 的取值范围.【详解】因为方程是关于x 的一元二次方程方程,所以可得220x x m +-=,Δ=4+4m > 0,解得m>﹣1,故选D.【点睛】本题熟练掌握一元二次方程的基本概念是本题的解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.S △AEF S △FMC S △ANF S △AEF S △FGC S △FMC【解析】【分析】【详解】S 矩形NFGD =S △ADC -(S △ANF +S △FGC ),S 矩形EBMF =S △ABC -( S △ANF +S △FCM ).易知,S △ADC =S △ABC ,S △ANF =S △AEF ,S △FGC =S △FMC ,可得S 矩形NFGD =S 矩形EBMF .故答案分别为 S △AEF ,S △FCM ,S △ANF ,S △AEF ,S △FGC ,S △FMC .【点睛】本题考查矩形的性质,解题的关键是灵活运用矩形的对角线把矩形分成面积相等的两部分这个性质,属于中考常考题型.14.3y x=. 【解析】待定系数法,曲线上点的坐标与方程的关系,反比例函数图象的对称性,正方形的性质.【分析】由反比例函数的对称性可知阴影部分的面积和正好为小正方形面积的,设小正方形的边长为b ,图中阴影部分的面积等于9可求出b 的值,从而可得出直线AB 的表达式,再根据点P (2a ,a )在直线AB 上可求出a 的值,从而得出反比例函数的解析式:∵反比例函数的图象关于原点对称,∴阴影部分的面积和正好为小正方形的面积.设正方形的边长为b ,则b 2=9,解得b=3.∵正方形的中心在原点O ,∴直线AB 的解析式为:x=2.∵点P (2a ,a )在直线AB 上,∴2a=2,解得a=3.∴P (2,3).∵点P 在反比例函数3y x=(k >0)的图象上,∴k=2×3=2. ∴此反比例函数的解析式为:. 15.(3)(3)a a a +- 22(3)x -【解析】此题考查因式分解329(9)(3)(3),a a a a a a a -=-=+-222212182(69)2(3)x x x x x -+=-+=-答案点评:利用提公因式、平方差公式、完全平方公式分解因式16.120人,3000人【解析】【分析】根据B的人数除以占的百分比得到调查的总人数,再用总人数减去A、B、D的人数得到本次抽样调查中喜爱小枣粽的人数;利用该社区的总人数×爱吃鲜肉粽的人数所占的百分比得出结果.【详解】调查的总人数为:60÷10%=600(人),本次抽样调查中喜爱小枣粽的人数为:600﹣180﹣60﹣240=120(人);若该社区有10000人,估计爱吃鲜肉粽的人数约为:10000180600⨯=3000(人).故答案为120人;3000人.【点睛】本题考查了条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了利用样本估计总体.17.0.532,在用频率估计概率时,试验次数越多越接近,所以取1﹣8组的频率值.【解析】【分析】根据用频率估计概率解答即可.【详解】∵在用频率估计概率时,试验次数越多越接近,所以取1﹣8组的频率值,∴这一型号的瓶盖盖面朝上的概率为0.532,故答案为:0.532,在用频率估计概率时,试验次数越多越接近,所以取1﹣8组的频率值.【点睛】本题考查了利用频率估计概率的知识,解答此题关键是用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.18.1【解析】【分析】【详解】解:∵12=21,,故答案为:1.【点睛】本题考查了算术平方根的定义,先把25化简是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.内错角相等,两直线平行【解析】【分析】根据内错角相等,两直线平行即可判断.【详解】∵∠EPA=∠CAP,∴m∥l(内错角相等,两直线平行).故答案为:内错角相等,两直线平行.【点睛】本题考查了作图﹣复杂作图,平行线的判定等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.20.⑴表格中依次填10,100.5,25,0.25,150.5,1;⑵0.25,100;⑶1000×(0.3+0.1+0.05)=450(名).【解析】【分析】(1)由频数直方图知组距是50,分组数列中依次填写100.5,150.5;0.5-50.5的频数=100×0.1=10,由各组的频率之和等于1可知:100.5-150.5的频率=1-0.1-0.2-0.3-0.1-0.05=0.25,则频数=100×0.25=25,由此填表即可;(2)在频率分布直方图中,长方形ABCD的面积为50×0.25=12.5,这次调查的样本容量是100;(3)先求得消费在150元以上的学生的频率,继而可求得应对该校1000学生中约多少名学生提出该项建议..【详解】解:()1填表如下:() 3提出这项建议的人数()10000.30.10.05450=⨯++=人.【点睛】本题考查了频数分布表,样本估计总体、样本容量等知识.注意频数分布表中总的频率之和是1. 21. (1) B (-1.2);(2) y=57x?66x -;(3)见解析. 【解析】【分析】(1)过A 作AC ⊥x 轴于点C ,过B 作BD ⊥x 轴于点D ,则可证明△ACO ≌△ODB ,则可求得OD 和BD 的长,可求得B 点坐标;(2)根据A 、B 、O 三点的坐标,利用待定系数法可求得抛物线解析式;(3)由四边形ABOP 可知点P 在线段AO 的下方,过P 作PE ∥y 轴交线段OA 于点E ,可求得直线OA 解析式,设出P 点坐标,则可表示出E 点坐标,可表示出PE 的长,进一步表示出△POA 的面积,则可得到四边形ABOP 的面积,再利用二次函数的性质可求得其面积最大时P 点的坐标.【详解】(1)如图1,过A 作AC ⊥x 轴于点C ,过B 作BD ⊥x 轴于点D ,∵△AOB 为等腰三角形,∴AO=BO ,∵∠AOB=90°,∴∠AOC+∠DOB=∠DOB+∠OBD=90°,∴∠AOC=∠OBD ,在△ACO 和△ODB 中AOC OBD ACO ODB AO BO ===∠∠⎧⎪∠∠⎨⎪⎩∴△ACO ≌△ODB (AAS ),∵A (2,1),∴OD=AC=1,BD=OC=2,∴B (-1,2);∴可设抛物线解析式为y=ax2+bx,把A、B两点坐标代入可得4212a ba b+⎧⎨-⎩==,解得5676ab⎧⎪⎪⎨⎪-⎪⎩==,∴经过A、B、O原点的抛物线解析式为y=56x2-76x;(3)∵四边形ABOP,∴可知点P在线段OA的下方,过P作PE∥y轴交AO于点E,如图2,设直线AO解析式为y=kx,∵A(2,1),∴k=12,∴直线AO解析式为y=12x,设P点坐标为(t,56t2-76t),则E(t,12t),∴PE=12t-(56t2-76t)=-56t2+53t=-56(t-1)2+56,∴S△AOP=12PE×2=PE═-56(t-1)2+56,由A(2,1)可求得5∴S△AOB=12AO•BO=52,∴S四边形ABOP=S△AOB+S△AOP=-56(t-1)2+56+52=()2510163t--+,∵-56<0,∴当t=1时,四边形ABOP的面积最大,此时P点坐标为(1,-13),综上可知存在使四边形ABOP的面积最大的点P,其坐标为(1,-13).【点睛】本题为二次函数的综合应用,主要涉及待定系数法、等腰直角三角形的性质、全等三角形的判定和性质、的应用,在(3)中用t 表示出四边形ABOP 的面积是解题的关键.本题考查知识点较多,综合性较强,难度适中.22. (1) ①y=212x ;②221(02)212(24)2x x y x x x ⎧≤≤⎪⎪=⎨⎪-+<≤⎪⎩;(1)见解析;(3)见解析 【解析】【分析】(1)根据线段相似的关系得出函数关系式(1)代入①中函数表达式即可填表(3)画图像,分析即可.【详解】(1)设AP=x①当0≤x≤1时∵MN ∥BD∴△APM ∽△AOD ∴AP AO 2PM DO== ∴MP=12x ∵AC 垂直平分MN∴PN=PM=12x ∴MN=x∴y=12AP•MN=212x ②当1<x≤4时,P 在线段OC 上,∴CP=4﹣x∴△CPM ∽△COD ∴CP CO 2PII DO== ∴PM=1(4)2x - ∴MN=1PM=4﹣x∴y=11AP MN x(4x)22⋅=-=﹣2122x x + ∴y=221(02)212(24)2x x x x x ⎧⎪⎪⎨⎪+<⎪⎩剟… (1)由(1)当x=1时,y=1 2当x=1时,y=1当x=3时,y=3 2(3)根据(1)画出函数图象示意图可知1、当0≤x≤1时,y随x的增大而增大1、当1<x≤4时,y随x的增大而减小【点睛】本题考查函数,解题的关键是数形结合思想.23.(1)y=﹣34x2+3x;(2)△EDB为等腰直角三角形;证明见解析;(3)6+2326+215,﹣2).【解析】【分析】(1)由条件可求得抛物线的顶点坐标及A点坐标,利用待定系数法可求得抛物线解析式;(2)由B、D、E的坐标可分别求得DE、BD和BE的长,再利用勾股定理的逆定理可进行判断;(3)由B、E的坐标可先求得直线BE的解析式,则可求得F点的坐标,当AF为边时,则有FM∥AN 且FM=AN,则可求得M点的纵坐标,代入抛物线解析式可求得M点坐标;当AF为对角线时,由A、F 的坐标可求得平行四边形的对称中心,可设出M点坐标,则可表示出N点坐标,再由N点在x轴上可得到关于M点坐标的方程,可求得M点坐标.【详解】解:(1)在矩形OABC中,OA=4,OC=3,∴A(4,0),C(0,3),∵抛物线经过O、A两点,∴抛物线顶点坐标为(2,3),∴可设抛物线解析式为y=a(x﹣2)2+3,把A点坐标代入可得0=a(4﹣2)2+3,解得a=﹣34,∴抛物线解析式为y=﹣34(x﹣2)2+3,即y=﹣34x2+3x;(2)△EDB为等腰直角三角形.证明:由(1)可知B(4,3),且D(3,0),E(0,1),∴DE2=32+12=10,BD2=(4﹣3)2+32=10,BE2=42+(3﹣1)2=20,∴DE2+BD2=BE2,且DE=BD,∴△EDB为等腰直角三角形;(3)存在.理由如下:设直线BE解析式为y=kx+b,把B、E坐标代入可得341k bb=+⎧⎨=⎩,解得1k2b1⎧=⎪⎨⎪=⎩,∴直线BE解析式为y=12x+1,当x=2时,y=2,∴F(2,2),①当AF为平行四边形的一边时,则M到x轴的距离与F到x轴的距离相等,即M到x轴的距离为2,∴点M的纵坐标为2或﹣2,在y=﹣34x2+3x中,令y=2可得2=﹣34x2+3x,解得∵点M在抛物线对称轴右侧,∴x>2,∴∴M点坐标为(3,2);在y=﹣34x2+3x中,令y=﹣2可得﹣2=﹣34x2+3x,解得x=63±,∵点M在抛物线对称轴右侧,∴x>2,∴∴M 2); ②当AF 为平行四边形的对角线时,∵A (4,0),F (2,2),∴线段AF 的中点为(3,1),即平行四边形的对称中心为(3,1),设M (t ,﹣34t 2+3t ),N (x ,0),则﹣34t 2+3t=2,解得t=63±, ∵点M 在抛物线对称轴右侧,∴x >2,∵t >2,∴∴M 2);综上可知存在满足条件的点M 2,﹣2). 【点睛】本题为二次函数的综合应用,涉及矩形的性质、待定系数法、勾股定理及其逆定理、平行四边形的性质、方程思想及分类讨论思想等知识.在(1)中求得抛物线的顶点坐标是解题的关键,注意抛物线顶点式的应用,在(2)中求得△EDB 各边的长度是解题的关键,在(3)中确定出M 点的纵坐标是解题的关键,注意分类讨论.本题考查知识点较多,综合性较强,难度较大.24. (1)CD=23812n n- ;(3) n 【解析】分析:(1)过点O 作OH ⊥CD ,垂足为点H ,连接OC .解Rt △POH ,得到OH 的长.由勾股定理得CH 的长,再由垂径定理即可得到结论;(2)解Rt △POH ,得到Rt 3m OH OCH V =.在和Rt △1O CH 中,由勾股定理即可得到结论; (3)△1POO 成为等腰三角形可分以下几种情况讨论:① 当圆心1O 、O 在弦CD 异侧时,分1OP OO =和11O P OO =.②当圆心1O 、O 在弦CD 同侧时,同理可得结论.详解:(1)过点O 作OH ⊥CD ,垂足为点H ,连接OC .在Rt △1sin 63POH P PO =Q 中,=,,∴2OH =. ∵AB =6,∴3OC =.由勾股定理得: 5CH =∵OH ⊥DC ,∴225CD CH == (2)在Rt △1sin 3POH P PO m Q 中,=,=,∴3m OH =. 在Rt △OCH 中,2293m CH ⎛⎫- ⎪⎝⎭=. 在Rt △1O CH 中,22363m CH n ⎛⎫-- ⎪⎝⎭=. 可得: 2236933m m n ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=,解得23812n m n -:=. (3)△1POO 成为等腰三角形可分以下几种情况:① 当圆心1O 、O 在弦CD 异侧时i )1OP OO =,即m n =,由23812n n n -=,解得9n :=. 即圆心距等于O e 、1O e 的半径的和,就有O e 、1O e 外切不合题意舍去.ii )11O P OO =22233m m n m -+-()() n =, 解得:23m n =,即23n 23812n n-=,解得9155n := ②当圆心1O 、O 在弦CD 同侧时,同理可得: 28132n m n-=. ∵1POO ∠是钝角,∴只能是m n =,即28132n n n-=,解得955n := 综上所述:n 9559155点睛:本题是圆的综合题.考查了圆的有关性质和两圆的位置关系以及解直径三角形.解答(3)的关键是要分类讨论.25.(1)B (1,1);(2)y=(x ﹣n )2+2﹣n .(3)a=2n ;a=2+1. 【解析】【分析】1) 首先求得点A 的坐标, 再求得点B 的坐标, 用h 表示出点D 的坐标后代入直线的解析式即可验证答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档