九年级数学中考基础训练20

合集下载

精品 九年级数学 中考集训题 20

精品 九年级数学 中考集训题 20

1 2
D.
1 4
)
7.如图,AB 为圆 O 的直径,C 是圆 O 上一点,连接 AC,过点 C 作直线 CD AB,交 AB 于点 D,E 是 OB 上一 点,直线 CE 与圆 O 交于点 F,连接 AF 交直线 CD 于点 G.若 AC= 2 2 ,则 AG·AF=(
A. 10 B.12 C.8 D.16 8.如图,点 C、D 是以线段 AB 为公共弦的两条圆弧的中点,AB=4,点 E、F 分别是线段 CD,AB 上的动点, 设 AF=x,AE2-FE2=y,则能表示 y 与 x 的函数关系的图象是( )
9.如图,某校的围墙由一段相等的凹曲拱组成,其拱状图为抛物线的一部分,栅栏的跨径 AB 以相同的 间隔 0.2 米用 5 根立柱加固,拱高 OC 为 0.36 米,则立柱 EF 的长为( ) A. 0.4 米 B. 0.16 米 C. 0.2 米 D. 0.24 米
10.如图,点 O 为正方形 ABCD 的中心,BE 平分∠DBC 交 DC 于点 E,延长 BC 到点 F,使 FC=EC,连结 DF 交 BE 的延长线于点 H,连结 OH 交 DC 于点 G,连结 HC.则以下四个结论中正确结论的个数为( ) ①OH=

2
用篱笆围一个面积为 100m 的矩形花园,问这个矩形的长、宽各为多少时,所用的篱笆最短,最短 的篱笆周长是多少;
③. 已知 x 0 ,则自变量 x 取何值时,函数 y
3 4
2
(2)计算: (3 i )
2
; (3)试一试:请利用以前学习的有关知识将
2i 化简成 a bi 的形式. 2i
三、计算题:
23.如图,已知正比例函数 y=ax(a 0)的图象与反比例函数 y

统编九年级数学中考基础训练每天一练20

统编九年级数学中考基础训练每天一练20

班级 姓名 成绩 时间:10分钟一、选择题(本大题共10小题,每小题4分,满分40分)1. 将图1所示的图案通过平移后可以得到的图案是( )2. 如图2,AB ∥CD ,直线分别与AB 、CD 相交,若∠1=130°,则∠2=( )(A )40° (B )50° (C )130° (D )140°3. 实数a 、b 在数轴上的位置如图3所示,则a 与b 的大小关系是( )(A )b a < (B )b a =(C )b a > (D )无法确定4. 二次函数2)1(2+-=x y 的最小值是( )(A )2 (B )1 (C )-1 (D )-25. 图4是广州市某一天内的气温变化图,根据图4,下列说法中错误..的是( ) (A )这一天中最高气温是24℃(B )这一天中最高气温与最低气温的差为16℃(C )这一天中2时至14时之间的气温在逐渐升高(D )这一天中只有14时至24时之间的气温在逐渐降低6. 下列运算正确的是( )(A )222)(n m n m -=- (B ))0(122≠=-m m m (C )422)(mn n m =⋅ (D )642)(m m =7. 下列函数中,自变量x 的取值范围是x ≥3的是( )(A )31-=x y (B )31-=x y(C )3-=x y (D )3-=x y8. 只用下列正多边形地砖中的一种,能够铺满地面的是( )(A )正十边形 (B )正八边形(C )正六边形 (D )正五边形9. 已知圆锥的底面半径为5cm ,侧面积为65πcm 2,设圆锥的母线与高的夹角为θ(如图5)所示),则sin θ的值为( )(A )125 (B )135 (C )1310 (D )1312 10. 如图6,在ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,BG ⊥AE ,垂足为G ,BG=24,则ΔCEF 的周长为( )(A )8 (B )9.5 (C )10 (D )11.5二、填空题(本大题共5小题,每小题4分,满分20分)11. 已知函数xy 2=,当x =1时,y 的值是________ 12. 在某校举行的艺术节的文艺演出比赛中,九位评委给其中一个表演节目现场打出的分数如下:9.3,8.9,9.3,9.1,8.9,8.8,9.3,9.5,9.3,则这组数据的众数是________13. 绝对值是6的数是________14. 已知命题“如果一个平行四边形的两条对角线互相垂直,那么这个平行四边形是菱形”,写出它的逆命题:________________________________15. 如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是________,第n 个“广”字中的棋子个数是________三、解答题(共7大题,满分90分,其中16-20题共64分)16.(每小题7分,满分14分)(1).计算:022*******⎪⎭⎫ ⎝⎛--+---π (2). 先化简,再求值:)6()3)(3(--+-a a a a ,其中a=217.(每小题8分,共16分)(1).解方程223-=x x(2).如图9,在ΔABC 中,D 、E 、F 分别为边AB 、BC 、CA 的中点。

中考数学九年级专题训练50题含答案

中考数学九年级专题训练50题含答案

中考数学九年级专题训练50题含答案一、单选题1.若23a b =,则a b b +的值为( ) A .23 B .53 C .35 D .322.下列函数关系式中属于反比例函数的是( )A .3y x =B .3y x =-C .23y x =+D .3x y += 3.已知反比例函数k y x=(0k <)的图象上有两点()()1122,,,A x y B x y ,且12x x <,则12y y -的值是( )A .正数B .负数C .非正数D .不能确定 4.在函数y=中,自变量的取值范围是A .x≠B .x≤C .x ﹤D .x≥ 5.一个几何体的三视图如图,则该几何体是( )A .B .C .D .6.已知二次函数2y ax bx c =++的图象如图所示,有下列结论: ①11024a b c ++>; ①方程20ax bx c ++=的两根之积小于0;.①y 随x 的增大而增大;=+的图象一定不经过第四象限.其中正确的结论有()①一次函数y ax bcA.4个B.3个C.2个D.1个7.如图,在①O内有折线OABC,其中OA=8,AB=12,①A=①B=60°,则BC的长为()A.19B.16C.18D.208.如图,①ABC与①A′B′C′是位似图形,O是位似中心,若①ABC与①A′B′C′的面积之比为1:4,则CO:C ′O的值为()A.1:2B.2:1C.1:4D.1:39.关于抛物线244=﹣,下列说法错误的是()y x x+A.开口向上B.与x轴有两个重合的交点C.对称轴是直线x=2D.当x>2时,y随x的增大而减小10.已知①O的半径为5cm,点P在直线l上,且点P到圆心O的距离为5cm,则直线l与①O()A.相离B.相切C.相交D.相交或相切11.如图,一组互相平行的直线a,b,c分别与直线l1,12交于点A,B,C,D,E,F,直线11,l2交于点O,则下列各式不正确的是()A.ABBC=DEEFB.ABAC=DEDFC.EFBC=DEABD.OEEF=EBFC12.用5个完全相同的小正方体组成如图所示的立体图形,它的俯视图是()A.B.C.D.13.某足球运动员在同一条件下进行射门,结果如下表所示:则该运动员射门一次,射进门的概率为()A.0.7B.0.65C.0.58D.0.514.如图,在①O中,直径AB①弦CD,垂足为M,则下列结论一定正确的是()A.AC=CD B.OM=BM C.①A=12①BOD D.①A=12①ACD15.如图,在矩形ABCD中,AB=3,BC=4,点P在AD上,若将①ABP沿BP折叠,使点A落在矩形对角线AC上,则AA′的长为()A.95B.94C.185D.9216.如图,在Rt ABC中,90C∠=︒,6AC=,8BC=,点F在边AC上,并且2CF=,点E为边BC上的动点,将CEF△沿直线EF翻折,点C落在点P处,则点P 到边AB距离的最小值是().A.1B.4C.1.2D.2.417.如图,测量队为了测量某地区山顶P的海拔高度,选M点作为观测点,从M点测量山顶P的仰角(视线在水平线上方,与水平线所夹的角)为30,在比例尺为1:50000的该地区等高线地形图上,量得这两点的图上距离为6厘米,则山顶P的海拔高度为()A.1732米B.1982米C.3000米D.3250米18.如图,在平面直角坐标系中,矩形ABCD的对角线BD经过坐标原点O,矩形的边分别平行于坐标轴,点A在函数kyx=(k≠0,x<0)的图象上,点C的坐标为(2,2-),则k的值为()A.4B.2C.2-D.4-19.如图,四边形ABCD为半径为R的O的内接四边形,若AB R=,CD=,4AD,BC=O的直径为()=A.4B.C.8D.二、填空题20.如图,AB是①O的直径,BC与①O相切于点B,AC交①O于点D,若①ACB=50°,则①BOD=______度.21.如图,在长方体ABCD EFGH-中,棱BC与棱AE的位置关系是______.22.测得一种树苗的高度与树苗生长的年数有关的数据如下表所示(树高原高100 cm)假设以后每年树苗的高度的变化规律与表中相同,请用含n ( n 为正整数)的式子表示生长了n 年的树苗的高度为__________cm.23.如图:折叠直角三角形纸片的直角,使点C 落在斜边AB 上的点E 处,已知AB=8,①B=300,则CD 的长是_______.24.已知1x 、2x 是方程2210x x --=的两根,则2212x x +=______________ 25.如图,已知AB CD EF ∥∥,则下列四个结论①EF BE CD EC =;①AE BE ED EC =;①1EF EF AB CD+=中,正确的有__________(填正确结论序号).26.比的意义:两个数____又叫做两个数的比.“:”是比号,读作比;比号前面的数叫做比的____,比号后面的数叫做比的____.27.如图所示是某商场营业大厅自动扶梯示意图,自动扶梯AB 的长为12米,大厅两层之间的高度BC 的长为6米,自动扶梯AB 的坡比BC i AC==_______________________.(坡比是坡面的铅直高度BC 与水平宽度AC 之比)28.设α,β是关于4x 2﹣4mx +m +2=0的两个实数根,当α2+β2有最小值时,则m 的值为_____.29.如图,ABC 是O 的内接三角形,点D 是BC 的中点,已知98AOB ∠=,120COB ∠=,则ABD ∠的度数是________度.30.如图1,菱形ABCD 的对角线AC 与BD 相交于点O ,P 、Q 两点同时从O 点出发,以1厘米/秒的速度在菱形的对角线及边上运动.点P 的运动路线为O A D O ---,点Q 的运动路线为O C B O ---.设运动的时间为x 秒,P 、Q 间的距离为y 厘米,y 与x 的函数关系的图象大致如图2所示,当点P 在A D -段上运动且P 、Q 两点间的距离最短时,P 、Q 两点的运动路程之和为__________厘米.31.抛物线21212y x x =++与y 轴的交点是________,解析式写成2()y a x h k =-+的形式是________,顶点坐标是________.32.如图,在矩形ABCD 中,AB =8,BC =12,点E 是BC 的中点,连接AE ,将①ABE 沿AE 折叠,点B 落在点F 处,连接FC ,则sin①ECF =__________.33.在平面直角坐标系中,M 、N 、C 三点的坐标分别为(1,1),(3,1),(4,0),点A 为线段MN 上的一个动点,连接AC ,过点A 作AB AC ⊥交y 轴于点B ,当点A 从M 运动到N 时,点B 随之运动,设点B 的坐标为(0,)b ,则b 的取值范围是_____.34.如图,正比例函数y =kx 与反比例函数y =6x的图象有一个交点A (m ,3),AB ①x 轴于点B ,平移直线y =kx ,使其经过点B ,得到直线l ,则直线l 对应的函数解析式是___.35.如图,已知点A (0),直线y=x+b (b >0)与y 轴交于点B ,连接AB ,①α=75°,则直线y x b =+的解析式为_________.36.在①ABCD 中,E 是AD 上一点,23AE DE =,连接BE 、AC 相交于F ,则下列结论:①23AE BC =;①ΔΔ425AEF CBF S S =;①52BF EF =;①Δ1031ABF CDEF S S =四边形,正确的是 __________.37.点C 是AB 的黄金分割点,4AB =,则线段AC 的长为__________.38.如图,以AB 为直径,点O 为圆心的半圆经过点C ,若2AC BC ==,则图中阴影部分的面积是_______.39.如图,两个同心圆的半径分别为2和4,矩形ABCD 的边AB 和CD 分别是两圆的弦,则矩形ABCD 面积的最大值是______.三、解答题40.如图1,在四边形ABCD 中,AB ①AD ,AB ①BC ,以AB 为直径的①O 与CD 相切于点E ,连接OC 、OD .(1)求证:OC ①OD ;(2)如图2,连接AC 交OE 于点M ,若AB =4,BC =1,求CM AM的值.41.已知ABC ①111A B C △,111A B C △①222A B C △,则ABC 与222A B C △有怎样的关系?为什么?42.某种商品每件的进价为30元,在某段时间内若以每件x 元出售,可卖出(100﹣x )件.设这段时间内售出该商品的利润为y 元.(1)直接写出利润y 与售价x 之间的函数关系式;(2)当售价为多少元时,利润可达1000元;(3)应如何定价才能使利润最大?43.某商场销售一批工艺品,平均每天可售出20件,每件赢利45元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件工艺品每降价1元,商场平均每天可多售出4件.(1)设每件工艺品降价x 元,商场销售这种工艺品每天盈利y 元,求出y 与x 之间的函数关系式;(2)每件工艺品降价多少元时,才能使每天利润最大,最大利润为多少?44.某水库大坝的横截面是如图所示的四边形ABCD ,其中AB①CD .大坝顶上有一瞭望台PC ,PC 正前方有两艘渔船M 、N ,观察员在瞭望台顶端P 处观测渔船M 的俯角31α=︒,渔船N 在俯角45β=︒,已知MN 所在直线与PC 所在直线垂直,垂足为点E ,且PE 长为30米.(1)求两渔船M ,N 之间的距离(结果精确到1米);(2)已知坝高24米,坝长100米,背水坡AD 的坡度1:0.25i =.为提高大坝防洪能力,请施工队将大坝的背水坡通过填筑土石方加固,坝底BA 加宽后变为BH ,加固后背水坡DH 的坡度为,施工队施工10天后,为尽快完成加固任务,施工队增加了机械设备,工作效率提高到原来的2倍,结果比原计划提前20天完成加固任务,施工队原计划平均每天填筑土石方多少立方米?(参考数据:tan 310.60,sin 310.52︒≈︒≈)45.某公园在一个扇形OEF 草坪上的圆心O 处垂直于草坪的地上竖一根柱子OA ,在A 处安装一个自动喷水装置.喷头向外喷水.连喷头在内,柱高109m ,水流在各个方向上沿形状相同的抛物线路径落下,喷出的水流在与D 点的水平距离4米处达到最高点B ,点B 距离地面2米.当喷头A 旋转120°时,这个草坪可以全被水覆盖.如图1所示.(1)建立适当的坐标系,使A 点的坐标为(O ,109),水流的最高点B 的坐标为(4,2),求出此坐标系中抛物线水流对应的函数关系式;(2)求喷水装置能喷灌的草坪的面积(结果用π表示);(3)在扇形OEF 的一块三角形区域地块①OEF 中,现要建造一个矩形GHMN 花坛,如图2的设计方案是使H 、G 分别在OF 、OE 上,MN 在EF 上.设MN =2x ,当x 取何值时,矩形GHMN 花坛的面积最大?最大面积是多少?46.解方程:(1)()()3525x x x +=+(2)22310x x --=47.在阳光体育活动时间,小亮、小莹、小芳到学校乒乓球室打乒乓球,当时只有一副空球桌,他们只能选两人打第一场.(1)如果确定小亮打第一场,再从其余两人中随机选取一人打第一场,选中小莹的概率是________.(2)如果确定小亮打第一场,用投掷硬币的方法确定小莹、小芳谁打第一场,并决定小亮做裁判,由小亮抛掷一枚硬币,规定正面朝上小莹胜,反面朝上小芳胜,最终胜两局以上者(包括两局)打第一场.小亮第一次投掷的结果是正面朝上,请用列表或画树状图的方法表示最后两次投掷硬币的所有情况,并求小芳打第一场的概率.48.在ABC 中,90BAC ∠=︒,AB AC =,点D 在边BC 上,13BD BC =,将线段DB 绕点D 顺时针旋转至DE ,记旋转角为α,连接BE ,CE ,以CE 为斜边在其一侧制作等腰直角三角形CEF .连接AF .(1)如图1,当180α=︒时,请直接写出....线段AF 与线段BE 的数量关系; (2)当0180α︒<<︒时,①如图2,(1)中线段AF 与线段BE 的数量关系是否仍然成立?请说明理由;①如图3,当B ,E ,F 三点共线时,连接AE ,判断四边形AECF 的形状,并说明理由.49.已知抛物线214y x bx c =++与x 轴交于A ,B 两点(点A 在点B 左边),与y 轴交于点C.直线1y x42=-经过B,C两点.(1)求抛物线的解析式;(2)如图1,动点M,K同时从A点出发,点M以每秒4个单位的速度在线段AB上运动,点K AC上运动,当其中一个点到达终点时,另一个点也随之停止运动设运动的时间为()0t t>秒.①如图1,连接MK,再将线段MK绕点M逆时针旋转90︒,设点K落在点H的位置,若点H恰好落在抛物线上,求t的值及此时点H的坐标;②如图2,过点M作x轴的垂线,交BC于点D,交抛物线于点P,过点P作PN BC⊥于N,当点M运动到线段OB上时,是否存在某一时刻t,使PNC△与AOC相似.若存在,求出t的值;若不存在,请说明理由.参考答案:1.B 【分析】依据23a b =,可得a 23=b ,代入即可得出答案案. 【详解】①23a b =, ①3a =2b ,①a 23=b , ①2533b b a b b b ++==. 故选:B .【点睛】本题考查了比例的性质,解题时注意:内项之积等于外项之积.2.B【分析】根据反比例函数的定义进行判断.【详解】A 、该函数是正比例函数,故本选项错误;B 、该函数符合反比例函数的定义,故本选项正确;C 、该函数是二次函数,故本选项错误;D 、该函数是一次函数,故本选项错误;故选:B . 【点睛】本题考查了反比例函数的定义,反比例函数的一般形式是k y x=(0k ≠) . 3.D【分析】分,A B 在同一象限,和不在同一象限,两种情况进行讨论求解即可.【详解】解:①k y x =(0k <), ①反比例函数的图象过二、四象限,在每一个象限内,y 随x 的增大而增大,当,A B 在同一象限时:①12x x <,①12y y <,①120y y -<,当,A B 不在同一象限时,①12x x <,①A 在第二象限,B 在第四象限,①120y y >>,①120y y ->;综上:12y y -的值无法确定;故选D .【点睛】本题考查比较反比例函数的函数值大小.熟练掌握反比例函数的性质,是解题的关键.注意,分类讨论.4.C【详解】 1-2x≥0且x-≠0 解得:x ﹤.故选C5.D【分析】根据主视图与左视图可以判断几何体的下部是柱体,上部为台体,再结合俯视图即可确定答案.【详解】由三视图知,从正面和侧面看都是上面梯形,下面长方形,从上面看为圆环,可以想象到实物体上面是圆台,下面是空心圆柱.故选:D .【点睛】此题考查由三视图判断几何体,三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个试图确定其具体形状.6.B【分析】根据二次函数的图象与性质依次判断即可求出答案.【详解】①由图象可知:x =2时,y >0,①y =4a +2b +c >0, 即a +12b +14c >0,故①正确; ①由图象可知:a >0,c <0,①ax 2+bx +c =0的两根之积为c a<0,故①正确; ①当x >−2b a时,y 随着x 的增大而增大,故①错误;①由图象可知:−2b a>0, ①b <0,①bc >0, ①一次函数y =ax +bc 的图象一定不经过第四象限,故①正确;故选:B .【点睛】本题考查二次函数的图象与性质,解题的关键是熟练运用二次函数的图象与性质,本题属于基础题型.7.D【分析】延长AO 交BC 于D ,根据①A 、①B 的度数易证得①ABD 是等边三角形,由此可求出OD 、BD 的长;过O 作BC 的垂线,设垂足为E ;在Rt①ODE 中,根据OD 的长及①ODE 的度数易求得DE 的长,进而可求出BE 的长;由垂径定理知BC=2BE ,由此得解.【详解】解: 延长AO 交BC 于D ,作OE①BC 于E ;①①A=①B=60°,①①ADB=60°;①①ADB 为等边三角形;①BD=AD=AB=12;①OD=4,又①①ADB=60°, ①DE=12OD=2;①BE=10;①BC=2BE=20;故选D . 【点睛】此题主要考查了等边三角形的判定和性质以及垂径定理的应用,解答此题的关键是正确做出辅助线,得到①ADB为等边三角形.8.A【分析】根据位似图形的性质知:BC①C′B′,则①BCO①①B′C′O′,根据该相似三角形的对应边成比例得到答案.【详解】解:如图,①ABC与①A′B′C′是位似图形,O是位似中心,若①ABC与①A′B′C′的面积之比为1:4,则①ABC与①A′B′C′的相似比为1:2.①①ABC与①A′B′C′是位似图形,①BC∥C′B′,①①BCO①①B′C′O′.①CO:C′O=BC:B′C′=1:2.故选:A.【点睛】本题考查了位似图形的性质:两个图形的对应边平行,面积的比等于位似比的平方.9.D【分析】根据抛物线解析式求出顶点坐标和对称轴,利用二次函数的性质即可判断.【详解】解①a=1>0,①开口向上,故A正确;①22=﹣=(﹣),442y x x x①顶点坐标(2,0),对称轴x=2,①抛物线的顶点在x轴上,①与x轴有两个重合的交点,故B、C正确;①抛物线开口向上,对称轴为直线x=2,①当x>2时,y随x的增大而增大,故D错误.故选:D.【点睛】本题考查抛物线与x轴的交点以及二次函数的性质,解题的关键是熟练掌握配方法全等抛物线的顶点坐标,对称轴,属于中考常考题型.10.D【分析】直接根据直线与圆的位置关系即可得出结果;【详解】①①O的半径为5cm且点P到圆心O的距离为5cm,当OP的距离是圆心到直线的距离时,①点P在圆上,①直线l与①O相切,当OP的距离不是圆心到直线的距离时,得到直线与圆相交.故答案选D.【点睛】本题主要考查了直线与圆的位置关系,准确分析判断是解题的关键.11.D【分析】直接根据平行线分线段成比例定理进行判断即可得出结论.【详解】A、①直线a①直线b①直线c,①ABBC=DEEF,正确,故本选项不符合题意;B、①直线a①直线b①直线c,①ABAC=DEDF,正确,故本选项不符合题意;C、①直线a①直线b①直线c,①EFBC=DEAB,正确,故本选项不符合题意;D、不能证明OEEF=EBFC,错误,故本选项符合题意.故选D.【点睛】本题考查的是平行线分线段成比例定理,熟知三条平行线截两条直线,所得的对应线段成比例是解答此题的关键.12.D【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:人站在几何体的正面,从上往下看,正方形个数从左到右依次为1,1,1,故选D.【点睛】本题主要考查了三视图的知识,关键是找准俯视图所看的方向.13.D【分析】根据表格中实验的频率,然后根据频率即可估计概率.【详解】解:由击中靶心频率mn分别为:0.65、0.7、0.58、0.52、0.51、0.5,可知频率都在0.5上下波动,所以估计这个运动员射击一次,击中靶心的概率约是0.5,故选D.【点睛】本题考查了利用频率估计概率的思想,解题的关键是求出每一次事件的频率,然后即可估计概率解决问题.14.C【分析】根据垂径定理判断即可.【详解】连接DA,①直径AB①弦CD,垂足为M,①CM=MD,①CAB=①DAB,①2①DAB=①BOD,①①CAD=12①BOD.故答案选:C.【点睛】本题考查了垂径定理及其推论,解题的关键是熟练的掌握垂径定理及其推论.15.C【分析】在Rt ABC 中,由勾股定理求得AC ,根据折叠可得到BP 是AA '的垂直平分线,从而得到BP AA '⊥,2AA OA ''=,而由矩形ABCD 可知AB BC ⊥,从而可以得到90AOB ABC ∠=∠=,以及12901390∠+∠=∠+∠=,,进而可证得AOB ABC ~,由相似的性质求得线段长度.【详解】解:由题意知, AB BC ⊥,BP AA '⊥,2AA OA ''=,①90AOB ABC ∠=∠=,① 12901390∠+∠=∠+∠=,,①23∠∠=,①AOB ABC ∠=∠,23∠∠=,①AOB ABC ~, ①AB AO AC AB=,在Rt ABC 中,AC =, ①29=5AB AO AC =,182=5AA OA '=, 故答案选:C .【点睛】本题考查垂直平分线的判定和性质,相似三角形的判定和性质,矩形的性质,勾股定理,比较综合.16.C【分析】先依据勾股定理求得AB 的长,然后依据翻折的性质可知PF =FC ,故此点P 在以F 为圆心,以2为半径的圆上,依据垂线段最短可知当FP ①AB 时,点P 到AB 的距离最短,然后依据题意画出图形,最后,利用相似三角形的性质求解即可.【详解】解:如图所示:当PE ①A B .在Rt①ABC中,①①C=90°,AC=6,BC=8,①AB,由翻折的性质可知:PF=FC=2,①FPE=①C=90°.①PE①AB,①①PDB=90°.由垂线段最短可知此时FD有最小值.又①FP为定值,①PD有最小值.又①①A=①A,①ACB=①ADF,①①AFD①①AB C.①AF DFAB BC=,即4108DF=,解得:DF=3.2.①PD=DF-FP=3.2-2=1.2.故选:C.【点睛】本题考查翻折变换,垂线段最短,勾股定理等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.17.B【分析】根据地形图上的等高线的比例尺和图上距离求得两点间的实际距离,再利用解直角三角形的知识求得山顶的海拔高度即可.【详解】解:①两点的图上距离为6厘米,例尺为1:50000,①两点间的实际距离为:6÷150000=3000米,①从M点测量山顶P的仰角(视线在水平线上方,与水平线所夹的角)为30°,米,①点M的海拔为250米,①山顶P的海拔高度为=1732+250=1982米.故选B .【点睛】本题考查了仰俯角问题,解决此类问题的关键是正确的将仰俯角转化为直角三角形的内角并选择正确的边角关系解直角三角形.18.D【分析】根据反比例函数的几何意义只要求出矩形OGAH 的面积也可,依据矩形的性质发现S 矩形OGAH =S 矩形OECF ,而S 矩形OECF 可通过点C (2,2-)转化为线段长而求得,再根据反比例函数的所在的象限,确定k 的值即可.【详解】解:如图,根据矩形的性质可得:S 矩形OGAH =S 矩形OECF ,①点C 的坐标为(2,-2),①OE=2,OF=2,①S 矩形OECF =OE•OF=4,设A (a ,b ),则OH=-a ,OG=b ,①S 矩形OGAH =OH•OG=-ab=4,又①点A 在函数k y x=(k≠0,x <0)的图象上, ①4k ab ==-;故选:D. 【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数k y x =(k 为常数,k≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k .也考查了矩形的性质.19.C【分析】取O 的圆心O ,连接OA 、OB 、OC 、OD ,过点O 作OE①CD ,OF①BC ,OG①AD ,垂足分别为E ,F ,G ,先证得①AOB =60°及①COD =120°,可得AOD+①BOC =180°,再利用垂径定理可得①AOG+①BOF =90°,最后通过证①BOF①①OAG 得OF =AG =2,再利用勾股定理求解即可.【详解】解:如图,取O 的圆心O ,连接OA 、OB 、OC 、OD ,过点O 作OE①CD ,OF①BC ,OG①AD ,垂足分别为E ,F ,G ,①OA =OB =AB =R ,①①AOB 为等边三角形,①①AOB =60°,①OE①CD,CD =,①12CE CD R ==, 在Rt①COE 中,2sin CE COE CO R ∠===①①COE =60°,①①COD =2①COE =120°,①①AOD+①BOC =360°﹣①COD ﹣①AOB =180°,①OF①BC ,OG①AD ,①AG =12AD =2,BF =12BC =①AOG =12①AOD ,①BOF =12①BOC , ①①AOG+①BOF =12(①AOD+①BOC )=90° 又①①AOG+①OAG =90°,①①BOF =①OAG ,①①BOF =①OAG ,①BFO =①OGA =90°,OB =OA ,①①BOF①①OAG (AAS ),①OF =AG =2,在Rt①BOF中,4OB ==,①O 的直径=2OB =8,故选:C .【点睛】本题考查了垂径定理,等边三角形的判定及性质,解直角三角形,全等三角形的判定及性质和勾股定理,通过理清题目意思并作出正确的辅助线是解决本题的关键.20.80【分析】根据切线的性质得到①ABC=90°,根据直角三角形的性质求出①A,根据圆周角定理计算即可.【详解】解:①BC是①O的切线,①①ABC=90°,①①A=90°-①ACB=40°,由圆周角定理得,①BOD=2①A=80°.【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.21.异面【分析】棱BC与棱AE不在同一平面内,属于异面线段.【详解】解:棱BC与棱AE不在同一平面内,属于异面线段,故答案为:异面.【点睛】本题考查了认识立体图形,理解异面直线的意义是正确解题的前提.22.100+5n【分析】从上表可以看出,树每年长高5厘米.所以生长了n 年的树苗的高度为100+5n.【详解】解:根据题意有:生长了n 年的树苗的高度为100+5n故答案为100+5n.【点睛】本题的关键是算出树每年长高多少厘米.通过观察,分析、归纳并发现其中的规律.23.【详解】试题分析:根据题意,得①EAD=①B=30°,AE=BE=4.设DE=x,则AD=2x,根据勾股定理,得x2+16=4x2,解得x=.①DE=.考点:了翻折变化;角平分线的性质;勾股定理24.6【分析】根据根与系数的关系变形后求解.【详解】解:①x 1、x 2是方程x 2−2x−1=0的两根,①x 1+x 2=2,x 1×x 2=−1,①x 12+x 22=(x 1+x 2)2−2x 1x 2=22−2×(−1)=6.故答案为6.【点睛】本题考查了一元二次方程ax 2+bx +c =0(a≠0)的根与系数的关系:若方程两根为x 1,x 2,则x 1+x 2=b a -,x 1•x 2=c a. 25.①①【分析】~BEF BCD ∆∆根据相似三角形的判定定理:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似,可得三组三角形相似,然后依据相似三角形的性质:对应边成比例即可进行判断,得出结果.【详解】解:①∵EF CD ∥,∴~BEF BCD ∆∆, ∴EF BE CD BC=,故①错误; ①AB CD ∥,∴~AEB DEC ∆∆, ∴AE BE ED EC=,故①正确; ①AB EF ∥,∴~DEF DAB ∆∆, ∴EF DF AB BD=, 由①得:~BEF BCD ∆∆, ∴EF BF CD BD=, 1EF EF DF BF BD AB CD BD BD BD+=+==,故①正确; 综合可得:①①正确,故答案为:①①.【点睛】题目主要考查相似三角形的判定定理和性质,熟练掌握相似三角形的判定定理和性质是解题关键.26. 相除 前项 后项【解析】略27【分析】铅直高度BC 可得①ACB =90°,由勾股定理AC =AB 的坡比即可.【详解】解:①BC ①AC ,①①ACB =90°,在Rt △ABC 中,①AB =12米,BC =6米,由勾股定理=①自动扶梯AB 的坡比BC i AC ==.【点睛】本题考查解直角三角形应用,掌握坡比概念,利用勾股定理求出AC 是解题关键.28.-1【分析】由已知中α,β是方程4x 2-4mx+m+2=0∥∥x∥R∥∥∥∥∥∥∥∥∥∥∥∥∥∥≥0∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥α2+β2的表达式,然后根据二次函数的性质,即可得到出m 为何值时,α2+β2有最小值,进而得到这个最小值.【详解】解:①关于4x 2﹣4mx +m +2=0的两个实数根,①b 2﹣4ac =(-4m )2-4×4(m +2)≥0,①m 2﹣m ﹣2≥0,即21924m ⎛ ⎪⎝⎭≥⎫-, ①m ≥2或m ≤﹣1,①α+β=﹣44m -=m ,α•β=14(m +2), ①α2+β2=(α+β)2﹣2αβ=m 2﹣2×14(m +2)=m 2﹣12m -1=(m -14)2-1716, ①当m =-1时,α2+β2有最小值,故答案为-1.【点睛】本题考查的知识点是一元二次方程根的颁布与系数的关系,二次函数的性质,其中易忽略,方程有两个根时△≥0的限制,直接利用韦达定理和二次函数的性质求解, 29.101【分析】根据周角为360°,可求出①AOC 的度数,由圆周角定理可求出①ABC 的度数,关键是求①CBD 的度数;由于D 是弧BC 的中点,根据圆周角定理知①DBC =12①BAC ,而①BAC 的度数可由同弧所对的圆心角①BOC 的度数求得,由此得解.【详解】①①AOB =98°,①COB =120°①①AOC =360°-①AOB -①COB =142°,①①ABC =71°,①D 是弧BC 的中点,①①CBD =12①BAC ,又①①BAC =12①COB =60°,①①CBD =30°,①①ABD =①ABC +①CBD =101°,故答案为101度.【点睛】本题主要考查了圆心角、圆周角的应用能力,解此题的要点在于求①CBD 的度数.30.()3【分析】四边形ABCD 是菱形,由图象可得AC 和BD 的长,从而求出OC 、OB 和ACB ∠.当点P 在A D -段上运动且P 、Q 两点间的距离最短时,此时PQ 连线过O 点且垂直于BC .根据三角函数和已知线段长度,求出P 、Q 两点的运动路程之和.【详解】由图可知,2AC BD ==(厘米),①四边形ABCD 为菱形①11122OC AC OB BD ====(厘米) ①30ACB ∠=︒P 在AD 上时,Q 在BC 上,PQ 距离最短时,PQ 连线过O 点且垂直于BC .此时,P 、Q 两点运动路程之和2()S OC CQ =+①3cos 2CQ OC ACB =⋅∠==(厘米)①3232S ⎫==⎪⎭(厘米)故答案为3).【点睛】本题主要考查菱形的性质和三角函数.解题的关键在于从图象中找到菱形对角线的长度.31. ()0,1 21(2)12y x =+- ()2,1-- 【分析】令抛物线的x =0,即可求得与y 轴交点坐标;将等号右边配成完全平方式即可;根据抛物线的顶点式解析式即可求出其顶点坐标.【详解】令x =0,则y =1,即抛物线与y 轴的交点为(0,1);y =12 (x 2+4x )+1=12 (x 2+4x +4)−1=12(x +2)2−1, ①顶点坐标为(−2,−1).故答案填空为(0,1),y =12 (x +2)2−1,(−2,−1).【点睛】本题考查了二次函数的性质,解题的关键是熟练的掌握二次函数的性质与应用.32.45 【详解】过E 作EH①CF 于H ,则有①HEC+①ECH=90°,由折叠的性质得:BE=EF ,①BEA=①FEA ,①点E 是BC 的中点,①CE=BE ,①EF=CE ,①①FEH=①CEH ,①①AEB+①CEH=90°, ①①ECH=①AEB ,即①ECF=①AEB ,在矩形ABCD 中,①①B=90°,, ①sin①ECF=sin①AEB=AB AE=45 , 故答案为45.33.32b -≤≤-【分析】延长NM 交y 轴于点D ,过点C 作CE ①MN 交MN 于点E ,即可求出CE 的长,设点A 的坐标为(x ,1),由题意可得1≤x ≤3,用x 和b 表示出AD 、BD 、AE ,然后证出①BDA ①①AEC ,列出比例式即可求出b 与x 的二次函数关系,然后根据x 的取值范围即可求出b 的取值范围.【详解】解:延长NM 交y 轴于点D ,过点C 作CE ①MN 交MN 于点E①①AEC =90°①M 、N 、C 三点的坐标分别为(1,1),(3,1),(4,0),①MN ①y 轴①CE =1,①DBA +①DAB =90°设点A 的坐标为(x ,1),由题意可得1≤x ≤3①AD =x ,BD =yA -yB =1-b ,AE =xC -xA =4-x①AB AC ⊥①①EAC +①DAB =90°①①DBA =①EAC①①BDA =①AEC =90°①①BDA ①①AEC ①=BD AD AE CE 即141-=-b x x 整理,得241=-+b x x =()223x --,b 是x 的二次函数,其中1>0①1≤x ≤3①当x =2时,b 最小,最小值为-3;当x =1时,b 最大,最大值为-2①-3≤b ≤-2故答案为:-3≤b ≤-2.【点睛】此题考查的是相似三角形的判定及性质和二次函数的应用,掌握相似三角形的判定及性质和利用二次函数求最值是解决此题的关键.34.y =32x ﹣3. 【分析】可以先求出点A 的坐标,进而知道直线平移的距离,得出点B 的坐标,平移前后的k 相同,设出平移后的关系式,把点B 的坐标代入即可.【详解】①点A (m ,3)在反比例函数y =6x的图象, ①3=6m,即:m =2, ①A (2,3)、B (2,0)点A 在y =kx 上,①k =32①y =32x ①将直线y =32x 平移2个单位得到直线l , ①k 相等设直线l 的关系式为:y =32x +b ,把点B (2,0)代入得:b =﹣3, 直线l 的函数关系式为:y =32x ﹣3; 故答案为y =32x ﹣3. 【点睛】本题考查反比例函数的图象上点的坐标的特点、待定系数法求函数解析式、一次函数和平移等知识,理解平移前后两个因此函数的k 值相等,是解决问题的关键. 35.5y x =+【分析】首先根据直线y=x+b (b >0)与x 轴、y 轴分别交于点C 、点B ,求出点C ,点B 的坐标各是多少;然后根据①α=75°,①BCA=45°,应用三角形的外角的性质,求出①BAC 的度数是多少,进而求出b 的值是多少即可.【详解】如图,,①直线y=x+b(b>0)与x轴、y轴分别交于点C、点B,①点C的坐标是(-b,0),点B的坐标是(0,b),①①α=75°,①BCA=45°,①①BAC=75°-45°=30°,tan30=︒=解得b=5.故答案为y=x+5.【点睛】(1)此题主要考查了解直角三角形问题,要熟练掌握,解答此题的关键是要明确解直角三角形要用到的关系:①锐角直角的关系:①A+①B=90°;①三边之间的关系:a2+b2=c2.(2)此题还考查了一次函数图象上点的坐标特征,要熟练掌握,解答此题的关键是要明确:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(-,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.36.①①①【分析】根据平行四边形的性质可得AD BC∥,AD BC=进而可得AEF CBF∽△△,根据23AEDE=,即可求得25AEBC=,ΔΔ425AEFCBFSS=,52BFEF=进而判断①①①,根据三角形的面积和平行四边形的面积可得,分别用ABCDS表示出ABFS△与CDEFS四边形,进而求得其比值【详解】解:四边形ABCD是平行四边形∴AD BC∥,AD BC=∴AEF CBF∽△△AF AE EFCF BC BF∴==23AEDE=25AEAD∴=∴25AE AEBC AD==∴2425AEFCBFS AES BC⎛⎫==⎪⎝⎭。

四川省成都市九年级数学2020年中考复习-20题-圆综合

四川省成都市九年级数学2020年中考复习-20题-圆综合

(2019 成都新都区·20 题·10 分)【求比值】
如图,已知 A0 为 Rt△ABC 的角平分线,∠ACB=90°,以 O 为圆心,OC 为半径的圆分别交 A0,BC 于点 D,E,连接 ED 并延长交 AC 于点 F
(1)求证:AB 是⊙O 的切线;
AC 4
BE
(2)当
时,求 的值;
BC 3
(2019 陕西中考·23 题·8 分) 如图,AC 是⊙O 的直径,AB 是⊙O 的一条弦,AP 是⊙O 的切线,作 BM=AB,并与 AP 交于点 M,延长 MB 交 AC 于点 E,交⊙O 于点 D,连接 AD. (1)求证:AB=BE; (2)若⊙O 的半径 R=5,AB=6,求 AD 的长。
CE
CF
(3)在(2)的条件下,若⊙O 的半径为 4,求 的值。
AD
题型六、相似、勾股求线段长
(2019 绵阳中考·22 题·11 分) 如图,AB 是⊙O 的直径,点 C 为 BD 的中点,CF 为⊙O 的弦,且 CF⊥AB,垂足为 E,连接 BD 交 CF 于点 G,连接 CD,AD,BF。 (1)求证:△BFG≌△CDG; (2)若 AD=BE=2,求 BF 的长.
4
2 )若 tan∠ADB= ,DE=6,求 BF 的长.
3
(2019·成都温江区二诊·20 题·10 分) 如图,AB 是⊙O 的直径,弦 CD⊥AB,垂足为 H,连接 AC,过弧 BD 上一点 E 作 EG∥AC 交 CD 的延长线于点 G,连接 AE 交 CD 于点 F,且 EG=FG,连接 CE. (1)求证:△ECF~△GCE; (2)求证:EG 是⊙O 的切线;
E,交⊙O 于点 F,角 A=60°,AE、BD 的长是 x2 kx 2 3 0 的两根。 ① 求证:PA·BD=PB·AE; ② 求证:⊙O 直径 AB=k; ③ 求 tan FPA。

2021年九年级数学中考一轮复习知识点中考真题演练20:等腰三角形(附答案)

2021年九年级数学中考一轮复习知识点中考真题演练20:等腰三角形(附答案)

2021年九年级数学中考一轮复习知识点中考真题演练:等腰三角形(附答案)1.已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是()A.20或16 B.20 C.16 D.以上答案均不对2.在平面直角坐标系中,O为坐标原点,点A的坐标为(1,),M为坐标轴上一点,且使得△MOA为等腰三角形,则满足条件的点M的个数为()A.4B.5C.6D.83.如图,在Rt△ABC中,∠ACB=90°,AB=2BC,在直线BC或AC上取一点P,使得△P AB为等腰三角形,则符合条件的点P共有()A.4个B.5个C.6个D.7个4.如图,在△ABC中,AB=AC,∠A=30°,直线a∥b,顶点C在直线b上,直线a交AB于点D,交AC与点E,若∠1=145°,则∠2的度数是()A.30°B.35°C.40°D.45°5.如图,△ABC中,AC=BC<AB.若∠1、∠2分别为∠ABC、∠ACB的外角,则下列角度关系何者正确()A.∠1<∠2B.∠1=∠2C.∠A+∠2<180°D.∠A+∠1>180°6.如图,在网格中有一个直角三角形(网格中的毎个小正方形的边长均为1个单位1长度),若以该三角形一边为公共边画一个新三角形与原来的直角三角形一起组成一个等腰三角形,要求新三角形与原来的直角三角形除了有一条公共边外,没有其它的公共点,新三角形的顶点不一定在格点上.那么符合要求的新三角形有()A.4个B.6个C.7个D.9个7.如图,在△ABC中,AB=AC,∠A=36°,BD,CE分别为∠ABC,∠ACB的角平分线,则图中等腰三角形共有()A.5个B.6个C.7个D.8个8.下图是由九个等边三角形组成的一个六边形,当最小的等边三角形边长为2cm时,这个六边形的周长为()cm.A.30B.40C.50D.609.如图,△ABC是等边三角形,⊙O与AC相切于A点,与BC交于E点,与AB的延长线交于D点.已知BE=6,CE=4,则BD的长为()A.10B.9C.25D.3510.已知△ABC是等边三角形,D是BC边上的任意一点,连接AD并作等边三角形ADE,若DE⊥AB,则的值是()A.B.C.1D.11.如图,在△ABC中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD.若∠A=32°,则∠CDB的大小为度.12.在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为.13.已知a,b,c为△ABC的三边长.b,c满足(b﹣2)2+|c﹣3|=0,且a为方程|x﹣4|=2的解,则△ABC的形状为三角形.14.如图,∠AOB=45°,点M,N在边OA上,OM=x,ON=x+4,点P是边OB上的点.若使点P,M,N构成等腰三角形的点P恰好有三个,则x的值是.15.如图,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC,则图中等腰三角形的个数是.16.如图,矩形ABCD中,AB=4,AD=3,点Q在对角线AC上,且AQ=AD,连接DQ 并延长,与边BC交于点P,则线段AP=.17.如图,在△ABC中,BC的垂直平分线分别交BC、AB于点E、F.若△AFC是等边三角形,则∠B=°.18.如图,已知等边△ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边△AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边△AB2C2;再以等边△AB2C2的B2C2边上的高AB3为边作等边三角形,得到第三个等边△AB3C3;…,记△B1CB2的面积为S1,△B2C1B3的面积为S2,△B3C2B4的面积为S3,如此下去,则S n=.19.如图,△ABC是等边三角形,高AD、BE相交于点H,BC=4,在BE上截取BG=2,以GE为边作等边三角形GEF,则△ABH与△GEF重叠(阴影)部分的面积为.20.问题:如图,在△ABD中,BA=BD.在BD的延长线上取点E,C,作△AEC,使EA =EC.若∠BAE=90°,∠B=45°,求∠DAC的度数.答案:∠DAC=45°.思考:(1)如果把以上“问题”中的条件“∠B=45°”去掉,其余条件不变,那么∠DAC的度数会改变吗?说明理由.(2)如果把以上“问题”中的条件“∠B=45°”去掉,再将“∠BAE=90°”改为“∠BAE=n°”,其余条件不变,求∠DAC的度数.21.如图,在△ABC中,AB=AC,D是BC边上的中点,连结AD,BE平分∠ABC交AC 于点E,过点E作EF∥BC交AB于点F.(1)若∠C=36°,求∠BAD的度数;(2)求证:FB=FE.22.如图,在△ABC中,CD是AB边上的高,BE是AC边上的中线,且BD=CE.求证:(1)点D在BE的垂直平分线上;(2)∠BEC=3∠ABE.23.在边长为2的等边三角形ABC中,P是BC边上任意一点,过点P分别作PM⊥AB,PN⊥AC,M、N分别为垂足.(1)求证:不论点P在BC边的何处时都有PM+PN的长恰好等于三角形ABC一边上的高;(2)当BP的长为何值时,四边形AMPN的面积最大,并求出最大值.参考答案1.解:根据题意得,解得,(1)若4是腰长,则三角形的三边长为:4、4、8,不能组成三角形;(2)若4是底边长,则三角形的三边长为:4、8、8,能组成三角形,周长为4+8+8=20.故选:B.2.解:如图,满足条件的点M的个数为6.分别为:(﹣2,0),(2,0),(0,2),(0,2),(0,﹣2),(0,).故选:C.3.解:如图,①AB的垂直平分线交AC一点P1(P A=PB),交直线BC于点P2;②以A为圆心,AB为半径画圆,交AC有二点P3,P4,交BC有一点P2,(此时AB=AP);③以B为圆心,BA为半径画圆,交BC有二点P5,P2,交AC有一点P6(此时BP=BA).2+(3﹣1)+(3﹣1)=6,∴符合条件的点有六个.故选:C.4.解:∵AB=AC,且∠A=30°,∴∠ACB=75°,在△ADE中,∵∠1=∠A+∠AED=145°,∴∠AED=145°﹣30°=115°,∵a∥b,∴∠AED=∠2+∠ACB,∴∠2=115°﹣75°=40°,故选:C.5.解:∵AC=BC<AB,∴∠A=∠ABC<∠ACB,∵∠1、∠2分别为∠ABC、∠ACB的外角,∴∠2=∠A+∠ABC,∴∠A+∠2=∠A+∠A+∠ABC<∠ACB+∠A+∠ABC=180°,故选:C.6.解:如图所示:∵根据题意可知:以4为腰的等腰三角形有2个,以5为腰的三角形有4个,以5为底边的等腰三角形有1个,∴符合要求的新三角形有2+4+1=7个.故选:C.7.解:设CE与BD的交点为点O,∵AB=AC,∠A=36°,∴∠ABC=∠ACB,再根据三角形内角和定理知,∠ABC=∠ACB==72°,∵BD是∠ABC的角的平分线,∴∠ABD=∠DBC=∠ABC=36°=∠A,∴AD=BD,同理,∠A=∠ACE=∠BCE=36°,AE=CE,∵∠DBC=36°,∠ACB=72°,根据三角形内角和定理知,∠BDC=180°﹣72°﹣36°=72°,∴BD=BC,同理CE=BC,∵∠BOC=180°﹣36°﹣36°=108°,∴∠ODC=∠DOC=∠OEB=∠EOB=72°,∴△ABC,△ADB,△AEC,△BEO,△COD,△BCE,△BDC,△BOC都是等腰三角形,共8个.故选:D.8.解:设AB=x,∴等边三角形的边长依次为x,x,x,2,x+2,x+2,x+2×2,x+2×2,x+3×2,∴六边形周长是2x+2(x+2)+2(x+2×2)+(x+3×2)=7 x+18,∵AF=2AB,即x+6=2x,∴x=6cm,∴周长为7x+18=60cm.故选:D.9.解:连接AE,延长EB与圆交于点F,∵⊙O与AC相切于A点,∵∠CAE=∠AFC,∠C=∠C,∴△AEC∽△F AC,∴CA2=CE•CF,又△ABC是等边三角形,∴CA=AB=BC=CE+BE=10,CE=4,∴4CF=100,∴CF=25,∴BF=15,∵AB•BD=BE•BF,∴BD=9.故选:B.10.解:∵DE⊥AB∴∠BDE=30°∴∠EDA=60°∴AD⊥BC即BD=DC∴的值是1.故选:C.11.解:∵AB=AC,∠A=32°,∴∠ABC=∠ACB=74°,又∵BC=DC,∴∠CDB=∠CBD=∠ACB=37°.故答案为:37.12.解:∵在△ABC中,AB=AC,∠BAC=100°,∴∠B=∠C=40°,∵点D在BC边上,△ABD为直角三角形,∴当∠BAD=90°时,则∠ADB=50°,∴∠ADC=130°,当∠ADB=90°时,则∠ADC=90°,故答案为:130°或90°.13.解:∵(b﹣2)2+|c﹣3|=0,∴b﹣2=0,c﹣3=0,解得:b=2,c=3,∵a为方程|x﹣4|=2的解,∴a﹣4=±2,解得:a=6或2,∵a、b、c为△ABC的三边长,b+c<6,∴a=6不合题意,舍去,∴a=2,∴a=b=2,∴△ABC是等腰三角形,故答案为:等腰.14.解:分三种情况:①如图1,当M与O重合时,即x=0时,点P恰好有三个;②如图2,以M为圆心,以4为半径画圆,当⊙M与OB相切时,设切点为C,⊙M与OA交于D,∴MC⊥OB,∵∠AOB=45°,∴△MCO是等腰直角三角形,∴MC=OC=4,∴OM=4,当M与D重合时,即x=OM﹣DM=4﹣4时,同理可知:点P恰好有三个;③如图3,取OM=4,以M为圆心,以OM为半径画圆,则⊙M与OB除了O外只有一个交点,此时x=4,即以∠PMN为顶角,MN为腰,符合条件的点P有一个,以N圆心,以MN为半径画圆,与直线OB相离,说明此时以∠PNM 为顶角,以MN为腰,符合条件的点P不存在,还有一个是以NM为底边的符合条件的点P;点M沿OA运动,到M1时,发现⊙M1与直线OB有一个交点;∴当4<x<4时,圆M在移动过程中,则会与OB除了O外有两个交点,满足点P 恰好有三个;综上所述,若使点P,M,N构成等腰三角形的点P恰好有三个,则x的值是:x=0或x =4﹣4或4.故答案为:x=0或x=4﹣4或4.15.解:∵AB=AC,∠A=36°∴△ABC是等腰三角形,∠ABC=∠ACB==72°,BD平分∠ABC,∴∠ABD=∠DBC=36°,∴在△ABD中,∠A=∠ABD=36°,AD=BD,△ABD是等腰三角形,在△ABC中,∠C=∠ABC=72°,AB=AC,△ABC是等腰三角形,在△BDC中,∠C=∠BDC=72°,BD=BC,△BDC是等腰三角形,所以共有3个等腰三角形.故答案为:316.解:∵矩形ABCD中,AB=4,AD=3=BC,∴AC=5,又∵AQ=AD=3,AD∥CP,∴CQ=5﹣3=2,∠CQP=∠AQD=∠ADQ=∠CPQ,∴CP=CQ=2,∴BP=3﹣2=1,∴Rt△ABP中,AP===,故答案为:.17.解:∵EF垂直平分BC,∴BF=CF,∴∠B=∠BCF,∵△ACF为等边三角形,∴∠AFC=60°,∴∠B=∠BCF=30°.故答案为:30.18.解:∵等边三角形ABC的边长为2,AB1⊥BC,∴BB1=B1C=1,∠ACB=60°,∴B1B2=B1C=,B2C=,∴S1=××=依题意得,图中阴影部分的三角形都是相似图形,且相似比为,故S n=•()n﹣1或S n=.故答案为:•()n﹣1或.19.解:如图所示:,由△ABC是等边三角形,高AD、BE相交于点H,BC=4,得AD=BE=BC=6,∠ABG=∠HBD=30°.由直角三角的性质,得∠BHD=90°﹣∠HBD=60°.由对顶角相等,得∠MHE=∠BHD=60°由BG=2,得EG=BE﹣BG=6﹣2=4.由GE为边作等边三角形GEF,得FG=EG=4,∠EGF=∠GEF=60°,△MHE是等边三角形;S△ABC=AC•BE=AC×EH×3EH=BE=×6=2.由三角形外角的性质,得∠BIG=∠FGE﹣∠IBG=60°﹣30°=30°,由∠IBG=∠BIG=30°,得IG=BG=2,由线段的和差,得IF=FG﹣IG=4﹣2=2,由对顶角相等,得∠FIN=∠BIG=30°,由∠FIN+∠F=90°,得∠FNI=90°,由锐角三角函数,得FN=1,IN=.S五边形NIGHM=S△EFG﹣S△EMH﹣S△FIN=×42﹣×22﹣××1=,故答案为:.20.解:(1)∠DAC的度数不会改变;∵EA=EC,∴∠EAC=∠C,①,∵BA=BD,∴∠BAD=∠BDA,∵∠BAE=90°,∴∠B=90°﹣∠AED=90°﹣2∠C,∴∠BAD=(180°﹣∠B)=[180°﹣(90°﹣2∠C)]=45°+∠C,∴∠DAE=90°﹣∠BAD=90°﹣(45°+∠C)=45°﹣∠C,②由①,②得,∠DAC=∠DAE+∠CAE=45°﹣∠C+∠C=45°;(2)设∠ABC=m°,则∠BAD=(180°﹣m°)=90°﹣m°,∠AEB=180°﹣n°﹣m°,∴∠DAE=n°﹣∠BAD=n°﹣90°+m°,∵EA=EC,∴∠CAE=AEB=90°﹣n°﹣m°,∴∠DAC=∠DAE+∠CAE=n°﹣90°+m°+90°﹣n°﹣m°=n°.21.(1)解:∵AB=AC,∴∠C=∠ABC,∵∠C=36°,∴∠ABC=36°,∵BD=CD,AB=AC,∴AD⊥BC,∴∠ADB=90°,∴∠BAD=90°﹣36°=54°.(2)证明:∵BE平分∠ABC,∴∠ABE=∠CBE=∠ABC,∵EF∥BC,∴∠FEB=∠CBE,∴∠FBE=∠FEB,∴FB=FE.22.解:(1)连接DE,∵CD是AB边上的高,∴∠ADC=∠BDC=90°,∵BE是AC边上的中线,∴AE=CE,∴DE=CE,∵BD=CE,∴BD=DE,∴点D在BE的垂直平分线上;(2)∵DE=AE,∴∠A=∠ADE,∵∠ADE=∠DBE+∠DEB,∵BD=DE,∴∠DBE=∠DEB,∴∠A=∠ADE=2∠ABE,∵∠BEC=∠A+∠ABE,∴∠BEC=3∠ABE.23.解:(1)连接AP,过C作CD⊥AB于D,∵△ABC是等边三角形,∴AB=AC,∵S△ABC=S△ABP+S△ACP,∴AB•CD=AB•PM+AC•PN,∴PM+PN=CD,即不论点P在BC边的何处时都有PM+PN的长恰好等于三角形ABC一边上的高;(2)设BP=x,则CP=2﹣x,∵△ABC是等边三角形,∴∠B=∠C=60°,∵PM⊥AB,PN⊥AC,∴BM=x,PM=x,CN=(2﹣x),PN=(2﹣x),∴四边形AMPN的面积=×(2﹣x)•x+[2﹣(2﹣x)]•(2﹣x)=﹣x2+x+=﹣(x﹣1)2+,∴当BP=1时,四边形AMPN的面积最大,最大值是.。

中考数学九年级专题训练50题-含答案

中考数学九年级专题训练50题-含答案

中考数学九年级专题训练50题含答案_一、单选题1.在一个不透明的口袋中装有6个红球,2个绿球,这些球除颜色外无其他差别,从这个袋子中随机摸出一个球,摸到红球的概率为( ) A .B .C .D .12.今年元旦期间,某种女服装连续两次降价处理,由每件200元调至72元,设平均每次的降价百分率为x ,则得方程( ) A .()2001722x -=⨯ B .()22001%72x -= C .()2200172x -=D .220072x =3.如图,已知BD 与CE 相交于点A ,DE BC ∥,如果348AD AB AC ===,,,那么AE 等于( )A .247B .1.5C .14D .64.如图,CD 是⊙O 的直径,A ,B 是⊙O 上的两点,若15ABD ∠=°,则 ⊙ADC 的度数为( )A .55°B .65°C .75°D .85°5.一元二次方程()()()221211x x x --+=的解为( ) A .2x = B .121,12x x =-=-C .121,22x x ==D .121,12x x ==-6.如图,在Rt ABC 中,90C ∠=︒,10AB =,8AC =,D 是AC 上一点,5AD =,DE AB ⊥,垂足为E ,则AE =( )A .2B .3C .4D .57.如图,抛物线211242y x x =--与x 轴相交于A ,B 两点,与y 轴相交于点C ,点D 在抛物线上,且//CD AB .AD 与y 轴相交于点E ,过点E 的直线MN 平行于x 轴,与抛物线相交于M ,N 两点,则线段MN 的长为( )AB C .D .8.小华拿一个矩形木框在阳光下玩,矩形木框在地面上形成的投影不可能的是( )A .B .C .D .9.如图,O 中,弦AB AC ⊥,4AB =,2AC =,则O 直径的长是( ).A .B .CD 10.在平面直角坐标系中,点2(2,1)A x x +与点(3,1)B -关于y 对称,则x 的值为( ) A .1B .3或1C .3-或1D .3或1-11.2022年,某省新能源汽车产能达到30万辆.到了2024年,该省新能源汽车产能将达到41万辆,设这两年该省新能源汽车产能的平均增长率为x .则根据题意可列出的方程是( ) A .()301241x +=B .()230141x += C .()()23030130141x x ++++=D .()23030141x ++=12.已知抛物线2y x bx c =-++的顶点在直线y=3x+1上,且该抛物线与y 轴的交点的纵坐标为n ,则n 的最大值为( ) A .134B .154C .238D .25813.下列说法正确的是( )A .了解我市市民观看2022北京冬奥会开幕式的观后感,适合普查B .若一组数据2、2、3、4、4、x 的众数是2,则中位数是2或3C .一组数据2、3、3、5、7的方差为3.2D .“面积相等的两个三角形全等”这一事件是必然事件 14.下列事件发生的概率为0的是( )A .随意掷一枚均匀的硬币两次,至少有一次反面朝上B .今年夏天马鞍山不会下雪C .随意掷两枚质地均匀的骰子,朝上的点数之和为1D .库里罚球投篮3次,全部命中15.如图是二次函数2(1)2y a x =++图象的一部分,则关于x 的不等式2(1)20a x ++>的解集是( )A .x<2B .x>-3C .-3<x<1D .x<-3或x>116.已知抛物线y =ax 2+bx +3中(a ,b 是常数)与y 轴的交点为A ,点A 与点B 关于抛物线的对称轴对称,二次函数y =ax 2+bx +3中(b ,c 是常数)的自变量x 与函数值y 的部分对应值如下表:下列结论正确的是( )A .抛物线的对称轴是x =1 B .当x =2时,y 有最大值-1C .当x <2时,y 随x 的增大而增大D .点A 的坐标是(0,3)点B 的坐标是(4,3)17.当x =a 和x =b (a ≠b )时,二次函数y =2x 2﹣2x +3的函数值相等、当x =a +b 时,函数y =2x 2﹣2x +3的值是( ) A .0B .﹣2C .1D .318.如图,在平面直角坐标系中,抛物线23(0)y ax bx a =++<交x 轴于A ,B 两点(B 在A 左侧),交y 轴于点C .且CO AO =,分别以,BC AC 为边向外作正方形BCDE ,正方形ACGH .记它们的面积分别为12,S S ,ABC 面积记为3S ,当1236S S S +=时,b 的值为( )A .12-B .23-C .34-D .43-19.将方程()()212523x x x x -=--化为一般形式后为( ) A ..2x -8x-3=0 B .9.2x +12x-3=0 C .2x -8x+3=0D .9.2x -12x+3=020.如图,抛物线y=14(x+2)(x ﹣8)与x 轴交于A ,B 两点,与y 轴交于点C ,顶点为M ,以AB 为直径作⊙D .下列结论:⊙抛物线的最小值是-8;⊙抛物线的对称轴是直线x=3;⊙⊙D 的半径为4;⊙抛物线上存在点E ,使四边形ACED 为平行四边形;⊙直线CM 与⊙D 相切.其中正确结论的个数是( )A .5B .4C .3D .2二、填空题21.已知反比例函数1ky x-=,每一象限内,y 都随x 的增大而增大,则k 的值可以是(写出一个即可)_____.22.下图是由四个相同的小立方体组成的立体图形的主视图和左视图,那么原立体图形可能是________.(把下图中正确的立体图形的序号都填在横线上).23.如图,直线CD 与O 相切于点C ,AB AC =且//CD AB ,则cos A ∠=______.24.若二次函数261(0)y mx mx m =-+>的图象经过A (2,a ),B (﹣1,b ),C (5,c )三点,则a ,b ,c 从小到大排列是_____.25.如图,AB 是O 的直径,点M 在O 上,且不与A 、B 两点重合,过点M 的切线交AB 的延长线于点C ,连接AM ,若⊙MAO=27°,则⊙C 的度数是______.26.如图,在平面直角坐标系中,点E 在x 轴上,E 与两坐标轴分别交于A B C D 、、、四点,已知()()6,0,2,0A C -,则B 点坐标为___________27.请写出一个以2和-5为根的一元二次方程:______________________. 28.已知ab =2,那么3232a b a b-+=______.29.二次函数2y x x 2=+-的图象与x 轴有______个交点. 30.对于函数6y x=,若x >2,则y ______3(填“>”或“<”). 31.如图,C ,D 是两个村庄,分别位于一个湖的南,北两端A 和B 的正东方向上,且点D 位于点C 的北偏东60°方向上,CD=12km ,则AB=_______km32.皮影戏中的皮影是由________投影得到.33.计算:011(2019)12sin 45()3π---+=____.34.如图,在Rt △ABC 中,⊙C =90°.△ABC 的内切圆⊙O 切AB 于点D ,切BC 于点E ,切AC 于点F ,AD =4,BD =6,则Rt △ABC 的面积=_____.35.如图,在以O 为圆心的两个同心圆中,大圆的弦AB 与小圆相切于点C ,若AB 的长为8cm ,则图中阴影部分的面积为____cm 2.36.若一个圆锥的底面积为16πcm 2,母线长为12cm ,则该圆锥的侧面积为_____. 37.如图,矩形OABC 的顶点,A C 分别在x 轴、y 轴上,顶点B 在第二象限,AB =将线段OA 绕点О按顺时针方向旋转60︒得到线段,OD 连接,AD 反比例函数()0ky k x=≠的图象经过,D B 两点,则k 的值为____.38.如图(1),在Rt ABC △中,=90ACB ∠︒,点P 以每秒1cm 的速度从点A 出发,沿折线AC CB -运动,到点B 停止,过点P 作PD AB ⊥,垂足为D ,PD 的长()y cm 与点P 的运动时间()x s 的函数图象如图(2)所示,当点P 运动5s 时,PD 的长是___________.39.在平面直角坐标系中,经过反比例函数ky x=图象上的点A (1,5)的直线2y x b =-+与x 轴,y 轴分别交于点C ,D ,且与该反比例函数图象交于另一点B .则BC AD +=______.三、解答题40.解方程:2(2)9x -=. 41.已知二次函数y=﹣x 2+2x+3(1)在如图所示的坐标系中,画出该函数的图象 (2)根据图象回答,x 取何值时,y >0?(3)根据图象回答,x 取何值时,y 随x 的增大而增大?x 取何值时,y 随x 的增大而减小?42.在直角坐标平面内,直线y =12x +2分别与x 轴、y 轴交于点A 、C .抛物线y =﹣212x +bx +c 经过点A 与点C ,且与x 轴的另一个交点为点B .点D 在该抛物线上,且位于直线AC 的上方.(1)求上述抛物线的表达式;(2)联结BC 、BD ,且BD 交AC 于点E ,如果⊙ABE 的面积与⊙ABC 的面积之比为4:5,求⊙DBA 的余切值;(3)过点D 作DF ⊙AC ,垂足为点F ,联结CD .若⊙CFD 与⊙AOC 相似,求点D 的坐标.43.如图,已知直线2y x =与双曲线ky x=的图象交于A ,B 两点,且点A 的坐标为()1,a .(1)求k 的值和B 点坐标;(2)设点()(),00P m m ≠,过点P 作平行于y 轴的直线,交直线2y x =于点C ,交双曲线ky x=于点D .若POC △的面积大于POD 的面积,结合图象,直接写出m 的取值范围.44.随着人民生活水平不断提高,家庭轿车的拥有量逐年增加,据统计,某小区16年底拥有家庭轿车640辆,到18年底家庭轿车拥有量达到了1000辆. (1)若该小区家庭轿车的年平均增长量都相同, 请求出这个增长率;(2)为了缓解停车矛盾,该小区计划投入15万元用于再建若干个停车位,若室内每个车位0.4万元,露天车位每个0.1万元,考虑到实际因素,计划露天车位数量大于室内车位数量的2倍,但小于室内数量的3.5倍,求出所有可能的方案.45.为了测量某教学楼CD 的高度,小明在教学楼前距楼基点C ,12米的点A 处测得楼顶D 的仰角为50°,小明又沿CA 方向向后退了3米到点B 处,此时测得楼顶D 的仰角为40°(B 、A 、C 在同一水平线上),依据这些数据小明能否求出教学楼的高度?若能求,请你帮小明求出楼高;若不能求,请说明理由. 2.24)46.(1)用配方法解方程:x2﹣2x﹣1=0.(2)解方程:2x2+3x﹣1=0.(3)解方程:x2﹣4=3(x+2).47.梯形ABCD中DC⊙AB,AB =2DC,对角线AC、BD相交于点O,BD=4,过AC的中点H作EF⊙BD分别交AB、AD于点E、F,求EF的长.48.计算:3-+;⊙222602cos458︒+︒+︒sin45cos60tan3049.小明根据学习函数的经验,对函数y=|x2﹣2x|﹣2的图象与性质进行了探究,下面是小明的探究过程,请补充完整:(1)在给定的平面直角坐标系中;画出这个函数的图象,⊙列表,其中m=,n=.⊙描点:请根据表中数据,在如图所示的平面直角坐标系中描点:⊙连线:画出该函数的图象.(2)写出该函数的两条性质:.(3)进一步探究函数图象,解决下列问题:⊙若平行于x轴的一条直线y=k与函数y=|x2﹣2x|﹣2的图象有两个交点,则k的取值范围是;⊙在网格中画出y=x﹣2的图象,直接写出方程|x2﹣2x|﹣2=x﹣2的解为.参考答案:1.A【详解】试题分析:先求出总的球的个数,再出摸到红球的概率.已知袋中装有6个红球,2个绿球,可得共有8个球,根据概率公式可得摸到红球的概率为;故答案选A.考点:概率公式.2.C【分析】设调价百分率为x ,根据售价从原来每件200元经两次调价后调至每件72元,可列方程.【详解】解:设调价百分率为x ,则:2200(1)72.x -=故选:C .【点睛】本题考查一元二次方程的应用,关键设出两次降价的百分率,根据调价前后的价格列方程求解.3.D【分析】证明ABC ADE △△∽ ,由相似三角形的性质得出AB AC AD AE=,则可得出答案. 【详解】解:⊙DE BC ∥,⊙ABC ADE △△∽, ⊙AB AC AD AE =, 即483AE =, ⊙6AE =,故选:D .【点睛】本题考查了相似三角形的判定与性质,熟记性质是解题的关键.4.C【分析】根据圆周角定理可得⊙ACD =15°,再由直径所对的圆周角是直角,可得⊙CAD =90°,即可求解.【详解】解:⊙⊙ACD =⊙ABD ,15ABD ∠=°,⊙⊙ACD =15°,⊙CD 是⊙O 的直径,⊙⊙CAD =90°,⊙⊙ADC =90°-⊙ACD =75°.故选:C【点睛】本题主要考查了圆周角定理,熟练掌握在同圆(或等圆)中,同弧(或等弧)所对的圆周角相等,直径所对的圆周角是直角是解题的关键.5.C【分析】根据因式分解法解一元二次方程,即可求解.【详解】解:()()()221211x x x --+= ()()212110x x x ----=,()()2120x x --=, 解得121,22x x ==, 故选C .【点睛】本题考查了解一元二次方程,掌握解一元二次方程的方法是解题的关键. 6.C【分析】先证明⊙ADE ⊙⊙ABC ,得出对应边成比例,即可求出AE 的长.【详解】解:⊙ED ⊙AB ,⊙⊙AED =90°=⊙C ,⊙⊙A =⊙A ,⊙⊙ADE ⊙⊙ABC , ⊙AD AE AB AC =,即5108AE =, 解得:AE =4.故选:C .【点睛】本题考查了相似三角形的判定与性质;熟练掌握相似三角形的判定方法,证明三角形相似得出比例式是解决问题的关键.7.D【分析】利用二次函数图象上点的坐标特征求出点A 、B 、C 、D 的坐标,由点A 、D 的坐标,利用待定系数法求出直线AD 的解析式,利用一次函数图象上点的坐标特征求出点E的坐标,再利用二次函数图象上点的坐标特征得出点M 、N 的坐标,进而可求出线段MN 的长.【详解】当0y =时,2112042x x --=, 解得:1224x x =-=,,⊙点A 的坐标为(-2,0);当0x =时,2112242y x x =--=-, ⊙点C 的坐标为(0,-2);当2y =-时,2112242x x --=-, 解得:1202x x ==,,⊙点D 的坐标为(2,-2),设直线AD 的解析式为()0y kx b k =+≠,将A(-2,0),D(2,-2)代入y kx b =+,得:2022k b k b -+=⎧⎨+=-⎩,解得:121k b ⎧=-⎪⎨⎪=-⎩, ⊙直线AD 的解析式为112y x =--, 当0x =时,1112y x =--=-, ⊙点E 的坐标为(0,1-).当1y =-时,2112142x x --=-,解得:1211x x ==⊙点M 、N 的坐标分别为(1,-1)、(1-1),⊙MN=(11=故选:D .【点睛】本题考查了抛物线与x 轴的交点、二次函数图象上点的坐标特征、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,利用二次函数图象上点的坐标特征求出点M 、N 的坐标是解题的关键.8.A【分析】在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,依此进行分析.【详解】解:矩形木框在地面上形成的投影应是平行四边形或一条线段,即相对的边平行或重合,故A 不可能,即不会是梯形.故选A .【点睛】本题考查了平行投影特点,不同位置,不同时间,影子的大小、形状可能不同,具体形状应视其外在形状,及其与光线的夹角而定.9.A【分析】连接BC ,由90BAC ∠=︒可知BC 为直径,利用勾股定理求解即可.【详解】解:连接BC ,如图:⊙AB AC ⊥,⊙90BAC ∠=︒,⊙BC 为直径,由勾股定理可得:BC =故选:A【点睛】此题考查了圆的有关性质,勾股定理,解题的关键是熟练掌握圆的相关知识. 10.C【分析】先根据关于y 轴对称点的坐标特点建立方程,然后解一元二次方程,即可得出结果.【详解】解:⊙A 、B 两点关于y 轴对称,⊙223x x +=,⊙()()310x x +-=,解得3x =-或1,故选:C .【点睛】本题考查了关于y 轴对称点的坐标特点和解一元二次方程,根据关于y 轴对称点的坐标特点建立方程是解题的关键.11.B【分析】设这两年该省新能源汽车产能的平均增长率为x ,根据题意列出一元二次方程即可求解.【详解】解:设这两年该省新能源汽车产能的平均增长率为x ,根据题意得,()230141x +=, 故选:B .【点睛】本题考查了一元二次方程的应用,根据题意列出方程是解题的关键.12.A【分析】将抛物线顶点坐标代入一次函数解析式,求出b 与c 的关系,再根据抛物线与y 轴交点的纵坐标为c ,即n c =,再利用二次函数的性质即可解答. 【详解】 抛物线2y x bx c =-++的顶点在3+1y x =上,抛物线2y x bx c =-++的顶点标为(2b 、24b c +) ∴23142b bc +=+ 23124b bc ∴=+- 抛物线与y 轴交点的纵坐标为cn c ∴=23124b b n ∴=+- ()21136944n b b ∴=--++ ()2113344n b ∴=--+ n ∴的最大值为134故选:A .【点睛】本题考查了二次函数的性质,函数图像上点坐标的特征,熟练掌握二次函数性质是解题关键.13.C【分析】根据全面调查与抽样调查、中位数与众数、方差、必然事件的定义逐项判断即可得.【详解】解:A 、了解我市市民观看2022北京冬奥会开幕式的观后感,适合抽样调查,则此项说法错误,不符题意;B 、因为一组数据2、2、3、4、4、x 的众数是2,所以2x =,将这组数据按从小到大进行排序为2,2,2,3,4,4,则第三个数和第四个数的平均数为中位数, 所以中位数是23 2.52+=,则此项说法错误,不符题意; C 、这组数据的平均数为2335745++++=, 则方差为222221(24)(34)(34)(54)(74) 3.25⎡⎤⨯-+-+-+-+-=⎣⎦,此项说法正确,符合题意;D 、“面积相等的两个三角形不一定全等”,则这一事件是随机事件,此项说法错误,不符题意;故选:C .【点睛】本题考查了全面调查与抽样调查、中位数与众数、方差、必然事件,熟练掌握各定义和计算公式是解题关键.14.C【分析】事件的发生的概率为0,即为一定不可能发生的事件.【详解】解:C 中事件中两个骰子投的数一定大于或等于2,故选C.【点睛】本题考查了不可能事件的定义,熟悉掌握概念是解决本题的关键.15.C【分析】直接根据二次函数的图像和性质即可得出结论.【详解】二次函数y =a(x +1)2+2的对称轴为x =﹣1,⊙二次函数y =a(x +1)2+2与x 轴的一个交点是(﹣3,0),⊙二次函数y =a(x +1)2+2与x 轴的另一个交点是(1,0),⊙由图像可知关于x 的不等式a(x +1)2+2>的解集是﹣3<x <1.故选C.【点睛】本题主要考查二次函数的图像与性质,找出y=a(x+1)2+2与x轴的两个交点是解本题的关键.16.D【分析】利用当x=1和3时,y=0,得出抛物线的对称轴是直线x=2,然后根据x=-1时,y=8,判断增减性,再利用x=0时,y=3,结合对称轴,即可得出A、B点坐标.【详解】)⊙当x=1和3时,y=0,⊙抛物线的对称轴是直线x=2,故A选项错误;又⊙x=-1时,y=8,⊙x<2时,y随x增大而减小;x>2时,y随x增大而大,故C选项错误;⊙x=2时,y有最小值,故B选项错误;⊙x=0时,y=3,则点A(0,3),⊙点A与点B关于抛物线的对称轴对称,⊙B点坐标(4,3),⊙A、B、C错误,D正确.故选:D .【点睛】此题主要考查了二次函数的性质,由表格数据获取信息是解题的关键.17.D【分析】先找出二次函数y=2x2﹣2x+3的对称轴为直线x=12,求得a+b=1,再把x=1代入y=2x2﹣2x+3即可.【详解】解:⊙当x=a或x=b(a≠b)时,二次函数y=2x2﹣2x+3的函数值相等,⊙以a、b为横坐标的点关于直线x=12对称,则122a b+=,⊙a+b=1,⊙x=a+b,⊙x=1,当x=1时,y=2x2﹣2x+3=2﹣2+3=3,故选D.【点睛】题考查了二次函数图象上点的坐标特征,主要利用了二次函数的对称性和对称轴公式,是基础题,熟记性质是解题的关键.18.B【分析】先确定(0,3)C 得到3OC OA ==,利用正方形的性质,由1236S S S +=得到2222163(3)2OC OB OC OA OB +++=⨯⨯⨯+,求出OB 得到0()9,B -,于是可设交点式(9)(3)y a x x =+-,然后把(0,3)C 代入求出a 即可得到b 的值.【详解】解:当0x =时,233y ax bx =++=,则(0,3)C ,3OC OA ∴==,(3,0)A ∴,1236S S S +=,2222163(3)2OC OB OC OA OB ∴+++=⨯⨯⨯+, 整理得290OB OB -=,解得9OB =,(9,0)B ∴-,设抛物线解析式为(9)(3)y a x x =+-,把(0,3)C 代入得9(3)3a ⨯⨯-=,解得19a =-, ∴抛物线解析式为1(9)(3)9y x x =-+-, 即212393y x x =--+,23b ∴=-. 故选:B .【点睛】本题考查了抛物线与x 轴的交点:把求二次函数2(y ax bx c a =++,b ,c 是常数,0)a ≠与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质和正方形的性质.19.C【分析】通过去括号、移项、合并同类项将已知方程转化为一般形式.【详解】解:由原方程,得2x-4x 2=10x-5x 2-3,则x 2-8x+3=0.故选C .【点睛】本题考查了一元二次方程的一般形式.一般地,任何一个关于x 的一元二次方程经过整理,都能化成如下形式ax 2+bx+c=0(a≠0).这种形式叫一元二次方程的一般形式.20.D【分析】根据抛物线的解析式将其化为一般式,再利用抛物线的性质,求解最小值,对称轴.⊙D 的半径计算,主要是计算AB ,将y=0,带入就可以解得.【详解】解:根据抛物线的解析式y=14(x+2)(x ﹣8)将其化为一般式可得213442y x x =-- ⊙错误,抛物线的最小值是2134(4)25421444⎛⎫⨯⨯-- ⎪⎝⎭=-⨯ ;⊙正确,抛 物线的对称轴是323124--=⨯ ;⊙错误,根据y=14(x+2)(x ﹣8)可得,要使y=0,则 x=-2或8,因此(2,0)A - ,(8,0)B ,可得10AB = ,所以⊙D 的半径的半径为5;⊙错误,抛物线上不存在点E ,使四边形ACED 为平行四边形;⊙正确,直线CM 与⊙D 相切 故选D【点睛】本题主要考查二次函数的性质,二次函数的最值,对称轴,交点坐标一直是考试的重点内容,必须熟练的掌握.21.2【分析】根据反比例函数的性质,每一象限内,y 都随x 的增大而增大,则1-k<0解出k 值范围,取合适的数即可.【详解】⊙反比例函数1k y x -=,每一象限内,y 都随x 的增大而增大, ⊙1-k<0,⊙k>1,取k=2,满足题意,故答案为:2.【点睛】本题考查了反比例函数的增减性,理解反比例函数的增减性是解题的关键. 22.⊙、⊙、⊙【详解】本题考查的是由三视图判断几何体依次分析所给几何体从正面看及从左面看得到的图形是否与所给图形一致即可. ⊙主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形; ⊙主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形; ⊙主视图左往右2列正方形的个数均依次为1,2,不符合所给图形;⊙主视图和左视图从左往右2列正方形的个数均依次为2,1,符合所给图形.故答案为⊙⊙⊙.23【分析】连接BC,连接CO并延长CO交AB于点H,切线性质定理得⊙OCD=90°,CD AB得CH⊙AB,由垂径定理可得CH垂直平分AB,可推出ABC为等边三角形,进//而得出答案.【详解】解:如图,连接BC,连接CO并延长CO交AB于点H,⊙,直线CD与O相切于点C,⊙OC⊙CD⊙⊙OCD=90°⊙//CD AB⊙⊙AHC=⊙OCD=90°⊙CH⊙AB⊙AH=BH⊙CH垂直平分AB⊙AC=BC=⊙AB AC⊙AC=BC=AB⊙ABC为等边三角形,⊙60A∠=︒,⊙cos⊙A【点睛】本题考查垂径定理、切线的性质定理等,熟练掌握垂径定理是解题的关键.24.a<c<b【分析】抛物线开口向上,可根据二次函数的性质拿出对称轴,再根据A,B,C三点横坐标到对称轴的距离判断大小关系.【详解】由题意对称轴x=-62m m-=3, A 点横坐标到对称轴的距离为3-2=1B 点横坐标到对称轴的距离为3-(-1)=4C 点横坐标到对称轴的距离为5-3=2⊙4>2>1⊙b >c >a,从小到大排列为a <c <b.【点睛】考察二次函数的性质,根据横坐标到对称轴的距离即可判断大小关系,不需要求出具体坐标.25.36【详解】如图:连接MO,因为M 为切点,所以OM⊙MC, ⊙OMC=90°,因为OA=OM,所以⊙MAO=⊙OMA= 27°,所以⊙MOC=54°,所以⊙C=90°-54°=36°26.(0,-【分析】根据A 、C 的坐标得到圆的半径长和OE 长,利用勾股定理求出OB 的长,得到点B 坐标.【详解】解:如图,连接BE ,⊙()6,0A ,()2,0C -,⊙8AC =,4BE CE ==,2OC =,⊙422OE =-=,⊙在Rt OBE 中,OB =⊙(0,B -.故答案是:(0,-.【点睛】本题考查圆的性质和平面直角坐标系,解题的关键是根据已知点坐标得到线段长,结合几何的性质求点坐标.27.答案不唯一,如【详解】试题分析:方程的根的定义:方程的根就是使方程左右两边相等的未知数的值. 答案不唯一,如.考点:一元二次方程的根的定义28.12 【分析】由已知可得a=2b ,代入式子进行计算即可.【详解】⊙a b=2, ⊙a=2b , ⊙3a 2b 3a 2b -+=6262b b b b -+=12, 故答案为12. 【点睛】本题考查了比例的性质,得出a=2b 是解题的关键.29.两【分析】二次函数2y x x 2=+-的图象与x 轴的交点个数,即是2x x 2=0+-解的个数.【详解】令2x x 2=0+-,即()()120x x -+=解得x=1或x=-2,二次函数2y x x 2=+-的图象与x 轴有两个交点.故答案为两【点睛】此题考查抛物线与坐标轴的交点,解题关键在于使函数值等于0.30.<【分析】根据反比例函数的性质即可解答.【详解】当x=2时,632y==,⊙k=6时,⊙y随x的增大而减小⊙x>2时,y<3故答案为<【点睛】此题主要考查了反比例函数的性质,解题的关键在于利用反比例函数图象上点的坐标特点判断函数值的取值范围.31.6.【分析】过点C作CE⊙BD于E构造直角三角形,由方位角确定⊙ECD=60°,在Rt⊙CED 中利用三角函数AB=CD•cos⊙ECD即可.【详解】过点C作CE⊙BD于E,由湖的南,北两端A和B⊙⊙EBA=⊙BAC=90º,又⊙BEC=90º则四边形ABCE为矩形,⊙AB=CE⊙点D位于点C的北偏东60°方向上,⊙⊙ECD=60°,⊙CD=12km,在Rt⊙CED中,⊙CE=CD•cos⊙ECD=12×12=6km,⊙AB=CE=6km.故答案为:6.【点睛】本题考查解直角三角形的应用,通过辅助线,将问题转化矩形和三角形中,利用三角函数与矩形性质便可解决是关键.32.中心【分析】皮影戏是有灯光照射下在影布上形成的投影,故是中心投影.【详解】皮影戏是有灯光照射下在影布上形成的投影,故是中心投影.【点睛】本题属于基础题,考查了投影的知识,可运用投影的知识或直接联系生活实际解答.33.3【分析】原式第一项利用零指数幂法则计算,第二项根据绝对值的代数意义去绝对值符号,第三项代入特殊角三角函数值计算,第四项利用负整数指数幂法则进行计算,最后进行加减运算即可得到结果.【详解】解:011(2019)12sin 45()3π-︒--+=123-+=13=3【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.34.24【分析】设内切圆半径为r ,根据内切圆的性质和勾股定理求出r 即可.【详解】设内切圆半径为r,则OE=OF=OD=r易知BD=BE=6,AD=AF=4⊙Rt△ABC中,AC2+BC2=(4+r)2+(6+r)2=AB2=100解得r=2,则AC=6,BC=8⊙S△ABC=24【点睛】本题考查的是三角形,熟练掌握熟练掌握三角形的内切圆是解题的关键. 35.16π.【分析】根据大圆的弦AB与小圆相切于点C,运用垂径定理和勾股定理解答.【详解】设AB切小圆于点C,连接OC,OB,⊙AB切小圆于点C,⊙OC⊙AB,⊙BC=AC=12AB=12×8=4,⊙Rt⊙OBC中,OB2=OC2+BC2,即OB2-OC2= BC2=16,⊙圆环(阴影)的面积=π•OB2-π•OC2=π(OB2-OC2)=16π(cm2).故答案为:16π.【点睛】本题考查了圆的切线,熟练掌握圆的切线性质定理,垂径定理和勾股定理是解决此类问题的关键.36.48πcm2【分析】根据圆锥的底面面积,得出圆锥的半径,进而利用圆锥的侧面积的面积公式求解.【详解】解:⊙圆锥的底面面积为16πcm2,⊙圆锥的半径为4cm,这个圆锥的侧面积为:212412482cm ππ⨯⨯⨯= 故答案为:48πcm 2.【点睛】本题考查了圆锥的计算,解题的关键是根据圆锥的底面面积得出圆锥的半径.37.-【分析】作DE⊙x 轴,垂足为E ,设OA=m ,则点B 坐标为(m -,根据旋转的性质求出OA=OD=m ,⊙AOD=60°,求出点D 坐标为12m ⎛⎫- ⎪ ⎪⎝⎭,构造关于m 的方程,解方程得出点B 坐标,即可求解.【详解】解:如图,作DE⊙x 轴,垂足为E ,设OA=m ,则点B 坐标为(m -, ⊙线段OA 绕点О按顺时针方向旋转60︒得到线段,OD⊙OA=OD=m ,⊙AOD=60°, ⊙1cos 2OE OD DOE m =∠=,sin DE OD DOE =∠=,⊙点D 坐标为12m ⎛⎫- ⎪ ⎪⎝⎭, ⊙点B 、D 都在反比例函数()0k y k x=≠的图象上,⊙1322m m -=, 解得124,0x x ==(不合题意,舍去),⊙点B 坐标为(-,⊙4k =--故答案为:-【点睛】本题为反比例函数与几何综合题,考查了反比例函数的性质,旋转的性质,三角函数等知识,理解反比例函数性质,构造方程,求出点B 坐标是解题关键.38.1.2cm【分析】根据图2可判断AC=3,BC=4,则可确定t=5时BP 的值,利用sinB 的值,可求出PD .【详解】解:由题图(2)可得3AC =cm ,4BC =cm ,5AB ∴=cm. 当5x =时,点P 在BC 边上,⊙5AC CP +=cm ,2BP AC BC AC CP ∴=+--=,在Rt ABC △中,3sin 5AC B AB ==, 在Rt PBD △中, 36sin 2 1.255PD BP B ∴=⋅=⨯==(cm ).【点睛】此题考查了动点问题的函数图象,解答本题的关键是根据图2得到AC 、BC 的长度.39.【分析】先分别求出k ,b 的值得到函数解析式,得到点C ,D 的坐标,勾股定理求出CD 及AB 的长,即可得到答案. 【详解】解:将点(1,5)代入k y x =,得k =5,⊙5y x=, 将点(1,5)代入y =-2x +b ,得-2+b =5,解得b =7,⊙y =-2x +7,当527x x=-+时,解得x =1或x =2.5, 当x =2.5时,y =2,⊙B (2.5,2),令y =-2x +7中x =0,得y =7;令y =0,得x =3.5,⊙C (3.5,0),B (0,7),⊙CD =⊙AB⊙BC +AD =CD -AB故答案为:【点睛】此题考查了待定系数法求函数解析式,一次函数图象与坐标轴的交点,勾股定理,正确掌握待定系数法求出解析式是解题的关键.40.15 =x,21x=-【分析】直接利用开平方的方法解一元二次方程即可得到答案.【详解】解:(1)⊙()229x-=,⊙23x-=±,解得15 =x,21x=-.【点睛】本题主要考查了解一元二次方程,解题的关键在于能够熟练掌握解一元二次方程的方法.41.(1)图象见解析;(2)-1<x<3;(3)当x<1时,y随x的增大而增大.当x>1时,y随x的增大而减小.【详解】试题分析:(1)列表,描点,连线,画出抛物线;(2)(3)根据图象回答问题即可.试题解析:(1)列表:描点、连线可得如图所示抛物线.(2)当-1<x <3时,y >0;(3)当x <1时,y 随x 的增大而增大.当x >1时,y 随x 的增大而减小.42.(1)y =﹣21322x -x +2;(2)98;(3)(﹣32,258)或(﹣3,2). 【分析】(1)由直线得到A 、C 的坐标,然后代入二次函数解析式,利用待定系数法即可得;(2)过点E 作EH ⊙AB 于点H ,由已知可得141252AB EH AB OC =⨯ ,从而可得EH 、HB 的长,然后再根据三角函数的定义即可得;(3)分情况讨论即可得.【详解】(1)令直线y =12x +2中y =0得12x +2=0解得x =-4,⊙A (-4,0),令x =0得y =2,⊙C (0,2) 把A 、C 两点的坐标代入212y x bx c =-++得, 2840c b =⎧⎨-=⎩, ⊙322b c ⎧=-⎪⎨⎪=⎩ , ⊙213222y x x =--+ ;(2)过点E 作EH ⊙AB 于点H ,由上可知B (1,0), ⊙45ABE ABC S S ∆∆=, ⊙141••252AB EH AB OC =⨯ , ⊙4855EH OC ==, 将85y =代入直线y =12x +2,解得45x =- ⊙4855E ⎛⎫- ⎪⎝⎭, ⊙49155HB =+= , ⊙90EHB ∠=︒ ⊙995cot 885HB DBA EH ∠===; (3)⊙DF ⊙AC ,⊙90DFC AOC ∠=∠=︒,⊙若DCF CAO ∠=∠,则CD//AO ,⊙点D 的纵坐标为2,把y=2代入213222y x x =--+得x=-3或x=0(舍去), ⊙D (-3,2) ;⊙若DCF ACO ∠=∠时,过点D 作DG ⊙y 轴于点G ,过点C 作CQ ⊙DG 交x 轴于点Q ,⊙90DCQ AOC ∠=∠=︒ ,⊙90DCF ACQ ACO CAO ∠+∠=∠+∠=︒,⊙ACQ CAO ∠=∠,⊙AQ CQ =,设Q (m ,0),则4m + ⊙32m =- , ⊙302Q ⎛⎫- ⎪⎝⎭,, 易证:COQ ∆⊙DCG ∆ , ⊙24332DG CO GC QO === ,设D (-4t ,3t+2)代入213222y x x =--+得t=0(舍去)或者38t =, ⊙32528D ⎛⎫- ⎪⎝⎭,. 综上,D 点坐标为(﹣32,258)或(﹣3,2) 43.(1)2k =;点B 的坐标为()1,2--(2)1m >或1m <-【分析】(1)利用待定系数法进行求值即可;(2)结合图象,可知当PC >PD ,POC △的面积大于POD 的面积,由此可知1m >或1m <-.(1)解:⊙点()1,A a 在直线2y x =上,⊙212a =⨯=,⊙点A 的坐标是()1,2, 代入函数k y x=中,得212k =⨯= ⊙直线2y x =经过原点⊙由双曲线的对称性可知,点A 与点B 关于原点对称,点B 的坐标为()1,2--; (2)如图所示:⊙点A 的坐标是()1,2,点B 的坐标为()1,2--,若POC △的面积大于POD 的面积,则:PC >PD ,结合图象可知此时:1m >或1m <-,【点睛】本题考查了一次函数与反比例函数的交点问题,待定系数法求解析式,利用函数图象性质解决问题是本题的关键.44.(1)25%;(2)室内21露天66;室内22露天62;室内23露天58;室内24露天54;【分析】(1)设平均增长率为x ,根据题意可列出关于x 的一元二次方程,解方程即可. (2)设室内车位为a 个,露天车位为b 个,根据计划投入15万元用于建若干个停车位,可列出一个关于a ,b 的方程,再根据计划露天车位数量大于室内车位数量的2倍,但小于室内数量的3.5倍,列出关于a ,b 的不等式,解不等式可求出a 的范围,因为a 是整数,所以最后的方案有有限个.【详解】(1)设平均增长率为x ,根据题意得2640(1)1000x += 解得125%4x ==或94x =-(不符合题意,舍去)。

初中数学九年级专项训练中考数学试题分类汇编(平均数,中位数,众数,方差)

初中数学九年级专项训练中考数学试题分类汇编(平均数,中位数,众数,方差)

平均数,中位数,众数,方差一、选择题1.(浙江省衢州市)为参加电脑汉字输入比赛,甲和乙两位同学进行了 6 次测试,成绩如下表:甲和乙两位同学 6 次测试成绩 ( 每分钟输入汉字个数 ) 及部分统计数据表有四位同学在进一步算得乙测试成绩的方差后分别作出了以下判断,其中说法正确的是( )A、甲的方差大于乙的方差,所以甲的成绩比较稳定;B、甲的方差小于乙的方差,所以甲的成绩比较稳定;C、乙的方差小于甲的方差,所以乙的成绩比较稳定;D、乙的方差大于甲的方差,所以乙的成绩比较稳定;答案: C2.(淅江金华)金华火腿闻名遐迩。

某火腿公司有甲、乙、丙三台切割包装机,同时分别装质量为500 克的火腿心片。

现从它们分装的火腿心片中各随机抽取10盒,经称量并计算得到质量的方差如表所示,你认为包装质量最稳定的切割包装机是()A、甲B、乙C、丙 D 、不能确定答案: A3.(浙江义乌 )国家实行一系列惠农政策后,农村居民收入大幅度增加.下表是2003 年至 2007 年我市农村居民年人均收入情况(单位:元),则这几年我市农村居民年人均收入的中位数是()A.6969 元B.7735 元C.8810 元D.10255元答案: B4.(湖南益阳)某班第一小组 7 名同学的毕业升学体育测试成绩 (满分 30 分 )依次为: 25,23,25,23,27,30,25,这组数据的中位数和众数分别是A. 23,25B. 23,23C. 25,23D. 25,25答案: D5.(浙江省绍兴市 )在一次射击测试中,甲、乙、丙、丁的平均环数均相同,而方差分别为 8.7,6.5, 9.1, 7.7,则这四人中,射击成绩最稳定的是()A.甲B.乙C.丙D.丁答案: B6.(四川巴中市)下列命题是真命题的是()A.对于给定的一组数据,它的平均数一定只有一个B.对于给定的一组数据,它的中位数可以不只一个C.对于给定的一组数据,它的众数一定只有一个D.对于给定的一组数据,它的极差就等于方差答案: A7.(四川巴中市)用计算器计算数据13.49,13.53,14.07,13.51,13.84,13.98,14.67,14.80,14.61,14.60,14.41,14.31,14.38,14.02,14.17 的平均数约为 () A. 14.15B.14.16C.14.17D.14.20答案: B8.(陕西省)在“爱的奉献”抗震救灾大型募捐活动中,文艺工作者积极向灾区捐款.其中 8 位工作者的捐款分别是 5 万, 10 万, 10 万, 10 万, 20 万, 20 万,50 万, 100 万.这组数据的众数和中位数分别是()A.20 万, 15 万B.10 万,20 万C.10 万,15 万D.20万,10万答案: C9.(北京)众志成城,抗震救灾.某小组7 名同学积极捐出自己的零花钱支援灾区,他们捐款的数额分别是(单位:元):50,20,50,30, 50,25,135.这组数据的众数和中位数分别是()A.50,20B. 50,30C.50,50D.135,50答案: C10.(湖北鄂州)数据的众数为,则这组数据的方差是()A. 2B.C.D.答案: B11.(浙江省嘉兴市)已知甲、乙两组数据的平均数分别是,,方差分别是,,比较这两组数据,下列说法正确的是()A.甲组数据较好B.乙组数据较好C.甲组数据的极差较大D.乙组数据的波动较小答案:D12.(山东省枣庄市)小华五次跳远的成绩如下(单位:m): 3.9, 4.1, 3.9, 3.8, 4.2.关于这组数据,下列说法错误的是()A.极差是 0.4B.众数是 3.9C.中位数是 3.98D.平均数是 3.98答案: B13.(山东济南)“迎奥运,我为先” 联欢会上,班长准备了若干张相同的卡片,上面写的是联欢会上同学们要回答的问题 . 联欢会开始后,班长问小明:你能设计一个方案,估计联欢会共准备了多少张卡片?小明用20 张空白卡片(与写有问题的卡片相同),和全部写有问题的卡片洗匀,从中随机抽取10 张,发现有2 张空白卡片,马上正确估计出了写有问题卡片的数目,小明估计的数目是()A.60 张B.80 张C.90张D.110答案: B14.(湖北黄石)若一组数据2, 4,, 6,8 的平均数是 6,则这组数据的方差是()A.B.8C.D.40答案: B15.( 湖南益阳 )某班第一小组7名同学的毕业升学体育测试成绩(满分 30 分)依次为: 25,23,25,23,27,30,25,这组数据的中位数和众数分别是 ( )A. 23,25B. 23,23C. 25,23D. 25,25答案: D16.( 重庆 )数据2,1,0,3,4的平均数是()A、0B、1C、 2D、3答案: C17.( 08 厦门市)某鞋店试销一种新款女鞋,销售情况如下表所示:鞋店经理最关心的是,哪种型号的鞋销量最大.对他来说,下列统计量中最重要的是()A.平均数B.众数C.中位数D.方差答案: C18.(08 乌兰察布市)十名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为,中位数为,众数为,则有()A.B.C.D.答案: B19.(08 绵阳市)某校初三·一班 6 名女生的体重(单位:kg)为:353638 404242 则这组数据的中位数等于().A.38B.39C.40D.42答案: B20.(浙江金华)金华火腿闻名遐迩。

北师大版九年级中考数学模拟试卷(含答案)

北师大版九年级中考数学模拟试卷(含答案)

北师大版九年级中考数学模拟试卷(满分150分 时间120分钟)一.选择题(共40分) 1.2023的相反数是( )A.2023B.12023 C.﹣12023 D.﹣20232.如图四个几何体中,主视图、左视图、俯视图都相同的几何体是( )A. B. C. D. 3.神舟十五号载人飞船,搭载3名航天员于2022年11月29日成功发射,它的飞行速度大 约是474000米/分,这个数字用科学记数法表示为( )A.4.74×105B.4.74×106C.47.4×104D.0.474×1064.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠2=40°,则∠1=( ) A.60° B.50° C.40° D.30°(第4题图) (第 6题图) (第7题图) 5.下列标志图中,既是轴对称图形,又是中心对称图形的是( )A. B. C. D. 6.数a 、b 、c 在数轴上的位置如图所示,其中b 、c 到原点的距离相等,下列式子正确的 是( )A.a+c >0B.a+b >0C.b+c >0D.a -b <07.在如图所示的电路图,当随机闭合开关K 1、K 2、K 3中的任意两个时,能使灯泡发亮的概率为( )A.13 B.12 C.23 D.34 8.计算mm -1+11-m 的结果是( )A.1B.﹣1C.2D.﹣29.如图,在△ABC 中,已知∠B=45°,∠C=30°,分别以点A 、C 为圆心,大于12AC 长为半径画弧,两弧在AC 两侧分别交于P 、Q 两点,作直线PQ 交BC 于点D ,交AC 于点E .若DE=3,则AB 的长为( )A.5√2B.5C.3√6D.4√3(第9题图)10.规定:在平面直角坐标系中,横坐标与纵坐标均为整数的点为整点.对于题目:抛物线 y=ax (x -4)+m (a ≠0)与x 轴分别交于M 、N 两点(点M 在点N 的左侧),MN=2,线段 MN 与抛物线围成的封闭区域记作G (包括边界),若区域G 内有6个整点,求a 的取值范围.则( )A.3≤a <4B.﹣4<a ≤﹣3C.﹣4<a ≤﹣3或3≤a <4D.﹣4<a <﹣3或3≤a <4 二.填空题(共24分)11.分解因式:x 2-116= .12.正方形地板由9块边长均相等的小正方形组成,一粒米随机地撒在如图所示的正方形地板上,那么米粒最终停留在黑色区域的概率是 。

2020年九年级中考数学专题专练--几何函数压轴题专练(含答案)

2020年九年级中考数学专题专练--几何函数压轴题专练(含答案)

中考数学专题几何函数压轴题专题1.如图,抛物线y=ax2-bx+3 交x 轴于B(1,0),C(3,0)两点,交y 轴于点A,连接AB,点P 为抛物线上一动点.(1)求抛物线的解析式;(2)当点P 到直线AB 的距离为7 10时,求点P 的横坐标;9(3)当△ACP 和△ABC 的面积相等时,请直接写出点P 的坐标.备用图2.如图1,在平面直角坐标系中,直线y=x+4 与抛物线y =-1x2 +bx +c (b,c 2是常数)交于A,B 两点,点A 在x 轴上,点B 在y 轴上.设抛物线与x 轴的另一个交点为点C.(1)求该抛物线的解析式.(2)点P 是抛物线上一动点(不与点A,B 重合).①如图2,若点P 在直线AB 上方,连接OP 交AB 于点D,求PD的最大值;OD②如图3,若点P 在x 轴上方,连接PC,以PC 为一边作正方形CPEF.随着点P 的运动,正方形的大小、位置也随之改变,当顶点E 或F 恰好落在y 轴上时,直接写出对应的点P 的坐标.23. 如图,抛物线y=ax2+bx+4(a≠0)交x 轴于点A(4,0),B(-2,0),交y 轴于点C.(1)求抛物线的解析式.(2)点Q 是x 轴上位于点A,B 之间的一个动点,点E 为线段BC 上一个动点,若始终保持∠EQB=∠CAB,连接CQ,设△CQE 的面积为S,点Q 的横坐标为m,求出S 关于m 的函数关系式,并求出当S 取最大值时点Q 的坐标.(3)点P 为抛物线上位于AC 上方的一个动点,过点P 作PF⊥y 轴,交直线AC 于点F,点D 的坐标为(2,0),若O,D,F 三点中,当其中一点恰好位于另外两点的垂直平分线上时,我们把这个点叫做另外两点的“和谐点”,请判断这三点是否有“和谐点”的存在,若存在,请直接写出此时点P 的坐标;若不存在,请说明理由.4.如图,抛物线y =-3x2 +bx +c 与x 轴交于A,B 两点,与y 轴交于点C,直4线y =3x + 3 经过点A,C.4(1)求抛物线的解析式.(2)P 是抛物线上一动点,过P 作PM∥y 轴交直线AC 于点M,设点P 的横坐标为t.①若以点C,O,M,P 为顶点的四边形是平行四边形,求t 的值.②当射线MP,MC,MO 中一条射线平分另外两条射线的夹角时,直接写出t 的值.5.如图1,抛物线y=ax2+bx+2 与x 轴交于A,B 两点,与y 轴交于点C,AB=4,矩形OBDC 的边CD=1,延长DC 交抛物线于点E.(1)求抛物线的解析式.(2)如图2,点P 是直线EO 上方抛物线上的一个动点,过点P 作y 轴的平行线交直线EO 于点G,作PH⊥EO,垂足为H.设PH 的长为a,点P 的横坐标为m,求a 关于m 的函数关系式(不必写出m 的取值范围),并求出a 的最大值.(3)如果点N 是抛物线对称轴上的一点,抛物线上是否存在点M,使得以M,A,C,N 为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点M 的坐标;若不存在,请说明理由.6.如图,在平面直角坐标系中,△ABC 是直角三角形,∠ACB=90°,AC=BC,OA=1,OC=4,抛物线y=x2+bx+c 经过A,B 两点,抛物线的顶点为D.(1)求b,c 的值.(2)点E 是直角三角形ABC 斜边AB 上一动点(点A,B 除外),过点E 作x 轴的垂线交抛物线于点F,当线段EF 的长度最大时,求点E 的坐标.(3)在(2)的条件下:①求以点E,B,F,D 为顶点的四边形的面积;② 在抛物线上是否存在一点P,使△EFP 是以EF 为直角边的直角三角形?若存在,直接写出所有点P 的坐标;若不存在,说明理由.7.如图,抛物线y=ax2+bx+3(a≠0)的对称轴为直线x=-1,抛物线交x 轴于A,C 两点,与直线y=x-1 交于A,B 两点,直线AB 与抛物线的对称轴交于点E.(1)求抛物线的解析式;(2)点P 在直线AB 上方的抛物线上运动,若△ABP 的面积最大,求此时点P 的坐标;(3)在平面直角坐标系中,以点B,E,C,D 为顶点的四边形是平行四边形,请直接写出符合条件点D 的坐标.8.如图,已知抛物线y =ax2 +3x + 4 的对称轴是直线x=3,且与x 轴相交于A,2B 两点(B 点在A 点右侧),与y 轴交于C 点.(1)求抛物线的解析式和A,B 两点的坐标.(2)若点P 是抛物线上B,C 两点之间的一个动点(不与B,C 重合),则是否存在一点P,使△PBC 的面积最大?若存在,请求出△PBC 的最大面积;若不存在,试说明理由.(3)若M 是抛物线上任意一点,过点M 作y 轴的平行线,交直线BC 于点N,当MN=3 时,求点N 的坐标.9.如图,抛物线y=1x2 +bx +c 经过点A( 2 3(1)求该抛物线的解析式;,0)和点B(0,-2).(2)若△OAB 以每秒2 个单位长度的速度沿射线BA 方向运动,设运动时间为t,点O,A,B 的对应点分别为D,E,C,直线DE 交抛物线于点M.①当点M 为DE 的中点时,求t 的值;②连接AD,当△ACD 为等腰三角形时,请直接写出点M 的坐标.备用图310.如图,抛物线y=ax2+bx-2 的对称轴是直线x=1,与x 轴交于A,B 两点,与y 轴交于点C,点A 的坐标为(-2,0),点P 为抛物线上的一个动点,过点P 作PD⊥x 轴于点D,交直线BC 于点E.(1)求抛物线解析式.(2)若点P 在第一象限内,当OD=4PE 时,求四边形POBE 的面积.(3)在(2)的条件下,若点M 为直线BC 上一点,点N 为平面直角坐标系内一点,是否存在这样的点M 和点N,使得以点B,D,M,N 为顶点的四边形是菱形?若存在,直接写出点N 的坐标;若不存在,请说明理由.11.如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B 的坐标为(1,0),抛物线y=-x2+bx+c 经过A,B 两点.(1)求抛物线的解析式.(2)点P 是直线AB 上方抛物线上的一点,过点P 作PD 垂直x 轴于点D,交线段AB 于点E,使PE 1DE .2①求点P 的坐标和△PAB 的面积.②在直线PD 上是否存在点M,使△ABM 为直角三角形?若存在,直接写出符合条件的所有点M 的坐标;若不存在,请说明理由.12.如图,抛物线y=ax2+bx+2 与直线y=-x 交第二象限于点E,与x 轴交于A(-3,0),B 两点,与y 轴交于点C,EC∥x 轴.(1)求抛物线的解析式;(2)点P 是直线y=-x 上方抛物线上的一个动点,过点P 作x 轴的垂线交直线于点G,作PH⊥EO,垂足为H.设PH 的长为l,点P 的横坐标为m,求l 与m 的函数关系式(不必写出m 的取值范围),并求出l 的最大值;(3)如果点N 是抛物线对称轴上的一个动点,抛物线上存在一动点M,若以M,A,C,N 为顶点的四边形是平行四边形,请直接写出所有满足条件的点M 的坐标.13. 如图所示,已知抛物线y=ax2+bx+c(a≠0)经过点A(-2,0),B(4,0),C(0,-8),与直线y=x-4 交于B,D 两点.(1)求抛物线的解析式及点D 的坐标;(2)点P 为直线BD 下方抛物线上的一个动点,求△BDP 面积的最大值及此时点P 的坐标;(3)点Q 是线段BD 上异于B,D 的动点,过点Q 作QF⊥x 轴于点F,交抛物线于点G,当△QDG 为直角三角形时,直接写出点Q 的坐标.1314.如图,抛物线y=ax2+bx+c 交x 轴于点A(1,0)和点B(3,0),交y 轴于点C,抛物线上一点D 的坐标为(4,3).(1)求该抛物线所对应的函数解析式;(2)如图1,点P 是直线BC 下方抛物线上的一个动点,PE∥x 轴,PF∥y 轴,求线段EF 的最大值;(3)如图2,点M 是线段CD 上的一个动点,过点M 作x 轴的垂线,交抛物线于点N,当△CBN 是直角三角形时,请直接写出所有满足条件的点M 的坐标.15.如图,已知抛物线y=ax2+4x+c 与x 轴交于点M,与y 轴交于点N,抛物线的对称轴与x 轴交于点P,OM=1,ON=5.(1)求抛物线的解析式.(2)点A 是y 轴正半轴上一动点,点B 是抛物线对称轴上的任意一点,连接AB,AM,BM,且AB⊥AM.①AO 为何值时,△ABM∽△OMN,请说明理由;②若Rt△ABM 中有一边的长等于MP 时,请直接写出点 A 的坐标.16.如图,已知A(-2,0),B(4,0),抛物线y=ax2+bx-1 过A,B 两点,并与过点A 的直线y =-1x -1 交于点C.2(1)求抛物线解析式及对称轴.(2)在抛物线的对称轴上是否存在一点P,使四边形ACPO 的周长最小?若存在,求出点P 的坐标;若不存在,请说明理由.(3)点M 为y 轴右侧抛物线上一点,过点M 作直线AC 的垂线,垂足为N.问:是否存在这样的点N,使以点M,N,C 为顶点的三角形与△AOC 相似?若存在,求出点N 的坐标;若不存在,请说明理由.17.如图,直线l:y =1x +m 与x 轴交于点A(4,0),与y 轴交于点B,抛物线2y=ax2+bx+c(a≠0)经过A,B 两点,且与x 轴交于另一点C(-1,0).(1)求直线及抛物线的解析式;(2)点P 是抛物线上一动点,当点P 在直线l 下方的抛物线上运动时,过点P 作PM∥x 轴交l 于点M,过点P 作PN∥y 轴交l 于点N,求PM+PN 的最大值;(3)在(2)的条件下,当PM+PN 的值最大时,将△PMN 绕点N 旋转,当点M 落在x 轴上时,直接写出此时点P 的坐标.18.如图,已知抛物线y=ax2+x+c 与y 轴交于点C(0,3),与x 轴交于点A 和点B(3,0),点P 是抛物线上的一个动点.(1)求这条抛物线的表达式;(2)若点P 是点B 与点C 之间的抛物线上的一个动点,过点P 向x 轴作垂线,交BC 于点D,求线段PD 长度的最大值;(3)当点P 移动到抛物线的什么位置时,使得∠PCB=75°,请求出此时点P 的坐标.19.在平面直角坐标系内,直线y =1x + 2 分别与x 轴、y 轴交于点A,C.抛物2线y =-1x2 +bx +c 经过点A 与点C,且与x 轴的另一个交点为点B.点D2在该抛物线上,且位于直线AC 的上方.(1)求上述抛物线的表达式;(2)若连接AD,CD,试求出点D 到直线AC 的最大距离以及此时△ADC 的面积;(3)过点D 作DF⊥AC,垂足为点F,连接CD.若△CFD 与△AOC 相似,求点D 的坐标.20.如图,抛物线y=ax2+bx-3 过A(1,0),B(-3,0),直线AD 交抛物线于点D,点D 的横坐标为-2,点P(m,n)是线段AD 上的动点.(1)求直线AD 及抛物线的解析式.(2)过点P 的直线垂直于x 轴,交抛物线于点Q,求线段PQ 的长度l 与m 的关系式,m 为何值时,PQ 最长?(3)在平面内是否存在整点R(横、纵坐标都为整数),使得P,Q,D,R 为顶点的四边形是平行四边形?若存在,直接写出点R 的坐标;若不存在,说明理由.21.如图,抛物线y=-x2+bx+c 交x 轴于A,B 两点,交y 轴于点C,直线y=x-5经过点B,C.(1)求抛物线的解析式;(2)点P 是直线BC 上方抛物线上的一动点,求△BCP 面积S 的最大值;(3)在抛物线上找一点M,连接AM,使得∠MAB=∠ABC,请直接写出点M 的坐标.21参考答案:2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、。

中考数学九年级上册专题训练50题-含答案

中考数学九年级上册专题训练50题-含答案

中考数学九年级上册专题训练50题含答案一、单选题1.若圆的半径是5,圆心的坐标是(0,0),点P的坐标是(-4,3),则点P与⊙O的位置关系是()A.点P在⊙O外B.点P在⊙O内C.点P在⊙O上D.点P在⊙O外或⊙O上2.若线段MN的长为2cm,点P是线段MN的黄金分割点,则最短的线段MP的长为()A.)1cm B C.(3cm D3.如图,将一块正方形空地划出部分区域进行绿化,绿化后一边减少了3m,另一边减少了2m,剩余面积为230m的矩形空地,则原正方形空地的边长为()A.6m B.7m C.8m D.9m︒+︒-︒的结果是()4.计算tan602sin452cos30C D.1A.2B5.将一个半径为1的圆形纸片,如下图连续对折三次之后,用剪刀沿虚线⊙剪开,则虚线⊙所对的圆弧长和展开后得到的多边形的内角和分别为()A .,1802π︒ B .,5404π︒ C .,10804π︒ D .,21603π︒6.两个相似三角形的面积比为1⊙4,那么它们的周长比为( )A .B .2⊙1C .1⊙4D .1⊙2 7.下列一元二次方程中,有两个不相等的实数根的是( )A .2104x x -+=B .2230x x -+=C .220x x ++=D .220x x += 8.如图,四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,且AB =2.若AC =2,则BD 的长为( )A .B .4CD .29.如图,在某一时刻测得1米长的竹竿竖直放置时影长1.2米,在同一时刻旗杆AB 的影长不全落在水平地面上,有一部分落在楼房的墙上,他测得落在地面上影长为BD =9.6米,留在墙上的影长CD =2米,则旗杆的高度( )A .12米B .10.2米C .10米D .9.6米 10.两个相似三角形的周长之比为3:2,其中较小的三角形的面积为12,则较大的三角形的面积为( )A .27B .18C .8D .311.如图一个扇形纸片的圆心角为90°,半径为4,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,则图中阴影部分的面积为( )A .163π-B .43πC .163π-D .3π 12.如图,AB 为⊙O 直径,点C ,D 在⊙O 上且AC BC =.AD 与CO 交于点E ,⊙DAB =30°,若AO =CE 的长为( )A .1BC 1D .2 13.如图,在平面直角坐标系中,⊙P 过O (0,0),A (3,0),B (0,﹣4)三点,点C 是OA 上的点(点O 除外),连接OC ,BC ,则sin⊙OCB 等于( )A .45B .43C .34D .3514.如图,在Rt ABC ∆中,90C ∠=︒,30B ∠=︒,1AC =,以A 为圆心AC 为半径画圆,交AB 于点D ,则阴影部分面积是( )A 3π-B 6πC 6πD .π15.如图,B 、C 是⊙A 上的两点,AB 的垂直平分线与⊙A 交于E 、F 两点,与线段AC交于D 点.若⊙BFC =20°,则⊙DBC =( )A .30°B .29°C .28°D .20°16.已知a 是方程x 2﹣3x ﹣2=0的根,则代数式﹣2a 2+6a +2019的值为( ) A .2014 B .2015 C .2016 D .2017 17.已知实数a 是一元二次方程270x x +-=的根,则4371a a a ++-的值为( ) A .48 B .49 C .50 D .5118.用配方法解方程2210x x --=时,配方结果正确的是( )A .2(1)2x -=B .2(1)0x -=C .2(1)1x -=D .2(1)2x += 19.一个矩形内放入两个边长分别为3cm 和4cm 的小正方形纸片,按照图⊙放置,矩形纸片没有被两个正方形纸片覆盖的部分(黑色阴影部分)的面积为8cm 2;按照图⊙放置,矩形纸片没有被两个正方形纸片覆盖的部分的面积为11cm 2,若把两张正方形纸片按图⊙放置时,矩形纸片没有被两个正方形纸片覆盖的部分的面积为( )A .6cm 2B .7 cm 2C .12cm 2D .19 cm 2 20.如图,四边形ABCD 是正方形,动点E 、F 分别从D 、C 两点同时出发,以相同的速度分别在边DC 、CB 上移动,当点E 运动到点C 时都停止运动,DF 与AE 相交于点P ,若AD=8,则点P 运动的路径长为( )A .B .C .4πD .2π二、填空题21.已知关于x 的方程(x ﹣1)2=5﹣k 没有实数根,那么k 的取值范围是 ___. 22.如图,将四边形ABCD 绕顶点A 顺时针旋转45︒至四边形AB C D '''的位置,若4cm AB =,则图中阴影部分的面积为________2cm .23.如图,⊙O 是⊙ABC 的外接圆,AB =AC ,若⊙OBC =20°,则⊙ACB =_____°.24.若关于x 的一元二次方程2320ax a ++=有实数根,则a 的取值范围是______. 25.若m ,n 是一元二次方程2510x x --=的两个实数根,则26m m n --的值是________.26.已知y=x 2+x ﹣14,当x=____________时,y=﹣8.27.某产品每件的生产成本为50元,原定销售价65元,经市场预测,从现在开始的第一季度销售价格将下降10%,第二季度又将回升5%.若要使半年以后的销售利润不变,设每个季度平均降低成本的百分率为x ,根据题意可列方程是_______. 28.直角三角形纸片的两直角边长分别为6,8,现将⊙ABC 如图那样折叠,使点A 与点B 重合,折痕为DE ,则tan⊙CBE 的值是_____.29.已知26a -100a +7=0以及27b -100b +6=0,且ab ≠1,则a b的值为__________.30.某园进行改造,现需要修建一些如图所示圆形(不完整)的门,根据实际需要该门的最高点C 距离地面的高度为2.5m ,宽度AB 为1m ,则该圆形门的半径应为_____m .31.在△ABC 中,⊙C =90°,cosA c =4,则a =_______. 32.关于x 的一元二次方程()291600x ax a ++=>)有两个相等的实数根,则a 的值为_________.33.如图,⊙ABC 内接于O ,AB 为O 的直径,点D 为O 上的一点,且4AB =,15DCB ∠=︒,则劣弧AD 的长为______(结果保留π).34.一个正多边形的每一个内角都为144︒,则正多边形的中心角是_____,它是正______边形.35.如图,AB 是O 的直径,E 是O 上的一点,C 是弧AE 的中点,若A 50∠=,则AOE ∠的度数为________°.36.如图,在矩形ABCD 中,5AD =,4AB =,E 是BC 上的一点,3BE =,DF AE ⊥,垂足为F ,则tan FDC ∠=_______.37.若tana=12,则sina=___________________. 38.用配方法将2810x x --=变形为2(4)x m -=,则m=_________.39.如图,等腰BAC 中,120ABC ∠=︒,4BA BC ==,以BC 为直径作半圆,则阴影部分的面积为________.40.如图,ABC 为等边三角形,点D ,E 分别在边AB ,AC 上,3BD =,将ADE 沿直线DE 翻折得到FDE ,当点F 落在边BC 上,且4BF CF =时,DE AF ⋅的值为______.三、解答题41.根据下列条件分别找到图1中的圆心O 和图2中的圆心P 的位置。

2020九年级数学基础训练人教版答案全一册

2020九年级数学基础训练人教版答案全一册

2020九年级数学基础训练人教版答案全一册第一章算式和代数方程
1.1 算式的概念及性质
1.2 二元一次方程的解法
1.3 算术平方根
1.4 平方根的大小比较
第二章几何图形
2.1 直角三角形
2.2 圆的性质
2.3 圆的周长和面积计算
2.4 空间图形的计算
第三章概率与统计
3.1 概率的概念
3.2 概率计算方法
3.3 统计图的绘制和分析
3.4 统计数据的整理和分析
第四章函数
4.1 函数的概念及性质
4.2 一次函数及其应用
4.3 二次函数及其性质
4.4 函数概念的综合练习
第五章数列与数学归纳法
5.1 等差数列的概念和性质
5.2 等比数列的概念和性质
5.3 数学归纳法的应用
5.4 数列求和问题的应用
第六章解析几何
6.1 解析几何基本概念
6.2 点,直线和平面的位置关系
6.3 二元一次方程在解析几何中的应用
6.4 圆的几何性质及计算
以上就是本书涉及的全部内容,希望对九年级数学基础训练有所帮助。

中考数学专题练习直接开平方法解一元二次方程(含解析)

中考数学专题练习直接开平方法解一元二次方程(含解析)

2019中考数学专题练习-直接开平方法解一元二次方程(含解析)一、单选题1.若分式的值为0,则x的值是()A.1或-1B.1C. -1D.0【答案】B【考点】分式的值为零的条件,解一元二次方程-直接开平方法【解析】【分析】根据分子为0,同时分母不等于0时,分式值是零,即可得到结果.由题意得,解得,则x=1,故选B.【点评】解答本题的关键是熟练掌握分式值是零的条件:分子为0,同时分母不等于0.2.若25x2=16,则x的值为()A. B. C. D.【答案】A【考点】直接开平方法解一元二次方程【解析】【解答】解:25x2=16,x2= ,x=± ,故答案为:A【分析】观察次方程缺一次项,可以用直接开平方法求解或利用因式分解法求解。

3.方程的根是()A. B. C. D.【答案】A【考点】解一元二次方程-直接开平方法【解析】【解答】用开平方法可得【分析】将原方程变形为=4,用直接开平方法解得x=2,即= 2 ,= − 2.4.一元二次方程x2=2的解是()A.x=2或x=﹣2B.x=2C.x=4或x=﹣4D.x=或x=﹣【答案】D【考点】解一元二次方程-直接开平方法【解析】【解答】解:∵x2=2,∵x=±.故选:D.【分析】直接开平方解方程得出答案.5.方程x2=9的解是()A.x1=x2=3B.x1=x2=9C.x1=3,x2=﹣3D.x1=9,x2=﹣9【答案】C【考点】解一元二次方程-直接开平方法【解析】【解答】解:x2=9,两边开平方,得x1=3,x2=﹣3.故选C.【分析】利用直接开平方法求解即可.6.一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是()A.x-6=-4B.x-6=4C.x+6=4D.x+6=-4【答案】D【考点】解一元二次方程-直接开平方法【解析】【分析】方程两边直接开平方可达到降次的目的,进而可直接得到答案.【解答】(x+6)2=16,两边直接开平方得:x+6=±4,则:x+6=4,x+6=-4,故选:D.7.方程x2=9的解是()A.x=9B.x=±9C.x=3D.x=±3【答案】D【考点】直接开平方法解一元二次方程【解析】【解答】解:∵x2=9,∵x=±3,故选:D.【分析】直接开平方法即可得.8.若是反比例函数,则b的值为()A.1B.-1C.D.任意实数【答案】A【考点】直接开平方法解一元二次方程,反比例函数的定义【解析】【解答】,解得.故答案为:A.【分析】根据反比例函数的定义知,自变量次数为-1,b2-2=-1,得b=1,,又因为比例系数k≠0,得b+1≠0,得b≠-1,综合分析可得b=1。

中考数学考点一遍过 考点20 尺规作图(含解析)-人教版初中九年级全册数学试题

中考数学考点一遍过 考点20 尺规作图(含解析)-人教版初中九年级全册数学试题

考点20尺规作图一、尺规作图1.尺规作图的定义在几何里,把限定用没有刻度的直尺和圆规来画图称为尺规作图.2.五种基本作图(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)作一个角的平分线;(4)作一条线段的垂直平分线;(5)过一点作已知直线的垂线.3.根据基本作图作三角形(1)已知三角形的三边,求作三角形;(2)已知三角形的两边及其夹角,求作三角形;(3)已知三角形的两角及其夹边,求作三角形;(4)已知三角形的两角及其中一角的对边,求作三角形;(5)已知直角三角形一直角边和斜边,求作直角三角形.4.与圆有关的尺规作图(1)过不在同一直线上的三点作圆(即三角形的外接圆);(2)作三角形的内切圆.5.有关中心对称或轴对称的作图以及设计图案是中考常见类型.6.作图题的一般步骤(1)已知;(2)求作;(3)分析;(4)作法;(5)证明;(6)讨论.其中步骤(3)(4)(5)(6)一般不作要求,但作图中一定要保留作图痕迹.二、尺规作图的方法1.尺规作图的关键(1)先分析题目,读懂题意,判断题目要求作什么;(2)读懂题意后,再运用几种基本作图方法解决问题.2.根据已知条件作等腰三角形或直角三角形求作三角形的关键是确定三角形的三个顶点,作图依据是三角形全等的判定,常借助基本作图来完成,如作直角三角形就先作一个直角.考向一基本作图1.最基本、最常用的尺规作图,通常称为基本作图.2.基本作图有五种:(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)作一个角的平分线;(4)作一条线段的垂直平分线;(5)过一点作已知直线的垂线.典例1如图,在△ABC中,∠ACB=90°,分别以点A和B为圆心,以相同的长(大于12AB)为半径作弧,两弧相交于点M和N,作直线MN交AB于点D,交BC于点E,连接CD,下列结论错误的是A.AD=BD B.BD=CDC.∠A=∠BED D.∠ECD=∠EDC【答案】D【解析】∵MN为AB的垂直平分线,∴AD=BD,∠BDE=90°,∵∠ACB=90°,∴CD=BD,∵∠A+∠B=∠B+∠BED=90°,∴∠A=∠BED,∵∠A≠60°,AC≠AD,∴EC≠ED,∴∠ECD≠∠EDC.故选D.典例2如图,已知∠MAN,点B在射线AM上.(1)尺规作图:①在AN上取一点C,使BC=BA;②作∠MBC的平分线BD,(保留作图痕迹,不写作法)(2)在(1)的条件下,求证:BD∥AN.【解析】(1)①以B点为圆心,BA长为半径画弧交AN于C点;如图,点C即为所求作;②利用基本作图作BD平分∠MBC;如图,BD即为所求作;(2)先利用等腰三角形的性质得∠A=∠BCA,再利用角平分线的定义得到∠MBD=∠CBD,然后根据三角形外角性质可得∠MBD=∠A,最后利用平行线的判定得到结论.∵AB=AC,∴∠A=∠BCA,∵BD平分∠MBC,∴∠MBD=∠CBD,∵∠MBC=∠A+∠BCA,即∠MBD+∠CBD=∠A+∠BCA,∴∠MBD=∠A,∴BD∥AN.1.根据下图中尺规作图的痕迹,可判断AD一定为三角形的A.角平分线B.中线C.高线D.都有可能2.(1)请你用尺规作图,作AD平分∠BAC,交BC于点D(要求:保留作图痕迹);(2)∠ADC的度数.考向二复杂作图利用五种基本作图作较复杂图形.典例2如图,在同一平面内四个点A,B,C,D.(1)利用尺规,按下面的要求作图.要求:不写画法,保留作图痕迹,不必写结论.①作射线AC;②连接AB,BC,BD,线段BD与射线AC相交于点O;③在线段AC上作一条线段CF,使CF=AC–BD.(2)观察(1)题得到的图形,我们发现线段AB+BC>AC,得出这个结论的依据是__________.【答案】见解析.【解析】(1)①如图所示,射线AC即为所求;②如图所示,线段AB,BC,BD即为所求;③如图所示,线段CF即为所求;(2)根据两点之间,线段最短,可得AB+BC>AC.故答案为:两点之间,线段最短.3.作图题:学过用尺规作线段与角后,就可以用尺规画出一个与已知三角形一模一样的三角形来.比如给定一个△ABC,可以这样来画:先作一条与AB相等的线段A′B′,然后作∠B′A′C′=∠BAC,再作线段A′C′=AC,最后连接B′C′,这样△A′B′C′就和已知的△ABC一模一样了.请你根据上面的作法画一个与给定的三角形一模一样的三角形来.(请保留作图痕迹)1.根据已知条件作符合条件的三角形,在作图过程中主要依据是A.用尺规作一条线段等于已知线段B.用尺规作一个角等于已知角C.用尺规作一条线段等于已知线段和作一个角等于已知角D.不能确定2.下列作图属于尺规作图的是A.画线段MN=3cmB.用量角器画出∠AOB的平分线C.用三角尺作过点A垂直于直线l的直线D.已知∠α,用没有刻度的直尺和圆规作∠AOB,使∠AOB=2∠α3.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是A.BH垂直平分线段AD B.AC平分∠BADC.S△ABC=BC·AH D.AB=AD4.如图,点C在∠AOB的OB边上,用尺规作出了∠AOB=∠NCB,作图痕迹中,弧FG是A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧5.如图,△ABC中,∠C=90°,∠CAB=50°.按以下步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于12EF长为半径画弧,两弧相交于点G;③作射线AG交BC边于点D.则∠ADC的度数为A.65°B.60°C.55°D.45°6.如图,△ABC为等边三角形,要在△ABC外部取一点D,使得△ABC和△DBC全等,下面是两名同学做法:甲:①作∠A的角平分线l;②以B为圆心,BC长为半径画弧,交l于点D,点D即为所求;乙:①过点B作平行于AC的直线l;②过点C作平行于AB的直线m,交l于点D,点D即为所求.A.两人都正确B.两人都错误C.甲正确,乙错误D.甲错误,乙正确7.在△ABC中,按以下步骤作图:①分别以A,B为圆心,大于12AB的长为半径画弧,相交于两点M,N;②作直线MN交AC于点D,连接BD.若CD=BC,∠A=35°,则∠C=__________.8.如图,在△ABC中,AB=A C.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连接BD.若∠A=32°,则∠CDB的大小为__________度.9.按要求用尺规作图(要求:不写作法,但要保留作图痕迹,并写出结论)已知:线段AB;求作:线段AB的垂直平分线MN.10.如图,已知△ABC,∠BAC=90°,(1)尺规作图:作∠ABC的平分线交AC于D点(保留作图痕迹,不写作法)(2)若∠C=30°,求证:DC=DB.1.(2019•某某)如图,在四边形ABCD中,AD∥BC,∠D=90°,AD=4,BC=3.分别以点A,C为圆心,大于12AC长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD的长为A.22B.4C.3D.102.(2019•某某)如图,在Rt△ABC中,∠B=90°,以点A为圆心,适当长为半径画弧,分别交AB、AC于点D,E,再分别以点D、E为圆心,大于12DE为半径画弧,两弧交于点F,作射线AF交边BC于点G,若BG=1,AC=4,则△ACG的面积是A.1B.32C.2D.523.(2019•)已知锐角∠AOB,如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作PQ,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交PQ于点M,N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是A.∠=∠COD B.若OM=MN.则∠AOB=20°C.MN∥CD D.MN=3CD4.(2019•某某)如图,在△ABC中,AC=BC,∠A=40°,观察图中尺规作图的痕迹,可知∠BCG的度数为A.40°B.45°C.50°D.60°5.(2019•某某)如图,在△ABC中,∠C=90°,∠A=30°,以点B为圆心,适当长为半径画弧,分别交BA,BC于点M,N;再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,作射线BP交AC于点D.则下列说法中不正确的是A.BP是∠ABC的平分线B.AD=BDC.S△CBD∶S△ABD=1∶3D.CD=12 BD6.(2019•荆州)如图,矩形ABCD的顶点A,B,C分别落在∠MON的边OM,ON上,若OA=OC,要求只用无刻度的直尺作∠MON的平分线.小明的作法如下:连接AC,BD交于点E,作射线OE,则射线OE平分∠MON.有以下几条几何性质:①矩形的四个角都是直角,②矩形的对角线互相平分,③等腰三角形的“三线合一”.小明的作法依据是A.①②B.①③C.②③D.①②③7.(2019•某某)根据圆规作图的痕迹,可用直尺成功找到三角形外心的是A.B.C.D.8.(2019•某某)如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于12AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,则∠CAD的度数是A.20°B.30°C.45°D.60°9.(2019•襄阳)如图,分别以线段AB的两个端点为圆心,大于AB的一半的长为半径画弧,两弧分别交于C,D两点,连接AC,BC,AD,BD,则四边形ADBC一定是A.正方形B.矩形C.梯形D.菱形10.(2019•某某)如图,在△ABC中,点D是AB边上的一点.(1)请用尺规作图法,在△ABC内,求作∠ADE,使∠ADE=∠B,DE交AC于E;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若=2,求AEEC的值.11.(2019•某某)如图,在ABC △中,ACB ∠为钝角.用直尺和圆规在边AB 上确定一点D .使2ADC B ∠=∠,则符合要求的作图痕迹是A .B .C .D .12.(2019•某某)如图,在△ABC 中,AB =AC ,以点C 为圆心,CB 长为半径画弧,交AB 于点B 和点D ,再分别以点B ,D 为圆心,大于12BD 长为半径画弧,两弧相交于点M ,作射线CM 交AB 于点E .若AE =2,BE =1,则EC 的长度是A .2B .3C .3D .513.(2019•某某)通过如下尺规作图,能确定点D 是BC 边中点的是A .B .C .D .14.(2019•潍坊)如图,已知AOB ∠.按照以下步骤作图:①以点O 为圆心,以适当的长为半径作弧,分别交AOB ∠的两边于C ,D 两点,连接CD ;②分别以点C ,D 为圆心,以大于线段OC 的长为半径作弧,两弧在AOB ∠内交于点E ,连接CE ,DE ;③连接OE 交CD 于点M .下列结论中错误的是A .CEO DEO ∠=∠B .CM MD =C .OCD ECD ∠=∠D .12OCED S CD OE =⋅四边形 15.(2019•东营)如图,在Rt ABC 中,90ACB ∠=︒,分别以点B 和点C 为圆心,大于12BC 的长为半径作弧,两弧相交于D E ,两点,作直线DE 交AB 于点F ,交BC 于点G ,连接CF .若3AC =,2CG =,则CF 的长为A .52B .3C .2D .7216.(2019•某某)如图,在Rt ABC △中,90C ∠=︒,以顶点B 为圆心,适当长度为半径画弧,分别交AB BC ,于点M N ,,再分别以点M N ,为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线BP 交AC 于点D .若30A ∠=︒,则BCDABDS S =△△__________.17.(2019•贵港)尺规作图(只保留作图痕迹,不要求写出作法):如图,已知ABC △,请根据“SAS ”基本事实作出DEF △,使DEF ABC △≌△.18.(2019•某某)如图,已知等腰ABC △顶角30A ∠=︒.(1)在AC 上作一点D ,使AD BD =(要求:尺规作图,保留作图痕迹,不必写作法和证明,最后用黑色墨水笔加墨);(2)求证:BCD △是等腰三角形.19.(2019•某某)图①、图②、图③均是6×6的正方形网格,每个小正方形的顶点称为格点,小正方形的边长为1,点A B C D E F 、、、、、均在格点上.在图①、图②、图③中,只用无刻度的直尺,在给定的网格中按要求画图,所画图形的顶点均在格点上,不要求写出画法. (1)在图①中以线段AB 为边画一个ABM △,使其面积为6. (2)在图②中以线段CD 为边画一个CDN △,使其面积为6.(3)在图③中以线段EF 为边画一个四边形EFGH ,使其面积为9,且.20.(2019•某某)图1、2是两X 形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC 的两个端点均在小正方形的顶点上.(1)在图1中画出以AC 为底边的等腰直角ABC △,点B 在小正方形顶点上;(2)在图2中画出以AC 为腰的等腰ACD △,点D 在小正方形的顶点上,且ACD △的面积为8.21.(2019•某某)如图,点M 和点N 在AOB 内部.∠两边的距离也相等(保留作图(1)请你作出点P,使点P到点M和点N的距离相等,且到AOB痕迹,不写作法);(2)请说明作图理由.22.(2019•某某)如图,AB为O的直径,点C在O上.∠的平分线,与O交于点D;连接OD,交BC于点E(不写作法,只保(1)尺规作图:作BAC留作图痕迹,且用黑色墨水笔将作图痕迹加黑);(2)探究OE与AC的位置及数量关系,并证明你的结论.23.(2019•某某)已知:AC 是ABCD 的对角线.(1)用直尺和圆规作出线段AC 的垂直平分线,与AD 相交于点E ,连接CE .(保留作图痕迹,不写作法);(2)在(1)的条件下,若35AB BC ==,,求DCE △的周长.24.(2019•某某)如图,在△ABC 中,AC <AB <BC .(1)已知线段AB 的垂直平分线与BC 边交于点P ,连接AP ,求证:∠APC =2∠B .(2)以点B 为圆心,线段AB 的长为半径画弧,与BC 边交于点Q ,连接AQ .若∠AQC =3∠B ,求 ∠B 的度数.25.(2019•某某)图①,图②均为4×4的正方形网格,每个小正方形的顶点称为格点.在图①中已画出线段AB ,在图②中已画出线段CD ,其中A 、B 、C 、D 均为格点,按下列要求画图:(1)在图①中,以AB为对角线画一个菱形AEBF,且E,F为格点;(2)在图②中,以CD为对角线画一个对边不相等的四边形CGDH,且G,H为格点,∠CGD=∠CHD=90°.26.(2019•某某)如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点.四边形ABCD 的顶点在格点上,点E是边DC与网格线的交点.请选择适当的格点,用无刻度的直尺在网格中完成下列画图,保留连线的痕迹,不要求说明理由.(1)如图1,过点A画线段AF,使AF∥DC,且AF=DC.(2)如图1,在边AB上画一点G,使∠AGD=∠BGC.(3)如图2,过点E画线段EM,使EM∥AB,且EM=AB.27.(2019•某某)在△ABC中,AB=AC,点A在以BC为直径的半圆内.请仅用无刻度的直尺分别按下列要求画图(保留画图痕迹).(1)在图1中作弦EF,使EF∥BC;(2)在图2中以BC为边作一个45°的圆周角.1.【答案】B【解析】由作图的痕迹可知:点D 是线段BC 的中点,∴线段AD 是△ABC 的中线,故选B . 如图,在△ABC 中,∠C =90°,∠B =40°. 2.【解析】(1)如图,AD 为所作;(2)∵∠C =90°,∠B =40°.∴∠BAC =90°–40°=50°, ∵AD 平分∠BAC ,∴∠BAD =12∠BAC =25°, ∴∠ADC =∠B +∠BAD =40°+25°=65°.3.【解析】首先作一条射线,进而截取AB =A ′B ′,∠CAB =∠C ′A ′B ′,进而截取AC =A ′C ′,进而得出答案.如图所示:△A ′B ′C ′即为所求.1.【答案】C【解析】根据已知条件作符合条件的三角形,需要使三角形的要素符合要求,或者是作边等于已知线段,考点冲关变式拓展或者是作角等于已知角,故选C.2.【答案】D【解析】选项A,画线段MN=3cm,需要知道长度,而尺规作图中的直尺是没有长度的,错误;选项B,用量角器画出∠AOB的平分线,量角器不在尺规作图的工具里,错误;选项C,用三角尺作过点A垂直于直线l的直线,三角尺也不在作图工具里,错误;选项D,正确.故选D.3.【答案】A【解析】由作法可得BH为线段AD的垂直平分线,故选A.4.【答案】D【解析】作图痕迹中,弧FG是以点E为圆心,DM为半径的弧,故选D.5.【答案】A【解析】由题意得AG为∠CAB的角平分线,则∠ADC=25°,∵∠C=90°,∴∠ADC=65°,故选A.6.【答案】A【解析】(甲)如图一所示,∵△ABC为等边三角形,AD是∠BAC的角平分线,∴∠BEA=90°,∴∠BED=90°,∴∠BEA=∠BED=90°,由甲的作法可知,AB=BD,∴∠ABC=∠DBC,在△ABC与△DBC中,AB BDABC DBC BC BC⎪∠⎪⎩∠⎧⎨===,∴△ABC ≌△DBC ,故甲的作法正确; (乙)如图二所示,∵BD ∥AC ,CD ∥AB ,∴∠ABC =∠DCB ,∠ACB =∠DBC ,在△ABC 和△DCB 中,ABC DCB BC CB ACB DBC ∠∠∠⎧⎪⎪⎩∠⎨===,∴△ABC ≌△DCB (ASA ),∴乙的作法是正确的.故选A . 7.【答案】40°【解析】∵根据作图过程和痕迹发现MN 垂直平分AB , ∴DA =DB ,∴∠DBA =∠A =35°,∵CD =BC ,∴∠CDB =∠CBD =2∠A =70°,∴∠C =40°, 故答案为:40°. 8.【答案】37【解析】∵AB =AC ,∠A =32°, ∴∠ABC =∠ACB =74°, 又∵BC =DC , ∴∠CDB =∠CBD =12∠ACB =37°, 故答案为:37. 9.【解析】作法:(1)分别以A ,B 点为圆心,以大于2AB的长为半径作弧,两弧相交于M ,N 两点; (2)作直线MN ,MN 即为线段AB 的垂直平分线.10.【解析】(1)射线BD即为所求.(2)∵∠A=90°,∠C=30°,∴∠ABC=90°﹣30°=60°,∵BD平分∠ABC,∴∠CBD=12∠ABC=30°,∴∠C=∠CBD=30°,∴DC=DB.1.【答案】A【解析】如图,连接FC,则AF=FC.∵AD∥BC,∴∠FAO=∠BCO.在△FOA与△BOC中,FAO BCOOA OCAOF COB∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△FOA≌△BOC(ASA),∴AF=BC=3,∴FC=AF=3,FD=AD-AF=4-3=1.在△FDC中,∵∠D=90°,∴CD2+DF2=FC2,∴CD2+12=32,∴CD=22A.2.【答案】C【解析】由作法得AG平分∠BAC,∴G点到AC的距离等于BG的长,即G点到AC的距离为1,直通中考所以△ACG的面积=12×4×1=2.故选C.3.【答案】D【解析】由作图知CM=CD=DN,∴∠=∠COD,故A选项正确;∵OM=ON=MN,∴△OMN是等边三角形,∴∠MON=60°,∵CM=CD=DN,∴∠MOA=∠AOB=∠BON=13∠MON=20°,故B选项正确;∵∠MOA=∠AOB=∠BON=20°,∴∠OCD=∠OCM=80°,∴∠MCD=160°,又∠CMN=12∠AON=20°,∴∠MCD+∠CMN=180°,∴MN∥CD,故C选项正确;∵MC+CD+DN>MN,且CM=CD=DN,∴3CD>MN,故D选项错误,故选D.4.【答案】C【解析】由作法得CG⊥AB,∵AC=BC,∴CG平分∠ACB,∠A=∠B,∵∠ACB=180°-40°-40°=100°,∴∠BCG=12∠ACB=50°.故选C.5.【答案】C【解析】由作法得BD平分∠ABC,所以A选项的结论正确;∵∠C=90°,∠A=30°,∴∠ABC=60°,∴∠ABD=30°=∠A,∴AD=BD,所以B选项的结论正确;∵∠CBD=12∠ABC=30°,∴BD=2CD,所以D选项的结论正确;∴AD=2CD,∴S△ABD=2S△CBD,所以C选项的结论错误.故选C.6.【答案】C【解析】∵四边形ABCD为矩形,∴AE=CE,而OA=OC,∴OE为∠AOC的平分线.故选C.7.【答案】C【解析】三角形外心为三边的垂直平分线的交点,由基本作图得到C选项作了两边的垂直平分线,从而可用直尺成功找到三角形外心.故选C . 8.【答案】B【解析】在△ABC 中,∵∠B =30°,∠C =90°,∴∠BAC =180°-∠B -∠C =60°,由作图可知MN 为AB 的中垂线,∴DA =DB ,∴∠DAB =∠B =30°,∴∠CAD =∠BAC -∠DAB =30°,故选B . 9.【答案】D【解析】由作图可知:AC =AD =BC =BD ,∴四边形ACBD 是菱形,故选D . 10.【解析】(1)如图,∠ADE 为所作.(2)∵∠ADE =∠B , ∴DE ∥BC , ∴AE ADEC DB==2. 11.【答案】B【解析】∵2ADC B ∠=∠且ADC B BCD ∠=∠+∠, ∴B BCD ∠=∠, ∴DB DC =,∴点D 是线段BC 中垂线与AB 的交点,故选B . 12.【答案】D【解析】由作法得CE ⊥AB ,则∠AEC =90°,AC =AB =BE +AE =2+1=3,在Rt△ACE 中,CE =.故选D . 13.【答案】A【解析】作线段BC 的垂直平分线可得线段BC 的中点. 由此可知:选项A 符合条件,故选A . 14.【答案】C【解析】由作图步骤可得:OE 是AOB ∠的角平分线,∴∠COE =∠DOE , ∵OC =OD ,OE =OE ,OM =OM ,∴△COE ≌△DOE ,∴∠CEO =∠DEO , ∵∠COE =∠DOE ,OC =OD ,∴CM =DM ,OM ⊥CD , ∴S 四边形OCED =S △COE +S △DOE =111222OE CM OE DM CD OE ⋅+⋅=⋅, 但不能得出OCD ECD ∠=∠,∴A 、B 、D 选项正确,不符合题意,C 选项错误,符合题意,故选C . 15.【答案】A【解析】由作法得GF 垂直平分BC , ∴FB FC =,2CG BG ==,FG BC ⊥, ∵90ACB ∠=︒,∴FG AC ∥,∴BF CF =, ∴CF 为斜边AB 上的中线, ∵22345AB =+=,∴1522CF AB ==.故选A . 16.【答案】12【解析】由作法得BD 平分ABC ∠, ∵90C =︒∠,30A ∠=︒,∴,∴30ABD CBD ∠=∠=︒,∴DA DB =, 在Rt BCD △中,2BD CD =,∴2AD CD =,∴12BCD ABD S S =△△.故答案为:12. 17.【解析】如图,DEF △即为所求.18.【解析】(1)如图,点D 为所作.(2)∵AB AC =, ∴1(18036)722ABC C ︒=-︒∠∠==︒, ∵DA DB =,∴36ABD A ∠=∠=︒,∴363672BDC A ABD ∠=∠+∠=︒+=︒︒, ∴BDC C ∠=∠, ∴BCD △是等腰三角形.19.【解析】(1)如图①所示,ABM △即为所求.(2)如图②所示,CDN △即为所求. (3)如图③所示,四边形EFGH 即为所求.20.【解析】(1)作AC 的垂直平分线,作以AC 为直径的圆,垂直平分线与圆的交点即为点B .(2)以C 为圆心,AC 为半径作圆,格点即为点D .21.【解析】(1)如图,作∠AOB 的角平分线与线段MN 的垂直平分线交于P 点,即点P 到点M 和点N 的距离相等,且到AOB ∠两边的距离也相等.(2)理由:角的平分线上的点到角的两边的距离相等、直平分线上的点到线段两端点的距离相等. 22.【解析】(1)如图所示:(2)OE AC ∥,12OE AC =. 理由如下:∵AD 平分BAC ∠,∴12BAD BAC ∠=∠, ∵12BAD BOD ∠=∠,∴BOD BAC ∠=∠, ∴OE AC ∥, ∵OA OB =,∴OE 为ABC △的中位线, ∴OE AC ∥,12OE AC =. 23.【解析】(1)如图,CE 为所作.(2)∵四边形ABCD 为平行四边形,∴53AD BC CD AB ====,, ∵点E 在线段AC 的垂直平分线上, ∴EA EC =,∴DCE △的周长538CE DE CD EA DE CD AD CD =++=++=+=+=. 24.【解析】(1)∵线段AB 的垂直平分线与BC 边交于点P ,∴PA =PB , ∴∠B =∠BAP , ∵∠APC =∠B +∠BAP , ∴∠APC =2∠B .(2)根据题意可知BA =BQ , ∴∠BAQ =∠BQA ,∵∠AQC =3∠B ,∠AQC =∠B +∠BAQ , ∴∠BQA =2∠B ,∵∠BAQ +∠BQA +∠B =180°, ∴5∠B =180°,∴∠B =36°.25.【解析】(1)如图,菱形AEBF 即为所求.(2)如图,四边形CGDH 即为所求.26.【解析】(1)如图所示,线段AF 即为所求.(2)如图所示,点G 即为所求. (3)如图所示,线段EM 即为所求.27.【解析】(1)如图1,EF为所作.(2)如图2,∠BCD为所作.。

2019-2020学年九年级数学中考练习:二次函数选择题基础训练(含解析)

2019-2020学年九年级数学中考练习:二次函数选择题基础训练(含解析)

2019-2020中考数学二次函数基础选择题课时练班级:姓名:评价:1.下列对二次函数y=x2﹣x的图象的描述,正确的是()A.开口向下B.对称轴是y轴C.经过原点D.在对称轴右侧部分是下降的2.已知一次函数y=x+c的图象如图,则二次函数y=ax2+bx+c在平面直角坐标系中的图象可能是()A.B.C.D.3.抛物线y=3(x﹣2)2+5的顶点坐标是()A.(﹣2,5)B.(﹣2,﹣5)C.(2,5)D.(2,﹣5)4.用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+7 B.y=(x﹣4)2﹣25 C.y=(x+4)2+7 D.y=(x+4)2﹣255.抛物线y=(x﹣2)2﹣1可以由抛物线y=x2平移而得到,下列平移正确的是()A.先向左平移2个单位长度,然后向上平移1个单位长度B.先向左平移2个单位长度,然后向下平移1个单位长度C.先向右平移2个单位长度,然后向上平移1个单位长度D.先向右平移2个单位长度,然后向下平移1个单位长度6.将抛物线y=﹣5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为()A.y=﹣5(x+1)2﹣1 B.y=﹣5(x﹣1)2﹣1 C.y=﹣5(x+1)2+3 D.y=﹣5(x﹣1)2+37.已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且﹣2≤x≤1时,y的最大值为9,则a的值为()A.1或﹣2 B.或C.D.18.对于题目“一段抛物线L:y=﹣x(x﹣3)+c(0≤x≤3)与直线l:y=x+2有唯一公共点,若c为整数,确定所有c的值,”甲的结果是c=1,乙的结果是c=3或4,则()A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确9.已知坐标平面上有一直线L,其方程式为y+2=0,且L与二次函数y=3x2+a的图形相交于A,B两点:与二次函数y=﹣2x2+b的图形相交于C,D两点,其中a、b为整数.若AB=2,CD=4.则a+b之值为何?()A.1 B.9 C.16 D.2410.在平面直角坐标系xOy中,已知点M,N的坐标分别为(﹣1,2),(2,1),若抛物线y=ax2﹣x+2(a≠0)与线段MN有两个不同的交点,则a的取值范围是()A.a≤﹣1或≤a<B.≤a<C.a≤或a>D.a≤﹣1或a≥11.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则以下结论同时成立的是()A.B.C.D.12.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()A.1 B.2 C.3 D.413.如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x 轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab <0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤14.抛物线y=ax2+bx+c的对称轴为直线x=﹣1,部分图象如图所示,下列判断中:①abc>0;②b2﹣4ac>0;③9a﹣3b+c=0;④若点(﹣0.5,y1),(﹣2,y2)均在抛物线上,则y1>y2;⑤5a﹣2b+c<0.其中正确的个数有()A.2 B.3 C.4 D.515.如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是直线x=1,下列结论正确的是()A.b2<4ac B.ac>0 C.2a﹣b=0 D.a﹣b+c=016.四位同学在研究函数y=x2+bx+c(b,c是常数)时,甲发现当x=1时,函数有最小值;乙发现﹣1是方程x2+bx+c=0的一个根;丙发现函数的最小值为3;丁发现当x=2时,y=4,已知这四位同学中只有一位发现的结论是错误的,则该同学是()A.甲B.乙C.丙D.丁答案提示1.【分析】A、由a=1>0,可得出抛物线开口向上,选项A不正确;B、根据二次函数的性质可得出抛物线的对称轴为直线x=,选项B不正确;C、代入x=0求出y值,由此可得出抛物线经过原点,选项C正确;D、由a=1>0及抛物线对称轴为直线x=,利用二次函数的性质,可得出当x >时,y随x值的增大而减小,选的D不正确.综上即可得出结论.【解答】解:A、∵a=1>0,∴抛物线开口向上,选项A不正确;B、∵﹣=,∴抛物线的对称轴为直线x=,选项B不正确;C、当x=0时,y=x2﹣x=0,∴抛物线经过原点,选项C正确;D、∵a>0,抛物线的对称轴为直线x=,∴当x>时,y随x值的增大而减小,选的D不正确.故选:C.2.【分析】根据一次函数图象经过的象限,即可,与y轴的交点在y轴负正半轴,再对照四个选项中的图象即可得出结论.【解答】解:观察函数图象可知:<0、c>0,∴二次函数y=ax2+bx+c的图象对称轴x=﹣>0,与y轴的交点在y轴负正半轴.故选:A.得出<0、c>0,由此即可得出:二次函数y=ax2+bx+c的图象对称轴x=﹣>03.【分析】根据二次函数的性质y=a(x+h)2+k的顶点坐标是(﹣h,k)即可求解.【解答】解:抛物线y=3(x﹣2)2+5的顶点坐标为(2,5),故选:C.4.【分析】直接利用配方法进而将原式变形得出答案.【解答】解:y=x2﹣8x﹣9=x2﹣8x+16﹣25=(x﹣4)2﹣25.故选:B.5.【分析】抛物线平移问题可以以平移前后两个解析式的顶点坐标为基准研究.【解答】解:抛物线y=x2顶点为(0,0),抛物线y=(x﹣2)2﹣1的顶点为(2,﹣1),则抛物线y=x2向右平移2个单位,向下平移1个单位得到抛物线y=(x ﹣2)2﹣1的图象.故选:D.6.【分析】直接利用二次函数图象与几何变换的性质分别平移得出答案.【解答】解:将抛物线y=﹣5x2+1向左平移1个单位长度,得到y=﹣5(x+1)2+1,再向下平移2个单位长度,所得到的抛物线为:y=﹣5(x+1)2﹣1.故选:A.7.【分析】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a>0,然后由﹣2≤x≤1时,y的最大值为9,可得x=1时,y=9,即可求出a.【解答】解:∵二次函数y=ax2+2ax+3a2+3(其中x是自变量),∴对称轴是直线x=﹣=﹣1,∵当x≥2时,y随x的增大而增大,∴a>0,∵﹣2≤x≤1时,y的最大值为9,∴x=1时,y=a+2a+3a2+3=9,∴3a2+3a﹣6=0,∴a=1,或a=﹣2(不合题意舍去).故选:D.8.【分析】两函数组成一个方程组,得出一个方程,求出方程中的△=﹣4+4c=0,求出即可.【解答】解:把y=x+2代入y=﹣x(x﹣3)+c得:x+2=﹣x(x﹣3)+c,即x2﹣2x+2﹣c=0,所以△=(﹣2)2﹣4×1×(2﹣c)=﹣4+4c=0,解得:c=1,所以甲的结果正确;故选:A.9.【分析】判断出A、C两点坐标,利用待定系数法求出a、b即可;【解答】解:如图,由题意A(1,﹣2),C(2,﹣2),分别代入y=3x2+a,y=﹣2x2+b可得a=﹣5,b=6,∴a+b=1,故选:A.10.【分析】根据二次函数的性质分两种情形讨论求解即可;【解答】解:∵抛物线的解析式为y=ax2﹣x+2.观察图象可知当a<0时,x=﹣1时,y≤2时,且﹣≥﹣1,满足条件,可得a ≤﹣1;当a>0时,x=2时,y≥1,且抛物线与直线MN有交点,且﹣≤2满足条件,∴a≥,∵直线MN的解析式为y=﹣x+,由,消去y得到,3ax2﹣2x+1=0,∵△>0,∴a<,∴≤a<满足条件,综上所述,满足条件的a的值为a≤﹣1或≤a<,故选:A.11.【分析】利用抛物线开口方向得到a>0,利用抛物线的对称轴在直线x=1的右侧得到b<0,b<﹣2a,即b+2a<0,利用抛物线与y轴交点在x轴下方得到c<0,也可判断abc>0,利用抛物线与x轴有2个交点可判断b2﹣4ac>0,利用x=1可判断a+b+c<0,利用上述结论可对各选项进行判断.【解答】解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴在直线x=1的右侧,∴x=﹣>1,∴b<0,b<﹣2a,即b+2a<0,∵抛物线与y轴交点在x轴下方,∴c<0,∴abc>0,∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,∵x=1时,y<0,∴a+b+c<0.故选:C.12.【分析】直接利用二次函数的开口方向以及图象与x轴的交点,进而分别分析得出答案.【解答】解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;②当x=﹣1时,a﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),∴A(3,0),故当y>0时,﹣1<x<3,故④正确.故选:B.13.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴判定b与0的关系以及2a+b=0;当x=﹣1时,y=a﹣b+c;然后由图象确定当x取何值时,y>0.【解答】解:①∵对称轴在y轴右侧,∴a、b异号,∴ab<0,故正确;②∵对称轴x=﹣=1,∴2a+b=0;故正确;③∵2a+b=0,∴b=﹣2a,∵当x=﹣1时,y=a﹣b+c<0,∴a﹣(﹣2a)+c=3a+c<0,故错误;④根据图示知,当m=1时,有最大值;当m≠1时,有am2+bm+c≤a+b+c,所以a+b≥m(am+b)(m为实数).故正确.⑤如图,当﹣1<x<3时,y不只是大于0.故错误.故选:A.14.【分析】根据二次函数的性质一一判断即可.【解答】解:∵抛物线对称轴x=﹣1,经过(1,0),∴﹣=﹣1,a+b+c=0,∴b=2a,c=﹣3a,∵a>0,∴b>0,c<0,∴abc<0,故①错误,∵抛物线与x轴有交点,∴b2﹣4ac>0,故②正确,∵抛物线与x轴交于(﹣3,0),∴9a﹣3b+c=0,故③正确,∵点(﹣0.5,y1),(﹣2,y2)均在抛物线上,﹣1.5>﹣2,则y1<y2;故④错误,∵5a﹣2b+c=5a﹣4a﹣3a=﹣2a<0,故⑤正确,故选:B.15.【分析】根据抛物线与x轴有两个交点有b2﹣4ac>0可对A进行判断;由抛物线开口向上得a>0,由抛物线与y轴的交点在x轴下方得c<0,则可对B 进行判断;根据抛物线的对称轴是x=1对C选项进行判断;根据抛物线的对称性得到抛物线与x轴的另一个交点为(﹣1,0),所以a﹣b+c=0,则可对D选项进行判断.【解答】解:∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,所以A选项错误;∵抛物线开口向上,∴a>0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴ac<0,所以B选项错误;∵二次函数图象的对称轴是直线x=1,∴﹣=1,∴2a+b=0,所以C选项错误;∵抛物线过点A(3,0),二次函数图象的对称轴是x=1,∴抛物线与x轴的另一个交点为(﹣1,0),∴a﹣b+c=0,所以D选项正确;故选:D.16.【分析】假设两位同学的结论正确,用其去验证另外两个同学的结论,只要找出一个正确一个错误,即可得出结论(本题选择的甲和丙,利用顶点坐标求出b、c的值,然后利用二次函数图象上点的坐标特征验证乙和丁的结论).【解答】解:假设甲和丙的结论正确,则,解得:,∴抛物线的解析式为y=x2﹣2x+4.当x=﹣1时,y=x2﹣2x+4=7,∴乙的结论不正确;当x=2时,y=x2﹣2x+4=4,∴丁的结论正确.∵四位同学中只有一位发现的结论是错误的,∴假设成立.故选:B.。

初三数学专题复习试题九年级最新中考专题训练试卷含答案解析(20套)

初三数学专题复习试题九年级最新中考专题训练试卷含答案解析(20套)

初三数学专题复习试题九年级最新中考专题训练试卷含答案解析(20套)1.32的倒数是(). A .32 B .23 C .32- D .23-2.据报道,2010年苏州市政府有关部门将在市区完成130万平⽅⽶⽼住宅⼩区综合整治⼯作.130万(即1 300 000)这个数⽤科学记数法可表⽰为().A .1.3×104B .1.3×105C .1.3×106D .1.3×1073.记n S =n a a a +++ 21,令12n n S S S T n+++=,称n T 为1a ,2a ,……,n a 这列数的“理想数”。

已知1a ,2a ,……,500a 的“理想数”为2004,那么8,1a ,2a ,……,500a 的“理想数”为(). A .2004 B .2006 C .2008 D .20104.某汽车维修公司的维修点环形分布如图。

公司在年初分配给A 、B 、C 、D 四个维修点某种配件各50件。

在使⽤前发现需将A 、B 、C 、D 四个维修点的这批配件分别调整为40、45、54、61件,但调整只能在相邻维修点之间进⾏。

那么要完成上述调整,最少的调动件次(n 件配件从⼀个维修点调整到相邻维修点的调动件次为n )为().A .15B .16C .17D .185.在2,1,0,1-这四个数中,既不是正数也不是负数的是…………………………()A )1- B )0 C )1 D )26. 2010年⼀季度,全国城镇新增就业⼈数为289万⼈,⽤科学记数法表⽰289万正确的是()A )2.89×107.B )2.89×106 .C )2.89×105..7.下⾯两个多位数1248624……、6248624……,都是按照如下⽅法得到的:将第⼀位数字乘以2,若积为⼀位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位。

对第2位数字再进⾏如上操作得到第3位数字……,后⾯的每⼀位数字都是由前⼀位数字进⾏如上操作得到的。

(整理版)中考基础训练20

(整理版)中考基础训练20

中考根底训练20班级 学号 成绩1.以下运算正确的选项是〔 〕 〔A 〕〔B 〕〔C 〕〔D 〕2.我们知道,五星红旗上有五颗五角星,每一颗五角星有五个相等的锐角(如图),每个锐角等于〔 〕〔A 〕30o〔B 〕36o〔C 〕45o〔D 〕60o3.据某网站报道:一粒废旧纽扣电池可以使600吨水受到污染.某 校团委四年来共回收废旧纽扣电池3 500粒.假设这3 500粒废旧纽 扣电池可以使m 吨水受到污染.用科学记数法表示m 为〔 〕 ×105×10-5×106×10-6动鞋的鞋码统计如下表:如果获奖运发动李伟领取的奖品是43(原鞋码)的运动鞋,那么这双运动鞋的新鞋码是〔 〕 〔A 〕270 〔B 〕255 〔C 〕260 〔D 〕265 5.-1<b <0, 0<a <1,那么在代数式a -b 、a+b 、a+b 2、a 2+b中,对任意的a 、b ,对应的代数式的值最大的是〔 〕(A) a+b (B) a -b (C) a+b 2(D) a 2+b6.如果2m 、m 、1-m 这三个实数在数轴上所对应的点从左到右依次排 列,那么m 的 取值 范围是 〔 〕 (A) m >0 (B) m >21 (C) m <0 ( D) 0<m <21 7.如图,大正方形中有2个小正方形,如果它们的面积分别是 S 1、S2 ,那么S 1、S 2的大小关系是〔 〕(A) S 1 > S 2 (B) S 1 = S 2 (C) S 1<S 2 (D) S 1、S 2 的大小关系不确定8.刚刚喜迁新居的小华同学为估计今年六月份(30天)的家庭用电量,在六月上旬连续7天同一时刻观察电表显示的度数并记录如下:新鞋码〔y 〕 225 245 (280)原鞋码〔x 〕 3539 (46)日 期 1号 2号 3号 4号 5号 6号 7号 电表显示数〔度〕 24273135424548你预计小华同学家六月份用电总量约是〔A 〕1080度 〔B 〕 124度 〔C 〕103度 〔D 〕120度9.某二元方程的解是⎩⎨⎧+-==12,2m y m x 假设把x 看作平面直角坐标系中点的横坐标,y 看作平面直角坐标系中点的纵坐标,下面说法正确的选项是(A)点〔x ,y 〕一定不在第一象限 〔B 〕点〔x ,y 〕一定不是坐标原点 〔C 〕y 随x 的增大而增大 〔D 〕y 随x 的增大而减小数的性质发现以下规律:对于任意正数a 、b , 都有a+b ≥2ab 成立.某同学在做一 个面积为3 600cm 2,对角线相互垂直的四边形风筝时,运用上述 规律,求得用来做对角线用的竹条至少需要准备x cm . 那么x 的值是(A) 1202 (B) 602 (C) 120 (D) 60 11.某商店出售以下形状的地板砖:①正三角形;②正方形;③正五边形;④正六边形.如果只限于用一种地板砖镶嵌地面,那么不能选购的地板砖序号是________.12.近年来市政府不断加大对城市绿化的经济投入,使全市绿地面积不断增加.从底到底城市绿地面积变化如下图,那么绿地面积的年平均增长率是__________. 13.如果m 、n 是两个不相等的实数,且满足,那么代数式.14.以下等式: ① 13=12; ② 13+23=32; ③ 13+23+33=62; ④ 13+23+33+43=102; …… ……由此规律知,第⑤个等式是 . 15. 如图,a ∥b ,c ∥d ,∠1=113°,求∠2、∠3的度数.。

九年级数学中考基础训练20-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试

九年级数学中考基础训练20-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试

九年级数学中考基础训练20-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试卷下载---------------------------------------中考基础训练(20)时间:30分钟你实际使用分钟班级姓名学号成绩一、精心选一选1.如图1,在平面直角坐标系中,点的坐标是()A.B.C.D.2.在中,,,则的值是()A.B.C.D.3.如图2,,则的度数为()A.B.C.D.4.下列各式运算结果为的是()A.B.C.D.5.小伟五次数学考试成绩分别为:86分,78分,80分,85分,92分,李老师想了解小伟数学学习变化情况,则李老师最关注小伟数学成绩的()A.平均数B.众数C.中位数D.方差6.如图3,数轴上点表示的数可能是()A.B.C.D.7.如图4,点都是方格纸中的格点,为使,则点应是四点中的()A.B.C.D.8.图5能折叠成的长方体是()二、细心填一填9.的绝对值等于.10.某水井水位最低时低于水平面5米,记为米,最高时低于水平面1米,则水井水位米中的取值范围是.11.已知两圆的圆心距为3,的半径为1,的半径为2,则与的位置关系为.12.如图6,点是外一点,切于点,,则度数为.13.大连某小区准备在每两幢楼房之间,开辟面积为300平方米的一块长方形绿地,并且长比宽多10米,设长方形绿地的宽为米,则可列方程为.14.如图7,双曲线与直线相交于两点,点坐标为,则点坐标为.15.图8是二次函数的图象,则的值是.三、解答题16.已知方程的解是,求关于的方程的解.答案:一、选择题1.A;2.B;3.C;4.A;5.D;6.B;7.C;8.D.二、填空题9.2;10.;11.外切;12.;13.;14.;15.1.三、解答题16.解:.方程两边同时乘以,得.解得.经检验,是原方程的解,所以原方程的解为.即.把代入,得.解得.感谢阅读,欢迎大家下载使用!。

江苏省淮安市2020年九年级数学数学中考基础冲刺训练(含答案)

江苏省淮安市2020年九年级数学数学中考基础冲刺训练(含答案)

2020年江苏省淮安市数学中考基础冲刺训练一.选择题(每题3分,满分24分)1.若一个数的绝对值是4,则这个数是()A.4 B.±C.±4 D.﹣2.计算a2•a3,结果正确的是()A.a5B.a6C.a8D.a93.2019年10月1日庆祝建国70周年阅兵在首都北京隆重举行,本次阅兵约15000人参加,这是我国近几次阅兵中规模最大的一次,将数据15000用科学记数法表示为()A.15×103 B.0.15×105 C.1.5×104 D.1.5×1054.如图是由6个大小相同的小正方体摆成的立体图形,它的主视图是()A.B.C.D.5.若三角形三边长分别为2,x,3,且x为正整数,则这样的三角形个数为()A.2 B.3 C.4 D.56.抽样调查某班10名同学身高(单位:厘米)如下:160,152,165,152,160,160,170,160,165,159.则这组数据的众数是()A.152 B.160 C.165 D.1707.若关于x的一元二次方程(a﹣6)x2﹣2x+3=0有实数根,则整数a的最大值是()A.4 B.5 C.6 D.78.验光师测得一组关于近视眼镜的度数y(度)与镜片焦距x(米)的对应数据如下表,根据表中数据,可得y关于x的函数表达式为()近视眼镜的度数y(度)200 250 400 500 1000镜片焦距x(米)0.50 0.40 0.25 0.20 0.10A.y =B.y =C.y =D.y =二.填空题(每题3分,满分24分)9.因式分解:x2﹣6xy+9y2=.10.在光明中学组织的全效师生迎“五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示.这些成绩的中位数是.11.方程﹣1=0的解是.12.一个多边形的内角和是720°,这个多边形的边数是.13.不等式组的解为x>2,则a的取值范围是.14.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2,扇形的圆心角θ=120°,则该圆锥母线l的长为.15.如图,已知l1∥l2∥l3,直线l4、l5被这组平行线所截,且直线l4、l5相交于点E,已知AE=EF=1,FB=3,则=.16.如图,在矩形ABCD中,AB=3,BC=2,H是AB的中点,将△CBH沿CH折叠,点B落在矩形内点P处,连接AP,则tan∠HAP=.三.解答题17.(10分)计算:(1)|﹣5|﹣(﹣3)2﹣(cos30°+2)0.(2)(a﹣b)2﹣a(a﹣2b).18.(8分)化简求值:,其中x=.19.七(1)班五位同学参加学校举办的数学素养党赛试卷中共有20道题,规定每题答对得5分,答错扣2分,未答得0分.赛后A,B,C,D,E五位同学对照评分标准回忆并记录了自己的答题情况(E同学只记得有7道題未答),具体如下表:参赛同学答对题数答错题数未答题数A19 0 1B17 2 1C15 2 3D17 1 2E/ / 7最后从公布的竞赛成绩中获知A,B,C,D,E五位同学的实际成绩分别是95分,81分,57分,83分,58分(1)求E同学的答对题数和答错题数;(2)若A,B,C,D四位同学中有一位同学记错了自己的答题情况.请指出哪位同学记错了,并写出他的实际答题情况.20.如图所示,在▱ABCD中,AE平分∠BAD交BC边于E,EF⊥AE交CD于F.(1)求证:CE=CF;(2)延长AD、EF交于点H,延长BA到G,使AG=CF,若AD=7,DF=3,EH=2AE,求GF的长.21.(8分)对垃圾进行分类投放,能有效提高对垃圾的处理和再利用,减少污染,保护环境.为了调查同学们对垃圾分类知识的了解程度,增强同学们的环保意识,普及垃圾分类及投放的相关知识,某校数学兴趣小组的同学设计了“垃圾分类知识及投放情况”问卷,并在本校随机抽取部分同学进行问卷测试,把测试成绩分成“优、良、中、差”四个等级,绘制了如下不完整的统计图:根据以上统计信息,解答下列问题:(1)求成绩是“优”的人数占抽取人数的百分比;(2)求本次随机抽取问卷测试的人数;(3)请把条形统计图补充完整;(4)若该校学生人数为3000人,请估计成绩是“优”和“良”的学生共有多少人?参考答案一.选择1.解:因为|±4|=4,所以这个数是±4,故选:C.2.解:a2•a3=a5,故选:A.3.解:将数据15000用科学记数法表示为1.5×104.故选:C.4.解:从物体正面看,左边3个正方形,中间1个正方形,右边1个正方形.故选:C.5.解:由题意可得,3﹣2<x<3+2,解得1<x<5,∵x为整数,∴x为2,3,4,∴这样的三角形个数为3.故选:B.6.解:数据160出现了4次为最多,故众数是160,故选:B.7.解:根据题意得a﹣6≠0且△=(﹣2)2﹣4•(a﹣6)•3≥0,解得a≤且a≠6,所以整数a的最大值为5.故选:B.8.解:由表格中数据可得:xy=100,故y关于x的函数表达式为:y=.故选:A.二.填空9.解:原式=x2﹣2•x•3y+(3y)2=(x﹣3y)2,故答案为:(x﹣3y)210.解:共有25个数,最中间的数为第13数,是96,所以数据的中位数为96分.故答案为:96.11.解:1﹣x=0,∴x=1经检验,x=1是原分式方程的解.故答案为:x=1.12.解:∵多边形的内角和公式为(n﹣2)•180°,∴(n﹣2)×180°=720°,解得n=6,∴这个多边形的边数是6.故答案为:6.13.解:由不等式组的解为x>2,可得a≤2.故答案为:a≤214.解:根据题意得2π×2=,解得,l=6,即该圆锥母线l的长为6.故答案为6.15.解:∵l1∥l2,AE=EF=1,∴==1,∴FG=AC;∵l2∥l3,∴==,∴==,故答案为.16.解:如图,连接PB,交CH于E,由折叠可得,CH垂直平分BP,∴E为BP的中点,又∵H为AB的中点,∴HE是△ABP的中位线,∴AP∥HE,∴∠BAP=∠BHE,又∵Rt△BCH中,tan∠BHC==,∴tan∠HAP=,故答案为:.三.解答17.解:(1)原式=5﹣9﹣1=﹣5;(2)原式=a2﹣2ab+b2﹣a2+2ab=b2.18.解:原式=•==﹣x(x+1)=﹣x2﹣x当x=时,原式=﹣2﹣.19.解:(1)设E同学的答对题数为x条,则答错y条.由题意解得答:设E同学的答对题数为12条,则答错1条.(2)C同学错了自己的答题情况.应该是对13题,错4题,没有答3题.20.证明:(1)∵四边形ABCD是平行四边形∴∠BAD=∠C,AD∥BC∴∠DAE=∠AEB∵AE平分∠DAB∴∠BAE=∠DAE=∠BAD∴∠BAE=∠AEB=∠BAD∴AB=BE∵AE⊥EF∴∠AEF=90°∴∠AEB+∠FEC=90°,即∠BAD+∠FEC=90°∴∠C+∠FEC=90°∵∠C+∠FEC+∠EFC=180°∴∠C+∠EFC=90°∴∠EFC=∠FEC∴CE=CF(2)如图连接AC,作AP⊥BC于P∵四边形ABCD是平行四边形∴AB=CD,AD=BC=7,AB∥CD∵CE=CF∴BC﹣BE=CD﹣DF,且AB=BE=CD∴7﹣AB=AB﹣3∴AB=5=BE=CD∴CE=CF=2∵AD∥BC∴∠H=∠FEC,且∠FEC=∠EFC,∠DFH=∠EFC∴∠H=∠DFH∴DH=DF=3∴AH=10在Rt△AEH中,AH2=AE2+EH2,且EH=2AE∴5AE2=100∴AE=2在Rt△ABP和Rt△APE中AP2=AB2﹣BP2,AP2=AE2﹣PE2.∴AB2﹣BP2=AE2﹣PE2.∴25﹣BP2=20﹣(5﹣BP)2.∴BP=3∴AP=4,PE=2,PC=4在Rt△APC中,AC==4∵AB∥CD,AG=CF∴四边形AGFC是平行四边形∴GF=AC=421.解:(1)成绩是“优”的人数占抽取人数的百分比是=20%;(2)本次随机抽取问卷测试的人数是40÷20%=200(人);(3)成绩是“中”的人数是200﹣(40+70+30)=60(人).条形统计图补充如下:(4)3000×=6050(人).答:成绩是“优”和“良”的学生共有6050人.11。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考基础训练(20)
时间:30分钟 你实际使用 分钟
班级 姓名 学号 成绩
一、精心选一选
1.如图1,在平面直角坐标系中,点E 的坐标是( )
A.(12), B.(21), C.(12)-, D.(12)-, 2.在ABC △中,90C ∠= ,34AC BC ==,,则sin A 的值是( ) A.
43
B.
45
C.
34
D.35
3.如图2,Rt Rt ABC DEF △≌△,则E ∠的度数为( ) A.30 B.45 C.60 D.90
4.下列各式运算结果为8x 的是( ) A.4
4
x x ·
B.44()x
C.162x x ÷
D.44x x +
5.小伟五次数学考试成绩分别为:86分,78分,80分,85分,92分,李老师想了解小伟数学学习变化情况,则李老师最关注小伟数学成绩的( ) A.平均数 B.众数 C.中位数 D.方差 6.如图3,数轴上点N 表示的数可能是( )
7.如图4,点A B C D E F G H K ,,,,,,,,都是78⨯方格纸中的格点,为使DEM ABC △∽△,则 点M 应是F G H K ,,,四点中的( )
A.F B.G C.H D.K
8.图5能折叠成的长方体是( )
0 1 2 3
4
1-
N
图3
图2
图4
二、细心填一填
9.2-的绝对值等于 .
10.某水井水位最低时低于水平面5米,记为5-米,最高时低于水平面1米,则水井水位h 米中h 的取值范围是 . 11.已知两圆的圆心距12O O 为3,1O 的半径为1,
2O 的半径为2,则1O 与2O 的位置关系为 . 12.如图6,点P 是O 外一点,PA 切O 于点A , 60O ∠= ,则P ∠度数为 .
13.大连某小区准备在每两幢楼房之间,开辟面积为300平方米的 一块长方形绿地,并且长比宽多10米,设长方形绿地的宽为x 米,则可列方程为 .
14.如图7,双曲线k
y x
=与直线y mx =相交于A B ,两点,
B 点坐标为(23)--,,则A 点坐标为 .
15.图8是二次函数221y ax x a =-+-的图象, 则a 的值是 .
三、解答题 16.已知方程
1
11
x =-的解是k ,求关于x 的方程20x kx +=的解. 答案:
一、选择题 1.A; 2.B; 3.C; 4.A; 5.D; 6.B; 7.C;
8.D. 二、填空题
P
图6 图
8

7
图 5
A. B. C. D.
9.2; 10.51h --≤≤;11.外切;12.30 ;13.(10)300x x +=; 14.(23),
;15.1. 三、解答题
16.解:1
11
x =-.
方程两边同时乘以(1)x -,得11x =-.
解得2x =.
经检验,2x =是原方程的解,所以原方程的解为2x =. 即2k =.
把2k =代入20x kx +=,得220x x +=. 解得1202x x ==-,.。

相关文档
最新文档