八上 平面直角坐标系 单元检测卷含答案

合集下载

第11章 平面直角坐标系 沪科版数学八年级上册单元测评(含答案)

第11章 平面直角坐标系 沪科版数学八年级上册单元测评(含答案)

第11章平面直角坐标系单元测评一、选择题1.(3分)根据下列表述,能确定位置的是( )A.红星电影院2排B.北京市四环路C.北偏东30°D.东经118°,北纬40°2.(3分)在平面直角坐标系中,已知点P(2,﹣3),则点P在( )A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)在如图所示的平面直角坐标系内,画在透明胶片上的▱ABCD,点A的坐标是(0,2).现将这张胶片平移,使点A落在点A′(5,﹣1)处,则此平移可以是( )A.先向右平移5个单位,再向下平移1个单位B.先向右平移5个单位,再向下平移3个单位C.先向右平移4个单位,再向下平移1个单位D.先向右平移4个单位,再向下平移3个单位4.(3分)已知A(﹣4,2),B(1,2),则A,B两点的距离是( )A.3个单位长度B.4个单位长度C.5个单位长度D.6个单位长度5.(3分)在平面直角坐标系x0y中,若A点坐标为(﹣3,3),B点坐标为(2,0),则△ABO 的面积为( )A.15B.7.5C.6D.36.(3分)若MN平行于y轴,点M坐标为(﹣5,2),点N距x轴的距离为3个单位,则点N坐标为( )A.(﹣5,3)B.(﹣5,3)或(﹣5,﹣3)C.(3,2)D.(3,2)或(﹣3,2)7.(3分)已知点P(x,y),且xy>0,点P到x轴的距离是3个单位,到y轴的距离是2个单位,则点P的坐标是( )A.(2,3)B.(3,2)C.(2,3)或(﹣2,﹣3)D.(﹣3,﹣2)8.(3分)若点A(,1)在第一象限,则点B(﹣a2,ab)在( )A.第一象限B.第二象限C.第三象限D.第四象限9.(3分)在平面直角坐标系中,点(﹣3,3)所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限10.(3分)将点A(2,1)向左平移2个单位长度得到点A′,则点A′的坐标是( )A.(2,3)B.(2,﹣1)C.(4,1)D.(0,1)11.(3分)定义:平面内的直线l1与l2相交于点O,对于该平面内任意一点M,点M到直线l1、l2的距离分别为a、b,则称有序非负实数对(a,b)是点M的“距离坐标”,根据上述定义,距离坐标为(2,3)的点的个数是( )A.2B.1C.4D.3二、填空题12.(3分)当a= 时,P(3﹣a,a+1)在y轴上,且到x轴的距离是 .13.(3分)如图,如果所在的位置坐标为(﹣1,﹣2),所在的位置坐标为(2,﹣2),则所在位置坐标为 .14.(3分)在平面直角坐标系中,规定把一个三角形先沿着x轴翻折,再向右平移2个单位长度称为1次变换.如图,已知等边三角形ABC的顶点A的坐标是(﹣2,﹣1﹣),把△ABC经过连续9次这样的变换得到△A′B′C′,则点A的对应点A′的坐标是 .15.(3分)在平面直角坐标中,△ABC的三个顶点的坐标分别是A(﹣2,3),B(﹣4,﹣1),C(2,0),将△ABC平移至△A1B1C1的位置,点A,B,C的对应点分别是A1,B1,C1,若点A1的坐标为(3,1),则点C1的坐标为 .16.(3分)八年级(2)班座位有6排8列,李永佳的座位在2排4列,简记为(2,4),班级座次表上写着王刚(5,8),那么王刚的座位在 .17.(3分)已知坐标平面内点A(m,n)在第四象限.那么点B(n,m)在第 象限.18.(3分)如图所示,为小强所在学校的平面图,小强在描述他所住的宿舍的方位时可以说: .三、解答题19.如图是某市市区几个旅游景点的示意图(图中每个小正方形的边长为1个单位长度).请以光岳楼为原点,画出直角坐标系,并用坐标表示下列景点的位置.光岳楼 ;金凤广场 ;动物园 ;湖心岛 ;山峡会馆 .20.如图,将三角形向左平移3个单位长度,再向下平移4个单位长度.(1)画出平移后的图形,并写出平移后三个顶点的坐标;(2)若三角形上一点坐标为(a,b),写出平移后对应点的坐标.21.已知在直角坐标系中,三角形AOB的顶点坐标分别为(2,4),(0,0),(4,0).(1)将三角形AOB各顶点的坐标都扩大2倍,并在同一直角坐标系中画出图形;(2)将三角形AOB各顶点的坐标都缩小2倍,也在该直角坐标系中画出图形.22.在直角坐标系中,已知A(﹣3,4),B(﹣1,﹣2),O(0,0),画出三角形并求三角形AOB的面积.23.已知点A(a﹣1,﹣2),B(﹣3,b+1),根据以下要求确定a、b的值.(1)直线AB∥y轴;(2)直线AB∥x轴;(3)点A到y轴的距离等于点B到y轴的距离,同时点A到x轴的距离等于点B到x轴的距离.参考答案与试题解析一、选择题1.(3分)根据下列表述,能确定位置的是( )A.红星电影院2排B.北京市四环路C.北偏东30°D.东经118°,北纬40°【考点】D3:坐标确定位置.【分析】根据在平面内,要有两个有序数据才能清楚地表示出一个点的位置,即可得答案.【解答】解:在平面内,点的位置是由一对有序实数确定的,只有D能确定一个位置,故选:D.【点评】本题考查了在平面内,如何表示一个点的位置的知识点.2.(3分)在平面直角坐标系中,已知点P(2,﹣3),则点P在( )A.第一象限B.第二象限C.第三象限D.第四象限【考点】D1:点的坐标.【分析】根据各象限内点的坐标的符号特征,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣)可以得到答案.【解答】解:∵横坐标为正,纵坐标为负,∴点P(2,﹣3)在第四象限,故选:D.【点评】此题主要考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键.3.(3分)在如图所示的平面直角坐标系内,画在透明胶片上的▱ABCD,点A的坐标是(0,2).现将这张胶片平移,使点A落在点A′(5,﹣1)处,则此平移可以是( )A.先向右平移5个单位,再向下平移1个单位B.先向右平移5个单位,再向下平移3个单位C.先向右平移4个单位,再向下平移1个单位D.先向右平移4个单位,再向下平移3个单位【考点】Q3:坐标与图形变化﹣平移.【分析】利用平面坐标系中点的坐标平移方法,利用点A的坐标是(0,2),点A′(5,﹣1)得出横纵坐标的变化规律,即可得出平移特点.【解答】解:根据A的坐标是(0,2),点A′(5,﹣1),横坐标加5,纵坐标减3得出,故先向右平移5个单位,再向下平移3个单位,故选:B.【点评】此题主要考查了平面坐标系中点的平移,用到的知识点为:左右移动横坐标,左减,右加,上下移动,纵坐标上加下减.4.(3分)已知A(﹣4,2),B(1,2),则A,B两点的距离是( )A.3个单位长度B.4个单位长度C.5个单位长度D.6个单位长度【考点】D5:坐标与图形性质.【专题】2B :探究型.【分析】根据两点间的距离公式:d=,把A(﹣4,2)、B(1,2)代入即可.【解答】解:∵点A、B的坐标分别为A(﹣4,2)、B(1,2),∴A、B两点之间的距离==5.故选C.【点评】本题考查的是两点间的距离公式,熟记两点间的距离公式是解答此题的关键.5.(3分)在平面直角坐标系x0y中,若A点坐标为(﹣3,3),B点坐标为(2,0),则△ABO 的面积为( )A.15B.7.5C.6D.3【考点】K3:三角形的面积;D5:坐标与图形性质.【专题】11 :计算题.【分析】首先,根据题意画出△ABO,然后,根据三角形的面积计算公式,确定△ABO底长和高,代入解答出即可.【解答】解:如图,根据题意得,△ABO的底长OB为2,高为3,∴S△ABO=×2×3=3.故选D.【点评】本题主要考查了三角形的面积及坐标与图形性质,根据题意,画出图形对于解答事半功倍,考查了学生数形结合的能力.6.(3分)若MN平行于y轴,点M坐标为(﹣5,2),点N距x轴的距离为3个单位,则点N坐标为( )A.(﹣5,3)B.(﹣5,3)或(﹣5,﹣3)C.(3,2)D.(3,2)或(﹣3,2)【考点】D5:坐标与图形性质.【分析】若MN∥y轴,则点M与点N的横坐标相同,因而点N的横坐标是﹣5,根据两点之间的距离可求解.【解答】解:∵MN平行于y轴,点M坐标为(﹣5,2),∴点M与点N的横坐标相同,点N的横坐标是﹣5,∵点N距x轴的距离为3个单位,∴点N坐标为:(﹣5,3)或(﹣5,﹣3).故选:B.【点评】本题主要考查了与坐标轴平行的点的坐标的关系,与x轴的点的纵坐标相同,与y 轴平行的线上的点的横坐标相同.7.(3分)已知点P(x,y),且xy>0,点P到x轴的距离是3个单位,到y轴的距离是2个单位,则点P的坐标是( )A.(2,3)B.(3,2)C.(2,3)或(﹣2,﹣3)D.(﹣3,﹣2)【考点】D1:点的坐标.【分析】根据同号得正判断出x、y同号,再根据点到x轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度求出点P的横坐标与纵坐标,然后解答即可.【解答】解:∵xy>0,∴x、y同号,∵点P到x轴的距离是3个单位,到y轴的距离是2个单位,∴点P的横坐标是2或﹣2,纵坐标是3或﹣3,∴点P的坐标是(2,3)或(﹣2,﹣3).故选C.【点评】本题考查了点的坐标,主要利用了点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度,判断出x、y同号是解题的关键.8.(3分)若点A(,1)在第一象限,则点B(﹣a2,ab)在( )A.第一象限B.第二象限C.第三象限D.第四象限【考点】D1:点的坐标.【分析】根据同号得正求出a、b同号,再判断出点B的横坐标与纵坐标的正负情况,然后解答即可.【解答】解:∵点A(,1)在第一象限,∴>0,∴a、b同号,∴﹣a2<0,ab>0,∴点B(﹣a2,ab)在第二象限.故选B.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).9.(3分)在平面直角坐标系中,点(﹣3,3)所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限【考点】D1:点的坐标.【分析】根据象限的特点,判断出所求的点的横纵坐标的符号,进而判断点所在的象限.【解答】解:∵点(﹣3,3)的横坐标是负数,纵坐标是正数,∴点在平面直角坐标系的第二象限,故选B.【点评】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).10.(3分)将点A(2,1)向左平移2个单位长度得到点A′,则点A′的坐标是( )A.(2,3)B.(2,﹣1)C.(4,1)D.(0,1)【考点】Q3:坐标与图形变化﹣平移.【分析】根据向左平移,横坐标减,纵坐标不变解答.【解答】解:点A(2,1)向左平移2个单位长度,则2﹣2=0,∴点A′的坐标为(0,1).故选D.【点评】本题考查了平移与坐标与图形的变化,熟记平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.11.(3分)定义:平面内的直线l1与l2相交于点O,对于该平面内任意一点M,点M到直线l1、l2的距离分别为a、b,则称有序非负实数对(a,b)是点M的“距离坐标”,根据上述定义,距离坐标为(2,3)的点的个数是( )A.2B.1C.4D.3【考点】D1:点的坐标;J5:点到直线的距离.【专题】16 :压轴题;23 :新定义.【分析】画出两条相交直线,到l1的距离为2的直线有2条,到l2的距离为3的直线有2条,看所画的这些直线的交点有几个即为所求的点的个数.【解答】解:如图所示,所求的点有4个,故选C.【点评】综合考查点的坐标的相关知识;得到到直线的距离为定值的直线有2条是解决本题的突破点.二、填空题12.(3分)当a= 3 时,P(3﹣a,a+1)在y轴上,且到x轴的距离是 4 .【考点】D1:点的坐标.【分析】根据y轴上点的横坐标是0列式求出a,再根据点到x轴的距离等于纵坐标的长度解答.【解答】解:∵P(3﹣a,a+1)在y轴上,∴3﹣a=0,解得a=3,a+1=3+1=4,∴点P的坐标为(0,4),∴当a=3时,P(3﹣a,a+1)在y轴上,且到x轴的距离是4.故答案为:3;4.【点评】本题考查了点的坐标,主要利用了y轴上点的坐标特征,点到x轴的距离等于纵坐标的长度,需熟记.13.(3分)如图,如果所在的位置坐标为(﹣1,﹣2),所在的位置坐标为(2,﹣2),则所在位置坐标为 (﹣3,3) .【考点】D3:坐标确定位置.【分析】根据士与相的位置,得出原点的位置即可得出炮的位置,即可得出答案.【解答】解:∵所在的位置坐标为(﹣1,﹣2),所在的位置坐标为(2,﹣2),得出原点的位置即可得出炮的位置,∴所在位置坐标为:(﹣3,3).故答案为:(﹣3,3).【点评】此题主要考查了点的坐标的位置,根据已知得出原点的位置是解决问题的关键. 14.(3分)在平面直角坐标系中,规定把一个三角形先沿着x轴翻折,再向右平移2个单位长度称为1次变换.如图,已知等边三角形ABC的顶点A的坐标是(﹣2,﹣1﹣),把△ABC经过连续9次这样的变换得到△A′B′C′,则点A的对应点A′的坐标是 (16,1+) .【考点】P6:坐标与图形变化﹣对称;Q3:坐标与图形变化﹣平移.【专题】2A :规律型.【分析】关于x轴对称的点的坐标的特点:横坐标相等,纵坐标互为相反数,经过9次对称,9次平移相当于将点A关于x轴对称一次,向右平移9次,从而可得出答案.【解答】解:由题意得,点A经过9次变换后,位于x轴上方,故纵坐标为1+,经过9次变换后,点A向右平移了18个单位,故横坐标为16,故点A的坐标为(16,1+).故答案为:(16,1+).【点评】本题考查了对称及平移变换,解答本题的特点关键是观察出变换的规律,经过对称后,只需判断点A位于x轴上方还是x轴下方,得出纵坐标,再由平移的长度判断横坐标.15.(3分)在平面直角坐标中,△ABC的三个顶点的坐标分别是A(﹣2,3),B(﹣4,﹣1),C(2,0),将△ABC平移至△A1B1C1的位置,点A,B,C的对应点分别是A1,B1,C1,若点A1的坐标为(3,1),则点C1的坐标为 (7,﹣2) .【考点】Q3:坐标与图形变化﹣平移.【分析】首先根据A点平移后的坐标变化,确定三角形的平移方法,点A横坐标加5,纵坐标减2,那么让点C的横坐标加5,纵坐标﹣2即为点C1的坐标.【解答】解:由A(﹣2,3)平移后点A1的坐标为(3,1),可得A点横坐标加5,纵坐标减2,则点C的坐标变化与A点的变化相同,故C1(2+5,0﹣2),即(7,﹣2).故答案为:(7,﹣2).【点评】本题主要考查图形的平移变换,解决本题的关键是根据已知对应点找到所求对应点之间的变化规律.16.(3分)八年级(2)班座位有6排8列,李永佳的座位在2排4列,简记为(2,4),班级座次表上写着王刚(5,8),那么王刚的座位在 5排8列 .【考点】D3:坐标确定位置.【分析】根据题意可得:李永佳的座位在2排4列,简记为(2,4),即横坐标表示排数,纵坐标表示列数,则(5,8),表示座位在5排8列.【解答】解:∵李永佳的座位在2排4列,简记为(2,4),∴班级座次表上写着王刚(5,8),那么王刚的座位在5排8列.故答案为:5排8列.【点评】考查类比点的坐标解决实际问题的能力和阅读理解能力.解决本题需要首先理解横坐标与纵坐标表示的含义.17.(3分)已知坐标平面内点A(m,n)在第四象限.那么点B(n,m)在第 二 象限.【考点】D1:点的坐标.【分析】根据第四象限内点的横坐标是正数,纵坐标是负数求出m、n的正负情况,然后求出点B所在的象限即可.【解答】解:∵点A(m,n)在第四象限,∴m>0,n<0,∴点B(n,m)在第二象限.故答案为:二.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).18.(3分)如图所示,为小强所在学校的平面图,小强在描述他所住的宿舍的方位时可以说: 教学楼北偏东方向 .【考点】D3:坐标确定位置.【分析】根据方位角可得出宿舍与学校大门的位置关系.【解答】解:根据平面图可得出:小强所住的宿舍的方位在教学楼北偏东方向.故答案为:教学楼北偏东方向.【点评】此题主要考查了坐标确定位置,根据题意结合方位角得出是解题关键.三、解答题19.如图是某市市区几个旅游景点的示意图(图中每个小正方形的边长为1个单位长度).请以光岳楼为原点,画出直角坐标系,并用坐标表示下列景点的位置.光岳楼 (0,0) ;金凤广场 (﹣3,﹣1.5) ;动物园 (5,3) ;湖心岛 (﹣2.5,1) ;山峡会馆 (3,﹣1) .【考点】D3:坐标确定位置.【专题】31 :数形结合.【分析】先画出直角坐标系,然后利用方格图写出各景点的坐标.【解答】解:如图,光岳楼(0,0);金凤广场(﹣3,﹣1.5);动物园(5,3);湖心岛(﹣2.5,1);山峡会馆(3,﹣1).故答案为(0,0);(﹣3,﹣1.5);(5,3);(﹣2.5,1);(3,﹣1).【点评】本题考查了坐标确定位置:直角坐标平面内点的位置由有序实数对确定,有序实数对与点一一对应.20.如图,将三角形向左平移3个单位长度,再向下平移4个单位长度.(1)画出平移后的图形,并写出平移后三个顶点的坐标;(2)若三角形上一点坐标为(a,b),写出平移后对应点的坐标.【考点】Q4:作图﹣平移变换.【专题】13 :作图题.【分析】(1)分别将三角形的三点,向左平移3个单位,再向下平移4个单位,顺次连接即可;(2)根据平移规律,可得出平移后对应点的坐标.【解答】解:(1)所作图形如下:平移后三点坐标为:(﹣1,3),(1,0),(﹣4,﹣3).(2)点(a,b)平移后的坐标为(a﹣3,b﹣4).【点评】本题考查了平移作图的知识,解答本题要求同学们能根据平移规律得到各点的对应点.21.已知在直角坐标系中,三角形AOB的顶点坐标分别为(2,4),(0,0),(4,0).(1)将三角形AOB各顶点的坐标都扩大2倍,并在同一直角坐标系中画出图形;(2)将三角形AOB各顶点的坐标都缩小2倍,也在该直角坐标系中画出图形.【考点】D5:坐标与图形性质.【分析】(1)利用点的坐标特点得出对应点坐标应扩大2倍进而得出答案;(2)利用点的坐标特点得出对应点坐标应变为原来的进而得出答案.【解答】解:(1)如图所示:△A″OB″即为所求;(2)如图所示:△A′OB′即为所求.【点评】此题主要考查了坐标与图形的性质,根据已知得出对应点坐标是解题关键.22.在直角坐标系中,已知A(﹣3,4),B(﹣1,﹣2),O(0,0),画出三角形并求三角形AOB的面积.【考点】D5:坐标与图形性质.【分析】根据平面直角坐标系找出点A、B、C的位置,然后顺次连接即可;再作出△ABO 所在的矩形,然后根据三角形的面积等于矩形的面积减去四周三个小直角三角形的面积,然后进行计算即可得解.【解答】解:△AOB如图;作出长方形ACDE,长方形ACDE的面积=6×3=18△ACB的面积=×6×2=6,△AOE的面积=×4×3=6,△BOD的面积=×1×2=1,∴△AOB的面积=18﹣6﹣6﹣1=5.答:三角形AOB的面积为5.【点评】本题考查了坐标与图形性质,求面积时,利用三角形的面积等于矩形的面积减去四周三个小直角三角形的面积是在平面直角坐标系中求三角形面积常用的方法,要熟练掌握并灵活运用.23.已知点A(a﹣1,﹣2),B(﹣3,b+1),根据以下要求确定a、b的值.(1)直线AB∥y轴;(2)直线AB∥x轴;(3)点A到y轴的距离等于点B到y轴的距离,同时点A到x轴的距离等于点B到x轴的距离.【考点】D5:坐标与图形性质.【分析】(1)根据平行于y轴的点的横坐标相等列式进行计算即可得解;(2)根据平行于x轴的点的纵坐标相等列式进行计算即可得解;(3)根据题意得出A、B两点X、Y的绝对值相等.【解答】解:(1)∵直线AB∥y轴,∴点A与点B的横坐标相同,∴a﹣1=﹣3,∴a=﹣2;(2)∵直线AB∥x轴,∴点A与点B的纵坐标相同,∴b+1=﹣2,∴b=﹣3;(3)∵点A到y轴的距离等于点B到y轴的距离,同时点A到x轴的距离等于点B到x 轴的距离,∴A、B两点X、Y的绝对值相等,∴a﹣1=±3、b+1=±2∴a=4或﹣2、b=﹣3或1.代入AB点符合条件的有a=4 b=1、a=﹣2 b=1、a=4 b=﹣3和a=﹣2 b=﹣3.【点评】本题考查了坐标与图形的性质以及平行于坐标轴的点的坐标的特征.。

沪科版数学八年级上册第11章-平面直角坐标系-单元同步试卷(含答案)

沪科版数学八年级上册第11章-平面直角坐标系-单元同步试卷(含答案)

第11章平面直角坐标系一、选择题(每小题4分,共40分)1.坐标平面内的下列各点中,在y轴上的点是()A.(-1,2) B.(-2,-3)C.(0,3) D.(-3,0)2.在平面直角坐标系中,点P的坐标为(-3,5),则点P在()A.第一象限B.第二象限C.第三象限D.第四象限3.点M(-3,5)经过平移变换后得到点N(3,5),则平移的方向和距离为()A.向上平移6个单位B.向左平移6个单位C.向右平移6个单位D.向下平移6个单位4.点P在第二象限,点P到x轴的距离是5,到y轴的距离是2,那么点P的坐标为() A.(-5,2) B.(-2,-5)C.(-2,5) D.(2,-5)5.已知点P(-3,-3),Q(-3,4),则直线PQ()A.平行于x轴B.平行于y轴C.垂直于y轴D.以上都不正确6.无论m取什么实数,点(1,-m2-1)一定在()A.第一象限B.第二象限C.第三象限D.第四象限7.图1是天安门广场周围的景点分布示意图的一部分,若表示“王府井”的点的坐标为(4,1),表示“人民大会堂”的点的坐标为(0,-1),则表示“天安门”的点的坐标为()图1A.(0,0) B.(-1,0) C.(1,0) D.(1,1)8.已知三角形ABC的顶点坐标分别是A(0,6),B(-3,-3),C(1,0),将三角形ABC平移后顶点A的对应点A1的坐标是(4,10),则点B的对应点B1的坐标为() A.(7,1) B.(1,7) C.(1,1) D.(2,1)9.在平面直角坐标系中,有一条线段AB,已知点A(-3,0)和B(0,4),平移线段AB 得到线段A1B1.若点A的对应点A1的坐标为(0,-1),则线段AB平移经过的区域(四边形ABB1A1)的面积为()A.12 B.15 C.24 D.30、10.如图2,长方形BCDE的各边分别平行于x轴与y轴,物体甲和物体乙由点A(2,0)同时出发,沿长方形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒的速度匀速运动,物体乙按顺时针方向以2个单位/秒的速度匀速运动,则两个物体运动后的第2019次相遇地点的坐标是()图2A.(1,-1) B.(2,0) C.(-1,1) D.(-1,-1)二、填空题(每小题4分,共16分)11.如果教室里位于第2排第5列的同学的位置记作(2,5),那么(5,2)表示的位置是__________.12.已知点M(a+3,4-a)在y轴上,则点M的坐标为________.13.线段AB=3,且AB∥x轴,若点A的坐标为(1,-2),则点B的坐标为____________.14.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.观察图3中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第11个正方形(实线)四条边上的整点共有________个.图3三、解答题(共44分)15.(8分)如图4,将一小船先向左平移6个单位,再向下平移5个单位.试确定A,B,C,D,E,F,G平移后对应点的坐标并画出平移后的图形.图416.(10分)已知四边形ABCD各顶点的坐标分别是A(0,0),B(7,0),C(9,5),D(2,7).(1)在如图5的平面直角坐标系中,画出此四边形;(2)求此四边形的面积.图517.(12分)图6是某台阶的部分示意图,各级台阶的高度与宽度相等.如果点A的坐标为(0,0),点B的坐标为(1,1).(1)请建立适当的平面直角坐标系,并写出点C,D,E,F的坐标;(2)说明点B,C,D,E,F的坐标与点A的坐标相比较有什么变化;(3)如果台阶有10级,请你求出该台阶的高度.图618.(14分)如图7,A(-1,0),C(1,4),点B在x轴上,且AB=4.(1)求点B的坐标.(2)求三角形ABC的面积.(3)在y轴上是否存在点P,使以A,B,P三点为顶点的三角形的面积为7?若存在,请写出点P的坐标;若不存在,请说明理由.图7答案1.[解析] C横坐标为0的点在y轴上,故选C.2.B3.C4.[解析] C因为点P在第二象限,所以其横坐标为负数,纵坐标为正数,再根据点的坐标的意义可知,点P的坐标为(-2,5).5.[解析] B因为P(-3,-3),Q(-3,4),所以点P,Q的横坐标相等.所以由坐标。

八年级 第5章平面直角坐标系单元测试卷(A卷基础篇)(苏科版)(解析版)

八年级 第5章平面直角坐标系单元测试卷(A卷基础篇)(苏科版)(解析版)

第5章平面直角坐标系单元测试卷(A卷基础篇)[苏科版】参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)根据下列表述,能确定一个点位置的是(A.北偏东40°B.某地江滨路C.光明电影院6排D.东经116°'北纬42°【分析】根据各个选项中的语句可以判断哪个选项是正确的,本题得以解决.【解析】解:根据题意可得,北偏东40°无法确定位置,故选项A错误;某地江滨路无法确定位置,故选项B错误;光明电影院6排无法确定位置,故选项C错误;东经116°'北纬42°可以确定一点的位置,故选项D正确,故选:D.【点睛】本题考查坐标位置的确定,解题的关键是明确题意,可以判断选项中的各个语句哪一个可以确定一点的位置2.(3分)在平面直角坐标系中,点M(20l9,—2019)在(A.第一象限B.第二象限C.第三象限D.第四象限【分析】四个象限的符号特点分别是:第一象限(十,+);第二象限(,+);第三象限(,);第四象限(十,),再根据点M的坐标的符号,即可得出答案【解析】解:了M(2019,-2019),.点M所在的象限是第四象限故选:D.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(—,+);第三象限(—,-);第四象限(+,-).3.(3分)已知点P(m+2,2m-4)在x轴上,则点P的坐标是(A.(4,0)B.(0,4)C.(-4,0)D .(0,-4)【分析】直接利用关千x 轴上点的坐标特点得出m 的值,进而得出答案【解析】解:..点P(m +2,2m -4)在x 轴上,:. 2m-4 = 0,解得:m =2,:.m+2=4,则点P 的坐标是:(4,0).故选:A .【点睛】此题主要考查了点的坐标,正确得出m 的值是解题关键.4.(3分)象棋在中国有着三千多年的历史,由千用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“黑”和“车"的点的坐标分别为(4,3),(—2,1),则表示棋子"炮”的点的坐标为(仁一--@@@__@ 汉界@-A .(-3,3) B.(3,2) C.(1,3) D.(0,3)【分析】根据题意可以画出相应的平面直角坐标系,从而可以解答本题.【解析】解:由题意可得,建立的平面直角坐标系如右图所示,则表示棋子"炮"的点的坐标为(1,3)'故选:c .v .诃于@)汉界勹竺@。

苏科版八年级上第5章《平面直角坐标系》综合测试卷(有答案)

苏科版八年级上第5章《平面直角坐标系》综合测试卷(有答案)

11.已知平面直角坐标系中有三个点 A(2,4) , B(2,0) , C(a,0) .若 ABC 的面积为 10,
则 a .
12.已知以点 C(a,b) 为圆心,半径为 r 的圆的标准方程为 (x a)2 (y b)2 r 2 .例如:以点
14.在平面直角坐标系中,线段 MN 的两个端点的坐标分召明是 M (4,1) , N(0,1) ,将
线段 MN 平移后得到线段 M ' N ' (点 M , N 分别平移到点 M ', N ' 的位置).若点 M ' 的坐标
续以点 A, B,C 为对枷中心重复前面的操作,依次得到点 P4 , P5 , P6 ,...,则点 P2017 的坐
标是 .
18.如图,点 A, B 的坐标分别为 (0,3) , (4,6) ,点 P 为 x 轴上的一个动点.若点 B 关于直线
二、填空(每题 2 分,共 20 分)
9.在平面直角坐标系中,若点 M (1,3) 与点 N(x,3) 之间的距离是 5,则 x 的值是 .
10.已知点 P(a 1,a 5) 在第二象限,且到 y 轴的距离为 2,则点 P 的坐标为 .
A. (3,2) B. (3,2) C. (3,2) D. (3,2)
6.如图,动点 P 从 (0,3) 出发,沿如图所示的方向运动,每当碰到长方形的边时反弹,反弹
时反射角等于入射角,当点 P 第 2 018 次碰到长方形的边时,点 P 的坐标为( )
个顶点的坐标分别为 A(3,4) , B(5,2) , C(2,1) .
(1)画出 ABC 关于 y 轴对称的 A1B1C1 ;
(2)画出将 ABC 绕原点 O 按逆时针方向旋转 90º得到的 A2 B2C2 .

八年级上册数学单元测试卷-第五章 平面直角坐标系-苏科版(含答案)

八年级上册数学单元测试卷-第五章 平面直角坐标系-苏科版(含答案)

八年级上册数学单元测试卷-第五章平面直角坐标系-苏科版(含答案)一、单选题(共15题,共计45分)1、如图中的一张脸,小明说:“如果我用(0,2)表示左眼,用(2,2)表示右眼”,那么嘴的位置可以表示成()A.(0,1)B.(2,1)C.(1,0)D.(1,﹣1)2、已知点P(a+1,2a﹣3)在第一象限,则a的取值范围是()A.a<﹣1B.a>C.﹣<a<1D.﹣1<a<3、在平面直角坐标系中,有C(1,﹣2)、D(1,﹣1)两点,则点C可看作是由点D ()A.向上平移1个单位长度得到B.向下平移1个单位长度得到C.向左平移1个单位长度得到D.向右平移1个单位长度得到4、故宫是世界上现存规模最大,保存最完整的宫殿建筑群.下图是利用平面直角坐标系画出的故宫的主要建筑分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向,建立平面直角坐标系,有如下四个结论:①当表示太和殿的点的坐标为(0,0),表示养心殿的点的坐标为(-2,4)时,表示景仁宫的点的坐标为(2,5);②当表示太和殿的点的坐标为(0,0),表示养心殿的点的坐标为(-1,2)时,表示景仁宫的点的坐标为(1,3);③当表示太和殿的点的坐标为(4,-8),表示养心殿的点的坐标为(0,0)时,表示景仁宫的点的坐标为(8,1);④当表示太和殿的点的坐标为(0,1),表示养心殿的点的坐标为(-2,5)时,表示景仁宫的点的坐标为(2,6).上述结论中,所有正确结论的序号是()A.①②B.①③C.①④D.②③5、在平面直角坐标系中,点P在x轴上方,且点P到x轴的距离为2,到y轴的距离为3,则点P的坐标为()A.(2,3)B.(3,2)C.(﹣3,2)或(3,2)D.(﹣2,3)或(2,3)6、如图,△ABE和△CDE是以点E为位似中心的位似图形,已知点A(3,4),点C(2,2),点D(3,1),则点D的对应点B的坐标是()A.(4,2)B.(4,1)C.(5,2)D.(5,1)7、P(3,﹣4)到y轴的距离是()A.4B.﹣4C.3D.58、若点P(m,n)在第二象限,则点Q(-m,-n)在()A.第一象限B.第二象限C.第三象限D.第四象限9、抛物线y=ax2与直线x=1,x=2,y=1,y=2围成的正方形有公共点,则实数a的取值范围是()A. ≤a≤1B. ≤a≤2C. ≤a≤1D. ≤a≤210、若点P(m+3,m﹣1)在x轴上,则P点的坐标为()A.(0,﹣4)B.(4,0)C.(0,4)D.(﹣4,0)11、如图,点向右平移个单位后落在直线上的点处,则的值为()A.4B.5C.6D.712、若点P(a,b)在第四象限,则点P到x轴的距离是()A.aB.-aC.bD.-b13、在平面直角坐标系中,点P(-5,0)在()A.第二象限B.第四象限C.x轴上D.y轴上14、已知点P(a+1,2a-3)在第一象限,则a的取值范围是()A.a<-1B.-1<a<C.- <a<1D.a>15、下列说法正确的是()A.(2,3)和(3,2)表示的位置相同B.(2,3)和(3,2)是表示不同位置的两个有序数对C.(2,2)和(2,2)表示两个不同的位置 D.(m,n)和(n,m)表示的位置不同二、填空题(共10题,共计30分)16、抛物线y=﹣x2+(b+1)x﹣3的顶点在y轴上,则b的值为________.17、在平面直角坐标系中,点A(2,0),B(0,4),求点C,使以点B、O、C为顶点的三角形与△ABO全等,则点C的坐标为________.18、点M(﹣3,4)到y轴的距离是________.19、如图,在棋盘中建立直角坐标系,三颗棋子,,的位置分别是,和.如果在其他格点位置添加一颗棋子,使,,,四颗棋子成为一个轴对称图形,请写出一个满足条件的棋子的位置的坐标________20、如果用(7,8)表示七年级八班,那么八年级六班可表示成________.21、写出一个平面直角坐标系中第三象限内点的坐标:(________ ).22、点A(0,3),点B(0,﹣4),点C在x轴上,如果△ABC的面积为15,则点C的坐标是________.23、如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是________.24、在平面直角坐标系中,一只电子青蛙从原点O出发,按向上,向右,向下,向右的方向依次不断移动,每次移动1个单位长度,其行走路线如图所示,那么点的坐标是________.25、若点在第四象限,则的取值范围是________.三、解答题(共5题,共计25分)26、在直角坐标系中,用线段顺次连结点(-2,0),(0,3),(3,3),(0,4),(-2,0)。

沪科版八年级数学上册试题 第十一章 平面直角坐标系 单元测试卷 (含解析)

沪科版八年级数学上册试题 第十一章 平面直角坐标系 单元测试卷 (含解析)

第十一章《平面直角坐标系》单元测试卷一、选择题(本大题共10个小题,每小题4分,共40分;在每小题给出的四个选项中,只有一项是符合题目要求的)1.若点M 在第四象限,且M 到x 轴的距离为1,到y 轴的距离为2,则点M 的坐标为( )A .(1,-2)B .(2,1)C .(-2,1)D .(2,-1)2.点A (m ﹣4,1﹣2m )在第三象限,则m 的取值范围是( )A .m>B .m <4C .<m <4D .m >43.以方程组的解为坐标的点在平面直角坐标系的( )A .第一象限B .第二象限C .第三象限D .第四象限4.下列说法中,能确定物体位置的是( )A .天空中一架飞行的飞机B .兵走在楚河汉界的河界上本C .开发区丽景小区3号楼D .山东舰位于青岛港东南方向5.如图,点都在方格纸的格点上,若点B 的坐标为(-1,0),点C 的坐标为(-1,1),则点A 的坐标是( )A .(2,2)B .(-2,2)C .(-3,2)D .(2,-3)6.在平面直角坐标系中,将点P (3,2)移动到点P ′(3,4),可以是将点P ( )A .向左平移2个单位B .向右平移2个单位C .向上平移2个单位D .向下平移2个单位7.教育部办公厅中小学2021下发了“五项管理”文件.小明将写有“五项管理”的四张卡片分别放入平面直角坐标系中,如图,“管”字卡片遮住的坐标可能是1212353a b a b -=⎧⎨-=⎩(),P a b -、、A B C( )A .B .C .D .8.如图,在中,顶点A 在x 轴的负半轴上,且,顶点B 的坐标为,P 为AB 边的中点,将沿x 轴向右平移,当点A 落在上时,点P 的对应点的坐标为( )A .B .C .D .9.如图,点,将线段先向上平移2个单位长度,再向左平移3个单位长度,得到线段,则点的对应点的坐标是( )A .B .C .D .10.如图,一个粒子在第一象限内及x 轴、y 轴上运动,在第一分钟,它从原点运动到点(1,0),第二分钟,它从点(1,0)运动到点(1,1),而后它接着按图中箭头所示在与x 轴,y 轴平行的方向上来回运动,且每分钟移动1个单位长(2,3)--(2,3)-(2,3)-(2,3)ABC 45BAO ∠=︒()1,3-ABC ()1,0P '53,2⎛⎫ ⎪⎝⎭33,2⎛⎫ ⎪⎝⎭33,22⎛⎫ ⎪⎝⎭53,22⎛⎫ ⎪⎝⎭()2,1A OA ''O A A 'A ()3,2-()0,4()1,3-()3,1-度,那么在第2022分钟时,这个粒子所在位置的坐标是( )A .(44,4)B .(44,3)C .(44,2)D .(44,1)二、填空题(本大题共4个小题,每题5分,共20分)11.如图在正方形网格中,若,,则C 点的坐标为________.12.如图,是一片树叶标本,将其放在平面直角坐标系中,表示叶片尖端A ,B 两点的坐标分别为(-3,3)(-1,0),则叶柄底部点C 的坐标为__________________.13.如图,在平面直角坐标系中,将线段平移得到线段.若点的对应点为,则点的对应点的坐标是______.14.如图,在平面直角坐标系中,点,点.现将线段AB 平移,使点A ,B 分别平移到点,,其中点,则四边形的面积为______.(1,1)A (2,0)B xOy AB MN ()1,3A -()2,5M ()3,1B --N ()1,1A ()3,0B A 'B '()1,4A 'AA B B ''三、解答题(本大题共9个小题,共90分;第15-18每小题8分,第19-20每小题10分,第21-22每小题12分,第23小题14分)15.如图所示,在平面直角坐标系中,点A ,B 的坐标分别为,,且,满足,点的坐标为.(1)求,的值及;(2)若点在轴上,且,试求点的坐标.16.如图,在平面直角坐标系中,已知点,点.(),0A a (),0B b a b 0a +=C ()0,3a b ABC S M x 13ACM ABC S S =△△M xOy ()0,6A ()6,6B(1)尺规作图,求作一点,使点同时满足下列条件(保留作图痕迹,不写作法)①点到、两点的距离相等.②点到的两边的距离相等.(2)直接写出点的坐标.17.在如图的平面直角坐标系中表示下面各点,并在图中标上字母:A (0,3);B (﹣2,4);C (3,﹣4);D (﹣3,﹣4).(1)点A 到原点O 的距离是 ,点B 到x 轴的距离是 ,点B 到y P P P A B P xOy P轴的距离是 ;(2)连接CD ,则线段CD 与x 轴的位置关系是 .18.如图,这是小明所在学校的平面示意图,每个小正方形的边长为20米,已知宿舍楼的位置是,艺术楼的位置是.(1)根据题意,画出相应的平面直角坐标系;(2)分别写出教学楼、体育馆的位置;(3)若学校行政楼的位置是,餐厅的位置是,在图中标出它们的位置.()3,4()3,1-()1,1--()2,4-19.如图,在正方形网格中,横、纵坐标均为整数的点叫做格点,点A 、B 、C 、O 均在格点上,其中O 为坐标原点,.(1)点C 的坐标为________;(2)在方格纸内将经过一次平移后得到,图中标出了点A 的对应点,请在图中画出平移后的;(3)求的面积.20.如图,在平面直角坐标系中,三角形ABC 的顶点都在网格格点上,其中B 点坐标为(6,4)ABC 111A B C △1A 111A B C △111A B C△(3,3) A(1)请写出点A ,点C 的坐标;(2)将△ABC 先向左平移1个单位长度,再向上平移3个单位长度,得到△A ′B ′C ′.请画出平移后的三角形,并写出△A ′B ′C ′的三个顶点的坐标;(3)求△ABC 的面积.21.如图所示,在平面直角坐标系中,点的坐标为,点的坐标为,根据要求回答下列问题:(1)把沿着轴的正方向平移4个单位,请你画出平移后的,其中,,的对应点分别是,,(不必写画法);(2)在(1)的情况下,若将向下平移3个单位,请直接写出点,,对应的点,,的坐标.A ()0,3B ()2,0-ABO x A B O ''' A B O A 'B 'O 'A B O ''' A 'B 'O 'A ''B ''O ''22.在平面直角坐标系中,把线段先向右平移h 个单位,再向下平移1个单位得到线段(点A 对应点C ),其中分别是第三象限与第二象限内的点.(1)若,求C 点的坐标;(2)若,连接,过点B 作的垂线l①判断直线l 与x 轴的位置关系,并说明理由;②已知E 是直线l 上一点,连接,且的最小值为1,若点B ,D 及点都是关于x ,y 的二元一次方程的解为坐标的点,试判断是正数、负数还是0?并说明理由.23.类比学习:一动点沿着数轴向右平移3个单位长度,再向左平移2个单位长度,相当于向右平移1个单位长度.用有理数加法表示为.若坐标平面内的点做如下平移:沿轴方向平移的数量为(向右为正,向左为负,平移个单位长度),沿轴方向平移的数量为(向上为正,向下为负,xOy AB CD ()(),,,A a b B m n |3|0,2a h +==1b n =-AD AD DE DE (),s t (0)px qy k pq +=≠(),x y ()()s m t n -+-()321+-=x a a y b平移个单位长度),则把有序数对叫做这一平移的“平移量”.比如:按照“平移量”平移到点.“平移量”与“平移量”的加法运算法则为.解决问题:(1)计算:_________;(2)动点从坐标原点出发,先按照“平移量”平移到,再按照“平移量”平移到;若先把动点按照“平移量”平移到,再按照“平移量”平移到,最后的位置与点重合吗?在图1中画出四边形,若,则_________(用含的式子表示);(3)如图2,一艘船从码头出发,先航行到湖心岛码头,再从码头航行到码头,最后回到出发点.请用“平移量”加法算式表示它的航行全过程,并求出三角形的面积.b {},a b ()0,0{}3,1()3,1M {},a b {},c d {}{}{},,,a b c d a c b d +=++{}{}3,11,2+-=P O {}3,1A {}1,2B P {}1,2C {}3,1D D B OABC OAB α∠=OCD ∠=αO ()2,3P P ()5,5Q O OPQ答案一、选择题1.D【分析】先判断出点的横、纵坐标的符号,再根据点到轴、轴的距离即可得.【详解】解:点在第四象限,点的横坐标为正数,纵坐标为负数,点到轴的距离为1,到轴的距离为2,点的纵坐标为,横坐标为2,即,故选:D .2.C【分析】根据点A 在第三象限,列出关于m 的不等式组,解不等式组即可求解.【详解】解:∵点A (m ﹣4,1﹣2m )在第三象限,∴,解得<m <4.故选:C3.C【分析】先求出方程组的解,从而求出A 点的坐标,再判断A 点在第几象限就容易了.【详解】解:解方程组,可得:,所以点的坐标为(-1,-2)则点P 在平面直角坐标系的第三象限,M M x y M ∴M M x y ∴M 1-(2,1)M -40120m m -<⎧⎨-<⎩12353a b a b -=⎧⎨-=⎩12a b =⎧⎨=-⎩(),P a b -故选:C .4.C【分析】确定一个物体的位置,要用一个有序数对,依次判断各个选项即可得.【详解】解:A 、天空中一架飞行的飞机,不是有序数对,不能确定物体位置,选项说法错误,不符合题意;B 、兵走在楚河汉界的河界上本,不是有序数对,不能确定物体位置,选项说法错误,不符合题意;C 、开发区丽景小区3号楼,是有序数对,能确定物体位置,选项说法正确,符合题意;D 、山东舰位于青岛港东南方向,缺少距离,不是有序数对,不能确定物体位置,选项说法错误,不符合题意.故选:C .5.C【分析】利用点B 和点C 的坐标,建立平面直角坐标系,即可得出点A 的坐标.【详解】如图所示:点A 的坐标为(-3,2),故选:C6.C【分析】横坐标,右移加,左移减;纵坐标,上移加,下移减可得结论.【详解】解:将点向上平移2个单位长度得到的点坐标为,故选:C .7.A(3,2)P (3,4)【分析】根据平面直角坐标系内各象限内点的坐标特点解答即可.【详解】解:由图可知“管”字卡片位于坐标系中第三象限,而选项中,(-2,-3)位于第三象限,故选:A .8.D【分析】先求出点A 的坐标,然后利用中点坐标公式求出点P 的坐标,将点P 和点A 向右平移相同的单位长度即可.【详解】解:过点B 作轴,垂足为D ,如图,∵B ,,为等腰直角三角形,,,,∵P 为AB 边的中点,,即,当点A 落在上时,相当于将A 水平向右平移了5个单位长度,将向右平移5个单位长度后,即,故选:D .9.C【分析】根据点向上平移a 个单位,点向左平移b 个单位,坐标P (x ,y )⇒P (x ,y+a )⇒P (x+a ,y+b ),进行计算即可.【详解】解:∵点A 坐标为(2,1),BD x ⊥()1,3-3BD ∴=45,BAO ABD ∠=︒∴ △3AD BD ∴==4∴=OA ()4,0A ∴-,22A B AB x x y y P ++⎛⎫∴ ⎪⎝⎭53,22P ⎛⎫- ⎪⎝⎭()1,053,22P ⎛⎫- ⎪⎝⎭535,22P ⎛⎫-+ ⎪⎝⎭′53,22P ⎛⎫ ⎪⎝⎭′∴线段OA 向h 平移2个单位长度,再向左平移3个单位长度,点A 的对应点A ′的坐标为(2-3,1+2),即(-1,3),故选C .10.C【分析】根据题意依次写出第一象限内从运动过的点坐标及其对应的运动时间,分析后发现,点,对应运动的时间为分钟.当为奇数时,运动方向向左;当为偶数时,运动方向向下.利用该规律,将2022写成,可以看做点向下运动42个单位长度,进而求出结果.【详解】解:由题意及图形分析可得,当点时,运动了2分钟,,方向向左,当点时,运动了6分钟,,方向向下,当点时,运动了12分钟,,方向向左,当点时,运动了20分钟,,方向向下,……点,运动了分钟,当为奇数时,方向向左;当为偶数时,方向向下.,方向向下,则当运动在第2022分钟时,可以看做点再向下运动42分钟,,即到达.故选:C .二、填空题11.【分析】直接利用已知点坐标建立平面直角坐标系,进而得出答案.【详解】根据,,建立直角坐标系,如图所示:n n (,)(1)n n +n n 444542⨯+44,44()(1,1)2=12⨯22(,)6=23⨯(3,3)1234=⨯(4,4)2045=⨯∴n n (,)(1)n n +n n 2022444542∴=⨯+4444(,)44422-=44,2()(3,2)-(1,1)A (2,0)B∴C 点的坐标为.故答案为:.12.(2,1)【分析】根据A ,B 的坐标确定出坐标轴的位置,即可得到点C 的坐标.【详解】解:∵A ,B 两点的坐标分别为(-3,3)(-1,0),∴得出坐标轴如下图所示位置:∴点C 的坐标为(2,1).故答案为:(2,1).13.【分析】根据点A 和其对应点M 的坐标即可知道其平移的方式,则点B 也应该发生一样的变化.【详解】∵、,2-(-1)=3,5-3=2,∴线段向右平移3个单位长度,向上平移2个单位长度得到线段,∴N (-3+3,-1+2),即N (0,1)故答案为(0,1)14.6【分析】把四边形AA ′B ′B 的面积转化为特殊四边形的面积求解即可.【详解】解:如图,过点B ′作B ′E ⊥AA ′于点E ,延长A ′A 交OB 于点F.(3,2)-(3,2)-()0,1()1,3A -()2,5M AB MN由题意得,AB =A ′B ′,AB ∥A ′B ′,∵点A (1,1),点B (3,0),点A ′(1,4),∴AA ′=BB ′=3,∵B ′E ⊥AA ′,∴四边形B ′EFB 是长方形,∴AA ′=EF =3,∴四边形AA ′B ′B 的面积=四边形B ′EFB 的面积=3×2=6,故答案为:6.三、解答题15.(1)∵,∴,,∴,,∴点,点.又∵点,∴,,∴.(2)设点的坐标为,则,又∵,∴,∴,∴,即,解得:或,故点的坐标为或.16.(1)分以下三步:①连接AB ,②作AB 的垂直平分线MN ,③作的角平分线OF ,0a +=20a +=40b -=2a =-4b =()2,0A -()4,0B ()0,3C 246AB =--=3CO =1163922ABC S AB CO =⋅=⨯⨯=△M (),0x ()22AM x x =--=+13ACM ABC S S =△△11933AM OC ⋅=⨯12332x +⨯=22x +=22x +=±0x =4-M ()0,0()4,0-xOy ∠则MN 与OF 的交点即为满足条件的点P ,如图所示:(2),,∵点P 是的垂直平分线MN 上的点,∴点的横坐标为,∵点P 是的角平分线上的点,∴点到两边的距离相等,∴点的纵坐标等于其横坐标为3,∴.17.(1)点A 到原点O 的距离是3,点B 到x 轴的距离是4,点B 到y 轴的距离是2;(2)因为点C 与点D 的纵坐标相等,所以线段CD 与x 轴平行.18.(1)如图所示;(2)教学楼(1,0),体育馆(﹣4,3);()()0,6,6,6A B 6,AB AB OA ∴=⊥AB P 132AB =xOy ∠OF P xOy ∠P ()3,3P(3)如图所示19.(1)解:由图可得,点C 的坐标为(-1,4).故答案为:(-1,4).(2)解:如图,△A 1B 1C 1即为所求.(3)解:,∴△A 1B 1C 1的面积为.20.(1)由图知:A(3,-1),C(2,3)(2)如图所示,△A ′B ′C ′即为所求.1111152321213222A B C S =⨯-⨯⨯⨯-⨯⨯= 52A ′(2,2),B ′(5,7),C ′(1,6)(3)21.(1)解:如图所示,即为所求.(2)解:,即;,即,即.22.解:(1),又,,,,A B O ''' ()04,33A ''+-()4,0A ''()24,03B ''-+-()2,3B ''-()04,03O ''+-()4,3O ''-|3|0a += |3|0a + …03a ∴=-1b =-(3,1)A ∴--Δ111174514-14352222ABC S =⨯-⨯⨯⨯⨯-⨯⨯=点先向右平移2个单位,再向下平移1个单位得到点,.(2)①结论:直线轴.理由:,,,向右平移个单位,再向下平移1个单位得到点,,,的纵坐标相同,轴,直线,直线轴.②结论:.理由:是直线上一点,连接,且的最小值为1,,点,及点都是关于,的二元一次方程的解为坐标的点,,①②得到,,③②得到,,,,.23.(1){3,1}+{1,-2}={4,-1},故答案为:;{4,-1}(2)①画图如图所示: A C (1,2)C ∴--l x ⊥1b n =- (,1)A a n ∴-(,)B m n hD (,1)D m h n ∴+-A D //AD x ∴ l AD ⊥∴l x ⊥()()0s m t n -+-=E l DE DE (1,1)D m n ∴+-B D (,)s t x y (0)px qy k pq +=≠(,)x y ∴()()11p m q n k pm qn k ps qt k ++-=⎧⎪+=⎨⎪+=⎩①②③-0p q -=p q ∴=-()()0p s m q t n -+-=0pq ≠ 0p q ∴=≠()()0s m t n ∴-+-=最后的位置仍是B .②证明:由①知,A (3,1),B (4,3),C (1,2),∴,,∴四边形OABC 是平行四边形,∴∠OCD=∠OAB=α.故答案为:α;(3)从O 出发,先向右平移2个单位,再向上平移3个单位,可知平移量为{2,3},同理得到P 到Q 的平移量为{3,2},从Q 到O 的平移量为{-5,-5},故有{2,3}+{3,2}+{-5,-5}={0,0}..==111555523(25)2 2.5222OPQ S =⨯-⨯⨯-⨯⨯-⨯+⨯=。

沪科版八年级上册数学第十一章《平面直角坐标系》测试卷(含答案)

沪科版八年级上册数学第十一章《平面直角坐标系》测试卷(含答案)

沪科版八年级上册数学第十一章《平面直角坐标系》测试卷(含答案)第11章平面直角坐标系一、填空题(每小题3分,满分30分)1、在平面直角坐标系中,点M(2020,-2020)在()A 第一象限B 第二象限C 第三象限D 第四象限2、已知点P的坐标为(1,-2),则点P到x轴的距离是()A 1B 2C -1D -23、根据下列表述,能确定一个点位置的是()A 北偏东10°B 合肥市长江东路C 解放电影院6排D 东经116°、北纬12°4、已知点A(a-2,2a+7),点B的坐标为(1,5),直线AB//y轴,则a的值是()A 1B 3C -1D 55、若点A(m+2,2m-5)在y轴上,则点A的坐标是()A (0,-9)B (2.5,0)C (2.5,-9)D (-9,0)6、若点A(-3,-2)向右平移5个单位,得到点B,再把点B向上平移4个单位得到点C,则点C的坐标为()A (2,2)B (-2,-2)C (-3,2)D (3,2)7、若点P(a,b)在第二象限,则点Q(b+2,2-a)所在象限应该是()A 第一象限B 第二象限C 第三象限D 第四象限8、在平面直角坐标系中,已知A(-2,3)、B(2,1),将线段AB平移后,A点的坐标变为(-3,2),则点B的坐标变为()A (-1,2)B (1,0)C (-1,0)D (1,2)9、在平面直角坐标系中,到两坐标轴的距离都是3的点有()A 1个B 2个C 3个D 4个10、无论x为何值,P(2x-6,x-5)不可能在()A 第一象限B 第二象限C 第三象限D 第四象限二、填空题(每小题4分,满分20分)11、教室里,大明坐在第3排第5列,用(3,5)表示,小华坐在第6排第4列表示为12、如图表示的象棋盘上,若“士”的坐标是(-2,-2),“相”的坐标是(3,2),则“炮”的坐标是13、已知点P(x,y)位于第四象限,并且x≤y+4(x、y为整数),写出一个符合上述条件的点P的坐标14、已知点M(1-2t,t-5),若点M在x轴的下方,y轴的右侧,则t的取值范围是15、已知点A(0,1)、B(0,2),点C在x轴上,且S△ABC=2,则点C的坐标三、解答题(每小题10分,共50分)16、(10分)已知:点A(m-1,4m+6)在第二象限。

八年级数学上册第五章平面直角坐标系测试卷新版苏科版(含答案)

八年级数学上册第五章平面直角坐标系测试卷新版苏科版(含答案)

1 · 5km 北 A 35° O 东 图1 八年级数学上册试卷新版苏科版:单元测试卷一、选择题1. 要在地球仪上准确地确定太原市的位置,需要知道的数据是( ) A. 高度 B. 北纬38º C. 东经112º D. 北纬38º和东经112º2. 在平面直角坐标系中,点(-1,-3)所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 点A (2,-1)关于x 轴对称的点B 的坐标为( )A.(2,1)B. (-2,1)C. (2,-1)D. (-2,-1)4. 如图1,下列说法中能确定点A 的位置的是( )A. 在到点O 的距离为5 km 处B. 在北偏东35°的方向上,且到点O 的距离为5 kmC. 在点O 北偏东35°的方向上,到点O 的距离为5 kmD. 在点O 北偏东55°的方向上,到点O 的距离为5 km5. 在平面直角坐标系中,若点P (m+3,m -1)在x 轴上,则点P 的坐标为( )A.(0,-4)B.(4,0)C.(-4,0)D.(0,4)6. 在平面直角坐标系中,△ABC 的位置如图2所示,若△ABC 与△A 1B 1C 1关于y 轴对称,则点A 1的坐标为( )A.(-3,2)B.(3,-2)C.(3,2)D.(-3,-2)7. 图3所示是一局围棋比赛的棋局,为记录棋谱方便,横线用数字表示,纵线用字母表示,这样黑棋❶的位置可记为(B ,2),白棋②的位置可记为(D ,1),则白棋⑨的位置应记为( )A.(C ,5)B.(C ,4)C.(4,C )D.(5,C )8. 图4所示是某市几个旅游景点的大致位置示意图,如果用(0,0)表示县衙的位置,用(-2,1)表示清虚观的位置,则双林寺的位置表示为( )A.(3,-1)B.(5,3)C.(-1,-2)D.(-2,1)9. 如图5,正方形ABCD 关于x 轴、y 轴均成轴对称,若这个正方形的面积为4,则点C 的坐标为( )A.(-1,-1)B.(-2,-2)C.(1,-1)D.(2,-2)10. 已知点A (-3,2)与点B (x ,y )在同一条平行于y 轴的直线上,且B点到x 轴的距离等于3,则点B 的坐标为( )A.(-3,3)B.(3,-3)C.(-3,3)或(3,-3)D.(-3,3)或(-3,-3)二、填空题· · · · · 清虚观 文庙 城防庙 双林寺 县衙 图4 图5 图2 1 -1 1 ❶ ⑨ ② 图32 11. 电影票9排21号记为(9, 21),则(21, 5)表示__________.12. 在平面直角坐标系中,点(0,-9)到x 轴的距离为__________.13. 已知点A (-1,4),B (-4,4),则线段AB 的长为__________.14. 已知点A (a ,-3)与B (-4,b )关于x 轴对称,则a+b=_________.15. 如图6,在象棋盘上建立平面直角坐标系,使“帅”位于点(0,-1),“炮”位于点(-1,1),则“兵”所在位置的坐标为__________.16. 已知点P (-12,2a+6)不在任何象限内,则a的值为_________. 17. 图7所示是一台雷达探测器测的结果,图中显示在A ,B ,C ,D 处有目标出现,若目标A 的位置用(5,0°)来表示,那么其他三个目标B ,C ,D 的位置可表示为______________. 18. 在平面直角坐标系中,已知点A (6 ,0),B (6,0),点C 在x轴上,且AC+BC=10,写出满足条件的所有点C 的坐标______________________.三、解答题19.已知点P (a ,b )在第二象限,且|a|=3,|b|=8,求点P 的坐标.20.图8所示是某市华一寄宿学校、纸坊、中南分校、藏龙岛的大致位置,直线AB ,CD ,EF ,GH 相交于点O ,OG 平分∠COE ,试分别指出华一寄宿学校、中南分校的大致位置.(说明:①OB 为正东方向,OH 为正北方向;②要有解答过程)21.)写出图9中四边形ABFG 和四边形CDEF 各个顶点的坐标,并指出A ,B ,C ,D ,E ,F ,G 所在的象限或坐标轴.22.图10是一个游乐城的平面示意图,试设计一个描述这个游乐城中每个景点位置的方法,并画图说明.23.在平面直角坐标系中,顺次连接下列各点,并画出图形:(-5,2),(-1, 4),(-5,6),(-3,4),(-5,2).(1)不改变这些点的纵坐标,将它们的横坐标都乘以-1,写出新的点的坐标;(2)在同一平面直角坐标系中,描出这些新的点,并连成图形;(3)新图形与原图形有什么关系?24.某中学八年级(3)班教室中学生座位的平面图如图11所示.(1)请你说明图中五位同学的位置(用第×排第×列说明);(2)若用(3,2)表示第3排第2列的位置,那么(4,5)表示什么位置?王明和张强的位置怎样表示?(3,3)和(4,8)表示哪位同学的位置?(3)(3,4)和(4,3)表示的位置相同吗? 25.共享人教七年级第36期2版22题26.问题情境:如图12,已知△ABC 是等腰直角三角形,∠A=90º,BC 的长为6.图6 · · · 图7 · 图11图12 CB A 图10 北 东图810km 11kmG H 华一寄宿学校 -1 y x 图9 (O ) 1 13问题解决:(1)请你建立适当的平面直角坐标系,画出图形,并写出各个顶点的坐标;(2)画出(1)中△ABC 关于x 轴对称的图形△A 1B 1C 1,并写出各顶点的坐标;问题探究:(3)在(1)中,你还可以怎样建立平面直角坐标系?画出一种,并写出各个顶点的坐标.参考答案一、1. D 2. C 3. A 4. D 5. B 6. C 7. B 8. A9. A 提示:因为正方形的面积为4,所以正方形的边长为2.由正方形ABCD 关于x 轴、y 轴均成轴对称,知B ,C 两点关于x 轴对称,C ,D 两点关于y 轴对称,所以C (-1,-1).10. D 提示:由题意,得x=-3.又B 点到x 轴的距离等于3,所以y=3或y=-3.所以点B 的坐标为(-3,3)或(-3,-3).二、11. 21排5号 12. 9 13. 3 14. -1 15.(-2, 2)16. -3 提示:由题意,得点P (-12,2a+6)在x 轴上,所以2a+6=0.所以a=-3.17. B (4,30°),C (3,120°),D (4,240°)18.(5,0)或(-5,0) 提示:设点C 到原点O 的距离为a.因为AC+BC=10,所以a 1066=++-a .所以a=5.所以C (5,0)或(-5,0).三、19. 解:因为点P (a ,b )在第二象限,所以a<0,b>0.又|a|=3,|b|=8,所以a=-3,b=8.所以点P 的坐标为(-3,8).20. 解:因为OG 平分∠COE ,所以∠COG=21∠COE=21×102º=51º.所以∠DOH=∠COG=51º.所以华一寄宿学校在点O 南偏西51º,距离O 点10 km 的位置上;中南分校在点O 北偏东51º,距离O 点11 km 的位置上.21. 解:A (-2,3),B (0,0),C (4,0),D (6,1),E (5,3),F (3,2),G (1,5).点A 在第二象限,点B 在原点,点C 在x 轴上,点D ,E ,F ,G 在第一象限.22. 解:答案不唯一,给出一种供参考.如:以入口处的位置为坐标原点,建立平面直角坐标系(图略),各景点的位置表示为:入口处(0,0),辉煌花园(0,3),梦幻艺馆(-3,4),太空秋千(-8,2),海底世界(-4,1),激光战车(-6,-2),球幕电影(-2,-3).23. 解:如图1所示,所画图形为第二象限中的图形.(1)不改变这些点的纵坐标,将它们的横坐标乘以-1,新的点的坐标为(5,2),(1,4),(5,6),(3,4),(5,2).(2)如图1所示,所连图形为第一象限中的图形.(3)新图形与原图形关于y 轴对称.24. 解:(1)王明在第2排第2列,张逸在第3排第3列,张强在第5排第5列,吴俊在第4排第6列,李爽在第4排第8列.(2)因为(3,2)表示第3排第2列的位置,所以(4,5)表示第4排第5列.王明和张强的位置分别用(2,2),(5,5)表示.(3,3)表示张逸的位置,(4,8)表示李爽的位置.(3)(3,4)和(4,3)表示的位置不相同.25. 共享人教七年级第36期2版22题答案26. 解:(1)如图2所示,以BC 所在的直线为x 轴,BC 的垂直平分线为y 轴建立平面直角坐标系.根据等腰三角形为轴对称图形可知,点A 在y 轴上.因为BC=6,所以BO=CO=3.A CBC 1 图2A 1B 1 图14 由勾股定理,得AB=AC=23,所以AO=223)23( =3.所以点A (0,3),B (-3,0),C (3,0).(2)如图2所示,A 1(0,-3),B 1(-3,0),C 1(3,0).(3)答案不唯一,如以点A 为原点,平行于BC 的直线为x 轴建立平面直角坐标系(图略).用同样的方法可得A (0,0),B (-3,-3),C (3,-3).。

第五章 平面直角坐标系数学八年级上册-单元测试卷-苏科版(含答案)

第五章 平面直角坐标系数学八年级上册-单元测试卷-苏科版(含答案)

第五章平面直角坐标系数学八年级上册-单元测试卷-苏科版(含答案)一、单选题(共15题,共计45分)1、若点P是第二象限内的点,且点P到x轴的距离是4,到y轴的距离是3,则点P的坐标是()A.(﹣4,3)B.(4,﹣3)C.(﹣3,4)D.(3,﹣4)2、在平面直角坐标系中,点M(a,b)位于第一象限,则点N(-a,-b)位于()A.第一象限B.第二象限C.第三象限D.第四象限3、如图,在平面直角坐标系上有个点A(-1,0),点A第1次向上跳动一个单位至点A1(-1,1),紧接着第2次向右跳动2个单位至点A2(1,1),第3次向上跳动1个单位,第4次向左跳动3个单位,第5次又向上跳动1个单位,第6次向右跳动4个单位,…,依次规律跳动下去,点A第2017次跳动至点A2017的坐标是()A. B. C. D.4、在平面直角坐标系中,点A(-1,2)在()A.第一象限B.第二象限C.第三象限D.第四象限5、如图所示,若在某棋盘上建立直角坐标系,使“将”位于点(1,﹣2),“象”位于点(3,﹣2),则“炮”位于点()A.(1,3)B.(﹣2,1)C.(﹣1,2)D.(﹣2,2)6、如图是中国象棋棋盘的一部分,若位于点(1,﹣1),则位于点()A.(3,﹣2)B.(2,﹣3)C.(﹣2,3)D.(﹣3,2)7、如图,小手盖住的点的坐标可能是()A.(3,3)B.(﹣4,5)C.(﹣4,﹣6)D.(3,﹣6)8、在平面直角坐标系中,已知点A(3,﹣2),则点A在()A.第一象限B.第二象限C.第三象限D.第四象限9、在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定()A.与x轴相离,与y轴相切B.与x轴,y轴都相离C.与x轴相切,与y轴相离D.与x轴,y轴都相切10、在方格纸上有A.B两点,若以B点为原点建立直角坐标系,则A点坐标为(2,5),若以A点为原点建立直角坐标系,则B点坐标为()A.(-2,-5)B.(-2,5)C.(2,-5)D.(2,5)11、已知△ABC在直角坐标系中的位置如图所示,如果△A′B′C′与△ABC 关于y 轴对称,那么点A的对应点A′的坐标为()A.(-4,2);B.(-4,-2);C.(4,-2);D.(4,2);12、五子棋深受广大小朋友的喜爱,规则如下:在正方形棋盘中,由黑方先行,轮流摆子,在任意方向(横向、竖向或斜向)上先连成五枚棋子者获胜,如图是小明和小亮的部分对弈图,若棋子的坐标为,的坐标为,则点的坐标为()A. B. C. D.13、如图,在平面直角坐标系中,A(1,1),B(-1,1),C(-1,-2),D(1,-2).把一条长为2012个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A-B-C-D-A-…的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是()A.(1,-1)B.(-1,1)C.(-1,-2)D.(1,-2)14、如图,在坐标系中放置一菱形OABC,已知∠ABC=60°,点B在y轴上,OA=1.将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2014次,点B的落点依次为B1, B2, B3,…,则B2014的坐标为()A.(1343,0)B.(1342,0)C.(1343.5,)D.(1342.5,)15、若点 A 在 x 轴下方,y 轴右侧,距 x 轴 3 个单位长度,距 y 轴 2 个单位长度,则点 A 的坐标为()A.(3,2)B.(-3,-2)C.(-2,3)D.(2,-3)二、填空题(共10题,共计30分)16、如图,把“QQ”笑脸放在直角坐标系中,已知左眼A的坐标是,嘴唇C点的坐标为、,则此“QQ”笑脸右眼B的坐标________.17、在平面直角坐标系中,第二象限内的点到横轴的距离为2,到纵轴的距离为3,则点的坐标是________.18、在平面直角坐标系中,A(-3,6),M是 x轴上一动点,当AM的值最小时,点M的坐标为________.19、象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图是局象棋残局,已知表示棋子“馬”和“車”的点的坐标分别为(4,3),(-2,1),则表示棋子“炮”的点的坐标为________.20、在平面直角坐标系中,对于任意两点A(x1,y1)B (x2,y2),规定运算:⑴A⊕B=(x1+x2,y1+y2);(2)A⊙B=x1x2+y1y2;(3)当x1=x2且y1=y2时,A=B.有下列四个命题:①若有A(1,2),B(2,-1),则A⊕B=(3,1),A⊙B=0;②若有A⊕B=B⊕C,则A=C;③若有A⊙B=B⊙C, 则A=C;④(A⊕B)⊕C=A⊕(B⊕C)对任意点A、B、C均成立。

沪科版数学八年级上册《第11章平面直角坐标系》单元测试卷含答案(2套).doc

沪科版数学八年级上册《第11章平面直角坐标系》单元测试卷含答案(2套).doc

第11章达标检测卷(120分,90分钟)题号— 二 三 总分得分一、选择题(每题4分,共40分)1. (2015-金华)点P(4, 3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2. 如果点P(m+3, 2m+4)在y 轴上,那么点P 的坐标是( )A. (-2, 0)B. (0, -2)C. (1, 0)D. (0, 1)3. 在平面直角坐标系中,将三角形各点的纵坐标都减去一3,横坐标保持不变,所得 图形与原图形相比()A.向上平移了 3个单位B.向下平移了 3个单位C.向右平移了 3个单位D.向左平移了 3个单位4. 仲考•昭通)已知点P(2a-1, 1-a)在第一象限,则a 的取值范围在数轴上表示正确 的是()5. 三角形DEF 是由三角形ABC 平移得到的,点A(-l, 一4)的对应点为D(l, —1), 则点B(l, 1)的対应点E,点C(-l, 4)的对应点F 的坐标分别为()(2, 2), (3, 4) B. (3, 4), (1, 7)C.・(一2, 2), (1, 7)D. (3, 4), (2, -2)6. 如图,若在象棋棋盘上建立平面直角坐标•系,使“将”位于点(0, -1), “象”位 于点(2, -1),则“炮”位于点()A 0 0.5 13(0,1) A (3』)A(2t 0) ”(第7题)B\ (a, 2)D⑵7)5)O 丨⑷(0,0) 3(9,;)(第9 题)7如图,己知点A, B的坐标分别为(2, 0), (0, 1),若将线段AB平移至A】B】,贝0 a + b的值为()A. 2B. 3C. 4D. 58.已知正方形ABCD的边长为3,点A在原点,点B在x轴正半轴上,点D在y轴负半轴上,则点C的坐标是()A. (3, 3)B. (一3, 3)C. (3, —3)D.(―3, —3)9.如图,已知四边形ABCD的四个顶点的坐标分别为A(0, 0), B(9, 0), C(7, 5), D(2, 7),将四边形各顶点的横坐标都增加2,纵坐标都增加3,所得新图形的面积为()A. 40B. 42C. 44D. 4610.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位..... 以此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2吋,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是()A. (66, 34)B. (67, 33)C. (100, 33)D. (99, 34)二、填空题(每题5分,共20分)11.若电影票上“4排5号”记作(4, 5),则“5排4号”记作_______________ .12.(2015<东)如果点M(3, x)在第一象限,则x的取值范围是___________ .13.如图是益阳市行政区域图,图中益阳市区所在地用坐标表示为(1, 0),安化县城所在地用坐标表示为(一3, -1),那么南县县城所在地用坐标表示为_____________ .14.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1, 1),第2次接着运动到点(2, 0),第3次接着运动到点(3, 2)……按这样的运动规律,经过第2 016次运动后,动点P的坐标是 ________________ .三、解答题(15〜17题每题6分,22题10分,其余每题8分,共60分)15・如图,试写出坐标平面内各点的坐标.16.(1)如果点A(2m, 3-n)在第二象限内,那么点n—4)在第几象限?⑵如果点M(3m+1, 4—m)在第四象限内,那么m的取值范围是多少?17.已知点M(3a-2, a+6).试分别根据下列条件,求出M点的坐标.⑴点M在x轴上;(2)点N(2, 5),且直线MN〃x轴;⑶点M到x轴、y轴的距离相等.18.李明设计的广告模板草图如图所示(单位:米),李明想通过电话征求陈伟的意见,假如你是李明,你将如何把这个图形告知陈伟呢?19.如图,一长方形住宅小区长400 m,宽300 m,以长方形的对角线的交点为原点,过原点和较长边平行的直线为x轴,和较短边平行的直线为y轴,并取50加为1个单位,建立平面直角坐标系.住宅小区内和附近有5处违章建筑,它们分别是A(3, 3.5), B(-2, 2), C(0, 3.5), D(-3, 2),玖一4, 4).在坐标系中标出这些违章建筑的位置,并说明哪些在小区内,哪些不•在小区内.20. 平面直角坐标系中的任意一点Po (xo ,yo )经过平移后的对应点为Pi (x 0 + 5, y 0+3),若将三角形AOB 作同样的平移,在如图所示的坐标系中画出平移后得到的三角形 A'O'B',并写出点A ,的坐标.<y1 1 T 厂 11 1 1r ~i I 1 1 _ _ 1 _ . J 1 1 11 1 1I 1 1 I I I 1 1 1 1 11 1 1I 1 1 i I l 1 1 ------ 1 L ■・ 1 1 ! : : 17 i i i i i 1 1 11 1 11 1 1 i i i i i i 1 L -. ::\0 :1 :: 1111r --1I ___1 1 1 1 1 1 i i i i i i ■" 1 1 .• J 1 1 • • r • "i" • r • ■ 1 1 1 ""T " "i" " 1 " * i i i 1 1 _1 1 1 11 1 1I1 I i i i • • r •• r • • 1 1 1 1. A. ""T * "I" ■ T ■ ■ l 1 1 A 1 .1(笫19题)(第20题)21・如图,已知四边形ABCD,则四边形ABCD的面积是多少?22.如图,长方形OABC中,0为平面直角坐标系的原点,A点的坐标为(4, 0), C点的坐标「为(0, 6),点B在第一象限内,点P从原点出发,以每秒2个单位的速度沿着O—A—B—C—O 的路线移动.(1)写出点B的坐标;(第21题)(2)当点P移动了4秒时,描出此时P点的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位时,求点P移动的时间.如C ------------ Bo\ A (第22 题)答案—、1^42.B点拨:y轴上点的横坐标为0,所以m+3=0,解得m=—3, 2m+4=—6+4 =一2,所以P(0, -2).3. 4[2a-l>0,4.C点拨:根据题意得:八解得0.5<a<l.[1—a>0,5. B6.A7.A8.C9.B点拨:将四边形各顶点的横坐标都增加2,纵坐标都增加3,所得新图形可以看成是由原四边形平移得到的,面积不会改变.所以只要求出四边形ABCD的面积即可.过点D作DE丄x 轴于E,过点C作CF丄x轴于F,则E(2, 0), F(7, 0),所以AE=2, EF= 5, BF=2, DE=7, CF=5.所以S 四边形ABCD=S三角形DAE+S梯形DEFC+S三角形CBF=*X2X7+*X(7 + 5)X5+*X2X5=7+30+5=42.10.C点拨:由题意得,每3步为一个循环组依次循环,且一个循环组内向右走3个单位,向上走1个单位,因为100-3 = 33……1,所以走完第100步,为第34个循环组的第1步,所处位置的横坐标为33X3+1 = 100,纵坐标为33X 1=33,所以棋子所处位置的坐标是(100, 33).故选C.本题考查了坐标确定位置,点的坐标的变化规律,读懂题目信息并理解每3步为一个循环组依次循环是解题的关键.在1至100这100个数中:(1)能被3整除的有33个,故向上走了33个单位,(2)被3除,余数为1的数有34个,故向右走了34个单位,(3)被3除,余数为2的数有33个,故向右走了66个单位,故一共向右走了34+66=100(个)单位,向上走了33个单位.二、11.(5, 4) 12.x>0 13.(2, 4)14.(2 016, 0)点拨:本题运用了从特殊到一般的思想.根据图中点P的坐标变化规律,可以看出:①点P的横坐标依次为1, 2, 3, 4,…,即点P的横坐标等于运动•次数,所以第2 016次运动后,点P的横坐标是2 016;②点P的纵坐标依次是1, 0, 2, 0, 1, 0, 2, 0,…,即每运动四次一个循环,因为2016-4=504,所以第2 016次运动后,点P 的纵坐标与第4次运动后的纵坐标相同.所以经过第2 016次运动后,点P的坐标为(2 016, 0).三、15•解:由题图可知:A(-5, 0), B(0, -3), C(5, -2), D(3, 2), E(0, 2), F(-3, 4).2m<0,16.解:(1)根据点A在第二象限可知解得m<0, n<3,则m—1<0, n~43—n>0,<0,所以点B在第三象限.[3m+l>0,(2)因为点M(3m+I, f)在第四象限,所以匸*°,解得心,所以m的取值范围是m>4.17.解:⑴因为点M[在x轴上,所以a+6=0,解得a=—6.当a=—6吋,3a—2 = 3X(-6)-2=-20,因此点M 的坐标为(-20, 0).「(2)因为直线MN〃x轴,所以点M与点N的纵坐标相等,所以a+6 = 5,解得a=-l. 当a= —l 时,3a—2 = 3X(—l)—2=—5,所以点M 的坐标为(一5, 5).(3)因为点M到x轴、y轴的距离相等,所以|3a—2| = |a+6|,所以3a—2=a+6或3a— 2+a+6=0,解得a=4 或a= —1.当a=4 时,3a—2=3X4—2=10, a+6=4+6=10,此时,点M 的坐标为(10, 10);当a=-l 时,3a-2=3X( — 1)一2=—5, a+6=-l+6=5, 此时,点M的坐标为(一5, 5).因此点M的坐标为(10, 10)或(一5, 5).18.解:把图形放到直角坐标系中,用点的坐标的形式「告诉陈伟即可.如,这个图形的各顶点的坐标是(0, 0), (0, 5), (3, 5), (3, 3), (7, 3), (7, 0).点拨:方法不唯一.19.解:如图,在小区内的违章建筑有B, D,不在小区内的违章建筑有A, C, E.y(第19题)20.解:根据点Po%, yo)经过平移后的对应点为Pi(x°+5, y°+3),可知三角形AOB 的平移规律为:向右平移了5个单位,向上平移了3个单位,如图所示:点A,的坐标是(2, 7).21.解:由题图可知,A(0, 4), B(3, 3), C(5, 0), D(—1, 0).过B点分别作x轴、y轴的垂线,垂足分别为F, E.则S四边形ABCD=S三弁WADO+S三和形ABE+S三角形BCF+S正方形OFBE=^X 1 X4+㊁X3X 1+㊁X3X2 + 3X3=15寺.C 1BP0 4 X(笫22题)22.解:⑴点B的坐标为(4, 6).(2)当点P移动了4秒时,点P的位置如图所示,此时点P的坐标为(4, 4).(3)设点P移动的时间为x秒,当点P在AB上时,由题意得,92x=4+5,解得x=2;当.点P在0C上时,由题意得,2x=2X(4+6)—5,解得9 J5所以,当点P到x轴的距离为5个单位时,点P移动了㊁秒或迈■秒•(第20题)第11章平面直角坐标系单元培优测试卷(考试时间:90分钟满分:100分)班级:_________ 姓名:_________________________一、填空题(本大题共10小题,,每小题3分,满分30分)1.在平而直角坐标屮,已知点A(a, b)在第二角限,则点3(/皿历在( ).A.第一象限B.第二象限C.第三彖限D.第四象限2.若点P (°, 67-2)在第四象限,则a的取值范围是( )A. ~2<a<0B. 0<a<2C. a>2D. a<03.已知直角坐标系内有一点M (G,b),..且aZ?二0,则点M的位置一定在( )A.原点上B.无轴上C・y轴上 D.坐标轴上4.根据下列表述,能确定位置的是( )A.体「育馆内第2排B.校园内的北大路C.东经118°,北纬68。

八年级数学上第五章平面直角坐标系单元测试题(附答案)

八年级数学上第五章平面直角坐标系单元测试题(附答案)

八年级数学上第五章平面直角坐标系单元测试题(附答案)2015年初二数学第五单元测试题分值:130分;知识涵盖:平面直角坐标系. 卷首语:亲爱的同学:在最近这段时间,我们曾付出了辛勤的汗水,今天就让我们尽情采摘成功的果实吧!一、选择题:(本题共11小题,每小题3分,共33分) 1.(2013.湛江)在平面直角坐标系中,点A(2,-3)在第……………………………()象限. A.一; B.二; C.三; D.四; 2.(2013•台湾)坐标平面上有一点A,且A点到轴的距离为3,A点到轴的距离恰为到轴距离的3倍.若A点在第二象限,则A点坐标为何?…………………………() A.(-9,3); B.(-3,1); C.(-3,9); D.(-1,3); 3.(2012•深圳)已知点P 关于轴的对称点在第一象限,则的取值范围是……………………………………………………………………………………………() A.; B.;C.; D.; 4.(2013.遂宁)将点A(3,2)沿轴向左平移4个单位长度得到点A′,点A′关于轴对称的点的坐标是…………………………………………………………………………() A.(-3,2); B.(-1,2); C.(1,2); D.(1,-2); 5.(2013•曲靖)在平面直角坐标系中,将点P(-2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是………………………………………………………() A.(2,4); B.(1,5); C.(1,-3); D.(-5,5); 6.(2014•南安市二模)若点A 在轴上,则点B 在…………………() A.第一象限 B.第二象限 C.第三象限 D.第四象限 7.(2014•连云港)在平面直角坐标系内,点P(-2,3)关于原点的对称点Q的坐标为………………() A.(2,-3); B.(2,3); C.(3,-2);D.(-2,-3); 8.(2012.荆门)已知点M 关于x轴的对称点在第一象限,则的取值范围在数轴上表示正确的是……………………………………………………………()9.点N 在轴下方、轴左侧,且,,则点N的坐标为…() A.(-3,-2);B. (-3,2);C.(3,-2);D.(3,2); 10.(2013•东营)若定义:,,例如, =(-4,5),则=………………………………………() A.(2,-3); B.(-2,3); C.(2,3); D.(-2,-3); 11.(2010•承德二模)将正整数按如图所示的规律排列下去,若有序实数对(n,m)表示第n排从左到右第m个数,如(4,2)表示9,则表示58的有序数对是……………………() A.(11,3); B.(3,11); C.(11,9); D.(9,11);二、填空题:(本题共8小题,每小题3分,共24分) 12. 在平面直角坐标系中,已知点A 与点B 关于原点对称,则 = , = . 13.(2013.天水)已知点M(3,-2),将它先向左平移4个单位,再向上平移3个单位后得到点N,则点N的坐标是. 14.(2011•怀化)如图,若在象棋盘上建立直角坐标系,使“帅”位于点(-1,-2).“�R”位于点(2,-2),则“兵”位于点 . 15.(2012.扬州)在平面直角坐标系中,点P 在第一象限内,则的取值范围是. 16.已知点P ,则当 = 时,点P在第一、三象限的角平分线上. 17.(2012.娄底)如图,A、B的坐标分别为(1,0)、(0,2),若将线段AB平移到至,、的坐标分别为、,则 = . 18.(2013•东营)将等腰直角三角形AOB按如图所示放置,然后绕点O逆时针旋转90°至△A′OB′的位置,点B的横坐标为2,则点A′的坐标为 .19.(2013.抚顺)如图,在平面直角坐标系中,点A、B、C的坐标分别是(-1,-1)、(0,2)、(2,0),点P在y轴上,且坐标为(0,-2).点P关于点A的对称点为,点关于点B的对称点为,点关于点C的对称点为,点关于点A的对称点为,点关于点B的对称点为,点关于点C的对称点为,点关于点A的对称点为…,按此规律进行下去,则点的坐标是.三、解答题:(本题共10题,总分共73分) 20.(本题满分6分)如图,在直角坐标系中,Rt△AOB的两条直角边OA,OB分别在x轴的负半轴,y轴的负半轴上,且OA=2,OB=1.将Rt△AOB绕点O按顺时针方向旋转90°,再把所得的像沿x轴正方向平移1个单位,得△CDO.(1)写出点A,C的坐标;(2)求点A 和点C之间的距离.21.(本题满分8分)(2013.晋江)如图,在方格纸中(小正方形的边长为1),△ABC的三个顶点均为格点,将△ABC沿x轴向左平移5个单位长度,根据所给的直角坐标系(O是坐标原点),解答下列问题:(1)画出平移后的△A′B′C′,并直接写出点A′、B′、C′的坐标;(2)求出在整个平移过程中,△ABC扫过的面积.22.(本题满分8分)在如图所示的方格图中,我们称每个小正方形的顶点为“格点”,以格点为顶点的三角形叫做“格点三角形”根据图形,解决下面的问题:(1)图中的格点△A′B′C′是由格点△ABC 通过哪些变换方法得到的?(2)如果以直线,为坐标轴建立平面直角坐标系后,点A的坐标为(-3,4),请写出格点△DEF各顶点坐标,并求出△DEF的面积.23.(本题满分8分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A、C的坐标分别为(-4,5),(-1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请作出△ABC关于y轴对称的△A′B′C′;(3)点B′的坐标为.(4)△ABC的面积为.24.(本题满分7分)如图,OABC是一张放在平面直角坐标系中的长方形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,使点O 落在BC边上的点E处,求D、E两点的坐标.25.(2007•重庆)(本题满分7分)已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P 在BC上运动,当△ODP是腰长为5的等腰三角形时,求P点的坐标.26.(2013.钦州)(本题满分6分)如图,在平面直角坐标系中,△ABC 的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称的,并写出点的坐标.(2)画出先向左平移3个单位长度,再向上平移4个单位长度得到的,并写出点的坐标.27.(本题满分7分)在平面直角坐标系中,直线过点M(3,0),且平行于y轴.(1)如果△ABC三个顶点的坐标分别是A(-2,0),B(-1,0),C(-1,2),△ABC关于y轴的对称图形是,关于直线l的对称图形是,写出的三个顶点的坐标;(2)如果点P的坐标是,其中,点P关于y轴的对称点是,点关于直线的对称点是,求的长. 28.(本题满分8分)如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,6),点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O-A-B-C-O的路线移动(即:沿着长方形移动一周).(1)写出点B 的坐标().(2)当点P移动了4秒时,描出此时P点的位置,并求出点P的坐标.(3)在移动过程中,当点P到x轴距离为5个单位长度时,求点P移动的时间.29.(本题满分8分)(2010•武汉)(1)在平面直角坐标系中,将点A(-3,4)向右平移5个单位到点,再将点绕坐标原点顺时针旋转90°到点.直接写出点,的坐标;(2)在平面直角坐标系中,将第二象限内的点B 向右平移个单位到第一象限点,再将点绕坐标原点顺时针旋转90°到点,直接写出点,的坐标;(3)在平面直角坐标系中.将点P(c,d)沿水平方向平移n个单位到点,再将点绕坐标原点顺时针旋转90°到点,直接写出点的坐标.2014-2015学年第一学期初二数学第五单元测试题参考答案一、选择题: 1.D;2.A;3.A;4.C;5.B;6.B;7.A;8.A;9.A;10.D;11.A;二、填空题: 12.2,2;13.(-1,1);14.(-3,1);15. ;16.4;17.2;18. ;19.(2,-4);三、解答题: 20. 解:(1)点A的坐标是(-2,0),点C的坐标是(1,2).(2)连接AC,在Rt△ACD 中,AD=OA+OD=3,CD=2,∴ =13,∴AC= . 21. 解:(1)平移后的△A′B′C′如图所示;点A′、B′、C′的坐标分别为(-1,5)、(-4,0)、(-1,0);(2)由平移的性质可知,四边形AA′B′B 是平行四边形,∴△ABC扫过的面积=S四边形AA'B'B+ =B′B•AC+ BC•AC=5×5+ ×3×5=25+ = . 22. 解:(1)方法较多,如:先向右平移5小格,使点C移到点C′,再以C′为中心,顺时针方向旋转90°得到△A′B′C′;(2)D(0,-2),E(-4,-4),F(2,-3).作FG⊥b于M,交ED于G(如下图),则= FG×DM+ FG×1=4. 23. 解:(1)如图所示:(2)如图所示:(3)结合图形可得:B′(2,1);(4)=3×4- ×2×3- ×1×2- ×2×4=12-3-1-4=4. 24. 解:依题意可知,折痕AD是四边形OAED的对称轴,∴在Rt△A BE中,AE=AO=10,AB=8,BE=6,∴CE=4,∴E(4,8).在Rt△DCE中,,又∵DE=OD,∴ ,∴OD=5,∴D(0,5),综上D点坐标为(0,5)、E点坐标为(4,8). 25. 解:(1)OD是等腰三角形的底边时,P就是OD的垂直平分线与CB的交点,此时OP=PD≠5;(2)OD是等腰三角形的一条腰时:①若点O是顶角顶点时,P点就是以点O为圆心,以5为半径的弧与CB的交点,在直角△OPC中,CP=3,则P的坐标是(3,4).②若D是顶角顶点时,P点就是以点D为圆心,以5为半径的弧与CB的交点,过D作DM⊥BC于点M,在直角△PDM 中,PM= , 当P在M的左边时,CP=5-3=2,则P的坐标是(2,4);当P在M的右侧时,CP=5+3=8,则P的坐标是(8,4).故P的坐标为:(3,4)或(2,4)或(8,4).故答案为:(3,4)或(2,4)或(8,4). 26. 图略,点的坐标(2,-4);图略;点的坐标(-1,0); 27. 解:(1)的三个顶点的坐标分别是(4,0),(5,0),(5,2);(2)如图1,当0<a≤3时,∵P与关于y轴对称,P (-a,0),∴ (a,0),又∵ 与关于l:直线x=3对称,设(x,0),可得:,即,∴ (6-a,0),则PP2=6-a-(-a)=6-a+a=6.如图2,当a>3时,∵P与关于y轴对称,P(-a,0),∴ (a,0),又∵ 与关于l:直线x=3对称,设(x,0),可得:,即,∴ (6-a,0),则 =6-a-(-a)=6-a+a=6. 28. 解:(1)根据长方形的性质,可得AB与y轴平行,BC与x轴平行;故B的坐标为(4,6);(2)根据题意,P的运动速度为每秒2个单位长度,当点P移动了4秒时,则其运动了8个长度单位,此时P的坐标为(4,4),位于AB 上;(3)根据题意,点P到x轴距离为5个单位长度时,有两种情况: P在AB上时,P运动了4+5=9个长度单位,此时P运动了4.5秒; P在OC上时,P运动了4+6+4+1=15个长度单位,此时P运动了=7.5秒. 29. 解:(1)如图,∵将点A(-3,4)向右平移5个单位到点,∴ 的坐标为(2,4),∵又将点绕坐标原点顺时针旋转90°到点,∴ ,∴ 的坐标(4,-2).(2)根据(1)中的规律得:的坐标为(a+m,b),的坐标为(b,-a-m).(3)分两种情况:①当把点P(c,d)沿水平方向右平移n个单位到点,∴ 的坐标为(c+n,d),则的坐标为(d,-c-n);②当把点P(c,d)沿水平方向左平移n个单位到点,∴ 的坐标为(c-n,d),然后将点绕坐标原点顺时针旋转90°到点,∴ 的坐标(d,-c+n).。

沪科版八年级数学上册上册试题 第11章《 平面直角坐标系》单元测试卷(含解析)

沪科版八年级数学上册上册试题 第11章《 平面直角坐标系》单元测试卷(含解析)

第11章《 平面直角坐标系》单元测试卷一、选择题(本大题共10个小题,每小题3分,共30分;在每小题给出的四个选项中,只有一项是符合题目要求的)1.在平面直角坐标系中,点所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限2.在平面直角坐标系中,点在第四象限内,则的取值可以是( )A .1B .C .0D .2或﹣23.已知点,点,直线轴,则点的坐标是( )A .B .C .D .4.在平面直角坐标系中,线段是由线段经过平移得到的,已知点的对应点为,点B 的对应点为,则点B 的坐标为( )A .B .C .D .5.在平面直角坐标系中,把点A (﹣2,2)平移到点A'(﹣5,2),其平移方法是( )A .向上平移3个单位B .向下平移3个单位C .向左平移3个单位D .向右平移3个单位6.△ABO 与△A 1B 1O 在平面直角坐标系中的位置如图所示,它们关于点O 成中心对称,其中点A (4,2),则点A 1的坐标是( )A .(4,﹣2)B .(﹣4,﹣2)C .(﹣2,﹣3)D .(﹣2,﹣4)7.矩形ABCD 在平面直角坐标系中如图所示,若矩形平移,使得点A (-4,3)(2,10)A --()2,A a a 32-()2,27A a a -+()1,5B AB y ∥A ()1,13()3,5-()1,5()3,13-A B ''AB ()2,1A -()3,1A '-()4,0B '()9,1-()1,2-()3,1-()1,0-到点A ′(1,4)的位置,平移后矩形顶点C 的对应点C ′的坐标是( )A .B .C .D .8.如图,在平面直角坐标系中A (﹣1,1)B (﹣1,﹣2),C (3,﹣2),D (3,1),一只瓢虫从点A 出发以2个单位长度/秒的速度沿A →B →C →D →A 循环爬行,问第2022秒瓢虫在( )处.A .(3,1)B .(﹣1,﹣2)C .(1,﹣2)D .(3,﹣2)9.小李、小王、小张、小谢原有位置如图(横为排、竖为列),小李在第2排第4列,小王在第3排第3列,小张在第4排第2列,小谢在第5排第4列.撤走第一排,仍按照原有确定位置的方法确定新的位置,下列说法正确的是( ).A .小李现在位置为第1排第2列B .小张现在位置为第3排第2列C .小王现在位置为第2排第2列D .小谢现在位置为第4排第2列()2,0C '-()3,0C '()3,1C '()4,1C '10.如图是一个教室平面示意图,我们把小刚的座位“第1列第3排”记为.若小丽的座位为,以下四个座位中,与小丽相邻且能比较方便地讨论交流的同学的座位是( )A .B .C .D .二、填空题(本大题共8个小题,每题3分,共24分)11.若点P (m+3,m+1)在x 轴上,则点P 的坐标为________.12.在平面直角坐标系中,一只蜗牛从原点O 出发,按向上、向右、向下、向右的方向依次移动,每次移动2个单位长度,其行走路线如图所示,则点的坐标为_______.13.如图所示,点A 、B 在平面直角坐标系中的坐标分别是,的面积为__________.()1,3()3,2()1,3()3,4()4,2()2,42022A ()()1,23,2--、AOB14.在平面直角坐标系中,将点向右平移2个单位长度得到点B ,则点B 的坐标是____________点B 向右平移3个单位,再向下平移4个单位得到点C ,则点C 的坐标为____________.15.如图,菱形ABDC 的顶点A(1,1),B(3,1),∠BAC=60°,规定把菱形ABDC “先沿y 轴翻折,再向下平移1个单位长度”为1次变换,如果这样连续经过2022次变换后,顶点C 对应的坐标为________.16.如图,在平面直角坐标系中,的顶点,的坐标分别为,,把沿轴向右平移得到,如果点的坐标为,则点的坐标为__________.17.在平面直角坐标系中,线段AB 的端点A 的坐标为(-3,2),将其先向右平移4个单位,再向下平移3个单位,得到线段A ′B ′,则点A 对应点A ′的坐标为____.18.已知点A (2,5),B3),C (-5,2),D (-0.5.则在这些点中,在如图所示的直角坐标系阴影区域内的点有__________.(12)A -,OAB ∆A B (4,0)OAB ∆x CDE ∆D E三、解答题(本大题共8个小题,共66分;第19-22每小题6分,第23-24每小题8分,第25小题12分,第26小题14分)19.如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C 点的坐标为(0,6),点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣A﹣B﹣C﹣O的路线移动(即:沿着长方形移动一周).(1)写出点B的坐标 ;(2)当点P移动了4秒时,求出点P的坐标;(3)在移动过程中,当点P到x轴距离为5个单位长度时,求点P移动的时间.20.对于平面直角坐标系中的任意一点,给出如下定义:记,那么我们把点与点称为点P 的一对“和美点”.例如,点的一对“和美点”是点与点(1)点的一对“和美点”坐标是_______与_______;(2)若点的一对“和美点”重合,则y 的值为_______.(3)若点C 的一个“和美点”坐标为,求点C 的坐标;21.如图,在边长为1个单位的正方形网格中,△ABC 经过平移后得到△A ′B ′C ′,图中标出了点B 的对应点B ′,根据下列条件,利用网格点和无刻度的直尺画图并解答相关的问题保留画图痕迹:(1)画出△A ′B ′C′;xOy (),P x y a x b x y =-=-,(),M a b (),N b a ()1,2P -()1,3-()3,1-()4,1A ()2,B y ()2,7-(2)连接AA ′、CC ′,那么AA ′与CC ′的关系是 ,线段AC 扫过的图形的面积为 ;(3)在AB 的右下侧确定格点Q ,使△ABQ 的面积和△ABC 的面积相等,这样的Q 点有 个.22.对于平面直角坐标系中的点给出如下定义:把点的横坐标与纵坐标的绝对值之和叫做点的折线距离,记作,即,例如,点的折线距离为.(1)已知点,,求点,点的折线距离.(2)若点在轴的上方,点的横坐标为整数,且满足,直接写出点的坐标.(),P x y (),P x y (),P x y[]P []P x y =+()1,2P -[]123P =-+=()3,4A -B -A B M x M []2M =M23.如图,A (﹣3,2),B (﹣1,﹣2),C (1,﹣1)将△ABC 向右平移3个单位长度,然后再向上平移1个单位长度,可以得到△A 1B 1C 1.(1)△A 1B 1C 1的顶点A 1的坐标为 ;顶点C 1的坐标为 .(2)在图中画出△A 1B 1C 1,并求出△A 1B 1C 1的面积.(3)已知点P 在x 轴上,以A 1、C 1、P 为顶点的三角形面积为,则P 点的坐标为 .3224.如图,在平面直角坐标系中,的三个顶点坐标分别为,,.(1)动手操作:画出先向右平移3个单位再向下平移1个单位后的图形;(2)一只青蛙在线段上,测得位置为.请写出按(1)的方式运动后对应位置的坐标:(____,____);(3)拓展延伸:把各顶点横、纵坐标都乘以2后,画出放大后的图形;(4)拓展延伸:直接写出的面积与的面积比________.25. 与在平面直角坐标系中的位置如图所示.ABC 111A B C △ABC (2,1)A -(1,4)B -(3,2)C -ABC 111A B C △AC (,)a b ABC 222A B C △ABC 222A B C △(1)写出点A 的坐标:A____________;(2)是由经过怎样的平移得到的?(3)若点是内部一点,则内部的对应点的坐标为P_________;(4)求的面积.26.如图①,在平面直角坐标系中,△ABC 的三个顶点坐标分别为A(2m-6,0),B(4,0),C(-1,2),点A ,B 分别在原点两侧,且A ,B 两点间的距离等于6个单位长度.(1)m 的值为_________;(2)在x 轴上是否存在点M ,使△COM 的面积=△ABC 的面积,若存在,请求出点M 的坐标;若不存在,请说明理由.ABC 111A B C △(,)P x y ABC 111A B C △1P ABC 13(3)如图②,把线段AB 向上平移2个单位得到线段EF ,连接AE ,BF ,EF 交y 轴于点G ,过点C 作CD ⊥AB 于点D ,将长方形GOBF 和长方形AECD 分别以每秒1个单位长度和每秒2个单位长度的速度向右平移,同时,动点M 从点A 出发,以每秒1个单位长度的速度沿折线AECDA 运动,当长方形GOBF 与长方形AECD 重叠面积为1时,求此时点M 的坐标.答案一、选择题1.在平面直角坐标系中,点所在的象限为( )A .解:A (-2,-10)在第三象限,故选:C .2.B【分析】根据第四象限内点的纵坐标是负数,纵坐标是正数即可判断.【详解】解:∵点是第四象限内的点,∴a<0,四个选项中符合题意的数是.故选:B .3.A (2,10)A --()2,A a 32-【分析】根据平行于y 轴的直线上的点的横坐标相同可得,求出a 的值即可得出答案.【详解】解:∵点,点,直线轴,∴,∴,∴,故选:A .4.C【分析】利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减求解即可.【详解】解:把点A (﹣2,2)平移到点A'(﹣5,2),其平移方法是向左平移3个单位,故选:C .6.△ABO 与△A 1B 1O 在平面直角坐标系中的位置如图所示,它们关于点O 成中心对称,其中点A (4,2),则点A 1的坐标是( )解:∵A 和A 1关于原点对称,A (4,2),∴点A 1的坐标是(﹣4,﹣2),故选:B .7.C【分析】根据平移的特点,可以得到点A 到点A ′是如何平移的,然后即可写出点C 的对应点C ′的坐标.【详解】解:∵点A (-4,3),点A ′(1,4),∴点A 的横坐标向右平移5个单位长度,再向上平移1个单位长度,即可得到点A ′,∴平移后矩形顶点C (-2,0)的对应点C ′的坐标是(3,1),故选:C .8.A【分析】根据点的坐标求出四边形ABCD 的周长,然后求出第2022秒是爬了第几21a -=()2,27A a a -+()1,5B AB y ∥21a -=3a =()1,13A圈后的第几个单位长度,从而确定答案.【详解】 A (﹣1,1)B (﹣1,﹣2),C (3,﹣2),D (3,1)四边形ABCD 是矩形瓢虫转一周,需要的时间是秒 , 按A →B →C →D →A 顺序循环爬行,第2022秒相当于从A 点出发爬了5秒,路程是:个单位,10=3+4+3,所以在D 点 .故答案为:A9.B【分析】由于撤走一排,则四人所在的列数不变、排数减一,据此逐项排除即可.【详解】解:A. 小李现在位置为第1排第4列,故A 选项错误,不符合题意;B. 小张现在位置为第3排第2列,故B 选项正确,符合题意;C. 小王现在位置为第2排第3列,故C 选项错误,不符合题意;D. 小谢现在位置为第4排第4列,故D 选项错误,不符合题意.故选:B .10.如图是一个教室平面示意图,我们把小刚的座位“第1列第3排”记为.若小丽的座位为,以下四个座位中,与小丽相邻且能比较方便地讨论交流的同学的座位是( )A .B .C .D . ∴()1--2=1+2=3A B ∴=()=3--1=4B C 343414A B B C C D A D ∴+++=+++=∴14=722021=2887+5⨯ ∴52=10⨯()3,1()1,3()3,2()1,3()3,4()4,2()2,4【答案】C【分析】根据小丽的座位坐标为,根据四个选项中的座位坐标,判断四个选项中与其相邻的座位,即可得出答案.【详解】解:∵只有与是相邻的,∴与小丽相邻且能比较方便地讨论交流的同学的座位是,故C 正确.故选:C .二、填空题11.(2,0)【分析】根据x 轴上的点纵坐标等于0列出方程求解得到m 的值,再进行计算即可得解.【详解】解:∵点P (m+3,m+1)在x 轴上,∴m+1=0,解得m =﹣1,∴m+3=﹣1+3=2,∴点P 的坐标为(2,0).故答案为:(2,0).12.(2022,2)【分析】根据图象先计算出A 4和A 8的坐标,进而得出点A 4n 的坐标为(4n ,0),再用2022÷4=505,可得出点A 2022的坐标,即可求解.【详解】解:由图可知A 4,A 8都在x 轴上,∵蜗牛每次移动2个单位,∴OA 4=4,OA 8=8,∴A 4(4,0),A 8(8,0),∴点A 4n 的坐标为(4n ,0).∵2022÷4=505,∴点A 2022的坐标是(2022,0).∵点A 2022向上移动2个单位长度,再向右移动2个单位长度得到点A 2022,∴点A 2022的坐标是(2022,2).()3,2()4,2()3,2()4,2故答案为:(2022,2).13.2【分析】运用割补法求解即可.【详解】解:故答案为:214.【分析】据轴对称判断出点C 变换后在y 轴的右侧,根据平移的距离求出点C 变换后的纵坐标,最后写出即可.【详解】解:∵四边形ABDC 是菱形,∴.∵,∴是等边三角形.∵,,∴,∴点C 到y 轴的距离为,点C 到AB,∴,第2022次变换后的三角形在y 轴右侧,此时,点C 的横坐标为2,,所以,点C对应的坐标是.故答案为:.16.解:由题意知:A 、B 两点之间的横坐标差为:,由平移性质可知:E 、D两点横坐标之差与B 、A 两点横坐标之差相等,设E 点横坐标为a ,则a-6=1,∴a=7,∴E 点坐标为(7,0) .11144441212232222AOB S ∆=⨯-⨯⨯-⨯⨯-⨯-⨯⨯=()22021-AB AC =60BAC ∠=︒ABC ()11A ,()B 3,1312AB =-=11222+⨯=()1C 120222021-=()22021-()22021-431-=故答案为:(7,0) .17.(1,-1)【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】解:将点A(-3,2)先向右平移4个单位,再向下平移3个单位,即把A点的横坐标加4,纵坐标减3即可,即A′的坐标为(1,-1).故答案为:(1,-1).18.B,D解:(1)∵四边形ABCD是矩形,∴OC∥AB,OA∥BC,∵A点的坐标为(4,0),C点的坐标为(0,6),∴点B(4,6),故答案为:(4,6);(2)∵A点的坐标为(4,0),C点的坐标为(0,6),∴OA=4=BC,OC=6=AB,∵P点移动了4秒,∴点P移动的距离是8,∴8﹣4=4,∴点P在AB上,且离点A距离为4,∴点P的坐标为(4,4);(3)当点P在AB上时,则点P移动的距离=4+5=9,∴点P移动的时间=9÷2=4.5(秒),当点P在OC上时,点P移动的距离=4+6+4+6﹣5=15,∴点P移动的时间=15÷2=7.5(秒),∴当点P到x轴距离为5个单位长度时,点P移动的时间为4.5秒或7.5秒.20.解:(1)∵a=-x,b=x-y,A(4,1),∴a=-4,b=x-y=4-1=3,∴和美点的坐标为(-4,3),(3,-4);(2)∵和美点重合,∴a=b ,a=-2,b=x-y=2-y ,∴-2=2-y ,∴y=4;(3)当和美点坐标(a ,b )为(-2,7),则a=-x=-2,x=2,b=x-y=7,y=-5,∴C (2,-5);当和美点坐标(b ,a )为(-2,7),b=x-y=-2,a=-x=7,∴x=-7,y=-5,∴C (-7,-5).综上所述,C (2,-5)或C (-7,-5).21.(1)解:如图,△即为所求作;(2)解:,.线段扫过的图形的面积为.故答案为:,,10;(3)解:直线上的格点满足条件,如图可知:满足条件的点有8个,故答案为:8.A B C '''AA CC '='//AA CC ''AC 112102142161022⨯-⨯⨯⨯-⨯⨯⨯=AA CC '='//AA CC ''l Q22.(1)解:,故;;(2)解:∵点M 在x 轴的上方,其横,纵坐标均为整数,且,∴,y=1,x=0时,y=2,∴点M的坐标为,,.23.(1),,,先向右平移3个单位再向下平移1个单位后.,,,如图,△A 1B 1C 1即为所求;(2)一只青蛙在线段AC 上,测得位置为(a ,b )请写出按(1)的方式运动后对应位置的坐标:(a+3,b-1);故答案为:a+3,b-1;(3),,,,,,如图,△A 2B 2C 2即为所求;(4)△ABC 的面积为:,△A 2B 2C 2的面积为,∴△ABC 的面积与△A 2B 2C 2的面积比1:4.故答案为:1:4.25. 是由向右平移4个单位,向上平移2个单位得到的(3)(4)2【分析】(1)根据点的位置直接得到坐标即可;(2)观察网格中对应点的方向和距离即可得到平移的结果;[]347A =-+=[]B []7A =[]B =[]2M =1x =±()1,1-()1,1()0,2 (2,1)A -(1,4)B -(3,2)C -∴1(1,0)A 1(2,3)B (,)1C 01 (2,1)A -(1,4)B -(3,2)C -∴2(4,2)A -2(2,8)B -2(6,4)C -111231113222222⨯-⨯⨯-⨯⨯-⨯⨯=111462226448222⨯-⨯⨯-⨯⨯-⨯⨯=ABC 111A B C △(4,2)x y --(3)根据平移的规律解答即可;(4)利用割补法求出面积.【详解】(1)A ,故答案为:(1,3);(2)是由向右平移4个单位,向上平移2个单位得到的.(3)∵是由向右平移4个单位,向上平移2个单位得到的,点是内部一点,∴内部的对应点的坐标为,故答案为:;(4)根据割补法,补成长方形:∴,,..26.(1)解:∵点A 、B 分别在原点两侧,且A 、B 两点间的距离等于6个单位长度,B (4,0),∴4-(2m-6)=6,解得m=2;故答案为:2;(2)解:存在,∵AB=6,C (-1,2),∴S △ABC=AB×|yC|=6,∵△COM 的面积=△ABC 的面积,∴S △COM=2,当点M 在x 轴上时,设M (a ,0),∴OM=|a|,∴S △COM=OM×|yC|=×|a|×2=2,∴a=±2,∴M (-2,0)或(2,0);12131212()1,3ABC 111A B C △ABC 111A B C △(,)P x y ABC 111A B C △1P (4,2)x y --(4,2)x y --ADEF ABC ADB BEC AFCADEF S S S S S =--- 长方形11123131122222=⨯-⨯⨯-⨯⨯-⨯⨯6 1.50.52=---2=(3)解:设经b 秒后长方形GOBF 与长方形AECD 重叠面积为1,由题意可得,bs 后,点D'(-1+2b ,0),O'(b ,0),B'(4+b ,0),①当长方形GOBF 与长方形AECD 重叠部分在长方形GOBF 左侧时,∵高必为2,∴底为,∴-1+2b-b=0.5,∴b=1.5,∴点M 也运动1.5秒,∴1.5×1=1.5<2=AE ,∴点M 在AE 上,∴点M (1,1.5);②当长方形GOBF 与长方形AECD 重叠部分在长方形GOBF 右侧时,∵高必为2,∴底为,∴4+b-(-2+2b )=0.5,∴b=5.5,∴点M 也运动5.5秒,∴5.5×1=5.5,∵AE+EC+CD=5<5.5,∴点M 在AD 上,5.5-5=0.5,而点D'(10,0),∴点M (9.5,0),综上所述:点M 坐标为(1,1.5)或(9.5,0).1212。

苏科版八年级上册数学第5章《平面直角坐标系》单元测试题及答案

苏科版八年级上册数学第5章《平面直角坐标系》单元测试题及答案

第5章《平面直角坐标系》测试卷考试时间:90分钟 满分:100分一、选择(每题3分,共24分)1.已知点P 的坐标是(2,36)a a -+,且点P 到两坐标轴的距离相等,则点P 的坐标是( )A. (3,3)B. (3,3)-C. (6,6)-D. (3,3)或(6,6)-2.将点(3,2)A 沿x 轴向左平移4个单位长度得到点'A ,则点'A 关于y 轴对称的点的坐标是( )A. (3,2)-B. (1,2)-C. (1,2)D. (1,2)-3.在直线l 上有(,)P a b ,(,)Q c d 两点.若直线l 平行于x 轴,则下列结论正确的是( )A. a c =B. 0a c +=C. b d =D. 0b d +=4.如图是平面直角坐标系的一部分.若点M 的坐标为(2,2)-,点N 的坐标为(4,2)-,则点G 的坐标为( )A. (1,3)B. (1,1)C. (0,1)D. (1,1)-5. 已知点(,1)A a 与点(4,)B b -关于原点对称,则a b +的值是( )A. 5B.5-C. 3D.3-6. 如图,在平面直角坐标系中,点A 的坐标为(-,以原点O 为中心,将点A 顺时针旋转150º得到点'A ,则点'A 的坐标是( )A. (0,2)-B.C. (2,0)D. 1)-7.在平面直角坐标系中,若过不同的两点(2,6)P a 与(4,3)Q b b +-的直线PQ 平行于x 轴,则下列结论正确的是( )A. 1,32a b ==-B. 1,32a b ≠=- C. 1,32a b =≠- D. 1,32a b ≠≠- 8.若点(,)M x y 满足222()2x y x y +=+-,则点M 所在的象限是( )A.第一象限或第三象限B.第二象限或第四象限C.第一象限或第二象限D.无法确定二、填空(每题2分,共20分)9.若点A 的坐标(,)x y 满足2(3)20x y -++=,则点A 在第 象限.10. (1) 若点(2,1)A 与点B 关于原点对称,则点B 的坐标是 .(2) 若点(3,2)M a -与点(,)N b a 关于原点对称,则a b +的值是 .11.在平面直角坐标系中,一青蛙从点(1,0)A -处先向右跳了2个单位长度,再向上跳了2个单位长度到点'A 处,则点'A 的坐标是 .12.已知点(3,0)P -,若x 轴上点Q 到点P 的距离等于2,则点Q 的坐标是 .13.已知线段CD 是由线段AB 平移得到的,点(1,4)A -的对应点为(4,7)C ,则点(4,1)B -- 的对应点D 的坐标是 .14.如图,在平面直角坐标系xOy 中,已知点(3,4)A ,将OA 绕坐标原点O 逆时针旋转90º至'OA ,则点'A 的坐标是 .15. 如图,在平面直角坐标系中,等腰直角三角形12OA A 的直角边1OA 在y 轴的正半轴上,且1121OA A A ==,以2OA 为直角边作第二个等腰直角三角形23OA A ,以3OA 为直角边作第三个等腰直角三角形34OA A ,...,依此规律,得到等腰直角三角形20172018OA A ,则点2018A 的坐标是 .16.如图,在长方形OABC 中,OA 在x 轴上,OC 在y 轴上,且2,5OA AB ==.把ABC ∆ 沿着AC 对折得到'AB C ∆,'AB 交y 轴于点D ,则点D 的坐标是 .17.如图,在平面直角坐标系中,O 为原点,四边形OABC 是长方形,点,A C 的坐标分别为(10,0),(0,3),D 是OA 的中点,点P 在边BC 上运动.当ODP ∆是腰长为5的等腰三角形时,点P 的坐标是 .18.如图,在平面直角坐标系中有一个点(1,0)P ,点P 第1次向上跳动1个单位长度至点1(1,1)P ,紧接着第2次向左跳动2个单位长度至点2(1,1)P -,第3次向上跳动1个单位长度,第4次向右跳动3个单位长度,第5次又向上跳动1个单位长度,第6次向左跳动4个单位长度,…,依此规律跳动下去,点P 第100次跳动至点100P 的坐标是 .三、解答(共56分)19. (6分)如图,(1,0)A -,(1,4)C ,点B 在x 轴上,且3AB =.(1)求点B 的坐标,并画出ABC ∆ ;(2)求ABC ∆的面积;(3)在y 轴上是否存在点P ,使以,,A B P 三点为顶点的三角形的面积为10?若存在,请直接写出点P 的坐标;若不存在,请说明理由.20. ( 6分)如图,在平面直角坐标系中,四边形OABC 各顶点的坐标分别是(0,0)O ,(2,3)A ,(5,4)B ,(8,2)C ,求四边形OABC 的面积.21. (6分)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,ABC ∆的顶点均在格点上,点C 的坐标为(0,1)-.(1)写出,A B 两点的坐标;(2)画出ABC ∆关于y 轴对称的111A B C ∆;(3)画出ABC ∆绕点C 旋转180º后得到的222A B C ∆.22. (6分)如图,在平面直角坐标系中描出下列各点:(2,1)A --,(4,1)B -,(1,1)M ,(1,1)P -,然后回答下列问题.(1)你知道点P 是线段AB 上的什么点吗?MP 和AB 的位置关系如何?(2)线段MA 和线段MB 的大小有什么关系?23. (8分)如图,在平面直角坐标系中,直线l 过点(3,0)M ,且平行于y 轴.(1)如果ABC ∆的三个顶点坐标分别是(2,0)A -,(1,0)B -,(1,2)C -,ABC ∆关于y 轴的对称图形是111A B C ∆,111A B C ∆关于直线l 对称图形是222A B C ∆,写出222A B C ∆的三个顶点坐标;(2)如果点P 的坐标是(,0)a -,其中0a >,点P 关于y 轴的对称点是1P ,点1P 关于直线l 的对称点是2P ,求2PP 的长.24. ( 8分)在平面直角坐标系中,点,A B 的坐标分别是(,0)a ,(,0)b ,20b +-=. (1)求,a b 的值;(2)在y 轴上是否存在点C ,使三角形ABC 的面积是12?若存在,求出点C 的坐标;若不存在,请说明理由;(3)已知点P 是y 轴正半轴上一点,且到x 轴的距离为3,若点P 沿x 轴负半轴方向以每秒1个单位长度平移至点Q ,当运动时间t 为多少秒时,四边形ABPQ 的面积S 为15个平方单位?写出此时点Q 的坐标.25. ( 8分)如图,在平面直角坐标系xOy 中,已分点(1,1)A m +,(,1)B a m +,(3,3)C m +,(1,)D m a +,0m >,13a <<,点(,)P n m n -是四边形ABCD 内的一点,且PAD ∆与PBC ∆的面积相等,求n m -的值.26. (8分)已知在长方形ABCD 中,4AB =,252BC =,O 为边BC 上一点,72BO =,以边BC 所在直线为x 轴,O 为坐标原点,建立平面直角坐标系,M 为线段OC 上一点.(1)若点M 的坐标为(1,0),如图①,以OM 为一边作等腰三角形OMP ,且点P 在y 轴上,则符合条件的等腰三角形有几个?请直接写出所有符合条件的点P 的坐标;(2)若点M 的坐标为(2,0),如图①,以OM 为一边作等腰三角形OMP ,使点P 落在长方形ABCD 的一边上,则符合条件的等腰三角形有几个?请直接写出所有符合条件的点P 的坐标;(3)若将(2)中的点M 的坐标改为(4,0),其他条件不变,如图②,则符合条件的等腰三角形有几个?求出所有符合条件的点P 的坐标.参考答案1-8 DCCCCDBB9. 四10. (1)(―2,―1) (2) ―211. (1,2)12. (―1,0)或(―5,0)13. (1,2)14. (―4,3)15. 10081008(2,2)16. (0,2.1)17. (4, 3)或(1,3)或(9,3)18. (26,50)19. (1)(2) 面积为6(3)点P 的坐标为2020(0,)(0,)33- 20. 14.521.(1) (1,2),(3,1)A B --(2) 如图,111A B C ∆即为所求;(3) 如图,222A B C ∆即为所求22.(1) 点P 是线段AB 的中点,MP 垂直平分AB(2) AM BM =23.(1) 222(4,0),(5,0),(5,2)A B C(2) 624.(1) 4,2a b =-=(2) (0,4)或(0,4)-(3) (4,3)Q -25. 2n m -=26.(1) 符合条件的等腰三角形有2个,点P 的坐标为(0,1)-或(0,1)(2) 符合条件的等腰三角形有1个,点P 的坐标为(1,4)(3) 点P 的坐标为7(2-或(0,4)或(2,4)或(4,4)。

第11章 平面直角坐标系数学八年级上册-单元测试卷-沪科版(含答案)

第11章 平面直角坐标系数学八年级上册-单元测试卷-沪科版(含答案)

第11章平面直角坐标系数学八年级上册-单元测试卷-沪科版(含答案)一、单选题(共15题,共计45分)1、等腰△ABC在直角坐标系中,底边的两端点坐标是(-2,0),(6,0),则其顶点的坐标能确定的是()A.横坐标B.纵坐标C.横坐标及纵坐标D.横坐标或纵坐标2、在平面直角坐标系中,线段A′B′是由线段AB经过平移得到的,已知点A(-2,1)的对应点为A′(1,-2),点B的对应点为B′(2,0).则B点的坐标为()A. B. C. D.3、已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(5,0),OB=4 ,点P 是对角线OB上的一个动点,D(0,1),当CP+DP最短时,点P的坐标为()A.(0,0)B.(1,)C.(,)D.(,)4、在平面直角坐标系中,若将三角形上各点的纵坐标都减去3,横坐标保持不变,则所得图形在原图形的基础上()A.向左平移了3个单位B.向下平移了3个单位C.向上平移了3个单位D.向右平移了3个单位5、下列四幅图案中,通过平移能得到图案E的是()A.AB.BC.CD.D6、如图中的一张脸,小明说:“如果我用(0,2)表示左眼,用(2,2)表示右眼”,那么嘴的位置可以表示成()A.(0,1)B.(2,1)C.(1,0)D.(1,﹣1)7、点(0,1)在()A.x轴上B.y轴上C.第一象限D.第三象限8、如图,在正方形网格中,若点,点,则点的坐标为()A. B. C. D.9、平面直角坐标系内的点A(-1,2)与点B(-1,-2)关于( )A.y轴对称B.x轴对称C.原点对称D.直线y=x对称10、如图,将△ABC的三个顶点坐标的横坐标都乘以-1,并保持纵坐标不交,则所得图形与原图形的关系是( )A.关于x轴对称B.关于y轴对称C.将原图形沿x轴的负方向平移了1个单位D.将原图形沿y轴的负方向平移了1个单位11、在平面直角坐标系中,已知点P(﹣2,﹣1)、A(﹣1,﹣3),点A关于点P的对称点为B,在坐标轴上找一点C,使得△ABC为直角三角形,这样的点C共有()个.A.5B.6C.7D.812、点关于y轴对称的点的坐标为()A. B. C. D.13、已知M(3,−2)与点N(x,y)在同一条平行于x轴的直线上,若线段MN的长度为4,则点N的坐标是()A.(4,2)或(4,−2)B.(7,−2)或(−1,−2)C.(7,−2)或(−4,−2) D.(4,−2)或(−1,−2)14、在雪枫中学的社团象棋班里,善于思考的小强发现:在如图所示的象棋盘上,若“帅"和“相"所在的坐标分别是(1,-2)和(3,-2)上,则“炮”的坐标是( )A.(-1,1)B.(-1,2)C.(-2,1)D.(-2,2)15、点P(-2,3)关于x轴对称点的坐标是()A.(-3,2)B.(2,-3)C.(-2,-3)D.(2,3)二、填空题(共10题,共计30分)16、如图,在平面直角坐标系中,△ABC的顶点A、C分别在y轴、x轴上,且A(0,2),C(1,0),∠ACB=90°,AC=BC,点B在第一象限时,则点B的坐标为________.17、在平面直角坐标系中,点(﹣4,4)在第________象限.18、点A(4,-2)关于x轴对称点的坐标是________.19、将点P向左平移3个单位,再向上平移1个单位得,则点P的坐标________.20、已知点A(2,3),A点与B点关于x轴对称,则B点的坐标是________,A点与C点关于y轴对称,则点C的坐标是________.21、如图,在平面直角坐标系中,点 A,B 的坐标分别是(1,5)、(5,1),若点 C 在 x 轴上,且 A,B,C 三点构成的三角形是等腰三角形,则这样的 C 点共有________个22、如图,直线与轴、轴分别交于点B、A,在x轴上有点P,使得AB=BP,则点P的坐标为________.23、如图,点在双曲线()上,过点作轴,垂足为点,分别以点和点为圆心,大于的长为半径作弧,两弧相交于,两点,作直线交轴于点,交轴于点,连接.若,则的值为________.24、在平面直角坐标系中,将点A(﹣1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是________.25、在平面直角坐标系xOy中,抛物线可以看作是抛物线经过若干次图形的变化(平移、翻折、旋转)得到的,写出一种由抛物线y2得到抛物线y1的过程:________.三、解答题(共5题,共计25分)26、已知点A 和点B 关于轴对称,求的值.27、如图,某小区有大米产品加工点3个(M1, M2, M3),大豆产品加工点4个(D1,D2, D3, D4),为了加强食品安全监督,政府要求对食品加工点进行网格化管理,管理员绘制了坐标网格和建立了平面直角坐标系(隐藏),把图中的大米加工点用坐标表示为M1(﹣5,﹣1),M2(4,4),M3(5,﹣4).(1)请你画出管理员所建立的平面直角坐标系;(2)类似地,在所画平面直角坐标系内,用坐标表示出大豆产品加工点的位置.28、P1(x1, y1),P2(x2, y2)是平面直角坐标系中的任意两点,我们把|x1﹣x2|+|y1﹣y2|叫做P1、P2两点间的“直角距离”,记作d(P1, P2).(1)令P0(2,﹣4),O为坐标原点,则d(O,P0)= ;(2)已知Q(2,1),动点P(x,y)满足d(Q,P)=3,且x、y均为整数.①满足条件的点P有多少个?②若点P在直线y=3x上,请写出符合条件的点P的坐标.29、位于汉江沿岸的小明家、学校、医院、游乐场的平面图如图所示.(1)建立适当的平面直角坐标系,使医院的坐标为(3,0)并写出小明家、学校、游乐场的坐标;(2)根据蜀河大坝蓄水工程需要,小明家及学校、医院、游乐场需要等距离整体迁移,已知迁移后新的小明家、学校、游乐场、医院分别用A、B、C、D表示,且这四点的坐标分别用原来各地点的横坐标都减去5、纵坐标都加上2 得到,请先在图中描出A、B、C、D的位置,画出四边形ABCD,然后说明四边形ABCD是由以小明家、学校、游乐场、医院所在地为顶点的四边形经过怎样平移得到的?30、如图,四边形是平行四边形,,,点的坐标为,求点、、的坐标.参考答案一、单选题(共15题,共计45分)1、A2、C3、D4、B5、B6、C7、B8、C10、B11、C12、A13、B14、C15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、25、三、解答题(共5题,共计25分)26、27、29、30、。

沪科版八年级数学上册《第11章平面直角坐标系》章节检测卷-带答案

沪科版八年级数学上册《第11章平面直角坐标系》章节检测卷-带答案

沪科版八年级数学上册《第11章平面直角坐标系》章节检测卷-带答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列选项中,能确定物体位置的是()A.距离学校500米B.季华路C.东经120°,北纬30°D.北偏西60°2.已知点P的坐标为P(3,−4),则点P在第()象限.A.一B.二C.三D.四3.在平面直角坐标系中,已知点A(1,3),将点A向左平移3个单位后,再将它向上平移4个单位,则它的坐标变为()A.(﹣2,7)B.(4,﹣1)C.(4,7)D.(﹣2,﹣1)4.在平面直角坐标系中,对于坐标P(3,4),下列说法错误的是()A.P(3,4)表示这个点在平面内的位置B.点P的纵坐标是4C.点P到x轴的距离是4D.它与点(4,3)表示同一个坐标5.如果点P(a,1)在第一象限,那么点A(a+1,﹣1)在第()象限.A.一B.二C.三D.四6.在方格纸上画出的小旗图案如图所示,若用(﹣2,1)表示A点,(﹣2,5)表示B点,那么C点的位置可表示为()A.(3,5)B.(5,3)C.(1,3)D.(1,2)7.某学校的平面示意图如图所示,如果宠物店所在位置的坐标为(−2,−3),儿童公园所在位置的坐标为(−4,−2),则(0,4)所在的位置是()A.医院B.学校C.汽车站D.水果店8.经过两点A(﹣2,2)、B(﹣2,﹣3)作直线AB,则直线AB()A.平行于x轴B.平行于y轴C.经过原点D.无法确定9.数学活动中,小明和小亮向老师说明他们的位置(单位:m).小明:我这里的坐标是(−100,300);小亮:我这里的坐标是(200,300),则小明和小亮之间的距离是()A.600m B.500m C.400m D.300m10.如图,一个动点P在平面直角坐标系中按箭头所示方向做折线运动,即第一次从原点运动到(1,1),第二次从(1,1)运动到(2,0),第三次从(2,0)运动到(3,2),第四次从(3,2)运动到(4,0),第五次从(4,0)运动到(5,1),……,按这样的运动规律,经过第2023次运动后,动点P的坐标是()A.(2022,1)B.(2022,2)C.(2023,1)D.(2023,2)二、填空题11.长方形ABCD在平面直角坐标系中,其中A(−3,2),B(−3,−2),C(3,−2),则D点坐标是.12.若点P(a,b)到x轴的距离是2,到y轴的距离是4,且点P在第四象限,则点P的坐标.13.已知点M(3a−9,1−a),在y轴上,则M的坐标是.14.如图,A,B的坐标分别为(−2,1),(0,−1)若将线段AB平移至A1B1,A1,B1的坐标分别为(a,3),(3,b),则a+b的值为.15.在平面直角坐标系中,点A的坐标是(1,﹣2).作点A关于y轴的对称点,得到点A′,再将点A′先向上平移3个单位长度,而后向左平移2个单位长度,得到点A″,则点A″的坐标是.16.若点A(−2,0),B(4,0),C(3,5),则△ABC的面积为.17.如图,△OAB的顶点B的坐标为(4,0),把△OAB沿x轴向右平移得到△CDE,如果OC=3,那么OE的长为.三、解答题18.如图是游乐园的一角.(1)如果用(3,2)表示跳跳床的位置,那么跷跷板用数对___________表示,碰碰车用数对___________表示,摩天轮用数对___________表示.(2)请你在图中标出秋千的位置,秋千在大门以东400m,再往北300m处.19.已知平面直角坐标系中有一点M(m−1,2m+3).(1)若点M在第二象限,且到y轴的距离为1,请求出点M的坐标;(2)若点N(2,−5),且MN∥x轴,求线段MN的长度.20.如图,在平面直角坐标系中,三角形ABC的顶点A(−2,5),B(−5,−2),C(3,3),将三角形ABC先向右平移3个单位长度,再向下平移6个单位长度.(1)在图中画出平移后的三角形A1B1C1,并写出A1,B1,C1的坐标.(2)求△ABC的面积.21.在平面直角坐标系xOy中,三角形ABC的三个顶点分别是A(−3,−4),B(2,−1)(1)在所给的网格图中,画出这个平面直角坐标系;(2)点A经过平移后对应点为A1(−5,−1),将三角形ABC作同样的平移得到三角形A1B1C1.①画出平移后的三角形A1B1C1;①若BC边上一点P(x,y)经过上述平移后的对应点为P1,用含x,y的式子表示点P1的坐标;(直接写出结果即可)①求三角形A1B1C1的面积.22.在平面直角坐标系中,对于A(x1,y1)、B(x2,y2)两点,用以下方式定义两点间的“极大距离”d(A,B);若|x1−x2|≥|y1−y2|,则d(A,B)=|x1−x2|;若|x1−x2|<|y1−y2|,则d(A,B)=|y1−y2|.例如:如图,点P(2,3),则d(P,O)=3.(1)若点A(3,2)、B(−1,−1),则d(A,B)=;(2)点C(−1,2)到坐标原点O的“极大距离”是;(3)已知点M(12a,32a),d(M,O)=2,O为坐标原点,求a的值.参考答案1.C2.D3.A4.D5.D6.C7.B8.B9.D10.D11.(3,2)12.(4,−2)13.(0,−2)14.215.(﹣3,1).16.1517.718.(2,4);(5,1);(5,4)19.(1)(−1,3);(2)7.20.(1)A 1(1,−1),B 1(−2,−8),C 1(6,−3)(2)41221.①P 1(x −2,y +3);(3)S △A 1B 1C 1=192. 22.(1)4;(2)2;(3)43或−43.。

八年级数学上册《第十一章平面直角坐标系》单元测试卷-附答案(沪科版)

八年级数学上册《第十一章平面直角坐标系》单元测试卷-附答案(沪科版)

八年级数学上册《第十一章平面直角坐标系》单元测试卷-附答案(沪科版)一、选择题1.在平面直角坐标系xOy 中,点M (﹣4,3)到x 轴的距离是( )A .﹣4B .4C .5D .3.2.小明在介绍郑州外国语中学位置时,相对准确的表述为( )A .陇海路以北B .工人路以西C .郑州市人民政府西南方向D .陇海路和工人路交叉口西北角3.点(26)P -,关于x 轴对称点的坐标是( ) A .(26),B .(26)--,C .(26)-,D .(62)-,4.已知△ABC 在平面直角坐标系中的位置如图所示,若△A'B'C’与△ABC 关于y 轴对称,则点A 的对应点A'的坐标是( )A .(-3,2)B .(3,2)C .(-3,-2)D .(3,-2)5.如图,在平面直角坐标系中,点()()()()11111212A B C D ----,,,,,,, ,按A B C D A →→→→→…排列,则第2022个点所在的坐标是( )A .()11,B .()1 1-,C .()12--,D .()1 2-,6.根据下列表述,能确定位置的是( )A .宁河剧院2排B .某县人民路C .北偏东40D .东经112,北纬367.点()23A -,关于y 轴对称的点的坐标是( ) A .()23,B .()23--,C .()32-,D .()23-,8.如图,在平面直角坐标系中,ABC 位于第二象限,点A 的坐标是()23-,,先把ABC 向右平移4个单位长度得到111A B C ,再作与111A B C 关于x 轴对称的222A B C ,则点A 的对应点2A 的坐标是( )A .()32-,B .()23-,C .()12-,D .()12-, 二、填空题9.已知点(13)P a a +-,在y 轴上,则a 等于 . 10.在平面直角坐标系中,点()23A -,关于y 轴对称后的点的坐标为 . 11.已知点A 坐标为(12),,若直线//AB y 轴,且5AB =,则点B 坐标为 .12.已知点(23)P a a -,关于x 轴对称的点在第一象限,则a 的取值范围是 . 三、解答题13.已知点 2(34)A a a --, 在 x 轴上,求 a 的值以及点 A 的坐标.14.如图,在平面直角坐标系中,四边形ABCD 四个顶点坐标分别为A (0,0),B (9,0),C (7,5),D (2,7),试确定这个四边形的面积.15.已知点A (m ﹣2,5)和B (3,n +4),A ,B 两点关于y 轴对称,求m ﹣n 的值.四、综合题16.已知点P 32232a a ⎛⎫+-⎪⎝⎭,,根据下列条件,求出点P 的坐标. (1)点P 在y 轴上;(2)点Q 的坐标为(-3,3),直线PQ x 轴.17.在平面直角坐标系中,三角形ABC 经过平移得到三角形A B C ''',位置如图所示.(1)分别写出点A ,A '的坐标:A ( ),A '( ). (2)请说明三角形A B C '''是由三角形ABC 经过怎样的平移得到的;(3)若点(4)M m n -,是三角形ABC 内部一点,则平移后对应点M '的坐标为(284)n m --,,求m 和n 的值.18.在平面直角坐标系中,点()53A a a --,,点()211B b --,. (1)若点A 在第一象限的角平分线上,求a 的值; (2)若点A 与点B 关于x 轴对称,求a b 的值.参考答案与解析1.【答案】D【解析】【解答】解:点M (-4,3)在第二象限,到x 轴的距离是3.故答案为:D.【分析】平面直角坐标系中,点到x 轴的距离是纵坐标的绝对值,据此解答即可.2.【答案】D【解析】【解答】解:A 、陇海路以北只有方向,不能确定位置,故不符合题意;B 、工人路以西只有方向,不能确定位置,故不符合题意;C 、郑州市人民政府西南方向只有方向,不能确定位置,故不符合题意;D 、陇海路和工人路交叉口西北角,是两个方向的交汇处,可以确定位置,符合题意. 故答案为:D.【分析】确定地理位置的条件:方向和距离,据此逐一判断即可.3.【答案】B【解析】【解答】解:(26)P -,关于x 轴对称点的坐标是(26)--, 故答案为:B.【分析】根据关于x 轴对称的点坐标的特征:纵坐标变为相反数,横坐标不变可得答案。

八年级上册沪科版数学 第11章平面直角坐标系测试卷(含答案)

八年级上册沪科版数学 第11章平面直角坐标系测试卷(含答案)

第11章测试卷(时间:120分钟满分:150分)题号一二三四五六七八总分得分一、选择题(本大题共10小题,每小题4分,满分40分)1.在平面直角坐标系中,将点(2,1)向右平移3个单位,则所得的点的坐标是( )A.(0,5)B.(5,1)C.(2,4)D.(4,2)2.下列说法正确的是( )A.点 P(-3,5)到x轴的距离为3B.在平面直角坐标系中,点(-3,1)和(1,-3)在同一象限内C.若x=0,则点 P(x,y)在x轴上D.在平面直角坐标系中,有且只有一个点既在横轴上,又在纵轴上3.如果点A(1—a,b+1)在第三象限,那么点 B(a,b)在( )A.第一象限B.第二象限C.第三象限D.第四象限4.点P 在第二象限,点 P到x轴的距离是5,到y轴的距离是2,那么点 P的坐标为( )A.(-5,2)B.(-2,-5)C.(-2,5)D.(2,-5)5.已知点 P(-3,-3),Q(-3,4),则直线 PQ( )A.平行于x轴B.平行于y轴C.垂直于y轴D.以上都不正确6.已知点 A 的坐标为(1,3),点B 的坐标为(2,1).将线段AB 沿某一方向平移后,点 A 的对应点的坐标为((−2,1),则点 B 的对应点的坐标为( )A.(5,3)B.(−1,−2)C.(-1,-1)D.(0,−1)7.(2019·兰州中考)如图,在平面直角坐标系xOy中,将四边形ABCD先向下平移,再向右平移得到四边形.A₁B₁C₁D₁,已知A(−3,5),B(−4,3),A₁(3,3),则B₁的坐标为( )A.(1,2)B.(2,1)C.(1,4)D.(4,1)8.在如图所示的平面直角坐标系内,画在透明胶片上的四边形ABCD 的点A 的坐标是(0,2).现将这张胶片平移,使点 A落在点.A′(5,−1)处,则此平移可以是( )A.先向右平移5个单位,再向下平移1个单位B.先向右平移5个单位,再向下平移3个单位C.先向右平移4个单位,再向下平移1个单位D.先向右平移4个单位,再向下平移3个单位9.若定义:f(a,b)=(-a,b),g(m,n)=(m,-n),例如f(1,2)=(--1,2),g(-4,-5)=(-4,5),则g(f(2,-3))=( )A.(2,—3)B.(—2,3)C.(2,3)D.(-2,-3)10.如图,长方形BCDE 的各边分别平行于x 轴与y轴,物体甲和物体乙由点 A(2,0)同时出发,沿长方形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒的速度匀速运动,物体乙按顺时针方向以2个单位/秒的速度匀速运动,则两个物体运动后的第 2 021次相遇地点的坐标是 ( )A.(1,—1)B.(2,0)C.(—1,1)D.(-1,-1)二、填空题(本大题共4小题,每小题5分,满分20分)11.已知点P(x,y)位于第四象限,并且x≤y+4(x,y为整数),写出一个符合上述条件的点 P 的坐标.12.线段AB=3,且AB∥x轴,若点A的坐标为(1,—2),则点B的坐标为 ·13.如果点 P(x,y)的坐标满足 xy>0,那么点 P 在第象限.如果满足xy=0,那么点P在.14.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),根据这个规律探索可得,第56 个点的坐标为 .三、(本大题共2小题,每小题8分,满分16分)15.如图,是某次海战中敌我双方舰艇对峙示意图.对我方潜艇来说:(1)北偏东 40°的方向上有哪些目标?要想确定敌方战舰B的位置,还需要什么数据?(2)距我方潜艇图上距离1 cm的敌方战舰有哪几艘?(3)敌方战舰C和A 在我方潜艇什么方向?(4)要确定每艘敌方战舰的位置,各需要几个数据?16.已知点A(m+2,3)和点B(m−1,2m−4),且AB‖x轴.(1)求m的值;(2)求 AB的长.四、(本大题共2小题,每小题8分,满分16分)17.已知四边形ABCD各顶点的坐标分别是A(0,0),B(7,0),C(9,5),D(2,7).(1)在如图的平面直角坐标系中,画出此四边形;(2)求此四边形的面积.18.已知点P(2m+4,m−1),试分别根据下列条件,求出点 P 的坐标.(1)点 P 在y 轴上;(2)点 P 的纵坐标比横坐标大3;(3)点 P 在过点.A(2,−4)且与x轴平行的直线上.五、(本大题共2小题,每小题10分,满分20分)19.在平面直角坐标系中,已知点.A(−5,0),点B(3,0),点C在y轴上,三角形ABC的面积为12,试求点C的坐标.20.如图,已知三角形ABC三个顶点的坐标分别是.A(−4,−4),B(−2,−3),C(−3,−1).(1)将三角形ABC三个顶点的横坐标都加上5,纵坐标不变,分别得到点A₁,B₁,C₁,请画出三角形.A₁B₁C₁,它与三角形ABC在大小、形状和位置上有什么关系?(2)将三角形ABC三个顶点的纵坐标都加上4,横坐标不变,分别得到点A₂,B₂,C₂,,请画出三角形A₂B₂C₂,,它与三角形ABC在大小、形状和位置上有什么关系?(3)由三角形A₁B₁C₁能通过一次平移得到三角形A₂B₂C₂吗?若能,各对应点的坐标发生了怎样的变化?六、(本题满分12分)21.如图,A(-1,0),C(1,4),点B在x轴上,且AB=4.(1)求点 B 的坐标;(2)求三角形ABC的面积;(3)在y轴上是否存在点 P,使以A,B,P三点为顶点的三角形的面积为 7?若存在,请写出点 P 的坐标;若不存在,请说明理由.七、(本题满分12分)22.当m,n是正数,且满足m+n=mn时,我们称点Q(m,m n)为“完美点”.(1)若点 P(2019,a)是一个完美点,试确定a的值;(2)若点M(x,y)是“完美点”且满足.x+y=5,过M作MH⊥x轴于点H,求三角形OMH的面积.八、(本题满分14分)23.类比学习:一动点沿着数轴向右平移3个单位,再向左平移2个单位,相当于向右平移1个单位.用实数加法表示为3+(−2)=1.若坐标平面上的点作如下平移:沿x轴方向平移的数量为a(向右为正,向左为负,平移|a|个单位),沿y轴方向平移的数量为b(向上为正,向下为负,平移|b|个单位),则把有序数对{a,b}叫做这一平移的“平移量”;“平移量”{a,b}与“平移量”{c,d}的加法运算法则为a,b+c,d=a+c,b+d.解决问题:(1)计算:3,1+1,2;1,2+3,1;(2)动点P 从坐标原点O 出发,先按照“平移量”{3,1}平移到点 A,再按照“平移量”{1,2}平移到点 B;若先把动点 P 按照“平移量”{1,2}平移到点C,再按照“平移量”{3,1}平移,最后的位置还是点 B吗? 在图1中画出四边形OABC;(3)如图2,一艘船从码头O出发,先航行到湖心岛码头P(2,3),再从码头 P 航行到码头Q(5,5),最后回到出发点 O.请用“平移量”加法算式表示它的航行过程.第11章测试卷1. B2. D3. D4. C5. B6. C7. B8. B9. B 10. D11.(1,-2)(答案不唯一) 12.(4,-2)或(-2,-2)13.一、三 坐标轴上 14.(11,10)15.解(1)北偏东40°的方向上有敌方战舰B 和小岛.要想确定敌方战舰B 的位置,还需要知道我方潜艇到敌方战舰B 的距离.(2)距我方潜艇图上距离1 cm 处有敌方战舰B.(3)敌方战舰C 在我方潜艇正东方向,敌方战舰A 在我方潜艇正南方向.(4)要确定每艘敌方战舰的位置,各需要方向和距离两个数据.16.解(1)因为点A 的坐标为(m+2,3),点 B 的坐标为(m-1,2m-4),且AB∥x 轴,所以2m-4=3,所以 m =72.(2)由(1)可知 m =72,所以 m +2=112,m−1=52,2m−4=3,所以点A 的坐标为( 112,3),.点B的坐标为( 52,3).因为 112−52=3,所以AB 的长为3.17.解(1)四边形ABCD 如图所示.(2)四边形的面积 =9×7−12×2×7−12×2×5−12×2×7=63-7-5-7=44.18.解(1)∵点P(2m+4,m-1)在y 轴上,∴2m+4=0,解得m=-2,则m--1=-3.∴P(0,-3).(2)由题意,得m--1--(2m+4)=3,解得m=--8.∴P(-12,-9).(3)点P 在过点A(2,-4)且与x 轴平行的直线上,则其纵坐标为-4,即m--1=-4,解得m=-3,∴P(-2,-4).19.解设点C 的坐标为(0,b),所以OC=|b|.因为A(-5,0),B(3,0),所以AB=8.因为 S ±用∗ABC =12AB ⋅OC =12,所以 12×8×|b|=12,所以|b|=3,所以b=3或-3,所以点C 的坐标为(0,3)或(0,—3).20.解(1)平移后的图形如图所示,所得三角形 A ₁B ₁C ₁与三角形ABC 的大小、形状 完 全 相同,三 角 形A ₁B ₁C ₁可以看成是三角形A BC 向右平移5个单位得到的.(2)平移后的图形如图所示,所得三角形A ₂B ₂C ₂与三角形ABC 的大小、形状完全相同,三角形 A ₂B ₂C ₂ 可以看成是三角形ABC 向上平移4个单位得到的.(3)三角形 A₁B₁C₁能通过一次平移得到三角形 A₂B₂C₂,三角形 A₁B₁C₁的各点的横坐标都减去5,纵坐标都加上4.21.解(1)因为 A (−1,0),点B 在x 轴上,且 AB =4,所以 −1−4=−5,−1+4=3.所以点B 的坐标为(-5,0)或(3,0).(2)因为C(1,4),AB=4,所以 S z→甲ABC =12AB ⋅|y c |=12×4×4=8.(3)假设存在,设点P 的坐标为(0,m),因为 S ±β对ABP =12AB ⋅|y P |=12×4×|m|=7,所以 m =±72.所以在y 轴上存在点 P (0,72)或 P (0,−72),使以A,B,P 三点为顶点的三角形的面积为7.22.解(1)由题意知 2019+n =2019n,∴n =20192018.∴a =2019÷20192018=2018.(2)∵M(x,y)是“完美点”, ∴x +n =xn.∴n =xx−1.∴y =x ÷x x−1=x−1.联立 {x +y =5,y =x−1,解得 {x =3,y =2.∴M(3,2).∴OH=3,HM=2.∴三角形OMH 的面积为 12×2×3=3.23.解(1){3,1}+{1,2}={3+1,1+2}={4,3};{1,2}+{3,1}={1+3,2+1}={4,3}.(2)最后的位置仍是点B ,如图所示.(3)从O 出发,先向右平移2 个单位,再向上平移3个单位,可知平移量为{2,3},同理得到 P 到Q 的平移量为{3,2},从Q 到O 的平移量为{-5,-5},故有{2,3}+{3,2}+{-5,-5}={0,0}.。

初中数学八年级(初二)(上册)—平面直角坐标系(单元练习题)

初中数学八年级(初二)(上册)—平面直角坐标系(单元练习题)

初中数学八年级(初二)(上册)—平面直角坐标系(单元练习题)—平面直角坐标系(单元练习题)点的坐标专项练习一、选择题(共20小题)1.在平面直角坐标系中;点P (﹣2;12+x )所在的象限是( )A .第一象限B .第二象限2.在平面直角坐标系中;将点A (﹣1;﹣2x 轴的对称点B′A .(﹣3;﹣2) B .(2;2) 3.点M (1;2)关于y A .(﹣1;2) B .(﹣1;﹣2) 4.点P (4;﹣3不可能在( )C .第三象限D .第四象限个单位;则点C 的坐标为( );5);1)1)D .(1;﹣5)8.点A 在x 轴上;且到坐标原点的距离是2;则点A 的坐标为( )A .()0,2-B .()0,2C .()20-,或()2,0 D .()()0,20,2或- 9.点P (3;﹣5)关于y 轴对称的点的坐标为( )A .(﹣3;﹣5)B .(5;3)C .(﹣3;5)D .(3;5)10.已知点()a a P +3 ,在第二象限;则a 的取值范围是( )A.0a>a B.3-<C.0-a D.3-a<<3<11.点M(﹣3;﹣2)到y轴的距离是()A.3 B.2 C.﹣3 D.﹣212.在平面直角坐标系中;点P(1;1)位于()A.第一象限B.第二象限C.第三象限D.第四象限13.已知点P(﹣2;4);与点P关于x轴对称的点的坐标是()A.(4;﹣2)B.(﹣2;﹣4)C.(2;﹣4)D.(2;4)14.在平面直角坐标系中;点P(A.第一象限B.第二象限15A.(﹣3;2)B.(﹣3;﹣216.若m是任意实数;则点A.一B.二17.若点P(x;y)的坐标满足x轴上或在y轴上18.点P距离y轴4个单位长度;则点P的坐标为()B.(3;﹣4)D.(﹣4;﹣3)或(4;﹣3)19.点轴的距离分别为3;7;则P点坐标为()B.(﹣7;3)D.(7;﹣3)20.点P位于x轴下方;y轴左侧;距离x轴4个单位长度;距离y轴2个单位长度;那么点P的坐标是()A.(4;2)B.(﹣2;﹣4)C.(﹣4;﹣2)D.(2;4)二.填空题(共10小题)21.点M(﹣2;1)关于x轴对称的点N的坐标是.22.点P(m+3;m+1)在直角坐标系的x轴上;则P点坐标为.23.在平面直角坐标系中;点P(﹣2;﹣5)关于x轴的对称点P′的坐标是.24.平面直角坐标系内;点A(n;1﹣n)一定不在.25.若点A(3;﹣2)与点B关于y轴对称;则点B的坐标为.26.点P到x轴的距离是2;到y轴的距离是3;且在y轴的左侧;则P点的坐标是.27.已知点P(a+1;2a﹣1)关于x轴对称点在第一象限;则a的取值范围为.28.点A(﹣1;2)关于y轴的对称点坐标是.29.若点(m﹣4;1﹣2m)在第三象限内;则m的取值范围是.30.点E(a;﹣5)与点F(﹣2;b)关于y轴对称;则a=;b=.三.解答题(共5小题)31.已知点A(m﹣1;4m+6)在第二象限.(1)求m的取值范围;(2)我们把横、纵坐标均为整数的点称为“整数点”;请写出符合条件的所有“整数点A”.32.平面直角坐标系中;△ABC的三个顶点坐标分别为()()()1,,A.B,C,,3240-4(1)试在平面直角坐标系中;标出A、B、C三点;(2)求△ABC的面积.(3)若△DEF与△ABC关于x轴对称;写出D、E、F的坐标.33.已知点P(3m﹣6;m+1);试分别根据下列条件;求出点P的坐标.(1)点P在y轴上;(2)点P在x轴上;(3)点P的纵坐标比横坐标大5;(4)点P在过点A(﹣1;2);且与x轴平行的直线上.34.已知点P(a;b)在第二象限;且|a|=3;|b|=8;求点P的坐标.35.36.37.38.39.35.已知点()6aM,;试分别根据下列条件;求出M点的坐标.-a3+2(1)点M在x轴上;(2)点N(2;5);且直线MN∥x轴;(3)点M到x轴、y轴的距离相等.初中数学八年级(上)—平面直角坐标系点的坐标专项练习一.选择题(共20小题)1.在平面直角坐标系中;点P(﹣2;x2+1A.第一象限B.第二象限C.第三象限【解答】解:∵x2≥0;∴x2+1≥1;∴点P(﹣2;x2+1)在第二象限.故选:B2x轴的对称点A.(﹣3.(2;﹣2)【解答】B的坐标为(﹣1+3;﹣2);即(2;﹣2);则点B故选:B3.点M)A.(﹣1;2)B.(﹣1;﹣2)C.(1;﹣2)D.(2;﹣1)【解答】解:点M(1;2)关于y轴对称点的坐标为(﹣1;2).故选:A.4.点P(4;﹣3)关于原点的对称点是()A.(4;3)B.(﹣3;4)C.(﹣4;3)D.(3;﹣4)【解答】解:点P(4;﹣3)关于原点的对称点是(﹣4;3);故选:C.5.在平面直角坐标系中;点(﹣1;2)在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:点(﹣1;2)在第二象限.故选:B.6.点P(x﹣1;x+1)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:本题可以转化为不等式组的问题;看下列不等式组哪个无解;(1);解得x>1;故x﹣1>0;x+1>0;点在第一象限;(2);解得x<﹣1;故x﹣1<0;x+1<0;点在第三象限;(3);无解;(4);解得﹣1<x<1;故x﹣1<0;x+1>0;点在第二象限.故选:D.7.如图坐标系中;小正方形边长为1个单位;则点C的坐标为()A.(﹣1;5)B.(﹣5;1)C.(5;﹣1)D.(1;﹣5)【解答】解:如图所示:点C的坐标为:(﹣1;5).故选:A.8.点A在x轴上;且到坐标原点的距离是2;则点A的坐标为()A.(﹣2;0)B.(2;0)C.(0;﹣2)或(0;2)D.(﹣2;0)或(2;0)【解答】解:∵点A在x轴上;且到坐标原点的距离是2;∴点A的坐标为:(﹣2;0)或(2;0).故选:D.9.点P(3;﹣5)关于y轴对称的点的坐标为()A.(﹣3;﹣5)B.(5;3)C.(﹣3;5)D.(3;5)【解答】解:点P(3;﹣5)关于y轴对称的点的坐标为(﹣3;﹣5);故选:A.10.已知点P(a;3+a)在第二象限;则a的取值范围是()A.a<0 B.a>﹣3 C.﹣3<a<0 D.a<﹣3【解答】解:∵点P(a;3+a)在第二象限;∴;解得﹣3<a<0.故选:C.11.点M(﹣3;﹣2)到y轴的距离是()A.3 B.2 C.﹣3 D.﹣2【解答】解:∵点(﹣3;﹣2)到y∴点到y轴的距离是3.故选A.12.在平面直角坐标系中;点P(1;1)位于(A.第一象限B.第二象限C.第三象限【解答】解:点P(1;1)位于第一象限.故选:A.13.已知:点P(﹣2;4);与点P关于xA.(4【解答】故选:B14)A.第四象限【解答】∴a2+1∴点P∴点P故选:D.15.下列各点中;在第二象限的点是()A.(﹣3;2)B.(﹣3;﹣2)C.(3;2)D.(3;﹣2)【解答】解:A、(﹣3;2)在第二象限;故本选项正确;B、(﹣3;﹣2)在第三象限;故本选项错误;C、(3;2)在第一象限;故本选项错误;D、(3;﹣2)在第四象限;故本选项错误.故选:A.16.若m是任意实数;则点M(m2+2;﹣2)在第()象限.A.一B.二C.三D.四【解答】解:∵m2≥0;∴m2+2≥2;∴点M(m2+2;﹣2)在第四象限.故选:D.17.若点P(x;y)的坐标满足xy=0;则点P的位置是()A.在x轴上B.在y轴上C.是坐标原点 D.在x轴上或在y轴上【解答】解:因为xy=0;所以x、y中至少有一个是0;当x=0时;点在y轴上;当y=0时;点在x轴上.当x=0;y=0时是坐标原点.所以点P的位置是在x轴上或在y轴上.故选:D.18.点P在x轴的下方;且距离x轴3个单位长度;距离y轴4个单位长度;则点P的坐标为()A.(4;﹣3)B.(3;﹣4)C.(﹣3;﹣4)或(3;﹣4)D.(﹣4;﹣3)或(4;﹣3)【解答】解:∵点P在x轴的下方;∴点P在第三象限或第四象限;∵点P距离x轴3个单位长度;距离y轴4个单位长度;∴点P的横坐标为4或﹣4;点P的纵坐标为﹣3;∴点P的坐标为(﹣4;﹣3)或(4;﹣3).故选:D.19.点P(x;y)在第二象限;且P到x轴、y轴的距离分别为3;7;则P点坐标为()A.(﹣3;7)B.(﹣7;3)C.(3;﹣7)D.(7;﹣3)【解答】解:∵P到x轴、y轴的距离分别为3;7;∴P的横坐标的绝对值为7;纵坐标的绝对值为3;∵点P(x;y)在第二象限;∴P的坐标为(﹣7;3).故选:B.20.点P位于x轴下方;y轴左侧;距离x轴4个单位长度;距离y轴2个单位长度;那么点P的坐标是()A.(4;2)B.(﹣2;﹣4)C.(﹣4;﹣2)D.(2;4)【解答】解:∵点P位于x轴下方;y轴左侧;∴点P在第三象限;∵距离y轴2个单位长度;∴点P的横坐标为﹣2;∵距离x轴4个单位长度;∴点P的纵坐标为﹣4;∴点P的坐标为(﹣2;﹣4);故选:B.二.填空题(共10小题)21.点M(﹣2;1)关于x轴对称的点N【解答】所以N22.点P P点坐标为(2;0).【解答】x轴上;∴m+1=0∴横坐标23.在平面直角坐标系中;点P(﹣2;﹣5)关于x轴的对称点P′的坐标是(﹣2;5).【解答】解:根据两点关于x轴对称;横坐标不变;纵坐标互为相反数;则点P(﹣2;﹣5)关于x轴的对称点P′的坐标是(﹣2;5).故答案为:(﹣2;5).24.平面直角坐标系内;点A(n;1﹣n)一定不在第三象限和原点.【解答】解:由题意可得、、、;解这四组不等式可知无解;因而点A的横坐标是负数;纵坐标是正数;不能同时成立;即点A一定不在第三象限.又n和1﹣n不能同时为0;故也一定不在原点.故答案为:第三象限和原点.25.若点A(3;﹣2)与点B关于y轴对称;则点B的坐标为(﹣3;﹣2).【解答】解:∵点A(3;﹣2)与点B关于y轴对称;∴点B的坐标为(﹣3;﹣2).故答案为:(﹣3;﹣2).26.点P到x轴的距离是2;到y轴的距离是3;且在y轴的左侧;则P点的坐标是(﹣3;2);(﹣3;﹣2).【解答】解:∵P(x;y)到x轴的距离是2;到y轴的距离是3;∴x=±3;y=±2;又∵点P在y轴的左侧;∴点P的横坐标x=﹣3;∴点P的坐标为(﹣3;2)或(﹣3;﹣2).故填(﹣3;2)或(﹣3;﹣2).27.已知点P(a+1;2a﹣1)关于x轴对称点在第一象限;则a的取值范围为﹣1<a <.【解答】解:∵点P(a+1;2a﹣1)关于x轴对称点在第一象限;∴点P在第四象限;∴;解得:﹣1<a <;故答案为:﹣1<a <.28.点A(﹣1;2)关于y轴的对称点坐标是(1;2).【解答】解:由平面直角坐标系中关于y轴对称的点的坐标特点:横坐标相反数;纵坐标不变;可得:点A关于y轴的对称点的坐标是(1;2).29.若点(m﹣4;1﹣2m)在第三象限内;则m的取值范围是.【解答】解:根据题意可知;解不等式组得;即<m<4.30.点E(a;﹣5)与点F(﹣2;b)关于y轴对称;则a=2;b=﹣5.【解答】解:根据平面直角坐标系中对称点的规律可知;点E(a;﹣5)与点F(﹣2;b)关于y 轴对称;则a=2;b=﹣5.故答案为:2;﹣5.三.解答题(共5小题)31.已知:点A(m﹣1;4m+6)在第二象限.(1)求m的取值范围;(2)我们把横、纵坐标均为整数的点称为“【解答】解:(1)由题意得;;解不等式①得;m<1;解不等式②得;m>﹣;所以;m的取值范围是﹣<m<1;(2)∵∴m取﹣;6).32A(0;4)B(2;4)C(3;﹣1).(1(2(3E、F的坐标.【解答】(24|=5;∴△ABC的面积=×2×5=5.(3)∵A(0;4);B(2;4);C(3;﹣1);△DEF与△ABC关于x轴对称;∴D(0;﹣4)、E(2;﹣4)、F(3;1).33.已知点P(3m﹣6;m+1);试分别根据下列条件;求出点P的坐标.(1)点P在y轴上;(2)点P在x轴上;(3)点P的纵坐标比横坐标大5;(4)点P在过点A(﹣1;2);且与x轴平行的直线上.【解答】解:(1)∵点P(3m﹣6;m+1)在y轴上;∴3m﹣6=0;解得m=2;∴m+1=2+1=3;∴点P的坐标为(0;3);(2)点P(3m﹣6;m+1)在x轴上;∴m+1=0;解得m=﹣1;∴3m﹣6=3×(﹣1)﹣6=﹣9;∴点P的坐标为(﹣9;0);(3)∵点P(3m﹣6;m+1)的纵坐标比横坐标大5;∴m+1﹣(3m﹣6)=5;解得m=1;∴3m﹣6=3×1﹣6=﹣3;m+1=1+1=2;∴点P的坐标为(﹣3;2);(4)∵点P(3m﹣6;m+1)在过点A(﹣1;2)且与x轴平行的直线上;∴m+1=2;解得m=1;∴3m﹣6=3×1﹣6=﹣3;m+1=1+1=2;∴点P的坐标为(﹣3;2).34.已知点P(a;b)在第二象限;且|a|=3;|b|=8;求点P的坐标.【解答】解:由第二象限内的点的横坐标小于零;得a=﹣3.由第二象限内点的纵坐标大于零;得b=8;故P点坐标是(﹣3;8).35.已知点M(3a﹣2;a+6).试分别根据下列条件;求出M点的坐标.(1)点M在x轴上;(2)点N(2;5);且直线MN∥x轴;(3)点M到x轴、y轴的距离相等.【解答】解:(1)∵点M在x轴上;∴a+6=0;∴a=﹣6;3a﹣2=﹣18﹣2=﹣20;a+6=0;∴点M的坐标是(﹣20;0);(2)∵直线MN∥x轴;∴a+6=5;解得a=﹣1;3a﹣2=3×(﹣1)﹣2=﹣5;所以;点M的坐标为(﹣5;5).(3)∵点M到x轴、y轴的距离相等;∴3a﹣2=a+6;或3a﹣2+a+6=0解得:所以点M10时;则其中的每一项都必须等于0.2(1)一元一次不等式组的解集:几个一元一次不等式的解集的公共部分;叫做由它们所组成的不等式组的解集.(2)解不等式组:求不等式组的解集的过程叫解不等式组.(3)一元一次不等式组的解法:解一元一次不等式组时;一般先求出其中各不等式的解集;再求出这些解集的公共部分;利用数轴可以直观地表示不等式组的解集.方法与步骤:①求不等式组中每个不等式的解集;②利用数轴求公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.3.点的坐标(1)我们把有顺序的两个数a和b组成的数对;叫做有序数对;记作(a;b).(2)平面直角坐标系的相关概念①建立平面直角坐标系的方法:在同一平面内画;两条有公共原点且垂直的数轴.②各部分名称:水平数轴叫x轴(横轴);竖直数轴叫y轴(纵轴);x轴一般取向右为正方向;y 轴一般取象上为正方向;两轴交点叫坐标系的原点.它既属于x轴;又属于y轴.(3)坐标平面的划分建立了坐标系的平面叫做坐标平面;两轴把此平面分成四部分;分别叫第一象限;第二象限;第三象限;第四象限.坐标轴上的点不属于任何一个象限.(4)坐标平面内的点与有序实数对是一一对应的关系.4.坐标确定位置平面内特殊位置的点的坐标特征(1)各象限内点P(a;b)的坐标特征:①第一象限:a>0;b>0;②第二象限:a<0;b>0;③第三象限:a<0;b<0;④第四象限:a >0;b<0.(2)坐标轴上点P(a;b)的坐标特征:①x轴上:a为任意实数;b=0;②y轴上:b为任意实数;a=0;③坐标原点:a=0;b=0.(3)两坐标轴夹角平分线上点P(a;b)的坐标特征:①一、三象限:a=b;②二、四象限:a=﹣b.5.坐标与图形性质1、点到坐标轴的距离与这个点的坐标是有区别的;表现在两个方面:①到x轴的距离与纵坐标有关;到y轴的距离与横坐标有关;②距离都是非负数;而坐标可以是负数;在由距离求坐标时;需要加上恰当的符号.2、有图形中一些点的坐标求面积时;过已知点向坐标轴作垂线;然后求出相关的线段长;是解决这类问题的基本方法和规律.3、若坐标系内的四边形是非规则四边形;通常用平行于坐标轴的辅助线用“割、补”法去解决问题.6.关于x轴、y轴对称的点的坐标(1)关于x轴的对称点的坐标特点:横坐标不变;纵坐标互为相反数.即点P(x;y)关于x轴的对称点P′的坐标是(x;﹣y).(2)关于y轴的对称点的坐标特点:横坐标互为相反数;纵坐标不变.即点P(x;y)关于y轴的对称点P′的坐标是(﹣x;y).7.坐标与图形变化-平移(1)平移变换与坐标变化①向右平移a个单位;坐标P(x;y)?P(x+a;y)①向左平移a个单位;坐标P(x;y)?P(x﹣a;y)①向上平移b个单位;坐标P(x;y)?P(x;y+b)①向下平移b个单位;坐标P(x;y)?P(x;y(2图形就是把原图形向右(或向左)平移a个整数a左移减;纵坐标;上移加;下移减.)8.关于原点对称的点的坐标关于原点对称的点的坐标特点(1)两个点关于原点对称时;P′(﹣x;﹣y)(2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章《平面直角坐标系》单元检测卷
(满分:100分 时间:60分钟)
一、选择题(每题2分,共16分)
1.如图,P 1,P 2,P 3这三个点在第二象限内的有 ( )
A .P 1,P 2 ,P 3
B .P 1, P 2
C .P 1, P 3
D .P 1
2.若将点A(2,1)向左平移2个单位长度得到点A',则点A'的坐标是 ( )
A .(2,3)
B .(2,-1)
C .(4,1)
D .(0,1)
3.若点P(a +1,2a -3)关于x 轴的对称点在第一象限,则a 的取值范围是 ( )
A .a<-1
B .-1<a<32
C .-32<a<1
D .a>32
4.甲、乙两位同学用围棋子做游戏,如图,现轮到黑棋下子,黑棋下子后白棋再下一子,使黑棋的5个旗子组成轴对称图形,白棋的5个旗子也成轴对称图形.[说明:棋子的位置用数对表示,如A 点在(6,3)]则下列下子方法不正确的是 ( )
A .黑(3,7),白(5,3)
B .黑(4,7),白-(6,2)
C .黑(2,7),白(5,3)
D .黑(3,7),白(2,6)
5.定义:平面内的直线l 1与l 2相交于点O ,若对于该平面内任意一点M ,点M 到直线l 1,l 2的距离分别为a ,b ,则称有序非负实数对(a ,b )是点M 的“距离坐标”.根据上述定义,距离坐标为(2,3)的点的个数是 ( )
A .2
B .1
C .4
D .3
6.一辆汽车行驶的路程与行驶时间的关系如图所示,下列说法正确的是 ( )
A .前3h 中汽车的速度越来越快
B .3h 后汽车静止不动
C .3h 后汽车以相同的速度行驶
D .前3h 汽车以相同的速度行驶
7.如图,在平面直角坐标系中,点A 在第一象限,点P 在x 轴上,若以P ,O ,A 为顶点的三角形是等腰三角形,则满足条件的点P 的个数是 ( )
A .2
B .3
C .4
D .5
8.图中反映的过程是:小刚从家去菜地浇水,又去青稞地除草,然后回家,如果菜地和青稞地的距离为akm ,小刚在青稞地除草比在菜地浇水多用了bmin ,那么a ,b 的值分别为 ( )
A .1,8
B .0.5,12
C .1,12
D .0.5,8
二、填空题(每题2分,共20分)
9.一栋办公大楼共8层,每层有12个办公室,如果201室表示2楼的第1个办公室,那么611表示楼的第_______个办公室.
10.如果B(n2-4,-n-3)在y轴上,那么n=_______.
11.如图,把QQ笑脸放在直角坐标系中,若左眼A的坐标是(-2,3),嘴唇C点的坐标为(-1,1),则将此QQ笑脸向右平移3个单位后,右眼B的坐标是_______.
12.小明的父母出去散步,从家走了20min到一个离家300m的报亭,母亲随即按原速度返回家.父亲在报亭看了10min报纸后,用15min返回家.下列表示父亲、母亲离家距离与时间之间的关系的图像分别是_______.(只需填写序号)
13.在平面直角坐标系中,若一只青蛙从点A(-1,0)处向右跳2个单位长度,再向上跳2个单位长度到点A'处,则点A'的坐标为_______.
14.如图,点A,B的坐标分别为(1,0),(0,2),若将线段AB平移到A1B1,A1,B1的坐标分别为(2,a),(b,3),则a+b=_______.
15.若点P(3,-1)关于y轴的对称点Q的坐标是(a+b,1-b),则ab的值为_______.16.如图,在平面直角坐标系中,矩形OABC的顶点A,C的坐标分别为(10,0),(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为_______.
17.如图所示是一组密码的一部分.为了保密,许多情况下可采用不同的密码,请你运用所学知识找到破译的“钥匙”.目前,已破译出“今天考试”的真实意思是“努力发挥”.若
“今”所处的位置为(x,y),则你找到的密码钥匙是(_______),破译“正做数学”的真实意思是“_______”.
18.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),…根据这个规律,第2012个点的横坐标为_______.
三、解答题(共64分)
19.(本题6分)下表记录的是某天一昼夜温度变化的数据.
请根据表格中的数据回答下列问题:
(1)早晨6时和中午12时的气温各是多少度?
(2)这一天的温差是多少度?
(3)这一天内温度上升的时段是几时至几时?
20.(本题8分)写出图中“小鱼”上所标各点的坐标,并回答下列问题.
(1)点B,E的位置有什么特点?
(2)从点B与点E、点C与点D的位置看,它们的坐标有什么特点?
21.(本题6分)已知点M(3,2)与点N(x,y)在同一条平行于x轴的直线上,且点N到y 轴的距离为5,试求点N的坐标.
22.(本题6分)写出图中△ABC各顶点的坐标并求出此三角形的面积.
23.(本题9分)如图所示为一风筝的图案.
(1)写出图中所标各个顶点的坐标;
(2)若图中各点的纵坐标保持不变,横坐标分别乘2,
所得各点的坐标分别是什么?所得图案与原来图案相比有什么变化?
(3)若图中各点的横坐标保持不变,纵坐标分别乘-2,
所得各点的坐标分别是什么?所得图案与原来(1)中的图案
相比有什么变化?
24.(本题12分)如图,OABC 是一张放在平面直角坐标系中的长方形纸片,O 为原点,点A 在x 轴的正半轴上,点C 在y 轴的正半轴上,OA =10,OC =8,在OC 边上取一点D ,将纸片沿AD 翻折,使点O 落在BC 边上的点E 处,求D ,E 两点的坐标.
25.(本题12分)操作与探究:
(1)对数轴上的点P 进行如下操作:先把点P 表示的数乘以13
,再把所得数对应的点向右平移1个单位,得到点P 的对应点P'.
点A ,B 在数轴上,对线段AB 上的每个点进行上述操作后得到线段A'B',其中点A ,B 的对应点分别为A',B'.如图1,若点A 表示的数是-3,则点A'表示的数是_______;若点B'表示的数是2,则点B 表示的数是_______;已知线段AB 上的点E 经过上述操作后得到的对应点E'与点E 重合,则点E 表示的数是_______.
(2)如图2,在平面直角坐标系xOy 中,对正方形ABCD 及其内部的每个点进行如下操作:
把每个点的横、纵坐标都乘以同一个实数a ,将得到的点先向右平移m 个单位,再向上平移挖个单位(m>0,n>0),得到正方形A'B ,C ,D'及其内部的点,其中点A ,B 的对应点分别为A',B'.已知正方形ABCD 内部的一个点F 经过上述操作后得到的对应点F'与点F 重合,求点F 的坐标.
参考答案
一、选择题
1.D
2.D
3.B
4.C
5.C
6.B
7.C
8.D
二、填空题
9.6 11 10.±2 11.(3,3) 12.④,②13.(1,2) 14.2 15.25 16.(2,4)或(3,4)或(8,4) 17.x+1,y+2 祝你成功18.45
三、解答题
19.(1)-4℃,7.5℃(2)16.5℃(3)4时~14时
20.A(-2,0),B(0,-2),C(2,-1),D(2,1),E(0,2).(1)点B,E关于x轴对称(2)横坐标相等,纵坐标互为相反数
21.(3,-5),(3,5)
22.9.5
23.(1)图中所标各顶点的坐标分别为A(0,4),B(-3,1),C(-3,-1),D(0,-2),E(3,-1),F(3,1) (2)所得各点的坐标分别为A(0,4),B(-6,1),C(-6,-1),D(0,-2),E(6,-1),F(6,1).与原图案相比,新图案在x轴方向上扩大到原来的2倍,在y轴方向上不变(3)所得各点的坐标分别为A(0,-8),B(-3,-2),C(-3,2),D(0,4),E(3,2),F(3,-2).与原图案相比,新图案在y轴方向上扩大到原来的2倍,方向相反,在x轴方向上不变
24.D(0,5)
25.(1)0,3,3
2
(2)F(1,4)。

相关文档
最新文档