热力学.统计物理复习题A

合集下载

热力学统计物理练习试题和答案

热力学统计物理练习试题和答案

WORD 格式 整理 热力学·统计物理练习题一、填空题 . 本大题 70 个小题,把答案写在横线上。

1. 当热力学系统与外界无相互作用时 , 经过足够长时间 , 其宏观性质时 间改变,其所处的 为热力学平衡态。

2. 系统,经过足够长时间,其不随时间改变,其所处的状态为热力学平衡态。

3.均匀物质系统的热力学平衡态可由力学参量、电磁参量、几何参量、化 学参量等四类参量描述,但有 是独立的。

4.对于非孤立系统, 当其与外界作为一个整体处于热力学平衡态时,此时 的系统所处的状态是 。

5.欲描述非平衡系统的状态,需要将系统分成若干个小部分,使每小部分具有 小,但微观上又包含大量粒子,则每小部分都可视 为。

6.描述热力学系统平衡态的独立参量和 之间关系的方程式叫物态方程,其一般表达式为 。

7.均匀物质系统的独立参量有 个,而过程方程独立参量只有个。

8.定压膨胀系数的意义是在 不变的条件下系统体积随 的相对变化。

9.定容压力系数的意义是在 不变条件下系统的压强随的相 对变化。

10.等温压缩系数的意义是在 不变条件下系统的体积随的 相对变化。

11.循环关系的表达式为。

12.在无摩擦准静态过程中存在着几种不同形式的功,则系统对外界作的功 W Y i dy i ,其中 y i 是, Y i 是与 y i 相应的。

13. U B U A Q W ,其中 是作的功。

W14. dUQW0 ,-W 是作的功,且 -W 等于。

22( 、 均为热力学平衡态1、L2 为15.Q W QW ,L 1L 1 1 2 1L 2准静态过程)。

16.第一类永动机是指的永动机。

17.内能是 函数,内能的改变决定于和。

18.焓是函数,在等压过程中,焓的变化等于的热量。

19.理想气体内能温度有关,而与体积。

学习参考资料分享WORD 格式整理20.理想气体的焓温度的函数与无关。

21.热力学第二定律指明了一切与热现象有关的实际过程进行的。

(完整word版)热力学与统计物理期末复习题

(完整word版)热力学与统计物理期末复习题

热力学统计物理1、请给出熵、焓、自由能和吉布斯函数的定义和物理意义解:熵的定义:S B−S A=∫dQT ⟹B A dS=dQT沿可逆过程的热温比的积分,只取决于始、末状态,而与过程无关,与保守力作功类似。

因而可认为存在一个态函数,定义为熵。

焓的定义:H=U+pV焓的变化是系统在等压可逆过程中所吸收的热量的度量。

自由能的定义:F=U−TS自由能的减小是在等温过程中从系统所获得的最大功。

吉布斯函数的定义:G =F+pV= U – TS + pV在等温等压过程中,系统的吉布斯函数永不增加。

也就是说,在等温等压条件下,系统中发生的不可逆过程总是朝着吉布斯函数减少的方向进行的。

2、请给出热力学第零、第一、第二、第三定律的完整表述解:热力学第零定律:如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡(温度相同),则它们彼此也必定处于热平衡。

热力学第一定律:自然界一切物体都具有能量,能量有各种不同形式,它能从一种形式转化为另一种形式,从一个物体传递给另一个物体,在转化和传递过程中能量的总和不变。

热力学第二定律:克氏表述:不可能把热量从低温物体传到高温物体而不引起其他变化;开氏表述:不可能从单一热源吸热使之完全变成有用的功而不引起其他变化。

热力学第三定律:能氏定理:凝聚系的熵在等温过程中的改变随热力学温度趋于零,即limT→0(∆S)T=0绝对零度不能达到原理:不肯能通过有限的步骤使一个物体冷却到热力学温度的零度。

通常认为,能氏定理和绝对零度不能达到原理是热力学第三定律的两种表述。

3、请给出定压热容与定容热容的定义,并推导出理想气体的定压热容与定容热容关系式:C p−C V=nR解:定容热容: C V=(ðUðT )V表示在体积不变的条件下内能随温度的变化率;定压热容:C p=(ðUðT )p−p(ðVðT)P=(ðHðT)P表示在压强不变的情况下的熵增;对于理想气体,定容热容C V的偏导数可以写为导数,即C V=dUdT(1)定压热容C p的偏导数可以写为导数,即C P=dHdT(2)理想气体的熵为 H=U+pV=U+nRT(3)由(1)(2)(3)式可得理想气体的定压热容与定容热容关系式:C p−C V=nR4、分别给出体涨系数α,压强系数β和等温压缩系数κT的定义,并证明三者之间的关系:α=κTβp解:体涨系数:α=1V (ðVðT)P,α 给出在压强不变的条件下,温度升高1 K所引起的物体的体积的相对变化;压强系数:β=1p (ðp ðT )v ,β 给出在体积不变的条件下,温度升高1 K 所引起的物体的体积的相对变化;等温压缩系数:κT =−1V (ðV ðp )T ,κT 给出在温度不变的条件下,增加单位压强所引起的物体的体积的相对变化;由于p 、V 、T 三个变量之间存在函数关系f (p ,T ,V )=0,其偏导数存在以下关系:(ðV ðp )T (ðp ðT )v (ðT ðV )P =−1 因此α, β, κT 满足α=κT βp5、分别给出内能,焓,自由能,吉布斯函数四个热力学基本方程及其对应的麦克斯韦关系式解:内能的热力学基本方程:dU =TdS −pdV对应的麦克斯韦关系式:(ðT ðV )S =−(ðp ðS )V 焓的热力学基本方程:dH =TdS +Vdp对应的麦克斯韦关系式:(ðT ðp )s =(ðV ðS )p 自由能的热力学基本方程:dF =−SdT +Vdp对应的麦克斯韦关系式:(ðS ðV )T =(ðp ðT )V 吉布斯函数的热力学基本方程:dG =−SdT −pdV对应的麦克斯韦关系式: (ðS ðp )T =−(ðV ðT )p 6、选择T ,V 为独立变量,证明:C V =T (ðS ðT )V ,(ðU ðV )T = T (ðp ðT )V −p 证明:选择T ,V 为独立变量,内能U 的全微分为dU =(ðU ðT )V dT +(ðU ðV )T dV (1) 又已知内能的热力学基本方程 dU =TdS −pdV (2)以T ,V 为自变量时,熵S 的全微分为dS =(ðS ðT )V dT +(ðS ðV )T dV (3) 将(3)式代入(2)式可得dU =T (ðS ðT )V dT +[T (ðS ðV )T −P]dV (4) 将(4)式与(1)式比较可得C V =(ðU ðT )V =T (ðS ðT )V (5) (ðU ðV )T = T (ðp ðT )V −p (6) 7、简述节流过程制冷,气体绝热膨胀制冷,磁致冷却法的原理和优缺点解:节流过程制冷:原理:让被压缩的气体通过一绝热管,管子的中间放置一多孔塞或颈缩管。

(完整版)热力学与统计复习题

(完整版)热力学与统计复习题

复习提纲一、填空题:1.特性函数是指在________选择自变量的情况下,能够表达系统_________的函数。

2.能量均分定理说:对于处在温度为T 的平衡状态的经典系统,粒子能量函数中的每一个________的平均值等于___________。

3.自然界的一切实际宏观过程都是_________过程,无摩擦的准静态过程是______ _过程。

4.熵增加原理是说,对于绝热过程,系统的熵_____________。

5.卡诺定理指出:工作于相同的高温热源和相同的低温热源之间的一切可逆机,其效率都____________, 与______________无关。

6.绝对零度时电子的最大能量称为___________________。

7.孤立系统经过足够长时间,其 不随时间改变,其所处的状态为热力学平衡态。

8.内能是 函数。

9.一般工作于两个一定温度热源之间的热机效率不大于 。

10.TH V P ∂⎛⎫= ⎪∂⎝⎭ 。

11.三维自由粒子的μ空间是 维空间。

12.体积V 内,能量在d εεε-+范围内自由粒子的可能状态数为 。

13.多元单相系的化学反应平衡条件是 。

14.克拉伯龙方程的表达式为 。

15.玻色系统中粒子的最概然分布为 。

二、选择题:1. 假设全同近独立子系统只有2个粒子,3个个体量子态。

那么下面说法错误的是:( )A. 如果该系统是玻尔兹曼系统,那么该系统共有9个系统微观状态。

B. 如果该系统是费米系统,那么该系统共有6个系统微观状态。

C. 如果该系统是费米系统,那么该系统共有3个系统微观状态。

D. 如果该系统是玻色系统,那么该系统共有6个系统微观状态。

2.关于热力学和统计物理平衡态说法错误的是: ( )A. 一个宏观的平衡状态包含了大量的系统的微观状态。

B. 它是一个动态的平衡,宏观量存在涨落,但是热力学理论不能够考虑涨落。

C. 宏观量都有对应的微观量。

D. 虽然系统的宏观量不随时间发生变化,但是它不一定就是一个平衡态。

云南师范大学《热力学与统计物理》期末试卷 A卷及答案

云南师范大学《热力学与统计物理》期末试卷 A卷及答案

=
8π V 2m 3 2 π2 32 ( ) ( − α ) (1 + ) 3h3 β 8α 2
(4 分)
S = k (ln Ξ − α
∂ ln Ξ ∂ ln Ξ 5 −β ) = k (ln Ξ + α N + β U ) = k ( ln Ξ + α N ) (2 分) ∂α ∂β 2
热统(A)卷
(每个等号1分)
热统(A)卷
第 3 页 共 4 页
2.解:自由能的全微分 比较热力学方程 得熵和物态方程 内能 焓 吉布斯函数
dF = (
Байду номын сангаас
∂F ∂F )V dT + ( )T dV , ∂T ∂V
(2分) (2分)
dF = − SdT − pdV
S = −(
∂F )V ∂T
∂F )T (2分) ∂V ∂F U = F + ST = F − T (2分) ∂T ∂F ∂F H = U + pV = F − T −V (2分) ∂T ∂V ∂F ∂F ∂F G = H − ST = F − T −V +T ∂T ∂V ∂T ∂F = F −V (2 分) ∂V
二 填空题(每空 2 分,共 20 分) 1、发生二级相变时两相化学势、化学势的一级偏导数 ,但化学势的 级偏导数发生突变。 。 。 。 。费米分布表示为 。 。
2、普适气体常数 R 与阿伏伽德罗常数 N 0 和玻耳兹曼 k 之间的数学关系为 3、孤立系统平衡的稳定性条件表示为 4、如果采用对比变量,则范氏对比方程表示为 5、玻耳兹曼的墓志铭用数学关系表示为 和
一. 判断题(每小题 2 分,共 20 分) 1× 2× 3× 4√ 5√ 6√ 7√ 8× 9× 10×

热力学统计物理-基础题库

热力学统计物理-基础题库

Q 一、选择题:(每题 3 分)下列选项正确的是().(热力学系统的平衡状态及其描述)(容易)A . 与外界物体有能量交换但没有物质交换的系统称为绝热系统。

B . 与外界物体既有能量交换又有物质交换的系统称为封闭系统。

C . 与外界物体既没有能量交换又没有物质交换的系统称为孤立系统。

D . 热力学研究的对象是单个的微观粒子。

答案:B.简单系统的物态方程的一般形式为().(物态方程)(容易)A. f ( p ,V ) = 0 ;B. f ( p ,V ,T ) = C ;C. f ( p ,V ,T ) = 0 ;D. f ( p ,V ) = C ;答案:C.下列关于状态函数的定义正确的是().(焓自由能吉布斯函数)(容易)A . 系统的焓是: H = U - pV ;B . 系统的自由能函数是: F = U + TS ;C . 系统的吉布斯函数是: G = U - TS + pV ;D . 系统的熵函数是: S = ;T答案:C.状态函数焓的全微分表达式为dH 为 ( ).(内能焓自由能和吉布斯函数的全微分)(中等)A. TdS - pdV ;B. TdS + Vdp ;C. -SdT - pdV ;D. -SdT + Vdp答案:B.内能函数的全微分表达式为dU 为 ( ). (内能焓自由能和吉布斯函数的全微分)(中等)A. TdS -pdV ;B. TdS +Vdp ;C. -SdT -pdV ;D. -SdT +Vdp答案:A.自由能函数的全微分表达式为dF 为 ( ). (内能焓自由能和吉布斯函数的全微分)(中等)A. TdS -pdV ;B. TdS +Vdp ;C. -SdT -pdV ;D. -SdT +Vdp答案:C.吉布斯函数的全微分表达式为dG 为 ( ). (内能焓自由能和吉布斯函数的全微分)(中等)A. TdS -pdV ;B. TdS +Vdp ;C. -SdT -pdV ;D. -SdT +Vdp答案:D.下列关于状态函数全微分正确的是().(内能焓自由能和吉布斯函数的全微分)(中等)A.内能: dU =TdS -pdV ;B.焓: dH =TdS -Vdp ;C.自由能: dF =-SdT +pdV ;D.吉布斯函数: dG =-SdT -Vdp ;答案:A.下面几个表达式中错误的是( ).(热量和焓)(容易).∂∂p ∂TCp =T∂TA.CVB.CV =∂U; V=∂S; V∂HC. C = ;p∂SD. ;p答案:B.下面关于热力学第零定律的表述错误的是()。

热力学与统计物理_试题

热力学与统计物理_试题

热⼒学与统计物理_试题热⼒学部分第⼀章热⼒学的基本规律1、热⼒学与统计物理学所研究的对象:由⼤量微观粒⼦组成的宏观物质系统其中所要研究的系统可分为三类孤⽴系:与其他物体既没有物质交换也没有能量交换的系统;闭系:与外界有能量交换但没有物质交换的系统;开系:与外界既有能量交换⼜有物质交换的系统。

2、热⼒学系统平衡状态的四种参量:⼏何参量、⼒学参量、化学参量和电磁参量。

3、⼀个物理性质均匀的热⼒学系统称为⼀个相;根据相的数量,可以分为单相系和复相系。

4、热平衡定律(热⼒学第零定律):如果两个物体各⾃与第三个物体达到热平衡,它们彼此也处在热平衡.5、符合玻意⽿定律、阿⽒定律和理想⽓体温标的⽓体称为理想⽓体。

6、范德⽡尔斯⽅程是考虑了⽓体分⼦之间的相互作⽤⼒(排斥⼒和吸引⼒),对理想⽓体状态⽅程作了修正之后的实际⽓体的物态⽅程。

7、准静态过程:过程由⽆限靠近的平衡态组成,过程进⾏的每⼀步,系统都处于平衡态。

8、准静态过程外界对⽓体所作的功:,外界对⽓体所作的功是个过程量。

9、绝热过程:系统状态的变化完全是机械作⽤或电磁作⽤的结果⽽没有受到其他影响。

绝热过程中内能U 是⼀个态函数:A B U U W -= 10、热⼒学第⼀定律(即能量守恒定律)表述:任何形式的能量,既不能消灭也不能创造,只能从⼀种形式转换成另⼀种形式,在转换过程中能量的总量保持恒定;热⼒学表达式:Q W U U A B +=-;微分形式:W Q U d d d +=11、态函数焓H :pV U H +=,等压过程:V p U H ?+?=?,与热⼒学第⼀定律的公式⼀⽐较即得:等压过程系统从外界吸收的热量等于态函数焓的增加量。

12、焦⽿定律:⽓体的内能只是温度的函数,与体积⽆关,即)(T U U =。

13.定压热容⽐:p p T H C=;定容热容⽐:V V T U C= 迈耶公式:nR C C V p =- 14、绝热过程的状态⽅程:const =γpV ;const =γTV ;const 1=-γγTp 。

热力学与统计物理试题

热力学与统计物理试题

热力学与统计物理试题一、选择题1. 热力学第一定律表明,一个系统内能的微小改变等于它与周围环境交换的热量与它做的功之和。

若一个气体绝热膨胀,其内能的变化量为:A. 正值B. 负值C. 零D. 无法确定2. 理想气体状态方程为 \( pV = nRT \),其中 \( p \) 代表压力,\( V \) 代表体积,\( n \) 代表物质的量,\( R \) 是气体常数,\( T \) 代表温度。

若温度和物质的量保持不变,而压力增加,则体积的变化为:A. 增加B. 减小C. 不变D. 先增加后减小3. 熵是热力学中用来描述系统无序度的物理量。

在一个孤立系统中,熵的变化趋势是:A. 持续增加B. 持续减少C. 保持不变D. 在特定条件下增加或减少4. 麦克斯韦关系是热力学中描述状态函数之间关系的一组方程。

对于一个理想气体,其等体过程中的温度与熵的关系是:A. 正比B. 反比C. 无关D. 非线性关系5. 统计物理中,微观状态与宏观状态之间的关系是通过什么原理来描述的?A. 能量均分原理B. 等概率原理C. 熵最大原理D. 能量最小原理二、填空题1. 热力学第二定律可以表述为,在一个自发的过程中,熵总是倾向于增加,这个过程是________的。

2. 理想气体的内能只与温度有关,与体积和压力________。

3. 在热力学循环中,卡诺循环的效率是由两个热库的温度决定的,其效率公式为 \( \eta = 1 - \frac{T_{c}}{T_{h}} \),其中 \( T_{c} \) 是________的温度,\( T_{h} \) 是________的温度。

4. 统计物理中,一个系统的宏观状态可以通过多个不同的________来实现。

5. 按照玻尔兹曼熵的定义,一个系统的熵与它的微观状态数目的对数成正比,数学表达式为 \( S = k_B \ln W \),其中 \( k_B \) 是________常数。

(完整word版)热力学统计物理复习

(完整word版)热力学统计物理复习

热力学统计物理复习一、简答题(每小题4分,共20分)二、填空题(每空2分,共36分)三、证明和计算题(10+12+10+12=44分)第一部分1.熵增原理2.特性函数3.热力学第二定律的两种表述及其本质4.熵判据5.单元系、单元复相系6.单元复相系平衡条件包括哪些?7.等几率原理8. 空间9.近独立粒子系统10.全同性粒子系统11.玻色子、费米子12.热力学第一定律数学表达, 包括积分与微分表达; 热力学基本方程13.统计物理学的最根本观点是什么?14.玻耳兹曼分布、玻色分布和费米分布的数学表达式15.简并条件(经典极限条件)、弱简并条件、强简并条件16.微正则分布、正则分布和巨正则分布分别适用于什么样的系统17 系统微观运动状态的描述第一部分1.(P42)在绝热过程中,系统的熵永不减少,对于可逆绝热过程,系统的熵不变;对于不可逆绝热过程,系统的熵总是增加,这个结论叫做熵增加原理。

2.(P63)如果适当选择独立变量(称为自然变量),只要知道一个热力学函数,就可以通过求偏导数而求得均匀系统的全部热力学函数,从而把均匀系统的平衡性质完全确定。

这样的热力学函数称为特性函数。

以S、V为变量的特征函数是内能U。

3.(P30)热力学第二定律的克氏表述:不可能把热量从低温物体传到高温物体而不引起其他变化;开氏表述:不可能从单一热源吸热使之完全变成有用功而不引起其他变化。

4.(P76)如果孤立系统已经达到了熵为极大的状态,就不可能在发生任何宏观变化,系统就达到了平衡态。

我们可以利用熵函数这一性质来判定孤立系统的平衡态,这称为熵判据。

5.(P80)单元系是指化学上纯的物质系统,它只含一种化学组分(一个组元)。

如果一个单元系不是均匀的,但可以分为若干个均匀的部分,该系统称为单元复相系。

比如水和水蒸汽共存构成一个单元两相系。

6.(P82)单元复相系达到平衡条件必须同时满足热学平衡条件、力学平衡条件和相平衡条件。

7. (P178)对于处在平衡状态的孤立系统,系统各个可能的微观态出现的几率是相等的。

热力学与统计物理复习总结级相关试题

热力学与统计物理复习总结级相关试题

热⼒学与统计物理复习总结级相关试题《热⼒学与统计物理》考试⼤纲第⼀章热⼒学的基本定律基本概念:平衡态、热⼒学参量、热平衡定律温度,三个实验系数(α,β,T κ)转换关系,物态⽅程、功及其计算,热⼒学第⼀定律(数学表述式)热容量(C ,C V ,C p 的概念及定义),理想⽓体的内能,焦⽿定律,绝热过程及特性,热⼒学第⼆定律(⽂字表述、数学表述),可逆过程克劳修斯不等式,热⼒学基本微分⽅程表述式,理想⽓体的熵、熵增加原理及应⽤。

综合计算:利⽤实验系数的任意⼆个求物态⽅程,熵增(ΔS )的计算。

第⼆章均匀物质的热⼒学性质基本概念:焓(H),⾃由能F ,吉布斯函数G 的定义,全微公式,麦克斯韦关系(四个)及应⽤、能态公式、焓态公式,节流过程的物理性质,焦汤系数定义及热容量(Cp )的关系,绝热膨胀过程及性质,特性函数F 、G ,空窖辐射场的物态⽅程,内能、熵,吉布函数的性质。

综合运⽤:重要热⼒学关系式的证明,由特性函数F 、G 求其它热⼒学函数(如S 、U 、物态⽅程)第三章、第四章单元及多元系的相变理论该两章主要是掌握物理基本概念:k ),相格,量⼦态数。

(l l a ω=l e βε-),f s ,P l ,P s 综合运⽤: V m ,平均速度V 综合运⽤:(n+21)基本概念:(f s=1),费⽶能量µ均能量ε的计算。

第九章系综理论基本概念:Γ空间的概念,微正则分布的经典表达式、量⼦表达式,正则分布的表达式,正则配分函数的表达式。

经典正则配分函数。

不作综合运⽤要求。

四、考试题型与分值分配1、题型采⽤判断题、单选题、填空题、名词解释、证明题及计算题等六种形式。

2、判断题、单选题占24%,名词解释及填空题占24%,证明题占10%,计算题占42%。

《热⼒学与统计物理》复习资料⼀、单选题1、彼此处于热平衡的两个物体必存在⼀个共同的物理量,这个物理量就是()①态函数②内能③温度④熵2、热⼒学第⼀定律的数学表达式可写为()①W Q U U A B +=-②W Q U U B A +=- ③WQ U U A B -=-④WQ U U B A -=-3、在⽓体的节流过程中,焦汤系数µ=)(1-αT C V P ,若体账系数T 1>α,则⽓体经节流过程后将()①温度升⾼②温度下降③温度不变④压强降低4、空窖辐射的能量密度u 与温度T 的关系是()①3aT u =②T aV u 3=③4aVT u =④4aT u = 5、熵增加原理只适⽤于()①闭合系统②孤⽴系统③均匀系统④开放系统6、在等温等容的条件下,系统中发⽣的不可逆过程,包括趋向平衡的过程,总是朝着()①G 减少的⽅向进⾏②F 减少的⽅向进⾏③G78①3②2③19①≥LTζθ10111213141516、描述N ①617①Z P l 11=18、T =0k F ①平均动量②最⼤动量③最⼩动量④总动量19、光⼦⽓体处于平衡态时,分布在能量为εs 的量⼦态s 的平均光⼦数为()①11-+seβεα②11-KTeω③11++seβεα④11+KT20、由N 个单原⼦分⼦构成的理想⽓体,系统的⼀个微观状态在Γ空间占据的相体积是()①Nh 3②Nh 6③3h ④6h21、服从玻⽿兹曼分布的系统的⼀个粒⼦处于能量为εs 的量⼦态S 的概率是()①se NP s βεα--=1②se P s βεα--=③se N P s βε-=1④se P s βε-=22、在T =0K 时,由于泡利不相容原理限制,⾦属中⾃由电⼦从能量ε=0状态起依次填充之µ(0)为⽌,µ(0)称为费⽶能量,它是0K 时电⼦的()①最⼩能量②最⼤能量③平均能量④内能23、平衡态下,温度为T 时,分布在能量为εs 的量⼦态s 的平均电⼦数是()①11-=-KT us e f ε②11+=KT s e f ε③11+=-KTu s e f ④11+=u s e f ε 24、描述N①125①1>αe 26、由N ①h ②h 27、由N ①h ②h 28①329①330①s ρ⼆、判断题1()2、在P-V 34567891011121314、玻⾊系统的粒⼦是不可分辨的,且每⼀个体量⼦态最多能容纳⼀个粒⼦。

热力学与统计物理试卷1、2+答案

热力学与统计物理试卷1、2+答案

热力学与统计物理试卷(甲)一、选择题:(每题3分,共15分)1、一个P、 V为参量的系统,T V不变时,下列说法证确的是()(1)系统处于平衡态时,熵最小;(2)系统处于平衡态时,内能最小;(3)系统处于平衡态时,自由能最大;(4)系统处于平衡态时,自由能最小;2、液体中有一气泡,如a表示液相,B表示气相,两相平衡时有()(1)、 T a≠ T B, P a≠ P B, μa≠μB;(2)、T a = T B, P a≠ P B, μa = μB;(3)、T a = T B, P a = P B, μa≠μB;(4)、T a = T B, P a = P B, μa= μB;3、一个单元系统,固、液两相共存时,()(1)因两相共存,所以不可能处于平衡态;(2)因两相共存,所以两相质量一定相等;(3)两相共存时,化学势高的相,物质的量将减少;(4)两相共存时,化学势高的相,物质的量将增加;4、初平衡态和终平衡态确定的热力学系统,,下列说法证确的是()(1)压强一定发生变化;(2)温度一定发生变化;(3)内能、熵、焓,自由能变化,但不确定;(4)内能、熵、焓、自由能变化都是确定的;5、两个完全不同的A、B物体,处于热平衡有:()(1)、 T A=T B , P A≠P B, V A≠V B ;(2)、 T A≠T B , P A=P B, V A=V B ;(3)、 T A=T B , P A=P B, V A=V B ;(4)、 T A≠T B , P A≠P B, V A=V B ;二、填空题:(每空3分,共30分)1、理想气体分别经等压、等容过程,温度都由T1升到T2,假设等压、等容热容是常数,则前后过程熵增的比值为()。

2、等温等容条件下的系统处在温度平衡`状态的必要和充分条件为(),由()可以确定平衡条件,由()可以确定平衡的稳定性条件。

3、写出玻尔兹曼分布表示式()、玻色分布表示式()、费米分布表示式()。

热力学与统计物理学期末试题

热力学与统计物理学期末试题

一、单选题(每题2分,共10分)
1、F和G是厄密算符,则()
A、FG必为厄密算符;
B、FG−GF必为厄密算符;
C、i(FG+GF)必为厄密算符;
D、i(FG−GF)必为厄密算符
2、氢原子能级的特点是()
A、相邻两能级间距随量子数的增大而增大.
B、能级的绝对值随量子数的增大而增大.
C、相邻两能级间距随量子数的增大而减小.
D、能级随量子数的增大而减小.
3、.一维自由粒子的运动用平面波描写,则其能量的简并度为()
A、1;
B、3
C、2;
D、4
4、下列波函数为定态波函数的是()
A、ψ2
B、ψ1和ψ2
C、ψ3
D、ψ3和ψ4
5、X射线康普顿散射证实了( )
A、电子具有波动性;
B、光具有波动性;
C、光具有粒子性;
D、电子具有粒
二、请给出两套实验方案测量原子的质量;并给出两个不同的实验现象,证实自由原子能级是量子化。

(每个实验方案2.5分,共10分)
三、请用一句话说明在以下每一个实验证实了什么样的量子化特性,(1)光电效应;(2)黑体辐射;(3)夫兰克-赫兹实验;(4)戴维孙-革末实验;(5)、斯特恩-盖拉赫实验;(6)康普顿散射实验。

(每问2分,共12分)
四、一自由原子的总轨道角动量量子数为L=2,总自旋量子数为S=3/2,求自旋轨道耦合项
L S 的可能取值。

(8分)。

2006-2007年度热力学与统计物理标准答案(A)

2006-2007年度热力学与统计物理标准答案(A)
S
∂T ∂p

S
∂T ∂p
>0
H
(1分) (1分)
=
S
∂T ∂p
+
H
∂T ∂H
p
∂H ∂p
(2分)
S
∂T ∂p
=
H
∂T ∂H
p
∂H ∂p
(1分)共 8 页 第 3 页
2006-2007年度 《热力学与统计物理》 标准答案(A)
所以, 有: ∂H ∂p 又根据定压热容量的定义, 有: Cp = 所以, 有: ∂T ∂p −
考虑任意方向, 则在体积 V 内, 动量大小处在 p 到 p + dp 内的粒子数为: dNp = 4πN (2πmkT ) 由于动量与速度之间的关系: p = mv, px = mvx , py = mvy , pz = mvz 所以, 有: dp = mdv, dpx = mdvx , dpy = mdvy , dpz = mdvz 所以由 (7) 可得, 在体积 V 内, 速度处在 vx 到 vx + dvx 、 vy 到 vy + dvy 、 vz 到 vz + dvz 内的粒 子数为: dNv = N (2πmkT ) =N m 2πkT
V
∂S ∂V ∂S ∂V
dV − pdV
T
dT + T
V
− p dV
T
(4) (1分)
比较 (4) 和 (1) 中 dV 的系数, 有: ∂U ∂V =T
T
∂S ∂V
−p
T
(5) (1分)
又由 Maxwell 关系, 有: ∂S ∂V 所以, (5) 可以改写为: ∂U ∂V 上式即为能态方程。 =T

《热力学与统计物理》知识30道选择题

《热力学与统计物理》知识30道选择题

《热力学与统计物理》知识30道选择题1. 热力学过程中,系统内能变化的度量是(B )。

A. 压强B. 热量C. 温度D. 熵2. 下列物理量中,与物质的微观粒子状态有关的是(D )。

A. 内能B. 热容C. 压强D. 熵3. 理想气体的内能只与(A )有关。

A. 温度B. 压强C. 体积D. 物质的量4. 在热力学中,熵增加原理适用于(A )。

A. 孤立系统B. 开放系统C. 封闭系统D. 任意系统5. 热力学第二定律表明(C )。

A. 能量可以全部转化为功B. 热可以全部转化为功C. 自发过程总是朝着熵增加的方向进行D. 以上都不对6. 对于一个孤立系统,其熵(A )。

A. 总是增加的B. 总是减少的C. 保持不变D. 无法确定7. 下列哪个过程是不可逆的?(A )A. 热从高温物体流向低温物体B. 气体自由膨胀C. 理想气体等温膨胀D. 以上都不是8. 统计物理中,最基本的概率分布是(B )。

A. 正态分布B. 麦克斯韦-玻尔兹曼分布C. 均匀分布D. 指数分布9. 玻尔兹曼常数的符号是(B )。

A. kB. k B.C. RD. γ10. 在平衡态下,系统的微观状态数最(D )。

A. 多B. 少C. 不确定D. 大11. 热力学温度的单位是(K )。

A. ℃B. FC. JD. K12. 分子的平均动能与(A )成正比。

A. 温度B. 压强C. 体积D. 熵13. 熵的单位是(J/K )。

A. JB. J/KC. KD. 无单位14. 理想气体状态方程的表达式是(pV = nRT )。

A. pV = nRTB. p = nRT/VC. V = nRT/pD. 以上都不是15. 下列哪种物质的热容较大?(A )A. 水B. 铁C. 铜D. 以上都不是16. 统计物理中,粒子的能量是(B )。

A. 连续的B. 分立的C. 以上都不是D. 不确定17. 分子的动能取决于(A )。

A. 温度B. 压强C. 体积D. 以上都不是18. 热力学第一定律可以表示为(ΔU = Q + W )。

(完整版)热力学统计物理练习的题目及答案详解

(完整版)热力学统计物理练习的题目及答案详解

热力学·统计物理练习题一、填空题. 本大题70个小题,把答案写在横线上。

1.当热力学系统与外界无相互作用时,经过足够长时间,其宏观性质 时间改变,其所处的 为热力学平衡态。

2. 系统,经过足够长时间,其 不随时间改变,其所处的状态为热力学平衡态。

3.均匀物质系统的热力学平衡态可由力学参量、电磁参量、几何参量、化学参量等四类参量描述,但有 是独立的。

4.对于非孤立系统,当其与外界作为一个整体处于热力学平衡态时,此时的系统所处的状态是 。

5.欲描述非平衡系统的状态,需要将系统分成若干个小部分,使每小部分具有 小,但微观上又包含大量粒子,则每小部分都可视为 。

6.描述热力学系统平衡态的独立参量和 之间关系的方程式叫物态方程,其一般表达式为 。

7.均匀物质系统的独立参量有 个,而过程方程独立参量只有 个。

8.定压膨胀系数的意义是在 不变的条件下系统体积随 的相对变化。

9.定容压力系数的意义是在 不变条件下系统的压强随 的相对变化。

10.等温压缩系数的意义是在 不变条件下系统的体积随 的相对变化。

11.循环关系的表达式为 。

12.在无摩擦准静态过程中存在着几种不同形式的功,则系统对外界作的功∑-=δi i dy Y W ,其中i y 是 ,i Y 是与i y 相应的 。

13.W Q U U A B +=-,其中W 是 作的功。

14.⎰=+=0W Q dU ,-W 是 作的功,且-W 等于 。

15.⎰δ+δ2L 11W Q ⎰δ+δ2L 12W Q (1、2均为热力学平衡态,L 1、L 2为准静态过程)。

16.第一类永动机是指 的永动机。

17.内能是 函数,内能的改变决定于 和 。

18.焓是 函数,在等压过程中,焓的变化等于 的热量。

19.理想气体内能 温度有关,而与体积 。

20.理想气体的焓 温度的函数与 无关。

21.热力学第二定律指明了一切与热现象有关的实际过程进行的 。

22.为了判断不可逆过程自发进行的方向只须研究 和 的相互关系就够了。

热力学统计物理试题及其参考答案完整版

热力学统计物理试题及其参考答案完整版
《热力学统计物理》试题参考解答及评分标准
一、1. B, 2. D, 3. A, 4. A, 5. B, 6. A, 7. C, 8. C, 9.A, 10. A.
评分标准:本题共20分, 每个答案2分。
二、1.状态,2.系统从外界吸收,3. , 4. , ,
5. , 6. 0, 7. , 8.负温度状态, 9. ,
(4)
评分标准:(1)和(4)式各2分,(2)(3)式各3分
五、计算题:
1.解:范氏方程可表为
对范氏方程取导数得
(1)
按循环关系式,我们有
(2)
因此
(3)
(4)
. (5)
评分标准:(1)--(5)式各2分。
2.解:双原子分子的转动自由度 =2,选广义坐标和广义动量为 。双原子分子的配分函数为
.(1)
双原子分子理想气体的转动内能和熵
.(2)
。(3)
评分标准:(1)式4分,(2)和(3)式各3分。
令 ,得
=- <0.(2)
这里应用了 和 。
再由
.(3)
令 ,得
= .(4)
这里应用了 和 .
评分标准:(1)和(3)式各2分,(2)和(4)式各3分。
3.证明:由 (1)
绝对零度下自由电子气体中电子动量(大小)的分布为
(2)
其中 是费米动量,)
因此电子的平均速率为
四、1.证:由正则分布 ,得
.(1)
将上式代入广义熵的表示式,得
.(2)
上式即正则系综中系统熵的表示式。
或者,由正则分布中熵的表示式出发
,(3)
利用(1)式,由上式得熵的普遍表示式
. (4)
评分标准:(1),(2)式各5分。

热力学统计物理(A参考答案)

热力学统计物理(A参考答案)

宝鸡文理学院试题课程名称中学物理教育理论适用时间2011年7月与实践研究试卷类别 A 适用专业、年级、班专升本一. 填空题(本题共7 题,每空3 分,总共21 分)1. 假设一物质的体涨系数和等温压缩系数经过实验测得为:,则该物质的物态方程为:。

2. 1 mol 理想气体,保持在室温下(K)等温压缩,其压强从1 准静态变为10 ,则气体在该过程所放出的热量为:焦耳。

3. 计算机的最底层结构是由一些数字逻辑门构成的,比如说逻辑与门,有两个输入,一个输出,请从统计物理的角度估算,这样的一个逻辑与门,室温下(K)在完成一次计算后,产生的热量是:焦耳。

4. 已知巨热力学势的定义为,这里是系统的自由能,是系统的粒子数,是一个粒子的化学势,则巨热力学势的全微分为:。

5. 已知粒子遵从经典玻耳兹曼分布,其能量表达式为,其中是常数,则粒子的平均能量为:。

6. 温度时,粒子热运动的热波长可以估算为:。

7. 正则分布给出了具有确定的粒子数、体积、温度的系统的分布函数。

假设系统的配分函数为,微观状态的能量为,则处在微观状态上的概率为:。

二. 简答题(本题共3 题,总共30 分)1. 请从微观和统计物理的角度解释:热平衡辐射的吉布斯函数为零的原因。

(10分)2. 请说说你对玻耳兹曼分布的理解。

(10分)3. 等概率原理以及在统计物理学中的地位。

(10分)三. 计算题(本题共4 题,总共49 分)1. 一均匀杆的长度为L,单位长度的定压热容量为,在初态时左端温度为T1,右端温度为T2,T1 < T2,从左到右端温度成比例逐渐升高,考虑杆为封闭系统,请计算杆达到均匀温度分布后杆的熵增。

(你可能要用到的积分公式为)(10分)2. 设一物质的物态方程具有以下形式:,试证明其内能和体积无关。

(10分)3. 表面活性物质的分子在液面上作二维自由运动,可以看作是二维气体。

请用经典统计理论计算:(1)二维气体分子的速度分布和速率分布。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热力学.统计物理复习题(A)
一、填空题 (30310='⨯分)
1 等压体胀系数 =α ; 等容压强系数 =β ;
2 (P 、V 、T )简单系统中: dU= dS -PdV ; H=U+ ;
3 热动平衡判据中: 熵判据为 ; 自由能判据为 ;
4 多元(复相)系中: V=∑i
v i ; =s n i i
i ∑
5 M —B 分布为 a l = ; B —E 分布为 a l = ;
6 M —B 统计中, Z 1= ; U= ;
7 T >0时自由电子分布为: ε <μ, f > ; με=,f= ;
8 微正则分布的经典表示为 ρ(q,p )=const,
ρ(q,p) =0 , 量子表示为
9 在涨落的准热力学理论中 ])()(21)(2exp[2
22V V P kT T T
k C W T V ∆∂∂+∆-∝,则
V T ∆∆= ; )(2T ∆= ;
10 碰撞的弛豫时间近似方程为 =∂∂)(t f
c
;细致平衡原理的数学表示为 答案: 1
;1,1
)()(
T P
T V V
P P V
∂∂∂∂ 2 T , PV , 3 △S <0, △F >0, ; 4 n i , S
5 ,]1)[exp(),exp(-+--εωεωβαβαl l l l
6 ),exp(εωβl l -∑ β∂∂-Z n N 1
7 1/2, 1/2 ,;
8 E ≤H(q,p)≤E+△E ,H ≤E or H ≥E+△E, Ω=1ρs
9 0, kT 2/C v, ; 10 τ0)0(/)(f f -- , f f f f ''=2121
(10×3 =30分 )(单选或多选)
1 对理想气体下列关系式符合的有 ( )
① V T γ=const; ② S nP nR nT c S p 0+-= ; ③ S nV nR nT C S v 0++= 2 Maxwell 关系为 ( )
T P V S )
()
(+- ; T P V S )
()(-+ ; )()(T V
P S P
T ∂∂=∂∂ 3 单元复相系的平衡条件为 ( ) ① T T βα= P P ββ≠ μμβα= ② T T βα= P P βα= μμβα=
③ T T βα≠ P P βα= μμβα=
4 吉布斯相律 ( )
① f= k+2+ϕ , ② f=k-2+ϕ ③ f=k+2-ϕ 5 自由粒子的态密度为 ( ) ①p d L n d x x π2=,p d p d L n d n d y x y x )2(22 π=,p d p d p d L n d n d n d z y x z y x )2(3
3
π= ②p d h L n d x x =
,p d p d h L n d n d y x y x 22=,p d p d p d h
V
n d n d n d z y x z y x 3= ③,p d L n d x x = p d p d h L n d n d y x y x 22=,dp p h
V
n d n d n d z y x 232π=
6 下列式子正确的有 ( )
① h Z r l l
l 01/)e x p (ωεβ∆∑-=, ② h a r
l l l 0)e x p (ωεβα∆--=
③ p a i r
i i 21
21∑==ε ⇒ kT p a i i
2
3
212=
7 下列说法正确的有 ( )
① planck 公式为 ]1)[exp()(),(33
2-=
kT d c
V
d T U ωωωπωω ② 玻色—爱因斯坦凝聚是动量空间的凝聚;③ 在足够的温度下电子对热容的贡献可略
8 正则分布的热力学公式正确表达式为 ( ) ① );(,1,nZ nZ k S y nZ Y nZ U β
βββ∂∂
-=∂∂=∂∂-= ② );(,1,nZ nZ k S nZ y Y nZ U ββββ∂∂+=∂∂-=∂∂=
③ )(,1,nZ nZ k S y nZ Y nZ U β
βββ∂∂
-=∂∂-=∂∂-
= 9 下列式子正确的有 ( ) ① 对布郎粒子有 ,22t kT
x α
= ② 迁移与扩散中存在爱因斯坦关系
;kT
e
D
=
μ ③ 尼奎斯定理是
)()()(ωωδπ
ωω-'=
*kTR
V V
10 下列公式不正确的有 ( )
①粘滞现象中 ;0dy
v d
p xy η= ② 两分子碰撞过程满足 ωωωω2121d d d d =''
③ 平衡态区别于稳定态
答案:
1 (②、③),
2 (①),
3 (②),
4 (③),
5 (①、②),
6 (①、②),
7 (①、②),
8 (③),
9 (①、②、③),10 (①)
(2×15 =30 分)
1.简单固体和液体的体膨胀系数α等温压缩系数
κ
T
数值都很小,在一定的温度范围可以
把它们看作常数,试求简单固体和液体的物态方程。

2、仿照三维固体的德拜理论,计算长度为L 的线形原子链(一维晶体)在高温下的内能和
热容。

1、[解] 设 ),(P T V V = 则 dP dT dV P V
T V T
p )()(
∂∂∂∂+= 3分 所以,
dP dT dP V dT V V dV T T
p P V
T V κα-=+=∂∂∂∂)()(11 2分 积分得 P T V
n
T T V κα--=)(00
而且 V V V
V
V n
0∆≈∆+ 5分
由此得 V T V V P T V T 0000)(κα--=- 即 ])(1)[0,(000P T V T T T V κα--+= 5分
2[解] 一维行波 c
d L dk L d D ω
ππωω22)(=
=
2分 且L cN c L d c L
d D N D D
D
D /2,22)(00
ππωπωωωωωω====
⎰⎰ 3分 根据 (9·7·9)1)exp(21)(exp )(0
000-+=-+=⎰⎰kT d c L kT d D U D D
U U ωω
ωπωωωωωω 3分
令 kT y ω
=
T
kT x D D θω== 2分 则 U ⎰-+=⎰-+=x x y
y ydy kT c L U e ydy c L kT U 0200201
)exp(1)(212)( ππ 2分 高温:y e y
≈-1 N k T
U x c kT L U U +=+=⇒02
02)(
π 2分
Nk T U
C V
V ==∂∂)(
1分
(10分)
试简要说明研究热运动的宏观理论和微观理论是什么。

答:热力学是研究热运动的宏观理论。

其优点是它的普适性和可靠性;缺点是它不能揭示物性的本质。

统计物理是研究热运动的微观理论。

其优点是能说明物性的本质;缺点是模型简化,结果是近似的,
存在偏差。

相关文档
最新文档