2020年宜宾市高中必修一数学上期末模拟试卷带答案
宜宾市2020年高一第一学期数学期末学业水平测试模拟试题
高一数学期末模拟试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题 1.若函数1()(2)2f x x x x =+>-在x a =处取最小值,则a 等于( ) A.3 B.13+C.12+D.4 2.在正方体,为棱的中点,,则异面直线与所成角的正切值为( )A.B.C.D.3.ABC △的内角,,A B C 的对边分别为,,a b c ,分别根据下列条件解三角形,其中有两解的是( ) A.2,4,120a b A ===︒ B.3,2,45a b A ===︒ C. 6,3,60b c C ===︒ D.4,3,30b c C ===︒4.设13cos 66,2a =+o o 22tan171cos70,1tan 172b c -==+o o o,则有( ) A.b c a <<B.c b a <<C.c a b <<D.a c b <<5.在ABC ∆中,2222cos 2cos a b c bc A ac B ++=+,则ABC ∆一定是( ) A .锐角三角形B .钝角三角形C .等边三角形D .直角三角形6.ABC ∆的内角,,A B C 的对边分别为,,a b c ,若cos cos 0a A b B -=,则ABC ∆的形状一定是( ) A .直角三角形B .等边三角形C .钝角三角形D .等腰三角形或直角三角形7.已知函数21(0)()(1)(0)x x f x f x x -⎧-+≤=⎨->⎩,若方程()log (2)(01)a f x x a =+<<有且仅有两个不同的实数根,则实数a 的取值范围为( ) A .11[,)43B .11[,)32C .1[,1)2D .11[,)548.已知函数()πf x sin ωx (ω0)4⎛⎫=+> ⎪⎝⎭,对于任意x R ∈,都有()()f f πx 0x +-=,且()f x 在()0,π有且只有5个零点,则ω(=)A .112B .92 C .72D .529.直三棱柱ABC —A 1B 1C 1中,BB 1中点为M ,BC 中点为N ,∠ABC =120°,AB =2,BC =CC 1=1,则异面直线AB 1与MN 所成角的余弦值为 A .1B .45-C .34-D .010.设数列{}n a 的前n 项和为n S ,11a =,{}n n S na +为常数列,(n a = ) A .113n - B .()21n n +C .()()112n n ++ D .523n- 11.已知4sin cos 3αα-=,则sin 2α=( ). A .79-B .29-C .29D .7912.已知1sin 33πα⎛⎫-= ⎪⎝⎭,则sin 26πα⎛⎫-= ⎪⎝⎭( ) A .79-B .79C .79±D .29-13.已知两条直线,两个平面,给出下面四个命题:①,;②,,;③,;④,,其中正确命题的序号是( )A .①④B .②④C .①③D .②③14.已知a >0,x ,y 满足约束条件1{3(3)x x y y a x ≥+≤≥-,若z=2x+y 的最小值为1,则a=A .B .C .1D .215.已知函数()()sin (,0,0,)2f x A x x R A πωϕωϕ=+∈>><的部分图象如图所示,则()f x 的解析式是( )A .()()2sin 6f x x x R ππ⎛⎫=+∈ ⎪⎝⎭B .()()2sin 26f x x x R ππ⎛⎫=+∈ ⎪⎝⎭C .()()2sin 3f x x x R ππ⎛⎫=+∈ ⎪⎝⎭D .()()2sin 23f x x x R ππ⎛⎫=+∈ ⎪⎝⎭二、填空题16.函数()23sin 3cos 4f x x x =+-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最小值是________. 17.已知0a >,b R ∈,当0x >时,关于x 的不等式2(1)(4)0ax x bx -+-≥恒成立,则2b a+的最小值是_________.18.在正数数列{}n a 中,11a =,且点()()1,2n n a a n -≥在直线20x y -=上,则前n 项和n S 等于__.19.等差数列{}n a 中,11a =-公差2d =.则3a 与5a 的等差中项是_____(用数字作答) 三、解答题20.在直角坐标系xOy 中,以坐标原点O 为圆心的圆与直线34x y -=相切。
四川省宜宾市2019-2020学年高一上学期期末考试数学试题Word版含解析
四川省宜宾市2019-2020学年高一上学期期末考试数学试题一、选择题。
1.已知集合,,则A. B.C. D.2.下列函数中与表示同一函数的是A. B. C. D.3.已知角的顶点在坐标原点,始边与x轴的非负半轴重合,为其终边上一点,则( )A. B. C. D.4.函数的定义域是A. B. C. D.5.已知为方程的解,且,则A. 1B. 2C. 3D. 46.下列函数在其定义域内既是奇函数又是增函数的是A. B. C. D.7.已知函数,则下列关于函数的说法中正确的是A. 其最小正周期为B. 其图象关于直线对称C. 其图象关于点对称D. 当时,的最小值为8.将函数的图象上所有的点的横坐标变为原来的3倍纵坐标不变,再将所得图象向左平移个单位,得到函数的图象,则的解析式为A. B.C. D.9.设,,,则a,b,c的大小关系为A. B. C. D.10.已知函数是定义在R上的奇函数,为偶函数,且,则A. 2B. 1C. 0D.11.如图,是边长为2的正三角形,记位于直线左侧的图形的面积为,则函数的图象可能为A. B. C. D.12.已知函数,且在R上单调递增,且函数与的图象恰有两个不同的交点,则实数a的取值范围是A. B. C. D.二、填空题。
13.函数且过定点A,则点A的坐标为______.14.已知幂函数的图象过点,函数,则____.15.若,则______.16.若函数有唯一零点,则实数______.三、解答题。
17.计算下列各式的值:;.18.已知函数的部分图象如图所示.求函数的解析式;求函数的单调递增区间.19.已知函数,且过点.求实数a的值;解关于x的不等式.20.已知函数.求函数的最大值;若,时,求的值.21.在充分竞争的市场环境中,产品的定价至关重要,它将影响产品的销量,进而影响生产成本、品牌形象等某公司根据多年的市场经验,总结得到了其生产的产品A在一个销售季度的销量单位:万件与售价单位:元之间满足函数关系,A的单件成本单位:元与销量y之间满足函数关系.当产品A的售价在什么范围内时,能使得其销量不低于5万件?当产品A的售价为多少时,总利润最大?注:总利润销量售价单件成本22.已知函数是定义在R上的奇函数.求实数k的值;若,不等式对任意的恒成立,求实数t的取值范围;若且在上的最小值为0,求实数m的值.四川省宜宾市2019-2020学年高一上学期期末考试数学试题参考答案一、选择题。
2020年高中必修一数学上期末模拟试卷(附答案)
2020年高中必修一数学上期末模拟试卷(附答案)一、选择题1.设a b c ,,均为正数,且122log aa =,121log 2b b ⎛⎫= ⎪⎝⎭,21log 2cc ⎛⎫= ⎪⎝⎭.则( ) A .a b c << B .c b a << C .c a b << D .b a c <<2.设集合{}1|21x A x -=≥,{}3|log ,B y y x x A ==∈,则B A =ð( )A .()0,1B .[)0,1C .(]0,1D .[]0,13.已知函数()()2,211,22xa x x f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩, 满足对任意的实数x 1≠x 2都有()()1212f x f x x x --<0成立,则实数a 的取值范围为( ) A .(-∞,2)B .13,8⎛⎤-∞ ⎥⎝⎦C .(-∞,2]D .13,28⎡⎫⎪⎢⎣⎭4.已知0.2633,log 4,log 2a b c ===,则,,a b c 的大小关系为 ( )A .c a b <<B .c b a <<C .b a c <<D .b c a <<5.若函数,1()42,12x a x f x a x x ⎧>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩是R 上的单调递增函数,则实数a 的取值范围是( ) A .()1,+∞B .(1,8)C .(4,8)D .[4,8)6.若函数*12*log (1),()3,x x x N f x x N⎧+∈⎪=⎨⎪∉⎩,则((0))f f =( ) A .0B .-1C .13D .17.已知函数2()log f x x =,正实数,m n 满足m n <且()()f m f n =,若()f x 在区间2[,]m n 上的最大值为2,则,m n 的值分别为A .12,2 B.2C .14,2 D .14,4 8.若二次函数()24f x ax x =-+对任意的()12,1,x x ∈-+∞,且12x x ≠,都有()()12120f x f x x x -<-,则实数a 的取值范围为( )A .1,02⎡⎫-⎪⎢⎣⎭B .1,2⎡⎫-+∞⎪⎢⎣⎭C .1,02⎛⎫- ⎪⎝⎭D .1,2⎛⎫-+∞ ⎪⎝⎭9.已知01a <<,则方程log xa a x =根的个数为( ) A .1个B .2个C .3个D .1个或2个或3根10.已知[]x 表示不超过实数x 的最大整数,()[]g x x =为取整函数,0x 是函数()2ln f x x x=-的零点,则()0g x 等于( )A .1B .2C .3D .411.函数f (x )是定义在R 上的偶函数,在(-∞,0]上是减函数且f (2)=0,则使f (x )<0的x 的取值范围( ) A .(-∞,2)B .(2,+∞)C .(-∞,-2)∪(2,+∞)D .(-2,2)12.已知()f x =22x x -+,若()3f a =,则()2f a 等于 A .5B .7C .9D .11二、填空题13.若函数(),021,01x x f x x mx m ≥⎧+=⎨<+-⎩在(),∞∞-+上单调递增,则m 的取值范围是__________.14.通过研究函数()4221021=-+-f x x x x 在x ∈R 内的零点个数,进一步研究得函数()221021=+--n g x x x x (3n >,n N ∈且n 为奇数)在x ∈R 内零点有__________个15.已知关于x 的方程()224log 3log +-=x x a 的解在区间()3,8内,则a 的取值范围是__________.16.某食品的保鲜时间y (单位:小时)与储存温度x (单位:)满足函数关系(为自然对数的底数,k 、b 为常数).若该食品在0的保鲜时间设计192小时,在22的保鲜时间是48小时,则该食品在33的保鲜时间是 小时.17.已知函数()()g x f x x =-是偶函数,若(2)2f -=,则(2)f =________ 18.已知函数1,0()ln 1,0x x f x x x ⎧+≤=⎨->⎩,若方程()()f x m m R =∈恰有三个不同的实数解()a b c a b c <<、、,则()a b c +的取值范围为______;19.已知sin ()(1)x f x f x π⎧=⎨-⎩(0)(0)x x <>则1111()()66f f -+为_____20.已知函数()5,222,2x x x f x a a x -+≤⎧=++>⎨⎩,其中0a >且1a ≠,若()f x 的值域为[)3,+∞,则实数a 的取值范围是______.三、解答题21.已知函数()()()log 1log 1a a f x x x =+--(0a >,1a ≠),且()31f =.(1)求a 的值,并判定()f x 在定义域内的单调性,请说明理由; (2)对于[]2,6x ∈,()()()log 17amf x x x >--恒成立,求实数m 的取值范围.22.已知全集U =R ,集合{|25},{|121}M x x N x a x a =-=++剟剟. (Ⅰ)若1a =,求()R M N I ð;(Ⅱ)M N M ⋃=,求实数a 的取值范围. 23.设函数()()2log xxf x a b=-,且()()211,2log 12f f ==.(1)求a b ,的值; (2)求函数()f x 的零点;(3)设()xxg x a b =-,求()g x 在[]0,4上的值域.24.即将开工的南昌与周边城镇的轻轨火车路线将大大缓解交通的压力,加速城镇之间的流通.根据测算,如果一列火车每次拖4节车厢,每天能来回16次;如果一列火车每次拖7节车厢,每天能来回10次,每天来回次数是每次拖挂车厢个数的一次函数. (1)写出与的函数关系式;(2)每节车厢一次能载客110人,试问每次应拖挂多少节车厢才能使每天营运人数最多?并求出每天最多的营运人数(注:营运人数指火车运送的人数)25.已知函数()()20f x ax bx c a =++≠,满足()02f =,()()121f x f x x +-=-.(1)求函数()f x 的解析式; (2)求函数()f x 的单调区间;(3)当[]1,2x ∈-时,求函数的最大值和最小值.26.如图,OAB ∆是等腰直角三角形,ABO 90∠=o ,且直角边长为22,记OAB ∆位于直线()0x t t =>左侧的图形面积为()f t ,试求函数()f t 的解析式.【参考答案】***试卷处理标记,请不要删除一、选择题1.A 解析:A 【解析】试题分析:在同一坐标系中分别画出2,xy =12xy ⎛⎫= ⎪⎝⎭,2log y x =,12log y x =的图象,2x y =与12log y x =的交点的横坐标为a ,12xy ⎛⎫= ⎪⎝⎭与12log y x =的图象的交点的横坐标为b ,12xy ⎛⎫= ⎪⎝⎭与2log y x =的图象的交点的横坐标为c ,从图象可以看出.考点:指数函数、对数函数图象和性质的应用.【方法点睛】一般一个方程中含有两个以上的函数类型,就要考虑用数形结合求解,在同一坐标系中画出两函数图象的交点,函数图象的交点的横坐标即为方程的解.2.B解析:B 【解析】 【分析】先化简集合A,B,再求B A ð得解. 【详解】由题得{}10|22{|1}x A x x x -=≥=≥,{}|0B y y =≥.所以{|01}B A x x =≤<ð. 故选B 【点睛】本题主要考查集合的化简和补集运算,考查指数函数的单调性和对数函数的值域的求法,意在考查学生对这些知识的理解掌握水平.3.B解析:B 【解析】 【分析】 【详解】试题分析:由题意有,函数()f x 在R 上为减函数,所以有220{1(2)2()12a a -<-⨯≤-,解出138a ≤,选B. 考点:分段函数的单调性. 【易错点晴】本题主要考查分段函数的单调性,属于易错题. 从题目中对任意的实数12x x ≠,都有()()12120f x f x x x -<-成立,得出函数()f x 在R 上为减函数,减函数图象特征:从左向右看,图象逐渐下降,故在分界点2x =处,有21(2)2()12a -⨯≤-,解出138a ≤. 本题容易出错的地方是容易漏掉分界点2x =处的情况.4.B解析:B 【解析】 【分析】先比较三个数与零的大小关系,确定三个数的正负,然后将它们与1进行大小比较,得知1a >,0,1b c <<,再利用换底公式得出b 、c 的大小,从而得出三个数的大小关系.【详解】函数3xy =在R 上是增函数,则0.20331a =>=,函数6log y x =在()0,∞+上是增函数,则666log 1log 4log 6<<,即60log 41<<, 即01b <<,同理可得01c <<,由换底公式得22393log 2log 2log 4c ===, 且96ln 4ln 4log 4log 4ln 9ln 6c b ==<==,即01c b <<<,因此,c b a <<,故选A . 【点睛】本题考查比较数的大小,这三个数的结构不一致,这些数的大小比较一般是利用中间值法来比较,一般中间值是0与1,步骤如下:①首先比较各数与零的大小,确定正负,其中正数比负数大;②其次利用指数函数或对数函数的单调性,将各数与1进行大小比较,或者找其他中间值来比较,从而最终确定三个数的大小关系.5.D解析:D 【解析】 【分析】根据分段函数单调性列不等式,解得结果. 【详解】因为函数,1()42,12x a x f x a x x ⎧>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩是R 上的单调递增函数, 所以140482422a a a aa ⎧⎪>⎪⎪->∴≤<⎨⎪⎪-+≤⎪⎩故选:D 【点睛】本题考查根据分段函数单调性求参数,考查基本分析判断能力,属中档题.6.B解析:B 【解析】 【分析】根据分段函数的解析式代入自变量即可求出函数值. 【详解】因为0N *∉,所以0(0)3=1f =,((0))(1)f f f =,因为1N *∈,所以(1)=1f -,故((0))1f f =-,故选B. 【点睛】本题主要考查了分段函数,属于中档题.7.A解析:A 【解析】试题分析:画出函数图像,因为正实数,m n 满足m n <且()()f m f n =,且()f x 在区间2[,]m n 上的最大值为2,所以()()f m f n ==2,由2()log 2f x x ==解得12,2x =,即,m n 的值分别为12,2.故选A .考点:本题主要考查对数函数的图象和性质.点评:基础题,数形结合,画出函数图像,分析建立m,n 的方程.8.A解析:A 【解析】 【分析】由已知可知,()f x 在()1,-+∞上单调递减,结合二次函数的开口方向及对称轴的位置即可求解. 【详解】∵二次函数()24f x ax x =-+对任意的()12,1,x x ∈-+∞,且12x x ≠,都有()()12120f x f x x x -<-,∴()f x 在()1,-+∞上单调递减, ∵对称轴12x a=, ∴0112a a<⎧⎪⎨≤-⎪⎩,解可得102a -≤<,故选A . 【点睛】本题主要考查了二次函数的性质及函数单调性的定义的简单应用,解题中要注意已知不等式与单调性相互关系的转化,属于中档题.9.B解析:B 【解析】 【分析】在同一平面直角坐标系中作出()xf x a =与()log a g x x =的图象,图象的交点数目即为方程log xa a x =根的个数. 【详解】作出()xf x a =,()log a g x x =图象如下图:由图象可知:()(),f x g x 有两个交点,所以方程log xa a x =根的个数为2.故选:B . 【点睛】本题考查函数与方程的应用,着重考查了数形结合的思想,难度一般.(1)函数()()()h x f x g x =-的零点数⇔方程()()f x g x =根的个数⇔()f x 与()g x 图象的交点数;(2)利用数形结合可解决零点个数、方程根个数、函数性质研究、求不等式解集或参数范围等问题.10.B解析:B 【解析】 【分析】根据零点存在定理判断023x <<,从而可得结果. 【详解】 因为()2ln f x x x=-在定义域内递增, 且()2ln 210f =-<,()23ln 303f =->, 由零点存在性定理可得023x <<,根据[]x 表示不超过实数x 的最大整数可知()02g x =, 故选:B. 【点睛】本题主要考查零点存在定理的应用,属于简单题.应用零点存在定理解题时,要注意两点:(1)函数是否为单调函数;(2)函数是否连续.11.D解析:D 【解析】【分析】根据偶函数的性质,求出函数()0f x <在(-∞,0]上的解集,再根据对称性即可得出答案. 【详解】由函数()f x 为偶函数,所以()()220f f -==,又因为函数()f x 在(-∞,0]是减函数,所以函数()0f x <在(-∞,0]上的解集为(]2,0-,由偶函数的性质图像关于y 轴对称,可得在(0,+ ∞)上()0f x <的解集为(0,2),综上可得,()0f x <的解集为(-2,2). 故选:D. 【点睛】本题考查了偶函数的性质的应用,借助于偶函数的性质解不等式,属于基础题.12.B解析:B 【解析】因为()f x =22x x -+,所以()f a =223a a -+=,则()2f a =2222a a -+=2(22)2a a -+-=7.选B.二、填空题13.【解析】【分析】由题意根据函数在区间上为增函数及分段函数的特征可求得的取值范围【详解】∵函数在上单调递增∴函数在区间上为增函数∴解得∴实数的取值范围是故答案为【点睛】解答此类问题时要注意两点:一是根 解析:(0,3]【解析】 【分析】由题意根据函数1y mx m =+-在区间(),0-∞上为增函数及分段函数的特征,可求得m 的取值范围. 【详解】∵函数(),021,01x x f x x mx m ≥⎧+=⎨<+-⎩在(),-∞+∞上单调递增,∴函数1y mx m =+-在区间(),0-∞上为增函数, ∴01212m m >⎧⎨-≤+=⎩,解得03m <≤, ∴实数m 的取值范围是(0,3]. 故答案为(0,3]. 【点睛】解答此类问题时要注意两点:一是根据函数()f x 在(),-∞+∞上单调递增得到在定义域的每一个区间上函数都要递增;二是要注意在分界点处的函数值的大小,这一点容易忽视,属于中档题.14.3【解析】【分析】令(为奇数)作出两个函数的图象后可判断零点的个数【详解】由题意令则零点的个数就是图象交点的个数如图所示:由图象可知与的图象在第一象限有一个交点在第三象限有一个交点因为当为正奇数时的解析:3 【解析】 【分析】令()2n s x x =(n 为奇数,3n >),()21021h x x x =-++,作出()s x 、()h x 两个函数的图象后可判断()g x 零点的个数. 【详解】由题意,令()*2,,5n s x x n N n =∈≥,()21021h x x x =-++,则()()()g x s x h x =-,()g x 零点的个数就是()(),s x h x 图象交点的个数,如图所示:由图象可知,()s x 与()h x 的图象在第一象限有一个交点,在第三象限有一个交点, 因为当n 为正奇数时()2ns x x =的变化速度远大于()h x 的变化速度,故在第三象限内,()s x 、()h x 的图象还有一个交点,故()(),s x h x 图象交点的个数为3,所以()g x 零点的个数为3. 故答案为:3. 【点睛】本题主要考查了函数的零点的判定,其中解答中把函数的零点问题转化为两个函数的图象的交点个数求解是解答的关键,着重考查了数形结合思想的应用,属于中档试题.15.【解析】【分析】根据方程的解在区间内将问题转化为解在区间内即可求解【详解】由题:关于的方程的解在区间内所以可以转化为:所以故答案为:【点睛】此题考查根据方程的根的范围求参数的取值范围关键在于利用对数 解析:()23log 11,1-+【解析】 【分析】根据方程的解在区间()3,8内,将问题转化为23log x a x+=解在区间()3,8内,即可求解. 【详解】 由题:关于x 的方程()224log 3log +-=x x a 的解在区间()3,8内,所以()224log 3log +-=x x a 可以转化为:23log x a x+=, ()3,8x ∈,33111,28x x x +⎛⎫=+∈ ⎪⎝⎭, 所以()23log 11,1a ∈-+故答案为:()23log 11,1-+【点睛】此题考查根据方程的根的范围求参数的取值范围,关键在于利用对数运算法则等价转化求解值域.16.24【解析】由题意得:所以时考点:函数及其应用解析:24【解析】 由题意得:2211221924811{,,1924248b k k k b e e e e +=∴====,所以33x =时,331131()192248k b k b y e e e +==⋅=⨯=. 考点:函数及其应用.17.6【解析】【分析】根据偶函数的关系有代入即可求解【详解】由题:函数是偶函数所以解得:故答案为:6【点睛】此题考查根据函数的奇偶性求函数值难度较小关键在于根据函数奇偶性准确辨析函数值的关系解析:6【解析】【分析】根据偶函数的关系有()(2)2g g =-,代入即可求解.【详解】由题:函数()()g x f x x =-是偶函数,(2)(2)24g f -=-+=,所以(2)(2)24g f =-=,解得:(2)6f =.故答案为:6【点睛】此题考查根据函数的奇偶性求函数值,难度较小,关键在于根据函数奇偶性准确辨析函数值的关系.18.【解析】【分析】画出的图像根据图像求出以及的取值范围由此求得的取值范围【详解】函数的图像如下图所示由图可知令令所以所以故答案为:【点睛】本小题主要考查分段函数的图像与性质考查数形结合的数学思想方法属解析:)22,2e e ⎡--⎣【解析】【分析】画出()f x 的图像,根据图像求出+a b 以及c 的取值范围,由此求得()a b c +的取值范围.【详解】函数()f x的图像如下图所示,由图可知1,22a b a b +=-+=-.令2ln 11,x x e -==,令ln 10,x x e -==,所以2e c e <≤,所以)2()22,2a b c c e e ⎡+=-∈--⎣. 故答案为:)22,2e e ⎡--⎣【点睛】本小题主要考查分段函数的图像与性质,考查数形结合的数学思想方法,属于基础题. 19.0【解析】【分析】根据分段函数的解析式代入求值即可求解【详解】因为则所以【点睛】本题主要考查了分段函数求值属于中档题解析:0【解析】【分析】根据分段函数的解析式,代入求值即可求解.【详解】因为sin ()(1)x f x f x π⎧=⎨-⎩(0)(0)x x <> 则11111()sin()sin 6662f ππ-=-==,11511()()()sin()66662f f f π==-=-=-, 所以1111()()066f f -+=. 【点睛】本题主要考查了分段函数求值,属于中档题.20.【解析】【分析】运用一次函数和指数函数的图象和性质可得值域讨论两种情况即可得到所求a 的范围【详解】函数函数当时时时递减可得的值域为可得解得;当时时时递增可得则的值域为成立恒成立综上可得故答案为:【点 解析:()1,11,2⎡⎫⋃+∞⎪⎢⎣⎭【解析】【分析】运用一次函数和指数函数的图象和性质,可得值域,讨论1a >,01a <<两种情况,即可得到所求a 的范围.【详解】函数函数()5,222,2x x x f x a a x -+≤⎧=++>⎨⎩, 当01a <<时,2x ≤时,()53f x x =-≥,2x >时,()22x f x a a =++递减,可得()22222a f x a a +<<++, ()f x 的值域为[)3,+∞,可得223a +≥, 解得112a ≤<; 当1a >时,2x ≤时,()53f x x =-≥,2x >时,()22x f x a a =++递增,可得()2225f x a a >++>, 则()f x 的值域为[)3,+∞成立,1a >恒成立. 综上可得()1,11,2a ⎡⎫∈⋃+∞⎪⎢⎣⎭. 故答案为:()1,11,2⎡⎫⋃+∞⎪⎢⎣⎭. 【点睛】本题考查函数方程的转化思想和函数的值域的问题解法,注意运用数形结合和分类讨论的思想方法,考查推理和运算能力,属于中档题.三、解答题21.(1)2a =,单调递减,理由见解析;(2) 07m <<【解析】【分析】(1)代入(3)1f =解得a ,可由复合函数单调性得出函数的单调性,也可用定义证明; (2)由对数函数的单调性化简不等式,再由分母为正可直接去分母变为整式不等式,从而转化为求函数的最值.【详解】(1)由()3log 4log 2log 21a a a f =-==,所以2a =.函数()f x 的定义域为()1,+∞,()()()222212log 1log 1log log 111x f x x x x x +⎛⎫=+--==+ ⎪--⎝⎭. 因为211y x =+-在()1,+∞上是单调递减, (注:未用定义法证明不扣分)所以函数()f x 在定义域()1,+∞上为单调递减函数.(2)由(1)可知()()()221log log 117x m f x x x x +=>---,[]2,6x ∈, 所以()()10117x m x x x +>>---. 所以()()()2201767316m x x x x x <<+-=-++=--+在[]2,6x ∈恒成立. 当[]2,6x ∈时,函数()2316y x =--+的最小值min 7y =. 所以07m <<.【点睛】本题考查对数函数的性质,考查不等式恒成立,解题关键是问题的转化.由对数不等式转化为整式不等式,再转化为求函数最值.22.(Ⅰ)(){|22R M C N x x =-≤<I 或35}x <≤(Ⅱ)2a ≤【解析】【分析】(Ⅰ)1a =时,化简集合B ,根据集合交集补集运算即可(Ⅱ)由M N M ⋃=可知N M ⊆,分类讨论N =∅,N ≠∅即可求解.【详解】(Ⅰ)当1a =时,{}|23N x x =≤≤ ,{|2R C N x x =<或}3x > .故 (){|22R M C N x x =-≤<I 或35}x <≤.(Ⅱ),M N M ⋃=QN M ∴⊆当N =∅时,121a a +>+,即0a <;当N ≠∅时,即0a ≥.N M ⊆Q ,12215a a +≥-⎧∴⎨+≤⎩解得02a ≤≤.综上:2a ≤.【点睛】本题主要考查了集合的交集,补集运算,子集的概念,分类讨论,属于中档题.23.(1)4,2a b ==(2)215log 2x +=(3)()[]0,240g x ∈ 【解析】【分析】(1)由()()211,2log 12f f ==解出即可(2)令()0f x =得421x x -=,即()22210xx --=,然后解出即可 (3)()42x x g x =-,令2x t =,转化为二次函数【详解】(1)由已知得()()()()222221log 12log log 12f a b f a b ⎧=-=⎪⎨=-=⎪⎩,即22212a b a b -=⎧⎨-=⎩, 解得4,2a b ==;(2)由(1)知()()2log 42x x f x =-,令()0f x =得421x x -=,即()22210x x --=,解得152x ±=, 又1520,22x x +>∴=,解得215log 2x +=; (3)由(1)知()42x x g x =-,令2x t =,则()221124g t t t t ⎛⎫=-=-- ⎪⎝⎭,[]1,16t ∈, 因为()g t 在[]1,16t ∈上单调递增 所以()[]0,240g x ∈,24.(1) ;(2)每次应拖挂节车厢才能使每天的营运人数最多为人.【解析】试题分析:(1)由于函数为一次函数,设出其斜截式方程,将点代入,可待定系数,求得函数关系式为;(2)结合(1)求出函数的表达式为,这是一个开口向下的二次函数,利用对称轴求得其最大值. 试题解析:(1)这列火车每天来回次数为次,每次拖挂车厢节, 则设. 将点代入,解得 ∴. (2)每次拖挂节车厢每天营运人数为, 则, 当时,总人数最多为人. 故每次应拖挂节车厢才能使每天的营运人数最多为人. 25.(1)()222f x x x =-+;(2)增区间为()1,+∞,减区间为(),1-∞;(3)最小值为1,最大值为5.【解析】【分析】(1)利用已知条件列出方程组,即可求函数()f x 的解析式;(2)利用二次函数的对称轴,看看方向即可求函数()f x 的单调区间;(3)利用函数的对称轴与[]1,2x ∈-,直接求解函数的最大值和最小值.【详解】(1)由()02f =,得2c =,又()()121f x f x x +-=-,得221ax a b x ++=-, 故221a ab =⎧⎨+=-⎩ 解得:1a =,2b =-.所以()222f x x x =-+; (2)函数()()222211f x x x x =-+=-+图象的对称轴为1x =,且开口向上, 所以,函数()f x 单调递增区间为()1,+∞,单调递减区间为(),1-∞;(3)()()222211f x x x x =-+=-+,对称轴为[]11,2x =∈-,故()()min 11f x f ==,又()15f -=,()22f =,所以,()()max 15f x f =-=.【点睛】本题考查二次函数解析式的求解,同时也考查了二次函数单调区间与最值的求解,解题时要结合二次函数图象的开口方向与对称轴来进行分析,考查分析问题和解决问题的能力,属于中等题.26.()221,022144,2424,4t tf t t t tt⎧<≤⎪⎪⎪=-+-<≤⎨⎪>⎪⎪⎩【解析】【分析】分02t<≤、24t<≤和4t>三种情况讨论,当02t<≤时,直线x t=左边为直角边长为t的等腰直角三角形;当24t<≤时,由AOB∆的面积减去直角边长为4t-的等腰直角三角形面积得出()f t;当4t>时,直线x t=左边为AOB∆.综合可得出函数()y f t=的解析式.【详解】等腰直角三角形OAB∆中,ABO90∠=o,且直角边长为22,所以斜边4OA=,当02t<≤时,设直线x t=与OA、OB分别交于点C、D,则OC CD t==,()212f t t∴=;当24t<≤时,设直线x t=与OA、AB分别交于点E、F,则4EF EA t==-,()()221112222444222f t t t t∴=⨯⨯--=-+-.当4t>时,()4f t=.综上所述,()221,022144,2424,4t t f t t t t t ⎧<≤⎪⎪⎪=-+-<≤⎨⎪>⎪⎪⎩. 【点睛】本题考查分段函数解析式的求解,解题时要注意对自变量的取值进行分类讨论,注意处理好各段的端点,考查分析问题和解决问题的能力,属于中等题.。
2020年高中必修一数学上期末一模试题含答案(1)
2020年高中必修一数学上期末一模试题含答案(1)一、选择题1.已知函数2()2log x f x x =+,2()2log x g x x -=+,2()2log 1x h x x =⋅-的零点分别为a ,b ,c ,则a ,b ,c 的大小关系为( ). A .b a c << B .c b a << C .c a b <<D .a b c <<2.把函数()()2log 1f x x =+的图象向右平移一个单位,所得图象与函数()g x 的图象关于直线y x =对称;已知偶函数()h x 满足()()11h x h x -=--,当[]0,1x ∈时,()()1h x g x =-;若函数()()y k f x h x =⋅-有五个零点,则正数k 的取值范围是( ) A .()3log 2,1B .[)3log 2,1C .61log 2,2⎛⎫ ⎪⎝⎭D .61log 2,2⎛⎤ ⎥⎝⎦3.[]x 表示不超过实数x 的最大整数,0x 是方程ln 3100x x +-=的根,则0[]x =( ) A .1B .2C .3D .44.若x 0=cosx 0,则( ) A .x 0∈(3π,2π) B .x 0∈(4π,3π) C .x 0∈(6π,4π) D .x 0∈(0,6π) 5.已知函数()2log 14x f x x ⎧+=⎨+⎩0x x >≤,则()()3y f f x =-的零点个数为( )A .3B .4C .5D .66.设函数()()212log ,0,log ,0.x x f x x x >⎧⎪=⎨-<⎪⎩若()()f a f a >-,则实数的a 取值范围是( )A .()()1,00,1-⋃B .()(),11,-∞-⋃+∞C .()()1,01,-⋃+∞D .()(),10,1-∞-⋃7.用二分法求方程的近似解,求得3()29f x x x =+-的部分函数值数据如下表所示:则当精确度为0.1时,方程3290x x +-=的近似解可取为 A .1.6B .1.7C .1.8D .1.98.点P 从点O 出发,按逆时针方向沿周长为l 的平面图形运动一周,O ,P 两点连线的距离y 与点P 走过的路程x 的函数关系如图所示,则点P 所走的图形可能是A .B .C .D .9.函数()()212ln 12f x x x =-+的图象大致是( ) A .B .C .D .10.函数f (x )是定义在R 上的偶函数,在(-∞,0]上是减函数且f (2)=0,则使f (x )<0的x 的取值范围( ) A .(-∞,2)B .(2,+∞)C .(-∞,-2)∪(2,+∞)D .(-2,2)11.已知定义在R 上的函数()f x 在(),2-∞-上是减函数,若()()2g x f x =-是奇函数,且()20g =,则不等式()0xf x ≤的解集是( )A .][(),22,-∞-⋃+∞B .][)4,20,⎡--⋃+∞⎣ C .][(),42,-∞-⋃-+∞D .][(),40,-∞-⋃+∞12.已知()f x =22x x -+,若()3f a =,则()2f a 等于A .5B .7C .9D .11二、填空题13.已知函数()()22,03,0x x f x x x ⎧+≤⎪=⎨->⎪⎩,则关于x 的方程()()()()200,3f af x a x -=∈的所有实数根的和为_______.14.已知()|1||1|f x x x =+--,()ag x x x=+,对于任意的m R ∈,总存在0x R ∈,使得()0f x m =或()0g x m =,则实数a 的取值范围是____________.15.己知函数()221f x x ax a =-++-在区间[]01,上的最大值是2,则实数a =______.16.函数()()4log 5f x x =-+________.17.已知()f x 、()g x 分别是定义在R 上的偶函数和奇函数,且()()2x f x g x x -=-,则(1)(1)f g +=__________.18.0.11.1a =,12log b =,ln 2c =,则a ,b ,c 从小到大的关系是________. 19.已知函数222y x x -=+,[]1,x m ∈-.若该函数的值域为[]1,10,则m =________.20.已知函数()232,11,1x x f x x ax x ⎧+<=⎨-+≥⎩,若()()02f f a =,则实数a =________________. 三、解答题21.已知函数2()ln(3)f x x ax =-+.(1)若()f x 在(,1]-∞上单调递减,求实数a 的取值范围; (2)当3a =时,解不等式()x f e x ≥.22.已知函数2()()21xx a f x a R -=∈+是奇函数.(1)求实数a 的值;(2)用定义法证明函数()f x 在R 上是减函数;(3)若对于任意实数t ,不等式()2(1)0f t kt f t -+-≤恒成立,求实数k 的取值范围. 23.已知函数()()sin ωφf x A x B =++(0A >,0>ω,2πϕ<),在同一个周期内,当6x π=时,()f x取得最大值2,当23x π=时,()f x取得最小值-. (1)求函数()f x 的解析式,并求()f x 在[0,π]上的单调递增区间. (2)将函数()f x 的图象向左平移12π个单位长度,再向下平移2个单位长度,得到函数()g x 的图象,方程()g x a =在0,2π⎡⎤⎢⎥⎣⎦有2个不同的实数解,求实数a 的取值范围.24.已知幂函数35()()m f x x m N -+=∈为偶函数,且在区间(0,)+∞上单调递增. (Ⅰ)求函数()f x 的解析式;(Ⅱ)设函数()()21g x f x x λ=+-,若()0<g x 对任意[1,2]x ∈恒成立,求实数λ的取值范围.25.已知函数()log (1)2a f x x =-+(0a >,且1a ≠),过点(3,3). (1)求实数a 的值;(2)解关于x 的不等式()()123122xx f f +-<-.26.设全集U =R ,集合{}13A x x =-≤<,{}242B x x x =-≤-. (1)求()U A C B ⋂;(2)若函数()lg(2)f x x a =+的定义域为集合C ,满足A C ⊆,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】函数2()2log x x f x =+,2()2log x x g x -=+,2()2log 1x x h x =-的零点可以转化为求函数2log x y =与函数2x y =-,2x y -=-,2x y -=的交点,再通过数形结合得到a ,b ,c 的大小关系. 【详解】令2()2log 0x f x x =+=,则2log 2x x =-.令12()2log 0xg x x -=-=,则2log 2x x -=-. 令2()2log 10x x h x =-=,则22log 1x x =,21log 22x x x -==. 所以函数2()2log x x f x =+,2()2log x x g x -=+,2()2log 1x x h x =-的零点可以转化为求函数2log y x =与函数2log x y =与函数2x y =-,2x y -=-,2x y -=的交点,如图所示,可知01a b <<<,1c >, ∴a b c <<.故选:D . 【点睛】本题主要考查函数的零点问题,考查对数函数和指数函数的图像和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.2.C解析:C 【解析】分析:由题意分别确定函数f (x )的图象性质和函数h (x )图象的性质,然后数形结合得到关于k 的不等式组,求解不等式组即可求得最终结果.详解:曲线()()2log 1f x x =+右移一个单位,得()21log y f x x =-=, 所以g (x )=2x ,h (x -1)=h (-x -1)=h (x +1),则函数h (x )的周期为2. 当x ∈[0,1]时,()21xh x =-,y =kf (x )-h (x )有五个零点,等价于函数y =kf (x )与函数y =h (x )的图象有五个公共点. 绘制函数图像如图所示,由图像知kf (3)<1且kf (5)>1,即:22log 41log 61k k <⎧⎨>⎩,求解不等式组可得:61log 22k <<. 即k 的取值范围是612,2log ⎛⎫ ⎪⎝⎭. 本题选择C 选项.点睛:本题主要考查函数图象的平移变换,函数的周期性,函数的奇偶性,数形结合解题等知识,意在考查学生的转化能力和计算求解能力.3.B解析:B 【解析】 【分析】先求出函数()ln 310f x x x =+-的零点的范围,进而判断0x 的范围,即可求出[]0x . 【详解】由题意可知0x 是()ln 310f x x x =+-的零点, 易知函数()f x 是(0,∞+)上的单调递增函数,而()2ln2610ln240f =+-=-<,()3ln3910ln310f =+-=->, 即()()230f f <n 所以023x <<,结合[]x 的性质,可知[]02x =. 故选B. 【点睛】本题考查了函数的零点问题,属于基础题.4.C解析:C 【解析】 【分析】画出,cos y x y x ==的图像判断出两个函数图像只有一个交点,构造函数()cos f x x x =-,利用零点存在性定理,判断出()f x 零点0x 所在的区间【详解】画出,cos y x y x ==的图像如下图所示,由图可知,两个函数图像只有一个交点,构造函数()cos f x x x =-,30.5230.8660.343066f ππ⎛⎫=-≈-=-<⎪⎝⎭,20.7850.7070.078044f ππ⎛⎫=-≈-=> ⎪⎝⎭,根据零点存在性定理可知,()f x 的唯一零点0x 在区间,64ππ⎛⎫⎪⎝⎭. 故选:C【点睛】本小题主要考查方程的根,函数的零点问题的求解,考查零点存在性定理的运用,考查数形结合的数学思想方法,属于中档题.5.C解析:C 【解析】 【分析】 由题意,函数()()3y ff x =-的零点个数,即方程()()3f f x =的实数根个数,设()t f x =,则()3f t =,作出()f x 的图象,结合图象可知,方程()3f t =有三个实根,进而可得答案. 【详解】 由题意,函数()()3y ff x =-的零点个数,即方程()()3f f x =的实数根个数,设()t f x =,则()3f t =,作出()f x 的图象,如图所示,结合图象可知,方程()3f t =有三个实根11t =-,214t =,34t =,则()1f x =- 有一个解,()14f x =有一个解,()4f x =有三个解, 故方程()()3ff x =有5个解.【点睛】本题主要考查了函数与方程的综合应用,其中解答中合理利用换元法,结合图象,求得方程()3f t =的根,进而求得方程的零点个数是解答的关键,着重考查了分析问题和解答问题的能力,以及数形结合思想的应用.6.C解析:C 【解析】 【分析】 【详解】因为函数()()212log ,0,log ,0.x x f x x x >⎧⎪=⎨-<⎪⎩若()()f a f a >-,所以220log log a a a >⎧⎨>-⎩或()()122log log a a a <⎧⎪⎨->-⎪⎩,解得1a >或10a -<<,即实数的a 取值范围是()()1,01,-⋃+∞,故选C. 7.C解析:C 【解析】 【分析】利用零点存在定理和精确度可判断出方程的近似解. 【详解】根据表中数据可知()1.750.140f =-<,()1.81250.57930f =>,由精确度为0.1可知1.75 1.8≈,1.8125 1.8≈,故方程的一个近似解为1.8,选C. 【点睛】不可解方程的近似解应该通过零点存在定理来寻找,零点的寻找依据二分法(即每次取区间的中点,把零点位置精确到原来区间的一半内),最后依据精确度四舍五入,如果最终零点所在区间的端点的近似值相同,则近似值即为所求的近似解.8.C解析:C 【解析】 【分析】认真观察函数图像,根据运动特点,采用排除法解决. 【详解】由函数关系式可知当点P 运动到图形周长一半时O,P 两点连线的距离最大,可以排除选项A,D,对选项B 正方形的图像关于对角线对称,所以距离y 与点P 走过的路程x 的函数图像应该关于2l对称,由图可知不满足题意故排除选项B , 故选C . 【点睛】本题考查函数图象的识别和判断,考查对于运动问题的深刻理解,解题关键是认真分析函数图象的特点.考查学生分析问题的能力.9.A解析:A 【解析】函数有意义,则:10,1x x +>∴>-, 由函数的解析式可得:()()21002ln 0102f =⨯-+=,则选项BD 错误; 且211111112ln 1ln ln 402222848f ⎛⎫⎛⎫⎛⎫-=⨯--⨯-+=-=+> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则选项C 错误; 本题选择A 选项.点睛:函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.10.D解析:D 【解析】 【分析】根据偶函数的性质,求出函数()0f x <在(-∞,0]上的解集,再根据对称性即可得出答案. 【详解】由函数()f x 为偶函数,所以()()220f f -==,又因为函数()f x 在(-∞,0]是减函数,所以函数()0f x <在(-∞,0]上的解集为(]2,0-,由偶函数的性质图像关于y 轴对称,可得在(0,+ ∞)上()0f x <的解集为(0,2),综上可得,()0f x <的解集为(-2,2). 故选:D. 【点睛】本题考查了偶函数的性质的应用,借助于偶函数的性质解不等式,属于基础题.11.C解析:C 【解析】 【分析】由()()2g x f x =-是奇函数,可得()f x 的图像关于()2,0-中心对称,再由已知可得函数()f x 的三个零点为-4,-2,0,画出()f x 的大致形状,数形结合得出答案. 【详解】由()()2g x f x =-是把函数()f x 向右平移2个单位得到的,且()()200g g ==,()()()4220f g g -=-=-=,()()200f g -==,画出()f x 的大致形状结合函数的图像可知,当4x ≤-或2x ≥-时,()0xf x ≤,故选C. 【点睛】本题主要考查了函数性质的应用,作出函数简图,考查了学生数形结合的能力,属于中档题.12.B解析:B 【解析】因为()f x =22x x -+,所以()f a =223a a -+=,则()2f a =2222a a -+=2(22)2a a -+-=7.选B.二、填空题13.【解析】【分析】由可得出和作出函数的图象由图象可得出方程的根将方程的根视为直线与函数图象交点的横坐标利用对称性可得出方程的所有根之和进而可求出原方程所有实根之和【详解】或方程的根可视为直线与函数图象 解析:3【解析】 【分析】由()()20fx af x -=可得出()0f x =和()()()0,3f x a a =∈,作出函数()y f x =的图象,由图象可得出方程()0f x =的根,将方程()()()0,3f x a a =∈的根视为直线y a =与函数()y f x =图象交点的横坐标,利用对称性可得出方程()()()0,3f x a a =∈的所有根之和,进而可求出原方程所有实根之和. 【详解】()()()2003f x af x a -=<<Q ,()0f x ∴=或()()03f x a a =<<.方程()()03f x a a =<<的根可视为直线y a =与函数()y f x =图象交点的横坐标, 作出函数()y f x =和直线y a =的图象如下图:由图象可知,关于x 的方程()0f x =的实数根为2-、3.由于函数()22y x =+的图象关于直线2x =-对称,函数3y x =-的图象关于直线3x =对称,关于x 的方程()()03f x a a =<<存在四个实数根1x 、2x 、3x 、4x 如图所示, 且1222+=-x x ,3432x x +=,1234462x x x x ∴+++=-+=, 因此,所求方程的实数根的和为2323-++=. 故答案为:3. 【点睛】本题考查方程的根之和,本质上就是求函数的零点之和,利用图象的对称性求解是解答的关键,考查数形结合思想的应用,属于中等题.14.【解析】【分析】通过去掉绝对值符号得到分段函数的解析式求出值域然后求解的值域结合已知条件推出的范围即可【详解】由题意对于任意的总存在使得或则与的值域的并集为又结合分段函数的性质可得的值域为当时可知的 解析:(,1]-∞【解析】 【分析】通过去掉绝对值符号,得到分段函数的解析式,求出值域,然后求解()ag x x x=+的值域,结合已知条件推出a 的范围即可. 【详解】由题意,对于任意的m R ∈,总存在0x R ∈,使得()0f x m =或()0g x m =,则()f x 与()g x 的值域的并集为R ,又()2,1112,112,1x f x x x x x x ≥⎧⎪=+--=-<<⎨⎪-≤-⎩,结合分段函数的性质可得,()f x 的值域为[]22-,, 当0a ≥时,可知()ag x x x=+的值域为(),⎡-∞-+∞⎣U ,所以,此时有2≤,解得01a ≤≤, 当0a <时,()ag x x x=+的值域为R ,满足题意, 综上所述,实数a 的范围为(],1-∞. 故答案为:(],1-∞. 【点睛】本题考查函数恒成立条件的转化,考查转化思想的应用,注意题意的理解是解题的关键,属于基础题.15.或【解析】【分析】由函数对称轴与区间关系分类讨论求出最大值且等于2解关于的方程即可求解【详解】函数对称轴方程为为;当时;当即(舍去)或(舍去);当时综上或故答案为:或【点睛】本题考查二次函数的图像与解析:1-或2. 【解析】 【分析】由函数对称轴与区间关系,分类讨论求出最大值且等于2,解关于a 的方程,即可求解. 【详解】函数()22221()1f x x ax a x a a a =-++-=--+-+,对称轴方程为为x a =;当0a ≤时,max ()(0)12,1f x f a a ==-==-;当2max 01,()()12a f x f a a a <<==-+=,即210,a a a --==(舍去),或a = 当1a ≥时,max ()(1)2f x f a ===, 综上1a =-或2a =. 故答案为:1-或2. 【点睛】本题考查二次函数的图像与最值,考查分类讨论思想,属于中档题.16.【解析】【分析】根据题意列出不等式组解出即可【详解】要使函数有意义需满足解得即函数的定义域为故答案为【点睛】本题主要考查了具体函数的定义域问题属于基础题;常见的形式有:1分式函数分母不能为0;2偶次 解析:[)0,5【解析】 【分析】根据题意,列出不等式组50210xx ->⎧⎨-≥⎩,解出即可. 【详解】要使函数()()4log 5f x x =-+有意义, 需满足50210xx ->⎧⎨-≥⎩,解得05x <≤,即函数的定义域为[)0,5, 故答案为[)0,5. 【点睛】本题主要考查了具体函数的定义域问题,属于基础题;常见的形式有:1、分式函数分母不能为0;2、偶次根式下大于等于0;3、对数函数的真数部分大于0;4、0的0次方无意义;5、对于正切函数tan y x =,需满足,2x k k Z ππ≠+∈等等,当同时出现时,取其交集.17.【解析】【分析】根据函数的奇偶性令即可求解【详解】、分别是定义在上的偶函数和奇函数且故答案为:【点睛】本题主要考查了函数的奇偶性属于容易题 解析:32【解析】 【分析】根据函数的奇偶性,令1x =-即可求解. 【详解】()f x Q 、()g x 分别是定义在R 上的偶函数和奇函数, 且()()2x f x g x x -=- ∴13(1)(1)(1)(1)212f g f g ----=+=+=, 故答案为:32【点睛】本题主要考查了函数的奇偶性,属于容易题.18.【解析】【分析】根据指数函数和对数函数的图象与性质分别求得实数的取值范围即可求解得到答案【详解】由题意根据指数函数的性质可得由对数函数的运算公式及性质可得且所以abc 从小到大的关系是故答案为:【点睛 解析:b c a <<【解析】 【分析】根据指数函数和对数函数的图象与性质,分别求得实数,,a b c 的取值范围,即可求解,得到答案. 【详解】由题意,根据指数函数的性质,可得0.101.111.1a >==,由对数函数的运算公式及性质,可得12112211log log ()22b ===,1ln 2ln 2c =>=,且ln 2ln 1c e =<=, 所以a ,b ,c 从小到大的关系是b c a <<. 故答案为:b c a <<. 【点睛】 本题主要考查了指数函数与对数函数的图象与性质的应用,其中解答中熟记指数函数与对数函数的图象与性质,求得实数,,a b c 的取值范围是解答的关键,着重考查了推理与运算能力,属于基础题.19.4【解析】【分析】根据二次函数的单调性结合值域分析最值即可求解【详解】二次函数的图像的对称轴为函数在递减在递增且当时函数取得最小值1又因为当时所以当时且解得或(舍)故故答案为:4【点睛】此题考查二次解析:4 【解析】 【分析】根据二次函数的单调性结合值域,分析最值即可求解. 【详解】二次函数222y x x -=+的图像的对称轴为1x =, 函数在(),1x ∈-∞递减,在[)1,x ∈+∞递增, 且当1x =时,函数()f x 取得最小值1,又因为当1x =-时,5y =,所以当x m =时,10y =,且1m >-, 解得4m =或2-(舍),故4m =. 故答案为:4 【点睛】此题考查二次函数值域问题,根据二次函数的值域求参数的取值.20.2【解析】【分析】利用分段函数分段定义域的解析式直接代入即可求出实数的值【详解】由题意得:所以由解得故答案为:2【点睛】本题考查了由分段函数解析式求复合函数值得问题属于一般难度的题解析:2 【解析】 【分析】利用分段函数分段定义域的解析式,直接代入即可求出实数a 的值. 【详解】由题意得:()00323f =+=,()23331103f a a =-+=-,所以由()()01032ff a a =-=, 解得2a =.故答案为:2. 【点睛】本题考查了由分段函数解析式求复合函数值得问题,属于一般难度的题.三、解答题21.(1)24a ≤<;(2){0x x ≤或}ln3x ≥ 【解析】 【分析】(1)根据复合函数单调性的性质,结合二次函数性质即可求得a 的取值范围.(2)将3a =代入函数解析式,结合不等式可变形为关于x e 的不等式,解不等式即可求解. 【详解】(1)()f x Q 在(,1]-∞上单调递减,根据复合函数单调性的性质可知23y x ax =-+需单调递减则12130aa ⎧≥⎪⎨⎪-+>⎩解得24a ≤<.(2)将3a =代入函数解析式可得2()ln(33)f x x x =-+则由()xf e x ≥,代入可得()2ln 33x x e e x -+≥同取对数可得233x x x e e e -+≥ 即2(e )430x xe -+≥, 所以()(e 1)30x xe --≥ 即e 1x ≤或3x e ≥0x ∴≤或ln x ≥3,所以原不等式的解集为{}0ln3x x x ≤≥或 【点睛】本题考查了对数型复合函数单调性与二次函数单调性的综合应用,对数不等式与指数不等式的解法,属于中档题.22.(1) 1a =;(2)证明见解析;(3) 13k k ≥≤-或 【解析】 【分析】(1)根据函数是奇函数,由(0)0f =,可得a 的值; (2)用定义法进行证明,可得函数()f x 在R 上是减函数;(3)根据函数的单调性与奇偶性的性质,将不等式()2(1)0f t kt f t -+-≤进行化简求值,可得k 的范围. 【详解】解:(1)由函数2()()21xx a f x a R -=∈+是奇函数,可得:(0)0f =,即:1(0)02a f -==,1a =; (2)由(1)得:12()21xx f x -=+,任取12x x R ∈,且12x x <,则122112121212122(22)()()=2121(21)(21)xx x x x x x x f x f x -----=++++, Q 12x x <,∴21220x x ->,即:2112122(22)()()=(21)(201)x x x x f x f x --++>,12()()f x f x >,即()f x 在R 上是减函数;(3)Q ()f x 是奇函数,∴不等式()2(1)0f t kt f t -+-≤恒成立等价为()2(1)(1)f t kt f t f t -≤--=-恒成立,Q ()f x 在R 上是减函数,∴21t kt t -≥-,2(1)10t k t -++≥恒成立,设2()(1)1g t t k t =-++,可得当0∆≤时,()0g t ≥恒成立, 可得2(1)40k +-≥,解得13k k ≥≤-或, 故k 的取值范围为:13k k ≥≤-或. 【点睛】本题主要考查函数单调性的判断与证明及函数恒成立问题,体现了等价转化的数学思想,属于中档题.23.(1)()262f x x π⎛⎫=++ ⎪⎝⎭,单调增区间为06,π⎡⎤⎢⎥⎣⎦,2π,π3轾犏犏臌;(2)a ∈⎣【解析】 【分析】(1)由最大值和最小值求得,A B ,由最大值点和最小值点的横坐标求得周期,得ω,再由函数值(最大或最小值均可)求得ϕ,得解析式; (2)由图象变换得()g x 的解析式,确定()g x 在[0,]2π上的单调性,而()g x a =有两个解,即()g x 的图象与直线y a =有两个不同交点,由此可得. 【详解】(1)由题意知2A B A B ⎧+=⎪⎪⎨⎪-+=-⎪⎩解得A =,2B =. 又22362T πππ=-=,可得2ω=.由6322f ππϕ⎛⎫⎛⎫=++=⎪ ⎪⎝⎭⎝⎭, 解得6π=ϕ. 所以()26f x x π⎛⎫=+ ⎪⎝⎭ 由222262k x k πππππ-≤+≤+,解得36k x k ππππ-≤≤+,k ∈Z .又[]0,x π∈,所以()f x 的单调增区间为06,π⎡⎤⎢⎥⎣⎦,2π,π3轾犏犏臌.(2)函数()f x 的图象向左平移12π个单位长度,再向下平移2个单位长度,得到函数()g x 的图象,得到函数()g x 的表达式为()23x g x π⎛⎫=+ ⎪⎝⎭.因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以42,333x πππ⎡⎤+∈⎢⎥⎣⎦, ()g x 在[0,]12π是递增,在[,]122ππ上递减,要使得()g x a =在0,2π⎡⎤⎢⎥⎣⎦上有2个不同的实数解, 即()y g x =的图像与y a =有两个不同的交点,所以a ∈⎣. 【点睛】本题考查求三角函数解析式,考查图象变换,考查三角函数的性质.“五点法”是解题关键,正弦函数的性质是解题基础. 24.(Ⅰ)2()f x x =(Ⅱ)3,4⎛⎫-∞- ⎪⎝⎭【解析】 【分析】(I )根据幂函数的奇偶性和在区间(0,)+∞上的单调性,求得m 的值,进而求得()f x 的解析式.(II )先求得()g x 的解析式,由不等式()0<g x 分离常数λ得到122xx λ<-,结合函数122xy x =-在区间[]1,2上的单调性,求得λ的取值范围. 【详解】 (Ⅰ)∵幂函数35()()m f x xm -+=∈N 为偶函数,且在区间(0,)+∞上单调递增,350m ∴-+>,且35m -+为偶数. 又N m ∈,解得1m =,2()f x x ∴=.(Ⅱ)由(Ⅰ)可知2()()2121g x f x x x x λλ=+-=+-. 当[1,2]x ∈时,由()0<g x 得122xx λ<-. 易知函数122xy x =-在[1,2]上单调递减, min 1123222224x x λ⎛⎫∴<-=-=- ⎪⨯⎝⎭.∴实数λ的取值范围是3,4⎛⎫-∞- ⎪⎝⎭. 【点睛】本小题主要考查幂函数的单调性和奇偶性,考查不等式在给定区间上恒成立问题的求解策略,属于中档题.25.(1)2(2){}2log 5x|2<x < 【解析】 【分析】(1)将点(3,3)代入函数计算得到答案.(2)根据函数的单调性和定义域得到1123122x x +<-<-,解得答案.【详解】(1)()()3log 3123,log 21,2a a f a =-+=∴=∴=∴ ()()2log 12f x x =-+. (2)()()2log 12f x x =-+Q 的定义域为{}|1x x >,并在其定义域内单调递增, ∴()()1123122,123122xx xx f f ++-<-∴<-<-,不等式的解集为{}22<log 5x x <.【点睛】本题考查了函数解析式,利用函数单调性解不等式,意在考查学生对于函数知识的综合应用.26.(1){}23x x <<(2)()2,+∞ 【解析】 【分析】(1)先化简集合B ,再根据集合的交并补运算求解即可;(2)函数()lg(2)f x x a =+定义域对应集合可化简为2a C x x ⎧⎫=>-⎨⎬⎩⎭,又A C ⊆,故由包含关系建立不等式即可求解; 【详解】(1)由题知,{}2B x x =≤,{}2U C B x x ∴=>{}13A x x =-≤<Q(){}23UA CB x x ∴⋂=<<(2)函数()lg(2)f x x a =+的定义域为集合2a C x x ⎧⎫=>-⎨⎬⎩⎭,A C ⊆Q ,12a∴-<-, 2a ∴>.故实数a 的取值范围为()2,+∞. 【点睛】本题考查集合的交并补的混合运算,由集合的包含关系求参数范围,属于基础题。
四川省宜宾市2019_2020学年高一数学上学期期末考试试题含解析.doc
四川省宜宾市2019-2020学年高一数学上学期期末考试试题(含解析)(考试时间:120分钟总分:150分)注意事项:1.答卷前,考生务必将自己的考号、姓名、班级填写在答题卡上,并认真核准条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴好条形码.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将答题卡交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合要求的.1.若集合{}012M =,,,集合{}2,3N =,则M N ⋃等于( ) A. {}2B. {}1,2C. {}0,1,2D.{}0,1,2,3【答案】D 【解析】 【分析】根据两个集合的元素直接求解并集即可得解.【详解】由题:集合{}012M =,,,集合{}2,3=N , 则{}0,1,2,3M N ⋃=. 故选:D【点睛】此题考查集合的并集运算,根据两个集合中的元素,直接写出并集,属于简单题. 2.cos1050︒=( )A.2B. C.12D. 12-【答案】A 【解析】 【分析】改写()cos1050cos 336030︒=⨯︒-︒,根据诱导公式化简求值.【详解】()()cos1050cos 336030cos 30cos30︒=⨯︒-︒=-︒=︒=. 故选:A【点睛】此题考查求特殊角的三角函数值,结合诱导公式化简变形,需要熟记常见特殊角的三角函数值,可以快速得解.3.在下列函数中,既是奇函数,又是减函数的是( )A. 12xy ⎛⎫= ⎪⎝⎭B. sin y x =C. y x =-D. ()3log y x =-【答案】C 【解析】 【分析】AD 选项是非奇非偶函数,B 选项不是单调递减函数,C 选项满足题意.【详解】由题:根据基本初等函数性质可得:12xy ⎛⎫= ⎪⎝⎭,()3log y x =-都是非奇非偶函数,所以AD 不合题意,sin y x =是周期函数,不是单调递减,所以B 不合题意,y x =-是奇函数且单调递减. 故选:C【点睛】此题考查函数奇偶性和单调性的辨析,关键在于熟练掌握常见基本初等函数的基本性质.4.函数()f x = )A. (),1-∞B. 1,C. (),1-∞-D. 0,【答案】B 【解析】 【分析】先求出函数定义域,再结合二次函数单调性得单调区间.【详解】由题:()f x =()2223120x x x -+=-+>恒成立,所以函数定义域为R ,()f x =223y x x =-+的单调增区间1,,故选:B【点睛】此题考查讨论复合函数单调性,此类问题一定注意先考虑定义域,再根据单调性求得单调区间. 5.函数()ln 25f x x x =+-的零点所在区间为( )A. ()0,1B. ()1,2C. ()2,3D. ()3,4【答案】C 【解析】 【分析】根据根的存在性定理结合单调性讨论函数零点所在区间. 【详解】由题:()ln 25f x x x =+-在其定义域内单调递增,()2ln245ln210f =+-=-<, ()3ln365ln310f =+-=+>,所以函数在()2,3一定存在零点,由于函数单调递增,所以零点唯一,且属于区间()2,3. 故选:C【点睛】此题考查根据根的存在性定理确定函数零点所在区间,关键在于准确得出区间端点函数值的正负,结合单调性说明函数零点唯一.6.要得到函数3sin 23y x π⎛⎫=+ ⎪⎝⎭的图象,可将函数3sin 2y x =图象上所有点( )A. 向左平移6π个单位 B. 向右平移6π个单位 C. 向左平移3π个单位 D. 向右平移3π个单位 【答案】A 【解析】【分析】根据函数的平移法则“左加右减”,即可得解. 【详解】由题:3sin 23s n 6i 23y x x ππ⎛⎫⎛⎫⎛⎫=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 要得到函数3sin 23y x π⎛⎫=+⎪⎝⎭的图象, 可将函数3sin 2y x =图象上所有点向左平移6π个单位. 故选:A【点睛】此题考查函数图象的平移,同名三角函数之间的平移,需要注意考虑自变量前的系数对平移的影响. 7.函数()3sin 1xf x x =+的部分图象大致是( ) A. B.C. D.【答案】A 【解析】 【分析】根据奇偶性排除BD ,求出特殊值2f π⎛⎫ ⎪⎝⎭排除C ,即可得到选项.【详解】由题:函数()3sin 1x f x x =+,()()()3sin 3sin 11x xf x f x x x ---===--++, 所以()3sin 1xf x x =+为奇函数,排除BD 选项,计算30212f ππ⎛⎫=≠ ⎪⎝⎭+,排除C 选项,A 选项图象大致符合要求.故选:A【点睛】此题考查函数图象的辨析,考查对函数基本性质的掌握,此类题常用排除法解决.8.若函数()()()1e 1ln 1x x f x x x -⎧<⎪=⎨≥⎪⎩则()()2f f =( ) A.1eB. 2eC. eD.2e【答案】D 【解析】 【分析】根据分段函数解析式依次求出()2ln 21f =<,再计算()()()ln212ln 2f f f e-==,即可得解.【详解】由题:函数()()()1e 1ln 1x x f x x x -⎧<⎪=⎨≥⎪⎩, ()2ln 21f =<则()()()ln 2122ln 2ff f ee-===. 故选:D【点睛】此题考查分段函数求值,关键在于根据分段函数解析式准确判定自变量的取值属于哪一个分段区间,准确计算求解.9.若函数()log a f x x =(0a >,且1a ≠)在区间[]2,4上的最小值为2,则实数a 的值为( )A.2C. 2或2【答案】B 【解析】 【分析】分类讨论最值,当1a >时,当01a <<时,分别求出最值解方程,即可得解.【详解】由题:函数()log a f x x =(0a >,且1a ≠)在区间[]2,4上的最小值为2, 当1a >时,()log a f x x =在[]2,4单调递增, 所以最小值()2log 22a f ==,解得a =当01a <<时,()log a f x x =在[]2,4单调递减, 所以最小值()4log 42a f ==,解得2a =,不合题意,所以a =故选:B【点睛】此题考查根据函数的最值求参数的取值,需要分类讨论,关键在于熟练掌握对数函数的单调性. 10.已知141log 5a =,2log 3b =,130.5c =,则a ,b ,c 的大小关系为( ) A. c b a << B. a c b << C. b c a << D. c a b <<【答案】D 【解析】 【分析】根据对数的运算法则化简22141log lo lo g 5g 3a b ==<=,1030.50.51c =<=即可得到大小关系.【详解】由题:14224211log log 5log 5log 52log 3a ====<,221log log 3b <<=,1030.50.51c =<=,所以c a b <<. 故选:D【点睛】此题考查比较指数对数的大小,涉及对数的运算化简,关键在于熟练掌握指数对数函数的单调性进行大小比较,借助中间值进行比较.11.若()22cos sin 2f x x x =-在区间[],m m -上是减函数,则m 的最大值是( )A.12πB.8π C.4π D.38π 【答案】B 【解析】 【分析】函数化简()214f x x π⎛⎫=++ ⎪⎝⎭,求出其单调减区间,根据[]3,,88m m ππ--⊆⎡⎤⎢⎥⎣⎦即可得解.【详解】由题:()22cos sin 2cos 21sin 2214f x x x x x x π⎛⎫=-=+-=++ ⎪⎝⎭,令222,4k x k k Z ππππ≤+≤+∈,得:3,88k x k k Z ππππ-≤≤+∈, 即函数的减区间为3,,88k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦, 当0k =时,减区间3,88ππ⎡⎤-⎢⎥⎣⎦,[]3,,88m m ππ--⊆⎡⎤⎢⎥⎣⎦, 所以08m π<≤,即m 的最大值8π. 故选:B【点睛】此题考查根据三角函数的单调性求参数的取值范围,关键在于准确化简,求出函数的减区间,讨论区间之间的关系即可得解.12.函数()6log sin f x x x π=-的零点个数为( ) A. 10 B. 11C. 12D. 13【答案】C 【解析】 【分析】结合图象,函数的零点转化为讨论两个函数6log ,sin y x y x π==的交点个数,数形结合即可得解.【详解】由题:函数()6log sin f x x x π=-的零点个数,即方程6log sin x x π=的根的个数,即两个函数6log ,sin y x y x π==的交点个数, 作图如下:当()()6,66,,log 1x y x ∈-∞-+∞=>,与sin y x =π不再有公共点,所以两个函数公共点如图一共12个. 故选:C【点睛】此题考查函数零点问题,将函数零点问题转化成方程的根的问题,转化成讨论两个函数的公共点,涉及数形结合思想.二、填空题:本大题共4个小题,每小题5分,共20分. 13.函数()15x f x a-=-(0a >且1a ≠)的图象恒过定点,其坐标为______.【答案】()1,4-. 【解析】 【分析】令1x =,函数值是一个定值,与参数a 无关,即可得到定点. 详解】令()111,154x f a -==-=-,所以函数图象恒过定点为()1,4-.故答案为:()1,4-【点睛】此题考查求函数的定点,关键在于寻找自变量的取值使参数不起作用,熟记常见函数的定点便于快速解题.14.在函数()2sin 3f x x πω⎛⎫=+ ⎪⎝⎭(0>ω)的图象与x 轴的交点中,相邻两点间的距离为6π,则()f x 的周期为______. 【答案】3π. 【解析】 【分析】根据正弦型函数图象特征:图象与x 轴的交点中,相邻两点的距离为半个周期,即可得解. 【详解】函数()2sin 3f x x πω⎛⎫=+⎪⎝⎭(0>ω)的图象与x 轴的交点中,相邻两点的距离为半个周期,所以周期为263ππ⨯=.故答案为:3π【点睛】此题考查三角函数图象性质,根据图象特征求函数的最小正周期,需要熟记正弦函数的图象特征.15.已知tan 2α=,且α是第三象限的角,则sin α=______.【答案】. 【解析】 【分析】根据同角三角函数的基本关系解方程即可得解. 【详解】tan 2α=,α是第三象限的角,即sin 2,sin 2cos 0cos αααα==<, 由22sin cos 1αα+=得:221sin sin 14αα+=,24sin 5α=,所以sin α=.故答案为: 【点睛】此题考查同角三角函数基本关系,根据正切值求正弦值,利用平方关系建立等式,解方程求解.16.若R 上奇函数()f x 对任意实数x 都有()()11f x f x +=-,且()11f =,则()()20192020f f +=______.【答案】1-.【解析】 【分析】根据题意分析函数周期为4,()()20192020f f +=()()30f f +即可得解. 【详解】若R 上的奇函数()f x 对任意实数x 都有()()11f x f x +=-,()()()()()()1111f x f x f x f x ++=-+=-=-,即()()2f x f x +=-,则()()()42f x f x f x +=-+=, 所以函数()f x 周期为4,()()()()()()()()00,11,200,311,400f f f f f f f f ===-==-=-==, ()()()()()()20192020450434505301f f f f f f +=⨯++⨯=+=-.故答案为:1-【点睛】此题考查根据抽象函数的奇偶性和对称性求得周期,根据周期性求函数值,关键在于准确找出周期,代换求值.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤. 17.求值: (1)232lg 25lg8log 3log 43+-⋅ (2)()122230133220203482--⎛⎫⎛⎫⎛⎫--+- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭【答案】(1)0;(2)12. 【解析】 【分析】(1)根据对数的运算法则计算化简即可得解; (2)根据指数幂的运算性质化简求值.【详解】(1)原式232lg52lg 2log 3log 4=+-⋅()232lg5lg22log 3log 2=+-⨯⨯22=-0=(2)原式1222392721483-⎛⎫⎛⎫⎛⎫=--+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2338412279⎛⎫=--+ ⎪⎝⎭ 14412992=-+= 【点睛】此题考查指数对数的综合运算,关键在于熟练掌握对数及指数幂的运算性质,准确化简求值.18.如图,在平面直角坐标系xOy 中,角α和β的始边与x 轴的非负半轴重合,终边关于y轴对称,且角α的终边与单位圆交于点3,3P m ⎛⎫ ⎪ ⎪⎝⎭(0m <).(1)求sin α的值;(2)求()cos αβ-的值.【答案】(1)63-;(2)13. 【解析】【分析】 (1)根据角α的终边与单位圆交于点3P m ⎫⎪⎪⎝⎭得3cos α=sin α; (2)根据对称关系得6sin sin βα==,3cos β=,利用两角差的余弦公式求解. 【详解】(1)由已知得3cos 3α=,且α的终边落在第四象限26sin 1cos αα∴=--=-. (2)α与β的终边关于y 轴对称6sin sin βα∴==-,3cos β=- ()121cos cos cos sin sin 333αβαβαβ∴-=+=-+= 【点睛】此题考查根据角的终边与单位圆交点的坐标求解三角函数值,利用两角差的余弦公式求解函数值,要求熟练掌握相关公式.19.函数()()sin f x A x h ωϕ=++(0A >,0>ω,0ϕπ≤<)的部分图象如图所示.(1)求函数()f x 的解析式;(2)求函数()f x 在,44ππ⎛⎤- ⎥⎝⎦上的值域. 【答案】(1)()2sin 213f x x π⎛⎫=++ ⎪⎝⎭;(2)(]0,3. 【解析】【分析】(1)根据函数图象依次求出振幅,周期,再求ω,结合顶点坐标求ϕ的值;(2)结合换元法整体考虑52,366x πππ⎛⎤+∈- ⎥⎝⎦即可求得值域. 【详解】(1)由图象得()3122A --==,()3112h +-==7212122T πππ=-=, 2T ππω∴==, 2ω∴= 22122k ππϕπ∴⨯+=+,k Z ∈,0ϕπ≤<,3πϕ∴=()2sin 213f x x π⎛⎫∴=++ ⎪⎝⎭ (2),44x ππ⎛⎤∈- ⎥⎝⎦,52,366x πππ⎛⎤∴+∈- ⎥⎝⎦ 1sin 2,132x π⎛⎫⎛⎤∴+∈- ⎪ ⎥⎝⎭⎝⎦,(]2sin 210,33x π⎛⎫∴++∈ ⎪⎝⎭ f x 在,44ππ⎛⎤- ⎥⎝⎦上的值域为(]03,. 【点睛】此题考查根据函数图象求函数解析式,求函数在某一区间的值域,关键在于熟练掌握函数图象性质,利用整体代入方式求解值域.20.已知函数()21sin 3cos 22f x x x x π⎛⎫=+-+ ⎪⎝⎭. (1)求()f x 的单调递增区间;(2)若12f α⎛⎫= ⎪⎝⎭,217,312ππα⎛⎫∈ ⎪⎝⎭,求cos α的值. 【答案】(1),63k k ππππ⎡⎤-+⎢⎥⎣⎦,Z k ∈;(2)13-. 【解析】【分析】 (1)利用三角恒等变换得()π3sin 216f x x ⎛⎫=-- ⎪⎝⎭,由22,2622x k k πππππ⎡⎤-∈-+⎢⎥⎣⎦得函数的单调增区间;(2)由题12f α⎛⎫= ⎪⎝⎭即2sin 63πα⎛⎫-= ⎪⎝⎭,变形cos cos 66ππαα⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦,利用两角和的余弦公式求解.【详解】(1)()21cos 3cos 2f x x x x =-+()3121cos 2222x x =-++ π3sin 216x ⎛⎫=-- ⎪⎝⎭ 由22,2622x k k πππππ⎡⎤-∈-+⎢⎥⎣⎦,Z k ∈ 由,63x k k ππππ⎡⎤∈-+⎢⎥⎣⎦,Z k ∈f x 的单调递增区间为,63k k ππππ⎡⎤-+⎢⎥⎣⎦,Z k ∈ (2)由3sin 1126f απα⎛⎫⎛⎫=--= ⎪ ⎪⎝⎭⎝⎭,得2sin 63πα⎛⎫-= ⎪⎝⎭ 217,312ππα⎛⎫∈⎪⎝⎭, 5,624πππα⎛⎫∴-∈ ⎪⎝⎭cos 63πα⎛⎫∴-== ⎭-⎪⎝, cos cos cos cos sin sin 666666ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫∴=-+=--- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦211323263--⨯=--= 【点睛】此题考查根据三角恒等变换化简函数解析式,求函数的单调区间,根据已知函数值求函数值,用已知角整体代入表示未知角利用和差关系求解.21.某商家通过市场调研,发现某商品的销售价格y(元/件)和销售量x(件)有关,其关系可用图中的折线段ABC表示(不包含端点A).(1)把y表示成x的函数;(2)若该商品进货价格为12元/件,则商家卖出多少件时可以获得最大利润?最大利润为多少元?【答案】(1)()()200401224012020xyx x⎧<≤⎪=⎨-+<≤⎪⎩;(2)当商家卖出100件商品时,可获得最大利润为500元.【解析】【分析】(1)根据两段图象分别求出解析式,考虑自变量的取值范围;(2)结合(1)的分段函数解析式,分段讨论利润,求出最大值.【详解】(1)当040x<≤时,20y=当40120x<≤时,设BC满足的函数关系式为y kx b=+则有402012016k bk b+=⎧⎨+=⎩,解得12022kb⎧=-⎪⎨⎪=⎩所以12220y x=-+综上,()()200401224012020xyx x⎧<≤⎪=⎨-+<≤⎪⎩(2)当040x<≤时,商家获得利润为:()20128320y x x=-=≤,此时商家获得的最大利润为320元当40120x <≤时,商家获得利润2112212102020z x x x x ⎛⎫=-+-=-+ ⎪⎝⎭ ()2110050020x =--+ ∴当100x =时,商家最大利润为:max 500z =,500320>∴当商家卖出100件商品时,可获得最大利润为500元【点睛】此题考查函数模型的应用,根据函数图象求函数解析式,利用函数关系求解利润最大问题,实际应用问题函数关系注意考虑自变量取值的实际意义.22.已知函数()33x xa f x =+是R 上的偶函数. (1)求a 的值;(2)若()`3x b f x b +>对任意()1,x ∈+∞恒成立,求b 的取值范围. 【答案】(1)1a =;(2)(],5-∞.【解析】【分析】(1)根据奇偶性处理()()f x f x =-恒成立得解;(2)利用换元法,分离参数,31x t =-,题目转化为()21122t b t t t++<=++对任意()2,t ∈+∞恒成立.【详解】(1)根据题意()f x 为偶函数对任意的x ∈R 都有()()f x f x =- 即3333x x x x a a --+=+,()11303x x a ⎛⎫∴--= ⎪⎝⎭x R ∈,1a (2)()`3x b f x b +>对任意()1,x ∈+∞恒成立 即`313x x b b ++>,()23131x x b ∴-<+令31x t =-,()1,x ∈+∞,()2,t ∴∈+∞即()21122t b t tt ++<=++对任意()2,t ∈+∞恒成立 令()22g t t t=++(2t >) 设122≤<t t ,则()()()()121212121212222t t t t g t g t t t t t t t --⎛⎫-=+-+= ⎪⎝⎭ 122t t <<,120t t ∴-<,1220t t ⋅->,120t t ⋅>()()120g t g t ∴-<()22g t t t ∴=++在2,上是增函数,()()min 25g t g ∴>=,5b ∴≤即b 的取值范围是(],5-∞.【点睛】此题考查根据函数的奇偶性求参数的取值,根据不等式恒成立求参数的取值范围,常用换元法和分离参数处理问题.。
2019~2020学年四川宜宾高一上学期期末数学试卷
2019~2020学年四川宜宾高一上学期期末数学试卷学校: 班级: 姓名: 学号:题号一二三总分得分注意事项:1. 答题前填写好自己的姓名、班级、考号等信息;2. 请将答案正确填写在答题卡上。
一、选择题(本大题共12小题,每小题5分,共60分)1.若集合,集合,则等于( ).A. B. C. D.2.( ).A. B. C. D.3.在下列函数中,既是奇函数,又是减函数的是( ).A. B. C. D.4.函数的单调递增区间是( ).A. B. C. D.5.函数的零点所在区间为( ).A. B. C. D.6.要得到函数的图象,可将函数图象上所有点( ).A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位7.函数的部分图象大致是( ).A.x–ππy–2–112B.x–ππy–2–112O C.x–ππy–2–112D.xy–2–112A.B.C.D.8.若函数,则( ).A.B.C.D.或9.若函数(,且)在区间上的最小值为,则实数的值为( ).A.B.C.D.10.已知,,,则,, 的大小关系为( ).A.B.C.D.11.若在区间上是减函数,则的最大值是( ).A.B.C.D.12.函数的零点个数为( ).二、填空题(本大题共4小题,每小题5分,共20分)13.函数(且)的图象恒过定点,其坐标为 .14.在函数的图象与轴的交点中,相邻两点间的距离为,则的周期为 .15.已知,且是第三象限的角,则.16.若上的奇函数对任意实数都有,且,则.三、解答题(本大题共6小题,共70分)(1)(2)17.求值:..(1)(2)18.如图,在平面直角坐标系中,角和的始边与轴的非负半轴重合,终边关于轴对称,且角的终边与单位圆交于点.求的值.求的值.(1)(2)19.函数(,,)的部分图象如图所示.求函数的解析式.求函数在上的值域.(1)(2)20.已知函数.求的单调递增区间.若,,求的值.(1)(2)21.某商家通过市场调研,发现某商品的销售价格(元/件)和销售量(件)有关,其关系可用图中的折线段表示(不包含端点).把表示成的函数.若该商品进货价格为元/件,则商家卖出多少件时可以获得最大利润?最大利润为多少元?(1)(2)22.已知函数是上的偶函数.求的值.若对任意恒成立,求的取值范围.【答案】解析:.故选.解析:.故选.解析:、.由题:根据基本初等函数性质可得:,都是非奇非偶函数,故错误;.是周期函数,不是单调递减,故错误;.是奇函数且单调递减,故正确.故选.解析:由题:,恒成立,所以函数定义域为,的单调递增区间即的单调增区间.故选.D 1.A 2.C 3.B 4.解析:本题主要考查对数与对数函数和函数与方程.定义域为,因为在上单调递增,所以在上单调递增.因为,,所以根据零点存在性定理可知在上必有零点.故本题正确答案为.解析:本题主要考查正弦型函数的图象与性质.,根据“左加右减”原则可知要得到函数的图象,只需将函数的图象向左平移个单位.故选.解析:本题主要考查函数的概念与图象和函数的奇偶性.的定义域为,关于原点对称,因为,所以,所以为奇函数.根据选项图象可知、为偶函数图象,故可以排除.因为,所以可以排除选项.C 5.A 6.A 7.故选.解析:由题:函数,,则.故选.解析:由题:函数(,且)在区间上的最小值为,当时,在单调递增,所以最小值,解得;当时,在单调递减,所以最小值,解得,不合题意,所以.故选.解析:已知,,因为在上单调递增,所以,即.因为在上单调递减,所以,所以.故选.解析:由题:,D 8.B 9.D 10.B 11.令,,得:,,即函数的减区间为,,当时,减区间,,所以,即的最大值.故选.解析:因为函数的零点的个数等价于函数与图象交点的个数,画出函数与的图象如图:由图象可知,共个交点.故选.解析:令,,所以函数图象恒过定点为.故答案为:.解析:函数的图象与轴的交点中,相邻两点的距离为半个周期,所以周期为.解析:C 12.13.14.15.(1)因为,所以,解得,所以,又因为是第三象限的角,所以,所以.故答案为:.解析:若上的奇函数对任意实数都有,,即,则,所以函数周期为,,,,,,.故答案为:.解析:16.(1).(2).17.(2)(1)(2)(1)..解析:由已知得,且的终边落在第四象限,∴.∵与的终边关于轴对称,∴,,∴.解析:由图象得,,,(1).(2).18.(1).(2).19.(2)(1)(2)∴,∴,∴,,∵,∴,∴.∵,∴,∴,∴,∴在上的值域为.解析:,由,,由,,∴的单调递增区间为,.由,得,∵,∴,∴,∴.(1),.(2).20.(1)(2)(1)(2)解析:当时,,当时,设满足的函数关系式为,则有,解得,所以,综上,.当时,商家获得利润为:,此时商家获得的最大利润为元,当时,商家获得利润,∴当时,商家最大利润为:,∵,∴当商家卖出件商品时,可获得最大利润为元.解析:根据题意为偶函数,对任意的都有,即,∴,∵,∴.∵对任意恒成立,即,∴,(1).(2)当商家卖出件商品时,可获得最大利润为元.21.(1).(2).22.令,∵,∴即对任意恒成立,令,设,则,∵,∴,,,∴,∴在上是增函数,∴,∴,即的取值范围是.。
宜宾市2020级高一上期期末考试数学
宜宾市2020年秋期高中教育阶段教学质量监测高一年级 数学(考试时间:120分钟 总分:150分)注意事项:1.答卷前,考生务必将自己的考号、姓名、班级填写在答题卡上。
2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合要求的。
1.已知全集U R =,集合{}1,0,1,2A =-,{}|06,B x x x Z =<≤∈,则图中阴影部分表示的集合是A .{}123,,B .{}3,456,,C .{}0123,,,D .{}123456,,,,, 2.下列各组函数中,表示同一函数的是 A .0()1,()f x x g x x x =-=- B .22(),()()f x x g x x == C .(),()ln e x f x x g x ==D .2(),()f x x g x x ==3.已知函数2()(1)f x x =+,则((2))f f -= A .1B .2C .3D .44.已知函数2()4ln f x x x =-+,则()f x 的定义域是A .(]02,B .[]02,C .[]2,2-D .()02,5.已知tan 3α=-,则sin 2cos sin cos αααα+=-A .14-B .14C .34-D .346.已知{}min ,a b 表示,a b 中的最小值,则函数{}()min 2,2x x f x -=的大致图象是A B C DxyOxyOxyOxyO7.函数3()3x f x a x=--的一个零点在区间()1,3内,则实数a 的取值范围是 A . ()1,3B . ()3,26C . ()0,3D .()0,268.已知实数2log 3a =,ln 2b =,0.32c = ,则实数,,a b c 的大小关系是 A .a b c >>B .b c a >>C .c a b >>D .c b a >>9.已知函数ππsin()sin()63y x x =+-,则其最小正周期和图象的一条对称轴方程分别为A .π2π,6x =B .π2π,12x =C .ππ,6x =D .ππ,12x =10.已知x R ∈,若24x x m -<成立,则实数m 的取值范围是A .()0,+∞B .1,4⎛⎫+∞ ⎪⎝⎭C .()2,+∞D .1,2⎛⎫+∞ ⎪⎝⎭11.若函数()f x 为定义在R 上的奇函数,且()f x 在定义域上单调递增,若()0,πx ∈,(sin )(3cos 1)0f x f x +->,则x 的取值范围是 A .π2π,33⎛⎫⎪⎝⎭B .π04⎛⎫⎪⎝⎭,C .π02⎛⎫⎪⎝⎭,D .π5π,66⎛⎫ ⎪⎝⎭12.狄利克雷函数1,()0,R x Qf x x C Q∈⎧=⎨∈⎩,其中R 为实数集,Q 为有理数集.则下列表述:①((0))0f f =; ②函数1()()2g x f x =-为奇函数; ③(2)(2)f x f x +=-; ④(2)()f x f x +=-. 其中正确的个数是 A .1B .2C .3D .4二、填空题:本大题共4个小题,每小题5分,共20分。
〖精选4套试卷〗宜宾市2020年高一(上)数学期末教学质量检测模拟试题
2019-2020学年高一数学上学期期末试卷一、选择题1.某林区改变植树计划,第一年植树增长率,以后每年的植树增长率都是前一年植树增长率的,若成活率为,经过年后,林区的树木量是原来的树木量的多少倍?( )A. B.C.D.2.函数,,若存在,,使得成立,则的最大值为( )A.12B.22C.23D.323.已知扇形的圆心角为2弧度,其所对的弦长为2,则扇形的弧长等于( ) A .2sin1B .2cos1C .1sin2D .2sin24.如图是一三棱锥的三视图,则此三棱锥内切球的体积为( )A .254πB .2516πC .11254πD .112516π5.已知3cos()5αβ+=,1sin()63πβ-=,且,αβ均为锐角,则sin()6πα+=( )A.82315- B.82415- C.83215- D.84215- 6.在ABC △中,角,,A B C 所对的边分别为,,a b c ,若222()tan a c b B ac +-=,则角B 的值 A .6π B .3π C .6π或56π D .3π或23π 7.如图,测量河对岸的塔高AB 时可以选与塔底B 在同一水平面内的两个测点C 与D ,测得BCD ∠︒15=,BDC ∠︒30=,CD =30,并在点C 测得塔顶A 的仰角为60°,则塔高AB 等于A .65B .135C .25D .6158.将棱长为2的正方体木块削成一个体积最大的球,则该球的体积为( ) A .43πB .2π C .3π D .6π 9.若函数在区间上单调递增,且,则的一个可能值是( )A .B .C .D . 10.两灯塔与海洋观察站的距离都等于,灯塔在北偏东,在南偏东,则之间的距离为A .B .C .D .11.如图,四棱锥P ABCD -的底面ABCD 是梯形,//AB CD ,若平面PAD I 平面PBC l =,则( )A.//l CDB.//l BCC.l 与直线AB 相交D.l 与直线DA 相交12.已知等差数列{}n a 中,26a =,515a =,若2n n b a =,则数列{}n b 的前5项和等于( ) A .30 B .45C .90D .186二、填空题13.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,已知3a =,11sin B =,32C ππ<<,若sin 2sin sin 2b Ca b A C=--,则b =_____. 14.如果直线()()25240a x a y ++-+=与直线()()2310-++-=a x a y 互相垂直,则实数a =__________.15.三棱锥S -ABC 及其三视图中的正视图和側视图如图所示,则棱SB 的长为_____。
四川省宜宾市2020届高三上学期期末考试数学(理)试题(含答案)
四川省宜宾市2020届高三上学期期末考试理科数学第I 卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每个小题所给出的四个选项中,只 有一项是符合题目要求的,把正确选项的代号填在答题卡的指定位置.) 1.已知全集{}2,0,1,2,3,{|2}U A B x x x ====Z ,则A B ⋂为A .{}1,3B .{}0,2C .{}0,1,3D .{}22.i 为虚数单位,a R ∈,若a iz i a i-=++为实数,则实数a = A .-1B .12-C .1D .23.甲、乙两名篮球运动员在10场比赛中得分的茎叶图如图所示,则“9x =”是“甲运动员得分平均数大于乙运动员得分平均数”的 A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.已知等比数列{}n a 中,132a =,公比12q =-,则6a 等于 A .1B .12-C .1-D .12-5.函数2()(3)ln()f x x x =-的图象大致是A .B .C .D .6.某几何体的三视图如图(虚线刻画的小正方形边长为1)所示,则这个几何体的体积为 A .49B .328 C .12 D .387.在边长为1的正方形ABCD 中,M 为BC 的中点,点E 在线段AB 上运动,则EC EM ⋅u u u u vu u u u v的取值范围是 A .1,22⎡⎤⎢⎥⎣⎦B .30,2⎡⎤⎢⎥⎣⎦C .13,22⎡⎤⎢⎥⎣⎦D .[]0,18.设g (x )的图象是由函数f (x )=cos2x 的图象向左平移3π个单位得到的,则g (6π)等于 A .1B .12-C .0D .-19.若函数y =f (x )满足:集合A ={f (n )|n ∈N *}中至少有三个不同的数成等差数列,则称函数f (x )是“等差源函数”,则下列四个函数中,“等差源函数”的个数是①y =2x +1;②y =log 2x ;③y =2x +1;④y =sin44x ππ+()A .1B .2C .3D .410.在ABC ∆中,AB AC AB AC +=-u u u r u u u r u u u r u u u r ,4AB =,3AC =,则BC uuu r 在CA u u u r方向上的投影是A .4B .3C .-4D .-311.已知a >0,x ,y 满足约束条件1{3(3)x x y y a x ≥+≤≥-,若z=2x+y 的最小值为1,则=aA .B .C .1D .212.已知双曲线22221(0,0)x y a b a b-=>>的左、右两个焦点分别为12F F 、,A B 、为其左右顶点,以线段12F F 、为直径的圆与双曲线的渐近线在第一象限的交点为M ,且30MAB ∠=o ,则双曲线的离心率为A 21B .213C 19D 19 第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,满分20分)13.已知向量()1,1a =-r ,()3,b m =r ,若()a a b +v P vv ,则m =__________.14.已知函数()2214cos 4sin ,,43f x x x x ππ⎡⎤=+-∈-⎢⎥⎣⎦,则()f x 的值域为______. 15.已知()f x 是定义在R 上的奇函数,对于任意()12,,0x x ∈-∞且12x x ≠,都有()()12120f x f x x x -<-成立,且()30f -=,则不等式()0f x <的解集为_____ 16.在三棱锥中,平面⊥PAB 平面,是边长为的等边三角形,其中,则该三棱锥外接球的表面积为_____.三、解答题(共70分,解答应写出文字说明、证明过程或演算步骤,第17 ~ 21题为必考题,每个试题考生都必须作答,第22、23题为选考题,考生根据要求作答.)17.(12分)在某校举行的航天知识竞赛中,参与竞赛的文科生与理科生人数之比为1:3,且成绩分布在[]40,100,分数在80以上(含80)的同学获奖. 按文理科用分层抽样的方法抽取200人的成绩作为样本,得到成绩的频率分布直方图(见下图).(I )在答题卡上填写下面的22⨯列联表,能否有超过0095的把握认为“获奖与学生的文理科有关”? 文科生理科生合计 获奖 5不获奖合计200(II )将上述调査所得的频率视为概率,现从该校参与竞赛的学生中,任意抽取3名学生,记“获奖”学生人数为X ,求X 的分布列及数学期望.附表及公式:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.18.(12分)在锐角ABC ∆中,角,,A B C 的对边分别为,,a b c ,sin sin tan cos cos B CA B C+=+.(I )求角A 的大小; (II )若3a =,求22b c +的取值范围.19.(12分)如图,在三棱柱111-ABC A B C 中,1145AA B ︒∠=,AC BC =,平面11BB C C ⊥平面11AA B B ,E 为1CC 中点.(I )求证:1AC BB ⊥;(II )若1 2,2,AA AB ==直线11 AC 与平面11ABB A 所成角为45︒,求平面11A B E 与平面ABC 所成锐二面角的余弦值.20.(12分)已知椭圆C 的两个焦点分别为()()121,0,1,0F F -,长轴长为23. (Ⅰ)求椭圆C 的标准方程及离心率;(Ⅱ)过点()0,1的直线l 与椭圆C 交于A ,B 两点,若点M 满足0MA MB MO ++=u u u r u u u r u u u u r r ,求证:由点M 构成的曲线L 关于直线13y =对称.21.(12分)已知函数2()ln (1)()2a f x x x a x a R =-+-∈. (1)当0a ≥时,求函数()f x 的极值;(2)若函数()f x 有两个零点12,x x ,求a 的取值范围,并证明122x x +>.(二)选考题:共10分,请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22. (10分) [选修4-4:坐标系与参数方程] 在直角坐标系xOy 中,圆C 的参数方程为1cos sin x y αα=+⎧⎨=⎩,其中a 为参数,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系. (1)求圆C 的极坐标方程;(2)B 为圆C 上一点,且B 点的极坐标为()000,,,26ππρθθ⎛⎫∈-⎪⎝⎭,射线OB 绕O 点逆时针旋转3π,得射线OA ,其中A 也在圆C 上,求OA OB +的最大值.23.(10分)已知函数()12f x x x m =-+-,m R ∈ (1)当3m =时,解不等式()2f x ≤;(2)若存在0x 满足()0013x f x -+<,求实数m 的取值范围.理科数学试题参考答案1. B 2.C 3.A4.C5.A6.D7.C8.D 9.C10.D 11.B 12.B13.3-14.[4,5]-.15.()()3,03,-+∞U16.17.详解:(I ) 文科生 理科生 合计 获奖 5 3540 不获奖 45 115 160 合计 50150200()22005115354525 4.167 3.84150150401606k ⨯⨯-⨯==≈>⨯⨯⨯,所以有超过0950的把握认为“获奖与学生的文理科有关”.(II )由表中数据可知,将频率视为概率,从该校参赛学生中任意抽取一人,抽到获奖同学的概率为15.X ,的所有可能的取值为0,1,2,3,且1~3,5X B ⎛⎫ ⎪⎝⎭.()5311155k kkP X k C -⎛⎫⎛⎫==⨯⨯- ⎪ ⎪⎝⎭⎝⎭(0,1,2,3k =).所以X 的分布列如下X123P6412548125121251125()13355E X =⨯=.18.(1)由sinA cosA =sinB sinCcosB cosC++得sinAcosB+sinAcosC=cosAsinB+cosAsinC , 即sin (A ﹣B )=sin (C ﹣A ), 则A ﹣B = C ﹣A ,即2A=C+B , 即A=3π..(2)当a=3时,∵B+C=23π,∴C=23π﹣B.由题意得2232BBπππ⎧⎪⎪⎨⎪-⎪⎩<<<,∴6π<B<2π.由a b csinA sinB sinC===2,得 b=2sinB,c=2sinC,∴b2+c2=4 (sin2B+sin2C)=4+2sin(2B﹣6π).∵6π<B<2π,∴12<sin(2B﹣6π)≤1,∴1≤2sin(2B﹣6π)≤2.∴5<b2+c2≤6.故22b c+的取值范围是(]5,6.19.(1)过点C做1CO BB⊥交1BB于O,因为面1111BB C C AA B B⊥面,11111=BB C C AA B B B B⋂面,所以11CO AA BB⊥面,故1CO BB⊥,又因为AC BC=OC OC=,所以Rt AOC Rt BOC∆≅∆,故OA OB=,因为1145B A A OBA︒∠=∠=,所以1AO BB⊥,又因为1BB CO⊥,所以1BB⊥面AOC,故1BB AC⊥.(2)以O为坐标原点,,,OA OB OC所在直线为,,x y z轴,建立空间直角坐标O xyz-,()()()()()()111,0,0,0,1,0,0,0,1,1,2,0,0,1,0,0,1,1A B C A B E---,设面11A B E的法向量为()111,,n x y z=r,则11.0,.0,n A En B E⎧=⎪⎨=⎪⎩u u u rru u u rr11110,0,x y zz-++=⎧∴⎨=⎩令11x=,得()1,1,0n=r;设面ABC的法向量为()222,,m x y z=r,则.0,.0,m ABm AC⎧=⎪⎨=⎪⎩u u u rru u u rr22220,0,x yx z-+=⎧∴⎨-+=⎩令21x=得()1,1,1m=r;.6cos,3m nm nm n∴==r rr rr r面11A B E 与面ABC.20.(Ⅰ)由已知,得1a c ==,所以3c e a ===, 又222a b c =+,所以b =所以椭圆C 的标准方程为22132x y +=,离心率3e =. (Ⅱ)设()11,A x y ,()22,B x y ,(),m m M x y ,①直线l 与x 轴垂直时,点,A B的坐标分别为(0,,(.因为()0,m m MA x y =-u u u r,()0m mMB x y =-u u u r,()0,0m mMO x y=--u u u u r,所以()3,30m m MA MB MC x y ++=--=uuu r uuu r uuu r r .所以0,0m m x y ==,即点M 与原点重合;②当直线l 与x 轴不垂直时,设直线l 的方程为1y kx =+,由221321x y y kx ⎧+=⎪⎨⎪=+⎩得()2232630k x kx ++-=,()22236123272240k k k ∆=++=+>. 所以122632kx x k -+=+. 则1224032y y k +=>+, 因为()11,m m MA x x y y =--u u u r ,()22,m m MB x x y y =--u u u r ,(),m m MO x y =--u u u u r,所以()121203,030m m MA MB MO x x x y y y ++=++-++-=uuu r uuu r uuu r r .所以123m x x x +=,123m y y y +=.2232m kx k -=+,243032m y k =>+, 消去k 得()2223200m m m m x y y y +-=>.综上,点M 构成的曲线L 的方程为222320x y y +-=对于曲线L 的任意一点(),M x y ,它关于直线13y =的对称点为2,3M x y ⎛⎫'- ⎪⎝⎭. 把2,3M x y ⎛⎫'- ⎪⎝⎭的坐标代入曲线L 的方程的左端:2222222244232243223203333x y y x y y y x y y ⎛⎫⎛⎫+---=+-+-+=+-= ⎪ ⎪⎝⎭⎝⎭.所以点M '也在曲线L 上.所以由点M 构成的曲线L 关于直线13y =对称. 21:(1)由()()2ln 12a f x x x a x =-+-得()()()1111x ax f x ax a x x-+=-+-=-', 当0a ≥时,10ax +>,若()01,0x f x <';若()1,x f x >'< 0,故当0a ≥时,()f x 在1x =处取得的极大值()112af =-;函数()f x 无极小值. (2)当0a ≥时,由(1)知()f x 在1x =处取得极大值()112af =-,且当x 趋向于0时,()f x 趋向于负无穷大,又()()2ln220,f f x =-<有两个零点,则()1102af =->,解得2a >.当10a -<<时,若()01,0x f x <';若()11,0x f x a '<<-<;若()1,0x f x a'>->,则()f x 在1x =处取得极大值,在1x a =-处取得极小值,由于()102af x =-<,则()f x 仅有一个零点.当1a =-时,()()210x f x x-'=>,则()f x 仅有一个零点.当1a <-时,若()10,0x f x a '<-;若()11,0x f x a'-<<<;若()1,0x f x '>>,则()f x 在1x =处取得极小值,在1x a =-处取得极大值,由于()11ln 102f a a a ⎛⎫-=--+-< ⎪⎝⎭,则()f x 仅有一个零点. 综上,()f x 有两个零点时,a 的取值范围是()2,+∞. 两零点分别在区间()0,1和()1,+∞内,不妨设1201,1x x <. 欲证122x x +>,需证明212x x >-,又由(1)知()f x 在()1,+∞单调递减,故只需证明()()1220f x f x ->=即可.()()()()()()()2211111112ln 2212ln 21222a a f x x x a x x x a x -=---+--=--++-,又()()()21111ln 102a f x x x a x =-+-=, 所以()()()11112ln 2ln 22f x x x x -=--+-, 令()()ln 2ln 22(01)h x x x x x =--+-<<,则()()()221112022x h x x x x x -=-+'=<--, 则()h x 在()0,1上单调递减,所以()()10h x h >=,即()120f x ->, 所以122x x +>. 22.解:(1)1cos sin x y αα=+⎧⎨=⎩2222(1)120x y x y x ⇒-+=⇒+-=,由222,cos ,x y x ρρα=+=可得圆C 的极坐标方程2cos ρθ=.(2)由题意可知:10(,)6A πρθ+,所以0002cos 2cos 36OA OB ππθθθ⎛⎫⎛⎫+=++=+ ⎪ ⎪⎝⎭⎝⎭0,26ππθ⎛⎫∈- ⎪⎝⎭,所以0()(,)633πππθ+∈-01cos()(,1]62πθ⇒+∈,从而OA OB +最大值为23.(1)当3m =时,()123f x x x =-+- 当1x <时,1232x x --+≤,解得:213x ≤<; 当312x ≤≤时,1232x x --+≤,解得:312x ≤≤; 当32x >时,1232x x -+-≤,解得:322x <≤()2f x ∴≤的解集为:2,23⎡⎤⎢⎥⎣⎦(2)若存在0x 满足()0013x f x -+<等价于2223x x m -+-<有解2222222x x m x x m m -+-≥--+=-Q 23m ∴-<,解得:15m -<<∴实数m 的取值范围为:()1,5-。
2020年四川省宜宾市下场中学高一数学理上学期期末试题含解析
2020年四川省宜宾市下场中学高一数学理上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 若为⊿所在平面内一点,且,则⊿的形状为A.等边三角形 B.直角三角形 C.等腰三角形 D.以上均不是参考答案:C2. 已知函数f(x)=,则不等式f(x)≥x2的解集是()A.[﹣1,1] B.[﹣2,2] C.[﹣2,1] D.[﹣1,2]参考答案:A【分析】已知分段函数f(x)求不等式f(x)≥x2的解集,要分类讨论:①当x≤0时;②当x>0时,分别代入不等式f(x)≥x2,从而求出其解集.【解答】解:①当x≤0时;f(x)=x+2,∵f(x)≥x2,∴x+2≥x2,x2﹣x﹣2≤0,解得,﹣1≤x≤2,∴﹣1≤x≤0;②当x>0时;f(x)=﹣x+2,∴﹣x+2≥x2,解得,﹣2≤x≤1,∴0<x≤1,综上①②知不等式f(x)≥x2的解集是:﹣1≤x≤1,故选A.【点评】此题主要考查一元二次不等式的解法,在解答的过程中运用的分类讨论的思想,是一道比较基础的题目.3. 下列式子中成立的是A. B. C. D.参考答案:B4. 圆心在y轴上,半径为1,且过点(1,2)的圆的方程是( )A. B.C. D.参考答案:A5. 设则的值域为 .参考答案:6. 将正方形(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的左视图为()参考答案:B试题分析:由题意可知几何体前面在右侧的射影为线段,上面的射影也是线段,后面与底面的射影都是线段,轮廓是正方形,在右侧的射影是正方形的对角线,在右侧的射影也是对角线是虚线.如图B.故选B.考点:简单空间图形的三视图.7. 如图,的外接圆的圆心为,,,,则等于()A. B. C. 2 D.3参考答案:B8. 函数对任意正实数都有( )A. B.C. D.参考答案:B略9. 已知集合M={1,2,3},N={2,3,4},则()A.M?N B.N?M C.M∩N={2,3} D.M∪N={1,4}参考答案:C【考点】交集及其运算.【专题】计算题.【分析】利用直接法求解,分别求出两个集合的交集与并集,观察两个集合的包含关系即可.【解答】解:M∩N={1,2,3}∩{2,3,4}={2,3}故选C.【点评】本题主要考查了集合的交集与子集的运算,属于容易题.10. (5分)圆的方程为x2+y2+kx+2y+k2=0,当圆面积最大时,圆心坐标为()A.(﹣1,1)B.(1,﹣1)C.(﹣1,0)D.(0,﹣1)参考答案:D考点:圆的一般方程.专题:直线与圆.分析:若圆面积最大时,则半径最大,求出k的值,即可得到结论.解答:当圆面积最大时,半径最大,此时半径r==,∴当k=0时,半径径r=最大,此时圆心坐标为(0,﹣1),故选:D点评:本题主要考查圆的一般方程的应用,根据条件求出k的值是解决本题的关键.二、填空题:本大题共7小题,每小题4分,共28分11. 已知函数f(x+1)=3x+2,则f(x)= .参考答案:3x-112. 在△ABC中,则过点C,以A、H为两焦点的椭圆的离心率为参考答案:13. 已知函数是奇函数,则常数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年宜宾市高中必修一数学上期末模拟试卷带答案一、选择题1.已知a =21.3,b =40.7,c =log 38,则a ,b ,c 的大小关系为( ) A .a c b << B .b c a <<C .c a b <<D .c b a <<2.若函数()f x =的定义域为R ,则实数m 取值范围是( )A .[0,8)B .(8,)+∞C .(0,8)D .(,0)(8,)-∞⋃+∞3.设23a log =,b =23c e =,则a b c ,,的大小关系是( ) A .a b c <<B .b a c <<C .b c a <<D . a c b <<4.[]x 表示不超过实数x 的最大整数,0x 是方程ln 3100x x +-=的根,则0[]x =( ) A .1B .2C .3D .45.设函数()()212log ,0,log ,0.x x f x x x >⎧⎪=⎨-<⎪⎩若()()f a f a >-,则实数的a 取值范围是( )A .()()1,00,1-⋃B .()(),11,-∞-⋃+∞C .()()1,01,-⋃+∞D .()(),10,1-∞-⋃6.若二次函数()24f x ax x =-+对任意的()12,1,x x ∈-+∞,且12x x ≠,都有()()12120f x f x x x -<-,则实数a 的取值范围为( )A .1,02⎡⎫-⎪⎢⎣⎭B .1,2⎡⎫-+∞⎪⎢⎣⎭C .1,02⎛⎫- ⎪⎝⎭D .1,2⎛⎫-+∞ ⎪⎝⎭7.若函数ya >0,a ≠1)的定义域和值域都是[0,1],则log a 56+log a 485=( ) A .1B .2C .3D .48.已知01a <<,则方程log xa a x =根的个数为( ) A .1个B .2个C .3个D .1个或2个或3根9.已知函数f (x )=12log ,1,24,1,x x x x >⎧⎪⎨⎪+≤⎩则1(())2f f )等于( )A .4B .-2C .2D .110.已知3log 2a =,0.12b =,sin 789c =o ,则a ,b ,c 的大小关系是 A .a b c <<B .a c b <<C .c a b <<D .b c a <<11.偶函数()f x 满足()()2f x f x =-,且当[]1,0x ∈-时,()cos 12xf x π=-,若函数()()()log ,0,1a g x f x x a a =->≠有且仅有三个零点,则实数a 的取值范围是( ) A .()3,5B .()2,4C .11,42⎛⎫⎪⎝⎭D .11,53⎛⎫ ⎪⎝⎭12.对任意实数x ,规定()f x 取4x -,1x +,()152x -三个值中的最小值,则()f x ( )A .无最大值,无最小值B .有最大值2,最小值1C .有最大值1,无最小值D .有最大值2,无最小值二、填空题13.()f x 是R 上的奇函数且满足(3)(3)f x f x -=+,若(0,3)x ∈时,()lg f x x x =+,则()f x 在(6,3)--上的解析式是______________. 14.已知函数()f x 满足对任意的x ∈R 都有11222⎛⎫⎛⎫++-=⎪ ⎪⎝⎭⎝⎭f x f x 成立,则 127...888f f f ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭= .15.函数()()4log 5f x x =-+________.16.若函数()()()()22,0,0x x x f x g x x ⎧+≥⎪=⎨<⎪⎩为奇函数,则()()1f g -=________. 17.已知35m n k ==,且112m n+=,则k =__________ 18.若幂函数()af x x =的图象经过点1(3)9,,则2a -=__________.19.已知函数1,0()ln 1,0x x f x x x ⎧+≤=⎨->⎩,若方程()()f x m m R =∈恰有三个不同的实数解()a b c a b c <<、、,则()a b c +的取值范围为______;20.已知函数222y x x -=+,[]1,x m ∈-.若该函数的值域为[]1,10,则m =________.三、解答题21.已知集合{}{}{}|2318,|215,|1A x x B x x C x x a x a =≤-≤=-<=≤≥+或. (1)求,A B A B I U ;(2)若()R C C A ⊆,求实数a 的取值范围.22.已知函数()x xk f x a ka -=+,(k Z ∈,0a >且1a ≠).(1)若1132f ⎛⎫= ⎪⎝⎭,求1(2)f 的值;(2)若()k f x 为定义在R 上的奇函数,且01a <<,是否存在实数λ,使得(cos 2)(2sin 5)0k k f x f x λ+->对任意的20,3x π⎡⎤∈⎢⎥⎣⎦恒成立若存在,请写出实数λ的取值范围;若不存在,请说明理由.23.已知函数()()sin ωφf x A x B =++(0A >,0>ω,2πϕ<),在同一个周期内,当6x π=时,()f x ,当23x π=时,()f x 取得最小值2-. (1)求函数()f x 的解析式,并求()f x 在[0,π]上的单调递增区间.(2)将函数()f x 的图象向左平移12π个单位长度,再向下平移2个单位长度,得到函数()g x 的图象,方程()g x a =在0,2π⎡⎤⎢⎥⎣⎦有2个不同的实数解,求实数a 的取值范围.24.已知函数()()()log 1log 1a a f x x x =+--(0a >,1a ≠),且()31f =. (1)求a 的值,并判定()f x 在定义域内的单调性,请说明理由; (2)对于[]2,6x ∈,()()()log 17amf x x x >--恒成立,求实数m 的取值范围.25.已知全集U=R ,集合{}12A x x x =-或 ,{}213U B x x p x p 或=-+ð. (1)若12p =,求A B ⋂; (2)若A B B ⋂=,求实数p 的取值范围. 26.已知函数2()1f x x x m =-+.(1)若()f x 在x 轴正半轴上有两个不同的零点,求实数m 的取值范围; (2)当[1,2]x ∈时,()1f x >-恒成立,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】利用指数函数2xy =与对数函数3log y x =的性质即可比较a ,b ,c 的大小. 【详解】1.30.7 1.4382242c log a b =<<===<Q ,c a b ∴<<. 故选:C . 【点睛】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题.2.A解析:A 【解析】 【分析】根据题意可得出,不等式mx 2-mx +2>0的解集为R ,从而可看出m =0时,满足题意,m ≠0时,可得出280m m m ⎧⎨=-<⎩V >,解出m 的范围即可. 【详解】∵函数f (x )的定义域为R ; ∴不等式mx 2-mx +2>0的解集为R ; ①m =0时,2>0恒成立,满足题意;②m ≠0时,则280m m m ⎧⎨=-<⎩V >; 解得0<m <8;综上得,实数m 的取值范围是[0,8) 故选:A . 【点睛】考查函数定义域的概念及求法,以及一元二次不等式的解集为R 时,判别式△需满足的条件.3.A解析:A 【解析】 【分析】根据指数幂与对数式的化简运算,结合函数图像即可比较大小. 【详解】因为23a log =,b =23c e =令()2f x log x =,()g x =函数图像如下图所示:则()2442f log ==,()442g == 所以当3x =时23log 3>,即a b <3b =23c e = 则66327b ==,626443 2.753.1c e e ⎛⎫⎪==>≈ ⎪⎝⎭所以66b c <,即b c < 综上可知, a b c << 故选:A 【点睛】本题考查了指数函数、对数函数与幂函数大小的比较,因为函数值都大于1,需借助函数图像及不等式性质比较大小,属于中档题.4.B解析:B 【解析】 【分析】先求出函数()ln 310f x x x =+-的零点的范围,进而判断0x 的范围,即可求出[]0x . 【详解】由题意可知0x 是()ln 310f x x x =+-的零点, 易知函数()f x 是(0,∞+)上的单调递增函数,而()2ln2610ln240f =+-=-<,()3ln3910ln310f =+-=->, 即()()230f f <n 所以023x <<,结合[]x 的性质,可知[]02x =. 故选B. 【点睛】本题考查了函数的零点问题,属于基础题.5.C解析:C 【解析】 【分析】 【详解】因为函数()()212log ,0,log ,0.x x f x x x >⎧⎪=⎨-<⎪⎩若()()f a f a >-,所以220log log a a a >⎧⎨>-⎩或()()122log log a a a <⎧⎪⎨->-⎪⎩,解得1a >或10a -<<,即实数的a 取值范围是()()1,01,-⋃+∞,故选C. 6.A解析:A 【解析】 【分析】由已知可知,()f x 在()1,-+∞上单调递减,结合二次函数的开口方向及对称轴的位置即可求解. 【详解】∵二次函数()24f x ax x =-+对任意的()12,1,x x ∈-+∞,且12x x ≠,都有()()12120f x f x x x -<-,∴()f x 在()1,-+∞上单调递减, ∵对称轴12x a=, ∴0112a a<⎧⎪⎨≤-⎪⎩,解可得102a -≤<,故选A . 【点睛】本题主要考查了二次函数的性质及函数单调性的定义的简单应用,解题中要注意已知不等式与单调性相互关系的转化,属于中档题.7.C解析:C 【解析】 【分析】先分析得到a >1,再求出a =2,再利用对数的运算求值得解.【详解】由题意可得a -a x ≥0,a x ≤a ,定义域为[0,1], 所以a >1,y =x a a -在定义域为[0,1]上单调递减,值域是[0,1], 所以f (0)=1a -=1,f (1)=0, 所以a =2,所log a56+log a 485=log 256+log 2485=log 28=3. 故选C 【点睛】本题主要考查指数和对数的运算,考查函数的单调性的应用,意在考查学生对这些知识的理解掌握水平,属于基础题.8.B解析:B 【解析】 【分析】在同一平面直角坐标系中作出()xf x a =与()log a g x x =的图象,图象的交点数目即为方程log xa a x =根的个数. 【详解】作出()xf x a =,()log a g x x =图象如下图:由图象可知:()(),f x g x 有两个交点,所以方程log xa a x =根的个数为2.故选:B . 【点睛】本题考查函数与方程的应用,着重考查了数形结合的思想,难度一般.(1)函数()()()h x f x g x =-的零点数⇔方程()()f x g x =根的个数⇔()f x 与()g x 图象的交点数;(2)利用数形结合可解决零点个数、方程根个数、函数性质研究、求不等式解集或参数范围等问题.9.B解析:B 【解析】121242242f ⎛⎫=+=+= ⎪⎝⎭,则()1214log 422f f f ⎛⎫⎛⎫===- ⎪ ⎪⎝⎭⎝⎭,故选B. 10.B解析:B 【解析】 【分析】 【详解】由对数函数的性质可知34333log 2log 34a =<=<, 由指数函数的性质0.121b =>,由三角函数的性质00000sin 789sin(236069)sin 69sin 60c ==⨯+=>,所以,1)2c ∈, 所以a c b <<,故选B.11.D解析:D 【解析】试题分析:由()()2f x f x =-,可知函数()f x 图像关于1x =对称,又因为()f x 为偶函数,所以函数()f x 图像关于y 轴对称.所以函数()f x 的周期为2,要使函数()()log a g x f x x =-有且仅有三个零点,即函数()y f x =和函数log a y x =图形有且只有3个交点.由数形结合分析可知,0111{log 31,53log 51a a a a <<>-⇒<<<-,故D 正确. 考点:函数零点【思路点睛】已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.12.D解析:D【分析】由题意画出函数图像,利用图像性质求解 【详解】画出()f x 的图像,如图(实线部分),由()1152y x y x =+⎧⎪⎨=-⎪⎩得()1,2A . 故()f x 有最大值2,无最小值 故选:D【点睛】本题主要考查分段函数的图像及性质,考查对最值的理解,属中档题.二、填空题13.【解析】【分析】首先根据题意得到再设代入解析式即可【详解】因为是上的奇函数且满足所以即设所以所以故答案为:【点睛】本题主要考查函数的奇偶性和对称性的综合题同时考查了学生的转化能力属于中档题 解析:()6lg(6)f x x x =---+【解析】 【分析】首先根据题意得到(6)()f x f x +=-,再设(6,3)x ∈--,代入解析式即可. 【详解】因为()f x 是R 上的奇函数且满足(3)(3)f x f x -=+,所以[3(3)][3(3)]f x f x ++=-+,即(6)()()f x f x f x +=-=-. 设(6,3)x ∈--,所以6(0,3)x +∈.(6)6lg(6)()f x x x f x +=+++=-,所以()6lg(6)f x x x =---+. 故答案为:()6lg(6)f x x x =---+ 【点睛】本题主要考查函数的奇偶性和对称性的综合题,同时考查了学生的转化能力,属于中档题.14.7【解析】【分析】【详解】设则因为所以故答案为7解析:7【分析】 【详解】 设, 则,因为11222⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭f x f x , 所以,,故答案为7.15.【解析】【分析】根据题意列出不等式组解出即可【详解】要使函数有意义需满足解得即函数的定义域为故答案为【点睛】本题主要考查了具体函数的定义域问题属于基础题;常见的形式有:1分式函数分母不能为0;2偶次 解析:[)0,5【解析】 【分析】根据题意,列出不等式组50210x x ->⎧⎨-≥⎩,解出即可.【详解】要使函数()()4log 521x f x x =-+-有意义,需满足50210x x ->⎧⎨-≥⎩,解得05x <≤,即函数的定义域为[)0,5,故答案为[)0,5. 【点睛】本题主要考查了具体函数的定义域问题,属于基础题;常见的形式有:1、分式函数分母不能为0;2、偶次根式下大于等于0;3、对数函数的真数部分大于0;4、0的0次方无意义;5、对于正切函数tan y x =,需满足,2x k k Z ππ≠+∈等等,当同时出现时,取其交集.16.【解析】根据题意当时为奇函数则故答案为 解析:15-【解析】根据题意,当0x <时,()()(),f x g x f x =为奇函数,()()()()()()()()()211113(323)15f g f f f f f f f -=-=-=-=-=-+⨯=-,则 故答案为15-.17.【解析】因为所以所以故填【解析】因为35m n k ==,所以3log m k =,5log n k =,11lg5lg3lg152lg lg lg m n k k k+=+==,所以1lg lg152k ==k =18.【解析】由题意有:则: 解析:14【解析】 由题意有:13,29a a =∴=-, 则:()22124a --=-=. 19.【解析】【分析】画出的图像根据图像求出以及的取值范围由此求得的取值范围【详解】函数的图像如下图所示由图可知令令所以所以故答案为:【点睛】本小题主要考查分段函数的图像与性质考查数形结合的数学思想方法属解析:)22,2e e ⎡--⎣【解析】【分析】画出()f x 的图像,根据图像求出+a b 以及c 的取值范围,由此求得()a b c +的取值范围.【详解】函数()f x 的图像如下图所示,由图可知1,22a b a b +=-+=-.令2ln 11,x x e -==,令ln 10,x x e -==,所以2e c e <≤,所以)2()22,2a b c c e e ⎡+=-∈--⎣. 故答案为:)22,2e e ⎡--⎣【点睛】本小题主要考查分段函数的图像与性质,考查数形结合的数学思想方法,属于基础题. 20.4【解析】【分析】根据二次函数的单调性结合值域分析最值即可求解【详解】二次函数的图像的对称轴为函数在递减在递增且当时函数取得最小值1又因为当时所以当时且解得或(舍)故故答案为:4【点睛】此题考查二次 解析:4【解析】【分析】根据二次函数的单调性结合值域,分析最值即可求解.【详解】二次函数222y x x -=+的图像的对称轴为1x =,函数在(),1x ∈-∞递减,在[)1,x ∈+∞递增,且当1x =时,函数()f x 取得最小值1,又因为当1x =-时,5y =,所以当x m =时,10y =,且1m >-,解得4m =或2-(舍),故4m =.故答案为:4【点睛】此题考查二次函数值域问题,根据二次函数的值域求参数的取值. 三、解答题21.(1){}{}|13,|3A B x x A B x x ⋂=≤<⋃=≤;(2)[]1,2a ∈【解析】【分析】(1)首先求得[]()1,3,,3A B ==-∞,由此求得,A B A B ⋂⋃的值.(2)(),1R C C a a =+,由于()[],11,3a a +⊆,故113a a ≥⎧⎨+≤⎩,解得[]1,2a ∈. 【详解】解:{}{}|13,|3A x x B x x =≤≤=<,(1){}{}|13,|3A B x x A B x x ⋂=≤<⋃=≤;(2)∵{}|1C x x a x a =≤≥+或,∴{}|1R C C x a x a =<<+, ∵()R C C A ⊆,∴113a a ≥⎧⎨+≤⎩,∴[]1,2a ∈. 22.(1)47;(2)存在,3λ<【解析】【分析】(1)由指数幂的运算求解即可.(2)由函数()k f x 的性质可将问题转化为cos252sin x x λ<-对任意的20,3x π⎡⎤∈⎢⎥⎣⎦恒成立,分离变量后利用均值不等式求最值即可得解.【详解】解:(1)由已知11221132f a a -⎛⎫=+= ⎪⎝⎭, 21112229a a a a --⎛⎫∴+=++= ⎪⎝⎭,17a a -∴+=, ()2122249a a a a --∴+=++=, 2247a a -∴+=,即221(2)47f a a -=+=.(2)若()k f x 为定义在R 上的奇函数,则(0)10k f k =+=,解得1k =-,01a <<Q ,()x x k f x a a -∴=-,在R 上为减函数,则(cos 2)(2sin 5)0k k f x f x λ+->,可化为(cos 2)(2sin 5)(52sin )k k k f x f x f x λλ>--=-,即cos252sin x x λ<-对任意的20,3x π⎡⎤∈⎢⎥⎣⎦恒成立, 即25cos 22sin 42sin 2sin 2sin sin x x x x x xλ-+<==+,对任意的20,3x π⎡⎤∈⎢⎥⎣⎦恒成立, 令sin ,t x =[0,1]t ∈,则2y t t=+为减函数,当1t =时,y 取最小值为3,所以3λ<.【点睛】本题考查了不等式恒成立问题,重点考查了均值不等式,属中档题.23.(1)()262f x x π⎛⎫=++ ⎪⎝⎭,单调增区间为06,π⎡⎤⎢⎥⎣⎦,2π,π3轾犏犏臌;(2)2a ∈⎣ 【解析】【分析】(1)由最大值和最小值求得,A B ,由最大值点和最小值点的横坐标求得周期,得ω,再由函数值(最大或最小值均可)求得ϕ,得解析式;(2)由图象变换得()g x 的解析式,确定()g x 在[0,]2π上的单调性,而()g x a =有两个解,即()g x 的图象与直线y a =有两个不同交点,由此可得.【详解】(1)由题意知,2A B A B ⎧+=⎪⎪⎨⎪-+=⎪⎩解得A =,B =. 又22362T πππ=-=,可得2ω=.由6322f ππϕ⎛⎫⎛⎫=++= ⎪ ⎪⎝⎭⎝⎭, 解得6π=ϕ. 所以()262f x x π⎛⎫=++ ⎪⎝⎭, 由222262k x k πππππ-≤+≤+, 解得36k x k ππππ-≤≤+,k ∈Z .又[]0,x π∈,所以()f x 的单调增区间为06,π⎡⎤⎢⎥⎣⎦,2π,π3轾犏犏臌.(2)函数()f x 的图象向左平移12π个单位长度,再向下平移2个单位长度,得到函数()g x 的图象,得到函数()g x 的表达式为()23x g x π⎛⎫=+ ⎪⎝⎭. 因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以42,333x πππ⎡⎤+∈⎢⎥⎣⎦, ()g x 在[0,]12π是递增,在[,]122ππ上递减, 要使得()g x a =在0,2π⎡⎤⎢⎥⎣⎦上有2个不同的实数解, 即()y g x =的图像与y a =有两个不同的交点,所以a ∈⎣. 【点睛】本题考查求三角函数解析式,考查图象变换,考查三角函数的性质.“五点法”是解题关键,正弦函数的性质是解题基础.24.(1)2a =,单调递减,理由见解析;(2) 07m <<【解析】【分析】(1)代入(3)1f =解得a ,可由复合函数单调性得出函数的单调性,也可用定义证明; (2)由对数函数的单调性化简不等式,再由分母为正可直接去分母变为整式不等式,从而转化为求函数的最值.【详解】(1)由()3log 4log 2log 21a a a f =-==,所以2a =.函数()f x 的定义域为()1,+∞,()()()222212log 1log 1log log 111x f x x x x x +⎛⎫=+--==+ ⎪--⎝⎭. 因为211y x =+-在()1,+∞上是单调递减, (注:未用定义法证明不扣分)所以函数()f x 在定义域()1,+∞上为单调递减函数.(2)由(1)可知()()()221log log 117x m f x x x x +=>---,[]2,6x ∈, 所以()()10117x m x x x +>>---. 所以()()()2201767316m x x x x x <<+-=-++=--+在[]2,6x ∈恒成立. 当[]2,6x ∈时,函数()2316y x =--+的最小值min 7y =. 所以07m <<.【点睛】本题考查对数函数的性质,考查不等式恒成立,解题关键是问题的转化.由对数不等式转化为整式不等式,再转化为求函数最值.25.(1)722⎛⎤ ⎥⎝⎦,; (2)342p p -或. 【解析】【分析】 由题意可得{}213B x p x p =-≤≤+, (1)当12p =时,结合交集的定义计算交集即可; (2)由题意可知B A ⊆.分类讨论B =∅和B ≠∅两种情况即可求得实数p 的取值范围. 【详解】 因为{}213U B x x p x p =-+,或ð,所以(){}213U U B B x p x p ==-≤≤+痧,(1)当12p =时,702B ⎡⎤=⎢⎥⎣⎦,,所以7=22A B ⎛⎤⋂ ⎥⎝⎦,, (2)当A B B ⋂=时,可得B A ⊆.当B =∅时,2p -1>p +3,解得p >4,满足题意;当B ≠∅时,应满足21331p p p -≤+⎧⎨+<-⎩或213212p p p -≤+⎧⎨->⎩ 解得44p p ≤⎧⎨<-⎩或432p p ≤⎧⎪⎨>⎪⎩; 即4p <-或342p <≤. 综上,实数p 的取值范围342p p-或. 【点睛】本题主要考查交集的定义,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力.26.(1)2m >;(2)m <【解析】【分析】(1)首先>0∆,保证有两个不等实根,又121=x x ,两根同号,因此只要两根的和也大于0,则满足题意;(2)当[1,2]x ∈时,()1f x >-恒成立,转化为2m x x<+在[1,2]x ∈上恒成立即可 ,只要求得2x x+在[1,2]上的最小值即可. 【详解】 (1)由题知210x mx -+=有两个不等正根,则2121240010m x x m x x ⎧∆=->⎪+=>⎨⎪=>⎩,∴2m >;(2)211x mx -+>-恒成立即22mx x <+恒成立,又[1,2]x ∈,故2m x x <+在[1,2]x ∈上恒成立即可 , 又2y x x=+在[1,2]x ∈上的值域为 ,故m <【点睛】本题考查一元二次方程根的分布,考查不等式恒成立问题.一元二次方程根的分布可结合二次函数图象得出其条件,不等式恒成立可采用分离参数法,把问题转化为求函数的最值.。