2012年高考真题理科数学解析分类汇编5三角函数
2012年高考真题汇编——理科数学(解析版)5:三角函数
2012高考真题分类汇编:三角函数一、选择题1.【2012高考真题重庆理5】设tan ,tan αβ是方程2320x x -+=的两个根,则tan()αβ+的值为(A )-3 (B )-1 (C )1 (D )3 【答案】A【解析】因为βαtan ,tan 是方程2320x x -+=的两个根,所以3tan tan =+βα,2tan tan =βα,所以3213tan tan 1tan tan )tan(-=-=-+=+βαβαβα,选A.2.【2012高考真题浙江理4】把函数y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移 1个单位长度,得到的图像是【答案】A【解析】根据题设条件得到变化后的函数为)1cos(+=x y ,结合函数图象可知选项A 符合要求。
故选A.3.【2012高考真题新课标理9】已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减.则ω的取值范围是( )()A 15[,]24 ()B 13[,]24()C 1(0,]2 ()D (0,2]【答案】A【解析】函数)4sin()(πω+=x x f 的导数为)4c o s ()('πωω+=x x f ,要使函数)4sin()(πω+=x x f 在),2(ππ上单调递减,则有0)4cos()('≤+=πωωx x f 恒成立, 则πππωππk x k 223422+≤+≤+,即ππωππk x k 24524+≤≤+,所以Z k k x k ∈+≤≤+,ωπωπωπωπ2424,当0=k 时,ωπωπ454≤≤x ,又ππ<<x 2,所以有πωππωπ≥≤45,24,解得45,21≤≥ωω,即4521≤≤ω,选A. 4.【2012高考真题四川理4】如图,正方形ABCD 的边长为1,延长BA 至E ,使1AE =,连接EC 、ED 则sin CED ∠=( )ABCD【答案】B【解析】2EB EA AB =+=,EC =3424EDC EDA ADC πππ∠=∠+∠=+=,由正弦定理得sin sin 5CED DC EDC CE ∠===∠,所以3sin sin sin 4CED EDC π∠=∠==5.【2012高考真题陕西理9】在ABC ∆中,角,,A B C 所对边长分别为,,a b c ,若2222a b c +=,则cos C 的最小值为( )A.2B. 2C. 12D. 12-【答案】C.【解析】由余弦定理知214242)(212cos 222222222=≥+=+-+=-+=ab ab ab b a ab b a b a ab c b a C ,故选C.6.【2012高考真题山东理7】若42ππθ⎡⎤∈⎢⎥⎣⎦,,sin 2θ,则sin θ=(A )35 (B )45 (C )4(D )34 【答案】D【解析】因为]2,4[ππθ∈,所以],2[2ππθ∈,02cos <θ,所以812s i n 12c o s 2-=--=θθ,又81s i n 212c o s 2-=-=θθ,所以169sin 2=θ,43sin =θ,选D.7.【2012高考真题辽宁理7】已知sin cos αα-=,α∈(0,π),则tan α=(A) -1 (B) - (C) (D) 1 【答案】A【解析一】sin cos )sin()144ππαααα-=-=∴-=3(0),,tan 14παπαα∈∴=∴=- ,,故选A【解析二】2sin cos (sin cos )2,sin 21,ααααα-=∴-=∴=-33(0,),2(0,2),2,,tan 124ππαπαπααα∈∴∈∴=∴=∴=- ,故选A 【点评】本题主要考查三角函数中的和差公式、倍角公式、三角函数的性质以及转化思想和运算求解能力,难度适中。
北京2012年高考数学最新联考试题分类大汇编(5)三角函数试题解析.pdf
班级: 初一( ) 姓名: 日期:
课题:种子植物(二)课型设置【自研·互动20分钟+展示25分钟】
学习目标: 1概1识别常见的裸子植物和被子植物。
2能描述被子植物成为陆地分布最广的植物家族的原因。
3参与收集种子和果实的活动,体验与人交流和合作。
二、定向导学·互动展示:
自研自探环节合作探究环节展示提升环节·质疑提升环节自学指导内容、学法、时间互动策略、内容、时间展示方案内容、方式、时间板块一:区分裸子植物和被子植物
观察教材第8~页的彩图,观察其种子的着生位置,分组讨论以下的讨论题
1哪些种子是裸露的?哪些植物种子外面有果皮包被着?
2果皮对种子有什么意义?这对种子传播有什么意义?
3什么是裸子植物?什么是被子植物?他们的本质区别是什么?
裸子植物被子植物的本质区别是什么?
总结归纳环节(重点摘记、成果记录、知识生成、同步演练、规律总结)三 、当堂反馈:
1没有根、茎、叶分化的植物类群是
初中学习网,资料共分享!我们负责传递知识!。
2012年全国统一高考数学试卷(理科)(新课标)(含解析版)
2012年全国统一高考数学试卷(理科)(新课标)一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x﹣y∈A},则B中所含元素的个数为( )A.3B.6C.8D.102.(5分)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )A.12种B.10种C.9种D.8种3.(5分)下面是关于复数z=的四个命题:其中的真命题为( ),p1:|z|=2,p2:z2=2i,p3:z的共轭复数为1+i,p4:z的虚部为﹣1.A.p2,p3B.p1,p2C.p2,p4D.p3,p44.(5分)设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为( )A.B.C.D.5.(5分)已知{a n}为等比数列,a4+a7=2,a5a6=﹣8,则a1+a10=( )A.7B.5C.﹣5D.﹣76.(5分)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则( )A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数7.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A.6B.9C.12D.188.(5分)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于点A和点B,|AB|=4,则C的实轴长为( )A.B.C.4D.89.(5分)已知ω>0,函数f(x)=sin(ωx+)在区间[,π]上单调递减,则实数ω的取值范围是( )A.B.C.D.(0,2]10.(5分)已知函数f(x)=,则y=f(x)的图象大致为( )A.B.C.D.11.(5分)已知三棱锥S﹣ABC的所有顶点都在球O的表面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此三棱锥的体积为( )A.B.C.D.12.(5分)设点P在曲线上,点Q在曲线y=ln(2x)上,则|PQ|最小值为( )A.1﹣ln2B.C.1+ln2D.二.填空题:本大题共4小题,每小题5分.13.(5分)已知向量夹角为45°,且,则= .14.(5分)设x,y满足约束条件:;则z=x﹣2y的取值范围为 .15.(5分)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为 .16.(5分)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为 . 三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,acosC+ asinC﹣b﹣c=0(1)求A;(2)若a=2,△ABC的面积为;求b,c.18.(12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:日需求量n14151617181920频数10201616151310以100天记录的各需求量的频率作为各需求量发生的概率.(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差;(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.19.(12分)如图,直三棱柱ABC﹣A1B1C1中,AC=BC=AA1,D是棱AA1的中点,DC1⊥BD(1)证明:DC1⊥BC;(2)求二面角A1﹣BD﹣C1的大小.20.(12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.21.(12分)已知函数f(x)满足f(x)=f′(1)e x﹣1﹣f(0)x+x2;(1)求f(x)的解析式及单调区间;(2)若,求(a+1)b的最大值.四、请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22.(10分)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.23.选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.24.已知函数f(x)=|x+a|+|x﹣2|①当a=﹣3时,求不等式f(x)≥3的解集;②f(x)≤|x﹣4|若的解集包含[1,2],求a的取值范围.2012年全国统一高考数学试卷(理科)(新课标)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x﹣y∈A},则B中所含元素的个数为( )A.3B.6C.8D.10【考点】12:元素与集合关系的判断.【专题】5J:集合.【分析】由题意,根据集合B中的元素属性对x,y进行赋值得出B中所有元素,即可得出B中所含有的元素个数,得出正确选项【解答】解:由题意,x=5时,y=1,2,3,4,x=4时,y=1,2,3,x=3时,y=1,2,x=2时,y=1综上知,B中的元素个数为10个故选:D.【点评】本题考查元素与集合的关系的判断,解题的关键是理解题意,领会集合B中元素的属性,用分类列举的方法得出集合B中的元素的个数.2.(5分)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )A.12种B.10种C.9种D.8种【考点】D9:排列、组合及简单计数问题.【专题】11:计算题.【分析】将任务分三步完成,在每步中利用排列和组合的方法计数,最后利用分步计数原理,将各步结果相乘即可得结果【解答】解:第一步,为甲地选一名老师,有=2种选法;第二步,为甲地选两个学生,有=6种选法;第三步,为乙地选1名教师和2名学生,有1种选法故不同的安排方案共有2×6×1=12种故选:A.【点评】本题主要考查了分步计数原理的应用,排列组合计数的方法,理解题意,恰当分步是解决本题的关键,属基础题3.(5分)下面是关于复数z=的四个命题:其中的真命题为( ),p1:|z|=2,p2:z2=2i,p3:z的共轭复数为1+i,p4:z的虚部为﹣1.A.p2,p3B.p1,p2C.p2,p4D.p3,p4【考点】2K:命题的真假判断与应用;A5:复数的运算.【专题】11:计算题.【分析】由z===﹣1﹣i,知,,p 3:z的共轭复数为﹣1+i,p4:z的虚部为﹣1,由此能求出结果.【解答】解:∵z===﹣1﹣i,∴,,p3:z的共轭复数为﹣1+i,p4:z的虚部为﹣1,故选:C.【点评】本题考查复数的基本概念,是基础题.解题时要认真审题,仔细解答. 4.(5分)设F1、F2是椭圆E:+=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为( )A.B.C.D.【考点】K4:椭圆的性质.【专题】11:计算题.【分析】利用△F2PF1是底角为30°的等腰三角形,可得|PF2|=|F2F1|,根据P为直线x=上一点,可建立方程,由此可求椭圆的离心率.【解答】解:∵△F2PF1是底角为30°的等腰三角形,∴|PF2|=|F2F1|∵P为直线x=上一点∴∴故选:C.【点评】本题考查椭圆的几何性质,解题的关键是确定几何量之间的关系,属于基础题.5.(5分)已知{a n}为等比数列,a4+a7=2,a5a6=﹣8,则a1+a10=( )A.7B.5C.﹣5D.﹣7【考点】87:等比数列的性质;88:等比数列的通项公式.【专题】11:计算题.【分析】由a4+a7=2,及a5a6=a4a7=﹣8可求a4,a7,进而可求公比q,代入等比数列的通项可求a1,a10,即可【解答】解:∵a4+a7=2,由等比数列的性质可得,a5a6=a4a7=﹣8∴a4=4,a7=﹣2或a4=﹣2,a7=4当a4=4,a7=﹣2时,,∴a1=﹣8,a10=1,∴a1+a10=﹣7当a4=﹣2,a7=4时,q3=﹣2,则a10=﹣8,a1=1∴a1+a10=﹣7综上可得,a1+a10=﹣7故选:D.【点评】本题主要考查了等比数列的性质及通项公式的应用,考查了基本运算的能力.6.(5分)如果执行右边的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a n,输出A,B,则( )A.A+B为a1,a2,…,a n的和B.为a1,a2,…,a n的算术平均数C.A和B分别是a1,a2,…,a n中最大的数和最小的数D.A和B分别是a1,a2,…,a n中最小的数和最大的数【考点】E7:循环结构.【专题】5K:算法和程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是求出a1,a2,…,a n中最大的数和最小的数.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知,该程序的作用是:求出a1,a2,…,a n中最大的数和最小的数其中A为a1,a2,…,a n中最大的数,B为a1,a2,…,a n中最小的数故选:C.【点评】本题主要考查了循环结构,解题的关键是建立数学模型,根据每一步分析的结果,选择恰当的数学模型,属于中档题.7.(5分)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A.6B.9C.12D.18【考点】L!:由三视图求面积、体积.【专题】11:计算题.【分析】通过三视图判断几何体的特征,利用三视图的数据求出几何体的体积即可.【解答】解:该几何体是三棱锥,底面是俯视图,三棱锥的高为3;底面三角形斜边长为6,高为3的等腰直角三角形,此几何体的体积为V=×6×3×3=9.故选:B.【点评】本题考查三视图与几何体的关系,考查几何体的体积的求法,考查计算能力.8.(5分)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于点A和点B,|AB|=4,则C的实轴长为( )A.B.C.4D.8【考点】KI:圆锥曲线的综合.【专题】11:计算题;16:压轴题.【分析】设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,由C与抛物线y2=16x的准线交于A,B两点,,能求出C的实轴长.【解答】解:设等轴双曲线C:x2﹣y2=a2(a>0),y2=16x的准线l:x=﹣4,∵C与抛物线y2=16x的准线l:x=﹣4交于A,B两点,∴A(﹣4,2),B(﹣4,﹣2),将A点坐标代入双曲线方程得=4,∴a=2,2a=4.故选:C.【点评】本题考查双曲线的性质和应用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.9.(5分)已知ω>0,函数f(x)=sin(ωx+)在区间[,π]上单调递减,则实数ω的取值范围是( )A.B.C.D.(0,2]【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】11:计算题;16:压轴题.【分析】法一:通过特殊值ω=2、ω=1,验证三角函数的角的范围,排除选项,得到结果.法二:可以通过角的范围,直接推导ω的范围即可.【解答】解:法一:令:不合题意排除(D)合题意排除(B)(C)法二:,得:.故选:A.【点评】本题考查三角函数的单调性的应用,函数的解析式的求法,考查计算能力.10.(5分)已知函数f(x)=,则y=f(x)的图象大致为( )A.B.C.D.【考点】4N:对数函数的图象与性质;4T:对数函数图象与性质的综合应用.【专题】11:计算题.【分析】考虑函数f(x)的分母的函数值恒小于零,即可排除A,C,由f(x)的定义域能排除D,这一性质可利用导数加以证明【解答】解:设则g′(x)=∴g(x)在(﹣1,0)上为增函数,在(0,+∞)上为减函数∴g(x)<g(0)=0∴f(x)=<0得:x>0或﹣1<x<0均有f(x)<0排除A,C,又f(x)=中,,能排除D.故选:B.【点评】本题主要考查了函数解析式与函数图象间的关系,利用导数研究函数性质的应用,排除法解图象选择题,属基础题11.(5分)已知三棱锥S﹣ABC的所有顶点都在球O的表面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此三棱锥的体积为( )A.B.C.D.【考点】LF:棱柱、棱锥、棱台的体积.【专题】11:计算题;5F:空间位置关系与距离.【分析】根据题意作出图形,利用截面圆的性质即可求出OO1,进而求出底面ABC 上的高SD,即可计算出三棱锥的体积.【解答】解:根据题意作出图形:设球心为O,过ABC三点的小圆的圆心为O1,则OO1⊥平面ABC,延长CO1交球于点D,则SD⊥平面ABC.∵CO1==,∴OO1==,∴高SD=2OO1=,∵△ABC是边长为1的正三角形,∴S△ABC=,∴V三棱锥S﹣ABC==.故选:C.【点评】本题考查棱锥的体积,考查球内接多面体,解题的关键是确定点S到面ABC的距离.12.(5分)设点P在曲线上,点Q在曲线y=ln(2x)上,则|PQ|最小值为( )A.1﹣ln2B.C.1+ln2D.【考点】4R:反函数;IT:点到直线的距离公式.【专题】5D:圆锥曲线的定义、性质与方程.【分析】由于函数与函数y=ln(2x)互为反函数,图象关于y=x对称,要求|PQ|的最小值,只要求出函数上的点到直线y=x的距离为的最小值,设g(x)=,利用导数可求函数g(x)的单调性,进而可求g(x)的最小值,即可求.【解答】解:∵函数与函数y=ln(2x)互为反函数,图象关于y=x对称,函数上的点到直线y=x的距离为,设g(x)=(x>0),则,由≥0可得x≥ln2,由<0可得0<x<ln2,∴函数g(x)在(0,ln2)单调递减,在[ln2,+∞)单调递增,∴当x=ln2时,函数g(x)min=1﹣ln2,,由图象关于y=x对称得:|PQ|最小值为.故选:B.【点评】本题主要考查了点到直线的距离公式的应用,注意本题解法中的转化思想的应用,根据互为反函数的对称性把所求的点点距离转化为点线距离,构造很好二.填空题:本大题共4小题,每小题5分.13.(5分)已知向量夹角为45°,且,则= 3 .【考点】9O:平面向量数量积的性质及其运算;9S:数量积表示两个向量的夹角.【专题】11:计算题;16:压轴题.【分析】由已知可得,=,代入|2|====可求【解答】解:∵,=1∴=∴|2|====解得故答案为:3【点评】本题主要考查了向量的数量积定义的应用,向量的数量积性质||=是求解向量的模常用的方法14.(5分)设x,y满足约束条件:;则z=x﹣2y的取值范围为 .【考点】7C:简单线性规划.【专题】11:计算题.【分析】先作出不等式组表示的平面区域,由z=x﹣2y可得,y=,则﹣表示直线x﹣2y﹣z=0在y轴上的截距,截距越大,z越小,结合函数的图形可求z的最大与最小值,从而可求z的范围【解答】解:作出不等式组表示的平面区域由z=x﹣2y可得,y=,则﹣表示直线x﹣2y﹣z=0在y轴上的截距,截距越大,z越小结合函数的图形可知,当直线x﹣2y﹣z=0平移到B时,截距最大,z最小;当直线x﹣2y﹣z=0平移到A时,截距最小,z最大由可得B(1,2),由可得A(3,0)∴Z max=3,Z min=﹣3则z=x﹣2y∈[﹣3,3]故答案为:[﹣3,3]【点评】平面区域的范围问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,分析表达式的几何意义,然后结合数形结合的思想,分析图形,找出满足条件的点的坐标,即可求出答案.15.(5分)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为 .【考点】CP:正态分布曲线的特点及曲线所表示的意义.【专题】11:计算题;16:压轴题.【分析】先根据正态分布的意义,知三个电子元件的使用寿命超过1000小时的概率为,而所求事件“该部件的使用寿命超过1000小时”当且仅当“超过1000小时时,元件1、元件2至少有一个正常”和“超过1000小时时,元件3正常”同时发生,由于其为独立事件,故分别求其概率再相乘即可【解答】解:三个电子元件的使用寿命均服从正态分布N(1000,502)得:三个电子元件的使用寿命超过1000小时的概率为设A={超过1000小时时,元件1、元件2至少有一个正常},B={超过1000小时时,元件3正常}C={该部件的使用寿命超过1000小时}则P(A)=,P(B)=P(C)=P(AB)=P(A)P(B)=×=故答案为【点评】本题主要考查了正态分布的意义,独立事件同时发生的概率运算,对立事件的概率运算等基础知识,属基础题16.(5分)数列{a n}满足a n+1+(﹣1)n a n=2n﹣1,则{a n}的前60项和为 1830 .【考点】8E:数列的求和;8H:数列递推式.【专题】11:计算题;35:转化思想;4M:构造法;54:等差数列与等比数列.【分析】由题意可得a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a50﹣a49=97,变形可得a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a9+a7=2,a12+a10=40,a13+a15=2,a16+a14=56,…利用数列的结构特征,求出{a n}的前60项和【解答】解:∵a n+1+(﹣1)n a n=2n﹣1,故有a2﹣a1=1,a3+a2=3,a4﹣a3=5,a5+a4=7,a6﹣a5=9,a7+a6=11,…a50﹣a49=97.从而可得a3+a1=2,a4+a2=8,a7+a5=2,a8+a6=24,a9+a11=2,a12+a10=40,a13+a11=2,a16+a14=56,…从第一项开始,依次取2个相邻奇数项的和都等于2,从第二项开始,依次取2个相邻偶数项的和构成以8为首项,以16为公差的等差数列.{a n}的前60项和为15×2+(15×8+)=1830【点评】本题考查数列递推式,训练了利用构造等差数列求数列的前n项和,属中档题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,acosC+ asinC﹣b﹣c=0(1)求A;(2)若a=2,△ABC的面积为;求b,c.【考点】HP:正弦定理.【专题】33:函数思想;4R:转化法;58:解三角形.【分析】(1)已知等式利用正弦定理化简,整理后得到sin(A﹣30°)=.即可求出A的值;(2)若a=2,由△ABC的面积为,求得bc=4.①,再利用余弦定理可得b+c=4.②,结合①②求得b和c的值.【解答】解:(1)由正弦定理得:acosC+asinC﹣b﹣c=0,即sinAcosC+sinAsinC=sinB+sinC∴sinAcosC+sinAsinC=sin(A+C)+sinC,即sinA﹣cosA=1∴sin(A﹣30°)=.∴A﹣30°=30°∴A=60°;(2)若a=2,△ABC的面积=,∴bc=4.①再利用余弦定理可得:a2=b2+c2﹣2bc•cosA=(b+c)2﹣2bc﹣bc=(b+c)2﹣3×4=4,∴b+c=4.②结合①②求得b=c=2.【点评】本题考查了正弦定理及余弦定理的应用,考查了三角形面积公式的应用,是中档题.18.(12分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得如表:日需求量n14151617181920频数10201616151310以100天记录的各需求量的频率作为各需求量发生的概率.(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差;(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.【考点】CH:离散型随机变量的期望与方差;CS:概率的应用.【专题】15:综合题.【分析】(1)根据卖出一枝可得利润5元,卖不出一枝可得赔本5元,即可建立分段函数;(2)(i)X可取60,70,80,计算相应的概率,即可得到X的分布列,数学期望及方差;(ii)求出进17枝时当天的利润,与购进16枝玫瑰花时当天的利润比较,即可得到结论.【解答】解:(1)当n≥16时,y=16×(10﹣5)=80;当n≤15时,y=5n﹣5(16﹣n)=10n﹣80,得:(2)(i)X可取60,70,80,当日需求量n=14时,X=60,n=15时,X=70,其他情况X=80,P(X=60)===0.1,P(X=70)=0.2,P(X=80)=1﹣0.1﹣0.2=0.7,X的分布列为X607080P0.10.20.7EX=60×0.1+70×0.2+80×0.7=76DX=162×0.1+62×0.2+42×0.7=44(ii)购进17枝时,当天的利润的期望为y=(14×5﹣3×5)×0.1+(15×5﹣2×5)×0.2+(16×5﹣1×5)×0.16+17×5×0.54=76.4∵76.4>76,∴应购进17枝【点评】本题考查分段函数模型的建立,考查离散型随机变量的期望与方差,考查学生利用数学知识解决实际问题的能力.19.(12分)如图,直三棱柱ABC﹣A1B1C1中,AC=BC=AA1,D是棱AA1的中点,DC1⊥BD(1)证明:DC1⊥BC;(2)求二面角A1﹣BD﹣C1的大小.【考点】LO:空间中直线与直线之间的位置关系;MJ:二面角的平面角及求法.【专题】15:综合题.【分析】(1)证明DC1⊥BC,只需证明DC1⊥面BCD,即证明DC1⊥DC,DC1⊥BD ;(2)证明BC⊥面ACC1A1,可得BC⊥AC取A1B1的中点O,过点O作OH⊥BD于点H,连接C1O,C1H,可得点H与点D重合且∠C1DO是二面角A1﹣BD﹣C1的平面角,由此可求二面角A1﹣BD﹣C1的大小.【解答】(1)证明:在Rt△DAC中,AD=AC,∴∠ADC=45°同理:∠A1DC1=45°,∴∠CDC1=90°∴DC1⊥DC,DC1⊥BD∵DC∩BD=D∴DC1⊥面BCD∵BC⊂面BCD∴DC1⊥BC(2)解:∵DC1⊥BC,CC1⊥BC,DC1∩CC1=C1,∴BC⊥面ACC1A1,∵AC⊂面ACC1A1,∴BC⊥AC取A1B1的中点O,过点O作OH⊥BD于点H,连接C1O,OH∵A1C1=B1C1,∴C1O⊥A1B1,∵面A1B1C1⊥面A1BD,面A1B1C1∩面A1BD=A1B1,∴C1O⊥面A1BD而BD⊂面A1BD∴BD⊥C1O,∵OH⊥BD,C1O∩OH=O,∴BD⊥面C1OH∴C1H⊥BD,∴点H与点D重合且∠C1DO是二面角A1﹣BD﹣C1的平面角设AC=a,则,,∴sin∠C1DO=∴∠C1DO=30°即二面角A1﹣BD﹣C1的大小为30°【点评】本题考查线面垂直,考查面面角,解题的关键是掌握线面垂直的判定,正确作出面面角,属于中档题.20.(12分)设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F为圆心,FA为半径的圆F交l于B,D两点;(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.【考点】J1:圆的标准方程;K8:抛物线的性质;KI:圆锥曲线的综合.【专题】15:综合题;16:压轴题.【分析】(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离,由△ABD的面积S△ABD=,知=,由此能求出圆F的方程.(2)由对称性设,则点A,B关于点F对称得:,得:,由此能求出坐标原点到m,n距离的比值.【解答】解:(1)由对称性知:△BFD是等腰直角△,斜边|BD|=2p点A到准线l的距离,∵△ABD的面积S△ABD=,∴=,解得p=2,所以F坐标为(0,1),∴圆F的方程为x2+(y﹣1)2=8.(2)由题设,则,∵A,B,F三点在同一直线m上,又AB为圆F的直径,故A,B关于点F对称.由点A,B关于点F对称得:得:,直线,切点直线坐标原点到m,n距离的比值为.【点评】本题考查抛物线与直线的位置关系的综合应用,具体涉及到抛物线的简单性质、圆的性质、导数的应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.21.(12分)已知函数f(x)满足f(x)=f′(1)e x﹣1﹣f(0)x+x2;(1)求f(x)的解析式及单调区间;(2)若,求(a+1)b的最大值.【考点】6B:利用导数研究函数的单调性;6E:利用导数研究函数的最值.【专题】15:综合题;16:压轴题;2A:探究型;35:转化思想.【分析】(1)对函数f(x)求导,再令自变量为1,求出f′(1)得到函数的解析式及导数,再由导数求函数的单调区间;(2)由题意,借助导数求出新函数的最小值,令其大于0即可得到参数a,b 所满足的关系式,再研究(a+1)b 的最大值【解答】解:(1)f(x)=f'(1)e x﹣1﹣f(0)x+⇒f'(x)=f'(1)e x﹣1﹣f(0)+x令x=1得:f(0)=1∴f(x)=f'(1)e x﹣1﹣x+令x=0,得f(0)=f'(1)e﹣1=1解得f'(1)=e故函数的解析式为f(x)=e x﹣x+令g(x)=f'(x)=e x﹣1+x∴g'(x)=e x+1>0,由此知y=g(x)在x∈R上单调递增当x>0时,f'(x)>f'(0)=0;当x<0时,有f'(x)<f'(0)=0得:函数f(x)=e x﹣x+的单调递增区间为(0,+∞),单调递减区间为(﹣∞,0)(2)f(x)≥﹣(a+1)x﹣b≥0得h′(x)=e x﹣(a+1)①当a+1≤0时,h′(x)>0⇒y=h(x)在x∈R上单调递增,x→﹣∞时,h(x)→﹣∞与h(x)≥0矛盾②当a+1>0时,h′(x)>0⇔x>ln(a+1),h'(x)<0⇔x<ln(a+1)得:当x=ln(a+1)时,h(x)min=(a+1)﹣(a+1)ln(a+1)﹣b≥0,即(a+1)﹣(a+1)ln(a+1)≥b∴(a+1)b≤(a+1)2﹣(a+1)2ln(a+1),(a+1>0)令F(x)=x2﹣x2lnx(x>0),则F'(x)=x(1﹣2lnx)∴F'(x)>0⇔0<x<当x=时,F(x)max=即当a=时,(a+1)b的最大值为【点评】本题考查导数在最值问题中的应用及利用导数研究函数的单调性,解题的关键是第一题中要赋值求出f′(1),易因为没有将f′(1)看作常数而出错,第二题中将不等式恒成立研究参数关系的问题转化为最小值问题,本题考查了转化的思想,考查判断推理能力,是高考中的热点题型,计算量大,易马虎出错.四、请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22.(10分)如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.【考点】N4:相似三角形的判定.【专题】14:证明题.【分析】(1)根据D,E分别为△ABC边AB,AC的中点,可得DE∥BC,证明四边形ADCF是平行四边形,即可得到结论;(2)证明两组对应角相等,即可证得△BCD~△GBD.【解答】证明:(1)∵D,E分别为△ABC边AB,AC的中点∴DF∥BC,AD=DB∵AB∥CF,∴四边形BDFC是平行四边形∴CF∥BD,CF=BD∴CF∥AD,CF=AD∴四边形ADCF是平行四边形∴AF=CD∵,∴BC=AF,∴CD=BC.(2)由(1)知,所以.所以∠BGD=∠DBC.因为GF∥BC,所以∠BDG=∠ADF=∠DBC=∠BDC.所以△BCD~△GBD.【点评】本题考查几何证明选讲,考查平行四边形的证明,考查三角形的相似,属于基础题.23.选修4﹣4;坐标系与参数方程已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,).(1)求点A,B,C,D的直角坐标;(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.【考点】Q4:简单曲线的极坐标方程;Q8:点的极坐标和直角坐标的互化;QL:椭圆的参数方程.【专题】15:综合题;16:压轴题.【分析】(1)确定点A,B,C,D的极坐标,即可得点A,B,C,D的直角坐标;(2)利用参数方程设出P的坐标,借助于三角函数,即可求得|PA|2+|PB|2+|PC|2+|PD|2的取值范围.【解答】解:(1)点A,B,C,D的极坐标为点A,B,C,D的直角坐标为(2)设P(x0,y0),则为参数)t=|PA|2+|PB|2+|PC|2+|PD|2=4x2+4y2+16=32+20sin2φ∵sin2φ∈[0,1]∴t∈[32,52]【点评】本题考查极坐标与直角坐标的互化,考查圆的参数方程的运用,属于中档题.24.已知函数f(x)=|x+a|+|x﹣2|①当a=﹣3时,求不等式f(x)≥3的解集;②f(x)≤|x﹣4|若的解集包含[1,2],求a的取值范围.【考点】R5:绝对值不等式的解法.【专题】17:选作题;59:不等式的解法及应用;5T:不等式.【分析】①不等式等价于,或,或,求出每个不等式组的解集,再取并集即得所求.②原命题等价于﹣2﹣x≤a≤2﹣x在[1,2]上恒成立,由此求得求a的取值范围.【解答】解:(1)当a=﹣3时,f(x)≥3 即|x﹣3|+|x﹣2|≥3,即,可得x≤1;,可得x∈∅;,可得x≥4.取并集可得不等式的解集为{x|x≤1或x≥4}.(2)原命题即f(x)≤|x﹣4|在[1,2]上恒成立,等价于|x+a|+2﹣x≤4﹣x在[1,2]上恒成立,等价于|x+a|≤2,等价于﹣2≤x+a≤2,﹣2﹣x≤a≤2﹣x在[1,2]上恒成立.故当1≤x≤2时,﹣2﹣x的最大值为﹣2﹣1=﹣3,2﹣x的最小值为0,故a的取值范围为[﹣3,0].【点评】本题主要考查绝对值不等式的解法,关键是去掉绝对值,化为与之等价的不等式组来解,体现了分类讨论的数学思想,属于中档题.。
2012年高考数学 05 三角函数试题解析 教师版 文
2012年高考试题解析数学(文科)分项版之专题05 三角函数--教师版一、选择题:1.(2012年高考某某卷文科5)设命题p :函数sin 2y x =的最小正周期为2π;命题q :函数cos y x =的图象关于直线2x π=对称.则下列判断正确的是(A)p 为真 (B)q ⌝为假 (C)p q ∧为假 (D)p q ∨为真2.(2012年高考某某卷文科8)函数2sin (09)63x y x ππ⎛⎫=-≤≤ ⎪⎝⎭的最大值与最小值之和为(A)23- (B)0 (C)-1 (D)13--3.(2012年高考某某卷文科6)已知sin cos 2αα-=α∈(0,π),则sin 2α=(A) -1 (B) 22- (C)22(D) 1 【答案】A 【解析】2sin cos 2,(sin cos )2,sin 21,ααααα-=∴-=∴=-故选A【考点定位】本题主要考查三角函数中的倍角公式以及转化思想和运算求解能力,属于容易题.4. (2012年高考某某卷文科6)在△ABC 中,若∠A =60°,∠B =45°,BC =32AC =A.333325. (2012年高考新课标全国卷文科9)已知ω>0,πϕ<<0,直线4π=x 和45π=x 是函数f (x )=sin(ωx +φ)图像的两条相邻的对称轴,则φ= (A )π4 (B )π3 (C )π2 (D )3π46. (2012年高考某某卷文科6)把函数y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移 1个单位长度,得到的图像是【答案】A【解析】由题意,y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),即解析式为y=cosx+1,向左平移一个单位为y=cos (x-1)+1,向下平移一个单位为y=cos (x-1),利用特殊点,02π⎛⎫⎪⎝⎭变为1,02π⎛⎫- ⎪⎝⎭,选A. 【考点定位】本题主要考查了三角函数中图像的性质,具体考查了在x 轴上的伸缩变换,在x 轴、y 轴上的平移变化,利用特殊点法判断图像的而变换。
2012新题分类汇编:三角函数(高考真题+模拟新题)
三、三角函数(高考真题+模拟新题)课标理数10.C1[2011·江西卷] 如图1,一个直径为1的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M 和N 是小圆的一条固定直径的两个端点.那么,当小圆这样滚过大圆内壁的一周.点M ,N 在大圆内所绘出的图形大致是( )图1图2课标理数10.C1[2011·江西卷] A 【解析】 如图,建立直角坐标系,由题意可知,小圆O 1总与大圆O 相内切,且小圆O 1总经过大圆的圆心O .设某时刻两圆相切于点A ,此时动点M 所处位置为点M ′,则大圆圆弧AM 与小圆圆弧AM ′相等. 以切点A 在劣弧MB 上运动为例,记直线OM 与此时小圆O 1的交点为M 1,记∠AOM =θ,则∠OM 1O 1=∠M 1OO 1=θ,故∠M 1O 1A =∠M 1OO 1+∠OM 1O 1=2θ.大圆圆弧AM 的长为l 1=θ×1=θ,小圆圆弧AM 1的长为l 2=2θ×12=θ,即l 1=l 2,∴小圆的两段圆弧AM ′与AM 1的长相等,故点M 1与点M ′重合,即动点M 在线段MO 上运动,同理可知,此时点N 在线段OB 上运动. 点A 在其他象限类似可得,M 、N 的轨迹为相互垂直的线段. 观察各选项,只有选项A 符合.故选A.课标文数14.C1[2011·江西卷] 已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若P (4,y )是角θ终边上一点,且sin θ=-255,则y =________.课标文数14.C1[2011·江西卷] -8 【解析】 r =x 2+y 2=16+y 2,∵sin θ=-255,∴sin θ=y r =y 16+y 2=-255,解得y =-8.课标理数5.C1,C6[2011·课标全国卷] 已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos2θ=( )A .-45B .-35 C.35 D.45课标理数5.C1,C6[2011·课标全国卷] B 【解析】 解法1:在角θ终边上任取一点P (a,2a )(a ≠0),则r 2=||OP 2=a 2+(2a )2=5a 2,∴cos 2θ=a 25a 2=15,∴cos2θ=2cos 2θ-1=25-1=-35.解法2:tan θ=2a a =2,cos2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=-35.课标文数7.C1,C6[2011·课标全国卷] 已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos2θ=( )A .-45B .-35C.35D.45课标文数7.C1,C6[2011·课标全国卷] B 【解析】 解法1:在角θ终边上任取一点P (a,2a )(a ≠0),则r 2=||OP 2=a 2+(2a )2=5a 2,∴cos 2θ=a 25a 2=15,∴cos2θ=2cos 2θ-1=25-1=-35.解法2:tan θ=2a a =2,cos2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=-35.大纲文数14.C2[2011·全国卷] 已知α∈⎝⎛⎭⎫π,3π2,tan α=2,则cos α=________. 大纲文数14.C2[2011·全国卷] -55【解析】 ∵tan α=2,∴sin α=2cos α,代入sin 2α+cos 2α=1得cos 2α=15,又α∈⎝⎛⎭⎫π,3π2,∴cos α=-55.课标文数9.C2,C6[2011·福建卷] 若α∈⎝⎛⎭⎫0,π2,且sin 2α+cos2α=14,则tan α的值等于( ) A.22 B.33C. 2D. 3 课标文数9.C2,C6[2011·福建卷] D 【解析】 因为sin 2α+cos2α=sin 2α+1-2sin 2α=1-sin 2α=cos 2α,∴cos 2α=14,sin 2α=1-cos 2α=34,∵α∈⎝⎛⎭⎫0,π2, ∴cos α=12,sin α=32,tan α=sin αcos α=3,故选D.大纲文数12.C2[2011·重庆卷] 若cos α=-35,且α∈⎝⎛⎭⎫π,3π2,则tan α=________. 大纲文数12.C2[2011·重庆卷] 43 【解析】 ∵cos α=-35,且α∈⎝⎛⎭⎫π,3π2, ∴sin α=-1-cos 2α=-45,∴tan α=sin αcos α=43.课标理数15.C3,C5[2011·北京卷] 已知函数f (x )=4cos x sin ⎝⎛⎭⎫x +π6-1. (1)求f (x )的最小正周期;[来源:Z,xx,](2)求f (x )在区间⎣⎡⎦⎤-π6,π4上的最大值和最小值. 课标理数15.C3,C5[2011·北京卷] 【解答】 (1)因为f (x )=4cos x sin ⎝⎛⎭⎫x +π6-1 =4cos x ⎝⎛⎭⎫32sin x +12cos x -1=3sin2x +2cos 2x -1 =3sin2x +cos2x=2sin ⎝⎛⎭⎫2x +π6, 所以f (x )的最小正周期为π.(2)因为-π6≤x ≤π4,所以-π6≤2x +π6≤2π3.于是,当2x +π6=π2,即x =π6时,f (x )取得最大值2;当2x +π6=-π6,即x =-π6时,f (x )取得最小值-1.课标文数15.C3,C5[2011·北京卷] 已知函数f (x )=4cos x sin ⎝⎛⎭⎫x +π6-1. (1)求f (x )的最小正周期;[来源:学科网ZXXK](2)求f (x )在区间⎣⎡⎦⎤-π6,π4上的最大值和最小值. 课标文数15.C3,C5[2011·北京卷] 【解答】 (1)因为f (x )=4cos x sin ⎝⎛⎭⎫x +π6-1 =4cos x ⎝⎛⎭⎫32sin x +12cos x -1=3sin2x +2cos 2x -1 =3sin2x +cos2x=2sin ⎝⎛⎭⎫2x +π6. 所以f (x )的最小正周期为π.(2)因为-π6≤x ≤π4,所以-π6≤2x +π6≤2π3.于是,当2x +π6=π2,即x =π6时,f (x )取得最大值2;当2x +π6=-π6,即x =-π6时,f (x )取得最小值-1.课标理数3.C2,C6[2011·福建卷] 若tan α=3,则sin2αcos 2α的值等于( )A .2B .3C .4D .6课标理数3.C2,C6[2011·福建卷] D 【解析】 因为sin2αcos 2α=2sin αcos αcos 2α=2sin αcos α=2tan α=6,故选D.课标理数11.C4,C5[2011·课标全国卷] 设函数f (x )=sin(ωx +φ)+cos(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2的最小正周期为π,且f (-x )=f (x ),则( )A .f (x )在⎝⎛⎭⎫0,π2单调递减 B .f (x )在⎝⎛⎭⎫π4,3π4单调递减C .f (x )在⎝⎛⎭⎫0,π2单调递增D .f (x )在⎝⎛⎭⎫π4,3π4单调递增课标理数11.C4,C5[2011·课标全国卷] A 【解析】 原式可化简为f (x )=2sin ⎝⎛⎭⎫ωx +φ+π4,因为f (x )的最小正周期T =2πω=π,所以ω=2.所以f (x )=2sin ⎝⎛⎭⎫2x +φ+π4, 又因为f (-x )=f (x ),所以函数f (x )为偶函数,所以f (x )=2sin ⎝⎛⎭⎫2x +φ+π4=±2cos2x , 所以φ+π4=π2+k π,k ∈Z ,所以φ=π4+k π,k ∈Z ,又因为||φ<π2,所以φ=π4.所以f (x )=2sin ⎝⎛⎭⎫2x +π2=2cos2x , 所以f (x )=2cos2x 在区间⎝⎛⎭⎫0,π2上单调递减.课标文数12.C3[2011·辽宁卷] 已知函数f (x )=A tan(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2,y =f (x )的部分图象如图1-7,则f ⎝⎛⎭⎫π24=( )图1-7A .2+ 3 B. 3C.33D .2- 3 课标文数12.C3[2011·辽宁卷] B 【解析】 由图象知πω=2×⎝⎛⎭⎫3π8-π8=π2,ω=2.又由于2×π8+φ=k π+π2(k ∈Z ),φ=k π+π4(k ∈Z ),又|φ|<π2,所以φ=π4.这时f (x )=A tan ⎝⎛⎭⎫2x +π4.又图象过(0,1),代入得A =1,故f (x )=tan ⎝⎛⎭⎫2x +π4.所以f ⎝⎛⎭⎫π24=tan ⎝⎛⎭⎫2×π24+π4=3,故选B.课标文数15.C4[2011·安徽卷] 设f (x )=a sin2x +b cos2x ,其中a ,b ∈R ,ab ≠0.若f (x )≤⎪⎪⎪⎪f ⎝⎛⎭⎫π6对一切x ∈R 恒成立,则①f ⎝⎛⎭⎫11π12=0;②⎪⎪⎪⎪f ⎝⎛⎭⎫7π10<⎪⎪⎪⎪f ⎝⎛⎭⎫π5;[来源:学_科_网] ③f (x )既不是奇函数也不是偶函数;④f (x )的单调递增区间是⎣⎡⎦⎤k π+π6,k π+2π3(k ∈Z ). ⑤存在经过点(a ,b )的直线与函数f (x )的图像不相交. 以上结论正确的是________(写出所有正确结论的编号). 课标文数15.C4[2011·安徽卷] 【答案】 ①③【解析】 f (x )=a sin2x +b cos2x =a 2+b 2sin(2x +φ)⎝⎛⎭⎪⎫sin φ=b a 2+b 2,cos φ=a a 2+b 2,因为对一切x∈R 时,f (x )≤⎪⎪⎪⎪f ⎝⎛⎭⎫π6恒成立,所以sin ⎝⎛⎭⎫π3+φ=±1.故φ=2k π+π6或φ=2k π-5π6()k ∈Z .故f (x )=a 2+b 2sin ⎝⎛⎭⎫2x +π6, 或f (x )=-a 2+b 2sin ⎝⎛⎭⎫2x +π6. 对于①,f ⎝⎛⎭⎫11π12=a 2+b 2sin2π=0,或f ⎝⎛⎭⎫11π12=-a 2+b 2sin2π=0,故①正确; 对于②,⎪⎪⎪⎪f ⎝⎛⎭⎫7π10=⎪⎪⎪⎪a 2+b 2sin ⎝⎛⎭⎫7π5+π6=a 2+b 2⎪⎪⎪⎪sin 47π30=a 2+b 2sin 17π30, ⎪⎪⎪⎪f ⎝⎛⎭⎫π5=⎪⎪⎪⎪a 2+b 2sin ⎝⎛⎭⎫2π5+π6=a 2+b 2⎪⎪⎪⎪sin 17π30 =a 2+b 2sin 17π30.所以⎪⎪⎪⎪f ⎝⎛⎭⎫7π10=⎪⎪⎪⎪f ⎝⎛⎭⎫π5,故②错误; 对于③,由解析式f (x )=a 2+b 2sin ⎝⎛⎭⎫2x +π6,或f (x )=-a 2+b 2sin ⎝⎛⎭⎫2x +π6知其既不是奇函数也不是偶函数,故③正确;对于④,当f (x )=a 2+b 2sin ⎝⎛⎭⎫2x +π6时,⎣⎡⎦⎤k π+π6,k π+2π3(k ∈Z )是f (x )的单调递减区间,故④错误; 对于⑤,要使经过点(a ,b )的直线与函数f (x )的图像不相交,则此直线须与横轴平行,且|b |>a 2+b 2,此时平方得b 2>a 2+b 2,这不可能,矛盾,故不存在过点(a ,b )的直线与函数f (x )的图像不相交.故⑤错.课标理数9.C4[2011·安徽卷] 已知函数f (x )=sin(2x +φ),其中φ为实数,若f (x )≤⎪⎪⎪⎪f ⎝⎛⎭⎫π6对x ∈R 恒成立,且f ⎝⎛⎭⎫π2>f (π),则f (x )的单调递增区间是( )A.⎣⎡⎦⎤k π-π3,k π+π6(k ∈Z ) B.⎣⎡⎦⎤k π,k π+π2(k ∈Z ) C.⎣⎡⎦⎤k π+π6,k π+2π3(k ∈Z ) D.⎣⎡⎦⎤k π-π2,k π(k ∈Z ) 课标理数9.C4[2011·安徽卷] C 【解析】 对x ∈R 时,f (x )≤⎪⎪⎪⎪f ⎝⎛⎭⎫π6恒成立,所以f ⎝⎛⎭⎫π6=sin ⎝⎛⎭⎫π3+φ=±1,可得φ=2k π+π6或φ=2k π-5π6,k ∈Z .因为f ⎝⎛⎭⎫π2=sin(π+φ)=-sin φ>f (π)=sin(2π+φ)=sin φ,故sin φ<0.所以φ=2k π-5π6,所以f (x )=sin ⎝⎛⎭⎫2x -5π6. 由-π2+2k π≤2x -5π6≤π2+2k π,得函数f (x )的单调递增区间为⎣⎡⎦⎤k π+π6,k π+2π3(k ∈Z ),答案为C.大纲理数5.C4[2011·全国卷] 设函数f (x )=cos ωx (ω>0),将y =f (x )的图像向右平移π3个单位长度后,所得的图像与原图像重合,则ω的最小值等于( )A.13B .3 [来源:学|科|网]C .6D .9大纲理数5.C4[2011·全国卷] C 【解析】 将y =f (x )的图像向右平移π3个单位长度后得到的图像与原图像重合,则π3=2πωk ,k ∈Z ,得ω=6k ,k ∈Z ,又ω>0,则ω的最小值等于6,故选C.大纲文数7.C4[2011·全国卷] 设函数f (x )=cos ωx (ω>0),将y =f (x )的图像向右平移π3个单位长度后,所得的图像与原图像重合,则ω的最小值等于( )A.13B .3C .6D .9 大纲文数7.C4[2011·全国卷] C 【解析】 将y =f (x )的图像向右平移π3个单位长度后得到的图像与原图像重合,则π3=2πωk ,k ∈Z ,得ω=6k ,k ∈Z ,又ω>0,则ω的最小值等于6,故选C.课标理数16.D3,C4[2011·福建卷] 已知等比数列{a n }的公比q =3,前3项和S 3=133.(1)求数列{a n }的通项公式;(2)若函数f (x )=A sin(2x +φ)(A >0,0<φ<π)在x =π6处取得最大值,且最大值为a 3,求函数f (x )的解析式.课标数学16.D3,C4[2011·福建卷] 【解答】 (1)由q =3,S 3=133得a 1(1-33)1-3=133,解得a 1=13.所以a n =13×3n -1=3n -2.(2)由(1)可知a n =3n -2,所以a 3=3.因为函数f (x )的最大值为3,所以A =3;因为当x =π6时f (x )取得最大值,所以sin ⎝⎛⎭⎫2×π6+φ=1. 又0<φ<π,故φ=π6.所以函数f (x )的解析式为f (x )=3sin ⎝⎛⎭⎫2x +π6.课标理数3.C4[2011·湖北卷] 已知函数f (x )=3sin x -cos x ,x ∈R ,若f (x )≥1,则x 的取值范围为( ) A.⎩⎨⎧⎭⎬⎫x ⎪⎪k π+π3≤x ≤k π+π,k ∈Z B.⎩⎨⎧⎭⎬⎫x ⎪⎪2k π+π3≤x ≤2k π+π,k ∈Z C.⎩⎨⎧⎭⎬⎫x ⎪⎪k π+π6≤x ≤k π+5π6,k ∈ZD.⎩⎨⎧⎭⎬⎫x ⎪⎪2k π+π6≤x ≤2k π+5π6,k ∈Z 课标理数3.C4[2011·湖北卷] B 【解析】 因为f (x )=3sin x -cos x =2sin x -π6,由f (x )≥1,得2sin x -π6≥1,即sin x -π6≥12,所以π6+2k π≤x -π6≤5π6+2k π,k ∈Z ,解得π3+2k π≤x ≤π+2k π,k ∈Z .课标文数6.C4[2011·湖北卷] 已知函数f (x )=3sin x -cos x ,x ∈R .若f (x )≥1,则x 的取值范围为( ) A.⎩⎨⎧⎭⎬⎫x ⎪⎪ 2k π+π3≤x ≤2k π+π,k ∈Z B.⎩⎨⎧⎭⎬⎫x ⎪⎪ k π+π3≤x ≤k π+π,k ∈Z C.⎩⎨⎧⎭⎬⎫x ⎪⎪ 2k π+π6≤x ≤2k π+5π6,k ∈Z D.⎩⎨⎧⎭⎬⎫x ⎪⎪k π+π6≤x ≤k π+5π6,k ∈Z 课标文数6.C4[2011·湖北卷] A 【解析】 因为f (x )=3sin x -cos x =2sin x -π6,由f (x )≥1,得2sin x -π6≥1,即sin x -π6≥12,所以π6+2k π≤x -π6≤5π6+2k π,k ∈Z ,解得π3+2k π≤x ≤π+2k π,k ∈Z .课标理数17.C8,C4[2011·湖南卷] 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足c sin A =a cos C .(1)求角C 的大小;(2)求3sin A -cos ⎝⎛⎭⎫B +π4的最大值,并求取得最大值时角A ,B 的大小. 课标理数17.C8,C4[2011·湖南卷] 【解答】 (1)由正弦定理得sin C sin A =sin A cos C . 因为0<A <π,所以sin A >0. 从而sin C =cos C .又cos C ≠0,所以tan C =1,则C =π4.(2)由(1)知,B =3π4-A ,于是3sin A -cos ⎝⎛⎭⎫B +π4=3sin A -cos(π-A ) =3sin A +cos A =2sin ⎝⎛⎭⎫A +π6. 因为0<A <3π4,所以π6<A +π6<11π12.从而当A +π6=π2,即A =π3时,2sin ⎝⎛⎭⎫A +π6取最大值2. 综上所述,3sin A -cos ⎝⎛⎭⎫B +π4的最大值为2,此时A =π3,B =5π12.课标文数17.C8,C4[2011·湖南卷] 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足c sin A =a cos C .(1)求角C 的大小;(2)求3sin A -cos ⎝⎛⎫B +π4的最大值,并求取得最大值时角A ,B 的大小. 课标文数17.C8,C4[2011·湖南卷] 【解答】 (1)由正弦定理得sin C sin A =sin A cos C . 因为0<A <π,所以sin A >0. 从而sin C =cos C .又cos C ≠0,所以tan C =1,则C =π4.(2)由(1)知,B =3π4-A ,于是3sin A -cos ⎝⎛⎭⎫B +π4=3sin A -cos(π-A )=3sin A +cos A =2sin ⎝⎛⎭⎫A +π6. 因为0<A <3π4,所以π6<A +π6<11π12.从而当A +π6=π2,即A =π3时,2sin ⎝⎛⎭⎫A +π6取最大值2. 综上所述,3sin A -cos ⎝⎛⎭⎫B +π4的最大值为2,此时A =π3,B =5π12.课标理数11.C4,C5[2011·课标全国卷] 设函数f (x )=sin(ωx +φ)+cos(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2的最小正周期为π,且f (-x )=f (x ),则( )A .f (x )在⎝⎛⎭⎫0,π2单调递减 B .f (x )在⎝⎛⎭⎫π4,3π4单调递减C .f (x )在⎝⎛⎭⎫0,π2单调递增 D .f (x )在⎝⎛⎭⎫π4,3π4单调递增课标理数11.C4,C5[2011·课标全国卷] A 【解析】 原式可化简为f (x )=2sin ⎝⎛⎭⎫ωx +φ+π4,因为f (x )的最小正周期T =2πω=π,所以ω=2.所以f (x )=2sin ⎝⎛⎭⎫2x +φ+π4, 又因为f (-x )=f (x ),所以函数f (x )为偶函数,所以f (x )=2sin ⎝⎛⎭⎫2x +φ+π4=±2cos2x , 所以φ+π4=π2+k π,k ∈Z ,所以φ=π4+k π,k ∈Z ,又因为||φ<π2,所以φ=π4.所以f (x )=2sin ⎝⎛⎭⎫2x +π2=2cos2x , 所以f (x )=2cos2x 在区间⎝⎛⎭⎫0,π2上单调递减.课标文数11.C4,C5[2011·课标全国卷] 设函数f (x )=sin ⎝⎛⎭⎫2x +π4+cos ⎝⎛⎭⎫2x +π4,则( ) A .y =f (x )在⎝⎛⎭⎫0,π2单调递增,其图像关于直线x =π4对称 B .y =f (x )在⎝⎛⎭⎫0,π2单调递增,其图像关于直线x =π2对称 C .y =f (x )在⎝⎛⎭⎫0,π2单调递减,其图像关于直线x =π4对称 D .y =f (x )在⎝⎛⎭⎫0,π2单调递减,其图像关于直线x =π2对称 课标文数11.C4,C5[2011·课标全国卷] D 【解析】 f (x )=2sin ⎝⎛⎭⎫2x +π4+π4=2sin ⎝⎛⎭⎫2x +π2=2cos2x , 所以y =f (x )在⎝⎛⎭⎫0,π2内单调递减, 又f ⎝⎛⎭⎫π2=2cosπ=-2,是最小值.所以函数y =f (x )的图像关于直线x =π2对称.课标理数6.C4[2011·山东卷] 若函数f (x )=sin ωx (ω>0)在区间⎣⎡⎦⎤0,π3上单调递增,在区间⎣⎡⎦⎤π3,π2上单调递减,则ω=( )A .3B .2 C.32 D.23课标理数6.C4[2011·山东卷] C 【解析】 本题考查三角函数的单调性.因为当0≤ωx ≤π2时,函数f (x )是增函数,当π2≤ωx ≤π时,函数f (x )为减函数,即当0≤x ≤π2ω时函数f (x )为增函数,当π2ω≤x ≤πω时,函数f (x )为减函数,所以π2ω=π3,所以ω=32.课标文数6.C4[2011·山东卷] 若函数f (x )=sin ωx (ω>0)在区间⎣⎡⎦⎤0,π3上单调递增,在区间⎣⎡⎦⎤π3,π2上单调递减,则ω=( )A.23B.32C .2D .3 课标文数6.C4[2011·山东卷] B 【解析】 本题考查三角函数的单调性.因为当0≤ωx ≤π2时,函数f (x )为增函数,当π2≤ωx ≤π时,函数f (x )为减函数,即当0≤x ≤π2ω时,函数f (x )为增函数,当π2ω≤x ≤πω时,函数f (x )为减函数,所以π2ω=π3,所以ω=32.课标数学9.C4[2011·江苏卷] 函数f (x )=A sin(ωx +φ)(A ,ω,φ为常数,A >0,ω>0)的部分图象如图1-1所示,则f (0)的值是________.图1-1课标数学9.C4[2011·江苏卷]62【解析】 由图象可得A =2,周期为4×⎝⎛⎭⎫7π12-π3=π,所以ω=2,将⎝⎛⎭⎫7π12,-2代入得2×7π12+φ=2k π+32π,即φ=2k π+π3,所以f (0)=2sin φ=2sin π3=62.课标文数7.C4[2011·天津卷] 已知函数f (x )=2sin(ωx +φ),x ∈R ,其中ω>0,-π<φ≤π.若f (x )的最小正周期为6π,且当x =π2时,f (x )取得最大值,则( )A .f (x )在区间[-2π,0]上是增函数B .f (x )在区间[-3π,-π]上是增函数C .f (x )在区间[3π,5π]上是减函数D .f (x )在区间[4π,6π]上是减函数课标文数7.C4[2011·天津卷] A 【解析】 ∵2πω=6π,∴ω=13.又∵13×π2+φ=2k π+π2,k ∈Z 且-π<φ≤π,∴当k =0时,φ=π3,f (x )=2sin ⎝⎛⎭⎫13x +π3,要使f (x )递增,须有2k π-π2≤13x +π3≤2k π+π2,k ∈Z ,解之得6k π-5π2≤x ≤6k π+π2,k ∈Z ,当k =0时,-52π≤x ≤π2,∴f (x )在⎣⎡⎦⎤-52π,π2上递增.课标文数18.C4[2011·浙江卷] 【解答】 (1)由题意得,T =2ππ3=6.因为P (1,A )在y =A sin ⎝⎛⎭⎫π3x +φ的图象上,所以sin ⎝⎛⎭⎫π3+φ=1, 又因为0<φ<π2,所以φ=π6.(2)设点Q 的坐标为(x 0,-A ).由题意可知π3x 0+π6=3π2,得x 0=4,所以Q (4,-A ).连接PQ ,在△PRQ 中,∠PRQ =2π3,由余弦定理得cos ∠PRQ =RP 2+RQ 2-PQ 22RP ·RQ =A 2+9+A 2-(9+4A 2)2A ·9+A 2=-12,解得A 2=3,又A >0,所以A = 3.课标理数15.C3,C5[2011·北京卷] 已知函数f (x )=4cos x sin ⎝⎛⎭⎫x +π6-1. (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤-π6,π4上的最大值和最小值. 课标理数15.C3,C5[2011·北京卷] 【解答】 (1)因为f (x )=4cos x sin ⎝⎛⎭⎫x +π6-1 =4cos x ⎝⎛⎭⎫32sin x +12cos x -1=3sin2x +2cos 2x -1 =3sin2x +cos2x=2sin ⎝⎛⎭⎫2x +π6, 所以f (x )的最小正周期为π.(2)因为-π6≤x ≤π4,所以-π6≤2x +π6≤2π3.于是,当2x +π6=π2,即x =π6时,f (x )取得最大值2;当2x +π6=-π6,即x =-π6时,f (x )取得最小值-1.课标文数15.C3,C5[2011·北京卷] 已知函数f (x )=4cos x sin ⎝⎛⎭⎫x +π6-1. (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤-π6,π4上的最大值和最小值. 课标文数15.C3,C5[2011·北京卷] 【解答】 (1)因为f (x )=4cos x sin ⎝⎛⎭⎫x +π6-1 =4cos x ⎝⎛⎭⎫32sin x +12cos x -1=3sin2x +2cos 2x -1 =3sin2x +cos2x=2sin ⎝⎛⎭⎫2x +π6. 所以f (x )的最小正周期为π.(2)因为-π6≤x ≤π4,所以-π6≤2x +π6≤2π3.于是,当2x +π6=π2,即x =π6时,f (x )取得最大值2;当2x +π6=-π6,即x =-π6时,f (x )取得最小值-1.大纲理数17. C5,C8[2011·全国卷] △ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知A -C =90°,a +c =2b ,求C .大纲理数17.C5,C8[2011·全国卷] 【解答】 由a +c =2b 及正弦定理可得 sin A +sin C =2sin B . 又由于A -C =90°,B =180°-(A +C ),故 cos C +sin C =2sin(A +C ) =2sin(90°+2C ) =2cos2C .故22cos C +22sin C =cos2C , cos(45°-C )=cos2C . 因为0°<C <90°, 所以2C =45°-C ,C =15°.课标理数16.C5,C8[2011·课标全国卷] 在△ABC 中,B =60°,AC =3,则AB +2BC 的最大值为________.课标理数16.C5,C8[2011·课标全国卷] 27 【解析】 因为B =60°,A +B +C =180°,所以A +C =120°,由正弦定理,有 AB sin C =BC sin A =AC sin B =3sin60°=2, 所以AB =2sin C ,BC =2sin A .所以AB +2BC =2sin C +4sin A =2sin(120°-A )+4sin A =2(sin120°cos A -cos120°sin A )+4sin A =3cos A +5sin A=27sin(A +φ),(其中sin φ=327,cos φ=527)所以AB +2BC 的最大值为27.课标文数11.C4,C5[2011·课标全国卷] 设函数f (x )=sin ⎝⎛⎭⎫2x +π4+cos ⎝⎛⎭⎫2x +π4,则( ) A .y =f (x )在⎝⎛⎭⎫0,π2单调递增,其图像关于直线x =π4对称 B .y =f (x )在⎝⎛⎭⎫0,π2单调递增,其图像关于直线x =π2对称 C .y =f (x )在⎝⎛⎭⎫0,π2单调递减,其图像关于直线x =π4对称 D .y =f (x )在⎝⎛⎭⎫0,π2单调递减,其图像关于直线x =π2对称 课标文数11.C4,C5[2011·课标全国卷] D 【解析】 f (x )=2sin ⎝⎛⎭⎫2x +π4+π4=2sin ⎝⎛⎭⎫2x +π2=2cos2x , 所以y =f (x )在⎝⎛⎭⎫0,π2内单调递减, 又f ⎝⎛⎭⎫π2=2cosπ=-2,是最小值.所以函数y =f (x )的图像关于直线x =π2对称.课标数学15.C5,C7[2011·江苏卷] 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若sin ⎝⎛⎭⎫A +π6=2cos A, 求A 的值; (2)若cos A =13,b =3c ,求sin C 的值.课标数学15.C5,C7[2011·江苏卷] 本题主要考查三角函数的基本关系式、两角和的正弦公式、解三角形,考查运算求解能力.【解答】 (1)由题设知sin A cos π6+cos A sin π6=2cos A .从而sin A =3cos A ,所以cos A ≠0,tan A =3,因为0<A <π,所以A =π3.(2)由cos A =13,b =3c 及a 2=b 2+c 2-2bc cos A ,得a 2=b 2-c 2.故△ABC 是直角三角形,且B =π2,所以sin C =cos A =13.课标理数6.C5[2011·浙江卷] 若0<α<π2,-π2<β<0,cos π4+α=13,cos π4-β2=33,则cos α+β2=( )A.33 B .-33 C.539 D .-69 课标理数6.C5[2011·浙江卷] C【解析】 ∵cos ⎝⎛⎭⎫π4+α=13,0<α<π2,∴sin ⎝⎛⎭⎫π4+α=233.又∵cos ⎝⎛⎭⎫π4-β2=33,-π2<β<0, ∴sin ⎝⎛⎭⎫π4-β2=63,∴cos ⎝⎛⎭⎫α+β2= cos ⎣⎡⎦⎤⎝⎛⎭⎫π4+α-⎝⎛⎭⎫π4-β2=cos ⎝⎛⎭⎫π4+αcos ⎝⎛⎭⎫π4-β2+sin ⎝⎛⎭⎫π4+αsin ⎝⎛⎭⎫π4-β2=13×33+223×63=539.大纲理数14.C6[2011·全国卷] 已知α∈⎝⎛⎭⎫π2,π,sin α=55,则tan2α=________. 大纲理数14.C6[2011·全国卷] -43 【解析】 ∵sin α=55,α∈⎝⎛⎭⎫π2,π,∴cos α=-255,则tan α=-12,tan2α=2tan α1-tan 2α=2×⎝⎛⎭⎫-121-⎝⎛⎭⎫-122=-43.课标理数3.C2,C6[2011·福建卷] 若tan α=3,则sin2αcos 2α的值等于( )A .2B .3C .4D .6课标理数3.C2,C6[2011·福建卷] D 【解析】 因为sin2αcos 2α=2sin αcos αcos 2α=2sin αcos α=2tan α=6,故选D.课标文数9.C2,C6[2011·福建卷] 若α∈⎝⎛⎭⎫0,π2,且sin 2α+cos2α=14,则tan α的值等于( ) A.22 B.33C. 2D. 3 课标文数9.C2,C6[2011·福建卷] D 【解析】 因为sin 2α+cos2α=sin 2α+1-2sin 2α=1-sin 2α=cos 2α,∴cos 2α=14,sin 2α=1-cos 2α=34,∵α∈⎝⎛⎭⎫0,π2, ∴cos α=12,sin α=32,tan α=sin αcos α=3,故选D.课标理数5.C1,C6[2011·课标全国卷] 已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos2θ=( )A .-45B .-35 C.35 D.45课标理数5.C1,C6[2011·课标全国卷] B 【解析】 解法1:在角θ终边上任取一点P (a,2a )(a ≠0),则r 2=||OP 2=a 2+(2a )2=5a 2,∴cos 2θ=a 25a 2=15,∴cos2θ=2cos 2θ-1=25-1=-35.解法2:tan θ=2a a =2,cos2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=-35.课标理数7.C6[2011·辽宁卷] 设sin ⎝⎛⎭⎫π4+θ=13,则sin2θ=( )A .-79B .-19 C.19 D.79课标理数7.C6[2011·辽宁卷] A 【解析】 sin2θ=-cos ⎝⎛⎭⎫π2+2θ=-⎣⎡⎦⎤1-2sin 2⎝⎛⎭⎫π4+θ.由于sin ⎝⎛⎭⎫π4+θ=13,代入得sin2θ=-79,故选A.课标文数7.C1,C6[2011·课标全国卷] 已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos2θ=( )A .-45B .-35C.35D.45课标文数7.C1,C6[2011·课标全国卷] B 【解析】 解法1:在角θ终边上任取一点P (a,2a )(a ≠0),则r 2=||OP 2=a 2+(2a )2=5a 2,∴cos 2θ=a 25a 2=15,∴cos2θ=2cos 2θ-1=25-1=-35.解法2:tan θ=2a a =2,cos2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=-35.课标数学7.C6[2011·江苏卷] 已知tan ⎝⎛⎭⎫x +π4=2, 则tan x tan2x的值为________. 课标数学7.C6[2011·江苏卷] 49 【解析】 因为tan ⎝⎛⎭⎫x +π4=2,所以tan x =13,tan2x =2×131-19=2389=34,即tan x tan2x =49.课标理数16.C7[2011·广东卷] 已知函数f (x )=2sin ⎝⎛⎭⎫13x -π6,x ∈R . (1)求f ⎝⎛⎭⎫5π4的值;(2)设α,β∈⎣⎡⎦⎤0,π2,f ⎝⎛⎭⎫3α+π2=1013,f (3β+2π)=65,求cos(α+β)的值.[来源:学,科,网] 课标理数16.C7[2011·广东卷] 【解答】 (1)f ⎝⎛⎭⎫5π4=2sin ⎝⎛⎭⎫13×54π-π6 =2sin π4= 2.[来源:Z*xx*](2)∵1013=f 3α+π2=2sin 13×3α+π2-π6=2sin α,65=f (3β+2π)=2sin ⎣⎡⎦⎤13×(3β+2π)-π6=2sin ⎝⎛⎭⎫β+π2=2cos β, ∴sin α=513,cos β=35,又∵α,β∈⎣⎡⎦⎤0,π2, ∴cos α=1-sin 2α=1-⎝⎛⎭⎫5132=1213,sin β=1-cos 2β=1-⎝⎛⎭⎫352=45,故cos(α+β)=cos αcos β-sin αsin β=35×1213-513×45=1665.课标文数16.C7[2011·广东卷]已知函数f (x )=2sin ⎝⎛⎭⎫13x -π6,x ∈R . (1)求f (0)的值;(2)设α,β∈⎣⎡⎦⎤0,π2,f ⎝⎛⎭⎫3α+π2=1013,f (3β+2π)=65,求sin(α+β)的值. 课标文数16.C7[2011·广东卷] 【解答】(1)f (0)=2sin ⎝⎛⎭⎫-π6 =-2sin π6=-1.(2)∵1013=f 3α+π2=2sin 13×3α+π2-π6=2sin α,65=f (3β+2π)=2sin 13×(3β+2π)-π6= 2sin β+π2=2cos β,∴sin α=513,cos β=35,又α,β∈⎣⎡⎦⎤0,π2, ∴cos α=1-sin 2α=1-⎝⎛⎭⎫5132=1213,sin β=1-cos 2β=1-⎝⎛⎭⎫352=45,故sin(α+β)=sin αcos β+cos αsin β=513×35+1213×45=6365.课标数学15.C5,C7[2011·江苏卷] 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若sin ⎝⎛⎭⎫A +π6=2cos A, 求A 的值; (2)若cos A =13,b =3c ,求sin C 的值.课标数学15.C5,C7[2011·江苏卷] 本题主要考查三角函数的基本关系式、两角和的正弦公式、解三角形,考查运算求解能力.【解答】 (1)由题设知sin A cos π6+cos A sin π6=2cos A .从而sin A =3cos A ,所以cos A ≠0,tan A =3,因为0<A <π,所以A =π3.(2)由cos A =13,b =3c 及a 2=b 2+c 2-2bc cos A ,得a 2=b 2-c 2.故△ABC 是直角三角形,且B =π2,所以sin C =cos A =13.课标理数15.C7[2011·天津卷] 已知函数f (x )=tan ⎝⎛⎭⎫2x +π4. (1)求f (x )的定义域与最小正周期;(2)设α∈⎝⎛⎭⎫0,π4,若f ⎝⎛⎭⎫α2=2cos2α,求α的大小. 课标理数15.C7[2011·天津卷] 【解答】 (1)由2x +π4≠π2+k π,k ∈Z ,得x ≠π8+k π2,k ∈Z .所以f (x )的定义域为⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪x ≠π8+k π2,k ∈Z .f (x )的最小正周期为π2.(2)由f ⎝⎛⎭⎫α2=2cos2α,得tan ⎝⎛⎭⎫α+π4=2cos2α,sin ⎝⎛⎭⎫a +π4cos ⎝⎛⎭⎫α+π4=2(cos 2α-sin 2α), 整理得sin α+cos αcos α-sin α=2(cos α+sin α)(cos α-sin α).因为α∈⎝⎛⎭⎫0,π4,所以sin α+cos α≠0, 因此(cos α-sin α)2=12,即sin2α=12.由α∈⎝⎛⎭⎫0,π4,得2α∈⎝⎛⎭⎫0,π2,所以2α=π6,即α=π12.课标文数16.C8[2011·安徽卷] 在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边长,a =3,b =2,1+2cos(B +C )=0,求边BC 上的高.课标文数16.C8[2011·安徽卷] 本题考查两角和的正弦公式,同角三角函数的基本关系,利用正弦定理或余弦定理解三角形,以及三角形的边与角之间的对应大小关系,考查综合运算求解能力.【解答】 由1+2cos(B +C )=0和B +C =π-A ,得1-2cos A =0,cos A =12,sin A =32.再由正弦定理,得sin B =b sin A a =22.由b <a 知B <A ,所以B 不是最大角,B <π2,从而cos B =1-sin 2B =22.由上述结果知sin C =sin(A +B )=22⎝⎛⎭⎫32+12.设边BC 上的高为h ,则有h =b sin C =3+12.课标理数14.C8[2011·安徽卷] 已知△ABC 的一个内角为120°,并且三边长构成公差为4的等差数列,则△ABC 的面积为________.课标理数14.C8[2011·安徽卷] 153 【解析】 不妨设∠A =120°,c <b ,则a =b +4,c =b -4,于是cos120°=b 2+(b -4)2-(b +4)22b (b -4)=-12,解得b =10,所以c =6.所以S =12bc sin120°=15 3.课标理数9.C8[2011·北京卷] 在△ABC 中,若b =5,∠B =π4,tan A =2,则sin A =________;a =________.课标理数9.C8[2011·北京卷] 255210【解析】 因为tan A =2,所以sin A =255;再由正弦定理有:a sin A =b sin B ,即a 255=522,可得a =210.课标文数9.C8[2011·北京卷] 在△ABC 中,若b =5,∠B =π4,sin A =13,则a =________.课标文数9.C8[2011·北京卷] 523 【解析】 由正弦定理有:a sin A =b sin B ,即a 13=522,得a =523.大纲理数17. C5,C8[2011·全国卷] △ABC 的内角A 、B 、C 的对边分别为a 、b 、c .已知A -C =90°,a +c =2b ,求C .大纲理数17.C5,C8[2011·全国卷] 【解答】 由a +c =2b 及正弦定理可得 sin A +sin C =2sin B . 又由于A -C =90°,B =180°-(A +C ),故 cos C +sin C =2sin(A +C ) =2sin(90°+2C ) =2cos2C .故22cos C +22sin C =cos2C , cos(45°-C )=cos2C .因为0°<C <90°, 所以2C =45°-C ,C =15°.大纲文数18.C8[2011·全国卷] △ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,a sin A +c sin C -2a sin C =b sin B .(1)求B ; (2)若A =75°,b =2,求a ,c . 大纲文数18.C8[2011·全国卷] 【解答】 由正弦定理得a 2+c 2-2ac =b 2. 由余弦定理得b 2=a 2+c 2-2ac cos B .故cos B =22,因此B =45°.(2)sin A =sin(30°+45°) =sin30°cos45°+cos30°sin45°=2+64.故a =b ×sin Asin B =2+62=1+3,c =b ×sin C sin B =2×sin60°sin45°= 6.课标理数14.C8图1-5[2011·福建卷] 如图1-5,△ABC 中,AB =AC =2,BC =23,点D 在BC 边上,∠ADC =45°,则AD 的长度等于________.课标理数14.C8[2011·福建卷] 【答案】 2 【解析】 在△ABC 中,由余弦定理,有cos C =AC 2+BC 2-AB 22AC ·BC =(23)22×2×23=32,则∠ACB =30°.在△ACD 中,由正弦定理,有 AD sin C =ACsin ∠ADC, ∴AD =AC ·sin30°sin45°=2×1222=2,即AD 的长度等于 2.课标文数14.C8[2011·福建卷] 若△ABC 的面积为3,BC =2,C =60°,则边AB 的长度等于________.课标文数14.C8[2011·福建卷] 2 【解析】 方法一:由S △ABC =12AC ·BC sin C ,得12AC ·2sin60°=3,解得AC =2. 由余弦定理,得AB 2=AC 2+BC 2-2AC ·BC cos60°=22+22-2×2×2×12=4,∴ AB =2,即边AB 的长度等于2.方法二:由S △AB C =12AC ·BC sin C ,得12AC ·2sin60°=3,解得AC =2. ∴AC =BC =2, 又∠ACB =60°,∴△ABC 是等边三角形,AB =2,即边AB 的长度等于2.课标理数16.C8[2011·湖北卷] 设△ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,已知a =1,b =2,cos C =14.(1)求△ABC 的周长; (2)求cos(A -C )的值.课标理数16.C8[2011·湖北卷] 【解答】 (1)∵c 2=a 2+b 2-2ab cos C =1+4-4×14=4,∴c =2,∴△ABC 的周长为a +b +c =1+2+2=5.(2)∵cos C =14,∴sin C =1-cos 2C =1-⎝⎛⎭⎫142=154, ∴sin A =a sin C c =1542=158.∵a <c ,∴A <C ,故A 为锐角,∴cos A =1-sin 2A =1-⎝⎛⎭⎫1582=78.∴cos(A -C )=cos A cos C +sin A sin C =78×14+158×154=1116.课标文数16.C8[2011·湖北卷] 设△ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,已知a =1,b =2,cos C =14.(1)求△ABC 的周长; (2)求cos(A -C )的值.课标文数16.C8[2011·湖北卷] 【解答】 (1)∵c 2=a 2+b 2-2ab cos C =1+4-4×14=4,∴c =2,∴△ABC 的周长为a +b +c =1+2+2=5.(2)∵cos C =14,∴sin C =1-cos 2C =1-⎝⎛⎭⎫142=154, ∴sin A =a sin C c =1542=158.∵a <c ,∴A <C ,故A 为锐角,∴cos A =1-sin 2A =1-⎝⎛⎭⎫1582=78.∴cos(A -C )=cos A cos C +sin A sin C =78×14+158×154=1116.课标理数17.C8,C4[2011·湖南卷] 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足c sin A =a cos C .(1)求角C 的大小;(2)求3sin A -cos ⎝⎛⎭⎫B +π4的最大值,并求取得最大值时角A ,B 的大小. 课标理数17.C8,C4[2011·湖南卷] 【解答】 (1)由正弦定理得sin C sin A =sin A cos C . 因为0<A <π,所以sin A >0. 从而sin C =cos C .又cos C ≠0,所以tan C =1,则C =π4.(2)由(1)知,B =3π4-A ,于是3sin A -cos ⎝⎛⎭⎫B +π4=3sin A -cos(π-A )=3sin A +cos A =2sin ⎝⎛⎭⎫A +π6. 因为0<A <3π4,所以π6<A +π6<11π12.从而当A +π6=π2,即A =π3时,2sin ⎝⎛⎭⎫A +π6取最大值2. 综上所述,3sin A -cos ⎝⎛⎭⎫B +π4的最大值为2,此时A =π3,B =5π12.课标文数17.C8,C4[2011·湖南卷] 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足c sin A =a cos C .(1)求角C 的大小;(2)求3sin A -c os ⎝⎛⎭⎫B +π4的最大值,并求取得最大值时角A ,B 的大小. 课标文数17.C8,C4[2011·湖南卷] 【解答】 (1)由正弦定理得sin C sin A =sin A cos C . 因为0<A <π,所以sin A >0. 从而sin C =cos C .又cos C ≠0,所以tan C =1,则C =π4.[来源:学科网](2)由(1)知,B =3π4-A ,于是3sin A -cos ⎝⎛⎭⎫B +π4=3sin A -cos(π-A ) =3sin A +cos A =2sin ⎝⎛⎭⎫A +π6. 因为0<A <3π4,所以π6<A +π6<11π12.从而当A +π6=π2,即A =π3时,2sin ⎝⎛⎭⎫A +π6取最大值2. 综上所述,3sin A -cos ⎝⎛⎭⎫B +π4的最大值为2,此时A =π3,B =5π12.课标理数17.C8[2011·江西卷] 在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知sin C +cos C =1-sin C 2.(1)求sin C 的值;(2)若a 2+b 2=4(a +b )-8,求边c 的值.课标理数17.C8[2011·江西卷] 【解答】 (1)由已知得sin C +sin C 2=1-cos C ,即sin C 2⎝⎛⎭⎫2cos C 2+1=2sin 2C 2, 由sin C 2≠0得2cos C 2+1=2sin C 2,即sin C 2-cos C 2=12,两边平方得:sin C =34.(2)由sin C 2-cos C 2=12>0得π4<C 2<π2,即π2<C <π,则由sin C =34得cos C =-74,由a 2+b 2=4(a +b )-8得:(a -2)2+(b -2)2=0,则a =2,b =2. 由余弦定理得c 2=a 2+b 2-2ab cos C =8+27,所以c =7+1.课标理数16.C5,C8[2011·课标全国卷] 在△ABC 中,B =60°,AC =3,则AB +2BC 的最大值为________.课标理数16.C5,C8[2011·课标全国卷] 27 【解析】 因为B =60°,A +B +C =180°,所以A +C =120°,由正弦定理,有 AB sin C =BC sin A =AC sin B =3sin60°=2, 所以AB =2sin C ,BC =2sin A .所以AB +2BC =2sin C +4sin A =2sin(120°-A )+4sin A =2(sin120°cos A -cos120°sin A )+4sin A=3cos A +5sin A=27sin(A +φ),(其中sin φ=327,cos φ=527) 所以AB +2BC 的最大值为27.课标理数4.C8[2011·辽宁卷] △ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A=2a ,则ba=( )A .2 3B .2 2 C. 3 D. 2课标理数4.C8[2011·辽宁卷] D 【解析】 由正弦定理a sin A =bsin B得a sin B =b sin A ,所以a sin A sin B +b cos 2A =2a 化为b sin 2A +b cos 2A =2a ,即b =2a ,故选D.课标文数17.C8[2011·辽宁卷] △ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =2a .(1)求b a;(2)若c 2=b 2+3a 2,求B . 课标文数17.C8[2011·辽宁卷] 【解答】 (1)由正弦定理得,sin 2A sin B +sin B cos 2A =2sin A , 即sin B (sin 2A +cos 2A )=2sin A .故sin B =2sin A ,所以ba= 2.(2)由余弦定理和c 2=b 2+3a 2,得cos B =(1+3)a2c.由(1)知b 2=2a 2,故c 2=(2+3)a 2.可得cos 2B =12,又cos B >0,故cos B =22,所以B =45°.课标文数15.C8[2011·课标全国卷] △ABC 中,B =120°,AC =7,AB =5,则△ABC 的面积为________.课标文数15.C8[2011·课标全国卷] 1534 【解析】 解法1:由正弦定理,有AC sin B =AB sin C ,即7sin120°=5sin C, 所以sin C =5sin120°7=5314,所以cos C =1-sin 2C =1-⎝⎛⎭⎫53142=1114,又因为A +B +C =180°,所以A +C =60°,所以sin A =sin(60°-C )=sin60°cos C -cos60°sin C =32×1114-12×5314=3314,所以S △ABC =12AB ·AC sin A =12×5×7×3314=1534.解法2:设BC =x (x >0),由余弦定理,有cos120°=52+x 2-7210x,整理得x 2+5x -24=0,解得x =3,或x =-8(舍去),即BC =3,所以S △ABC =12AB ·BC sin B =12×5×3×sin120°=12×5×3×32=1534.课标文数17.C8[2011·山东卷] 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A -2cos Ccos B=2c -ab.(1)求sin C sin A的值;(2)若cos B =14,△ABC 的周长为5,求b 的长.课标文数17.C8[2011·山东卷] 【解答】 (1)由正弦定理,设a sin A =b sin B =csin C=k . 则2c -a b =2k sin C -k sin A k sin B =2sin C -sin Asin B. 所以原等式可化为cos A -2cos C cos B =2sin C -sin Asin B.即(cos A -2cos C )sin B =(2sin C -sin A )cos B , 化简可得sin(A +B )=2sin(B +C ), 又因为A +B +C =π,所以原等式可化为sin C =2sin A ,因此sin C sin A=2.(2)由正弦定理及sin Csin A=2得c =2a ,由余弦定理及cos B =14得b 2=a 2+c 2-2ac cos B=a 2+4a 2-4a 2×14=4a 2.所以b =2a . 又a +b +c =5. 从而a =1, 因此b =2.课标理数18.F3,C8[2011·陕西卷] 叙述并证明余弦定理. 课标理数18.F3,C8[2011·陕西卷] 【解答】 余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦之积的两倍.或:在△ABC 中,a ,b ,c 为A ,B ,C 的对边,有a 2=b 2+c 2-2bc cos A , b 2=c 2+a 2-2ca cos B , c 2=a 2+b 2-2ab cos C .证法一:如图1-9,图1-9a 2=BC →·BC →=(AC →-AB →)·(AC →-AB →) =AC →2-2AC →·AB →+AB →2 =AC →2-2|AC →|·|AB →|cos A +AB →2 =b 2-2bc cos A +c 2, 即a 2=b 2+c 2-2bc cos A .同理可证b 2=c 2+a 2-2ca cos B , c 2=a 2+b 2-2ab cos C .。
专题05 三角函数与解三角形-高考数学(理)十年真题(2010-2019)分类汇编(解析版)
专题05三角函数与解三角形历年考题细目表题型年份考点试题位置单选题2019 三角函数2019年新课标1理科11 单选题2017 三角函数2017年新课标1理科09 单选题2016 三角函数2016年新课标1理科12 单选题2015 三角函数2015年新课标1理科02 单选题2015 三角函数2015年新课标1理科08 单选题2014 三角函数2014年新课标1理科08 单选题2012 三角函数2012年新课标1理科09 单选题2011 三角函数2011年新课标1理科05 单选题2011 三角函数2011年新课标1理科11 单选题2010 三角函数2010年新课标1理科09 填空题2018 三角函数2018年新课标1理科16 填空题2015 解三角形2015年新课标1理科16 填空题2014 解三角形2014年新课标1理科16 填空题2013 三角函数2013年新课标1理科15 填空题2011 解三角形2011年新课标1理科16 填空题2010 解三角形2010年新课标1理科16 解答题2019 解三角形2019年新课标1理科17 解答题2018 解三角形2018年新课标1理科17 解答题2017 解三角形2017年新课标1理科17 解答题2016 解三角形2016年新课标1理科17 解答题2013 解三角形2013年新课标1理科17 解答题2012 解三角形2012年新课标1理科17历年高考真题汇编1.【2019年新课标1理科11】关于函数f(x)=sin|x|+|sin x|有下述四个结论:①f(x)是偶函数②f(x)在区间(,π)单调递增③f(x)在[﹣π,π]有4个零点④f(x)的最大值为2其中所有正确结论的编号是()A.①②④B.②④C.①④D.①③【解答】解:f(﹣x)=sin|﹣x|+|sin(﹣x)|=sin|x|+|sin x|=f(x)则函数f(x)是偶函数,故①正确,当x∈(,π)时,sin|x|=sin x,|sin x|=sin x,则f(x)=sin x+sin x=2sin x为减函数,故②错误,当0≤x≤π时,f(x)=sin|x|+|sin x|=sin x+sin x=2sin x,由f(x)=0得2sin x=0得x=0或x=π,由f(x)是偶函数,得在[﹣π,)上还有一个零点x=﹣π,即函数f(x)在[﹣π,π]有3个零点,故③错误,当sin|x|=1,|sin x|=1时,f(x)取得最大值2,故④正确,故正确是①④,故选:C.2.【2017年新课标1理科09】已知曲线C1:y=cos x,C2:y=sin(2x),则下面结论正确的是()A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2【解答】解:把C1上各点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=cos2x图象,再把得到的曲线向左平移个单位长度,得到函数y=cos2(x)=cos(2x)=sin(2x)的图象,即曲线C2,故选:D.3.【2016年新课标1理科12】已知函数f(x)=sin(ωx+φ)(ω>0,|φ|),x为f(x)的零点,x为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11 B.9 C.7 D.5【解答】解:∵x为f(x)的零点,x为y=f(x)图象的对称轴,∴,即,(n∈N)即ω=2n+1,(n∈N)即ω为正奇数,∵f(x)在(,)上单调,则,即T,解得:ω≤12,当ω=11时,φ=kπ,k∈Z,∵|φ|,∴φ,此时f(x)在(,)不单调,不满足题意;当ω=9时,φ=kπ,k∈Z,∵|φ|,∴φ,此时f(x)在(,)单调,满足题意;故ω的最大值为9,故选:B.4.【2015年新课标1理科02】sin20°cos10°﹣cos160°sin10°=()A.B.C.D.【解答】解:sin20°cos10°﹣cos160°sin10°=sin20°cos10°+cos20°sin10°=sin30°.故选:D.5.【2015年新课标1理科08】函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为()A.(kπ,kπ),k∈z B.(2kπ,2kπ),k∈zC.(k,k),k∈z D.(,2k),k∈z【解答】解:由函数f(x)=cos(ωx+ϕ)的部分图象,可得函数的周期为2()=2,∴ω=π,f(x)=cos(πx+ϕ).再根据函数的图象以及五点法作图,可得ϕ,k∈z,即ϕ,f(x)=cos(πx).由2kπ≤πx2kπ+π,求得2k x≤2k,故f(x)的单调递减区间为(,2k),k∈z,故选:D.6.【2014年新课标1理科08】设α∈(0,),β∈(0,),且tanα,则()A.3α﹣βB.3α+βC.2α﹣βD.2α+β【解答】解:由tanα,得:,即sinαcosβ=cosαsinβ+cosα,sin(α﹣β)=cosα=sin(),∵α∈(0,),β∈(0,),∴当时,sin(α﹣β)=sin()=cosα成立.故选:C.7.【2012年新课标1理科09】已知ω>0,函数f(x)=sin(ωx)在区间[,π]上单调递减,则实数ω的取值范围是()A.B.C.D.(0,2]【解答】解:法一:令:不合题意排除(D)合题意排除(B)(C)法二:,得:.故选:A.8.【2011年新课标1理科05】已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x 上,则cos2θ=()A.B.C.D.【解答】解:根据题意可知:tanθ=2,所以cos2θ,则cos2θ=2cos2θ﹣1=21.故选:B.9.【2011年新课标1理科11】设函数f(x)=sin(ωx+φ)+cos(ωx+φ)的最小正周期为π,且f(﹣x)=f(x),则()A.f(x)在单调递减B.f(x)在(,)单调递减C.f(x)在(0,)单调递增D.f(x)在(,)单调递增【解答】解:由于f(x)=sin(ωx+ϕ)+cos(ωx+ϕ),由于该函数的最小正周期为T,得出ω=2,又根据f(﹣x)=f(x),得φkπ(k∈Z),以及|φ|,得出φ.因此,f(x)cos2x,若x∈,则2x∈(0,π),从而f(x)在单调递减,若x∈(,),则2x∈(,),该区间不为余弦函数的单调区间,故B,C,D都错,A正确.故选:A.10.【2010年新课标1理科09】若,α是第三象限的角,则()A.B.C.2 D.﹣2【解答】解:由,α是第三象限的角,∴可得,则,应选A.11.【2018年新课标1理科16】已知函数f(x)=2sin x+sin2x,则f(x)的最小值是.【解答】解:由题意可得T=2π是f(x)=2sin x+sin2x的一个周期,故只需考虑f(x)=2sin x+sin2x在[0,2π)上的值域,先来求该函数在[0,2π)上的极值点,求导数可得f′(x)=2cos x+2cos2x=2cos x+2(2cos2x﹣1)=2(2cos x﹣1)(cos x+1),令f′(x)=0可解得cos x或cos x=﹣1,可得此时x,π或;∴y=2sin x+sin2x的最小值只能在点x,π或和边界点x=0中取到,计算可得f(),f(π)=0,f(),f(0)=0,∴函数的最小值为,故答案为:.12.【2015年新课标1理科16】在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是.【解答】解:方法一:如图所示,延长BA,CD交于点E,则在△ADE中,∠DAE=105°,∠ADE=45°,∠E=30°,∴设AD x,AE x,DE x,CD=m,∵BC=2,∴(x+m)sin15°=1,∴x+m,∴0<x<4,而AB x+m x x,∴AB的取值范围是(,).故答案为:(,).方法二:如下图,作出底边BC=2的等腰三角形EBC,B=C=75°,倾斜角为150°的直线在平面内移动,分别交EB、EC于A、D,则四边形ABCD即为满足题意的四边形;当直线移动时,运用极限思想,①直线接近点C时,AB趋近最小,为;②直线接近点E时,AB趋近最大值,为;故答案为:(,).13.【2014年新课标1理科16】已知a,b,c分别为△ABC的三个内角A,B,C的对边,a=2且(2+b)(sin A﹣sin B)=(c﹣b)sin C,则△ABC面积的最大值为.【解答】解:因为:(2+b)(sin A﹣sin B)=(c﹣b)sin C⇒(2+b)(a﹣b)=(c﹣b)c⇒2a﹣2b+ab﹣b2=c2﹣bc,又因为:a=2,所以:,△ABC面积,而b2+c2﹣a2=bc⇒b2+c2﹣bc=a2⇒b2+c2﹣bc=4⇒bc≤4所以:,即△ABC面积的最大值为.故答案为:.14.【2013年新课标1理科15】设当x=θ时,函数f(x)=sin x﹣2cos x取得最大值,则cosθ=.【解答】解:f(x)=sin x﹣2cos x(sin x cos x)sin(x﹣α)(其中cosα,sinα),∵x=θ时,函数f(x)取得最大值,∴sin(θ﹣α)=1,即sinθ﹣2cosθ,又sin2θ+cos2θ=1,联立得(2cosθ)2+cos2θ=1,解得cosθ.故答案为:15.【2011年新课标1理科16】在△ABC中,B=60°,AC,则AB+2BC的最大值为.【解答】解:设AB=cAC=bBC=a由余弦定理cos B所以a2+c2﹣ac=b2=3设c+2a=m代入上式得7a2﹣5am+m2﹣3=0△=84﹣3m2≥0 故m≤2当m=2时,此时a,c符合题意因此最大值为2另解:因为B=60°,A+B+C=180°,所以A+C=120°,由正弦定理,有2,所以AB=2sin C,BC=2sin A.所以AB+2BC=2sin C+4sin A=2sin(120°﹣A)+4sin A=2(sin120°cos A﹣cos120°sin A)+4sin Acos A+5sin A=2sin(A+φ),(其中sinφ,cosφ)所以AB+2BC的最大值为2.故答案为:216.【2010年新课标1理科16】在△ABC中,D为边BC上一点,BD DC,∠ADB=120°,AD=2,若△ADC的面积为,则∠BAC=.【解答】解:由△ADC的面积为可得解得,则.AB2=AD2+BD2﹣2AD•BD•cos120°,,则.故∠BAC=60°.17.【2019年新课标1理科17】△ABC的内角A,B,C的对边分别为a,b,c.设(sin B﹣sin C)2=sin2A ﹣sin B sin C.(1)求A;(2)若a+b=2c,求sin C.【解答】解:(1)∵△ABC的内角A,B,C的对边分别为a,b,c.设(sin B﹣sin C)2=sin2A﹣sin B sin C.则sin2B+sin2C﹣2sin B sin C=sin2A﹣sin B sin C,∴由正弦定理得:b2+c2﹣a2=bc,∴cos A,∵0<A<π,∴A.(2)∵a+b=2c,A,∴由正弦定理得,∴解得sin(C),∴C,C,∴sin C=sin()=sin cos cos sin.18.【2018年新课标1理科17】在平面四边形ABCD中,∠ADC=90°,∠A=45°,AB=2,BD=5.(1)求cos∠ADB;(2)若DC=2,求BC.【解答】解:(1)∵∠ADC=90°,∠A=45°,AB=2,BD=5.∴由正弦定理得:,即,∴sin∠ADB,∵AB<BD,∴∠ADB<∠A,∴cos∠ADB.(2)∵∠ADC=90°,∴cos∠BDC=sin∠ADB,∵DC=2,∴BC5.19.【2017年新课标1理科17】△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sin B sin C;(2)若6cos B cos C=1,a=3,求△ABC的周长.【解答】解:(1)由三角形的面积公式可得S△ABC ac sin B,∴3c sin B sin A=2a,由正弦定理可得3sin C sin B sin A=2sin A,∵sin A≠0,∴sin B sin C;(2)∵6cos B cos C=1,∴cos B cos C,∴cos B cos C﹣sin B sin C,∴cos(B+C),∴cos A,∵0<A<π,∴A,∵2R2,∴sin B sin C•,∴bc=8,∵a2=b2+c2﹣2bc cos A,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c∴周长a+b+c=3.20.【2016年新课标1理科17】△ABC的内角A,B,C的对边分别为a,b,c,已知2cos C(a cos B+b cos A)=c.(Ⅰ)求C;(Ⅱ)若c,△ABC的面积为,求△ABC的周长.【解答】解:(Ⅰ)∵在△ABC中,0<C<π,∴sin C≠0已知等式利用正弦定理化简得:2cos C(sin A cos B+sin B cos A)=sin C,整理得:2cos C sin(A+B)=sin C,即2cos C sin(π﹣(A+B))=sin C2cos C sin C=sin C∴cos C,∴C;(Ⅱ)由余弦定理得7=a2+b2﹣2ab•,∴(a+b)2﹣3ab=7,∵S ab sin C ab,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC的周长为5.21.【2013年新课标1理科17】如图,在△ABC中,∠ABC=90°,AB,BC=1,P为△ABC内一点,∠BPC=90°.(1)若PB,求P A;(2)若∠APB=150°,求tan∠PBA.【解答】解:(I)在Rt△PBC中,,∴∠PBC=60°,∴∠PBA=30°.在△PBA中,由余弦定理得P A2=PB2+AB2﹣2PB•AB cos30°.∴P A.(II)设∠PBA=α,在Rt△PBC中,PB=BC cos(90°﹣α)=sinα.在△PBA中,由正弦定理得,即,化为.∴.22.【2012年新课标1理科17】已知a,b,c分别为△ABC三个内角A,B,C的对边,a cos C a sin C﹣b﹣c=0(1)求A;(2)若a=2,△ABC的面积为,求b,c.【解答】解:(1)由正弦定理得:a cos C a sin C﹣b﹣c=0,即sin A cos C sin A sin C=sin B+sin C∴sin A cos C sin A sin C=sin(A+C)+sin C,即sin A﹣cos A=1∴sin(A﹣30°).∴A﹣30°=30°∴A=60°;(2)若a=2,△ABC的面积,∴bc=4.①再利用余弦定理可得:a2=b2+c2﹣2bc•cos A=(b+c)2﹣2bc﹣bc=(b+c)2﹣3×4=4,∴b+c=4.②结合①②求得b=c=2.考题分析与复习建议本专题考查的知识点为:同角三角函数基本关系、诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形的综合应用等.历年考题主要以选择填空或解答题题型出现,重点考查的知识点为:诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形等.预测明年本考点题目会比较稳定,备考方向以同角三角函数基本关系、诱导公式,三角函数的图象与性质,三角恒等变换,正余弦定理,解三角形的综合应用等为重点较佳.最新高考模拟试题1.函数2sin()(0,0)y x ωϕωϕπ=+><<的部分图象如图所示.则函数()f x 的单调递增区间为( )A .,63k k ππππ轾犏-+犏臌,k z ∈B .,33k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈C .,36k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈D .,66k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈【答案】C 【解析】根据函数2sin()(0,0)y x ωϕωϕπ=+><<的部分图象, 可得:332113441264T ππππω=⋅=-=, 解得:2ω=, 由于点,26π⎛⎫⎪⎝⎭在函数图象上,可得:2sin 226πϕ⎛⎫⨯+= ⎪⎝⎭,可得:2262k ππϕπ⨯+=+,k ∈Z ,解得:26k πϕπ=+,k ∈Z ,由于:0ϕπ<<, 可得:6π=ϕ,即2sin 26y x π⎛⎫=+ ⎪⎝⎭,令222262k x k πππππ-≤+≤+,k ∈Z 解得:36k x k ππππ-≤≤+,k ∈Z ,可得:则函数()f x 的单调递增区间为:,36k k ππππ⎡⎤-+⎢⎥⎣⎦,k ∈Z .故选C .2.将函数()2sin(2)3f x x π=+的图像先向右平移12π个单位长度,再向上平移1个单位长度,得到()g x 的图像,若()()129g x g x =且12,[2,2]x x ππ∈-,则122x x -的最大值为( ) A .4912π B .356π C .256π D .174π 【答案】C 【解析】由题意,函数()2sin(2)3f x x π=+的图象向右平移12π个单位长度,再向上平移1个单位长度,得到()2sin[2()]12sin(2)11236g x x x πππ=-++=++的图象, 若()()129g x g x =且12,[2,2]x x ππ∈-, 则()()123g x g x ==,则22,62x k k Z πππ+=+∈,解得,6x k k Z ππ=+∈,因为12,[2,2]x x ππ∈-,所以121157,{,,,}6666x x ππππ∈--, 当12711,66x x ππ==-时,122x x -取得最大值,最大值为711252()666πππ⨯--=, 故选C.3.将函数222()2cos4x f x ϕ+=(0πϕ-<<)的图像向右平移3π个单位长度,得到函数()g x 的图像,若()(4)g x g x π=-则ϕ的值为( )A .23-π B .3π-C .6π-D .2π-【答案】A 【解析】 因为222()2coscos()14x f x x ϕϕ+==++, 将其图像向右平移3π个单位长度,得到函数()g x 的图像, 所以()cos()13g x x πϕ=-++,又()(4)g x g x π=-,所以()g x 关于2x π=对称, 所以2()3k k Z ππϕπ-+=∈,即(2)()3k k Z πϕπ=+-∈,因为0πϕ-<<,所以易得23πϕ=-.故选A4.已知函数()sin()(0,0)f x x ωϕωϕπ=+><<的图象经过两点2(0,),(,0)24A B π, ()f x 在(0,)4π内有且只有两个最值点,且最大值点大于最小值点,则()f x =( ) A .sin 34x π⎛⎫+ ⎪⎝⎭B .3sin 54x π⎛⎫+⎪⎝⎭C .sin 74x π⎛⎫+⎪⎝⎭D .3sin 94x π⎛⎫+⎪⎝⎭【答案】D 【解析】根据题意可以画出函数()f x 的图像大致如下因为2(0)sin 2f ϕ==32,()4k k Z πϕπ=+∈ 又因为0ϕπ<<,所以34πϕ=,所以3()sin()4f x x πω=+, 因为3()sin()0444f πππω=+=,由图可知,3244k ππωππ+=+,解得18,k k Z ω=+∈, 又因为24T ππω=<,可得8ω>,所以当1k =时,9ω=, 所以3()sin(9)4f x x π=+, 故答案选D.5.已知函数()cos 3f x x x =-,则下列结论中正确的个数是( ). ①()f x 的图象关于直线3x π=对称;②将()f x 的图象向右平移3π个单位,得到函数()2cos g x x =的图象;③,03π⎛⎫- ⎪⎝⎭是()f x 图象的对称中心;④()f x 在,63ππ⎡⎤⎢⎥⎣⎦上单调递增. A .1 B .2C .3D .4【答案】A由题意,函数1()cos 2cos 2cos 23f x x x x x x π⎛⎫⎛⎫=-=-=+ ⎪ ⎪⎪⎝⎭⎝⎭, ①中,由22cos 133f ππ⎛⎫==-⎪⎝⎭不为最值,则()f x 的图象不关于直线3x π=对称,故①错; ②中,将()f x 的图象向右平移3π个单位,得到函数()2cos g x x =的图象,故②对; ③中,由2cos 023f π⎛⎫-== ⎪⎝⎭,可得,03π⎛⎫- ⎪⎝⎭不是()f x 图象的对称中心,故③错; ④中,由22,3k Z x k k ππππ-+≤∈≤,解得422,33k x k k Z ππππ-≤-∈≤,即增区间为42k ,2k ,33k Z ππππ⎡⎤--⎢⎥⎣⎦∈, 由22,3k x k k Z ππππ≤+≤+∈,解得22,233k x k k Z ππππ-≤≤+∈,即减区间为22,2,33k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,可得()f x 在,63ππ⎡⎤⎢⎥⎣⎦上单调递减,故④错. 故选:A .6.在ABC ∆中,角A 、B 、C 的对边长分别a 、b 、c ,满足()22sin 40a a B B -++=,b =则ABC △的面积为A .BC .D 【答案】C 【解析】把22(sin )40a a B B -++=看成关于a 的二次方程,则2224(sin )164(3cos 4)B B sin B cos B B B =-=++-V24(2cos 3)4(cos 222)cos B B B B B =+-=+- 4[2sin(2)2]06B π=+-…,故若使得方程有解,则只有△0=,此时6B π=,b =代入方程可得,2440a a -+=,由余弦定理可得,2428cos3022c c+-︒=⨯,解可得,c =∴111sin 2222ABC s ac B ∆==⨯⨯=故选:C .7.设锐角三角形ABC 的内角,,A B C 所对的边分别为,,a b c ,若2,2a B A ==,则b 的取值范围为( )A .(0,4)B .(2,C .D .4)【答案】C 【解析】由锐角三角形ABC 的内角,,A B C 所对的边分别为,,a b c ,若2,2a B A ==,∴ 022A π<<,3A B A +=,32A ππ∴<< 63A ππ∴<<,04A π<<cos 22A <<2,2a B A ==Q ,由正弦定理得12cos 2b b A a ==,即4cos b A =4cos A ∴<<则b 的取值范围为,故选C.8.已知V ABC 的内角,,A B C 所对的边分别为,,a b c ,若6sin cos 7sin2C A A =,53a b =,则C =( ). A .3πB .23π C .34π D .56π 【答案】B 【解析】由题意,因为672sinCcosA sin A =,可得:614sinCcosA sinAcosA =, 即(614)0sinC sinA cosA -⋅=,可得∴614sinC sinA =或0cosA =, 又由a b <,则A 为锐角,所以0cosA =不符合舍去, 又由正弦定理可得:37c a =,即:73a c =, 由余弦定理可得22222257133cos 52223a a a a b c C a ab a ⎛⎫⎛⎫+- ⎪ ⎪+-⎝⎭⎝⎭===-⎛⎫⋅ ⎪⎝⎭, ∵(0,)C π∈,∴23C π=. 故选:B .9.若函数()2sin()f x x ωϕ=+ (01ω<<,02πϕ<<)的图像过点,且关于点(2,0)-对称,则(1)f -=_______. 【答案】1 【解析】函数()()2sin f x x ωϕ=+的图像过点(2sin ϕ∴=sin ϕ=02πϕ<<Q 3πϕ∴=又函数图象关于点()2,0-对称 2sin 203πω⎛⎫∴-+= ⎪⎝⎭,即:23k πωπ-+=,k Z ∈126k πωπ∴=-+,k Z ∈01ω<<Q 6πω∴=()2sin 63f x x ππ⎛⎫∴=+⎪⎝⎭,()12sin 2sin 1636f πππ⎛⎫∴-=-+== ⎪⎝⎭本题正确结果:110.若实数,x y 满足()()()2221122cos 11x y xyx y x y ++--+-=-+.则xy 的最小值为____________【答案】1.4【解析】∵()()()2221122cos 11x y xyx y x y ++--+-=-+,∴10x y -+>, ()()()()2221121111111x y xyx y x y x y x y x y ++---++==-++-+-+-+Q()()11121211x y x y x y x y ∴-++≥-+⋅=-+-+,当且仅当11x y -+=时即=x y 时取等号()22cos 12x y +-≥Q ,当且仅当()1x y k k Z π+-=∈时取等号∴()()()2221122cos 12111x y xyx y x y x y ,即++--=+-=-+=-+且()1x y k k Z π+-=∈,即()12k x y k Z π+==∈, 因此21124k xy π+⎛⎫=≥⎪⎝⎭(当且仅当0k =时取等号), 从而xy 的最小值为1.411.设函数()sin(2)3f x x π=+,若120x x <,且12()()0f x f x +=,则21x x -的取值范围是_______.【答案】(3π,+∞) 【解析】不妨设120x x <<,则2121x x x x -=-,由图可知210()33x x ππ->--=.故答案为:(3π,+∞) 12.已知角α为第一象限角,sin cos a αα-=,则实数a 的取值范围为__________.【答案】(1,2] 【解析】由题得sin 2sin()3a πααα==+,因为22,,2k k k Z ππαπ<<+∈所以52++2,,336k k k Z ππππαπ<<+∈ 所以1sin()1,12sin()2233ππαα<+≤∴<+≤. 故实数a 的取值范围为(1,2]. 故答案为:(1,2]13.已知函数sin 2cos ()()(()0)f x x x ϕϕϕ+=+<<π-的图象关于直线x π=对称,则cos 2ϕ=___. 【答案】35【解析】因为函数sin 2cos ()()(()0)f x x x ϕϕϕ+=+<<π-的图象关于直线x π=对称,322f f ππ⎛⎫⎛⎫∴= ⎪⎪⎝⎭⎝⎭, 即cos 2sin cos 2sin ϕϕϕϕ+=--,即cos 2sin ϕϕ=-, 即1tan 2ϕ=-, 则22222211cos sin 1tan 34cos 21cos sin 1tan 514ϕϕϕϕϕϕϕ---====+++, 故答案为35.14.如图,四边形ABCD 中,4AB =,5BC =,3CD =,90ABC ∠=︒,120BCD ∠=°,则AD 的长为______【答案】65123-【解析】连接AC,设ACBθ∠=,则120ACDθ∠=-o,如图:故在Rt ABC∆中,sin4141θθ==,()131343cos120cos22224141241θθθ-=-+=-=oQ,又Q在ACD∆中由余弦定理有()(222413435cos1202341241ADθ+---==⨯⨯o,解得265123AD=-即65123AD=-65123-15.在锐角ABC∆中,角A B C,,的对边分别为a b c,,.且cos cosA Ba b+=23sin C23b=.则a c+的取值范围为_____.【答案】(6,3]【解析】cos cos233A B Ca b a+=Q23cos cos sin3b A a B C∴+=∴由正弦定理可得:23sin cos sin cos sinB A A B B C+=,可得:sin()sin sin A B C B C +==,sin B ∴=, 又ABC ∆为锐角三角形,3B π∴=,∴可得:sin sin 24(sin sin )4sin 4sin sin sin 3b A b C a c A C A A B B π⎛⎫+=+=+=+- ⎪⎝⎭3A π⎛⎫=- ⎪⎝⎭ 2,3A A π-Q 均为锐角,可得:,62636A A πππππ<<-<-<,(6,a c ∴+∈.故答案为: (6,.16.在ABC ∆中,已知AB 边上的中线1CM =,且1tan A ,1tan C ,1tan B成等差数列,则AB 的长为________.【解析】因为1tan A ,1tan C ,1tan B 成等差数列, 所以211tan tan tan C A B =+,即2cos cos cos sin()sin sin sin sin sin sin sin sin C A B A B CC A B A B A B+=+==, 所以2sin 2cos sin sin C C A B =,由正弦定理可得2cos 2c C ab=,又由余弦定理可得222cos 2a b c C ab +-=,所以222222a b c c ab ab+-=,故2222a b c +=, 又因为AB 边上的中线1CM =,所以1CM =u u u u v ,因为()12CM CA CB u u u u v u u u v u u u v=+, 所以22222422cos CM CA CB CA CB CA CB CA CB C =++⋅=++u u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r,即22224232c b a ab c ab=++⋅=,解c =即AB 的长为3.17.在ABC ∆中,A B C ,,的对边分别a b c ,,,60,cos A B ︒==(Ⅰ)若D 是BC 上的点,AD 平分BAC ∠,求DCBD的值; (Ⅱ)若 ccos cos 2B b C +=,求ABC ∆的面积. 【答案】(Ⅰ)4;【解析】(Ⅰ)因为cos 3B =,∴sin 3B =, ()1sin sin sin cos cos sin 2C A B A B A B =+=+==, 由正弦定理得sin sin sin AD BD AD B BAD C ==∠,sin DCCAD∠, 因为AD 平分BAC ∠,所以sin 4sin DC BBD C ===.(Ⅱ)由cos cos 2c B b C +=,即222222cos cos 222a c b a b c c B b C c b a ac ab+-+-+=⋅+⋅==,所以sin sin a b A B =,∴sin sin 3a Bb A ==,故11sin 222ABC S ab C ==⨯=V 18.在ABC ∆中,角,,A B C 所对的边分别,,a b c ,()()()()2sin cos sin f x x A x B C x R =-++∈,函数()f x 的图象关于点,06π⎛⎫⎪⎝⎭对称.(1)当0,2x π⎛⎫∈ ⎪⎝⎭时,求()f x 的值域;(2)若7a =且sin sin B C +=ABC ∆的面积.【答案】(1)⎛⎤⎥ ⎝⎦(2)【解析】(1)()()()2sin cos sin f x x A x B C =-++ ()2sin cos sin x A x A =-+=2sin()cos sin(())x A x x x A -+--=2sin()cos sin cos()sin()cos x A x x x A x A x -+--- =sin()cos sin cos()x A x x x A -+-()sin 2x A =-∵函数()f x 的图像关于点π,06⎛⎫⎪⎝⎭对称, ∴π06f ⎛⎫=⎪⎝⎭∴π3A =∴()πsin 23f x x ⎛⎫=-⎪⎝⎭∵()f x 在区间5π0,12⎛⎤ ⎥⎝⎦上是增函数,5ππ,122⎛⎫⎪⎝⎭上是减函数,且()0f =,5π112f ⎛⎫= ⎪⎝⎭,π2f ⎛⎫=⎪⎝⎭∴()f x 的值域为⎛⎤⎥ ⎝⎦(2)∵sin sin B C +=1313sin sin sin 1377B C A b c a ∴+=∴+=⨯= ∴13b c +=由余弦定理,2222cos a b c bc A =+- ∴40bc =∴1sinA 2ABC S bc ==V 19.在ABC ∆中,已知2AB =,cos 10B =,4C π=.(1)求BC 的长; (2)求sin(2)3A π+的值.【答案】(1)5BC =(2【解析】解:(1)因为cos B =,0B π<<,所以sin B ===在ABC ∆中,A B C π++=,所以()A B C π=-+, 于是sin sin(())sin()A B C B C π=-+=+4sin cos cos sin 1021025B C B C =+=⨯+⨯=. 在ABC ∆中,由正弦定理知sin sin BC AB A C=,所以4sin sin 552AB BC A C =⨯==. (2)在ABC ∆中,A B C π++=,所以()A B C π=-+, 于是cos cos(())cos()A B C B C π=-+=-+3(cos cos sin sin )5B C B C =--=-=⎝⎭,于是4324sin 22sin cos 25525A A A ==⨯⨯=, 2222347cos 2cos sin 5525A A A ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭.因此,sin 2sin 2cos cos 2sin 333A A A πππ⎛⎫+=+ ⎪⎝⎭ 24173247325225250-⎛⎫=⨯+-⨯= ⎪⎝⎭. 20.如图,在四边形ABCD 中,60A ∠=︒,90ABC ∠=︒.已知3AD =,6BD =.(Ⅰ)求sin ABD ∠的值;(Ⅱ)若2CD =,且CD BC >,求BC 的长.【答案】(Ⅰ)64(Ⅱ)1BC = 【解析】(Ⅰ)在ABD V 中,由正弦定理,得sin sin AD BD ABD A =∠∠. 因为60,3,6A AD BD ︒∠=== 所以36sin sin sin 6046AD ABD A BD ︒∠=⨯∠== (Ⅱ)由(Ⅰ)可知,6sin ABD ∠=, 因为90ABC ︒∠=,所以()6cos cos 90sin CBD ABD ABD ︒∠=-∠=∠=. 在BCD ∆中,由余弦定理,得2222cos CD BC BD BC BD CBD =+-⋅∠. 因为2,6CD BD ==所以264626BC BC =+-,即2320BC BC -+=,解得1BC =或2BC =.又CD BC >,则1BC =.21.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且234cos2sin 22A b b a B =+. (1)求cos A ;(2)若a =5c =,求b .【答案】(1) 3cos 5A =(2) 1b =或5. 【解析】解:(1)由题意知234cos 2sin 22A b b aB =+, 化简得4cos 3sin b A a B =,由正弦定理得4sin cos 3sin sin B A A B =, 因为sin 0B ≠, 所以4tan 3A =,且A 为ABC ∆的内角, 即3cos 5A =. (2)由余弦定理得2222cos a b c bc A =+-, 所以220256b b =+-,所以2650b b -+=,所以1b =或5.22.已知在△ABC 中,222a c ac b +-=. (Ⅰ)求角B 的大小;(Ⅱ)求cos cos A C +的最大值.【答案】(Ⅰ)3π;(Ⅱ)1. 【解析】 (Ⅰ)由余弦定理得2221cos ==222a cb ac B a c a c +-⋅=⋅⋅ 因为角B 为三角形内角3B π∴∠=(Ⅱ)由(Ⅰ)可得23A C B ππ∠+∠=-∠= 23A C π∴∠=-∠ cos cos A C ∴+=2cos cos 3C C π⎛⎫-+⎪⎝⎭ =22cos cos sin sin cos 33C C C ππ⋅+⋅+=1cos sin cos 2C C C -⋅++1sin cos 2C C +⋅ =cos sin sin cos 66C C ππ⋅+⋅ =sin 6C π⎛⎫+ ⎪⎝⎭ 203C π<<Q 5666C πππ∴<+< 1sin 126C π⎛⎫∴<+≤ ⎪⎝⎭ cos cos A C ∴+的最大值是1。
2012年高考三角函数真题汇编学生版
高考试题分类汇编:4:三角函数一、选择题1.要得到函数)12cos(+=x y 的图象,只要将函数x y 2cos =的图象 (A ) 向左平移1个单位 (B ) 向右平移1个单位(C ) 向左平移 12个单位 (D ) 向右平移12个单位 2.已知ω>0,πϕ<<0,直线4π=x 和45π=x 是函数f (x )=sin(ωx +φ)图像的两条相邻的对称轴,则φ=(A )π4 (B )π3 (C )π2 (D )3π4 3.函数2sin (09)63x y x ππ⎛⎫=-≤≤ ⎪⎝⎭的最大值与最小值之和为(A)2 (B)0 (C)-1 (D)1-4.若函数()sin ([0,2])3x f x ϕϕπ+=∈是偶函数,则=ϕ (A )2π (B )32π (C )23π (D )35π5.已知α为第二象限角,3sin 5α=,则sin 2α= (A )2524- (B )2512- (C )2512 (D )25246. sin 47sin17cos30cos17-(A )B )12-(C )12 (D7.把函数y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移 1个单位长度,得到的图像是8.在△ABC 中,若222sin sin sin A B C +<,则△ABC 的形状是( ) A 、钝角三角形 B 、直角三角形 C 、锐角三角形 D 、不能确定9.【】如图,正方形ABCD 的边长为1,延长BA 至E ,使1AE =,连接EC 、ED 则sin CED ∠=( )(1)10B 、10C 、10D 、1510.已知sin cos αα-=,α∈(0,π),则sin 2α= (A)-1 (B) 2- (C) 2(D) 1 11.若sin cos 1sin cos 2αααα+=-,则tan2α=A. -34B. 34C. -43D. 4312.已知2()sin ()4f x x π=+若a =f (lg5),1(lg )5b f =则 A.a+b=0 B.a-b=0 C.a+b=1 D.a-b=113. 在△ABC 中,,BC=2,B =60°,则BC 边上的高等于A .2B.2C.2D.415.在△ABC 中,若60A ∠= ,45B ∠=,BC =AC=A.B.C.D..16.【2102高考福建文8】函数f(x)=sin(x-4π)的图像的一条对称轴是 A.x=4π B.x=2π C.x=-4π D.x=-2π17.【2012高考天津文科7】将函数f(x)=sin x ω(其中ω>0)的图像向右平移4π个单位长度,所得图像经过点(34π,0),则ω的最小值是(A )13(B )1 C )53(D )2二、填空题18.)设α为锐角,若4cos 65απ⎛⎫+= ⎪⎝⎭,则)122sin(π+a 的值为 ▲ .19.】在△ABC 中,若a =3,b=3,∠A=3π,则∠C 的大小为_________。
2012年全国高考数学试题分类汇编——三角函数及解三角形
A 的值.
6、 (辽宁理 17)(本小题满分 12 分)在 ABC 中,角 A、B、C 的对边分 别为 a,b,c。角 A,B,C 成等差数列。 (Ⅰ)求 cos B 的值; (Ⅱ)边 a,b,c 成等比数列,求 sin A sin C 的值。
7、 (北京理 15) (本小题共 13 分)已知函数
ABC 内的概
△ABC 内的概率为 4 。
(安徽理 15)设 ABC 的内角 A, B, C 所对的边为 a, b, c ;则下列命题正 确的是___①②③ ①若 ab c ;则
2 3 3 3
C
3 C
② 若 a b 2c ;则
2 C
C
3 C
③若 a b c ;则
12
分 )
函 数
x 62 c o s 2
在一个周期内的图象如图所示, A 为
图象的最高点, B 、 C 为图象与 x 轴的交点,且 ABC 为正三角形。 (Ⅰ)求 的值及函数 f ( x) 的值域; (Ⅱ)若
f ( x0 )
10 2 8 3 x0 ( , ) 3 3 ,求 f ( x0 1) 的值。 5 ,且
(1,f (1) ) a f ( x) 1 2
ABC
重 庆 ( 13 ) 设
的 内 角 A, B, C 的 对 边 分 别 为 a, b, c , 且
3 5 cos A , cos B , b 3, 5 13 则c
三、解答题 1、 (湖北理 17) (满分 12 分)已知向量 a= b= 直线 x=π 对称,其中 ,设函数 f(x) =a²b+ 为常数,且 , 的图像关于
7 A 25
2012年高考文科数学解析分类汇编:三角函数(逐题详解)
2012年高考文科数学解析分类汇编:三角函数一、选择题1 .(2012年高考(重庆文))sin47sin17cos30cos17-()A.2-B.12-C.12D.22 .(2012年高考(浙江文))把函数y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移 1个单位长度,得到的图像是3 .(2012年高考(天津文))将函数()sin(0)f x xωω=>的图像向右平移4π个单位长度,所得图像经过点3(,0)4π,则ω的最小值是()A.13B.1 C.53D.24 .(2012年高考(四川文))如图,正方形ABCD的边长为1,延长BA至E,使1AE=,连接EC、ED则sin CED∠=()A B C D5 .(2012年高考(上海文))在ABC∆中,若BA222sinsinsin<+()A.钝角三角形. B.直角三角形. C.锐角三角形. D.不能确定.6 .(2012年高考(陕西文))设向量a=(1.cosθ)与b=(-1, 2cosθ)垂直,则cos2θ等于A2B12C.0 D.-17 .(2012年高考(山东文))函数2sin(09)63xy xππ⎛⎫=-≤≤⎪⎝⎭的最大值与最小值之和为()A.2B.0 C.-1 D.1--8 .(2012年高考(辽宁文))已知sin cos αα-=,α∈(0,π),则sin 2α= ( )A .-1B .-C D .19 .(2012年高考(课标文))已知ω>0,0ϕπ<<,直线x =4π和x =54π是函数()s i n()f x x ωϕ=+图像的两条相邻的对称轴,则ϕ=( )A .π4B .π3C .π2D .3π410.(2012年高考(江西文))若sin cos 1sin cos 2αααα+=-,则tan2α=( )A .-34B .34C .-43D .4311.(2012年高考(湖南文))在△ABC 中,BC=2,B =60°,则BC 边上的高等于( )A B 33C 36+D 12.(2012年高考(湖北文))设ABC ∆的内角,,,A B C 所对的边分别为,,a b c ,若三边的长为连续的三个正整数,且A B C >>,320cos b a A =,则sin :sin :sin A B C 为 ( )A .4∶3∶2B .5∶6∶7C .5∶4∶3D .6∶5∶413.(2012年高考(广东文))(解三角形)在ABC ∆中,若60A ∠=︒,45B ∠=︒,BC =,则AC = ( )A .B .CD 14.(2012年高考(福建文))函数()sin()4f x x π=-的图像的一条对称轴是( )A .4x π=B .2x π=C .4x π=-D .2x π=-15.(2012年高考(大纲文))已知α为第二象限角,3sin 5α=,则sin 2α= ( )A .2425-B .1225-C .1225 D .242516.(2012年高考(大纲文))若函数[]()sin (0,2)3x f x ϕϕπ+=∈是偶函数,则ϕ= ( )A .2π B .23π C .32π D .53π17.(2012年高考(安徽文))要得到函数cos(21)y x =+的图象,只要将函数cos 2y x =的图象( )A .向左平移1个单位B .向右平移1个单位C .向左平移12个单位 D .向右平移12个单位 二、填空题18.(2012年高考(重庆文))设△ABC 的内角A B C 、、 的对边分别为a b c 、、,且1cos 4a b C ==1,=2,,则sin B =____ 19.(2012年高考(陕西文))在三角形ABC 中,角A,B,C 所对应的长分别为a,b,c,若a=2 ,B=6π则b=______ 20.(2012年高考(福建文))在ABC ∆中,已知60,45,BAC ABC BC ∠=︒∠=︒,则AC =_______.21.(2012年高考(大纲文))当函数sin (02)y x x x π=≤<取最大值时,x =____.22.(2012年高考(北京文))在△ABC 中,若3a =,3b =3A π∠=,则C ∠的大小为___________.三、解答题23.(2012年高考(重庆文))(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分)设函数()sin()f x A x ωϕ=+(其中0,0,A ωπϕπ>>-<< )在6x π=处取得最大值2,其图象与轴的相邻两个交点的距离为2π(I)求()f x 的解析式; (II)求函数426cos sin 1()()6x x g x f x π--=+的值域.24.(2012年高考(浙江文))在△ABC 中,内角A,B,C 的对边分别为a,b,c,且(1)求角B 的大小;(2)若b=3,sinC=2sinA,求a,c 的值.25.(2012年高考(天津文))在ABC ∆中,内角,,A B C 所对的分别是,,a b c .已知2,,cos 4a c A ==-.(I)求sin C 和b 的值; (II)求cos(2)3A π+的值.26.(2012年高考(四川文))已知函数21()cossin cos 2222x x x f x =--. (Ⅰ)求函数()f x 的最小正周期和值域;(Ⅱ)若()f α=求sin 2α的值.27.(2012年高考(上海文))海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y 轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰在失事船的正南方向12海里A 处,如图. 现假设:①失事船的移动路径可视为抛物线24912x y =;②定位后救援船即刻沿直线匀速前往救援;③救 援船出发t 小时后,失事船所在位置的横坐标为t 7.(1)当5.0=t 时,写出失事船所在位置P 的纵坐标. 若此时 两船恰好会合,求救援船速度的大小和方向;(2)问救援船的时速至少是多少海里才能追上失事船?28.(2012年高考(陕西文))函数()sin()16f x A x πω=-+(0,0A ω>>)的最大值为3, 其图像相邻两条对称轴之间的距离为2π, (1)求函数()f x 的解析式; (2)设(0,)2πα∈,则()22f α=,求α的值.29.(2012年高考(山东文))(本小题满分12分)在△ABC 中,内角,,A B C 所对的边分别为,,a b c ,已知sin (tan tan )tan tan B A C A C +=. (Ⅰ)求证:,,a b c 成等比数列;(Ⅱ)若1,2a c ==,求△ABC 的面积S .30.(2012年高考(辽宁文))在ABC ∆中,角A 、B 、C 的对边分别为a ,b ,c .角A ,B ,C成等差数列.(Ⅰ)求cos B 的值;(Ⅱ)边a ,b ,c 成等比数列,求sin sin A C 的值.31.(2012年高考(课标文))已知a ,b ,c 分别为ABC ∆三个内角A ,B ,C 的对边,sin sin c C c A -. (Ⅰ)求A ;(Ⅱ)若a =2,ABC ∆求b ,c .32.(2012年高考(江西文))△ABC 中,角A,B,C 的对边分别为a,b,c.已知3cos(B-C)-1=6cosBcosC. (1)求cosA;(2)若a=3,△ABC 的面积为22求b,c.33.(2012年高考(湖南文))已知函数()sin()(,0,02f x A x x R πωϕωω=+∈><<的部分图像如图5所示.(Ⅰ)求函数f(x)的解析式; (Ⅱ)求函数()()()1212g x f x f x ππ=--+的单调递增区间.34.(2012年高考(湖北文))设函数22()sin cos cos ()f x x x x x x R ωωωωλ=+-+∈的图像关于直线x π=对称,其中,ωλ为常数,且1(,1)2ω∈ (1) 求函数()f x 的最小正周期; (2) 若()y f x =的图像经过点(,0)4π,求函数()f x 的值域.35.(2012年高考(广东文))(三角函数)已知函数()cos 46x f x A π⎛⎫=+⎪⎝⎭,x ∈R ,且3f π⎛⎫⎪⎝⎭(Ⅰ)求A 的值;(Ⅱ)设α、0,2πβ⎡⎤∈⎢⎥⎣⎦,4304317f απ⎛⎫+=- ⎪⎝⎭,28435f βπ⎛⎫-= ⎪⎝⎭,求()cos αβ+的值.36.(2012年高考(福建文))某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.(1)2sin 13cos17sin13cos17︒+︒-︒︒ (2)2sin 15cos15sin15cos15︒+︒-︒︒ (3)2sin 18cos12sin18cos12︒+︒-︒︒ (4)2sin (18)cos48sin(18)cos48-︒+︒--︒︒ (5)2sin (25)cos55sin(25)cos55-︒+︒--︒︒ Ⅰ 试从上述五个式子中选择一个,求出这个常数Ⅱ 根据(Ⅰ)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.37.(2012年高考(大纲文))ABC ∆中,内角A.B.C 成等差数列,其对边,,a b c 满足223b ac =,求A .38.(2012年高考(北京文))已知函数(sin cos )sin 2()sin x x xf x x-=.(1)求()f x 的定义域及最小正周期; (2)求()f x 的单调递减区间.39.(2012年高考(安徽文))设ABC ∆的内角,,A B C 所对的边为,,a b c ,且有2s i n c o s s i n c o s c o s sB A AC A C =+ (Ⅰ)求角A 的大小;(II) 若2b =,1c =,D 为BC 的中点,求AD 的长.2012年高考文科数学解析分类汇编:三角函数参考答案一、选择题 1. 【答案】:C【解析】:sin 47sin17cos30sin(3017)sin17cos30cos17cos17-+-=sin 30cos17cos30sin17sin17cos30sin 30cos171sin 30cos17cos172+-====【考点定位】本题考查三角恒等变化,其关键是利用473017=+2. 【答案】A【命题意图】本题主要考查了三角函数中图像的性质,具体考查了在x 轴上的伸缩变换,在x 轴、y 轴上的平移变化,利用特殊点法判断图像的而变换. 【解析】由题意,y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),即解析式为y=cosx+1,向左平移一个单位为y=cos(x-1)+1,向下平移一个单位为y=cos(x-1),利用特殊点,02π⎛⎫⎪⎝⎭变为1,02π⎛⎫- ⎪⎝⎭,选A. 3. 【解析】函数向右平移4π得到函数)4sin()4(sin )4()(ωπωπωπ-=-=-=x x x f x g ,因为此时函数过点)0,43(π,所以0)443(sin =-ππω,即,2)443(πωπππωk ==-所以Z k k ∈=,2ω,所以ω的最小值为2,选D.4. [答案]B1010cos 1sin 10103ECED 2CD-EC ED CED cos 1CD 5CB AB EA EC 2AD AE ED 11AE ][22222222=∠-=∠=∙+=∠∴==++==+=∴=CED CED )(,正方形的边长也为解析[点评]注意恒等式sin 2α+cos 2α=1的使用,需要用α的的范围决定其正余弦值的正负情况.5. [解析] 由条件结合正弦定理,得222c b a <+,再由余弦定理,得0cos 2222<=-+abc b a C ,所以C 是钝角,选A.6. 解析:0a b ⋅=,212cos 0θ-+=,2cos 22cos 10θθ=-=,故选C.7. 解析:由90≤≤x 可知67363ππππ≤-≤-x ,可知]1,23[)36sin(-∈-ππx ,则2sin [63x y ππ⎛⎫=-∈ ⎪⎝⎭,则最大值与最小值之和为2答案应选A.8. 【答案】A【解析】2sin cos (sin cos )2,sin 21,ααααα-=∴-=∴=- 故选A 【点评】本题主要考查三角函数中的倍角公式以及转化思想和运算求解能力,属于容易题.9. 【命题意图】本题主要考查三角函数的图像与性质,是中档题.【解析】由题设知,πω=544ππ-,∴ω=1,∴4πϕ+=2k ππ+(k Z ∈), ∴ϕ=4k ππ+(k Z ∈),∵0ϕπ<<,∴ϕ=4π,故选A.10. 【答案】B【解析】主要考查三角函数的运算,分子分母同时除以cos α可得tan 3α=-,带入所求式可得结果. 11. 【答案】B【解析】设AB c =,在△ABC 中,由余弦定理知2222cos AC AB BC AB BC B =+-⋅⋅,即27422cos60c c =+-⨯⨯⨯,2230,(-3)(1)c c c c --=+即=0.又0, 3.c c >∴=设BC 边上的高等于h ,由三角形面积公式11sin 22ABC S AB BC B BC h == ,知1132sin 60222h ⨯⨯⨯=⨯⨯ ,解得2h =. 【点评】本题考查余弦定理、三角形面积公式,考查方程思想、运算能力,是历年常考内容.12. D 【解析】因为,,a b c 为连续的三个正整数,且>>A B C ,可得a b c >>,所以2,1=+=+a c b c ①;又因为已知320cos =b a A ,所以3cos 20bA a=②.由余弦定理可得222cos 2+-=b c a A bc③,则由②③可得2223202b b c aa b c +-=④,联立①④,得2713600--=c c ,解得4=c 或157=-c (舍去),则6=a ,5=b .故由正弦定理可得,sin :sin :sin ::6:5:4==A B C a b c .故应选D.【点评】本题考查正、余弦定理以及三角形中大角对大边的应用.本题最终需求解三个角的正弦的比值,明显是要利用正弦定理转化为边长的比值,因此必须求出三边长.来年需注意正余弦定理与和差角公式的结合应用.13.解析:B.由正弦定理,可得sin 45sin60AC BC=︒︒,所以2AC == 14. 【答案】C【解析】把4x π=-代入后得到()1f x =-,因而对称轴为4x π=-,答案C 正确.【考点定位】此题主要考查三角函数的图像和性质,代值逆推是主要解法. 15.答案A【命题意图】本试题主要考查了同角三角函数关系式的运用以及正弦二倍角公式的运用.【解析】因为α为第二象限角,故cos 0α<,而3sin 5α=,故4cos 5α==-,所以24sin 22sin cos 25ααα==-,故选答案A.16.答案C【命题意图】本试题主要考查了偶函数的概念与三角函数图像性质,. 【解析】由[]()sin(0,2)3x f x ϕϕπ+=∈为偶函数可知,y 轴是函数()f x 图像的对称轴,而三角函数的对称轴是在该函数取得最值时取得,故3(0)sin13()3322f k k k Z ϕϕπππϕπ==±⇒=+⇒=+∈,而[]0,2ϕπ∈,故0k =时,32πϕ=,故选答案C. 17. 【解析】选C cos 2cos(21)y x y x =→=+左+1,平移12二、填空题 18. 【答案】【解析】11,2,cos 4a b C ===,由余弦定理得22212cos 1421244c a b ab C =+-=+-⨯⨯⨯=,则2c =,即B C=,故sin B ==. 【考点定位】利用同角三角函数间的基本关系式求出sin B 的值是本题的突破点,然后利用正弦定理建立已知和未知之间的关系,同时要求学生牢记特殊角的三角函数值.19.解析:由余弦定理得,2222cos 4b a c ac B =+-=,所以2b =. 20.【解析】由正弦定理得sin 45sin 60AC AC =⇒=︒︒【考点定位】本题考查三角形中的三角函数,正弦定理,考醒求解计算能力.21.答案:56π 【命题意图】本试题主要考查了三角函数性质的运用,求解值域的问题.首先化为单一三角函数,然后利用定义域求解角的范围,从而结合三角函数图像得到最值点.【解析】由sin 2sin()3y x x x π==-由502333x x ππππ≤<⇔-≤-<可知22sin()23x π-≤-≤ 当且仅当332x ππ-=即116x π=时取得最小值,32x ππ-=时即56x π=取得最大值.22. 【答案】2π【解析】222cos 232b c a A c bc+-=⇒=而sin sin c a C A =,故sin 12C C π=⇒=. 【考点定位】本小题主要考查的是解三角形,所用方法并不唯一,对于正弦定理和余弦定理此二者会其一都可以得到最后的答案.三、解答题23. 【答案】:(Ⅰ)6πϕ=(Ⅱ)775[1,)(,]4422231cos 1(cos )22x x =+≠因2cos [0,1]x ∈,且21cos 2x ≠故()g x 的值域为775[1,)(,]44224. 【命题意图】本题主要考查了正弦定理、余弦定理、三角形内角和定理,考查考生对基知识、基本技能的掌握情况.【解析】(1) bsinA=acosB,由正弦定理可得sin sin cos B A A B =,即得tan B =3B π∴=.(2)sinC=2sinA,由正弦定理得2c a=,由余弦定理2222cos b a c ac B =+-,229422cos3a a a a π=+-⋅,解得a =2c a ∴==25.解:(1)在ABC ∆中,由cos A =,可得sin A =,又由s i n s i n a c A C =及2a =,c =可得sin 4C =由22222cos 20a b c bc A b b =+-⇒+-=,因为0b >,故解得1b =.所以sin 14C b == (2)由2cos 4A =-,sin 4A =,得23cos 22cos 14A A =-=-,7sin 2sin cos A A A ==所以321cos(2)cos 2cossin 2sin333A A A πππ-++=-=26. [解析](1)由已知,f(x)=212x cos 2x sin 2x cos2-- 21sinx 21cosx 121--+=)( )(4x cos 22π+= 所以f(x)的最小正周期为2π,值域为⎥⎥⎦⎤⎢⎣⎡-22,22, (2)由(1)知,f(α)=,)(10234cos 22=+πα 所以cos(534=+πα). 所以)()(42cos 22cos 2sin πααπα+-=+-=257251814cos 212=-=+-=)(πα, [点评]本小题主要考查三角函数的性质、两角和的正(余)弦公式、二倍角公式等基础知识,考查运算能力,考查化归与转化等数学思想.27. [解](1)5.0=t 时,P 的横坐标x P =77=t,代入抛物线方程24912x y = 中,得P 的纵坐标y P =3 由|AP |=2949,得救援船速度的大小为949海里/时由tan∠OAP =30712327=+,得∠OAP =arctan 307,故救援船速度的方向为北偏东arctan 307弧度(2)设救援船的时速为v 海里,经过t 小时追上失事船,此时位置为)12,7(2t t . 由222)1212()7(++=t t vt ,整理得337)(1442122++=tt v因为2212≥+t t ,当且仅当t =1时等号成立,所以22253372144=+⨯≥v ,即25≥v .因此,救援船的时速至少是25海里才能追上失事船28.29.解:(I)由已知得:sin (sin cos cos sin )sin sin B A C A C A C +=,sin sin()sin sin B A C A C +=,则2sin sin sin B A C =,再由正弦定理可得:2b ac =,所以,,a b c 成等比数列.(II)若1,2a c ==,则22b ac ==,∴2223cos 24a cb B ac +-==,sin C ==,∴△ABC 的面积11sin 1222S ac B ==⨯⨯=. 30. 【答案与解析】(1)由已知12=+,++=,=,cos =32B AC A B C B B ππ∴ (2)解法一:2=b ac ,由正弦定理得23sin sin =sin =4A CB 解法二:2=b ac ,222221+-+-=cos ==222a c b a c acB ac ac,由此得22+-=,a c ac ac 得=a c所以===3A B C π,3sin sin =4A C 【点评】本题主要考查三角形的正弦定理、余弦定理、三角形内角和定理及等差、等比数列的定义,考查转化思想和运算求解能力,属于容易题.第二小题既可以利用正弦定理把边的关系转化为角的关系,也可以利用余弦定理得到边之间的关系,再来求最后的结果.31. 【命题意图】本题主要考查正余弦定理应用,是简单题.【解析】(Ⅰ)由sin sin c C c A =-及正弦定理得sin sin sin sin A C A C C -=由于sin 0C ≠,所以1sin()62A π-=, 又0A π<<,故3A π=.(Ⅱ) ABC ∆的面积S =1sin 2bc A 3故bc =4, 而 2222cos a b c bc A =+- 故22c b +=8,解得b c ==2. 法二:解: 已知:A c C a c cos sin 3⋅-⋅=,由正弦定理得:A C C A C cos sin sin sin 3sin ⋅-⋅=因0sin ≠C ,所以:A A cos sin 31-=,由公式:()⎪⎭⎫ ⎝⎛<=>++=+2,tan ,0sin cos sin 22πϕϕϕa b a x b a x b x a 得:216sin =⎪⎭⎫ ⎝⎛-πA , A 是∆的内角,所以66ππ=-A ,所以:3π=A(2) 1sin 42S bc A bc ==⇔= 2222cos 4a b c bc A b c =+-⇔+=解得:2b c ==32. 【解析】(1)3(cos cos sin sin )16cos cos 3cos cos 3sin sin 13cos()11cos()3B C B C B C B C B C B C A π+-=-=-+=--=-则1cos 3A =. (2) 由(1)得sin 3A =,由面积可得bc=6①,则根据余弦定理 2222291cos 2123b c a b c A bc +-+-===则2213b c +=②,①②两式联立可得32b a =⎧⎪⎨=⎪⎩或32a b =⎧⎪⎨=⎪⎩. 33. 【解析】(Ⅰ)由题设图像知,周期11522(),21212T Tππππω=-=∴==. 因为点5(,0)12π在函数图像上,所以55sin(2)0,sin()0126A ππϕϕ⨯+=+=即. 又55450,,=26636πππππϕϕϕπ<<∴<+<+ 从而,即=6πϕ.又点0,1()在函数图像上,所以s i n 1,26A A π==,故函数f(x)的解析式为()2sin(2).6f x x π=+(Ⅱ)()2sin 22sin 2126126g x x x ππππ⎡⎤⎡⎤⎛⎫⎛⎫=-+-++ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦2sin 22sin(2)3x x π=-+12sin 22(sin 22)2x x x =-sin 2x x =2sin(2),3x π=- 由222,232k x k πππππ-≤-≤+得5,.1212k x k k z ππππ-≤≤+∈ ()g x ∴的单调递增区间是5,,.1212k k k z ππππ⎡⎤-+∈⎢⎥⎣⎦【点评】本题主要考查三角函数的图像和性质.第一问结合图形求得周期1152(),1212T πππ=-=从而求得22Tπω==.再利用特殊点在图像上求出,A ϕ,从而求出f(x)的解析式;第二问运用第一问结论和三角恒等变换及sin()y A x ωϕ=+的单调性求得.34. 【解析】(1)因为22()sin cos cos cos 222sin(2)6f x x x x x x x πωωωωλωωλωλ=-++=-++=-+由直线x π=是()y f x =图像的一条对称轴,可得sin(2)16x πω-=±所以2()62x k k Z ππωπ-=+∈,即1()23k k Z ω=+∈又1(,1),2k Z ω∈∈,所以1k =时,56ω=,故()f x 的最小正周期是65π.(2)由()y f x =的图象过点(,0)4π,得()04f π=即52sin()2sin 26264πππλ=-⨯-=-=,即2λ=-故5()2sin()236f x x π=--函数()f x 的值域为[22,2.【点评】本题考查三角函数的最小正周期,三角恒等变形;考查转化与划归,运算求解的能力.二倍角公式,辅助角公式在三角恒等变形中应用广泛,它在三角恒等变形中占有重要的地位,可谓是百考不厌. 求三角函数的最小正周期,一般运用公式2T πω=来求解;求三角函数的值域,一般先根据自变量x 的范围确定函数x ωϕ+的范围.来年需注意三角函数的单调性,图象变换,解三角形等考查.35.解析:(Ⅰ)1cos cos 34364f A A A ππππ⎛⎫⎛⎫=⨯+===⎪ ⎪⎝⎭⎝⎭所以2A =. (Ⅱ)4143042cos 42cos 2sin 3436217f ππαπαπαα⎡⎤⎛⎫⎛⎫⎛⎫+=++=+=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,所以15sin 17α=.212842cos 42cos 34365f πβπβπβ⎡⎤⎛⎫⎛⎫-=-+== ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以4cos 5β=.因为α、0,2πβ⎡⎤∈⎢⎥⎣⎦,所以8c o s n17α=,3sin 5β=,所以()8415313c o s c os c o s s i n s i n 17517585αβαβαβ+=-=⨯-⨯=-. 36. 【考点定位】本题主要考查同角函数关系、两角和与差的三角函数公式、二倍角公式,考查运算能力、特殊与一般思想、化归与转化的思想.解:(1)选择(2)式计算如下213sin 15cos15sin15cos151sin 3024︒+︒-︒︒=-︒= (2)证明:22sin cos (30)sin cos(30)αααα+︒--︒-22sin (cos30cos sin30sin )sin (cos30cos sin30sin )αααααα=+︒+︒-︒+︒2222311sin cos cos sin cos sin 442αααααααα=+++-22333sin cos 444αα=+= 37. 【命题意图】: 本试题主要考查了解三角形的运用.该试题从整体看保持了往年的解题格,依然是通过边角的转换,结合了三角形的内角和定理的知识,以及正弦定理求解三角形中的角的问题.试题整体上比较稳定,思路比较容易想,先利用等差数列得到角B ,然后利用正弦定理与三角求解运算得到答案.【解析】由A.B.C 成等差数列可得2B A C =+,而A B C π++=,故33B B ππ=⇒=且23C A π=- 而由223b ac=与正弦定理可得2222sin 3sin sin 2sin 3sin()sin 33B AC A A ππ=⇒⨯=- 所以可得232223(s 433A A Aππ⨯=-⇒+=⇒1cos 2121sin(2)262A A A π-+=⇒-=,由27023666A A ππππ<<⇒-<-<,故 266A ππ-=或5266A ππ-=,于是可得到6A π=或2A π=.38. 【考点定位】本题考查三角函数,三角函数难度较低,此类型题平时的练习中练习得较多,考生应该觉得非常容易入手.解:(1)由sin 0x ≠得,()x k k Z π≠∈,故()f x 的定义域为{|,}x R x k k Z π∈≠∈. 因为(s()sin x xxf x x-==2cos (sin cos )x x x -=sin 2cos 21x x --=)14x π--,所以()f x 的最小正周期22T ππ==.(2)函数sin y x =的单调递减区间为3[2,2]()22k k k Z ππππ++∈.由3222,()242k x k x k k Z ππππππ+≤-≤+≠∈得37,()88k x k k Z ππππ+≤≤+∈ 所以()f x 的单调递减区间为37[],()88k x k k Z ππππ+≤≤+∈. 39. 【解析】(Ⅰ),,(0,)sin()sin 0A C B A B A C B ππ+=-∈⇒+=>2sin cos sin cos cos sin sin()sin B A A C A C A C B =+=+= 1cos 23A A π⇔=⇔=(II)2222222cos 2a b c bc A a b a c B π=+-⇔==+⇒=在Rt ABD ∆中,AD ===。
高考数学各地名校试题解析分类汇编(一)5 三角函数3 文
各地解析分类汇编:三角函数(3)1 【云南省玉溪一中2013届高三第四次月考文】已知函数()2sin()f x x ωϕ=+(0,0π)ωϕ><<的图象如图所示,则ω等于( )A .13 B .1 C .32D .2 (第3题图 ) 【答案】C 【解析】由图象可知153122888T πππ=-=,所以3T π=,又23T ππω==,所以23ω=,选C.2 【云南省玉溪一中2013届高三第四次月考文】要得到)32sin(π-=x y 的图象,只要将x y 2sin =的图象( )A.向左平移3π个单位B.向右平移3π个单位 C.向右平移6π个单位 D.向左平移6π个单位【答案】C【解析】因为sin(2)sin 2()36y x x ππ=-=-,所以要得到)32sin(π-=x y 的图象,只要将x y 2sin =的图象向右平移6π个单位,选C.【云南省玉溪一中2013届高三第四次月考文】在ABC ∆中,ab b c a 3222=+-,则∠C=( )A.30°B.45°C.60°D.120° 【答案】A【解析】由余弦定理可得222cos 222a b c C ab ab +-===,所以6C π=,选A.4 【云南省玉溪一中2013届高三第三次月考文】设向量a =(1,cos θ)与b=(-1, 2cos θ)垂直,则cos2θ等于 ( )A2 B 12C .0 D.-1 【答案】C【解析】因为向量a b ⊥ ,所以0a b = ,即212cos 0θ-+=,即cos20θ=,选C.5 【云南省玉溪一中2013届高三上学期期中考试文】定义运算:222x y x y xy *=-+,则sincos33ππ*的值是( )A .12BC .12D【答案】D【解析】由定义运算得22sincos(sin )(cos )2sin cos 333333ππππππ*=-+221131()22244=-+=-+=,选D. 6 【云南省玉溪一中2013届高三上学期期中考试文】将函数y=sin(2x+4π)的图象向左平移4π个单位,再向上平移2个单位,则所得图象的函数解析式是( ) A .y=2cos 2(x+8π) B .y=2sin 2(x+8π)C .sin(2)4y x π=-- D .y=cos2x 【答案】C【解析】函数向左平移4π个单位得到函数3sin[2()]sin(2)444y x x πππ=++=+,再向上平移2个单位得到3sin(2)24y x π=++,即sin(2)4y x π=--,选C. 7 【云南省玉溪一中2013届高三第三次月考文】函数]),0[)(26sin(2ππ∈-=x x y 为增函数的区间是( ) A.]3,0[πB.]127,12[ππC. ]65,3[ππD.],65[ππ【答案】C【解析】因为2sin(2)2sin(2)66y x x ππ=-=--,由3222,262k x k k Z πππππ+≤-≤+∈,解得5,36k x k k Z ππππ+≤≤+∈,即函数的增区间为5[,]36k k k Z ππππ++∈,所以当0k =时,增区间为5[,]36ππ,选C.8 【云南省昆明一中2013届高三新课程第一次摸底测试文】在△ABC 中的内角A 、B 、C 所对的边分别为a ,b ,c ,若2cos ,2cos ,b c A c b A ==则△ABC 的形状为 A .直角三角形 B .锐角三角形 C .等边三角形D .等腰直角三角形【答案】C【解析】由正弦定理得sin 2sin cos ,sin 2sin cos ,B C A C B A ==,即s i n ()2s i nc o s s i n A C C A A C A C +==+,即sin cos cos sin 0A C A C -=,所以sin()0,A C A C -==,同理可得A B =,所以三角形为等边三角形,选C.9 【天津市新华中学2013届高三上学期第一次月考数学(文)】若角︒600的终边上有一点()a ,4-,则a 的值是( )A. 34B. 34-C. 34±D. 3【答案】B【解析】因为000600360240=+为第三象限,所以0a <,00tan 600tan 240tan 604a====- ,所以a =- B. 10 【天津市新华中学2013届高三上学期第一次月考数学(文)】下图是函数()()R x x A y ∈+=ϕωs i n 在区间⎥⎦⎤⎢⎣⎡-65,6ππ上的图象,为了得到这个函数的图象,只要将()R x x y ∈=sin 的图象上所有的点( )A. 向左平移3π个单位长度,再把所得各点的横坐标缩短到原来的21倍,纵坐标不变B. 向左平移3π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C. 向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的21倍,纵坐标不变D. 向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变【答案】A【解析】由图象知1A =,5()66T πππ=--=,又2T ππω==,所以2ω=,所以函数为sin(2)y x ϕ=+,当3x π=时,23πϕπ⨯+=,解得3πϕ=,所以函数为sin(2)3y x π=+所以要得到函数sin(2)3y x π=+,则只要sin y x =先向左平移3π单位,然后再把所得各点的横坐标缩短到原来的21倍,纵坐标不变,选A. 11 【云南省昆明一中2013届高三新课程第一次摸底测试文】函数cos(2)[,]62y x πππ=+-在区间的简图是【答案】B【解析】将cos 2y x =的图象向左平移12π个单位得到函数cos 2()cos(2)126y x x ππ=+=+的图象,选B.12 【云南省昆明一中2013届高三新课程第一次摸底测试文】化简2sin 44sin ()tan()44αππαα+-得A .sin 2αB .cos2αC .sin αD .cos α【答案】A【解析】224sin ()tan()4cos ()tan()4cos()sin()444444ππππππαααααα+-=--=-- 2sin(2)2cos 22παα=-=,所以2sin 4sin 42sin 2cos 2sin 22cos 22cos 24sin ()tan()44αααααππαααα===+-,选A.13 【山东省兖州市2013届高三9月入学诊断检测 文】函数2sin (09)63x y x ππ⎛⎫=-≤≤ ⎪⎝⎭的最大值与最小值之和为( )(A)2 (B)0 (C)-1(D)1-【答案】A【解析】当09x ≤≤时,3062xππ≤≤,336323x πππππ-≤-≤-,即73636x ππππ-≤-≤,所以当633x πππ-=-时,函数有最小值2(2⨯-=632x πππ-=时,函数有最大值2,所以最大值和最小值之和为2,选A. 14 【山东省兖州市2013届高三9月入学诊断检测 文】在则这个三角形的形状为中,若在,cos cos B b A a ABC =∆( )A .等腰三角形B .直角三角形C . 等腰三角形或直角三角形D . 等腰直角三角形 【答案】C【解析】根据正弦定理可知cos cos sin cos sin cos a A b B A A B B =⇒=,即s i n 2s i n A B =,所以22A B =或22A B π=-,即A B =或2A B π+=,即2C π=,所以三角形为等腰三角形或直角三角形,选C.15 【天津市天津一中2013届高三上学期一月考 文】函数()cos 22sin f x x x =+的最小值和最大值分别为( )A. 3,1-B.2,2-C. 33,2- D. 32,2- 【答案】C【解析】22()cos 22sin 12sin 2sin 2(sin sin )1f x x x x x x x =+=-+=--+2132(sin )22x =--+,因为1sin 1x -≤≤,所以当1sin 2x =时,函数有最大值32,当sin 1x =-时,函数有最小值3-,选C. 16 【天津市天津一中2013届高三上学期一月考 文】 已知函数2()(1c o s 2)s i n ,f x x x x R =+∈,则()f x 是( )A .最小正周期为π的奇函数 B.最小正周期为2π的奇函数 C.最小正周期为π的偶函数 D.最小正周期为2π的偶函数【答案】D【解析】222211()(1cos 2)sin 2cos sin sin 2(1cos 4)24f x x x x x x x =+===-,所以函数为偶函数,周期2242T πππω===,选D. 17 【天津市天津一中2013届高三上学期一月考 文】要得到函数x y cos 2=的图象,只需将函数)42sin(2π+=x y 的图象上所有的点( ) A .横坐标缩短到原来的21倍(纵坐标不变),再向左平行移动8π个单位长度B.横坐标缩短到原来的21倍(纵坐标不变),再向右平行移动4π个单位长度C.横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动4π个单位长度D.横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动8π个单位长度【答案】C 【解析】将函数)42sin(2π+=x y 的图象上所有的点横坐标伸长到原来的2倍(纵坐标不变),得到)4y x π=+,然后向左平移4π个单位得到函数442y x x x πππ=+++,选C.18 【山东省烟台市莱州一中2013届高三10月月考(文)】已知a 3a 4sin ,cos 2525==-,那么角a 的终边在 A.第一象限 B.第三或第四象限 C.第三象限 D.第四象限【答案】D【解析】因为3424sin 2sincos2()0225525ααα==⨯⨯-=-<且sin 1α≠-,所以α为三或四象限.又2247cos 2cos 12()10525αα=-=--=>且cos 1α≠,所以α为一或四象限,综上α的终边在第四象限,选D.19 【山东省烟台市莱州一中2013届高三10月月考(文)】要得到函数y sin x 3π⎛⎫=-⎪⎝⎭的图象,只需将函数y sin x 6π⎛⎫=-⎪⎝⎭的图象 A.向左平移6π个单位 B.向右平移6π单位 C.向左平移2π个单位D.向右平移2π个单位【答案】B【解析】因为y sin x sin(x)sin[(x )]36666πππππ⎛⎫=-=+-=--⎪⎝⎭,所以只需将函数y sin x 6π⎛⎫=- ⎪⎝⎭的图象向右平移6π单位,选B.20 【山东省烟台市莱州一中2013届高三10月月考(文)】已知函数()()()f x 2sin x 0,0=ω+ϕωϕπ><<,且函数的图象如图所示,则点(),ωκ的坐标是A.2,3π⎛⎫ ⎪⎝⎭B.4,3π⎛⎫ ⎪⎝⎭C.22,3π⎛⎫ ⎪⎝⎭D.24,3π⎛⎫ ⎪⎝⎭【答案】D 【解析】由图象可知56()22424244T ππππ=--==,所以2T π=,又22T ππω==,所以4ω=,即()()f x 2sin 4x =+ϕ,又55f 2sin()2246ππ⎛⎫=+ϕ=-⎪⎝⎭,所以5s i n ()16π+ϕ=-,即52k 62ππ+ϕ=-+π,542k 2k 263πππϕ=--+π=-+π,因为0ϕπ<<,所以当1k =时,42233ππϕ=-+π=,选D. 21 【天津市新华中学2012届高三上学期第二次月考文】ABC ∆中,若2lg sin lg lg lg -==-B c a 且)2,0(π∈B ,则ABC ∆的形状是A. 等边三角形B. 等腰三角形C. 等腰直角三角形D. 直角三角形 【答案】C【解析】由2lg sin lg lg lg -==-B c a ,得l g l g s i nl g a B c==,所以得sin ,sin 22a B B c ===,所以4B π=。
2012年高考真题理科数学解析分类汇编5三角函数
2012年高考真题理科数学解析分类汇编5 三角函数一、选择题1.【2012高考重庆理5】设tan ,tan αβ是方程2320x x -+=的两个根,则tan()αβ+的值为 (A )-3 (B )-1 (C )1 (D )3 【答案】A【解析】因为βαtan ,tan 是方程2320x x -+=的两个根,所以3tan tan =+βα,2tan tan =βα,所以3213tan tan 1tan tan )tan(-=-=-+=+βαβαβα,选A.2.【2012高考浙江理4】把函数y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移 1个单位长度,得到的图像是【答案】A【解析】把函数y =cos2x +1的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变)得:y 1=cos x +1,向左平移1个单位长度得:y 2=cos(x +1)+1,再向下平移1个单位长度得:y 3=cos(x+1).令x =0,得:y 3>0;x =12-π,得:y 3=0;观察即得答案. 3.【2012高考新课标理9】已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减.则ω的取值范围是( )()A 15[,]24 ()B 13[,]24()C 1(0,]2 ()D (0,2]【答案】A【解析】法1:函数)4s i n()(πω+=x x f 的导数为)4c o s ()('πωω+=x x f ,要使函数)4s i n ()(πω+=x x f 在),2(ππ上单调递减,则有0)4cos()('≤+=πωωx x f 恒成立,则πππωππk x k 223422+≤+≤+,即ππωππk x k 24524+≤≤+,所以Z k k x k ∈+≤≤+,ωπωπωπωπ2424,当0=k 时,ωπωπ454≤≤x ,又ππ<<x 2,所以有πωππωπ≥≤45,24,解得45,21≤≥ωω,即4521≤≤ω,选A. 法2:选A592()[,]444x πππωω=⇒+∈ 不合题意 排除()D351()[,]444x πππωω=⇒+∈ 合题意 排除()()B C另:()22πωππω-≤⇔≤,3()[,][,]424422x ππππππωωπω+∈++⊂ 得:315,2424224πππππωπωω+≥+≤⇔≤≤ 4.【2012高考四川理4】如图,正方形ABCD 的边长为1,延长BA 至E ,使1AE =,连接EC 、ED 则sin CED ∠=( )A、10 B、10 C、10 D、15【答案】B【解析】2EB EA AB =+=,EC =3424EDC EDA ADC πππ∠=∠+∠=+=,由正弦定理得sin sin CED DC EDC CE ∠===∠,所以3sin sin sin 55410CED EDC π∠=∠==[点评]注意恒等式sin 2α+cos 2α=1的使用,需要用α的的范围决定其正余弦值的正负情况.5.【2012高考陕西理9】在ABC ∆中,角,,A B C 所对边长分别为,,a b c ,若2222a b c +=,则cos C 的最小值为( )A.B. C. 12 D. 12-【答案】C.【解析】由余弦定理知214242)(212cos 222222222=≥+=+-+=-+=ab ab ab b a ab b a b a ab c b a C ,故选C.6.【2012高考山东理7】若42ππθ⎡⎤∈⎢⎥⎣⎦,,sin 2θ,则sin θ=(A )35 (B )45 (C )4(D )34 【答案】D【解析】法1:因为]2,4[ππθ∈,所以],2[2ππθ∈,02cos <θ,所以812sin 12cos 2-=--=θθ,又81sin 212cos 2-=-=θθ,所以169sin 2=θ,43sin =θ,选D.法2:由42ππθ⎡⎤∈⎢⎥⎣⎦,及sin 2=8θ可得434716776916761687312sin 1cos sin +=++=+=+=+=+θθθ, 而当42ππθ⎡⎤∈⎢⎥⎣⎦,时θθcos sin >,结合选项即可得47cos ,43sin ==θθ.答案应选D ·7.【2012高考辽宁理7】已知sin cos αα-=α∈(0,π),则tan α=(A) -1 (B) (C) (D) 1 【答案】A【解析一】sin cos )sin()144ππαααα-=-=∴-=3(0),,tan 14παπαα∈∴=∴=-,,故选A【解析二】2sin cos (sin cos )2,sin 21,ααααα--=∴=-33(0,),2(0,2),2,,tan 124ππαπαπααα∈∴∈∴=∴=∴=-,故选A 【点评】本题主要考查三角函数中的和差公式、倍角公式、三角函数的性质以及转化思想和运算求解能力,难度适中·8.【2012高考江西理4】若tan θ+1tan θ=4,则sin2θ= A .15 B. 14 C. 13 D. 12【答案】D【命题立意】本题考查三角函数的倍角公式以及同角的三角函数的基本关系式·【解析】由4t an 1t an =+θθ得, 4cos sin cos sin sin cos cos sin 22=+=+θθθθθθθθ,即42s i n 211=θ,所以212s i n =θ,选D. 【点评】本题需求解正弦值,显然必须切化弦,因此需利用公式sin tan cos θθθ=转化;另外,22sin cos θθ+在转化过程中常与“1”互相代换,从而达到化简的目的;关于正弦、余弦的齐次分式,常将正弦、余弦转化为正切,即弦化切,达到求解正切值的目的. 体现考纲中要求理解三角函数的基本关系式,二倍角公式.来年需要注意二倍角公式的正用,逆用等. 9.【2012高考湖南理6】函数f (x )=sinx-cos(x+6π)的值域为A .2 , 2] 【答案】B【解析】f (x )=sinx-cos(x+6π)1sin sin )26x x x x π=+=-, []sin()1,16x π-∈-,()f x ∴值域为【点评】利用三角恒等变换把()f x 化成sin()A x ωϕ+的形式,利用[]sin()1,1x ωϕ+∈-,求得()f x 的值域.10.【2012高考上海理16】在ABC ∆中,若C B A 222sin sin sin <+,则ABC ∆的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不能确定 【答案】C【解析】根据正弦定理可知由C B A 222sin sin sin <+,可知222c b a <+,在三角形中02c o s 222<-+=abc b a C ,所以C 为钝角,三角形为钝角三角形,选C.【点评】本题主要考查正弦定理及其推理、余弦定理的运用.主要抓住所给式子的结构来选择定理,如果出现了角度的正弦值就选择正弦定理,如果出现角度的余弦值就选择余弦定理.本题属于中档题. 11.【2012高考天津理2】设,R ∈ϕ则“0=ϕ”是“))(cos()(R x x x f ∈+=ϕ为偶函数”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分与不必要条件 【答案】A【命题意图】本试题主要考查了三角函数的奇偶性的判定以及充分条件与必要条件的判定.【解析】函数)cos()(ϕ+=x x f 若为偶函数,则有Z k k ∈=,πϕ,所以“0=ϕ”是“)cos()(ϕ+=x x f 为偶函数”的充分不必要条件,选A.12.【2012高考天津理6】在ABC ∆中,内角A ,B ,C 所对的边分别是c b a ,,,已知8b=5c ,C=2B ,则cosC=(A )257 (B )257- (C )257± (D )2524【答案】A【命题意图】本试题主要考查了正弦定理、三角函数中的二倍角公式. 考查学生分析、转化与计算等能力.【解析】因为B C 2=,所以B B B C co s sin 2)2sin (sin ==,根据正弦定理有BbC c sin sin =,所以58sin sin ==B C b c ,所以545821s i n 2s i n c o s =⨯==B C B ·又1cos 2)2cos(cos 2-==B B C ,所以2571251621cos 2cos 2=-⨯=-=B C ,选A.13.【2012高考全国卷理7】已知α为第二象限角,33cos sin =+αα,则cos2α=(A) (B ) (C) 【答案】A【命题意图】本试题主要考查了三角函数中两角和差的公式以及二倍角公式的运用·首先利用平方法得到二倍角的正弦值,然后然后利用二倍角的余弦公式,将所求的转化为单角的正弦值和余弦值的问题· 【解析】因为33cos sin =+αα所以两边平方得31cos sin 21=+αα,所以032cos sin 2<-=αα,因为已知α为第二象限角,所以0c o s,0s i n <>αα,31535321cos sin 21cos sin ==+=-=-αααα,所以)s i n )(co s s i n (c o s s i n c o s 2c os 22ααααααα+-=-==3533315-=⨯-,选A.二、填空题14.【2012高考湖南理15】函数f (x )=sin (x ωϕ+)的导函数()y f x '=的部分图像如图4所示,其中,P 为图像与y 轴的交点,A,C 为图像与x 轴的两个交点,B 为图像的最低点.(1)若6πϕ=,点P 的坐标为(0,则ω= ; (2)若在曲线段ABC 与x 轴所围成的区域内随机取一点,则该点在△ABC 内的概率为 .【答案】(1)3;(2)4π【解析】(1)()y f x '=cos()x ωωϕ=+,当6πϕ=,点P 的坐标为(0)时cos36πωω=∴=; (2)由图知222T AC ππωω===,122ABCS AC πω=⋅=,设,A B 的横坐标分别为,a b . 设曲线段ABC与x 轴所围成的区域的面积为S则()()sin()sin()2bbaaS f x dx f x a b ωϕωϕ'===+-+=⎰,由几何概型知该点在△ABC 内的概率为224ABCSP Sππ===. 【点评】本题考查三角函数的图像与性质、几何概型等,(1)利用点P 在图像上求ω, (2)几何概型,求出三角形面积及曲边形面积,代入公式即得.15.【2012高考湖北理11】设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c . 若()()a b c a b c ab +-++=,则角C = . 【答案】32π 考点分析:考察余弦定理的运用.【解析】222222a =-a -ab 12cos =,2223a b c ba b c C C ab ab π+-+-==-∠=由(+b-c )(a+b-c)=ab,得到根据余弦定理故16.【2012高考北京理11】在△ABC 中,若a =2,b+c=7,cosB=41-,则b=_______· 【答案】4【解析】在△ABC 中,利用余弦定理cb c b c ac b c a B 4))((4412cos 222-++=-⇒-+= c b c 4)(74-+=,化简得:0478=+-b c ,与题目条件7=+c b 联立,可解得⎪⎩⎪⎨⎧===243a b c .17.【2012高考安徽理15】设ABC ∆的内角,,A B C 所对的边为,,a b c ;则下列命题正确的是_____①若2ab c >;则3C π<②若2a b c +>;则3C π<③若333a b c +=;则2C π<④若()2a b c ab +<;则2C π>⑤若22222()2a b c a b +<;则3C π>【答案】①②③【命题立意】本题解三角形的知识,主要涉及余弦定理与基本不等式的运算· 【解析】正确的是_____①222221cos 2223a b c ab ab ab c C C ab ab π+-->⇒=>=⇒< ②2222224()()12cos 2823a b c a b a b a b c C C ab ab π+-+-++>⇒=>≥⇒< ③当2C π≥时,22232233c a b c a c b c a b ≥+⇒≥+>+与333a b c +=矛盾④取2,1a b c ===满足()2a b c ab +<得:2C π<⑤取2,1a b c ===满足22222()2a b c a b +<得:3C π<18.【2012高考福建理13】已知△ABC_________. 【答案】42-. 【命题立意】本题考查了解三角形和等比数列的相关知识,难度适中. 【解析】设最小边长为a ,则另两边为a a 2,2.所以最大角余弦422242cos 222-=⋅-+=aa a a a α 19.【2012高考重庆理13】设ABC ∆的内角,,A B C 的对边分别为,,abc ,且53co s =A ,135cos =B ,3=b 则c =【答案】514 【解析】因为53cos =A ,135cos =B ,所以54s i n=A ,1312sin =B ,655653131213554)sin(sin =⨯+⨯=+=B A C ,根据正弦定理C c B b sin sin =得655613123c =,解得514=c . 20.【2012高考上海理4】若)1,2(-=是直线l 的一个法向量,则l 的倾斜角的大小 为 (结果用反三角函数值表示)· 【答案】2arctan【解析】设倾斜角为α,由题意可知,直线的一个方向向量为(1,2),则2tan =α, ∴α=2arctan ·【点评】本题主要考查直线的方向向量、直线的倾斜角与斜率的关系、反三角函数的表示.直线的倾斜角的取值情况一定要注意,属于低档题,难度较小. 21.【2012高考全国卷理14】当函数取得最大值时,x=___________.【答案】65π=x 【命题意图】本试题主要考查了三角函数性质的运用,求解值域的问题·首先化为单一三角函数,然后利用定义域求解角的范围,从而结合三角函数图像得到最值点· 【解析】函数为)3sin(2cos 3sin π-=-=x x x y ,当π20<≤x 时,3533πππ<-≤-x ,由三角函数图象可知,当23ππ=-x ,即65π=x 时取得最大值,所以65π=x . 22.【2012高考江苏11】(5分)设α为锐角,若4cos 65απ⎛⎫+= ⎪⎝⎭,则)122sin(π+a 的值为 ▲ .【考点】同角三角函数,倍角三角函数,和角三角函数· 【解析】∵α为锐角,即02<<πα,∴2=66263<<πππππα++·∵4cos 65απ⎛⎫+= ⎪⎝⎭,∴3sin 65απ⎛⎫+= ⎪⎝⎭·∴3424sin 22sin cos =2=3665525αααπππ⎛⎫⎛⎫⎛⎫+=++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭·∴7cos 2325απ⎛⎫+= ⎪⎝⎭·∴sin(2)=sin(2)=sin 2cos cos 2sin 12343434a a a a πππππππ⎛⎫⎛⎫++-+-+ ⎪ ⎪⎝⎭⎝⎭ 2427217==2252550-三、解答题23.【2012高考新课标理17】(本小题满分12分)已知,,a bc 分别为ABC ∆三个内角,,A B C 的对边,cos sin 0a C C b c --= (1)求A (2)若2a =,ABC ∆的面积为3;求,b c .【答案】(1)由正弦定理得:cos sin 0sin cos sin sin sin a C C b c A C A C B C --=⇔=+sin cos sin sin()sin 1cos 1sin(30)2303060A C A C a C CA A A A A ︒︒︒︒⇔+=++⇔-=⇔-=⇔-=⇔=(2)1sin 42S bc A bc ==⇔= 2222cos 4a b c bc A b c =+-⇔+=24.【2012高考湖北理17】(本小题满分12分)已知向量(c os s in x x x ωωω=-a ,(cos sin ,)x x x ωωω=--b ,设函数()f x λ=⋅+a b ()x ∈R 的图象关于直线πx =对称,其中ω,λ为常数,且1(,1)2ω∈.(Ⅰ)求函数()f x 的最小正周期;(Ⅱ)若()y f x =的图象经过点π(,0)4,求函数()f x在区间3π[0,]5上的取值范围.【答案】(Ⅰ)因为22()sin cos cos f x x x x xωωωωλ=-+⋅+cos22x x ωωλ=-+π2sin(2)6x ωλ=-+.由直线πx =是()y f x =图象的一条对称轴,可得πsin(2π)16ω-=±,所以ππ2ππ()62k k ω-=+∈Z ,即1()23k k ω=+∈Z .又1(,1)2ω∈,k ∈Z ,所以1k =,故56ω=.所以()f x 的最小正周期是6π5.(Ⅱ)由()y f x =的图象过点π(,0)4,得π()04f =,即5πππ2sin()2sin 6264λ=-⨯-=-=,即λ=故5π()2sin()36f x x =-由3π05x ≤≤,有π5π5π6366x -≤-≤,所以15πsin()1236x -≤-≤,得5π12sin()236x --≤故函数()f x 在3π[0,]5上的取值范围为[12-.25.【2012高考安徽理16】)(本小题满分12分)设函数2())sin 4f x x x π=++· (I )求函数()f x 的最小正周期; (II )设函数()g x 对任意x R ∈,有()()2g x g x π+=,且当[0,]2x π∈时, 1()()2g x f x =-,求函数()g x 在[,0]π-上的解析式·【答案】本题考查两角和与差的三角函数公式、二倍角公式、三角函数的周期等性质、分段函数解析式等基础知识,考查分类讨论思想和运算求解能力·【解析】2111())sin cos 2sin 2(1cos 2)24222f x x x x x x π=++=-+- 11sin 222x =-, (I )函数()f x 的最小正周期22T ππ== (2)当[0,]2x π∈时,11()()sin 222g x f x x =-=当[,0]2x π∈-时,()[0,]22x ππ+∈ 11()()sin 2()sin 22222g x g x x x ππ=+=+=- 当[,)2x ππ∈--时,()[0,)2x ππ+∈ 11()()sin 2()sin 222g x g x x x ππ=+=+=得函数()g x 在[,0]π-上的解析式为1sin 2(0)22()1sin 2()22x x g x x x πππ⎧--≤≤⎪⎪=⎨⎪-≤<⎪⎩·26.【2012高考四川理18】(本小题满分12分)函数2()6cos3(0)2xf x x ωωω=+->在一个周期内的图象如图所示,A 为图象的最高点,B 、C 为图象与x 轴的交点,且ABC ∆为正三角形· (Ⅰ)求ω的值及函数()f x 的值域;(Ⅱ)若0()5f x =,且0102(,)33x ∈-,求0(1)f x +的值·【答案】本题主要考查三角函数的图像与性质、同角三角函数的关系、两角和差公式,倍角公式等基础知识,考查基本运算能力,以及数形结合思想,化归与转化思想. [解析](Ⅰ)由已知可得:2()6cos3(0)2xf x x ωωω=+->=3cosωx+)3sin(32sin 3πωω+=x x又由于正三角形ABC 的高为23,则BC=4 所以,函数482824)(πωωπ===⨯=,得,即的周期T x f所以,函数]32,32[)(-的值域为x f ·……………………6分 (Ⅱ)因为,由538)(0=x f (Ⅰ)有 ,538)34(sin 32)(00=+=ππx x f 54)34(s i n 0=+ππx 即 由x 0)2,2()34x (323100ππππ-∈+-∈),得,( 所以,53)54(1)34(cos 20=-=+ππx 即 故=+)1(0x f =++)344(sin 320πππx ]4)34(sin[320πππ++x)22532254(324sin)34cos(4cos )34([sin 3200⨯+⨯=+++=ππππππx x567=………………………………………………………12分 27.【2012高考陕西理16】(本小题满分12分) 函数()sin()16f x A x πω=-+(0,0A ω>>)的最大值为3, 其图像相邻两条对称轴之间的距离为2π, (1)求函数()f x 的解析式; (2)设(0,)2πα∈,则()22f α=,求α的值· 【解析】(Ⅰ)∵函数()f x 的最大值是3,∴13A +=,即2A =·∵函数图像的相邻两条对称轴之间的距离为2π,∴最小正周期T π=,∴2ω=· 故函数()f x 的解析式为()2sin(2)16f x x π=-+·(Ⅱ)∵()2f α2sin()126πα=-+=,即1sin()62πα-=, ∵02πα<<,∴663πππα-<-<,∴66ππα-=,故3πα=·28.【2012高考广东理16】(本小题满分12分) 已知函数)6cos(2)(πω+=x x f ,(其中ω>0,x ∈R )的最小正周期为10π.(1)求ω的值; (2)设]2,0[,πβα∈,56)355(-=+παf ,1716)655(=-πβf ,求cos (α+β)的值. 【答案】本题考查三角函数求值,三角恒等变换,利用诱导公式化简三角函数式与两角和的余弦公式求值,难度较低· 【解析】(1)21105T ππωω==⇔=(2)56334(5)cos()sin ,cos 352555f ππαααα+=-⇔+=-⇔== 516815(5)cos ,sin 6171717f πβββ-=⇔== 4831513cos()cos cos sin sin 51751785αβαβαβ+=-=⨯-⨯=-29.【2012高考山东理17】(本小题满分12分)已知向量(sin ,1),(3cos ,cos 2)(0)3Am x n A x x A ==>,函数()f x m n =⋅的最大值为6. (Ⅰ)求A ;(Ⅱ)将函数()y f x =的图象向左平移12π个单位,再将所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数()y g x =的图象.求()g x 在5[0,]24π上的值域. 解:(Ⅰ)()=⋅f x m nsin cos cos 2212cos 2)2sin(2)A x x xA x x A x π=+=+=+6因为 0A >,由题意知 6A =.(Ⅱ)由(I )()6sin(2)f x x π=+6将()y f x =的图象向左平移π12个单位后得到6sin[2()]6sin(2)y x x πππ=++=+1263的图象;再将得到图象上各点横坐标缩短为原来的12倍,纵坐标不变,得到6sin(4)y x π=+3的图象.因此()6sin(4)g x x π=+3,因为5[0,]x π∈24,所以74[,]x πππ+∈336,所以1sin(4)[,1]2x π+∈-3,所以()g x 在5[0,]π24上的值域为[3,6]-.30.【2012高考北京理15】(本小题共13分)已知函数xxx x x f sin 2sin )cos (sin )(-=·(1)求)(x f 的定义域及最小正周期; (2)求)(x f 的单调递减区间· 解(1):si n 0()x x k k Z π≠⇔≠∈得:函数()f x 的定义域为{,}x x k k Z π≠∈(sin cos )sin 2()(sin cos )2cos sin x x xf x x x x x-==-⨯sin 2(1cos 2))14x x x π=-+=--得:)(x f 的最小正周期为22T ππ==; (2)函数sin y x =的单调递增区间为[2,2]()22k k k Z ππππ-+∈ 则322224288k x k k x k πππππππππ-≤-≤+⇔-≤≤+得:)(x f 的单调递增区间为3[,),(,]()88k k k k k Z ππππππ-+∈ 31.【2012高考重庆理18】(本小题满分13分(Ⅰ)小问8分(Ⅱ)小问5分) 设)2cos(sin )6cos(4)(x x x x x f +--=ωωπω,其中.0>ω(Ⅰ)求函数)(x f y = 的值域 (Ⅱ)若)(x f y =在区间⎥⎦⎤⎢⎣⎡-2,23πx 上为增函数,求 ω的最大值.解:(1)()14sin sin cos 22f x x x x x ωωωω⎫=++⎪⎪⎝⎭222cos 2sin cos sin x x x x x ωωωωω=++-21x ω=+因1sin 21x ω-≤≤,所以函数()y f x =的值域为1⎡⎣(2)因s i n y x =在每个闭区间()2,222k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上为增函数,故()21f x x ω=+()0ω>在每个闭区间(),44k k k Z ππππωωωω⎡⎤-+∈⎢⎥⎣⎦上为增函数· 依题意知3,22ππ⎡⎤-⊆⎢⎥⎣⎦,44k k ππππωωωω⎡⎤-+⎢⎥⎣⎦对某个k Z ∈成立,此时必有0k =,于是 32424ππωππω⎧-≥-⎪⎪⎨⎪≤⎪⎩,解得16ω≤,故ω的最大值为16· 32.【2012高考浙江理18】(本小题满分14分)在∆ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A =23,sin BC .(Ⅰ)求tan C 的值;(Ⅱ)若a∆ABC 的面积.【答案】本题主要考查三角恒等变换,正弦定理,余弦定理及三角形面积求法等知识点· (Ⅰ)∵cos A =23>0,∴sin A,C =sin B =sin(A +C )=sin A cos C +sin C cos Acos C +23sin C .整理得:tan C(Ⅱ)由图辅助三角形知:sin C又由正弦定理知:sin sin a cA C=,故c = (1)对角A 运用余弦定理:cos A =222223b c a bc +-=. (2)解(1) (2)得:b =or b 舍去).∴∆ABC 的面积为:S . 33.【2012高考辽宁理17】(本小题满分12分)在ABC ∆中,角A 、B 、C 的对边分别为a ,b ,c ·角A ,B ,C 成等差数列· (Ⅰ)求cos B 的值;(Ⅱ)边a ,b ,c 成等比数列,求sin sin A C 的值·【命题意图】本题主要考查等差数列、等比数列概念、正余弦定理应用,是容易题.【解析】(1)由已知12=+,++=,=,cos =32B AC A B C B B ππ∴ ……6分(2)解法一:2=b ac ,由正弦定理得23sin sin =sin =4A C B解法二:2=b ac ,222221+-+-=cos ==222a c b a c ac B ac ac ,由此得22+-=,a c ac ac 得=a c所以===3A B C π,3sin sin =4A C ……12分【点评】本题主要考查三角形的正弦定理、余弦定理、三角形内角和定理及等差、等比数列的定义,考查转化思想和运算求解能力,属于容易题·第二小题既可以利用正弦定理把边的关系转化为角的关系,也可以利用余弦定理得到边之间的关系,再来求最后的结果· 34.【2012高考江西理17】(本小题满分12分) 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ·已知,sin()sin()444A b C cB a πππ=+-+=(1)求证: 2B C π-=(2)若a =△ABC 的面积·解:(1)证明:由 sin()sin()44b Cc B a ππ+-+=及正弦定理得:sin sin()sin sin()sin 44B C C B A ππ+-+=,即sin (sin )sin ()22222B C C C B B +-+=整理得:sin cos cos sin 1B C B C -=,所以sin()1B C -=,又30,4B C π<< 所以2B C π-=(2)由(1)及34B C π+=可得5,88B C ππ==,又,4A a π== 所以sin 5sin 2sin ,2sin sin 8sin 8a B a Cbc A A ππ====,所以三角形ABC 的面积151sin sin cos 28888242bc A πππππ===== 【点评】本题考查解三角形,三角形的面积,三角恒等变换、三角和差公式以及正弦定理的应用.高考中,三角解答题一般有两种题型:一、解三角形:主要是运用正余弦定理来求解边长,角度,周长,面积等;二、三角函数的图像与性质:主要是运用和角公式,倍角公式,辅助角公式进行三角恒等变换,求解三角函数的最小正周期,单调区间,最值(值域)等.来年需要注意第二种题型的考查.35.【2012高考全国卷理17】(本小题满分10分)三角形ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,已知cos (A-C )+cosB=1,a=2c ,求c.【命题意图】本试题主要考查了解三角形的运用,给出两个公式,一个是边的关系,一个角的关系,而求解的为角,因此要找到角的关系式为好· 【解析】由()A B C B A C ππ++=⇔=-+, 由正弦定理及2a c =可得sin 2sin A C =所以cos()cos cos()cos(())cos()cos()A C B A C A C A C A C π-+=-+-+=--+cos cos sin sin cos cos sin sin 2sin sin A C A C A C A C A C =+-+=故由cos()cos 1A C B -+=与sin 2sin A C =可得22sin sin 14sin 1A C C =⇒= 而C 为三角形的内角且2a c c =>,故02C π<<,所以1sin 2C =,故6C π=· 【点评】该试题从整体来看保持了往年的解题风格,依然是通过边角的转换,结合了三角形的内角和定理的知识,以及正弦定理和余弦定理,求解三角形中的角的问题·试题整体上比较稳定,思路也比较容易想,先将三角函数关系式化简后,得到,A C 角关系,然后结合2a c =,得到两角的二元一次方程组,自然很容易得到角C 的值· 36.【2012高考天津理15】(本小题满分13分)已知函数.,1cos 2)32sin()32sin()(2R x x x x x f ∈-+-++=ππ(Ⅰ)求函数)(x f 的最小正周期; (Ⅱ)求函数)(x f 在区间]4,4[ππ-上的最大值和最小值.【解析】(1)2()=sin (2+)+sin(2)+2cos 133f x x x x ππ--2sin 2coscos 2)34x x x ππ=+=+ 函数()f x 的最小正周期为22T ππ==(2)32sin(2)11()444444x x x f x ππππππ-≤≤⇒-≤+≤⇒≤+≤⇔-≤≤当2()428x x πππ+==时,()max f x 2()444x x πππ+=-=-时,min ()1f x =-【点评】该试题关键在于将已知的函数表达式化为=sin (+)y A x ωϕ的数学模型,再根据此三角模型的图像与性质进行解题即可.37.【2012高考江苏15】(14分)在ABC ∆中,已知3AB AC BA BC =. (1)求证:tan 3tan B A =;(2)若cos C =求A 的值. 【答案】解:(1)∵3AB AC BA BC =,∴cos =3cos AB AC A BA BC B ,即cos =3cos AC A BC B ·由正弦定理,得=sin sin AC BCB A,∴sin cos =3sin cos B A A B · 又∵0<A B <π+,∴cos 0 cos 0A >B >,·∴sin sin =3cos cos B AB A即tan 3tan B A =·(2)∵ cos 0C <C <π=,∴sin C =·∴tan 2C =· ∴()tan 2A B π⎡-+⎤=⎣⎦,即()tan 2A B +=-·∴tan tan 21tan tan A BA B+=--·由 (1) ,得24tan 213tan AA=--,解得1tan =1 tan =3A A -,· ∵cos 0A >,∴tan =1A ·∴=4A π·【考点】平面微量的数量积,三角函数的基本关系式,两角和的正切公式,解三角形·【解析】(1)先将3AB AC BA BC =表示成数量积,再根据正弦定理和同角三角函数关系式证明·(2)由cos C =可求tan C ,由三角形三角关系,得到()tan A B π⎡-+⎤⎣⎦,从而根据两角和的正切公式和(1)的结论即可求得A 的值·。
2012_2022年高考数学真题分类汇编05三角恒等变换与三角函数(含答案)
2012_2022年高考数学真题分类汇编:三角恒等变换与三角函数一、选择题1.(2021年高考全国甲卷理科)若cos 0,,tan 222sin παααα⎛⎫∈= ⎪-⎝⎭,则tan α= ( )A .1515B .55C .53D .153【答案】A 解析:cos tan 22sin ααα=-2sin 22sin cos cos tan 2cos 212sin 2sin αααααααα∴===--,0,2πα⎛⎫∈ ⎪⎝⎭,cos 0α∴≠,22sin 112sin 2sin ααα∴=--,解得1sin 4α=, 215cos 1sin 4αα∴=-=,sin 15tan cos 15ααα∴==. 故选:A .【点睛】关键点睛:本题考查三角函数的化简问题,解题的关键是利用二倍角公式化简求出sin α.2.(2021年高考全国乙卷理科)魏晋时刘徽撰写的《海岛算经》是关测量的数学著作,其中第一题是测海岛的高.如图,点E ,H ,G 在水平线AC 上,DE 和FG 是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG 称为“表距”,GC 和EH 都称为“表目距”,GC 与EH 的差称为“表目距的差”则海岛的高AB = ( )( )A .⨯+表高表距表目距的差表高B .⨯-表高表距表目距的差表高C .⨯+表高表距表目距的差表距D .⨯表高表距-表目距的差表距【答案】A 解析:如图所示:由平面相似可知,,DE EH FG CGAB AH AB AC==,而DE FG =,所以 DE EH CG CG EH CG EHAB AH AC AC AH CH--====-,而CH CE EH CG EH EG =-=-+, 即CG EH EG EG DE AB DE DE CG EH CG EH-+⨯=⨯=+--=+⨯表高表距表高表目距的差. 故选:A .【点睛】本题解题关键是通过相似建立比例式,围绕所求目标进行转化即可解出. 3.(2021年高考全国乙卷理科)把函数()y f x =图像上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移3π个单位长度,得到函数sin 4y x π⎛⎫=- ⎪⎝⎭的图像,则()f x =( )A .7sin 212x x ⎛⎫- ⎪⎝⎭ B .sin 212x π⎛⎫+ ⎪⎝⎭ C .7sin 212x π⎛⎫- ⎪⎝⎭D .sin 212x π⎛⎫+ ⎪⎝⎭【答案】把函数()y f x =图像上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移3π个单位长度,得到函数sin 4y x π⎛⎫=- ⎪⎝⎭的图像,则()f x =()A . 7sin 212x x ⎛⎫-⎪⎝⎭B . sin 212x π⎛⎫+ ⎪⎝⎭ C . 7sin 212x π⎛⎫-⎪⎝⎭D . sin 212x π⎛⎫+ ⎪⎝⎭ 4.(2021年高考全国甲卷理科)2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8848.86(单位:m),三角高程测量法是珠峰高程测量方法之一.如图是三角高程测量法的一个示意图,现有A .B .C 三点,且A .B .C 在同一水平面上的投影,,A B C '''满足45AC B ∠'''=︒,60A B C ''∠'=︒.由C 点测得B 点的仰角为15︒,BB '与CC '的差为100;由B 点测得A 点的仰角为45︒,则A .C 两点到水平面A B C '''的高度差AA CC ''-约为(3 1.732≈)( )A .346B .373C .446D .473【答案】B 解析:过C 作'CH BB ⊥,过B 作'BD AA ⊥,故()''''''100100AA CC AA BB BH AA BB AD -=--=-+=+, 由题,易知ADB △为等腰直角三角形,所以AD DB =. 所以''100''100AA CC DB A B -=+=+. 因为15BCH ∠=︒,所以100''tan15CH C B ==︒在'''A B C 中,由正弦定理得:''''100100sin 45sin 75tan15cos15sin15A B C B ===︒︒︒︒︒,而62sin15sin(4530)sin 45cos30cos 45sin 304-︒=︒-︒=︒︒-︒︒=, 所以210042''100(31)27362A B ⨯⨯==+≈-, 所以''''100373AA CC A B -=+≈. 故选:B .【点睛】本题关键点在于如何正确将''AA CC -的长度通过作辅助线的方式转化为''100A B +.5.(2020年高考数学课标Ⅰ卷理科)设函数()cos π()6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为 ( )( )A .10π9B .7π6C .4π3D .3π2【答案】C【解析】由图可得:函数图象过点4,09π⎛⎫-⎪⎝⎭, 将它代入函数()f x 可得:4cos 096ππω⎛⎫-⋅+= ⎪⎝⎭又4,09π⎛⎫-⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点, 所以4962πππω-⋅+=-,解得:32ω=所以函数()f x 的最小正周期为224332T πππω=== 故选:C【点睛】本题主要考查了三角函数的性质及转化能力,还考查了三角函数周期公式,属于中档题.6.(2020年高考数学课标Ⅱ卷理科)若α为第四象限角,则 ( )A .cos2α>0B .cos2α<0C .sin2α>0D .sin2α<0【答案】D解析:方法一:由α为第四象限角,可得3222,2k k k Z ππαππ+<<+∈, 所以34244,k k k Z ππαππ+<<+∈此时2α的终边落在第三、四象限及y 轴的非正半轴上,所以sin 20α< 故选:D . 方法二:当6πα=-时,cos 2cos 03πα⎛⎫=-> ⎪⎝⎭,选项B 错误; 当3πα=-时,2cos 2cos 03πα⎛⎫=-< ⎪⎝⎭,选项A 错误; 由α在第四象限可得:sin 0,cos 0αα<>,则sin 22sin cos 0ααα=<,选项C 错误,选项D 正确; 故选:D .7.(2020年高考数学课标Ⅰ卷理科)已知 π()0,α∈,且3cos28cos 5αα-=,则sin α= ( )AB .23C .13D【答案】A【解析】3cos28cos 5αα-=,得26cos 8cos 80αα--=, 即23cos 4cos 40αα--=,解得2cos 3α=-或cos 2α=(舍去),又(0,),sin απα∈∴==故选:A .8.(2020年高考数学课标Ⅲ卷理科)已知2tan θ–tan(θ+π4)=7,则tan θ= ( ) A .–2 B .–1C .1D .2【答案】D 解析:2tan tan 74πθθ⎛⎫-+= ⎪⎝⎭,tan 12tan 71tan θθθ+∴-=-,令tan ,1t t θ=≠,则1271tt t+-=-,整理得2440t t -+=,解得2t =,即tan 2θ=. 故选:D .【点睛】本题主要考查了利用两角和的正切公式化简求值,属于中档题. 9.(2020年高考数学课标Ⅲ卷理科)在△ABC 中,cos C =23,AC =4,BC =3,则cos B = ( ) A .19B .13C .12D .23【答案】A 解析:在ABC 中,2cos 3C =,4AC =,3BC = 根据余弦定理:2222cos AB AC BC AC BC C =+-⋅⋅2224322433AB =+-⨯⨯⨯可得29AB =,即3AB =由22299161cos22339AB BC AC B AB BC +-+-===⋅⨯⨯故1cos 9B =. 故选:A .10.(2019年高考数学课标Ⅲ卷理科)设函数()sin()5f x x ωπ=+(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论:①()f x 在0,2π)(有且仅有3个极大值点②()f x 在0,2π)(有且仅有2个极小值点③()f x 在(0,)10π单调递增④ω的取值范围是1229[)510, 其中所有正确结论的编号是 ( )A .①④B .②③C .①②③D .①③④【答案】D【解析】()f x 在0,2π)(有且仅有3个极大值点,分别对应59=,,5222x ππππω+,故①正确.()f x 在0,2π)(有2个或3个极小值点,分别对应37=,522x πππω+和3711=,5222x ππππω+,,故②不正确.因为当[0,2]x ∈π时,2555x πππω+ωπ+≤≤,由()f x 在[0,2]π有且仅有5个零点.则265x ππω+<π5≤,解得1229[)510ω∈,,故④正确.由1229[)510ω∈,,得[0.44,0.49)105ππω+∈ππ,10.492π<π,所以()f x 在(0,)10π单调递增,故③正确. 综上所述,本题选D .11.(2019年高考数学课标全国Ⅱ卷理科)已知0,2πα⎛⎫∈ ⎪⎝⎭,2sin 2cos21αα=+,则sin α= ( )A .15B C D 【答案】B【解析】∵2sin 2cos21α=α+,∴24sin cos 2cos α⋅α=α.0,2πα⎛⎫∈ ⎪⎝⎭,∴cos 0α>,sin 0α>,∴2sin cos α=α,又22sin cos 1αα+=,∴25sin 1α=,21sin 5α=,又sin 0α>,∴sin α=,故选B . 12.(2019年高考数学课标全国Ⅱ卷理科)下列函数中,以2π为周期且在区间,42ππ⎛⎫⎪⎝⎭单调递增的是()( )A .()cos2f x x =B .()sin 2f x x =C .()cos f x x =D .()sin f x x =【答案】A【解析】因为sin ||y x =图象如下图,知其不是周期函数,排除D ;因为cos cos y x x ==,周期为2π,排除C ,作出cos2y x =图象,由图象知,其周期为2π,在区间,42ππ⎛⎫ ⎪⎝⎭单调递增,A 正确;作出sin 2y x =的图象,由图象知,其周期为2π,在区间,42ππ⎛⎫⎪⎝⎭单调递减,排除B ,故选A.【点评】本题主要考查三角函数图象与性质,渗透直观想象、逻辑推理等数学素养.画出各函数图象,即可做出选择.利用二级结论:①函数()y f x =的周期是函数()y f x =周期的一半;②sin y x ω=不是周期函数;③函数2()()y f x f x ==函数公式法求三角函数的周期,例如,21cos 4cos 2cos 22xy x x +===,所以周期242T ππ==. 13.(2019年高考数学课标全国Ⅰ卷理科)关于函数()sin sin f x x x =+有下述四个结论:①()f x 是偶函数②()f x 在区间,2ππ⎛⎫⎪⎝⎭单调递增 ③()f x 在[,]ππ-有4个零点④()f x 的最大值为2 其中所有正确结论的编号是( )A .①②④B .②④C .①④D .①③【答案】C解析:作出函数sin ,sin ,sin sin y x y x y x x ===+的图象如图所示,由图可知,()f x 是偶函数,①正确,()f x 在区间,2ππ⎛⎫⎪⎝⎭单调递减,②错误,ABC△的面积为2224a b c +-,则C =( )A .π2B .π3C .π4D .π6【答案】C解析:由余弦定理可得2222cos a b c ab C +-=, 所以由222112cos sin sin 2424ABCa b c ab C S ab C ab C +-==⇒=△ 所以tan 1C =,而()0,πC ∈,所以π4C =,故选C . 15.(2018年高考数学课标Ⅲ卷(理))若1sin 3α=,则cos2α= ( )A .89B .79C .79-D .89-【答案】B解析:2217cos 212sin 1239αα⎛⎫=-=-⨯= ⎪⎝⎭,故选B .16.(2018年高考数学课标Ⅱ卷(理))若()cos sin f x x x =-在[],a a -是减函数,则a 的最大值是( )A .π4B .π2C .3π4D .π【答案】A解析:由已知()sin cos 0f x x x '=--≤,得sin cos 0≥x x +,即04)≥x π+,解得322,()44≤≤k x k k Z ππππ-++∈,即[]3,,44a a ππ⎡⎤-⊂-⎢⎥⎣⎦,所以434≥≤a a a a ππ⎧⎪-<⎪⎪--⎨⎪⎪⎪⎩,得04≤a π<,所以a 的最大值是4π,故选A .17.(2018年高考数学课标Ⅱ卷(理))在ABC △中,cos2C =1BC =,5AC =,则AB = ( )A.BCD.【答案】A解析:因为223cos 2cos 12125C C =-=⨯-=-, 所以22232cos 125215()325AB BC AC BC AC C =+-⨯⨯=+-⨯⨯⨯-=,所以AB =故选A .18.(2017年高考数学新课标Ⅰ卷理科)已知曲线1:cos C y x =,22π:sin 23C y x ⎛⎫=+⎪⎝⎭,则下面结论正确的是( )A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CB .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2CC .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CD .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2C【答案】D【解析】因为12,C C 函数名不同,所以先将2C 利用诱导公式转化成与1C 相同的函数名,则22π2πππ:sin 2cos 2cos 23326C y x x x ⎛⎫⎛⎫⎛⎫=+=+-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则由1C 上各点的横坐标缩短到原来的12倍变为sin 2y x =,再将曲线向左平移π12个单位得到2C ,故选D .19.(2017年高考数学课标Ⅲ卷理科)设函数()cos 3f x x π⎛⎫=+⎪⎝⎭,则下列结论错误的是( )A .()f x 的一个周期为2π-B .()y f x =的图像关于直线83x π=对称 C .()f x π+的一个零点为6x π= D .()f x 在,2ππ⎛⎫⎪⎝⎭单调递减 【答案】D【解析】函数()f x 的周期为2n π,n Z ∈,故A 正确;又函数()f x 的对称轴为,3x k k Z ππ+=∈,即3x k ππ=-,k Z ∈,当3k =时,得83x π=,故B 正确;由()0cos 03f x x π⎛⎫=⇒+= ⎪⎝⎭32x k πππ⇒+=+,所以函数()f x 的零点为,6x k k Z ππ=+∈,当0k =时,6x π=,故C 正确;由223k x k ππππ≤+≤+,解得22233k x k ππππ-≤≤+,所以函数()f x 的单调递减区间为22,2,33k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,而2,2,2233k k ππππππ⎛⎫⎡⎤⊄-+ ⎪⎢⎥⎝⎭⎣⎦,故D 错误. 【考点】函数()cos y A x ωϕ=+的性质20.(2016高考数学课标Ⅲ卷理科)在△ABC 中,4B π=,BC 边上的高等于13BC ,则cos A = ( )ABC. D.【答案】C 【解析】设BC 边上的高线为AD ,则3BC AD =,所以AC =,AB =.由余弦定理,知222222cos 210AB AC BC A AB AC +-===-⋅,故选C. 21.(2016高考数学课标Ⅲ卷理科)若3tan 4α=,则2cos 2sin 2αα+= ( ) A .6425B .4825C .1D .1625【答案】A【解析】由3tan 4α=,得3sin 5α=,4cos 5α=或3sin 5α=-,4cos 5α=- 所以2161264cos 2sin 24252525αα+=+⨯=,故选A. 22.(2016高考数学课标Ⅱ卷理科)若π3cos 45α⎛⎫-=⎪⎝⎭,则sin 2α=( ) A .725B .15C .15-D .725-【答案】C【解析】∵3cos 45πα⎛⎫-=⎪⎝⎭,2ππ7sin 2cos 22cos 12425ααα⎛⎫⎛⎫=-=--= ⎪ ⎪⎝⎭⎝⎭,故选D . 23.(2016高考数学课标Ⅱ卷理科)若将函数2sin 2y x =的图像向左平移12π个单位长度,则平移后图象的对称轴为( )A .()26k x k Z ππ=-∈ B .()26k x k Z ππ=+∈ C .()212k x k Z ππ=-∈D .()212k x k Z ππ=+∈【答案】B24.(2016高考数学课标Ⅰ卷理科)已知函数()sin()(0),24f x x+x ππωϕωϕ=>≤=-,为()f x 的零点,4x π=为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫⎪⎝⎭,单调,则ω的最大值为( )(A)11(B)9(C)7(D)5【答案】B 【解析】由题意知:12π+π 4ππ+π+42k k ωϕωϕ⎧-=⎪⎪⎨⎪=⎪⎩,则21k ω=+,其中k ∈Z()f x 在π5π,1836⎛⎫⎪⎝⎭单调,5π,123618122T ππω∴-=≤≤接下来用排除法:若π11,4ωϕ==-,此时π()sin 114f x x ⎛⎫=- ⎪⎝⎭()f x 在π3π,1844⎛⎫ ⎪⎝⎭递增,在3π5π,4436⎛⎫ ⎪⎝⎭递减,不满足()f x 在π5π,1836⎛⎫⎪⎝⎭单调若π9,4ωϕ==,此时π()sin 94f x x ⎛⎫=+ ⎪⎝⎭,满足()f x 在π5π,1836⎛⎫⎪⎝⎭单调递减故选B .25.(2015高考数学新课标1理科)函数()f x =cos()x ωϕ+的部分图像如图所示,则()f x 的单调递减区间为( )A .13(,),k 44k k ππ-+∈Z B .13(2,2),k 44k k ππ-+∈Z C .13(,),k 44k k -+∈ZD .13(2,2),k 44k k -+∈Z【答案】D解析:由五点作图知,1+4253+42πωϕπωϕ⎧=⎪⎪⎨⎪=⎪⎩,解得=ωπ,=4πϕ,所以()cos()4f x x ππ=+,令22,4k x k k Z πππππ<+<+∈,解得124k -<x <324k +,k Z ∈,故单调减区间为(124k -,324k +),k Z ∈,故选D . 考点:三角函数图像与性质26.(2015高考数学新课标1理科)sin 20cos10cos160sin10︒︒-︒︒= ( )A.2-B.2C .12-D .12【答案】D解析:原式=o o o o sin 20cos10cos 20sin10+ =o sin30=12,故选D . 考点:本题主要考查诱导公式与两角和与差的正余弦公式. 27.(2014高考数学课标2理科)设函数xf x m()sinπ=.若存在f x ()的极值点x 0满足x f x m 22200[()]+<,则m 的取值范围是 ( )A .(,6)(6,)-∞-⋃+∞B .(,4)(4,)-∞-⋃+∞C .(,2)(2,)-∞-⋃+∞D .(,1)(4,)-∞-⋃+∞【答案】C28.(2014高考数学课标2理科)钝角三角形ABC 的面积是12,AB=1,AC= ( ) A .5 BC .2D .1【答案】B解析:有面积公式得:112sin 22B,解得2sin 2B ,因为钝角三角形,所以0135B ,由余弦定理得:21222cos1355AC,所以5AC ,选B 。
2012年高考真题理科数学解析汇编:三角函数.pdf
一、学习目标: 1、懂得交往对个人发展和社会进步的重要性。
2、培养观察、感受、体验、参与社会生活的能力。
二、快乐学习: 三、生活体验: 1920年,印度传教士辛格发现狼群中有两个8岁和2岁的女孩,辛格把他们送进了孤儿院,并给他们取了名,大的叫卡玛拉,小的叫阿玛拉。
这两个小女孩刚回到人类社会时,许多特征和狼一样,牙齿特别尖利,嗅觉特别灵敏,耳朵还能抖动,四肢爬行,吞食生肉,像狗一般的张大嘴巴喘气。
白天喜欢蜷伏在黑暗的地方睡觉,夜深人静后,不时发出阵阵长嗥。
卡玛拉15岁时的智力水平只相当于正常的三岁半的儿童,直到死去(17),也只学会几十个单词。
《狼孩子》的故事告诉我们的道理是什么? 四、自主检测: 1、孟子说:“天时不如地利,地利不如人和”包含的道理是( ) A、个人的发展和社会的进步都离不开社会交往和人与人之间的和谐相处B、个人发展不需要交往C、社会的进步不依赖交往 D、个人不依赖社会也可以很好发展 2、马某患有受迫害妄想症,他把3个孩子长期关在家中。
1898年,当人们发现这一情况时,大女儿已经19岁,二女儿15岁,小儿子11岁,但他们的智力年龄分别只有5岁、3岁和1岁,这个案例告诫我们( )A、社会的进步依赖交往B、交往是人类自身和社会发展的需要 C、如果从小就不与他人交往,就不可能有心理和精神的健康发展 D、个人与社会共同发展 3、我们的个人发展需要交往,离不开交往,我们应该重视交往,乐于交往,学会交往。
因为正常的交往活动有利于( ) ①我们扩大知识面,增长见识,积累经验激发思维,锻炼能力 ②维护国家尊严和民族自尊心和自信心 ③我们审美和道德等素质的提高 ④我们情感、意志和人格的健康发展A、①②③B、②③④C、①②④D、①③④ 4、严文井在四次报考大学都落榜的打击下,没有灰心气馁,没有自轻自贱,而是秉烛夜读,刻苦写作,终于成为我国当代著名的儿童文学作家,这说明( )A、自尊自信催人自强不息B、合理控制情绪很重要C、严文井的学习目的明确D、刻苦能成才 五、学海拾贝: 1、疏理巩固: 2、学后感悟: 第二课时 发展的需要 初中学习网,资料共分享!我们负责传递知识!。
高考数学试题分项版解析专题05 三角函数(教师版) 理
2012年高考试题分项版解析数学(理科)专题05 三角函数(教师版)一、选择题:1.(2012年高考浙江卷理科4)把函数y =cos2x +1的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图像是2. (2012年高考山东卷理科7)若42ππθ⎡⎤∈⎢⎥⎣⎦,, sin 2=8θ,则sin θ=(A )35(B )45(C (D )34 【答案】D【解析】由42ππθ⎡⎤∈⎢⎥⎣⎦,可得],2[2ππθ∈,812sin 12cos 2-=--=θθ,4322cos 1sin =-=θθ,答案应选D.另解:由42ππθ⎡⎤∈⎢⎥⎣⎦,及sin 2θ可得434716776916761687312sin 1cos sin +=++=+=+=+=+θθθ, 而当42ππθ⎡⎤∈⎢⎥⎣⎦,时θθcos sin >,结合选项即可得47cos ,43sin ==θθ.答案应选D.3.(2012年高考辽宁卷理科7)已知sin cos αα-=,α∈(0,π),则tan α=(A) -1 (B) 2-(C) 2(D) 14.(2012年高考天津卷理科2)设R ϕ∈,则“=0ϕ”是“()=cos(+)f x xϕ()x R ∈为偶函数”的(A )充分而不必要条件 (B)必要而不充分条件 (C)充分必要条件 (D)既不充分也不必要条件5.(2012年高考天津卷理科6)在△ABC 中,内角A ,B ,C 所对的边分别是,,a b c ,已知8=5b c ,=2C B ,则cosC=(A )725(B)725- (C)725± (D)24256.(2012年高考上海卷理科16)在ABC ∆中,若C B A 222sin sin sin <+,则ABC ∆的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定 【答案】C【解析】由正弦定理,得,sin 2,sin 2,sin 2C Rc B R b A R a ===代入得到222a b c +<, 由余弦定理的推理得222cos 02a b c C ab+-=<,所以C 为钝角,所以该三角形为钝角三角形.故选择A.【考点定位】本题主要考查正弦定理及其推理、余弦定理的运用.主要抓住所给式子的结构来选择定理,如果出现了角度的正弦值就选择正弦定理,如果出现角度的余弦值就选择余弦定理.本题属于中档题.7.(2012年高考新课标全国卷理科9)已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减。
北京市2012届高三各区二模数学(理)试题分类汇编五、三角函数1(必修四)
五、三角函数(必修四)1.(2012年西城二模理9)在△ABC 中,BC =,AC =,π3A =,则B = _____. 答案:π4. 2.(2012年海淀二模理1)若sin cos 0θθ<,则角θ是( D ) A .第一或第二象限角 B.第二或第三象限角 C.第三或第四象限角 D.第二或第四象限角3.(2012年朝阳二模理4)在△ABC 中, 2AB = ,3AC = ,0AB AC ⋅<,且△ABC的面积为32,则BAC ∠等于( C ) A .60 或120 B .120 C .150 D .30 或150 4.(2012年丰台二模理7)已知函数sin (0)y ax b a =+>的图象如图所示,则函数log ()a y x b =+的图象可能是( C )A .B .C .D .5.(2012年昌平二模理9)在∆ABC 中,4,2,2π===A b a 那么角C =_________.答案:127π。
6.(2012年东城二模理11)在平面直角坐标系xOy 中,将点A 绕原点O 逆时针旋转 90到点B ,那么点B 的坐标为____,若直线OB 的倾斜角为α,则sin2α的值为 .7.(2012年海淀二模理11)在ABC ∆中,若120=∠A ,5c =,ABC ∆的面积为则a = .8.(2012年西城二模理15)已知函数22π()cos ()sin 6f x x x =--.(Ⅰ)求π()12f 的值; (Ⅱ)若对于任意的π[0,]2x ∈,都有()f x c ≤,求实数c 的取值范围. 解:(Ⅰ)22ππππ()cos ()sin cos 12121262f =--==. ………………5分 (Ⅱ) 1π1()[1cos(2)](1cos 2)232f x x x =+--- ………………7分1π13[cos(2)cos 2]2cos 2)2322x x x x =-+=+ ………………8分π)3x =+. ………………9分 因为 π[0,]2x ∈,所以 ππ4π2[,]333x +∈, ………………10分所以当 ππ232x +=,即 π12x =时,()f x 取得最大值2. ………………11分所以 π[0,]2x ∀∈,()f x c ≤ 等价于2c ≤.故当 π[0,]2x ∀∈,()f x c ≤时,c的取值范围是)+∞. ………………13分 9.(2012年朝阳二模理15) 已知函数()2cos cos f x x x x m =-+()R m ∈的图象过点π(,0)12M .(Ⅰ)求m 的值;(Ⅱ)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c .若cos +cos =2cos c B b C a B ,求()f A 的取值范围.解:(Ⅰ)由()12(cos 21)2f x x x m =-++π1sin(2)62x m =--+.…3分 因为点π(,0)12M 在函数()f x 的图象上, 所以ππ1sin(2)01262m ⋅--+=,解得12m =. …5分(Ⅱ) 因为cos +cos =2cos c B b C a B ,所以sin cos sin cos C B B C +=2sin cos A B ,所以sin(+)2sin cos B C A B =,即sin 2sin cos A A B =. ……7分 又因为(0,A ∈π),所以sin 0A ≠,所以1cos 2B =. ……8分 又因为(0,B ∈π),所以π3B =,2π3A C +=. ……10分所以2π03A <<, ππ7π2666A -<-<,所以πsin(2)6A -∈1(,1]2-.…12分所以()f A 的取值范围是1(,1]2-. ……13分10.(2012年丰台二模理15)已知函数()cos sin )f x x x x =-.(Ⅰ)求()3f π的值;(Ⅱ)求函数()y f x =在区间[0,]2π上的最小值,并求使()y f x =取得最小值时的x 的值. 解:因为()cos sin )f x x x x =-2sin cos x x x -1cos 213()sin 222x x +-12sin 22x x -=cos(2)6x π+-(Ⅰ)()cos(2)336f πππ=⨯+==7分 (Ⅱ)因为 [0,]2x π∈, 所以2666x ππ7π≤+≤.当 26x π+=π,即512x π=时,函数()y f x =有最小值是12--. 当512x π=时,函数()y f x =有最小值是1-. …13分11.(2012年昌平二模理15)已知向量a (cos ,sin ),θθ= b = (13-,), 22π≤θ≤π-.(Ⅰ)当b a ⊥时,求θ的值;(Ⅱ)求||b a +的取值范围. 解:(Ⅰ) a ⊥b ∴b a ⋅0sin cos 3=-=θθ ……… 2分得3tan =θ 又∵22π≤θ≤π-……… 4分 即:θ=3π……6分 (Ⅱ)||b a +=4)sin cos 3(21||2||22+-+=+⋅+θθb b a a )3sin(45π--=θ ……… 9分22π≤≤π-θ 6365π≤π-≤π-∴θ … 11分 21)3sin(1≤π-≤-∴θ 4)3sin(42≤π--≤-∴θ∴33≤+≤||b a … 13分12.(2012年东城二模理15)已知函数()sin()f x A x =+ωϕ(其中∈R x ,0A >,ππ0,22ωϕ>-<<)的部分图象如图所示.(Ⅰ)求函数()f x 的解析式;(Ⅱ)已知在函数()f x 的图象上的三点,,M N P 的横坐标分别为-解:(Ⅰ)由图可知,1A =,最小正周期428T =⨯=.由2π8T ==ω,得4π=ω. ………3分又π(1)sin()14f ϕ=+= ,且ππ22ϕ-<<,所以ππ42+=ϕ, 即4π=ϕ . ………5分 所以π()sin()sin (1)444f x x x =+=+ππ. ………6分(Ⅱ)因为(1)0,(1)1,f f -==π(5)sin (51)1,4f =+=-所以(1,0),(1,1),(5,1)M N P --. …………7分所以MN PN MP ===.由余弦定理得3cos5MNP ∠==-. ………11分因为[)0,MNP ∠∈π, 所以4sin 5MNP ∠=. ……13分。
2012年高考数学试题解析 分项版之专题05 三角函数 学生版 文.pdf
第5讲 分式方程 命题点年份(2013~2015)题序题型分值考查方向分式方程的解法201413填空题5近5年考查1次考查方式较为简单.分式方程的应用201320(2)解答题8近5年1次常与一次方程不等式函数结合考查. 分式方程的解法 基本思路将分式方程转化为①________求解然后在分式方程中进行②____.具体步骤(1)③______将分式方程转化为整式方程;(2)解整式方程;(3)检验把整式方程的根代入到④____方程检验. 【易错提示】 解分式方程时要注意以下两点:(1)分式方程中去分母时不要漏乘不含分母的项;(2)由于解分式方程有可能产生增根因此验根必不可少. 分式方程的应用 分式方程的应用思路列分式方程解应用题的关键是分析题意、从多角度思考问题、找准⑤________设出未知数列出⑥________;检验解题结果时既要检验解题结果是否是方程的解又要检验是否符合实际意义检验步骤需写在解题过程中. 分式方程无解有两种情况:一是去分母后整式方程无解;二是整式方程的解使分式方程的最简公分母为0分式方程无解. 命题点1 分式方程的解法 (2015·庐阳二模)解方程:+1=【思路点拨】 先确定最简公分母(x-1)(x+2)方程两边同乘最简公分母把分式方程转化为整式方程求解最后要检验.【解答】 解分式方程的基本思想是“化分式方程为整式方程”.注意解分式方程一定要验根. 1.(2015·济宁)解分式方程+=3时去分母后变形正确的为( )+(x+2)=3(x-1).-x+2=3(x-1)-(x+2)=3 .-(x+2)=3(x-1)(2015·常德)分式方程+=1的解为( )=1 .=2.==0(2014·安徽)方程=3的解是x=________.(2015·深圳)解方程:+=4.命题点2 分式方程的应用 (2013·安徽)某校为了进一步开展“阳光体育”活动购买了一批乒乓球拍和羽毛球拍已知一副羽毛球拍比一副乒乓球拍贵了20元购买羽毛球拍的费用比购买乒乓球拍的2 000元要多多出的部分能购买25副乒乓球拍.(1)若每副乒乓球拍的价格为x元请你用含x的代数式表示该校购买2)若购买的两种球拍数一样求x.【思路点拨】 (1)由题可知购买乒乓球拍的费用为购买羽毛球拍的费用为2 000+25x所以购买这两种球拍的总费用为2 000+2 000+25x=4 000+25x(元);(2)根据两种球拍的数量相等可列方程求解.【解答】 对于列分式方程解应用题的题目关键是设未知数 1.(2015·遂宁)遂宁市某生态示范园计划种植一批核桃原计划总产量达36万千克.为了满足市场需求现决定改良核桃品种改良后平均每亩产量是原计划的1.5倍总产量比原计划增加了9万千克.种植亩数减少了20亩则原计划和x万千克则改良后平均亩产量为1.5x万千克.根据题意列方程为( )-=20 -=20-=20 +=20(2014·漳州)杨梅是漳州的特色时令水果.杨梅一上市水果店的老板用1 200元购进一批杨梅很快售完;老板又用2 500元购进第二批杨梅所购件数是第一批的2倍但进价比第一批每件多了5元.第一批杨梅每件进价多少元?(2015·聊城)在“母亲节”前夕某花店用16 000元购进第一批礼盒鲜花上市后很快预售一空根据市场需求情况该花店又用7 500元购进第二批礼盒鲜花已知第二批所购鲜花的盒数是第一批所购鲜花盒数的且每盒鲜花的进价比第一批的进价少10元.问第二批鲜花每盒的进价是多少元? 1.(2015·合肥38中等六校模拟)解分式方程+2=的结果是( )=2 .=3=4 .无解(2014·莱芜)已知A、C两地相距40千米、C两地相距50千米甲、乙两车分别从A、B两地同时出发到C地.若乙车每小时比甲车多行驶12千米则两车同时到达C地.设乙车x千米/小时依题意列方程正确的是( )====(2015·荆州)若关于x的分式方程=2的解为非负数则m的取值范围是( )-1 .-1-1且m≠1 .-1且m≠1(2013·枣庄)对于非零的两个实数a规定a=-若2(2x-1)=1则x的值为( ) B. C. D.-(2015·德州)方程-=1的解为x=________.(2015·威海)分式方程=-2的解为________.解分式方程:(1)(2015·南京)=;(2)(2015·绵阳)=1-(2014·苏州)甲已知甲每小时比乙多做5面彩旗甲做60面彩旗与乙做50面彩旗所用时间相等问甲、乙每小时各做多少面彩旗?(2015·济南)济南与北京两地相距480 乘坐高铁列车比乘坐普通快车能提前4 到达已知高铁列车的平均行驶速度是普通列车的3倍求高铁列车的平均行驶速度. 10.(2014·巴中)若分式方程-=2有增根则这个增根是________.(2013·绥化)若关于x的方程=+1无解则a的值是________.(2015·宁波)宁波火车站北广场将于2015年底投入使用计划在广场内种植A两种花木共6 600棵若A花木数量是B花木数量的2倍少600棵.(1)A,B两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木每人每天能种植A花木60棵或B花木40棵应分别安排多少人种植A花木和B花木才能确保同时完成各自的任务?考点解读整式方程 ②验根 ③去分母 ④分式 ⑤等量关系 ⑥分式方程各个击破例1 方程两边同乘(x-1)(x+2)得 3+(x-1)(x+2)=x(x+2).解得x=1. 检验:当x=1时(x-1)(x2)=0因此x=1不是原分式方程的解. 所以原分式方程无解.题组训练 1. 2. 3.6 4.去分母得x-5=4(2x-3). 去括号得x-5=8x-12. 移项合并得-7x=-7. 系数化为1得x=1. 检验:当x=1时最简公分母2x-3=2×1-3≠0原方程的解是x=1.例2 (1)2 000+(2 00025x)=4 000+25x(元). (2)由题意列方程得=解得x=40=-40. 经检验x都是原方程的根.但x是乒乓球拍的价格必须大于0=40.答:每副乒乓球拍为40元.题组训练 1. 2.设第一批杨梅每件进价x元根据题意得: =解得x=120. 经检验x=120是原方程的根. 答:第一批杨梅每件进价120元. 3.设第二批鲜花每盒的进价是x元则第一批鲜花每盒的进价是(x+10)元由题意得: =解得x=150. 经检验x=150是原方程的解且符合题意. 答:第二批鲜花每盒的进价是150元.整合集训 2. 3.4.A 5.2 6.x=4 7.(1)方程两边乘x(x-3)得 2x=3(x-3).解得x=9. 检验:当x=9时(x-3)≠0. ∴原方程的解为x=9. (2)原方程可变形为:=1-方程两边都乘以2(x+1)得3=2(x+1)-2.解得x=检验:当x=时(x+1)=2(+1)=5≠0原方程的解为x= 8.设乙每小时做x面彩旗则甲每小时做(x+5)面彩旗.根据题意得 =解这个方程得x=25. 经检验=25是所列方程的解. ∴x+5=30. 答:甲每小时做30面彩旗乙每小时做25面彩旗. 9.设普通列车的行驶速度为x 则高铁列车的平均行驶速度为3x 由-=4.解得x=80. 经检验=80是分式方程的解且符合题意. ∴3x=240. 答:高铁列车的平均行驶速度为240 10.x=1 11.1或2 12.(1)设B花木的数量是x棵则A花木的数量是(2x-600)棵根据题意得 x+(2x-600)=6 600解得x=2 400. 所以2x-600=4 200. 答:A花木的数量是4 200棵花木的数量是棵. (2)设安排y人种植A花木则安排(26-y)人种植B花木根据题意得 =解得y=14. 经检验=14是原方程的根且符合题意.26-y=12. 答:安排14人种植A花木人种植B花木才能确保同时完成各自的任务. 初中学习网,资料共分享!我们负责传递知识!。
【备战】历届高考数学真题汇编专题5 三角函数 理(007-)
【2012年高考试题】一、选择题1.【2012高考真题重庆理5】设tan ,tan αβ是方程2320x x -+=的两个根,则tan()αβ+的值为(A )-3 (B )-1 (C )1 (D )32.【2012高考真题浙江理4】把函数y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移 1个单位长度,得到的图像是【答案】A【解析】根据题设条件得到变化后的函数为)1cos(+=x y ,结合函数图象可知选项A 符合要求。
故选A.3.【2012高考真题新课标理9】已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减.则ω的取值范围是( )()A 15[,]24 ()B 13[,]24()C 1(0,]2 ()D (0,2]【答案】A4.【2012高考真题四川理4】如图,正方形ABCD 的边长为1,延长BA 至E ,使1AE =,连接EC 、ED 则sin CED ∠=( )A 、10 B 、10、10 D 、155.【2012高考真题陕西理9】在ABC ∆中,角,,A B C 所对边长分别为,,a b c ,若2222a b c +=,则cos C 的最小值为( )A.2 B. 2C. 12D. 12-【答案】C.【解析】由余弦定理知214242)(212cos 222222222=≥+=+-+=-+=ab ab ab b a ab b a b a ab c b a C ,故选C.6.【2012高考真题山东理7】若42ππθ⎡⎤∈⎢⎥⎣⎦,,sin 2θ,则sin θ=(A )35 (B )45 (C(D )347.【2012高考真题辽宁理7】已知sin cos αα-α∈(0,π),则tan α= (A) -1 (B) -(D) 1 【答案】A【解析一】sin cos )sin()144ππαααα-=-=∴-=3(0),,tan 14παπαα∈∴=∴=- ,,故选A【解析二】2sin cos (sin cos )2,sin 21,ααααα-=∴-=∴=-33(0,),2(0,2),2,,tan 124ππαπαπααα∈∴∈∴=∴=∴=- ,故选A 8.【2012高考真题江西理4】若tan θ+1tan θ=4,则sin2θ=A .15 B. 14 C. 13 D. 12【答案】D【命题立意】本题考查三角函数的倍角公式以及同角的三角函数的基本关系式。
2012年全国统一高考数学试卷(理科)(大纲版)(含解析版)
2012年全国统一高考数学试卷(理科)(大纲版)一、选择题(共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)复数=()A.2+i B.2﹣i C.1+2i D.1﹣2i2.(5分)已知集合A={1,3,},B={1,m},A∪B=A,则m的值为()A.0或B.0或3C.1或D.1或33.(5分)椭圆的中心在原点,焦距为4,一条准线为x=﹣4,则该椭圆的方程为()A.B.C.D.4.(5分)已知正四棱柱ABCD﹣A1B1C1D1中,AB=2,CC1=2,E为CC1的中点,则直线AC1与平面BED的距离为()A.2B.C.D.15.(5分)已知等差数列{a n}的前n项和为S n,a5=5,S5=15,则数列的前100项和为()A.B.C.D.6.(5分)△ABC中,AB边的高为CD,若=,=,•=0,||=1,||=2,则=()A.B.C.D.7.(5分)已知α为第二象限角,,则cos2α=()A.﹣B.﹣C.D.8.(5分)已知F1、F2为双曲线C:x2﹣y2=2的左、右焦点,点P在C上,|PF1|=2|PF2|,则cos∠F1PF2=()A.B.C.D.9.(5分)已知x=lnπ,y=log52,,则()A.x<y<z B.z<x<y C.z<y<x D.y<z<x 10.(5分)已知函数y=x3﹣3x+c的图象与x轴恰有两个公共点,则c=()A.﹣2或2B.﹣9或3C.﹣1或1D.﹣3或1 11.(5分)将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有()A.12种B.18种C.24种D.36种12.(5分)正方形ABCD的边长为1,点E在边AB上,点F在边BC上,,动点P从E出发沿直线向F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角,当点P第一次碰到E时,P与正方形的边碰撞的次数为()A.16B.14C.12D.10二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上.(注意:在试题卷上作答无效)13.(5分)若x,y满足约束条件则z=3x﹣y的最小值为.14.(5分)当函数y=sinx﹣cosx(0≤x<2π)取得最大值时,x=.15.(5分)若的展开式中第3项与第7项的二项式系数相等,则该展开式中的系数为.16.(5分)三棱柱ABC﹣A1B1C1中,底面边长和侧棱长都相等,∠BAA1=∠CAA1=60°,则异面直线AB1与BC1所成角的余弦值为.三.解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(10分)△ABC的内角A、B、C的对边分别为a、b、c,已知cos(A﹣C)+cosB=1,a=2c,求C.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为菱形,PA⊥底面ABCD,,PA=2,E是PC上的一点,PE=2EC.(Ⅰ)证明:PC⊥平面BED;(Ⅱ)设二面角A﹣PB﹣C为90°,求PD与平面PBC所成角的大小.19.(12分)乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.(Ⅰ)求开始第4次发球时,甲、乙的比分为1比2的概率;(Ⅱ)ξ表示开始第4次发球时乙的得分,求ξ的期望.20.(12分)设函数f(x)=ax+cosx,x∈[0,π].(Ⅰ)讨论f(x)的单调性;(Ⅱ)设f(x)≤1+sinx,求a的取值范围.21.(12分)已知抛物线C:y=(x+1)2与圆(r>0)有一个公共点A,且在A处两曲线的切线为同一直线l.(Ⅰ)求r;(Ⅱ)设m,n是异于l且与C及M都相切的两条直线,m,n的交点为D,求D到l的距离.22.(12分)函数f(x)=x2﹣2x﹣3,定义数列{ x n}如下:x1=2,x n+1是过两点P (4,5),Q n(x n,f(x n))的直线PQ n与x轴交点的横坐标.(Ⅰ)证明:2≤x n<x n+1<3;(Ⅱ)求数列{ x n}的通项公式.2012年全国统一高考数学试卷(理科)(大纲版)参考答案与试题解析一、选择题(共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)复数=()A.2+i B.2﹣i C.1+2i D.1﹣2i【考点】A5:复数的运算.【专题】11:计算题.【分析】把的分子分母都乘以分母的共轭复数,得,由此利用复数的代数形式的乘除运算,能求出结果.【解答】解:===1+2i.故选:C.【点评】本题考查复数的代数形式的乘除运算,是基础题.解题时要认真审题,仔细解答.2.(5分)已知集合A={1,3,},B={1,m},A∪B=A,则m的值为()A.0或B.0或3C.1或D.1或3【考点】1C:集合关系中的参数取值问题.【专题】5J:集合.【分析】由题设条件中本题可先由条件A∪B=A得出B⊆A,由此判断出参数m 可能的取值,再进行验证即可得出答案选出正确选项.【解答】解:由题意A∪B=A,即B⊆A,又,B={1,m},∴m=3或m=,解得m=3或m=0及m=1,验证知,m=1不满足集合的互异性,故m=0或m=3即为所求,故选:B.【点评】本题考查集合中参数取值问题,解题的关键是将条件A∪B=A转化为B⊆A,再由集合的包含关系得出参数所可能的取值.3.(5分)椭圆的中心在原点,焦距为4,一条准线为x=﹣4,则该椭圆的方程为()A.B.C.D.【考点】K3:椭圆的标准方程;K4:椭圆的性质.【专题】11:计算题.【分析】确定椭圆的焦点在x轴上,根据焦距为4,一条准线为x=﹣4,求出几何量,即可求得椭圆的方程.【解答】解:由题意,椭圆的焦点在x轴上,且∴c=2,a2=8∴b2=a2﹣c2=4∴椭圆的方程为故选:C.【点评】本题考查椭圆的标准方程,考查椭圆的几何性质,属于基础题.4.(5分)已知正四棱柱ABCD﹣A1B1C1D1中,AB=2,CC1=2,E为CC1的中点,则直线AC1与平面BED的距离为()A.2B.C.D.1【考点】MI:直线与平面所成的角.【专题】11:计算题.【分析】先利用线面平行的判定定理证明直线C1A∥平面BDE,再将线面距离转化为点面距离,最后利用等体积法求点面距离即可【解答】解:如图:连接AC,交BD于O,在三角形CC1A中,易证OE∥C1A,从而C1A∥平面BDE,∴直线AC1与平面BED的距离即为点A到平面BED的距离,设为h,=S△ABD×EC=××2×2×=在三棱锥E﹣ABD中,V E﹣ABD=×2×=2在三棱锥A﹣BDE中,BD=2,BE=,DE=,∴S△EBD∴V A=×S△EBD×h=×2×h=﹣BDE∴h=1故选:D.【点评】本题主要考查了线面平行的判定,线面距离与点面距离的转化,三棱锥的体积计算方法,等体积法求点面距离的技巧,属基础题5.(5分)已知等差数列{a n}的前n项和为S n,a5=5,S5=15,则数列的前100项和为()A.B.C.D.【考点】85:等差数列的前n项和;8E:数列的求和.【专题】11:计算题.【分析】由等差数列的通项公式及求和公式,结合已知可求a1,d,进而可求a n,代入可得==,裂项可求和【解答】解:设等差数列的公差为d由题意可得,解方程可得,d=1,a1=1由等差数列的通项公式可得,a n=a1+(n﹣1)d=1+(n﹣1)×1=n∴===1﹣=故选:A.【点评】本题主要考查了等差数列的通项公式及求和公式的应用,及数列求和的裂项求和方法的应用,属于基础试题6.(5分)△ABC中,AB边的高为CD,若=,=,•=0,||=1,||=2,则=()A.B.C.D.【考点】9Y:平面向量的综合题.【分析】由题意可得,CA⊥CB,CD⊥AB,由射影定理可得,AC2=AD•AB可求AD,进而可求,从而可求与的关系,进而可求【解答】解:∵•=0,∴CA⊥CB∵CD⊥AB∵||=1,||=2∴AB=由射影定理可得,AC2=AD•AB∴∴∴==故选:D.【点评】本题主要考查了直角三角形的射影定理的应用,向量的基本运算的应用,向量的数量积的性质的应用.7.(5分)已知α为第二象限角,,则cos2α=()A.﹣B.﹣C.D.【考点】GG:同角三角函数间的基本关系;GS:二倍角的三角函数.【专题】56:三角函数的求值.【分析】由α为第二象限角,可知sinα>0,cosα<0,从而可求得sinα﹣cosα=,利用cos2α=﹣(sinα﹣cosα)(sinα+cosα)可求得cos2α【解答】解:∵sinα+cosα=,两边平方得:1+sin2α=,∴sin2α=﹣,①∴(sinα﹣cosα)2=1﹣sin2α=,∵α为第二象限角,∴sinα>0,cosα<0,∴sinα﹣cosα=,②∴cos2α=﹣(sinα﹣cosα)(sinα+cosα)=(﹣)×=﹣.故选:A.【点评】本题考查同角三角函数间的基本关系,突出二倍角的正弦与余弦的应用,求得sinα﹣cosα=是关键,属于中档题.8.(5分)已知F1、F2为双曲线C:x2﹣y2=2的左、右焦点,点P在C上,|PF1|=2|PF2|,则cos∠F1PF2=()A.B.C.D.【考点】KC:双曲线的性质.【专题】11:计算题.【分析】根据双曲线的定义,结合|PF1|=2|PF2|,利用余弦定理,即可求cos∠F1PF2的值.【解答】解:将双曲线方程x2﹣y2=2化为标准方程﹣=1,则a=,b=,c=2,设|PF1|=2|PF2|=2m,则根据双曲线的定义,|PF1|﹣|PF2|=2a可得m=2,∴|PF1|=4,|PF2|=2,∵|F1F2|=2c=4,∴cos∠F1PF2====.故选:C.【点评】本题考查双曲线的性质,考查双曲线的定义,考查余弦定理的运用,属于中档题.9.(5分)已知x=lnπ,y=log52,,则()A.x<y<z B.z<x<y C.z<y<x D.y<z<x【考点】72:不等式比较大小.【专题】11:计算题;16:压轴题.【分析】利用x=lnπ>1,0<y=log52<,1>z=>,即可得到答案.【解答】解:∵x=lnπ>lne=1,0<log52<log5=,即y∈(0,);1=e0>=>=,即z∈(,1),∴y<z<x.故选:D.【点评】本题考查不等式比较大小,掌握对数函数与指数函数的性质是解决问题的关键,属于基础题.10.(5分)已知函数y=x3﹣3x+c的图象与x轴恰有两个公共点,则c=()A.﹣2或2B.﹣9或3C.﹣1或1D.﹣3或1【考点】53:函数的零点与方程根的关系;6D:利用导数研究函数的极值.【专题】11:计算题.【分析】求导函数,确定函数的单调性,确定函数的极值点,利用函数y=x3﹣3x+c的图象与x轴恰有两个公共点,可得极大值等于0或极小值等于0,由此可求c的值.【解答】解:求导函数可得y′=3(x+1)(x﹣1),令y′>0,可得x>1或x<﹣1;令y′<0,可得﹣1<x<1;∴函数在(﹣∞,﹣1),(1,+∞)上单调增,(﹣1,1)上单调减,∴函数在x=﹣1处取得极大值,在x=1处取得极小值.∵函数y=x3﹣3x+c的图象与x轴恰有两个公共点,∴极大值等于0或极小值等于0.∴1﹣3+c=0或﹣1+3+c=0,∴c=﹣2或2.故选:A.【点评】本题考查导数知识的运用,考查函数的单调性与极值,解题的关键是利用极大值等于0或极小值等于0.11.(5分)将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有()A.12种B.18种C.24种D.36种【考点】D9:排列、组合及简单计数问题.【专题】11:计算题;16:压轴题.【分析】由题意,可按分步原理计数,对列的情况进行讨论比对行讨论更简洁.【解答】解:由题意,可按分步原理计数,首先,对第一列进行排列,第一列为a,b,c的全排列,共有种,再分析第二列的情况,当第一列确定时,第二列第一行只能有2种情况,当第二列一行确定时,第二列第2,3行只能有1种情况;所以排列方法共有:×2×1×1=12种,故选:A.【点评】本题若讨论三行每一行的情况,讨论情况较繁琐,而对两列的情况进行分析会大大简化解答过程.12.(5分)正方形ABCD的边长为1,点E在边AB上,点F在边BC上,,动点P从E出发沿直线向F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角,当点P第一次碰到E时,P与正方形的边碰撞的次数为()A.16B.14C.12D.10【考点】IG:直线的一般式方程与直线的性质;IQ:与直线关于点、直线对称的直线方程.【专题】13:作图题;16:压轴题.【分析】通过相似三角形,来确定反射后的点的落的位置,结合图象分析反射的次数即可.【解答】解:根据已知中的点E,F的位置,可知第一次碰撞点为F,在反射的过程中,直线是平行的,利用平行关系及三角形的相似可得第二次碰撞点为G,且CG=,第二次碰撞点为H,且DH=,作图,可以得到回到E点时,需要碰撞14次即可.故选:B.【点评】本题主要考查了反射原理与三角形相似知识的运用.通过相似三角形,来确定反射后的点的落的位置,结合图象分析反射的次数即可,属于难题.二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上.(注意:在试题卷上作答无效)13.(5分)若x,y满足约束条件则z=3x﹣y的最小值为﹣1.【考点】7C:简单线性规划.【专题】11:计算题.【分析】作出不等式组表示的平面区域,由z=3x﹣y可得y=3x﹣z,则﹣z表示直线3x﹣y﹣z=0在y轴上的截距,截距越大z越小,结合图形可求【解答】解:作出不等式组表示的平面区域,如图所示由z=3x﹣y可得y=3x﹣z,则﹣z表示直线3x﹣y﹣z=0在y轴上的截距,截距越大z越小结合图形可知,当直线z=3x﹣y过点C时z最小由可得C(0,1),此时z=﹣1故答案为:﹣1【点评】本题主要考查了线性规划的简单应用,解题的关键是明确目标函数中z 的几何意义,属于基础试题14.(5分)当函数y=sinx﹣cosx(0≤x<2π)取得最大值时,x=.【考点】GP:两角和与差的三角函数;HW:三角函数的最值.【专题】11:计算题;16:压轴题.【分析】利用辅助角公式将y=sinx﹣cosx化为y=2sin(x﹣)(0≤x<2π),即可求得y=sinx﹣cosx(0≤x<2π)取得最大值时x的值.【解答】解:∵y=sinx﹣cosx=2(sinx﹣cosx)=2sin(x﹣).∵0≤x<2π,∴﹣≤x﹣<,∴y max=2,此时x﹣=,∴x=.故答案为:.【点评】本题考查三角函数的最值两与角和与差的正弦函数,着重考查辅助角公式的应用与正弦函数的性质,将y=sinx﹣cosx(0≤x<2π)化为y=2sin (x﹣)(0≤x<2π)是关键,属于中档题.15.(5分)若的展开式中第3项与第7项的二项式系数相等,则该展开式中的系数为56.【考点】DA:二项式定理.【专题】11:计算题;16:压轴题.【分析】根据第2项与第7项的系数相等建立等式,求出n的值,根据通项可求满足条件的系数【解答】解:由题意可得,∴n=8展开式的通项=令8﹣2r=﹣2可得r=5此时系数为=56故答案为:56【点评】本题主要考查了二项式系数的性质,以及系数的求解,解题的关键是根据二项式定理写出通项公式,同时考查了计算能力.16.(5分)三棱柱ABC﹣A1B1C1中,底面边长和侧棱长都相等,∠BAA1=∠CAA1=60°,则异面直线AB1与BC1所成角的余弦值为.【考点】LM:异面直线及其所成的角.【专题】11:计算题;16:压轴题.【分析】先选一组基底,再利用向量加法和减法的三角形法则和平行四边形法则将两条异面直线的方向向量用基底表示,最后利用夹角公式求异面直线AB1与BC1所成角的余弦值即可【解答】解:如图,设=,,,棱长均为1,则=,=,=∵,∴=()•()=﹣++﹣+=﹣++=﹣1++1=1||===||===∴cos<,>===∴异面直线AB1与BC1所成角的余弦值为【点评】本题主要考查了空间向量在解决立体几何问题中的应用,空间向量基本定理,向量数量积运算的性质及夹角公式的应用,有一定的运算量三.解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(10分)△ABC的内角A、B、C的对边分别为a、b、c,已知cos(A﹣C)+cosB=1,a=2c,求C.【考点】GL:三角函数中的恒等变换应用;HP:正弦定理.【专题】11:计算题.【分析】由cos(A﹣C)+cosB=cos(A﹣C)﹣cos(A+C)=1,可得sinAsinC=,由a=2c及正弦定理可得sinA=2sinC,联立可求C【解答】解:由B=π﹣(A+C)可得cosB=﹣cos(A+C)∴cos(A﹣C)+cosB=cos(A﹣C)﹣cos(A+C)=2sinAsinC=1∴sinAsinC=①由a=2c及正弦定理可得sinA=2sinC②①②联立可得,∵0<C<π∴sinC=a=2c即a>c【点评】本题主要考查了两角和与差的余弦公式及正弦定理的应用,属于基础试题18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为菱形,PA⊥底面ABCD,,PA=2,E是PC上的一点,PE=2EC.(Ⅰ)证明:PC⊥平面BED;(Ⅱ)设二面角A﹣PB﹣C为90°,求PD与平面PBC所成角的大小.【考点】LW:直线与平面垂直;MI:直线与平面所成的角;MM:向量语言表述线面的垂直、平行关系.【专题】11:计算题.【分析】(I)先由已知建立空间直角坐标系,设D(,b,0),从而写出相关点和相关向量的坐标,利用向量垂直的充要条件,证明PC⊥BE,PC⊥DE,从而利用线面垂直的判定定理证明结论即可;(II)先求平面PAB的法向量,再求平面PBC的法向量,利用两平面垂直的性质,即可求得b的值,最后利用空间向量夹角公式即可求得线面角的正弦值,进而求得线面角【解答】解:(I)以A为坐标原点,建立如图空间直角坐标系A﹣xyz,设D(,b,0),则C(2,0,0),P(0,0,2),E(,0,),B(,﹣b,0)∴=(2,0,﹣2),=(,b,),=(,﹣b,)∴•=﹣=0,•=0∴PC⊥BE,PC⊥DE,BE∩DE=E∴PC⊥平面BED(II)=(0,0,2),=(,﹣b,0)设平面PAB的法向量为=(x,y,z),则取=(b,,0)设平面PBC的法向量为=(p,q,r),则取=(1,﹣,)∵平面PAB⊥平面PBC,∴•=b﹣=0.故b=∴=(1,﹣1,),=(﹣,﹣,2)∴cos<,>==设PD与平面PBC所成角为θ,θ∈[0,],则sinθ=∴θ=30°∴PD与平面PBC所成角的大小为30°【点评】本题主要考查了利用空间直角坐标系和空间向量解决立体几何问题的一般方法,线面垂直的判定定理,空间线面角的求法,有一定的运算量,属中档题19.(12分)乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.(Ⅰ)求开始第4次发球时,甲、乙的比分为1比2的概率;(Ⅱ)ξ表示开始第4次发球时乙的得分,求ξ的期望.【考点】C8:相互独立事件和相互独立事件的概率乘法公式;CH:离散型随机变量的期望与方差.【专题】15:综合题.【分析】(Ⅰ)记A i表示事件:第1次和第2次这两次发球,甲共得i分,i=0,1,2;A表示事件:第3次发球,甲得1分;B表示事件:开始第4次发球,甲、乙的比分为1比2,则B=A0A+A1,根据P(A)=0.4,P(A0)=0.16,P (A1)=2×0.6×0.4=0.48,即可求得结论;(Ⅱ)P(A2)=0.62=0.36,ξ表示开始第4次发球时乙的得分,可取0,1,2,3,计算相应的概率,即可求得ξ的期望.【解答】解:(Ⅰ)记A i表示事件:第1次和第2次这两次发球,甲共得i分,i=0,1,2;A表示事件:第3次发球,甲得1分;B表示事件:开始第4次发球,甲、乙的比分为1比2,则B=A0A+A1∵P(A)=0.4,P(A0)=0.16,P(A1)=2×0.6×0.4=0.48∴P(B)=0.16×0.4+0.48×(1﹣0.4)=0.352;(Ⅱ)P(A2)=0.62=0.36,ξ表示开始第4次发球时乙的得分,可取0,1,2,3 P(ξ=0)=P(A2A)=0.36×0.4=0.144P(ξ=2)=P(B)=0.352P(ξ=3)=P(A0)=0.16×0.6=0.096P(ξ=1)=1﹣0.144﹣0.352﹣0.096=0.408∴ξ的期望Eξ=1×0.408+2×0.352+3×0.096=1.400.【点评】本题考查相互独立事件的概率,考查离散型随机变量的期望,确定变量的取值,计算相应的概率是关键.20.(12分)设函数f(x)=ax+cosx,x∈[0,π].(Ⅰ)讨论f(x)的单调性;(Ⅱ)设f(x)≤1+sinx,求a的取值范围.【考点】6B:利用导数研究函数的单调性;6E:利用导数研究函数的最值.【专题】15:综合题.【分析】(Ⅰ)求导函数,可得f'(x)=a﹣sinx,x∈[0.π],sinx∈[0,1],对a进行分类讨论,即可确定函数的单调区间;(Ⅱ)由f(x)≤1+sinx得f(π)≤1,aπ﹣1≤1,可得a≤,构造函数g(x)=sinx﹣(0≤x),可得g(x)≥0(0≤x),再考虑:①0≤x;②,即可得到结论.【解答】解:(Ⅰ)求导函数,可得f'(x)=a﹣sinx,x∈[0,π],sinx∈[0,1];当a≤0时,f'(x)≤0恒成立,f(x)单调递减;当a≥1 时,f'(x)≥0恒成立,f(x)单调递增;当0<a<1时,由f'(x)=0得x1=arcsina,x2=π﹣arcsina当x∈[0,x1]时,sinx<a,f'(x)>0,f(x)单调递增当x∈[x1,x2]时,sinx>a,f'(x)<0,f(x)单调递减当x∈[x2,π]时,sinx<a,f'(x)>0,f(x)单调递增;(Ⅱ)由f(x)≤1+sinx得f(π)≤1,aπ﹣1≤1,∴a≤.令g(x)=sinx﹣(0≤x),则g′(x)=cosx﹣当x时,g′(x)>0,当时,g′(x)<0∵,∴g(x)≥0,即(0≤x),当a≤时,有①当0≤x时,,cosx≤1,所以f(x)≤1+sinx;②当时,=1+≤1+sinx综上,a≤.【点评】本题考查导数知识的运用,考查函数的单调性,考查函数的最值,解题的关键是正确求导,确定函数的单调性.21.(12分)已知抛物线C:y=(x+1)2与圆(r>0)有一个公共点A,且在A处两曲线的切线为同一直线l.(Ⅰ)求r;(Ⅱ)设m,n是异于l且与C及M都相切的两条直线,m,n的交点为D,求D到l的距离.【考点】IM:两条直线的交点坐标;IT:点到直线的距离公式;KJ:圆与圆锥曲线的综合.【专题】15:综合题;16:压轴题.【分析】(Ⅰ)设A(x0,(x0+1)2),根据y=(x+1)2,求出l的斜率,圆心M (1,),求得MA的斜率,利用l⊥MA建立方程,求得A的坐标,即可求得r的值;(Ⅱ)设(t,(t+1)2)为C上一点,则在该点处的切线方程为y﹣(t+1)2=2(t+1)(x﹣t),即y=2(t+1)x﹣t2+1,若该直线与圆M相切,则圆心M到该切线的距离为,建立方程,求得t的值,求出相应的切线方程,可得D 的坐标,从而可求D到l的距离.【解答】解:(Ⅰ)设A(x0,(x0+1)2),∵y=(x+1)2,y′=2(x+1)∴l的斜率为k=2(x0+1)当x0=1时,不合题意,所以x0≠1圆心M(1,),MA的斜率.∵l⊥MA,∴2(x0+1)×=﹣1∴x0=0,∴A(0,1),∴r=|MA|=;(Ⅱ)设(t,(t+1)2)为C上一点,则在该点处的切线方程为y﹣(t+1)2=2(t+1)(x﹣t),即y=2(t+1)x﹣t2+1若该直线与圆M相切,则圆心M到该切线的距离为∴∴t2(t2﹣4t﹣6)=0∴t0=0,或t1=2+,t2=2﹣抛物线C在点(t i,(t i+1)2)(i=0,1,2)处的切线分别为l,m,n,其方程分别为y=2x+1①,y=2(t1+1)x﹣②,y=2(t2+1)x﹣③②﹣③:x=代入②可得:y=﹣1∴D(2,﹣1),∴D到l的距离为【点评】本题考查圆与抛物线的综合,考查抛物线的切线方程,考查导数知识的运用,考查点到直线的距离公式的运用,关键是确定切线方程,求得交点坐标.22.(12分)函数f(x)=x2﹣2x﹣3,定义数列{ x n}如下:x1=2,x n+1是过两点P (4,5),Q n(x n,f(x n))的直线PQ n与x轴交点的横坐标.(Ⅰ)证明:2≤x n<x n+1<3;(Ⅱ)求数列{ x n}的通项公式.【考点】8H:数列递推式;8I:数列与函数的综合.【专题】15:综合题;16:压轴题.【分析】(Ⅰ)用数学归纳法证明:①n=1时,x1=2,直线PQ1的方程为,当y=0时,可得;②假设n=k时,结论成立,即2≤x k<x k+1<3,直线PQ k+1的方程为,当y=0时,可得,根据归纳假设2≤x k<x k+1<3,可以证明2≤x k+1<x k+2<3,从而结论成立.(Ⅱ)由(Ⅰ),可得,构造b n=x n﹣3,可得是以﹣为首项,5为公比的等比数列,由此可求数列{ x n}的通项公式.【解答】(Ⅰ)证明:①n=1时,x1=2,直线PQ1的方程为当y=0时,∴,∴2≤x1<x2<3;②假设n=k时,结论成立,即2≤x k<x k+1<3,直线PQ k+1的方程为当y=0时,∴∵2≤x k<x k+1<3,∴<x k+2∴x k+1<x k+2<3∴2≤x k+1即n=k+1时,结论成立由①②可知:2≤x n<x n+1<3;(Ⅱ)由(Ⅰ),可得设b n=x n﹣3,∴∴∴是以﹣为首项,5为公比的等比数列∴∴∴.【点评】本题考查数列的通项公式,考查数列与函数的综合,解题的关键是从函数入手,确定直线方程,求得交点坐标,再利用数列知识解决.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年高考真题理科数学解析分类汇编5 三角函数 一、选择题1.【2012高考重庆理5】设tan ,tan αβ是方程2320x x -+=的两个根,则tan()αβ+的值为(A )-3 (B )-1 (C )1 (D )3 【答案】A【解析】因为βαt an ,t an 是方程2320x x -+=的两个根,所以3t an t an=+βα,2tan tan =βα,所以3213tan tan 1tan tan )tan(-=-=-+=+βαβαβα,选A.2.【2012高考浙江理4】把函数y=cos2x+1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移 1个单位长度,得到的图像是【答案】A【解析】把函数y =cos2x +1的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变)得:y 1=cos x +1,向左平移1个单位长度得:y 2=cos(x +1)+1,再向下平移1个单位长度得:y 3=cos(x+1).令x =0,得:y 3>0;x =12-π,得:y 3=0;观察即得答案. 3.【2012高考新课标理9】已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减.则ω的取值范围是( )()A 15[,]24 ()B 13[,]24()C 1(0,]2 ()D (0,2]【答案】A【解析】法1:函数)4sin()(πω+=x x f 的导数为)4cos()('πωω+=x x f ,要使函数)4sin()(πω+=x x f 在),2(ππ上单调递减,则有0)4cos()('≤+=πωωx x f 恒成立,则πππωππk x k 223422+≤+≤+,即ππωππk x k 24524+≤≤+,所以Z k k x k ∈+≤≤+,ωπωπωπωπ2424,当0=k 时,ωπωπ454≤≤x ,又ππ<<x 2,所以有πωππωπ≥≤45,24,解得45,21≤≥ωω,即4521≤≤ω,选A. 法2:选A592()[,]444x πππωω=⇒+∈ 不合题意 排除()D351()[,]444x πππωω=⇒+∈ 合题意 排除()()B C另:()22πωππω-≤⇔≤,3()[,][,]424422x ππππππωωπω+∈++⊂ 得:315,2424224πππππωπωω+≥+≤⇔≤≤ 4.【2012高考四川理4】如图,正方形ABCD 的边长为1,延长BA 至E ,使1AE =,连接EC 、ED 则sin CED ∠=( )A BC 、10 D 、15【答案】B【解析】2EB EA AB =+=,EC =3424EDC EDA ADC πππ∠=∠+∠=+=,由正弦定理得sinsin 5CED DC EDC CE ∠===∠,所以3sin sin sin 55410CED EDC π∠=∠==[点评]注意恒等式sin 2α+cos 2α=1的使用,需要用α的的范围决定其正余弦值的正负情况.5.【2012高考陕西理9】在ABC ∆中,角,,A B C 所对边长分别为,,a b c ,若2222a b c +=,则cos C 的最小值为( )A.B. 2C. 12D. 12-【答案】C.【解析】由余弦定理知214242)(212cos 222222222=≥+=+-+=-+=ab ab ab b a ab b a b a ab c b a C ,故选C.6.【2012高考山东理7】若42ππθ⎡⎤∈⎢⎥⎣⎦,,sin 2=8θ,则sin θ=(A )35 (B )45 (C(D )34 【答案】D【解析】法1:因为]2,4[ππθ∈,所以],2[2ππθ∈,02cos <θ,所以812sin 12cos 2-=--=θθ,又81s i n 212c o s 2-=-=θθ,所以169sin 2=θ,43sin =θ,选D.法2:由42ππθ⎡⎤∈⎢⎥⎣⎦,及sin 2θ可得434716776916761687312sin 1cos sin +=++=+=+=+=+θθθ, 而当42ππθ⎡⎤∈⎢⎥⎣⎦,时θθcos sin >,结合选项即可得47cos ,43sin ==θθ.答案应选D 。
7.【2012高考辽宁理7】已知sin cos αα-=,α∈(0,π),则tan α= (A) -1(B) 2-(C) 2(D) 1 【答案】A【解析一】sin cos )sin()144ππαααα-=-=-=3(0),,tan 14παπαα∈∴=∴=- ,,故选A【解析二】2sin cos (sin cos )2,sin 21,ααααα--=∴=-33(0,),2(0,2),2,,tan 124ππαπαπααα∈∴∈∴=∴=∴=- ,故选A 【点评】本题主要考查三角函数中的和差公式、倍角公式、三角函数的性质以及转化思想和运算求解能力,难度适中。
8.【2012高考江西理4】若tan θ+1tan θ=4,则sin2θ= A .15 B. 14 C. 13 D. 12【答案】D【命题立意】本题考查三角函数的倍角公式以及同角的三角函数的基本关系式。
【解析】由4tan 1tan =+θθ得, 4cos sin cos sin sin cos cos sin 22=+=+θθθθθθθθ,即42sin 211=θ,所以212sin =θ,选D. 【点评】本题需求解正弦值,显然必须切化弦,因此需利用公式sin tan cos θθθ=转化;另外,22sin cos θθ+在转化过程中常与“1”互相代换,从而达到化简的目的;关于正弦、余弦的齐次分式,常将正弦、余弦转化为正切,即弦化切,达到求解正切值的目的. 体现考纲中要求理解三角函数的基本关系式,二倍角公式.来年需要注意二倍角公式的正用,逆用等. 9.【2012高考湖南理6】函数f (x )=sinx-cos(x+6π)的值域为A .2 , 2] 【答案】B【解析】f (x )=sinx-cos(x+6π)1sin sin )26x x x x π=+=-, []sin()1,16x π-∈- ,()f x ∴值域为【点评】利用三角恒等变换把()f x 化成sin()A x ωϕ+的形式,利用[]sin()1,1x ωϕ+∈-,求得()f x 的值域.10.【2012高考上海理16】在ABC ∆中,若C B A 222sin sin sin <+,则ABC ∆的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定 【答案】C【解析】根据正弦定理可知由C B A 222sin sin sin <+,可知222c b a <+,在三角形中02cos 222<-+=abc b a C ,所以C 为钝角,三角形为钝角三角形,选C.【点评】本题主要考查正弦定理及其推理、余弦定理的运用.主要抓住所给式子的结构来选择定理,如果出现了角度的正弦值就选择正弦定理,如果出现角度的余弦值就选择余弦定理.本题属于中档题.11.【2012高考天津理2】设,R ∈ϕ则“0=ϕ”是“))(cos()(R x x x f ∈+=ϕ为偶函数”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分与不必要条件 【答案】A【命题意图】本试题主要考查了三角函数的奇偶性的判定以及充分条件与必要条件的判定. 【解析】函数)co s()(ϕ+=x x f 若为偶函数,则有Z k k ∈=,πϕ,所以“0=ϕ”是“)cos()(ϕ+=x x f 为偶函数”的充分不必要条件,选A.12.【2012高考天津理6】在ABC ∆中,内角A ,B ,C 所对的边分别是c b a ,,,已知8b=5c ,C=2B ,则cosC=(A )257 (B )257- (C )257± (D )2524【答案】A【命题意图】本试题主要考查了正弦定理、三角函数中的二倍角公式. 考查学生分析、转化与计算等能力.【解析】因为B C 2=,所以B B B C c o s s i n 2)2s i n (s i n ==,根据正弦定理有B bC c s i n s i n =,所以58sin sin ==B C b c ,所以545821s i n 2s i n c o s =⨯==B C B 。
又1c o s 2)2c o s (c o s 2-==B B C ,所以2571251621cos 2cos 2=-⨯=-=B C ,选A. 13.【2012高考全国卷理7】已知α为第二象限角,33cos sin =+αα,则cos2α=(A) -3 (B )-9 (C) 9 (D)3【答案】A【命题意图】本试题主要考查了三角函数中两角和差的公式以及二倍角公式的运用。
首先利用平方法得到二倍角的正弦值,然后然后利用二倍角的余弦公式,将所求的转化为单角的正弦值和余弦值的问题。
【解析】因为33cos sin =+αα所以两边平方得31cos sin 21=+αα,所以032cos sin 2<-=αα,因为已知α为第二象限角,所以0cos ,0sin <>αα,31535321cos sin 21cos sin ==+=-=-αααα,所以)sin )(cos sin (cos sin cos 2cos 22ααααααα+-=-==3533315-=⨯-,选A. 二、填空题14.【2012高考湖南理15】函数f (x )=sin (x ωϕ+)的导函数()y f x '=的部分图像如图4所示,其中,P 为图像与y 轴的交点,A,C 为图像与x 轴的两个交点,B 为图像的最低点. (1)若6πϕ=,点P 的坐标为(0,2),则ω= ; (2)若在曲线段 ABC 与x 轴所围成的区域内随机取一点,则该点在△ABC 内的概率为.【答案】(1)3;(2)4π【解析】(1)()y f x '=cos()x ωωϕ=+,当6πϕ=,点P 的坐标为(0,2)时cos36πωω=∴=; (2)由图知222T AC ππωω===,122ABC S AC πω=⋅= ,设,A B 的横坐标分别为,a b .设曲线段ABC 与x轴所围成的区域的面积为S则()()sin()sin()2bbaaS f x dx f x a b ωϕωϕ'===+-+=⎰,由几何概型知该点在△ABC内的概率为224ABC S P S ππ=== .【点评】本题考查三角函数的图像与性质、几何概型等,(1)利用点P 在图像上求ω, (2)几何概型,求出三角形面积及曲边形面积,代入公式即得.15.【2012高考湖北理11】设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c . 若()()a b c a b c ab +-++=,则角C = .【答案】32π 考点分析:考察余弦定理的运用.【解析】222222a =-a -ab 12cos =,2223a b c ba b c C C ab ab π+-+-==-∠=由(+b-c )(a+b-c)=ab,得到根据余弦定理故16.【2012高考北京理11】在△ABC 中,若a =2,b+c=7,cosB=41-,则b=_______。