人教版九年级数学 弦切角与圆幂定理(选学)
赛老师伴你过寒假:九年级,备中考,圆弦切角定理、圆幂定理
赛老师伴你过寒假:九年级,备中考,圆弦切角定理、圆幂定
理
书本上没有的定理,但却常考
弦切角定理和圆幂定理,书本上没有,但是如果知道这两个定理的话,解题会方便不少。
弦切角定理讲的是角度关系;圆幂定理讲的是圆与三角形相似的综合问题。
值得初三学生花时间掌握。
弦切角定理(解答题需要有证明过程)
弦切角定理:弦切角等于它所夹的弧对的圆周角。
弦切角定理
弦切角原理是什么?
下面我们一例说明白。
一例说明弦切角模型
弦切角模型
第一问和第二问的证明就是弦切角的原理。
第三问是此模型的应用。
与三角形相似结合。
举一反三
圆幂定理
圆幂定理分为相交弦定理、切割线定理、割线定理。
其原理都是三角形相似。
(1)相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等。
原理如图:
相交弦定理
(2)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
原理如图:
切割线定理
其中涉及到了弦切角定理,如解答题考到需要证明。
(3)割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的乘积相等。
原理如图:
割线定理
小试牛刀。
初三数学圆相关复习重点及试题(二)
初三数学圆相关知识点及试题七.切线长定理考点速览: 考点1切线长概念:经过圆外一点做圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长. 切线长和切线的区别切线是直线,不可度量;而切线长是切线上一条线段的长,而圆外一已知点到切点之间的距离,可以度量. 考点2 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.要注意:此定理包含两个结论,如图,PA 、PB 切⊙O 于A 、B 两点,①PA=PB ②PO 平分APB ∠. 考点3 两个结论:圆的外切四边形对边和相等;圆的外切等腰梯形的中位线等于腰长. 经典例题:例1 已知PA 、PB 、DE 分别切⊙O 于A 、B 、C 三点,若PO=13㎝,PED ∆的周长为24㎝, 求:①⊙O 的半径;②若40APB ∠=︒,EOD ∠的度数.例2 如图,⊙O 分别切ABC ∆的三边AB 、BC 、CA 于点D 、E 、F ,若,,BC a AC b AB c ===. (1)求AD 、BE 、CF 的长;(2)当90C ∠=︒,求内切圆半径r .例3.如图,一圆内切四边形ABCD ,且AB=16,CD=10,则四边形的周长为?例4 如图甲,直线343+-=x y 与x 轴相交于点A ,与y 轴相交于点B ,点C ()n m ,是第二象限内任意一点,以点C 为圆心与圆与x 轴相切于点E ,与直线AB 相切于点F.(1)当四边形OBCE 是矩形时,求点C 的坐标;(2)如图乙,若⊙C 与y 轴相切于点D ,求⊙C 的半径r ; (3)求m 与n 之间的函数关系式;(4)在⊙C 的移动过程中,能否使OEF ∆是等边三角形(只回答“能”或“不能”)?· FDOAB· EFDCOAB考点速练1:1.如图,⊙O 是ABC ∆的内切圆,D 、E 、F 为切点,::4:3:2A B C ∠∠∠=,则DEF ∠= . FEC ∠= .2.直角三角形的两条直角边为5㎝、12㎝,则此直角三角形的外接圆半径为 ㎝,内切圆半径为 ㎝.3.如图,直线AB 、BC 、CD 分别与⊙O 相切于点E 、F 、G ,且AB ∥CD ,若OB=6㎝,OC=8㎝,则BOC ∠= ,⊙O 的半径= ㎝,BE+CG= ㎝.4.如图,PA 、PB 是⊙O 的切线,AB 交OP 于点M ,若2,OM cm AB PB ==,则⊙O 的半径是 ㎝.·A O CDBEF· AO C D B E FG· AOPBM考点速练(2)1.如图,在Rt ABC ∆中,90,3,4C AC BC ∠=︒==,以BC 边上一点O 为圆心作⊙O 与AB 相切于E ,与AC 相切于C ,又⊙O 与BC 的另一个交点D ,则线段BD 的长 . 2.如图,ABC ∆内接于⊙O ,AB 为⊙O 直径,过C 点的切线交直径AB 的延长线于P ,25BAC ∠=︒,则P ∠= .4、(广西)PA 、PB 是⊙O 切线,A 、B 切点,∠APB =780,点C 是⊙O 上异于A 、B 任一点,那么∠ACB =_____。
圆幂定理
圆幂定理圆幂定理是平面几何中的一个定理,是相交弦定理、切割线定理及割线定理(切割线定理推论)的统一,例如如果交点为P 的两条相交直线与圆O相交于A、B与C、D,则PA·PB=PC·PD。
圆幂定理是一个总结性的定理,是对相交弦定理、切割线定理及割线定理(切割线定理推论)以及它们推论的统一与归纳。
根据两条与圆有相交关系的线的位置不同,有以下定理:相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。
切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
割线定理:从圆外一点P引两条割线与圆分别交于A、B;C、D,则有PA·PB=PC·PD从上述定理可以看出,两条线的位置从内到外,都有着相似的结论。
经过总结和归纳,便得出了圆幂定理。
点对圆的幂定义:P点对圆O的幂定义为性质:点P对圆O的幂的值,和点P与圆O的位置关系有下述关系:点P在圆O内→P对圆O的幂为负数;点P在圆O外→P对圆O的幂为正数;点P在圆O上→P对圆O的幂为0。
注意:以上关系除正向应用通过点和圆的位置关系判断点对的圆的幂的符号,还可以逆向应用,通过点对圆的幂的符号反推点和圆的位置关系。
在某些书中,点P对圆O的幂表示为定理证明:图Ⅰ:相交弦定理。
如图,AB、CD为圆O的两条任意弦。
相交于点P,连接AD、BC,由于∠B与∠D同为弧AC所对的圆周角,因此由圆周角定理知:∠B=∠D,同理∠A=∠C,所以。
所以有:,即:。
图Ⅱ:割线定理。
如图,连接AD、BC。
可知∠B=∠D,又因为∠P为公共角,所以有,同上证得。
图Ⅲ:切割线定理。
如图,连接AC、AD。
∠PAC为切线PA与弦AC组成的弦切角,因此有∠PBC=∠D,又因为∠P为公共角,所以有,易证。
图Ⅳ:PA、PC均为切线,则∠PAO=∠PCO=90°,在直角三角形中:OC=OA=R,PO为公共边,因此。
所以PA=PC,所以。
九年级数学专题第二十二讲 园幂定理
第二十二讲 园幂定理相交弦定理、切割线定理、割线定理统称为圆幂定理.圆幂定理实质上是反映两条相交直线与圆的位置关系的性质定理,其本质是与比例线段有关.相交弦定理、切割线定理、割线定理有着密切的联系,主要体现在:1.用运动的观点看,切割线定理、割线定理是相交弦定理另一种情形,即移动圆内两条相交弦使其交点在圆外的情况;2.从定理的证明方法看,都是由一对相似三角形得到的等积式.熟悉以下基本图形、基本结论:【例题求解】【例1】 如图,PT 切⊙O 于点T ,PA 交⊙O 于A 、B 两点,且与直径CT 交于点D ,CD=2,AD=3,BD=6,则PB= .(成都市中考题) 思路点拨 综合运用圆幂定理、勾股定理求PB 长.注:比例线段是几何之中一个重要问题,比例线段的学习是一个由一般到特殊、不断深化的过程,大致经历了四个阶段:(1)平行线分线段对应成比例; (2)相似三角形对应边成比例;(3)直角三角形中的比例线段可以用积的形式简捷地表示出来; (4)圆中的比例线段通过圆幂定理明快地反映出来.【例2】 如图,在平行四边形ABCD 中,过A 、B 、C 三点的圆交AD 于点E ,且与CD 相切,若AB=4,BE=5,则DE 的长为( ) A .3 B .4 C .415 D .516 (全国初中数学联赛题)思路点拨 连AC ,CE ,由条件可得许多等线段,为切割线定理的运用创设条件.注:圆中线段的算,常常需要综合相似三角形、直角三角形、圆幂定理等知识,通过代数化获解,加强对图形的分解,注重信息的重组与整合是解圆中线段计算问题的关键.【例3】如图,△ABC内接于⊙O,AB是∠O的直径,PA是过A点的直线,∠PAC=∠B.(1)求证:PA是⊙O的切线;(2)如果弦CD交AB于E,CD的延长线交PA于F,AC=8,CE:ED=6:5,,AE:BE=2:3,求AB的长和∠ECB的正切值.(北京市海淀区中考题)思路点拨直径、切线对应着与圆相关的丰富知识.(1)问的证明为切割线定理的运用创造了条件;引入参数x、k处理(2)问中的比例式,把相应线段用是的代数式表示,并寻找x 与k的关系,建立x或k的方程.【例4】如图,P是平行四边形AB的边AB的延长线上一点,DP与AC、BC分别交于点E、E,EG是过B、F、P三点圆的切线,G为切点,求证:EG=DE(四川省竞赛题)思路点拨由切割线定理得EG2=EF·EP,要证明EG=DE,只需证明DE2=EF·EP,这样通过圆幂定理把线段相等问题的证明转化为线段等积式的证明.注:圆中的许多问题,若图形中有适用圆幂定理的条件,则能化解问题的难度,而圆中线段等积式是转化问题的桥梁.需要注意的是,圆幂定理的运用不仅局限于计算及比例线段的证明,可拓展到平面几何各种类型的问题中.【例5】如图,以正方形ABCD的AB边为直径,在正方形内部作半圆,圆心为O,DF切半圆于点E,交AB的延长线于点F,BF=4.求:(1)cos∠F的值;(2)BE的长.(成都市中考题)思路点拨解决本例的基础是:熟悉圆中常用辅助线的添法(连OE,AE);熟悉圆中重要性质定理及角与线段的转化方法.对于(1),先求出EF,FO值;对于(2),从△BE F∽△EAF,Rt△AEB入手.注:当直线形与圆结合时就产生错综复杂的图形,善于分析图形是解与圆相关综合题的关键,分析图形可从以下方面入手:(1)多视点观察图形.如本例从D 点看可用切线长定理,从F 点看可用切割线定理. (2)多元素分析图形.图中有没有特殊点、特殊线、特殊三角形、特殊四边形、全等三角形、相似三角形.(3)将以上分析组合,寻找联系.学力训练1.如图,PT 是⊙O 的切线,T 为切点,PB 是⊙O 的割线,交⊙O 于A 、B 两点,交弦CD 于点M ,已知CM=10,MD=2,PA=MB=4,则PT 的长为 .(绍兴市中考题)2.如图,PAB 、PCD 为⊙O 的两条割线,若PA=5,AB=7,CD=11,则AC :BD= . 3.如图,AB 是⊙O 的直径,C 是AB 延长线上的一点,CD 是⊙O 的切线,D 为切点,过点B 作⊙O 的切线交CD 于点F ,若AB=CD=2,则CE= .(天津市中考题)4.如图,在△ABC 中,∠C=90°,AB=10,AC=6,以AC 为直径作圆与斜边交于点P ,则BP 的长为( )A .6.4B .3.2C .3.6D .8(苏州市中考题)5.如图,⊙O 的弦AB 平分半径OC ,交OC 于P 点,已知PA 、PB 的长分别为方程024122=+-x x 的两根,则此圆的直径为( )A .28B .26C .24D .22(昆明市中考题)新课标九年级数学竞赛辅导讲座6.如图,⊙O 的直径Ab 垂直于弦CD ,垂足为H ,点P 是AC 上一点(点P 不与A 、C 两点重合),连结PC 、PD 、PA 、AD ,点E 在AP 的延长线上,PD 与AB 交于点F ,给出下列四个结论:①CH 2=AH ·BH ;②AD =AC :③AD 2=DF ·DP ;④∠EPC=∠APD ,其中正确的个数是( )A .1B .2C .3D .4(福州市中考题)7.如图,BC 是半圆的直径,O 为圆心,P 是BC 延长线上一点,PA 切半圆于点A ,AD ⊥BC 于点D .(1)若∠B=30°,问AB 与AP 是否相等?请说明理由; (2)求证:PD ·PO=PC ·PB ;(3)若BD :DC=4:l ,且BC =10,求PC 的长.(绍兴市中考题)8.如图,已知PA 切⊙O 于点A ,割线PBC 交⊙O 于点B 、C ,PD ⊥AB 于点D ,PD 、AO 的延长线相交于点E ,连CE 并延长交⊙O 于点F ,连AF . (1)求证:△PBD ∽△PEC ; (2)若AB=12,tan ∠EAF=32,求⊙O 的半径的长. (北京市崇文区中考题)9.如图,已知AB 是⊙O 的直径,PB 切⊙O 于点B ,PA 交⊙O 于点C ,PF 分别交AB 、BC 于E 、D ,交⊙O 于F 、G ,且BE 、BD 恰哈好是关于x 的方程0)134(622=+++-m m x x (其中m 为实数)的两根.(1)求证:BE=BD ;(2)若GE ·EF=36,求∠A 的度数. (山西省中考题)10.如图,△ABC 中,∠C=90°,O 为AB 上一点,以O 为圆心,OB 为半径的圆与AB 相交于点E ,与AC 相切于点D ,已知AD=2,AE=1,那么BC= .(山东省临沂市中考题)11.如图,已知A 、B 、C 、D 在同一个圆上,BC=CD ,AC 与BD 交于E ,若AC=8,CD=4,且线段BE 、ED 为正整数,则BD= .⌒⌒⌒12.如图,P 是半圆O 的直径BC 延长线上一点,PA 切半圆于点A ,AH ⊥BC 于H ,若PA=1,PB+PC=a (a >2),则PH=( )A .a 2 B .a 1 C .2a D .3a 13.如图,△ABC 是⊙O 的内接正三角形,弦EF 经过BC 的中点D ,且EF ∥AB ,若AB=2,则DE 的长为( )A .21 B .215- C .23 D .1 14.如图,已知AB 为⊙O 的直径,C 为⊙O 上一点,延长BC 至D ,使CD=BC ,CE ⊥AD于E ,BE 交⊙O 于F ,AF 交CE 于P ,求证:PE=PC .(太原市竞赛题)15.已知:如图,ABCD 为正方形,以D 点为圆心,AD 为半径的圆弧与以BC 为直径的⊙O 相交于P 、C 两点,连结AC 、AP 、CP ,并延长CP 、AP 分别交AB 、BC 、⊙O 于E 、H 、F 三点,连结OF .(1)求证:△AEP ∽△CEA ;(2)判断线段AB 与OF 的位置关系,并证明你的结论; (3)求BH:HC (四川省中考题)16.如图,PA 、PB 是⊙O 的两条切线,PEC 是一条割线,D 是AB 与PC 的交点,若PE=2,CD=1,求DE 的长.(国家理科实验班招生试题)17.如图,⊙O 的直径的长是关于x 的二次方程0)2(22=+-+k x k x (k 是整数)的最大整数根,P 是⊙O 外一点,过点P 作⊙O 的切线PA 和割线PBC ,其中A 为切点,点B 、C 是直线PBC 与⊙O 的交点,若PA 、PB 、PC 的长都是正整数,且PB 的长不是合数,求PA+PB+PC 的值. (全国初中数学竞赛题)参考答案。
【人教版】九年级上册数学《弦切角》ppt教学课件
连结OC,由切线性质, 可得OC∥AD,于是 有∠2=∠3,又由于 B ∠1=∠3,可证得 ∠1=∠2
E
·O 1A 32 CD
小结:
1、概念的引入
顶点在圆上,一边与圆相交,另一边与圆相 切的角叫做弦切角。
2、定理的发现
弦切角定理:弦切角等于它所夹的弧对的圆周角。
推论:两个弦切角所夹的弧相等,
那么这两个弦切角相等。
的度数是( B )。
A、38°B、52° C、68° D、42°
O
A
B
38°
M
C
D N
弦切角定理:弦切角等于它所夹的弧对的圆周角。 推论:两个弦切角所夹的弧相等, 那么这两个弦切角相等。
如图,DE切⊙O于点A,AB、AC是 ⊙O的弦,若 AB=AC,那么∠DAB 与∠EAC是否相等?为什么?
∠ DAB= ∠EAC
C
B O
E
A
D
例题解析
例1:如图:已知AB是⊙O的直
径,AC是弦,直线CE和⊙O切于
点C,AD⊥CE于D。
B
O
求证:(1)AC平分∠BAD
(2)AC2=2AD·AO
A
你还能用其他方法解答 吗?试试看!
E
C
D
有弦切角,常连结弦切角 所夹弧所对的圆周角。
例题解析(思路2)
例1: 如图,已知AB是⊙O的直径,AC是弦,直 线CE和⊙O切于点C,AD⊥CE,垂足是D,求证: AC平分∠BAD.
4
A
B
∠1= 30º ;∠2= 70º ;∠3= 65º ; ∠4= 40º 。 弦切角等于它所夹的弧对的圆心角的一半.
2、选择: AB为⊙O直径,PC为⊙O的切线,C为切点,
圆中的重要模型-圆幂定理模型(学生版)
圆中的重要模型--圆幂定理模型圆幂定理是一个总结性的定理,是对相交弦定理、切割线定理、割线定理、弦切角定理、托勒密定理以及它们推论的统一与归纳。
可能是在19世纪由德国数学家施泰纳(Steiner)或者法国数学家普朗克雷(Poncelet)提出的。
圆幂定理的用法:可以利用圆幂定理求解与圆有关的线段比例、角度、面积等问题。
模型1.相交弦模型条件:在圆O中,弦AB与弦CD交于点E,点E在圆O内。
结论:△CAE∼△BDE⇒ECEB=EAED⇒EC⋅ED=EB⋅EA。
1(2023·广东广州·九年级校考期中)如图,两个同心圆,大圆的弦AB与小圆相切于点P,大圆的弦CD经过点P,且CD=13,PD=4,两圆组成的圆环的面积是.2(2023·江西景德镇·九年级校考期末)如图,PT是⊙O的切线,T为切点,PA是割线,交⊙O于A、B两点,与直径CT交于点D.已知CD=2,AD=3,BD=4,那PB=.3(2023·江苏·九年级专题练习)相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等.(1)为了说明相交弦定理正确性,需要对其进行证明,如下给出了不完整的“已知”“求证”,请补充完整,并写出证明过程.已知:如图①,弦AB,CD交于点P,求证:.(2)如图②,已知AB是⊙O的直径,AB与弦CD交于点P,且AB⊥CD于点P,过D作⊙O的切线,交BA的延长线于E,D为切点,若AP=2,⊙O的半径为5,求AE的长.模型2.双割线模型条件:如图,割线CH与弦CF交圆O于点E和点G。
结论:△CEG∼△CHF⇒ECCH=CGCF⇒EC⋅FC=GC⋅HC4(2023·浙江·九年级假期作业)如图:PAB、PCD为⊙O的两条割线,若PA∙PB=30,PC=3,则CD的长为()A.10B.7C.510D.35(2023·四川成都·九年级校考阶段练习)如图,PAB为⊙O的割线,且PA=AB=3,PO交⊙O于点C,若PC=2,则⊙O的半径的长为.6(2022·河南洛阳·统考一模)我们知道,直线与圆有三种位置关系:相交、相切、相离.当直线与圆有两个公共点(即直线与圆相交)时,这条直线就叫做圆的割线.割线也有一些相关的定理.比如,割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆交点的距离的积相等.下面给出了不完整的定理“证明一”,请补充完整.已知:如图①,过⊙O 外一点P 作⊙O 的两条割线,一条交⊙O 于A 、B 点,另一条交⊙O 于C 、D 点.求证:PA ⋅PB =PC ⋅PD .证明一:连接AD 、BC ,∵∠A 和∠C 为BD 所对的圆周角,∴.又∵∠P =∠P ,∴,∴.即PA ⋅PB =PC ⋅PD .研究后发现,如图②,如果连接AC 、BD ,即可得到学习过的圆内接四边形ABDC .那么或许割线定理也可以用圆内接四边形的性质来证明.请根据提示,独立完成证明二.证明二:连接AC 、BD ,模型3.切割线模型条件:如图,CB 是圆O 的切线,CA 是圆O 的割线。
(完整版)弦切角定理+圆幂定理之割线相交弦切割线定理
弦切角定理及其应用顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角。
(弦切角就是切线与弦所夹的角)弦切角定义图1如右图所示,直线PT切圆O于点C,BC、AC为圆O的弦,∠TCB、∠TCA、∠PCA、∠PCB都为弦切角。
弦切角定理弦切角定理:弦切角的度数等于它所夹的弧的圆心角的度数的一半.如上图,∠PCA=1/2∠COA=∠CBA弦切角定理证明:证明一:设圆心为O,连接OC,OB,。
∵∠TCB=90°-∠OCB∵∠BOC=180°-2∠OCB∴,∠BOC=2∠TCB(定理:弦切角的度数等于它所夹的弧所对的圆心角的度数的一半)∵∠BOC=2∠CAB(同一弧所对的圆心角等于圆周角的两倍)∴∠TCB=∠CAB(定理:弦切角的度数等于它所夹的弧的圆周角)证明已知:AC是⊙O的弦,AB是⊙O的切线,A为切点,弧是弦切角∠BAC所夹的弧.求证:(弦切角定理)证明:分三种情况:(1)圆心O在∠BAC的一边AC上∵AC为直径,AB切⊙O于A,∴弧CmA=弧CA∵为半圆,∴∠CAB=90=弦CA所对的圆周角(2)圆心O在∠BAC的内部. (B点应在A点左侧)过A作直径AD交⊙O于D,E若在优弧m所对的劣弧上有一点那么,连接EC、ED、EA则有:∠CED=∠CAD、∠DEA=∠DAB∴∠CEA=∠CAB∴(弦切角定理)(3)圆心O在∠BAC的外部,过A作直径AD交⊙O于D那么∠CDA+∠CAD=∠CAB+∠CAD=90°∴∠CDA=∠CAB∴(弦切角定理)3弦切角推论推论内容若两弦切角所夹的弧相等,则这两个弦切角也相等应用举例例1:如图,在⊙O中,⊙O的切线AC、BC交与点C,求证:∠CAB=∠CBA。
解:⊙O的切线AC、BC交与点C,∴AC=BC(切线长定理)。
∴∠CAB=∠CBA。
(等腰三角形“等边对等角”)。
例2:如图,AD是ΔABC中∠BAC的平分线,经过点A的⊙O与BC切于点D,与AB,AC分别相交于E,F. 求证:EF//BC.证明:连接DFAD是∠BAC的平分线∠BAD=∠DAC ∠EFD=∠BAD ∠EFD=∠DAC⊙O切BC于D ,∠FDC=∠DAC ∠EFD=∠FDCEF∥BC例3:如图,ΔABC内接于⊙O,AB是⊙O直径,CD⊥AB于D,MN切⊙O于C,求证:AC平分∠MCD,BC平分∠NCD.证明:∵AB是⊙O直径∴∠ACB=90∵CD⊥AB ∴∠ACD=∠B,∵MN切⊙O于C ∴∠MCA=∠B,∴∠MCA=∠ACD,即AC平分∠MCD,同理:BC平分∠NCD。
《弦切角定理》《圆幂定理》练习题及答案
《弦切角定理》定义:顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角。
弦切角定理:弦切角的度数等于它所夹的弧的圆心角度数的一半,等于它所夹的弧的圆周角度数。
那怎么证明呢?《圆幂定理》(1)相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等。
即:在⊙O 中,∵弦AB 、CD 相交于点P ,∴PA PB PC PD ⋅=⋅(2)推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。
即:在⊙O 中,∵直径AB CD ⊥, ∴2CE AE BE =⋅(3)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
即:在⊙O 中,∵PA 是切线,PB 是割线∴ 2PA PC PB =⋅(4)割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等(如上图)。
即:在⊙O 中,∵PB 、PE 是割线 ∴PC PB PD PE ⋅=⋅【精典例题】1、如图,PA 、PB 是⊙O 的切线,AC 是⊙O 的直径,∠P=50°,则∠BOC 的度数为( ) A .50°B .25°C .40°D .60°2、如图,BD 为圆O 的直径,直线ED 为圆O 的切线,A .C 两点在圆上,AC 平分∠BAD 且交BD 于F 点.若∠ADE =19°,则∠AFB 的度数为何?( ) A .97°B .104°C .116°D .142°解答:解:∵PA 、PB 是⊙O 的切线, ∴∠OAP =∠OBP =90°, 而∠P =50°,∴∠AOB =360°﹣90°﹣90°﹣50°= 130°, 又∵AC 是⊙O 的直径,∴∠BOC =180°﹣130°=50°. 故选A .BADB3、如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于D ,且CO=CD ,则∠PCA=( )A 、30°B 、45°C 、60°D 、67.5°4、已知⊙O 的半径为1,圆心O 到直线l 的距离为2,过l 上任一点A 作⊙O 的切线,切点为B ,则 线段AB 长度的最小值为( )A 、1B 、2C 、3D 、2解答:如右图所示,OA ⊥l ,AB 是切线,连接OB , ∵OA ⊥l ,∴OA=2, 又∵AB 是切线, ∴OB ⊥AB ,在Rt △AOB 中,AB =22OB OA -=2212-=3.故选C .5、如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角形, 两直角边分别为6m 和8m.按照输油中心O 到三条支路的距离相等来连接管 道,则O 到三条支路的管道总长(计算时视管道为线,中心O 为点) 是( )A.2mB.3mC.6mD.9m解答:在Rt △ABC 中,BC =8m,AC =6m,AB =22BC AC +=2286+=10. ∵中心O 到三条支路的距离相等,设距离是r .△ABC 的面积=△AOB 的面积+△BOC 的面积+△AOC 的面积 即:12AC •BC =12AB •r+12BC •r+12AC •r 即:6×8=10r+8r+6r ∴r=4824=2. 故O 到三条支路的管道总长是2×3=6m .故选C .解答:解:∵BD 是圆O 的直径, ∴∠BAD =90°, 又∵AC 平分∠BAD ,∴∠BAF =∠DAF =45°, ∵直线ED 为圆O 的切线, ∴∠ADE =∠ABD =19°,∴∠AFB =180°-∠BAF -∠ABD =180°-45°-19°=116°. 故选C .解答:解:如图:∵PD 切⊙O 于点C , ∴OC ⊥PD , 又∵OC=CD , ∴∠COD=45°, 连接AC ,∵AO=CO , ∴∠ACO=22.5°,∴∠PCA=90°-22.5°=67.5°. 故选D .O(第5题图)6、如图,AB 是⊙O 的直径,BC 交⊙O 于点D ,DE ⊥AC 于点E ,要使DE 是⊙O 的切线,还需补充一个条件,则补充的条件不正确...的是( ) A. DE =DO B. AB =AC C. CD =DB D. AC ∥OD7、已知AB 是⊙O 的直径,点P 是AB 延长线上的一个动点,过P 作⊙O 的切线,切点为C ,∠APC 的平分线交AC 于点D ,则∠CDP 等于( )A 、30°B 、60°C 、45°D 、50°解答:连接OC ,∵OC=OA ,,PD 平分∠APC ,∴∠CPD=∠DPA ,∠A=∠ACO , ∵PC 为⊙O 的切线,∴OC ⊥PC ,∵∠CPD+∠DPA+∠A+∠ACO=90°,∴∠DPA+∠A=45°,即∠CDP=45°. 故选C .8、如图,CB 切⊙O 于点B ,CA 交⊙O 于点D 且AB 为⊙O 的直径,点E 是ABD 上异于点A 、D 的一点.若∠C =40°,则∠E 的度数为 .9、已知:如图,三个半圆以此相外切,它们的圆心都在x 轴的正半轴上并与直线y =x 相切,设半圆C 1、半圆C 2、半圆C 3的半径分别是r 1、r 2、r 3,则当r 1=1时,r 3=解答:由三个半圆依次与直线y =x 相切并且圆心都在x 轴上,∴y =x 倾斜角是30°,∴得,OO 1=2r 1,OO 1=2r 2,001=2r 3,r 1=1,∴r3=9.故答案为9.333333解答:当AB=AC 时,连接AD ,∵AB 是⊙O 的直径,∴AD ⊥BC ,∴CD=BD , ∵AO=BO ,∴OD 是△ABC 的中位线,∴OD ∥AC ,∵DE ⊥AC ,∴DE ⊥OD ,∴DE 是⊙O 的切线.所以B 正确. 当CD=BD 时,AO=BO ,∴OD 是△ABC 的中位线,∴OD ∥AC ∵DE ⊥AC ∴DE ⊥OD ∴DE 是⊙O 的切线.所以C 正确.当AC ∥OD 时,∵DE ⊥AC ,∴DE ⊥OD .∴DE 是⊙O 的切线.所以D 正确. 故选A .ABCD P· OE解答:如图:连接BD ,∵AB 是直径,∴∠ADB =90°,∵BC 切⊙O 于点B ,∴∠ABC =90°, ∵∠C =40°,∴∠BAC =50°,∴∠ABD =40°,∴∠E =∠ABD =40°. 故答案为:40°.10、如图,在Rt △ABC 中,∠ABC 是直角,AB=3,BC=4,P 是BC 边上的动点,设BP=x ,若能在AC 边上找到一点Q ,使∠BQP=90°,则x 的取值范围是 .解答:解:过BP 中点以BP 为直径作圆,连接QO ,当QO ⊥AC 时,QO 最短,即BP 最短, ∵∠OQC=∠ABC=90°,∠C=∠C ,∴△ABC ∽△OQC ,∴=,∵AB=3,BC=4,∴AC=5, ∵BP=x ,∴QO=x ,CO=4﹣x ,∴=,解得:x=3,当P 与C 重合时,BP=4,∴BP=x 的取值范围是:3≤x ≤4, 故答案为:3≤x ≤4.11、如图,AD 是⊙O 的弦,AB 经过圆心O ,交⊙O 于点C ,∠DAB=∠B=30°. (1)直线BD 是否与⊙O 相切?为什么? (2)连接CD ,若CD=5,求AB 的长.解答:(1)直线BD 与⊙O 相切.如图连接OD ,CD , ∵∠DAB=∠B=30°,∴∠ADB=120°, ∵OA=OD ,∴∠ODA=∠OAD=30°,∴∠ODB=∠ADB ﹣∠ODA=120°﹣30°=90°. 所以直线BD 与⊙O 相切.(2)连接CD ,∠COD=∠OAD+∠ODA=30°+30°=60°, 又OC=OD ,∴△OCD 是等边三角形,即:OC=OD=CD=5=OA ,∵∠ODB=90°,∠B=30°,∴OB=10,∴AB=AO+OB=5+10=15.12、已知:如图,AB 为⊙O 的直径,⊙O 过AC 的中点D ,DE ⊥BC 于点E . (1)求证:DE 为⊙O 的切线;(2)若DE =2,tan C =12,求⊙O 的直径.【解析】(1)证明:联结OD . ∵ D 为AC 中点, O 为AB 中点,∴ OD 为△ABC 的中位线. ∴OD ∥BC . ∵ DE ⊥BC , ∴∠DEC=90°.∴∠ODE=∠DEC=90°. ∴OD ⊥DE 于点D. ∴ DE 为⊙O 的切线.(2)解:联结DB . ∵AB 为⊙O 的直径, ∴∠ADB=90°. ∴DB ⊥AC . ∴∠CDB=90°. ∵ D 为AC 中点, ∴AB=AC .在Rt △DEC 中,∵DE=2 ,tanC=12, ∴EC=4tan DEC=. 由勾股定理得:DC=在Rt △DCB 中, BD=tan DC C ⋅ BC=5. ∴AB=BC=5. ∴⊙O 的直径为5.【巩固练习】1.已知⊙O 的半径为10cm ,如果一条直线和圆心O 的距离为10cm ,那么这条直线和这个圆的位置关系为( )A. 相离B. 相切C. 相交D. 相交或相离2.如右图,A 、B 是⊙O 上的两点,AC 是⊙O 的切线,∠B=70°,则∠BAC 等于( )A. 70°B. 35°C. 20°D. 10°(第2题) (第3题) (第4题) (第5题)3.如图,PA 切⊙O 于A ,PB 切⊙O 于B ,OP 交⊙O 于C ,下列结论中,错误的是( )A. ∠1=∠2B. PA=PBC. AB ⊥OPD. 2PA PC ·PO4.如图,已知⊙O 的直径AB 与弦AC 的夹角为30°,过C 点的切线PC 与AB 的延长线交于P ,PC=5,则⊙O 的半径为( )A.335 B. 635 C. 10 D. 55.如图已知AB 是⊙O 的直径,弦AD 、BC 相交于点P ,那么AB ︰CD 等于∠BPD 的( )A. 正弦B. 余弦C. 正切D. 余切6.如图A 、B 、C 是⊙O 上三点,AB ⌒的度数是50°,∠OBC=40°,则∠OAC 等于( )A. 15°B. 25°C. 30°D. 40°(第6题) (第7题) (第8题) (第9题)7.如图AB 为⊙O 的一条固定直径,它把⊙O 分成上、下两个半圆,自上半圆上一点C ,作弦CD ⊥AB ,∠OCD 的平分线交⊙O 于点P ,当C 点在半圆(不包括A 、B 两点)上移动时,点P ( )A. 到CD 的距离不变B. 位置不变C. 等分DB ⌒D. 随C 点的移动而移动8.如图AD 、AE 和BC 分别切⊙O 于D 、E 、F ,如果AD=20,则△ABC 的周长为( ) A. 20 B. 30 C. 40 D. 21359.如图在⊙O 中,直径AB 、CD 互相垂直,BE 切⊙O 于B ,且BE=BC ,CE 交AB 于F ,交⊙O 于M ,连结MO 并延长,交⊙O 于N ,则下列结论中,正确的是( )A. CF=FMB. OF=FBC. BM⌒的度数是22.5° D. BC ∥MN 10.如图⊙O 的两条弦AB 、CD 相交于点P ,已知AP=2cm ,BP=6cm ,CP ︰PD =1︰3,则DP=_________.(第10题) (第11题) (第12题) (第13题)11.如图AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,P 是BA 的延长线上的点,连结PC ,交⊙O 于F ,如果PF=7,FC=13,且PA ︰AE ︰EB = 2︰4︰1,则CD =_________.12.从圆外一点P 引圆的切线PA ,点A 为切点,割线PDB 交⊙O 于点D 、B ,已知PA=12,PD=8,则=∆∆DAP ABP S S :__________.13.⊙O 的直径AB=10cm ,C 是⊙O 上的一点,点D 平分BC ⌒,DE=2cm ,则AC=_____. 14.如图,AB 是⊙O 的直径,∠E=25°,∠DBC=50°,则∠CBE=________.(第14题) (第15题) (第17题) (第18题)15.点A 、B 、C 、D 在同一圆上,AD 、BC 延长线相交于点Q ,AB 、DC 延长线相交于点P ,若∠A=50°,∠P=35°,则∠Q=________.16.在Rt △ABC 中,∠C=90°,AC=12cm ,BC=5cm ,以点C 为圆心,6cm 的长为半径的圆与直线AB 的位置关系是________.17.如图,在△ABC 中,AB=AC,∠BAC=120°,⊙A 与BC 相切于点D,与AB 相交于点E,则∠ADE 等于___度. 18.如图,PA 、PB 是⊙O 的两条切线,A 、B 为切点,直线OP 交⊙A 于点D 、E,交AB 于C.图中互相垂直的线段有_________(只要写出一对线段即可).19.已知⊙O 的半径为4cm,直线L 与⊙O 相交,则圆心O 到直线L 的距离d 的取值范围是____.E A PO EC D BA20.如图,PA 、PB 是⊙O 的切线,切点分别为A 、B,且∠APB=50°,点C 是优弧AB 上的一点,则∠ACB 的度数为________.(第20题) (第21题) (第22题) (第23题)21.如图,⊙O 为△ABC 的内切圆,D 、E 、F 为切点,∠DOB=73°,∠DOE=120°, 则∠DOF=_______度,∠C=______度,∠A=_______度.22.如图,AB 、AC 为⊙O 的切线,B 、C 是切点,延长OB 到D,使BD=OB,连接AD,如果∠DAC=78°,那么∠ ADO 等于_______23.如图AB 是⊙O 的直径,AC 是⊙O 的切线,,A 为切点,连结BC 交圆0于点D,连结AD,若∠ABC =45°,则下列结论正确的是( )A.AD =BCB.AD =ACC.AC >ABD.AD >DC24.如图,在平面直角坐标系中,⊙P 与x 轴相切于原点O ,平行于y 轴的直线交⊙P 于M,N 两点.若点M 的坐标是(2,-1),则点N 的坐标是( )A .(2,-4) B. (2,-4.5) C.(2,-5) D.(2,-5.5)(第24题) (第25题) (第26题) (第27题)25、如图,AB 是⊙O 的直径,AD 是⊙O 的切线,点C 在⊙O 上,BC ∥OD ,AB =2,OD =3,则BC 的长为( )A .B . CD26、已知圆O 的半径为R ,AB是圆O 的直径,D 是AB 延长线上一点,DC是圆O 的切线,C 是切点,连结AC ,若∠CAB =30°,则BD 的长为( )A .BC .D 27、如图,在平面直角坐标系中,⊙A 与y 轴相切于原点O ,平行于x 轴的直线交⊙A 于M 、M 两点,若点M 的坐标是(-4,-2),则点N 的坐标为( )A .(-1,-2)B .(1,2)C .(-1.5,-2)D .(1.5,-2)PO C BA212123322R R R28、如图,AB 是圆O 的直径,AC 是圆O 的切线,A 为切点,连结BC 交圆于点D ,连结AD ,若∠ABC =45°,则下列结论正确的是( )A .B .C .D .(第28题) (第29题) (第30题) (第31题)29、如图,AB 是⊙O 的直径,⊙O 交BC 的中点于D,DE ⊥AC 于E,连接AD,则下列结论正确的个数是( )①AD ⊥BC ②∠EDA =∠B ③OA =AC ④DE 是⊙O 的切线A .1 个B .2个C .3 个D .4个30、一个钢管放在V 形架内,右图是其截面图,O 为钢管的圆心.如果钢管的半径为25 cm ,∠MPN =60︒,则OP =( )A .50 cmB .25cm C .cm D .50cm 31、如图,DB 为半圆的直径,A 为BD 延长线上一点,AC 切半圆于点E ,BC ⊥AC 于点C ,交半圆于点 F .已知BD =2,设AD =x ,CF =y ,则y 关于x 的函数解析式是 .32、如图, AB 与⊙O 相切于点B ,线段OA 与弦BC 垂直于点D ,∠AOB =60°,BC =4cm ,则切线AB = cm.(第32题) (第33题) (第34题) (第35题)33、如图,直线AB 切⊙O 于C 点,D 是⊙O 上一点,∠EDC =30º,弦EF ∥AB ,连结OC 交EF 于H 点,连结CF ,且CF =2,则HE 的长为_________.34、如图,点A 、B 、C 在⊙O 上,切线CD 与OB 的延长线交于点D ,若∠A =30°,CD =,则⊙O 的半径长为 .35、如图,在中,,与相切于点,且交于两点,则图中阴影部分的面积是 (保留).O 12AD BC =12AD AC =AC AB >AD DC >12333503第19题图ABC DO32ABC △120AB AC A BC =∠==,°,A ⊙BC D AB AC 、M N 、π36、如图,⊙O 内切于△ABC ,切点分别为D ,E ,F .∠B =50°,∠C =60°,连结OE ,OF ,DE ,DF ,则∠EDF 等于( )A .40°B .55°C .65°D .70°(第36题) (第73题) (第38题)37、如图,一个边长为4 cm 的等边三角形ABC 的高与⊙O 的直径相等.⊙O 与BC 相切于点C ,与AC 相交于点E ,则CE 的长为________cm.38、如图,直线l 与半径为4的⊙O 相切于点A ,P 是⊙O 上的一个动点(不与点A 重合),过点P 作PB ⊥l ,垂足为B ,连结PA .设PA =x ,PB =y ,则x -y 的最大值是________.39、如图,AB 是半圆O 的直径,C 为半圆上一点,过C 作半圆的切线,连接AC, 作直线AD ,使∠DAC=∠CAB ,AD 交半圆于E,交过C 点的切线于点D. (1)试判断AD 与CD 有何位置关系,并说明理由; (2)若AB=10,AD=8,求AC 的长.40、如图,点A ,B ,C 在半径为8的⊙O 上,过点B 作BD ∥AC ,交OA 延长线于点D ,连结BC ,且∠BCA =∠OAC =30°.(1)求证:BD 是⊙O 的切线; (2)求图中阴影部分的面积.答案:8、据切线长定理有AD=AE,BE=BF,CD=CF;则△ABC的周长=AB+BC+AC=AB+BF+CF+AC=AB+BE+AC+CD=AD+AE=2AD=40.故选C.9、解:A错,F显然不是弦的平分点;B错,F不是半径的中点;C错,M点平分应为45°;D对,∵BE为圆O的切线,∴BE⊥AB,∵CD⊥AB,∴BE∥CD,∴∠BEF=∠DCF,∵BC=BE,∴∠BCE=∠BEF,∴∠BCE=∠DCF,∵OC=OM,∴∠DCF=∠CMN,∴∠BCE=∠CMN,∴BC∥MN.故选D.10、解:如图利用相交弦定理可知:11、根据割线定理,PF*PC=PA*PB,设EB=X则PA=2X,AE=4X,PB=7X7*(7+13)=2X*7X,X2=10在三角形PCE中,CE2=PC2-PE2=400-360=40,CD=2CE=10412、由切割线定理可得PA2=PD×PB,∵PA=12,PD=8 ∴PB=18.由弦切角和公共角易知△PAD∽△PBA.∴S△PAD:S△PBA=PA2:PB2=4:9.⌒,∴OD平分BC,∴OE为△ABC的中位线,13、∵点D平分BC又∵⊙O的直径AB=10cm,∴OD=5cm,DE=2cm,∴0E=3cm,则弦AC=6cm.故答案为6cm.14、连接AC,∵∠DBA和∠DCA都为AD所对的圆周角,∴∠DBA=∠DCA,∵AB为⊙O的直径,∴∠BCA=90°,∴∠CBA+∠CAB=90°,∵∠CAB=∠E+∠DCA,∴∠CBD+∠DBA+∠E+∠DBA=90°,∵∠E=25°,∠DBC=50°,∴∠DBA=7.5°,∴∠CBE=∠DBA+∠DBC=57.5°15、∠A=50°,故∠BCD=130°(因为是圆,同弧的角互补),由P=35°计得∠CDQ=85°,故可以计出∠Q=45°.16.相交 17.60 18.如OA⊥PA,OB⊥PB,AB⊥OP等. 19.0≤d<4. 20.65°21. 146°,60°,86° 22.64°23、【答案】A 24、【答案】A 25、【答案】A 26、【答案】C27、【答案】C 28、【答案】A 29、【答案】D 30、【答案】A31、 32、【答案】433、【答案】34、【答案】2.3536、B 由∠B =50°,∠C =60°可求出∠A =70°,则易求得∠EOF =110°,∴∠EDF =12∠EOF =55°.37、过O 作OF ⊥AC 于F ,连结OC ,如图.则CE =2CF .根据△ABC 为等边三角形,且边长为4 cm ,易求得它的高为2 3 cm ,即OC = 3 cm.∵BC 与⊙O 相切,∴∠OCB =90°.又∠ACB =60°,∴∠OCF =30°.3π3在Rt△OFC中,可得CF=OC·cos 30°=3×32=32(cm),故CE=2CF=3 cm.38、如图,连结OA,过点O作OC⊥AP于点C,所以∠ACO=90°,AC=12AP.易证△OAC∽△APB,所以OA AP =ACPB,即4x=x2y,所以y=x28.所以x-y=x-x28=-18(x-4)2+2,所以x-y的最大值是2.39.(1)AD⊥CD.理由:连接OC,则OC⊥CD.∵OA=OC,∴∠OAC=∠OCA,又∠OAC= ∠DAC,∴∠DAC=∠OCA,∴AD∥OC,∴AD⊥CD.(2)连接BC,则∠ACB=90°由(1)得∠ADC=∠ACB,又∠DAC=∠CAB.∴△ACD∽△ABC,∴AC ADAB AC=,即AC2=AD·AB=80,故40、22.(1)证明:如图,连结OB,交CA于点E.∵∠C=30°,∠C=12∠BOA,∴∠BOA=60°.∵∠OAC=30°,∴∠AEO=90°.∵BD∥AC,∴∠DBE=∠AEO=90°.∴OB⊥BD.∴BD是⊙O的切线.(2)解:∵AC∥BD,∴∠D=∠OAC=30°.∵∠OBD=90°,OB=8,∴BD=3OB=8 3.∴S阴影=S△BDO-S扇形AOB=12×8×83-60·π×82360=323-32π3.。
数学人教版九年级上册弦切角
[科目] 数学[年级] 初三[章节] 7.11[关键词] 弦切角/圆[标题] 弦切角[内容]弦切角教学目标1.使学生理解弦切角的概念;2.使学生掌握弦切角定理及推论,并会运用它们解决有关问题;3.使学生进一步理解化归和分类讨论的数学思想方法以及完全归纳的证明方法.教学重点和难点弦切角定理及其应用是重点;弦切角定理的证明是难点.教学过程设计一、创设情境,以旧探新1.提问:什么样的角是圆周角?2.电脑显示:圆周角∠CAB,让射线AC绕点A旋转,产生无数个圆周角,当AC绕点A 旋转至与圆相切时,停止旋转,得∠BAE.(图7-132)提问:这时∠BAE还是圆周角吗?为什么?引导学生共同分析∠BAE的特点,并仿照圆心角、圆周角,给这个特殊角命名.学生很可能猜出这样的角叫弦切角,引出课题.3.启发学生进行观察,并归纳总结出弦切角的特点:(1)顶点在圆周上; (2)一边与圆相交; (3)一边与圆相切.进一步引导学生用数学语言给弦切角下定义:顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角.4.用反例图形剖析定义,揭示概念本质属性:判断下列各图形中的角是不是弦切角,并说明理由:(投影打出,让学生讨论,在学生讨论的基础上,教师加以总结)(图7-133)以下各图中的角都不是弦切角.图(1)中,缺少“顶点在圆上”的条件;图(2)中,缺少“一边和圆相交”的条件;图(3)中,缺少“一边和圆相切”的条件;图(4)中,缺少“顶点在圆上”和“一边和圆相切”两个条件.通过以上分析,使全体学生明确:弦切角定义中的三个条件缺一不可.教师引导学生继续观察图形,当固定切线,让过切点的弦运动,可发现一个圆的弦切角有无数个.如图7-134.由此发现,弦切角可分为三类:(1)圆心在角的外部; (2)圆心在角的一边上; (3)圆心在角的内部.二、观察联想、发现规律1.教师演示电脑,当弦切角一边通过圆心时,(如图7-135)(1)弦切角∠CAB是多少度?为什么?(2)∠CAB所夹弧所对的圆周角∠D是多少度?为什么?(3)此时,弦切角与它所夹弧所对的圆周角有什么关系?学生观察图形,不难发现,此时弦切角与其所夹弧所对的圆周角都是直角.2.教师继续演示电脑或投影.以A为端点.旋转AC边,使弦切角增大或减小,观察它与所夹弧所对圆周角之间的关系,引导学生得出猜想:弦切角等于它所夹的弧对的圆周角.三、类比联想,尝试论证1.首先让学生回忆联想:(1)圆周角定理的证明采用了什么方法?(2)既然弦切角可由圆周角演变而来,那么上述猜想是否可用类似的方法来证明呢?2.已经证明了特殊情况,下面考虑圆心在弦切角的外部和内部两种情况.(电脑或投影演示两种图形,如图7-136)组织学生讨论:怎样将一般情况的证明转化为特殊情况.在此基础上,教师小结分析. 如图7-136(1),圆心O在∠CAB外,作⊙O的直径AQ,连结PQ,则∠BAC=∠BAQ-∠1=∠APQ-∠2=∠APC.如图7-136(2),圆心O 在∠CAB 内,作⊙O 的直径AQ ,连结PQ ,则∠BAC =∠QAB+∠1=∠QPA+∠2=∠APC.(分析完毕,师生共同写出完整的证明过程)回顾证明方法:将情形图7-136都化归至情形图7-135,利用角的合成、对三种情况进行完全归纳、从而证明了上述猜想是正确的,得:弦切角定理:弦切角等于它所夹的弧对的圆周角.(板书)3.学生看书并考虑:课本上关于定理的证明与我们现在的证明方法有何异同?由此得出:推论:若两弦切角所夹的弧相等,则这两个弦切角也相等.四、巩固练习、初步应用例1 如图7-139,已知AB 是⊙O 的直径,AC 是弦,直线CE 和⊙O 切于点C ,AD ⊥CE ,垂足为D.求证:AC 平分∠BAD.思路一:要证∠BAC =∠CAD ,可证这两角所在的直角三角形相似,于是连结BC ,得Rt △ACB ,只需证∠ACD =∠B.(图7-139)证明:(学生口述,教师板书)组织学生积极思考,可否用前边学过的知识证明此题?由学生回答,教师小结.思路二:连结OC ,由切线性质,可得OC ∥AD ,于是有∠1=∠3,又由于∠1=∠2,可证 得结论.(图7-140)思路三:过C 作CF ⊥AB ,交⊙O 于F ,连结AF.由垂径定理可知∠1=∠3,又根据弦切角定理有∠2=∠1,于是∠2=∠3,进而可证明结论成立.(图7-141)练习题1.如图7-142,AB 为⊙O 的直径,直线EF 切⊙O 于C ,若∠BAC =56°,则∠ECA =_____ 度. (学生思考、口答)2. AB 切⊙O 于A 点,圆周被AC 所分成的优弧与劣弧之比为3∶1,则夹劣弧的弦切角 ∠BAC =_________ .(学生画图,思考、口答)3.如图7-143,经过⊙O 上的点T 的切线和弦AB的延长线相交于点C.求证:∠ATC =∠TBC.(此题为课本的练习题,证明方法较多,可组织学生讨论,教师归纳证法.在此基础上,可进一步让学生证明CT 2=CB ·CA ,为下一节课打基础.)五、归纳小结1.教师提出问题,学生回答:图 7-142(1)这节课我们主要学习了哪些知识?(2)在学习过程中你体会到哪些重要的数学思想方法?2.在学生回答的基础上,教师加以小结:(1)(先投影出图形:图7-144)弦切角定理:弦切角等于它所夹的弧对的圆周角.(2)在证明弦切角定理时,我们是从特殊情况入手,通过猜想、分析、证明和归纳,从而证明了弦切角定理.通过弦切角概念的引入和定理的证明过程,逐步学会用运动变化的观点观察问题,进而理解从一般到特殊,从特殊到一般的认识规律.(3)还学习了分类讨论的思想和完全归纳的证明方法.在这里一定要注意为什么要对弦切角进行分类和如何进行分类.六、作业1.阅读本节课内容2.同步测评7.4课堂教学设计说明:这份教案为1课时.弦切角的教学内容,课本要求两课时完成.第二课时可选择一些有深度的题目进行强化训练,使学生掌握知识的实质,学会怎样应用有关知识和方法,从而提高学生分析问题、解决问题的能力.。
(完整版)弦切角定理+圆幂定理之割线相交弦切割线定理
弦切角定理及其应用顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角。
(弦切角就是切线与弦所夹的角)弦切角定义图1如右图所示,直线PT切圆O于点C,BC、AC为圆O的弦,∠TCB、∠TCA、∠PCA、∠PCB都为弦切角。
弦切角定理弦切角定理:弦切角的度数等于它所夹的弧的圆心角的度数的一半.如上图,∠PCA=1/2∠COA=∠CBA弦切角定理证明:证明一:设圆心为O,连接OC,OB,。
∵∠TCB=90°-∠OCB∵∠BOC=180°-2∠OCB∴,∠BOC=2∠TCB(定理:弦切角的度数等于它所夹的弧所对的圆心角的度数的一半)∵∠BOC=2∠CAB(同一弧所对的圆心角等于圆周角的两倍)∴∠TCB=∠CAB(定理:弦切角的度数等于它所夹的弧的圆周角)证明已知:AC是⊙O的弦,AB是⊙O的切线,A为切点,弧是弦切角∠BAC所夹的弧.求证:(弦切角定理)证明:分三种情况:(1)圆心O在∠BAC的一边AC上∵AC为直径,AB切⊙O于A,∴弧CmA=弧CA∵为半圆,∴∠CAB=90=弦CA所对的圆周角(2)圆心O在∠BAC的内部. (B点应在A点左侧)过A作直径AD交⊙O于D,E若在优弧m所对的劣弧上有一点那么,连接EC、ED、EA则有:∠CED=∠CAD、∠DEA=∠DAB∴∠CEA=∠CAB∴(弦切角定理)(3)圆心O在∠BAC的外部,过A作直径AD交⊙O于D那么∠CDA+∠CAD=∠CAB+∠CAD=90°∴∠CDA=∠CAB∴(弦切角定理)3弦切角推论推论内容若两弦切角所夹的弧相等,则这两个弦切角也相等应用举例例1:如图,在⊙O中,⊙O的切线AC、BC交与点C,求证:∠CAB=∠CBA。
解:⊙O的切线AC、BC交与点C,∴AC=BC(切线长定理)。
∴∠CAB=∠CBA。
(等腰三角形“等边对等角”)。
例2:如图,AD是ΔABC中∠BAC的平分线,经过点A的⊙O与BC切于点D,与AB,AC分别相交于E,F. 求证:EF//BC.证明:连接DFAD是∠BAC的平分线∠BAD=∠DAC ∠EFD=∠BAD ∠EFD=∠DAC⊙O切BC于D ,∠FDC=∠DAC ∠EFD=∠FDCEF∥BC例3:如图,ΔABC内接于⊙O,AB是⊙O直径,CD⊥AB于D,MN切⊙O于C,求证:AC平分∠MCD,BC平分∠NCD.证明:∵AB是⊙O直径∴∠ACB=90∵CD⊥AB ∴∠ACD=∠B,∵MN切⊙O于C ∴∠MCA=∠B,∴∠MCA=∠ACD,即AC平分∠MCD,同理:BC平分∠NCD。
模型26 圆幂定理(原卷版)-2023年中考数学重难点解题大招复习讲义-几何模型篇
1.弦切角定理(1)弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角.(2)弦切角定理:弦切角的度数等于它所夹的弧的圆心角的度数的一半.如图所示,直线PT切圆O于点C,BC、AC为圆O的弦,则有∠PCA=∠PBC(∠PCA为弦切角).2、相交弦定理【结论1】如图,⊙O中,弦AB、CD相交于点P,半径为r,则①AP·BP=CP·DP,②AP·BP=CP·DP=r2-OP2.3、切割线定理【结论2】如图,PBC是⊙O的一条割线,PA是⊙O的一条切线,切点为A,半径为r,则①PA2=PB·PC,②PA2=PB·PC=PO2-r24、割线定理【结论3】如图,PAB、PCD是⊙O的两条割线,半径为r,则①PA·PB=PC·PD②PA·PB=PC·PD=OP2-r2口诀:从两线交点处引出的共线线段的乘积相等例题精讲考点一:相交弦定理【例1】.已知:如图弦AB经过⊙O的半径OC的中点P,且AP=2,PB=3,则是⊙O的半径等于()A.B.C.D.变式训练【变式1-1】.如图,⊙O的弦AB、CD相交于点E,若CE:BE=2:3,则AE:DE=.【变式1-2】.如图,在⊙O的内接四边形ABCD中,AC⊥BD,CA=CB,过点A作AC的垂线交CD的延长线于点E,连结BE.若cos∠ACB=,则的值为.考点二:弦切角定理【例2】.如图,割线PAB过圆心O,PD切⊙O于D,C是上一点,∠PDA=20°,则∠C的度数是度.变式训练【变式2-1】.如图,已知∠P=45°,角的一边与⊙O相切于A点,另一边交⊙O于B、C两点,⊙O的半径为,AC=,则AB的长度为()A.B.6C.D.5【变式2-2】.如图,BP是⊙O的切线,弦DC与过切点的直径AB交于点E,DC的延长线和切线交于点P,连接AD,BC.若DE=DA=,BC=2,则线段CP的长为.考点三:切割线定理【例3】.如图,直线PA过半圆的圆心O,交半圆于A,B两点,PC切半圆与点C,已知PC=3,PB=1,则该半圆的半径为.变式训练【变式3-1】.如图,Rt△ABC中,∠C=90°,O为AB上一点,以O为圆心,OA为半径作圆O与BC相切于点D,分别交AC、AB于E、F,若CD=2CE=4,则⊙O的直径为()A.10B.C.5D.12【变式3-2】.如图,在四边形ABCD中,以AB为直径的半圆O经过点C,D.AC与BD相交于点E,CD2=CE•CA,分别延长AB,DC相交于点P,PB=BO,CD=2.则BO的长是.【变式3-3】.如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,点D在AB上,DE⊥EB.(1)求证:AC是△BDE的外接圆的切线;(2)若,求BD的长.考点四:割线定理【例4】.如图,过点P作⊙O的两条割线分别交⊙O于点A、B和点C、D,已知PA=3,AB=PC=2,则PD的长是()A.3B.7.5C.5D.5.5变式训练【变式4-1】.如图,P是圆O外的一点,点B、D在圆上,PB、PD分别交圆O于点A、C,如果AP=4,AB=2,PC=CD,那么PD=.【变式4-2】.已知直角梯形ABCD的四条边长分别为AB=2,BC=CD=10,AD=6,过B、D两点作圆,与BA的延长线交于点E,与CB的延长线交于点F,则BE﹣BF的值为.1.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,CM切⊙O于点C,∠BCM=60°,则∠B的正切值是()A.B.C.D.2.如图,从圆外一点P引圆的切线PA,点A为切点,割线PDB交⊙O于点D、B.已知PA=12,PD=8,则S△ABP:S△DAP=.3.如图,在△ABC中,AB=AC,∠C=72°,⊙O过AB两点且与BC切于B,与AC交于D,连接BD,若BC=﹣1,则AC=.4.如图,⊙O的直径AB=8,将弧BC沿弦BC折叠后与∠ABC的角平分线相切,则△ABC 的面积为.5.如图,⊙O是△ABC的外接圆,∠BAC=45°,AD⊥BC于点D,延长AD交⊙O于点E,若BD=4,CD=1,则DE的长是.6.如图,已知AC=AB,AD=5,DB=4,∠A=2∠E.则CD•DE=.7.如图:BE切⊙O于点B,CE交⊙O于C,D两点,且交直径于AB于点P,OH⊥CD于H,OH=5,连接BC、OD,且BC=BE,∠C=40°,劣弧BD的长是.8.如图,在平面直角坐标系中,⊙O经过点A(4,3),点B与点C在y轴上,点B与原点O重合,且AB=AC,AC与⊙O交于点D,延长AO与⊙O交于点E,连接CE、DE 与x轴分别交于点G、F,则tan∠DFO=,tan∠A=.9.如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,CD是⊙O的切线,C为切点,且CD=CB,连接AD,与⊙O交于点E.(1)求证AD=AB;(2)若AE=5,BC=6,求⊙O的半径.10.如图,△ABC是⊙O的内接三角形,CD是⊙O的直径,AB⊥CD于点E,过点A作⊙O 的切线交CD的延长线于点F,连接FB.(1)求证:FB是⊙O的切线.(2)若AC=4,tan∠ACD=,求⊙O的半径.11.如图,正方形ABCD内接于⊙O,点E为AB的中点,连接CE交BD于点F,延长CE 交⊙O于点G,连接BG.(1)求证:FB2=FE•FG;(2)若AB=6,求FB和EG的长.12.如图,⊙O的割线PBA交⊙O于A、B,PE切⊙O于E,∠APE的平分线和AE、BE 分别交于C、D,PE=4,PB=4,∠AEB=60°.(1)求证:△PDE∽△PCA;(2)试求以PA、PB的长为根的一元二次方程;(3)求⊙O的面积.(答案保留π)13.如图,圆O上有A,B,C三点,AC是直径,点D是的中点,连接CD交AB于点E,点F在AB延长线上,且FC=FE.(1)求证:CF是圆O的切线;(2)若,BE=2,求圆O的半径和DE•EC的值.14.如图,AB为⊙O的直径,点P在AB的延长线上,点C在⊙O上,且PC2=PB•PA.(1)求证:PC是⊙O的切线;(2)已知PC=20,PB=10,点D是的中点,DE⊥AC,垂足为E,DE交AB于点F,求EF的长.15.已知:如图,PF是⊙O的切线,PE=PF,A是⊙O上一点,直线AE、AP分别交⊙O 于B、D,直线DE交⊙O于C,连接BC,(1)求证:PE∥BC;(2)将PE绕点P顺时针旋转,使点E移到圆内,并在⊙O上另选一点A,如图2.其他条件不变,在图2中画出完整的图形.此时PE与BC是否仍然平行?证明你的结论.16.已知△ABC是⊙O的内接三角形,∠BAC的平分线与⊙O相交于点D,连接DB.(1)如图①,设∠ABC的平分线与AD相交于点I,求证:BD=DI;(2)如图②,过点D作直线DE∥BC,求证:DE是⊙O的切线;(3)如图③,设弦BD,AC延长后交⊙O外一点F,过F作AD的平行线交BC的延长线于点G,过G作⊙O的切线GH(切点为H),求证:FG=HG.17.【提出问题】小聪同学类比所学的“圆心角“与“圆周角”的概念,将顶点在圆内(顶点不在圆心)的角命名为圆内角.如图1中,∠AEC,∠BED就是圆内角,所对的分别是、,那么圆内角的度数与所对弧的度数之间有什么关系呢?【解决问题】小聪想到了将圆内角转化为学过的两种角,即圆周角、圆心角,再进一步解决问题:解:连接BC,OA,OC,OB,OD.如图2,在△BCE中,∠AEC=∠EBC+∠ECB∵∠EBC=∠AOC,∠ECB=∠BOD∴∠AEC=∠AOC+∠BOD=(∠AOC+∠BOD)即:∠AEC的度数=(的度数+的度数)(1)如图1,在⊙O中,弦AB、CD相交于点E,若弧的度数是65°,弧的度数是40°,则∠AED的度数是.【类比探究】顶点在圆外且两边与圆相交的角,命名为圆外角.(2)如图3,在⊙O中,弦AB,CD的延长线相交于点E,试探索圆外角∠E的度数与它所夹的两段弧、的度数之间的关系.【灵活运用】(3)如图4,平面直角坐标系内,点A(,1)在⊙O上,⊙O与y轴正半轴交于点B,点C,点D是线段OB上的两个动点,满足AC=AD.AC,AD的延长线分别交⊙O 于点E、F.延长FE交y轴于点G,试探究∠FGO的度数是否变化.若不变,请求出它的度数;若变化,请说明理由.。
人教版数学九年级上册.. 弧、弦、圆心角PPT课件
A
E
B
O·
D
F C
例题
例1 如图,在⊙O中, A⌒B=A⌒C ,∠ACB=60°,
求证:∠AOB=∠BOC=∠AOC
A
证明:
∵ AB = AC
∴ AB=AC. ∴ ⊿ABC是等腰三角形
·O 60°
B
C
又∵ ∠ACB=60°,
∴ ⊿ABC是等边三角形 , ∴ AB=BC=CA.
∴ ∠AOB=∠BOC=∠AOC.
②A⌒B=A′⌒B′
①∠AOB=∠A′O′B′
练习
2、如图,AD=BC, 比较A⌒B与C⌒D的长度,并证明你的结 论。
•
1. 中国人只要看到土地,就会想种点 什么。 而牛叉 的是, 这花花 草草庄 稼蔬菜 还就听 中国人 的话, 怎么种 怎么活 。
•
2. 中国人对蔬菜的热爱,本质上是对土地 和家乡 的热爱 。本诗 主人公 就是这 样一位 采摘野 菜的同 时,又 保卫祖 国、眷 恋家乡 的士兵 。
广东省怀集县凤岗镇初级中学
x
黄柳燕
试一试2:找出图中的圆心角。
圆心角有: ∠AOD,∠BOD,∠AOB
O A DB
三、 探究1
如图,在⊙O中,当圆心角∠AOB =∠A’OB’ 时,它们所对
的AB 与 A’B’,弦AB与A’B’相等吗?为什么?
A′ B
B′
A′ B
B′
·
O
A
,AB
·
O
A
解 把∠AOB连同AB绕圆心O旋转 使射线OA与OA’重合
•
9.能准确 、有感 情的朗 读诗歌 ,领会 丰富的 内涵, 体会诗 作蕴涵 的思想 感情。
75
探究二 在同圆中,
1.3.1圆幂定理
例题解析
例1. 已知圆中两条弦相交,第一条弦被交点分为 12cm和16cm两段,第二条弦的长度为32cm, 求第二条弦被交点分成的两端的长. 解: 设第二条弦被交点分成的一端长为 x cm, 则另 一段长为 (32 – x) cm,根据相交弦定理,有 x (32 – x)=12×16,即x2 – 32x+192=0. 解得x1=8或x2=24.因此 32 – x1=24,32 – x2=8. 另一条弦被交点分成的两端长分别为8cm ,24cm.
C B D A
P O
相交弦定理:圆内的两条相交弦,被交点分成的 两条线段长的积相等. 如图,AB、CD为圆O的两条任意弦.相交于点P, 连接AD、BC,则∠D=∠B,∠A=∠C.所以 △APD∽△BPC.所以 D A AP = PD AP · = PC · BP PD BP PC
P O
C
B
在相交弦定理中,有两个特例: (1)如图,若圆内的两条弦交于圆心O,则有PA =PB=PC=PD=圆的半径R,此时AB, CD是直径,相交弦定理当然成立.
B A P
O
1.3.1 圆幂定理
教学目标
【知识与能力】
使学生理解相交弦定理、切割线定理及 其推论间的相互关系,并能综合运用它们解 决有关问题;
【过程和方法】
通过对例题的分析,提高学生分析问题和 解决问题的能力,并领悟添加辅助线的方法;
【情感态度与价值观】
从运动的观点来统一认识圆幂定理.对学 生进行事物之间是相互联系和运动变化的观 点的教育.
4. 解:EF = 3 , r=5 , 所以 AE = 25 4 = 21 ED · = EA · =21 又 CE : ED = 3 : 4 , ED EB CE = 3k, ED = 4k ,所以 12K2 = 21 , 所以 7 7 7 7 2= , ,k= k 4 . , 所以 CD = CE+ED = 7k =
完整版弦切角定理圆幂定理之割线相交弦切割线定理
弦切角定理及其应用顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角。
(弦切角就是切线与弦所夹的角)弦切角定义1图如右图所示,直线PT切圆O于点C,BC、AC为圆O的弦,∠TCB、∠TCA、∠PCA、∠PCB都为弦切角。
弦切角定理弦切角定理:弦切角的度数等于它所夹的弧的圆心角的度数的一半.如上图,∠PCA=1/2∠COA=∠CBA弦切角定理证明:证明一:设圆心为O,连接OC,OB,。
∵∠TCB=90°-∠OCB∵∠BOC=180°-2∠OCB∴,∠BOC=2∠TCB(定理:弦切角的度数等于它所夹的弧所对的圆心角的度数的一半)∵∠BOC=2∠CAB(同一弧所对的圆心角等于圆周角的两倍)的度数等于它所夹的弧的圆周角)弦切角:定理(CAB∠TCB=∴∠.AC是⊙O的弦,AB是⊙O的切线,A证明已知:为切点,弧是弦切角∠BAC所夹的弧.求证:(弦切角定理)证明:分三种情况:(1)圆心O在∠BAC的一边AC上∵AC为直径,AB切⊙O于A,∴弧CmA=弧CA∵为半圆,∴∠CAB=90=弦CA所对的圆周角(2)圆心O在∠BAC的内部. ()点左侧A点应在B D, 于交⊙过A作直径ADOE 所对的劣弧上有一点若在优弧mEA那么,连接、、EDECDAB ∠CADCED=∠、∠DEA=则有:∠CAB CEA= ∠∠∴∴(弦切角定理), O3()圆心在∠BAC的外部D于ADA过作直径交⊙O CAD=CDA+ 那么∠∠∠°CAD=90∠CAB+CAB∠CDA=∴∠.∴(弦切角定理)弦切角推论3推论内容若两弦切角所夹的弧相等,则这两个弦切角也相等应用举例例1:如图,在⊙O中,⊙O的切线AC、BC交与点C,求证:∠CAB=∠CBA。
解:⊙O的切线AC、BC交与点C,∴AC=BC(切线长定理)。
∴∠CAB=∠CBA。
(等腰三角形“等边对等角”)。
例2:如图,AD是ΔABC中∠BAC的平分线,经过点A的⊙O与BC切于点D,与AB,AC 分别相交于E,F. 求证:EF//BC.证明:连接DFAD是∠BAC的平分线∠BAD=∠DAC ∠EFD=∠BAD ∠EFD=∠DAC⊙O切BC于D ,∠FDC=∠DAC ∠EFD=∠FDCEF∥BC例3:如图,ΔABC内接于⊙O,AB是⊙O直径,CD⊥AB于D,MN切⊙O于C,求证:AC 平分∠MCD,BC平分∠NCD.证明:∵AB是⊙O直径∴∠ACB=90,B∠ACD=∴∠AB ⊥CD∵.∴∠MCA=∠切⊙OB于C ,∵MN∴∠MCA=∠ACD,即AC平分∠MCD,同理:BC平分∠NCD。
九年级数学人教版上册-24.1.3弧、弦、圆心角.剖析
弧 相等
弦 相等
思考
定理“在同圆或等圆中,相等的圆心角所对的 弧相等,所对的弦也相等.”中,可否把条件 “在同圆或等圆中”去掉?为什么?
探究二 在同圆中,
︵︵
(1)、如果 AB A' B '. 那么∠AOB=∠A′OB′,
AB A' B '. 成立吗 ?
(1)
探究二 在同圆中,
一、概念
圆心角:我们把顶点在圆心的角叫做圆心角. A
O· B
O A DB
练一练:找出右上图
中的圆心角.
圆心角有:
∠AOD,∠BOD,∠AOB
探究一
如图,在⊙O中,将圆心角∠AOB绕圆心O旋
转到∠A’OB’的位置,你能发现哪些等量关系?
为什么?
A′ B
B′
O·
A
显然∠AOB=∠A′OB′
︵︵
可得到: AB A ' B '.
C
O A
E
B
作业 1、课本87页 第2,3题.
☆复习引入
1、圆是轴对称图形吗?它的对称轴是?垂径定理的 内容是?我们是怎样证明垂径定理的?
圆是轴对称图形,对称轴是直径所在的直线.垂径 定理是根据圆的轴对称性进行证明的. 2、绕圆心转动一个圆,它会发生什么变化吗?圆 是中心对称图形吗?它的对称中心在哪里?
它是不会发生变化的,我们称之为“圆具有旋 转不变性”.圆是中心对称图形,它的对称中心是圆 心. 今天这节课我们将运用圆的旋转不变性去探究 弧、弦、圆=35
A
·
O
B AOE 180 335
75
练习
3、如图,AD=BC, 比较A⌒B与C⌒D的长度,并证明你的结 论.
人教版九年级数学课件《弧、弦、圆心角》
⌒
系是(
A)
A. ⌒ ⌒AB=2CD C. A⌒B<CD
⌒
B. A⌒B>CD
⌒ D. 不能确定
课堂检测
能力提升题
如图,已知AB、CD为⊙O的两条弦,AD=⌒BC
求证:AB=CD.
⌒
C
证明:连接AO,BO,CO,DO.
∵ A⌒D=BC
B
O.
⌒AOD BOC. AOD+BOD=BOC+BOD. A
α
·
O
圆是旋转对称图形,具有旋转不变性.
探究新知
观察在⊙O中,这些角有什么共同特点?
A
O·
B
O·
A
B
顶点在圆心上
探究新知
1. 圆心角:顶点在圆心的角,如∠AOB .
B
2. 圆心角 ∠AOB 所对的弧为⌒ AB.
M
3. 圆心角 ∠AOB所对的弦为AB.
O
A
任意给圆心角,对应出现三个量:
弧 圆心角
弦
探究新知
练一练:判别下列各图中的角是不是圆心角,并
说明理由. 顶点在圆外,
不是圆心角
顶点在圆周上, 不是圆心角
①
②
顶点在圆内,但不 是圆心,不是圆心
角
③
④
圆心角
探究新知
知识点 2 圆心角、弧、弦之间的关系
如图,在⊙O中,将圆心角∠AOB绕圆心O旋
转到∠A'OB'的位置,你能发现哪些等量关系?为
什么?
C
B
D O
①∠AOB=∠COD
A
②A⌒B=CD ⌒ ③AB=CD
探究新知
【想一想】定理“在同圆或等圆中,相等的圆心 角所对的弧相等,所对的弦也相等.”中,可否把条 件“在同圆或等圆中”去掉?为什么?
九年级数学切线长定理、弦切角、和圆有关的比例线段人教版知识精讲
九年级数学切线长定理、弦切角、和圆有关的比例线段人教版【本讲教育信息】一. 教学内容:切线长定理、弦切角、和圆有关的比例线段[学习目标]1. 切线长概念切线长是在经过圆外一点的圆的切线上,这点和切点之间的线段的长度,“切线长”是切线上一条线段的长,具有数量的特征,而“切线”是一条直线,它不可以度量长度。
2. 切线长定理对于切线长定理,应明确(1)若已知圆的两条切线相交,则切线长相等;(2)若已知两条切线平行,则圆上两个切点的连线为直径;(3)经过圆外一点引圆的两条切线,连结两个切点可得到一个等腰三角形;(4)经过圆外一点引圆的两条切线,切线的夹角与过切点的两个半径的夹角互补;(5)圆外一点与圆心的连线,平分过这点向圆引的两条切线所夹的角。
3. 弦切角、顶点在圆上,一边和圆相交,另一边和圆相切的角。
直线AB切⊙O于P,PC、PD为弦,图中几个弦切角呢?(四个)4. 弦切角定理:弦切角等于其所夹的弧所对的圆周角。
5. 弄清和圆有关的角:圆周角,圆心角,弦切角,圆内角,圆外角。
6. 遇到圆的切线,可联想“角”弦切角,“线”切线的性质定理及切线长定理。
7. 与圆有关的比例线段定理图形已知结论证法相交弦定理⊙O中,AB、CD为弦,交于PPA·PB=PC·PD 连结AC、BD,证:△APC∽△DPB相交弦定理的推论⊙O 中,AB 为直径,CD ⊥AB 于PPC 2=PA ·PB 用相交弦定理切割线定理⊙O 中,PT 切⊙O 于T ,割线PB 交⊙O 于APT 2=PA ·PB 连结TA 、TB ,证:△PTB ∽△PAT切割线定理推论PB 、PD 为⊙O 的两条割线,交⊙O 于A 、C PA ·PB =PC ·PD 过P 作PT 切⊙O 于T ,用两次切割线定理圆幂定理⊙O 中,割线PB 交⊙O 于A ,CD 为弦 P'C ·P'D =r 2-OP'2 PA ·PB =OP 2-r 2 r 为⊙O 的半径延长P'O 交⊙O 于M ,延长OP'交⊙O 于N ,用相交弦定理证;过P 作切线用切割线定理勾股定理证8. 圆幂定理:过一定点P 向⊙O 作任一直线,交⊙O 于两点,则自定点P 到两交点的两条线段之积为常数|OP R 22-|(R 为圆半径),因为OP R 22-叫做点对于⊙O 的幂,所以将上述定理统称为圆幂定理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弦切角与圆幂定理
【考点速览】
考点1
1. 弦切角的概念:
顶点在圆上,一边和圆相交,另一边和圆相
切的角叫做弦切角。
注意:弦切角必须具备三个条件:(1)顶点
在圆上(切点),(2)一边和圆相切,(3)一边
和圆相交(弦),三者缺一不可。
2. 弦切角定理:
弦切角等于它所夹的弧对的圆周角。
3. 弦切角定理的推论:
如果两个弦切角所夹的弧相等,那么这两个
弦切角也相等。
考点2
圆幂定理:圆幂定理是对相交弦定理、切割线定理及割线定理(切割线定理推论)以及它们推论统一归纳的结果。
1、相交弦定理:圆内两条相交弦,被交点分成的两条线段长的积相等。
2、相交弦定理的推论:如果弦与直径相交,那么弦的一半是它分直径所成的两条线段的比例中项。
3、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
4、切割线定理的推论(或称割线定理):
从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。
典型例题:
例1. 如图,经过⊙O 求证:∠ATC =∠O
T
A B C
E
例2. 已知:如图,AB 是⊙O 的弦,P 是AB 上的一点,AB =10cm ,PA =4cm ,OP =5cm ,求⊙O 的半径。
B
A O
P
例3. AB 是半圆O sin C 35
,求BC 的长。