高中数学竞赛训练讲义(苏教版)
高中数学竞赛讲义(免费)
高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。
全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
三角形中的几个特殊点:旁心、费马点,欧拉线。
几何不等式。
几何极值问题。
几何中的变换:对称、平移、旋转。
圆的幂和根轴。
面积方法,复数方法,向量方法,解析几何方法。
2.代数周期函数,带绝对值的函数。
三角公式,三角恒等式,三角方程,三角不等式,反三角函数。
递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。
第二数学归纳法。
平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。
复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。
多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。
n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。
函数迭代,简单的函数方程*3.初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。
4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。
组合计数,组合几何。
抽屉原理。
容斥原理。
极端原理。
图论问题。
集合的划分。
覆盖。
平面凸集、凸包及应用*。
注:有*号的内容加试中暂不考,但在冬令营中可能考。
二、初中数学竞赛大纲1、数整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。
高中数学竞赛讲义第一讲《复数》练习
高中数学竞赛第一讲复数一、基础知识1.复数的运算法则:三角形式,若z 1=r 1(cos θ1+i sin θ1), z 2=r 2(cos θ2+i sin θ2),则z 1••z 2=r 1r 2[cos(θ1+θ2)+i sin(θ1+θ2)];11222(0),z r z z r ≠=[cos(θ1-θ2)+i sin(θ1-θ2)],或记为z 1z 2=r 1r 212()i e θθ+;.)(212121θθ-=i e r r z z 2.棣莫弗定理:[r (cos θ+i sin θ)]n =r n (cos nθ+i sin nθ). 3.开方:若=nw r (cos θ+i sin θ),则)2sin2(cosnk i nk r w n πθπθ+++=,k =0,1,2,…,n -1。
4.方程10(2n x n n n -=≥为自然数,且)的个根 记为:22cossin (0,1,2,,1)k k k i k n n nππε=+=-称为1的n 次单位根。
由棣莫弗定理,全部n 次单位根可表示为112111-n εεε ,,,。
关于单位根,有如下常用性质:)20111211≥=++++-n n (εεε ;任意两个单位根j i εε,的乘积仍为一个n 次单位根,且(1)的余数)除以是其中时,当n j i k n j i k j i j i j i +=≥+=⋅++,(εεεεε; (2)设m 为整数,1≠n ,则⎩⎨⎧=++++-的倍数)不是的倍数),是n m n m n mn m m (0(1121εεε(3)1+z 1+z 2+…+z n -1=0;(4)x n -1+x n -2+…+x +1=(x -z 1)(x -z 2)…(x -z n -1)=(x -z 1)(x -21z )…(x -11n z -). 特别地:1的立方根有:1,ω=-12+32i ,-ω=-12-32i(1)ω3=-ω3=1 (2)1+ω+ω2=0或1+-ω+-ω2=0 (3)ω-ω=1 (4)ω2=-ω,-ω2=ω (5)(1±i )2=±2i ,(3±4i )2=-7±24i5.代数基本定理:在复数范围内,一元n 次方程至少有一个根。
高中数学竞赛讲义(7)解三角形
高中数学竞赛讲义(七)高中数学竞赛讲义(七)──解三角形──解三角形一、基础知识在本章中约定用A,B,C分别表示△ABC的三个内角,a, b, c分别表示它们所对的各边长,为半周长。
1.正弦定理:=2R(R为△ABC外接圆半径)。
推论1:△ABC的面积为S△ABC=推论2:在△ABC中,有bcosC+ccosB=a.推论3:在△ABC中,A+B=,解a满足,则a=A.正弦定理可以在外接圆中由定义证明得到,这里不再给出,下证推论。
先证推论1,由正弦函数定义,BC边上的高为bsinC,所以S△ABC=;再证推论2,因为B+C=-A,所以sin(B+C)=sinA,即sinBcosC+cosBsinC=sinA,两边同乘以2R得bcosC+ccosB=a;再证推论3,由正弦定理,所以,即sinasin(-A)=sin(-a)sinA,等价于[cos(-A+a)-cos(-A-a)]= [cos(-a+A)-cos(-a-A)],等价于cos( -A+a)=cos(-a+A),因为0<-A+a,-a+A<. 所以只有-A+a=-a+A,所以a=A,得证。
2.余弦定理:a2=b2+c2-2bccosA,下面用余弦定理证明几个常用的结论。
(1)斯特瓦特定理:在△ABC中,D是BC边上任意一点,BD=p,DC=q,则AD2= (1)【证明】 因为c 2=AB 2=AD 2+BD 2-2AD ·BDcos ,所以c 2=AD 2+p 2-2AD ·pcos ① 同理b 2=AD 2+q 2-2AD ·qcos , ②因为ADB+ADC=, 所以cos ADB+cosADC=0,所以q ×①×①+p +p +p×②得×②得qc 2+pb 2=(p+q)AD 2+pq(p+q)+pq(p+q),即,即AD 2=注:在(注:在(11)式中,若p=q p=q,则为中线长公式,则为中线长公式(2)海伦公式:因为b 2c 2sin 2A=b 2c 2 (1-cos 2A)=b 2c 2[(b+c)-a 2][a 2-(b-c) 2]=p(p-a)(p-b)(p-c).这里所以S △ABC =二、方法与例题 1.面积法。
高中数学竞赛讲义(全套)
高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。
全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
三角形中的几个特殊点:旁心、费马点,欧拉线。
几何不等式。
几何极值问题。
几何中的变换:对称、平移、旋转。
圆的幂和根轴。
面积方法,复数方法,向量方法,解析几何方法。
2.代数周期函数,带绝对值的函数。
三角公式,三角恒等式,三角方程,三角不等式,反三角函数。
递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。
第二数学归纳法。
平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。
复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。
多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。
n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。
函数迭代,简单的函数方程*3.初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。
4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。
组合计数,组合几何。
抽屉原理。
容斥原理。
极端原理。
图论问题。
集合的划分。
覆盖。
平面凸集、凸包及应用*。
注:有*号的内容加试中暂不考,但在冬令营中可能考。
二、初中数学竞赛大纲1、数整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。
高中数学竞赛讲义-容斥原理
§24容斥原理相对补集:称属于A而不属于B的全体元素,组成的集合为B对A的相对补集或差集,记作A-B。
容斥原理:以表示集合A中元素的数目,我们有,其中为n个集合称为A的阶。
n阶集合的全部子集数目为。
例题讲解1.对集合{1,2,…,n}及其每一个非空了集,定义一个唯一确定的“交替和”如下:按照递减的次序重新排列该子集,然后交替地减或加后继的数所得的结果,例如,集合的“交替和”是9-6+4-2+1=6.的“交替和”是6-5=1,的交替和是2。
那么,对于n=7。
求所有子集的“交替和”的总和。
2.某班对数学、物理、化学三科总评成绩统计如下:优秀的人数:数学21个,物理19个,化学20个,数学物理都优秀9人,物理化学都优秀7人。
化学数学都优秀8人。
这个班有5人任何一科都不优秀。
那么确定这个班人数以及仅有一科优秀的三科分别有多少个人。
3.计算不超过120的合数的个数4.1992位科学家,每人至少与1329人合作过,那么,其中一定有四位数学家两两合作过。
5.把个元素的集合分为若干个两两不交的子集,按照下述规则将某一个子集中某些元素挪到另一个子集:从前一子集挪到后一子集的元素个数等于后一子集的元素个数(前一子集的元素个数应不小于后一子集的元素个数),证明:可以经过有限次挪动,使得到的子集与原集合相重合。
6.给定1978个集合,每个集合都含有40个元素,已知其中任意两个集合都恰有一个公共元,证明:存在一个元素,它属于全部集合。
7.在个元素组成的集合中取个不同的三元子集。
证明:其中必有两个,它们恰有一个公共元。
例题答案:1.分析;n=7时,集合{7,6,5,4,3,2,1}的非空子集有个,虽然子集数目有限,但是逐一计算各自的“交替和”再相加,计算量仍然巨大,但是,根据“交替和”的定义,容易看到集合{1,2,3,4,5,6,7}与{1,2,3,4,5,6}的“交替和”是7;可以想到把一个不含7的集和A与的“交替和”之和应为7。
高中数学竞赛辅导讲义 第五章 数列【讲义】
第五章 数列一、基础知识定义1 数列,按顺序给出的一列数,例如1,2,3,…,n ,…. 数列分有穷数列和无穷数列两种,数列{a n }的一般形式通常记作a 1, a 2, a 3,…,a n 或a 1, a 2, a 3,…,a n …。
其中a 1叫做数列的首项,a n 是关于n 的具体表达式,称为数列的通项。
定理1 若S n 表示{a n }的前n 项和,则S 1=a 1, 当n >1时,a n =S n -S n -1. 定义2 等差数列,如果对任意的正整数n ,都有a n +1-a n =d (常数),则{a n }称为等差数列,d 叫做公差。
若三个数a , b , c 成等差数列,即2b =a +c ,则称b 为a 和c 的等差中项,若公差为d, 则a =b -d, c =b +d. 定理2 等差数列的性质:1)通项公式a n =a 1+(n -1)d ;2)前n 项和公式:S n =d n n na a a n n 2)1(2)(11-+=+;3)a n -a m =(n -m)d ,其中n , m 为正整数;4)若n +m=p +q ,则a n +a m =a p +a q ;5)对任意正整数p , q ,恒有a p -a q =(p -q )(a 2-a 1);6)若A ,B 至少有一个不为零,则{a n }是等差数列的充要条件是S n =An 2+Bn .定义3 等比数列,若对任意的正整数n ,都有q a a nn =+1,则{a n }称为等比数列,q 叫做公比。
定理3 等比数列的性质:1)a n =a 1q n -1;2)前n 项和S n ,当q ≠1时,S n =qq a n --1)1(1;当q =1时,S n =na 1;3)如果a , b , c 成等比数列,即b 2=ac (b ≠0),则b 叫做a , c 的等比中项;4)若m+n =p +q ,则a m a n =a p a q 。
高中数学竞赛讲义_不等式
不等式一、基础知识不等式的基本性质:(1)a>b ⇔a-b>0; (2)a>b, b>c ⇒a>c ; (3)a>b ⇒a+c>b+c ; (4)a>b, c>0⇒ac>bc ;(5)a>b, c<0⇒ac<bc; (6)a>b>0, c>d>0⇒ac>bd;(7)a>b>0, n ∈N +⇒a n >b n ; (8)a>b>0, n ∈N +⇒n nb a >;(9)a>0, |x|<a ⇔-a<x<a, |x|>a ⇔x>a 或x<-a; (10)a, b ∈R ,则|a|-|b|≤|a+b|≤|a|+|b|; (11)a, b ∈R ,则(a-b)2≥0⇔a 2+b 2≥2ab; (12)x, y, z ∈R +,则x+y ≥2xy , x+y+z .33xyz ≥前五条是显然的,以下从第六条开始给出证明。
(6)因为a>b>0, c>d>0,所以ac>bc, bc>bd ,所以ac>bd ;重复利用性质(6),可得性质(7);再证性质(8),用反证法,若n nb a ≤,由性质(7)得n n n n b a )()(≤,即a ≤b ,与a>b矛盾,所以假设不成立,所以n nb a >;由绝对值的意义知(9)成立;-|a|≤a ≤|a|, -|b|≤b ≤|b|,所以-(|a|+|b|)≤a+b ≤|a|+|b|,所以|a+b|≤|a|+|b|;下面再证(10)的左边,因为|a|=|a+b-b|≤|a+b|+|b|,所以|a|-|b|≤|a+b|,所以(10)成立;(11)显然成立;下证(12),因为x+y-22)(y x xy -=≥0,所以x+y ≥xy 2,当且仅当x=y 时,等号成立,再证另一不等式,令c z b y a x ===333,,,因为x 3+b 3+c 3-3abc =(a+b)3+c 3-3a 2b-3ab 2-3abc=(a+b)3+c 3-3ab(a+b+c)=(a+b+c)[(a+b)2-(a+b)c+c 2]-3ab(a+b+c)=(a+b+c)(a 2+b 2+c 2-ab-bc-ca)=21(a+b+c)[(a-b)2+(b-c)2+(c-a)2] ≥0,所以a 3+b 3+c 3≥3abc ,即x+y+z ≥33xyz ,等号当且仅当x=y=z 时成立。
高中数学竞赛讲义(全套)
高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。
全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
三角形中的几个特殊点:旁心、费马点,欧拉线。
几何不等式。
几何极值问题。
几何中的变换:对称、平移、旋转。
圆的幂和根轴。
面积方法,复数方法,向量方法,解析几何方法。
2.代数周期函数,带绝对值的函数。
三角公式,三角恒等式,三角方程,三角不等式,反三角函数。
递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。
第二数学归纳法。
平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。
复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。
多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。
n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。
函数迭代,简单的函数方程*3.初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。
4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。
组合计数,组合几何。
抽屉原理。
容斥原理。
极端原理。
图论问题。
集合的划分。
覆盖。
平面凸集、凸包及应用*。
注:有*号的内容加试中暂不考,但在冬令营中可能考。
二、初中数学竞赛大纲1、数整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。
高中数学竞赛讲义(全套)
高中数学竞赛资料一、高中数学竞赛大纲全国高中数学联赛全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。
全国高中数学联赛加试全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
三角形中的几个特殊点:旁心、费马点,欧拉线。
几何不等式。
几何极值问题。
几何中的变换:对称、平移、旋转。
圆的幂和根轴。
面积方法,复数方法,向量方法,解析几何方法。
2.代数周期函数,带绝对值的函数。
三角公式,三角恒等式,三角方程,三角不等式,反三角函数。
递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。
第二数学归纳法。
平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。
复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。
多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。
n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。
函数迭代,简单的函数方程*3.初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。
4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。
组合计数,组合几何。
抽屉原理。
容斥原理。
极端原理。
图论问题。
集合的划分。
覆盖。
平面凸集、凸包及应用*。
注:有*号的内容加试中暂不考,但在冬令营中可能考。
二、初中数学竞赛大纲1、数整数及进位制表示法,整除性及其判定;素数和合数,最大公约数与最小公倍数;奇数和偶数,奇偶性分析;带余除法和利用余数分类;完全平方数;因数分解的表示法,约数个数的计算;有理数的概念及表示法,无理数,实数,有理数和实数四则运算的封闭性。
高中数学 第十四章《极限与极值》数学竞赛讲义 苏教版
第十四章 极限与导数一、基础知识 1.极限定义:(1)若数列{u n }满足,对任意给定的正数ε,总存在正数m,当n>m 且n ∈N 时,恒有|u n -A|<ε成立(A 为常数),则称A 为数列u n 当n 趋向于无穷大时的极限,记为)(lim ),(lim x f x f x x -∞→+∞→,另外)(lim 0x f x x +→=A 表示x 大于x 0且趋向于x 0时f(x)极限为A,称右极限。
类似地)(lim 0x f x x -→表示x 小于x 0且趋向于x 0时f(x)的左极限。
2.极限的四则运算:如果0lim x x →f(x)=a, 0lim x x →g(x)=b,那么0lim x x →[f(x)±g(x)]=a ±b,lim x x →[f(x)•g(x)]=ab, 0limx x →).0()()(≠=b bax g x f 3.连续:如果函数f(x)在x=x 0处有定义,且0lim x x →f(x)存在,并且0lim x x →f(x)=f(x 0),则称f(x)在x=x 0处连续。
4.最大值最小值定理:如果f(x)是闭区间[a,b]上的连续函数,那么f(x)在[a,b]上有最大值和最小值。
5.导数:若函数f(x)在x0附近有定义,当自变量x 在x 0处取得一个增量Δx 时(Δx 充分小),因变量y 也随之取得增量Δy(Δy=f(x 0+Δx)-f(x 0)).若xyx ∆∆→∆0lim存在,则称f(x)在x 0处可导,此极限值称为f(x)在点x 0处的导数(或变化率),记作'f (x 0)或0'x x y =或x dxdy ,即00)()(lim)('0x x x f x f x f x x --=→。
由定义知f(x)在点x 0连续是f(x)在x 0可导的必要条件。
若f(x)在区间I 上有定义,且在每一点可导,则称它在此敬意上可导。
高中数学竞赛培训讲义
2011高中数学竞赛培训教材编者:全国特级教师(一)集合与容斥原理集合是一种根本数学语言、一种根本数学工具。
它不仅是高中数学的第一课,而且是整个数学的根底。
对集合的理解和掌握不能仅仅停留在高中数学起始课的水平上,而要随着数学学习的进程而不断深化,自觉使用集合语言(术语与符号)来表示各种数学名词,主动使用集合工具来表示各种数量关系。
如用集合表示空间的线面及其关系,表示平面轨迹及其关系、表示程(组)或不等式(组)的解、表示充要条件,描述排列组合,用集合的性质进展组合计数等。
一、学习集合要抓住元素这个关键例1.设A={X∣X=a2+b2,a、b∈Z},X1,X2∈A,求证:X1X2∈A。
分析:A中的元素是自然数,即由两个整数a、b的平和构成的自然数,亦即从0、1、4、9、16、25……,n2,……中任取两个(一样或不一样)数加起来得到的一个和数,此题要证明的是:两个这样的数的乘积一定还可以拆成两个自然数的平和的形式,即(a2+b2)(c2+d2)=(M)2+(N)2,M,N∈Z证明:设X1=a2+b2,X2=c2+d2,a、b、c、d∈Z.那么X1X2=(a2+b2)(c2+d2)=a2c2+b2d2+b2c2+a2d2=a2c2+2ac·bd+b2d2+b2c2-2bc·ad+a2d2=(ac+bd)2+(bc-ad)2 又a、b、c、d∈Z,故ac+bd、bc-ad∈Z,从而X1X2∈A练习:1.设两个集合S={x|x=12m+8n,m,n∈Z},T={x|x=20p+16q,p,q∈Z}.求证:S=T。
2.设M={a|a= x2-y2,x,y∈Z}.求证:〔1〕一切奇数属于M;〔2〕4k-2(k∈Z)不属于M;〔3〕M中任意两个数的积仍属于M。
3.函数f〔x〕=x2+ax+b,a,b∈R,且A={x|x=f(x)},B={x|x=f[f(x)]}.(1)求证:A B;(2)假设A={-1,3}时,求集合B.二、集合中待定元素确实定例2.集合M ={X ,XY ,lg(xy)},S ={0,∣X ∣,Y},且M =S ,那么(X +1/Y)+(X2+1/Y2)+……+(X2002+1/Y2002)的值等于( ).分析:解题的关键在于求出X 和Y 的值,而X 和Y 分别是集合M 与S 中的元素。
最新高中数学竞赛全套精品讲义
竞赛讲座01-奇数和偶数整数中,能被2整除的数是偶数,反之是奇数,偶数可用2k表示,奇数可用2k+1表示,这里k是整数.关于奇数和偶数,有下面的性质:(1)奇数不会同时是偶数;两个连续整数中必是一个奇数一个偶数;(2)奇数个奇数和是奇数;偶数个奇数的和是偶数;任意多个偶数的和是偶数;(3)两个奇(偶)数的差是偶数;一个偶数与一个奇数的差是奇数;(4)若a、b为整数,则a+b与a-b有相同的奇数偶;(5)n个奇数的乘积是奇数,n个偶数的乘积是2n的倍数;顺式中有一个是偶数,则乘积是偶数.以上性质简单明了,解题时如果能巧妙应用,常常可以出奇制胜.1.代数式中的奇偶问题例1(第2届“华罗庚金杯”决赛题)下列每个算式中,最少有一个奇数,一个偶数,那么这12个整数中,至少有几个偶数?□+□=□,□-□=□,□×□=□□÷□=□.解因为加法和减法算式中至少各有一个偶数,乘法和除法算式中至少各有二个偶数,故这12个整数中至少有六个偶数.例2 (第1届“祖冲之杯”数学邀请赛)已知n是偶数,m是奇数,方程组是整数,那么(A)p、q都是偶数. (B)p、q都是奇数.(C)p是偶数,q是奇数(D)p是奇数,q是偶数分析由于1988y是偶数,由第一方程知p=x=n+1988y,所以p是偶数,将其代入第二方程中,于是11x也为偶数,从而27y=m-11x为奇数,所以是y=q奇数,应选(C)例3 在1,2,3…,1992前面任意添上一个正号和负号,它们的代数和是奇数还是偶数.分析因为两个整数之和与这两个整数之差的奇偶性相同,所以在题设数字前面都添上正号和负号不改变其奇偶性,而1+2+3+…+1992==996×1993为偶数于是题设的代数和应为偶数.2.与整除有关的问题例4(首届“华罗庚金杯”决赛题)70个数排成一行,除了两头的两个数以外,每个数的3倍都恰好等于它两边两个数的和,这一行最左边的几个数是这样的:0,1,3,8,21,….问最右边的一个数被6除余几?解设70个数依次为a1,a2,a3据题意有a1=0, 偶a2=1 奇a3=3a2-a1, 奇a4=3a3-a2, 偶a5=3a4-a3, 奇a6=3a5-a4, 奇………………由此可知:当n被3除余1时,a n是偶数;当n被3除余0时,或余2时,a n是奇数,显然a70是3k+1型偶数,所以k必须是奇数,令k=2n+1,则a70=3k+1=3(2n+1)+1=6n+4.解设十位数,五个奇数位数字之和为a,五个偶数位之和为b(10≤a≤35,10≤b≤35),则a+b=45,又十位数能被11整除,则a-b应为0,11,22(为什么?).由于a+b与a-b有相同的奇偶性,因此a-b=11即a=28,b=17.要排最大的十位数,妨先排出前四位数9876,由于偶数位五个数字之和是17,现在8+6=14,偶数位其它三个数字之和只能是17-14=3,这三个数字只能是2,1,0.故所求的十位数是9876524130.例6(1990年日本高考数学试题)设a、b是自然数,且有关系式123456789=(11111+a)(11111-b),①证明a-b是4的倍数.证明由①式可知11111(a-b)=ab+4×617②∵a>0,b>0,∴a-b>0首先,易知a-b是偶数,否则11111(a-b)是奇数,从而知ab是奇数,进而知a、b 都是奇数,可知(11111+a)及(11111-b)都为偶数,这与式①矛盾其次,从a-b是偶数,根据②可知ab是偶数,进而易知a、b皆为偶数,从而ab+4×617是4的倍数,由②知a-b是4的倍数.3.图表中奇与偶例7(第10届全俄中学生数学竞赛试题)在3×3的正方格(a)和(b)中,每格填“+”或“-”的符号,然后每次将表中任一行或一列的各格全部变化试问重复若干次这样的“变号”程序后,能否从一张表变化为另一张表.解按题设程序,这是不可能做到的,考察下面填法:在黑板所示的2×2的正方形表格中,按题设程序“变号”,“+”号或者不变,或者变成两个.表(a)中小正方形有四个“+”号,实施变号步骤后,“+”的个数仍是偶数;但表(b)中小正方形“+”号的个数仍是奇数,故它不能从一个变化到另一个.显然,小正方形互变无法实现,3×3的大正方形的互变,更无法实现.例8(第36届美国中学生数学竞赛试题)将奇正数1,3,5,7…排成五列,按右表的格式排下去,1985所在的那列,从左数起是第几列?(此处无表)解由表格可知,每行有四个正奇数,而1985=4×496+1,因此1985是第497行的第一个数,又奇数行的第一个数位于第二列,偶数行的第一个数位于第四列,所以从左数起,1985在第二列.例9 如图3-1,设线段AB的两个端点中,一个是红点,一个是绿点,在线段中插入n个分点,把AB分成n+1个不重叠的小线段,如果这些小线段的两个端点一个为红点而另一个为绿点的话,则称它为标准线段.证明不论分点如何选取,标准线段的条路总是奇数.分析 n个分点的位置无关紧要,感兴趣的只是红点还是绿点,现用A、B分别表示红、绿点;不难看出:分点每改变一次字母就得到一条标准线段,并且从A点开始,每连续改变两次又回到A,现在最后一个字母是B,故共改变了奇数次,所以标准线段的条数必为奇数.4.有趣的应用题例 10(第2届“从小爱数学”赛题)图3-2是某一个浅湖泊的平面图,图中所有曲线都是湖岸.(1)如果P点在岸上,那么A点在岸上还是在水中?(2)某人过这湖泊,他下水时脱鞋,上岸时穿鞋.如果有一点B,他脱鞋垢次数与穿鞋的次数和是个奇数,那么B点是在岸上还是在水中?说明理由.解(1)连结AP,显然与曲线的交点数是个奇数,因而A点必在水中.(2)从水中经过一次陆地到水中,脱鞋与穿鞋的次数和为2,由于 A点在水中,氢不管怎样走,走在水中时,脱鞋、穿鞋的次数的和总是偶数,可见B点必在岸上.例11 书店有单价为10分,15分,25分,40分的四种贺年片,小华花了几张一元钱,正好买了30张,其中某两种各5张,另两种各10张,问小华买贺年片花去多少钱?分析设买的贺年片分别为a、b、c、d(张),用去k张1元的人民币,依题意有10a+15b+25c+40d=100k,(k为正整数)即 2a+3b+5c+8d=20k显然b、c有相同的奇偶性.若同为偶数,b-c=10 和a=b=5,不是整数;若同为奇数,b=c=5和a=d=10,k=7.例12 一个矩形展览厅被纵横垂直相交的墙壁隔成若干行、若干列的小矩形展览室,每相邻两室间都有若干方形门或圆形门相通,仅在进出展览厅的出入口处有若干门与厅外相通,试证明:任何一个参观者选择任何路线任意参观若干个展览室(可重复)之后回到厅外,他经过的方形门的次数与圆形门的次数(重复经过的重复计算)之差总是偶数.证明给出入口处展览室记“+”号,凡与“+”相邻的展览室记“-”号,凡与“-”号相邻的展览室都记“+”号,如此则相邻两室的“+”、“-”号都不同.一参观者从出入口处的“+”号室进入厅内,走过若干个展览室又回到入口处的“+”号室,他的路线是+-+-…+-+-,即从“+”号室起到“+”号室止,中间“-”、“+”号室为n+1(重复经过的重复计算),即共走了2n+1室,于是参观者从厅外进去参观后又回到厅外共走过了2n+2个门(包括进出出入口门各1次).设其经过的方形门的次数是r次,经过圆形门的次数是s,则s+r=2n+2为偶数,故r-s也为偶数,所以命题结论成立.例13 有一无穷小数A=0.a1a2a3…a n a n+1a n+2…其中a i(i=1,2)是数字,并且a1是奇数,a2是偶数,a3等于a1+a2的个位数…,a n+2是a n+a n+1(n=1,2…,)的个位数,证明A 是有理数.证明为证明A是有理数,只要证明A是循环小数即可,由题意知无穷小数A的每一个数字是由这个数字的前面的两位数字决定的,若某两个数字ab重复出现了,即0.…ab…ab…此小数就开始循环.而无穷小数A的各位数字有如下的奇偶性规律:A=0.奇偶奇奇偶奇奇偶奇……又a是奇数可取1,3,5,7,9;b是偶数可取0,2,4,6,8.所以非负有序实数对一共只有25个是不相同的,在构成A的前25个奇偶数组中,至少出现两组是完全相同的,这就证得A是一循环小数,即A是有理数.练习1.填空题(1)有四个互不相等的自然数,最大数与最小数的差等于4,最大数与最小数的积是一个奇数,而这四个数的和是最小的两位奇数,那么这四个数的乘积是______.(2)有五个连续偶数,已知第三个数比第一个数与第五个数和的多18,这五个偶数之和是____.(3)能否把1993部电话中的每一部与其它5部电话相连结?答____.2.选择题(1)设a、b都是整数,下列命题正确的个数是()①若a+5b是偶数,则a-3b是偶数;②若a+5b是偶数,则a-3b是奇数;③若a+5b是奇数,则a-3b是奇数;④若a+5b是奇数,则a-3b是偶数.(A)1 (B)2 (C)3 (D)4(2)若n是大于1的整数,则的值().(A)一定是偶数(B)必然是非零偶数(C)是偶数但不是2 (D)可以是偶数,也可以是奇数(3)已知关于x的二次三项式ax2+bx+c(a、b、c为整数),如果当x=0与x=1时,二次三项式的值都是奇数,那么a()(A)不能确定奇数还是偶数(B)必然是非零偶数(C)必然是奇数(D)必然是零3.(1986年宿州竞赛题)试证明11986+91986+81986+61986是一个偶数.4.请用0到9十个不同的数字组成一个能被11整除的最小十位数.5.有n 个整数,共积为n,和为零,求证:数n能被4整除6.在一个凸n边形内,任意给出有限个点,在这些点之间以及这些点与凸n边形顶点之间,用线段连续起来,要使这些线段互不相交,而且把原凸n边形分为只朋角形的小块,试证这种小三我有形的个数与n有相同的奇偶性.7.(1983年福建竞赛题)一个四位数是奇数,它的首位数字泪地其余各位数字,而第二位数字大于其它各位数字,第三位数字等于首末两位数字的和的两倍,求这四位数.8.(1909年匈牙利竞赛题)试证:3n+1能被2或22整除,而不能被2的更高次幂整除.9.(全俄15届中学生数学竞赛题)在1,2,3…,1989之间填上“+”或“-”号,求和式可以得到最小的非负数是多少?练习参考答案1.(1)30.(最小两位奇数是11,最大数与最小数同为奇数)(2)180.设第一个偶数为x,则后面四个衣次为x+2,x+4,x+6,x+8.(3)不能.2.B.B.A3.11986是奇数1,91986的个位数字是奇数1,而81986,61986都是偶数,故最后为偶数.4.仿例51203465879.5.设a1,a2,…,an满足题设即a1+a2+…+an=0①a1·a2……an=n②。
高中数学竞赛讲义_整数问题
整数问题一、常用定义定理1.整除:设a,b ∈Z,a ≠0,如果存在q ∈Z 使得b=aq ,那么称b 可被a 整除,记作a|b ,且称b 是a 的倍数,a 是b 的约数。
b 不能被a 整除,记作a b.2.带余数除法:设a,b 是两个给定的整数,a ≠0,那么,一定存在唯一一对整数q 与r ,满足b=aq+r,0≢r<|a|,当r=0时a|b 。
3.辗转相除法:设u 0,u 1是给定的两个整数,u 1≠0,u 1 u 0,由2可得下面k+1个等式:u 0=q 0u 1+u 2,0<u 2<|u 1|; u 1=q 1u 2+u 3,0<u 3<u 2; u 2=q 2u 3+u 4,0<u 4<u 3; …u k-2=q k-2u 1+u k-1+u k ,0<u k <u k-1; u k-1=q k-1u k+1,0<u k+1<u k ; u k =q k u k+1.4.由3可得:(1)u k+1=(u 0,u 1);(2)d|u 0且d|u 1的充要条件是d|u k+1;(3)存在整数x 0,x 1,使u k+1=x 0u 0+x 1u 1.5.算术基本定理:若n>1且n 为整数,则k ak aap p p n 2121=,其中p j (j=1,2,…,k)是质数(或称素数),且在不计次序的意义下,表示是唯一的。
6.同余:设m ≠0,若m|(a-b),即a-b=km ,则称a 与b 模同m 同余,记为a ≡b(modm),也称b 是a 对模m 的剩余。
7.完全剩余系:一组数y 1,y 2,…,y s 满足:对任意整数a 有且仅有一个y j 是a 对模m 的剩余,即a ≡y j (modm),则y 1,y 2,…,y s 称为模m 的完全剩余系。
8.Fermat 小定理:若p 为素数,p>a,(a,p)=1,则a p-1≡1(modp),且对任意整数a,有a p≡a(modp).9.若(a,m)=1,则)(m aϕ≡1(modm),ϕ(m)称欧拉函数。
高中数学竞赛教案讲义(2)二次函数与命题
第二章 二次函数与命题一、基础知识1.二次函数:当≠a 0时,y =ax 2+bx +c 或f (x )=ax 2+bx +c 称为关于x 的二次函数,其对称轴为直线x =-ab2,另外配方可得f (x )=a (x -x 0)2+f (x 0),其中x 0=-ab 2,下同。
2 二次函数的性质:当a >0时,f (x )的图象开口向上,在区间(-∞,x 0]上随自变量x 增大函数值减小(简称递减),在[x 0, -∞)上随自变量增大函数值增大(简称递增)。
当a <0时,情况相反。
3.当a >0时,方程f (x )=0即ax 2+bx +c =0…①和不等式ax 2+bx +c >0…②及ax 2+bx +c <0…③与函数f (x )的关系如下(记△=b 2-4ac )。
1)当△>0时,方程①有两个不等实根,设x 1,x 2(x 1<x 2),不等式②和不等式③的解集分别是{x |x <x 1或x >x 2}和{x |x 1<x <x 2},二次函数f (x )图象与x 轴有两个不同的交点,f (x )还可写成f (x )=a (x -x 1)(x -x 2). 2)当△=0时,方程①有两个相等的实根x 1=x 2=x 0=a b 2-,不等式②和不等式③的解集分别是{x |x ab2-≠}和空集∅,f (x )的图象与x 轴有唯一公共点。
3)当△<0时,方程①无解,不等式②和不等式③的解集分别是R 和∅.f (x )图象与x 轴无公共点。
当a <0时,请读者自己分析。
4.二次函数的最值:若a >0,当x =x 0时,f (x )取最小值f (x 0)=a b ac 442-,若a <0,则当x =x 0=ab2-时,f (x )取最大值f (x 0)=ab ac 442-.对于给定区间[m,n ]上的二次函数f (x )=ax 2+bx +c (a >0),当x 0∈[m, n ]时,f (x )在[m, n ]上的最小值为f (x 0); 当x 0<m 时。
高中数学竞赛教材讲义 第十八章 组合讲义
第十八章 组合一、方法与例题1.抽屉原理。
例1 设整数n ≥4,a 1,a 2,…,a n 是区间(0,2n)内n 个不同的整数,证明:存在集合{a 1,a 2,…,a n }的一个子集,它的所有元素之和能被2n 整除。
[证明] (1)若n ∉{a 1,a 2,…,a n },则n 个不同的数属于n-1个集合{1,2n-1},{2,2n-2},…,{n-1,n+1}。
由抽屉原理知其中必存在两个数a i ,a j (i ≠j)属于同一集合,从而a i +a j =2n 被2n 整除;(2)若n ∈{a 1,a 2,…,a n },不妨设a n =n ,从a 1,a 2,…,a n -1(n-1≥3)中任意取3个数a i , a j , a k (a i ,<a j < a k ),则a j -a i 与a k -a i 中至少有一个不被n 整除,否则a k -a i =(a k -a j )+(a j -a i )≥2n ,这与a k ∈(0,2n)矛盾,故a 1,a 2,…,a n-1中必有两个数之差不被n 整除;不妨设a 1与a 2之差(a 2-a 1>0)不被n 整除,考虑n 个数a 1,a 2,a 1+a 2,a 1+a 2+a 3,…,a 1+a 2+…+a n-1。
ⅰ)若这n 个数中有一个被n 整除,设此数等于k n ,若k 为偶数,则结论成立;若k 为奇数,则加上a n =n 知结论成立。
ⅱ)若这n 个数中没有一个被n 整除,则它们除以n 的余数只能取1,2,…,n-1这n-1个值,由抽屉原理知其中必有两个数除以n 的余数相同,它们之差被n 整除,而a 2-a 1不被n 整除,故这个差必为a i , a j , a k-1中若干个数之和,同ⅰ)可知结论成立。
2.极端原理。
例2 在n ×n 的方格表的每个小方格内写有一个非负整数,并且在某一行和某一列的交叉点处如果写有0,那么该行与该列所填的所有数之和不小于n 。
高中数学竞赛标准讲义
高中数学竞赛标准讲义高中数学竞赛是对学生数学知识和解题能力的一次全面考验,也是培养学生逻辑思维和数学兴趣的重要途径。
在参加数学竞赛的过程中,学生需要掌握一定的数学知识和解题技巧,才能取得好成绩。
本讲义将从高中数学竞赛的题型、考点和解题技巧等方面进行详细介绍,希望能够帮助广大学生更好地备战数学竞赛。
一、高中数学竞赛题型。
高中数学竞赛的题型主要包括选择题、填空题、解答题和证明题。
选择题是考查学生对基本概念和定理的理解和掌握程度,填空题则更加注重学生对知识的灵活运用能力,解答题和证明题则需要学生具备较强的逻辑思维和解题技巧。
在备战数学竞赛的过程中,学生需要根据不同题型的特点有针对性地进行练习和训练,做到对各种题型都能够熟练应对。
二、高中数学竞赛考点。
高中数学竞赛的考点主要包括数列、函数、方程不等式、三角函数、数学归纳法、排列组合、数论等内容。
这些考点是数学竞赛中经常出现的题型,也是学生备战竞赛时需要重点关注和加强练习的内容。
在备战数学竞赛的过程中,学生需要对这些考点进行系统性的学习和掌握,做到能够熟练运用于解题中。
三、高中数学竞赛解题技巧。
在解高中数学竞赛的题目时,学生需要具备一定的解题技巧。
首先,要注意审题,理清题意,明确问题所求;其次,要善于归纳总结,发现问题的规律,找到解题的突破口;再次,要注重细节,避免粗心导致的错误;最后,要善于思考,灵活运用所学知识,多角度思考问题,找到解题的最佳方法。
通过不断的练习和总结,学生可以逐渐提高解题的能力和技巧,取得更好的成绩。
四、高中数学竞赛备考建议。
在备战高中数学竞赛时,学生需要有计划地进行复习和练习。
首先,要对各个考点进行系统性的复习,巩固基础知识;其次,要针对不同题型进行有针对性的练习,提高解题能力;再次,要多参加模拟考试,检验备考效果,发现问题并及时调整学习计划;最后,要保持良好的心态,相信自己的能力,不断提升自己的数学水平。
通过科学合理的备考方法,相信每位学生都能够在数学竞赛中取得优异的成绩。
高中数学竞赛第七章 解三角形【讲义】
第七章 解三角形一、基础知识在本章中约定用A ,B ,C 分别表示△ABC 的三个内角,a, b, c 分别表示它们所对的各边长,2cb a p ++=为半周长。
1.正弦定理:CcB b A a sin sin sin ===2R (R 为△ABC 外接圆半径)。
推论1:△ABC 的面积为S △ABC =.sin 21sin 21sin 21B ca A bc C ab ==推论2:在△ABC 中,有bcosC+ccosB=a. 推论3:在△ABC 中,A+B=θ,解a 满足)sin(sin a ba a -=θ,则a=A. 正弦定理可以在外接圆中由定义证明得到,这里不再给出,下证推论。
先证推论1,由正弦函数定义,BC 边上的高为bsinC ,所以S △ABC =C ab sin 21;再证推论2,因为B+C=π-A ,所以sin(B+C)=sinA ,即sinBcosC+cosBsinC=sinA ,两边同乘以2R 得bcosC+ccosB=a ;再证推论3,由正弦定理BbA a sin sin =,所以)sin()sin(sin sin A a A a --=θθ,即sinasin(θ-A)=sin(θ-a)sinA ,等价于21-[cos(θ-A+a)-cos(θ-A-a)]=21-[cos(θ-a+A)-cos(θ-a-A)],等价于cos(θ-A+a)=cos(θ-a+A),因为0<θ-A+a ,θ-a+A<π. 所以只有θ-A+a=θ-a+A ,所以a=A ,得证。
2.余弦定理:a 2=b 2+c 2-2bccosA bca cb A 2cos 222-+=⇔,下面用余弦定理证明几个常用的结论。
(1)斯特瓦特定理:在△ABC 中,D 是BC 边上任意一点,BD=p ,DC=q ,则AD 2=.22pq qp qc p b -++ (1)【证明】 因为c 2=AB 2=AD 2+BD 2-2AD ·BDcos ADB ∠, 所以c 2=AD 2+p 2-2AD ·pcos .ADB ∠ ① 同理b 2=AD 2+q 2-2AD ·qcos ADC ∠, ② 因为∠ADB+∠ADC=π,所以cos ∠ADB+cos ∠ADC=0, 所以q ×①+p ×②得qc 2+pb 2=(p+q)AD 2+pq(p+q),即AD 2=.22pq qp qc p b -++ 注:在(1)式中,若p=q ,则为中线长公式.222222a c b AD -+=(2)海伦公式:因为412=∆ ABC S b 2c 2sin 2A=41b 2c 2(1-cos 2A)=41b 2c 21614)(1222222=⎥⎦⎤⎢⎣⎡-+-c b a c b [(b+c)2-a 2][a 2-(b-c) 2]=p(p-a)(p-b)(p-c). 这里.2cb a p ++=所以S △ABC =).)()((c p b p a p p ---二、方法与例题1.面积法。
江苏省丹阳高级中学高二数学竞赛培训讲义:映射与函数
映射与函数的最值一、基础知识 1.映射的定义设A ,B 是两个集合,如果按照某种对应法则f ,对于集合A 中的任何一个元素,在集合B 中都有惟一的元素和它对应,这样的对应叫做从集合A 到集合B 的映射,记作:f A B →. 2.单射若:f A B →是一个映射且对任意,x y A ∈,x y ≠,都有()()f x f y ≠,则称之为单射.3.满射若:f A B →是一个映射且对任意y B ∈,都有一个x A ∈,使得()f x y =,则称:f A B →是A 到B 上的满射.4.一一映射一般地,设A ,B 是两个集合,:f A B →是集合A 到集合B 的映射,如果在这个映射下,对于集合A 中的不同元素,在集合B 中有不同的象,而且B 中每一个元素都有原象,那么这个映射叫做A 到B 上的一一映射.(即:f A B →既是单射又是满射)只有一一映射存在逆映射,即从B 到A 由相反的对应法则1f-构成的映射,记作:1:f B A -→.5.函数设A ,B 都是非空的数集,f 是从A 到B 的一个对应法则.那么,从A 到B 的映射:f A B →就叫做从A 到B 的函数,记做()y f x =,其中x A ∈,y B ∈,原象集合A 叫做函数()f x 的定义域,象的集合C 叫做函数的值域,显然C B ⊆.6.反函数若函数:f A B →是一一映射,则它的逆映射1:f B A -→叫原函数的反函数,通常记作1()y f x -=.二、基础训练1、在19×93的方格纸上画出主对角线,则它穿过_________个单位方格的内部.【解】主对角线穿过一个方格时,就会在方格内部留下一小段线段,因此每个方格对应于其内的这条小线段.这个网格共有20条竖线和94条横线,主对角线和所有竖线与横线共有112个交点,这112个交点可组成111条小线段.2、函数y _________,最小值是_________【解】导数法.y '==, 故y 在51[4,]12上单调增,在51[,5]12上单调减,从而max 2y =,min 1y =. 3、设定义在整数集上的函数()f x 满足52000()[(8)]2000n n f n f f n n -≥⎧=⎨+<⎩,则(1993)f =_____【解】(1993)[(19938)](1996)[(19968)](1999)f f f f f f f =+==+=[(19998)](2002)1997f f f =+==.4、求函数y =.【解】y =x 轴上点(,0)x到点(1,1)-和(1,1)的距离之和,故值域为)+∞.三、典型例题 1、设集合{|011,}M x x x =≤≤∈Z ,集合{(,,,)|,,,}F a b c d a b c d M =∈,映射:f F Z →使得(,,,)fa b c d ab cd →-,已知(,,,)39,(,,,)66f fu v x y u y x v →→,求,,,x y u v 的值.【解】由f 的定义和已知数据,得3966(,,,)uv xy uy xv u v x y M -=⎧⎨-=∈⎩,将两式相加,相减并分别分解因式得()()105y v u x +-=,()()27y v u x -+=,显然,0,0u x y v -≥-≥,在,,,{|011,x y u v x x x ∈≤≤∈Z 的条件下,011u x ≤-≤,105[]12211y v +≤+≤,即1022y v ≤+≤,但()|105y v +,可见1()15y v +=, 2()21y v +=,对应可知1()7u x -=,2()5u x -=.同理,由011y v ≤-≤,27[]12211u x +≤+≤知322u x ≤+≤, 又有1()3u x +=,2()9u x +=.对应地1()9y v -=,2()3y v -=,于是有以下两种可能:(Ⅰ)15,7,9,3;y x u x u x y v +=⎧⎪-=⎪⎨+=⎪⎪-=⎩ (Ⅱ)⎪⎪⎩⎪⎪⎨⎧=-=+=-=+.3,9,5,21v y x u x u v y由(Ⅰ)解出x =1,y=9,u =8,v =6;由(Ⅱ)解出y=12,它已超出集合M 中元素的范围,因此(Ⅱ)无解.2、设,x y R +∈,求u =.【解】将已知式变形为:u =构造等腰直角三角形AOD,如图,||||OA OD ==,OB OC 是AOD ∠的三等分线,||OB x =,||OC y =,则||||||||u AB BC CD AD =++≥=由等面积法可解得,当3x y ==.3、求函数3422(21)x x y x x -=++的值域. 【解法一】由于函数为奇函数,故只需考虑0x ≥的情形.(1)当01x ≤<时,由均值不等式有22222111()8118x x x y x x -+=≤+=++; (2)当1x =时,0y =;(3)当1x >时,222222211111||(2118118x x x x x x y x x x x +--+=⋅⋅≤+=++++,当1x =等号,所以原函数的值域为11[,88-.【解法二】222121411x x y x x -=⋅⋅++,令tan ,[0,)2x παα=∈,则111sin 4[,888y α=∈-. 4、若,,x y z R +∈,且1x y z ++=,求u =的最小值. 【解法一】易证222222222333(),(),()444x y xy x y y z yz z y z x zx x z ++≥+++≥+++≥+,所以[()()()]u x y y z z x ≥=+++++=(当且仅当13x y z ===时取等号)【解法二】设11()2z x y yi =+,21()2z y z zi =++,31()2z z x xi =+,所以123123||||||||u z z z z z z =++≥++=【解法三】设1()2A x y y +,31())22B x y z y z +++,3(())2C x y z x y z ++++,则u OA AB BC OC =++≥5、在圆周上给定21(3)n n -≥个点,从中任选n 个点染成黑色,试证一定存在两个黑点,使得以它们为端点的两条弧之一的内部,恰好含有n 个给定的点.【证明】若不然,从圆周上任何一个黑点出发,沿任何方向的第1n -个点都是白点,因而对于每一个黑点,都可得到两个相应的白点.这就定义了一个由所有黑点到白点的对应,因为每个黑点对应于两个白点,故共有2n 个白点(包括重复计数).又因为每个白点至多是两个黑点的对应点,故至少有n 个不同的白点,这与共有21n -个点矛盾,故命题成立.6、把△ABC 的各边n 等分,过各分点分别作各边的平行线,得到一些由三角形的边和这些平行线所组成的平行四边形,试计算这些平行四边形的个数.【解】如图Ⅰ-1-2-2所示,我们由对称性,先考虑边不行于BC 的小平行四边形. 把AB 边和AC 边各延长一等分,分别到B ′,C ′,连接B ′C ′. 将A ′B ′的n 条平行线分别延长,与B ′C ′相交, 连同B ′,C ′共有n+2个分点,从B ′至C ′依次记为1,2,…,n+2.图中所示的小平行四边形所在四条线分别交B ′C ′于i ,j ,k ,l .记A={边不平行于BC 的小平行四边形},{(,,,)|12}B i j k l i j k l n =≤<<<≤+. 把小平行四边形的四条边延长且交C B ''边于四点的过程定义为一个映射::f A B →,下面我们证明f 是A 与B 的一一对应.事实上,不同的小平行四边形至少有一条边不相同,那么交于C B ''的四点亦不全同. 所以,四点组),,,(l k j i 亦不相同,从而f 是A 到B 的1-1的映射.任给一个四点组(,,,)i j k l ,12i j k l n ≤<<<≤+,过i ,j 点作AB 的平行线,过k ,l 作AC 的平行线,必交出一个边不平行于BC 的小平行四边形,所以,映射f 是A 到B 的满射. 总之f 是A 与B 的一一对应,于是有42()()n card A card B C +==.加上边不平行于AB 和AC 的两类小平行四边形,得到所有平行四边形的总数是.342+n C四、课后作业金版奥数教程高一分册P109-116。
高中数学 第十三章《排列组合与概率》数学竞赛讲义 苏教版
第十三章 排列组合与概率一、基础知识1.加法原理:做一件事有n 类办法,在第1类办法中有m 1种不同的方法,在第2类办法中有m 2种不同的方法,……,在第n 类办法中有m n 种不同的方法,那么完成这件事一共有N=m 1+m 2+…+m n 种不同的方法。
2.乘法原理:做一件事,完成它需要分n 个步骤,第1步有m 1种不同的方法,第2步有m 2种不同的方法,……,第n 步有m n 种不同的方法,那么完成这件事共有N=m 1×m 2×…×m n 种不同的方法。
3.排列与排列数:从n 个不同元素中,任取m(m ≤n)个元素,按照一定顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,从n 个不同元素中取出m 个(m ≤n)元素的所有排列个数,叫做从n 个不同元素中取出m 个元素的排列数,用m n A 表示,mn A =n(n-1)…(n-m+1)=)!(!m n n -,其中m,n ∈N,m ≤n,注:一般地0n A =1,0!=1,nn A =n!。
4.N 个不同元素的圆周排列数为nA nn =(n-1)!。
5.组合与组合数:一般地,从n 个不同元素中,任取m(m ≤n)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合,即从n 个不同元素中不计顺序地取出m 个构成原集合的一个子集。
从n 个不同元素中取出m(m ≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用mn C 表示:.)!(!!!)1()1(m n m n m m n n n C m n -=+--=6.组合数的基本性质:(1)m n n m n C C -=;(2)11--+=n n m n m n C C C ;(3)knk n C C kn =--11;(4)n nk kn n nn n C C C C 2010==+++∑= ;(5)111++++-=+++k m k k m k k k k k C C C C ;(6)k n m n m k k n C C C --=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学竞赛训练讲义(一)一、选择题1、,,a b c 为互不相等的正数,222a c bc +=,则下列关系中可能成立的是( ).A 、a b c >>;B 、 b c a >>;C 、b a c >>;D 、a c b >>;2、设 ()11x f x x+=-,又记()()()()()11,,1,2,,k k f x f x f x f f x k +===则()2007f x =( ). A 、11x x +-; B 、 11x x -+; C 、x ; D 、1x-; 3、设α为锐角,xy =2sin cos sin cos z αααα=+,则,,x y z 的大小顺序为( ). A 、x y z ≥≥;B 、 x z y ≥≥;C 、z x y ≥≥;D 、z y x ≥≥; 4、用红、黄、蓝、绿四种颜色给图中的A 、B 、C 、D 四个小方格涂色(允许只用其中几种),使邻区(有公共边的小格)不同色,则不同的涂色方式种数为( ).A 、24;B 、36;C 、72;D 、84.52,则其侧面与底面的夹角为( ).A 、3π; B 、4π; C 、6π; D 、12π .6、正整数集合k A 的最小元素为1,最大元素为2007,并且各元素可以从小到大排成一个公差为k 的等差数列,则并集1759A A 中的元素个数为( ).A 、119B 、120;C 、151;D 、154.二、填空题 7、若实数,x y 满足:1031031031031,125263536x y x y+=+=++++,则x y += . 8、抛物线顶点为O ,焦点为F ,M 是抛物线上的动点,则MO MF的最大值为 . 9、计算01sin10= . 10、过直线l :9y x =+上的一点P 作一个长轴最短的椭圆,使其焦点为()()123,0,3,0F F -,则椭圆的方程为 .11、把一个长方体切割成k 个四面体,则k 的最小值是 .12、将各位数码不大于3的全体正整数m 按自小到大的顺序排成一个数列{}n a ,则2007a = .A B CD三、解答题13、数列{}n a 满足:()()111,211nn n na a a n na +==++;令12,k k x a a a =+++12111,1,2,k ky k a a a =+++=;求1nk kk x y=∑.15、若四位数n abcd =的各位数码,,,a b c d 中,任三个数码皆可构成一个三角形的三条边长,则称n 为四位三角形数,试求所有四位三角形数的个数.2008年南菁高中数学竞赛训练讲义(一)参考答案一、选择题(本题满分36分,每小题6分)1、,,a b c 为互不相等的正数,222a c bc +=,则下列关系中可能成立的是( )A 、a b c >>;B 、 b c a >>;C 、b a c >>;D 、a c b >>;答案:C ;解:若a b >,则22222a c b c bc +>+≥,不合条件,排除,A D ,又由()222a c c b c -=-,故a c -与b c -同号,排除B ;且当b a c >>时,222a c bc +=有可能成立,例如取()(),,3,5,1a b c =,故选C . 2、设 ()11xf x x+=-,又记()()()()()11,,1,2,,k k f x f x f x f f x k +===则()2007f x =( )A 、11x x +-; B 、 11x x -+; C 、x ; D 、1x-; 答案:B ;解:()()1121111,11f x f x f x x f x++===---, ()()323423111,111f f x f x f x x f x f ++-====-+-,据此,()()414211,1n n xf x f x xx+++==--,()()4341,1n n x f x f x x x +-==+,因2007为43n +型,故选B . 3、设α为锐角,x =y =2sin cos sin cos z αααα=+, 则,,x y z 的大小顺序为( )A 、x y z ≥≥;B 、 x z y ≥≥;C 、z x y ≥≥;D 、z y x ≥≥;答案:A;解:sin cos 1sin cos x y αααα+=≥=+,2sin cos sin cos z y αααα=≤=<=+,故x y z ≥≥.4、用红、黄、蓝、绿四种颜色给图中的A 、B 、C 、D 四个小方格涂色(允许只用其中几种),使邻区(有公共边的小格)不同色,则不同的涂色方式种数为( ).A B CDA 、24;B 、36;C 、72;D 、84.答案:D ;解:选两色有24C 种,一色选择对角有2种选法,共计24212C =种;选三色有34C 种,其中一色重复有13C 种选法,该色选择对角有2种选法,另两色选位有2种,共计432248⨯⨯⨯=种;四色全用有4!24=种(因,,,A B C D 为固定位置),合计84种.52,则其侧面与底面的夹角为( ).A 、3π; B 、4π; C 、6π; D 、12π .答案:A ;解:设底面正方形边长为1,棱锥的高为h ,侧面三角形的高为l ,则AC =2l =,则sin 2h PMH l ∠==,3PMH π∠=.6、正整数集合k A 的最小元素为1,最大元素为2007,并且各元素可以从小到大排成一个公差为k 的等差数列,则并集1759A A 中的元素个数为( ).A 、119B 、120;C 、151;D 、154.答案:C ;解:用k A 表示集k A 的元素个数,设1k A n =+,由20071nk =+,得2006n k=,于是172006111917A =+=,59200613559A =+=,175910032006131759A A A ==+=⨯;从而175917591003119353151A A A A A =+-=+-=.二、填空题(本题满分54分,每小题9分)7、若实数,x y 满足:1031031031031,125263536x y x y+=+=++++,则x y += . 答案:1010332356+++; 解:据条件,10102,3是关于t 的方程33156x y t t +=++的两个根,即()233560t x y t -+--+=的两个根,所以1010332356x y +=+--;1010332356x y +=+++.8、抛物线顶点为O ,焦点为F ,M 是抛物线上的动点,则MOMF的最大值为 . 答案:3;解:设抛物线方程为22y px =,则顶点及焦点坐标为()0,0,,02p O F ⎛⎫ ⎪⎝⎭,若设点M 坐标为(),M x y ,则22222222242MO x y x px p MF p x px x y ++⎛⎫== ⎪⎝⎭⎛⎫++-+ ⎪⎝⎭()222222224313234444x px x px px x px x p x px ++=≤=+++++,故3MO MF ≤.(当()(),,M x y p p =或()(),,M x y p p =时取等号)9、计算001sin10cos10-= .答案:4.解:001sin10cos10-=()000000012cos102sin 3010241sin10cos10sin 202⎛⎫ ⎪-⎝⎭==. 10、过直线l :9y x =+上的一点P 作一个长轴最短的椭圆,使其焦点为()()123,0,3,0F F -,则椭圆的方程为 . 答案:2214536x y+=;解:设直线l 上的点为(),9P t t +,取()13,0F -关于直线l 的对称点()9,6Q -,据椭圆定义,12222a PF PF PQ PF QF =+=+≥== ,当且仅当2,,Q P F 共线,即22PF QF K K =,也即96312t t +=--时,上述不等式取等号,此时5t =-, 点P 坐标为()5,4P -,据3,c a ==得,2245,36a b ==,椭圆的方程为2214536x y +=. 11、把一个长方体切割成k 个四面体,则k 的最小值是 .答案:5;解:据等价性,只须考虑单位正方体的切割情况,先说明4个不够,若为4个,因四面体的面皆为三角形,且互不平行,则正方体的上底至少要切割成两个三角形,下底也至少要切割成两个三角形,每个三角形的面积12≤,且这四个三角形要属于四个不同的四面体,以这种三角形为底的四面体,其高1≤,故四个不同的四面体的体积之和112411323⎛⎫≤⨯⨯⨯=< ⎪⎝⎭,不合;1A所以5k ≥,另一方面,可将单位正方体切割成5个四面体; 例如从正方体1111ABCD A B C D -中间挖出一个四面体11A BC D ,剩下四个角上的四面体,合计5个四面体.12、将各位数码不大于3的全体正整数m 按自小到大的顺序排成一个数列{}n a ,则2007a = .答案:133113; 解:简称这种数为“好数”,则一位好数有3个;两位好数有3412⨯=个;三位好数有23448⨯=个;…,k 位好数有134k -⨯个;1,2,k =,记1134nk n k S -==∑,因562007S S <<,52007984S -=,即第2007个好数为第984个六位好数;而六位好数中,首位为1的共有541024=个,前两位为10,11,12,13的各有44256=个,因此第2007个好数的前两位数为13,且是前两位数为13的第9843256216-⨯=个数;而前三位为130,131,132,133的各64个,则2007a 的前三位为133,且是前三位数为133的第21636424-⨯=个数; 而前四位为1330,1331,1332,1333的各16个,则2007a 的前四位为1331,且是前四位数为1331的第24168-=个数;则2007a 的前五位为13311,且是前五位数为13311的第844-=个数,则2007133113a =.三、解答题(本题满分60分,每小题20分) 13、数列{}n a 满足:()()111,211n n n na a a n na +==++;令12,k k x a a a =+++12111,1,2,k ky k a a a =+++=;求1nk kk x y=∑解:改写条件式为()11111n nn a na +-=+,则()()()112211111111111122n n n n n na na n a n a n a a a a ---⎛⎫⎛⎫⎛⎫=-+-++-+ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭()121n n =-+=+,所以()11n a n n =+,111111111k kk i i i k x a i i k k ==⎛⎫==-=-= ⎪+++⎝⎭∑∑;()2111111kk k kk i i i i i y i i i i a ======+=+=∑∑∑∑()()()()()121112623k k k k k k k k ++++++=;()()()()22111121112233236nn k kk k n n n n n x y k k ==+++⎛⎫=+=+⋅ ⎪⎝⎭∑∑()()21311436n n n n +++=.15、若四位数n abcd =的各位数码,,,a b c d 中,任三个数码皆可构成一个三角形的三条边长,则称n 为四位三角形数,试求所有四位三角形数的个数.解:称(),,,a b c d 为n 的数码组,则{},,,1,2,,9a b c d M ∈=;一、当数码组只含一个值,为(),,,,1,2,,9a a a a a =,共得9个n 值;二、当数码组恰含二个值,a b ,()a b >.()1、数码组为(),,,a a a b 型,则任取三个数码皆可构成三角形,对于每个{}2,,9a ∈,b 可取1a -个值,则数码组个数为()92136a a =-=∑,对于每组(),,,a a a b ,b 有4种占位方式,于是这种n 有364144⨯=个.()2、数码组为(),,,a b b b 型,()a b >,据构成三角形条件,有2b a b <<,M 中a 的个数共得16个数码组,对于每组(),,,a b b b ,a 有4种占位方式,于是这种n 有16464⨯=个.()3、数码组为(),,,a a b b 型,()a b >,据构成三角形条件,有2b a b <<,同上得16个数码组,对于每组(),,,a a b b ,两个a 有246C =种占位方式,于是这种n 有16696⨯=个.以上共计1446496304++=个.三、当数码组恰含三个值,,a b c ,()a b c >>.()1、数码组为(),,,a b c c 型,据构成三角形条件,则有2c b a c <<<,这种(),,,a b c c 有14组,每组中,a b 有2412A =种占位方式,于是这种n 有1412168⨯=个.()2、数码组为(),,,a b b c 型,c b a b c <<<+,此条件等价于{}1,2,,9M =中取三个不同的数构成三角形的方法数,有34组,每组中,a b 有2412A =种占位方式,于是这种n 有3412408⨯=个.()3、数码组为(),,,a a b c 型,c b a b c <<<+,同情况()2,有2434408A =个n 值.以上共计168408408984++=个n 值.四、,,,a b c d 互不相同,则有d c b a c d <<<<+,这种,,,a b c d 有16组,每组有4!个排法,共得164!384⨯=个n 值.综上,全部四位三角形数n 的个数为93049843841681+++=个.2008年南菁高中数学竞赛训练讲义(二)一、选择题1、若点P (x ,y )在直线x+3y=3上移动,则函数f (x ,y )=yx93+的最小值等于( )(A )51)427(5 (B )71)927(7 (C )71)916(7 (D )31)25(32、满足20073+++=x x y 的正整数数对(x ,y )( )(A )只有一对 (B )恰有有两对 (C )至少有三对 (D )不存在3、设集合M={-2,0,1},N={1,2,3,4,5},映射f :M →N 使对任意的x ∈M ,都有)()(x xf x f x ++是奇数,则这样的映射f 的个数是( )(A )45 (B )27 (C )15 (D )11 4、设方程1)19cos()19sin(2007220072=+y x 所表示的曲线是( ) (A )双曲线 (B )焦点在x 轴上的椭圆(C )焦点在y 轴上的椭圆 (D )以上答案都不正确5、将一个三位数的三个数字顺序颠倒,将所得到的数与原数相加,若和中没有一个数字是偶数,则称这个数为“奇和数”。