【推荐】2019最新小学数学解题思路大全

合集下载

小学应用题解题思路和方法

小学应用题解题思路和方法

小学应用题解题思路和方法小学应用题是指能够通过运用所学知识和思考解决实际问题的数学题目。

小学生在学习数学的过程中应该注重应用题的训练,通过解决应用题不仅可以巩固所学的知识,还可以培养学生的逻辑思维能力和实际问题解决能力。

下面将介绍一些解决小学应用题的思路和方法。

1.阅读题目,理解问题:首先,小学生需要仔细阅读题目,并确保自己理解了问题的意思。

可以在读题的过程中划出关键信息,弄清楚问题所涉及的数学概念和操作,明确求解的目标。

2.找出已知条件:在理解问题的基础上,需要找出已知条件。

已知条件是解答问题所必需的信息,它们通常以文字、图表或图形等形式给出。

可以用不同颜色的笔或者划线的方式标记出已知条件。

3.确定所需求解的量:根据题目的要求,确定需要求解的量是什么。

有时,问题会直接给出所求的答案,有时需要通过运算来求解。

4.找到解题思路:在了解问题和已知条件的基础上,需要思考如何设置求解的步骤和方法。

可以通过列方程式、画图表、制作模型等方式寻找解题思路。

5.运用所学知识解题:根据已知条件和解题思路,运用所学的知识进行计算。

可以选择适当的运算符号和方法,例如加减乘除、分数、百分数、比例等。

6.检查答案的合理性:完成计算后,需要检查答案的合理性。

可以通过逻辑推理、估算、逆运算等方式确定答案是否合理。

如果答案不合理,可以重新检查解题过程。

7.总结和反思:在解答完题目后,可以进行总结和反思。

可以回答一些问题,例如:题目的分析和解答过程中遇到了哪些困难?有什么新的思考和发现?如果再遇到类似的问题,可以运用什么样的方法解决?以上是解决小学应用题的基本思路和方法。

在实际解题中,需要综合运用数学的各个知识点和技巧,同时培养自己的逻辑思维能力和问题解决能力。

通过不断的练习和思考,相信小学生可以越来越熟练地解决各种应用题。

小学数学常用的十一种解题思路

小学数学常用的十一种解题思路

【转载】小学数学常用的十一种解题思路一、直接思路“直接思路”是解题中的常规思路。

它一般是通过分析、综合、归纳等方法,直接找到解题的途径。

【顺向综合思路】从已知条件出发,根据数量关系先选择两个已知数量,提出可以解决的问题;然后把所求出的数量作为新的已知条件,与其他的已知条件搭配,再提出可以解决的问题;这样逐步推导,直到求出所要求的解为止。

这就是顺向综合思路,运用这种思路解题的方法叫“综合法”。

例1 兄弟俩骑车出外郊游,弟弟先出发,速度为每分钟200米,弟弟出发5分钟后,哥哥带一条狗出发,以每分钟250米的速度追赶弟弟,而狗以每分钟300米的速度向弟弟追去,追上弟弟后,立即返回,见到哥哥后又立即向弟弟追去,直到哥哥追上弟弟,这时狗跑了多少千米?分析(按顺向综合思路探索):(1)根据弟弟速度为每分钟200米,出发5分钟的条件,可以求什么?可以求出弟弟走了多少米,也就是哥哥追赶弟弟的距离。

(2)根据弟弟速度为每分钟200米,哥哥速度为每分钟250米,可以求什么?可以求出哥哥每分钟能追上弟弟多少米。

(3)通过计算后可以知道哥哥追赶弟弟的距离为1000米,每分钟可追上的距离为50米,根据这两个条件,可以求什么?可以求出哥哥赶上弟弟所需的时间。

(4)狗在哥哥与弟弟之间来回不断奔跑,看起来很复杂,仔细想一想,狗跑的时间与谁用的时间是一样的?狗跑的时间与哥哥追上弟弟所用的时间是相同的。

(5)已知狗以每分钟300米的速度,在哥哥与弟弟之间来回奔跑,直到哥哥追上弟弟为止,和哥哥追上弟弟所需的时间,可以求什么?可以求出这时狗总共跑了多少距离?这个分析思路可以用下图(图2.1)表示。

例2 下面图形(图2.2)中有多少条线段?分析(仍可用综合思路考虑):我们知道,直线上两点间的一段叫做线段,如果我们把上面任意相邻两点间的线段叫做基本线段,那么就可以这样来计数。

(1)左端点是A的线段有哪些?有 AB AC AD AE AF AG共 6条。

小学生数学解题思路

小学生数学解题思路

小学生数学解题思路在小学阶段,数学是一门重要的学科,培养学生解题思维对他们日后学习和生活都具有重要意义。

下面我将介绍小学生在解数学题时应该采取的一些思路。

一、理解题目解题的第一步是理解题目。

小学生应该仔细阅读题目,了解题目所给的条件和要求。

在理解题目时,可以使用以下思路:1. 仔细读题:多读几遍题目,确保自己完全理解题目的意思。

2. 标记关键词:识别题目中的关键词,例如“多少”,“比例”,“分数”等。

这样有助于我们确定解题的方向。

3. 建立数学模型:根据题目的要求,将问题抽象成一个数学模型。

通过这个模型,我们可以更好地理解问题,并解决它。

二、分析解题方法一旦理解了题目,小学生应该考虑使用哪种解题方法。

以下是一些常用的解题方法:1. 分析类比:查找与题目类似的已解题例子,进行类比。

将已解题例子中的解题思路应用到当前问题上,可以帮助我们更好地解决问题。

2. 基本运算:对于简单的数学题目,可以直接使用基本的加减乘除运算进行解答。

3. 推理法:通过逻辑推理,运用已知条件推导出未知条件。

4. 反证法:通过假设一个错误答案,然后通过推理推出矛盾,进而排除错误答案。

5. 利用图形:对于与图形相关的问题,可以通过绘制图形,用图形来解决问题。

三、逐步求解一旦选择了合适的解题方法,小学生应该按照步骤一步一步地求解问题。

以下是一些逐步求解的常用方法:1. 分步计算:将复杂的问题分解成若干个简单的子问题,进行逐步计算。

2. 试错法:如果一种方法不起作用,可以尝试另一种方法。

通过不断尝试,找到解决问题的最佳方法。

3. 反复检查:在解题过程中,反复检查计算的过程和结果,确保无误。

四、总结思考在解决数学问题后,小学生应该总结思考解题的过程和方法。

以下是一些建议:1. 回顾解题思路:回顾解题思路,思考解决问题的过程中有哪些有效的方法和技巧。

2. 判断解决方法的可行性:总结解题方法的优点和不足,思考在什么情况下使用哪种方法更为合适。

三年级数学题解题思路

三年级数学题解题思路

三年级数学题解题思路在三年级数学中,学生们接触到了更加复杂的题目和解题思路。

本文将介绍三年级数学中常见题目的解题思路,并给出一些例子以加深理解。

一、加法与减法在三年级数学中,加法和减法是基础的运算。

解决这些问题的关键在于理解数学的概念和找到合适的解题方法。

1. 相关概念在解决加法和减法问题之前,我们需要了解一些相关概念。

首先是加法,加法是将两个或多个数相加得到一个总和的过程。

其次是减法,减法是从一个数中减去另一个数得到差的过程。

另外还需要理解和记忆加法和减法的运算规则,例如加法的交换律和结合律,以及减法的借位规则等。

2. 解题方法对于加法问题,可以使用纸和铅笔来进行列竖式计算。

首先将两个数对齐,根据位数逐位相加,需要进位时记得标注。

对于较大的数,可以先做逐位相加再相加总和。

对于减法问题,同样可以使用竖式计算方法,注意减数和被减数的对齐,并根据位数逐位相减。

需要借位时记得标注。

例题1:求解:13 + 25 = ?解题思路:首先将13和25对齐,从个位数开始逐位相加,得到8;然后继续相加十位数,得到3。

因此得到的结果是38。

例题2:求解:45 - 28 = ?解题思路:首先将45和28对齐,从个位数开始逐位相减。

5减8时需要借位,所以借位1个,然后得到12 - 8 = 4。

最后个位数4减个位数2,得到2。

因此得到的结果是17。

二、倍数和约数在三年级数学中,学生们开始接触到倍数和约数的概念。

理解和掌握倍数和约数的求解方法对于解决相关题目非常重要。

1. 相关概念倍数是指能够被另一个数整除的数,而约数是指能够整除某个数的数。

例如,6的倍数包括6、12、18等,而6的约数包括1、2、3、6等。

2. 解题方法对于倍数问题,可以通过列举的方法逐个数试验,或者通过数学方法进行计算。

对于约数问题,可以直接列举出所有可能的约数,或者使用分解质因数的方法来求解。

例题3:求解:30的倍数有哪些?解题思路:首先,我们可以观察到30的倍数是30、60、90、120等,每次加上30即可。

小学数学解题思维方法整理

小学数学解题思维方法整理

小学数学解题思维方法小学数学学习过程中常用的解题方法及思维方式整理,希望能帮到需要的同学。

一、逆向思维方法小学教材中的题目,多数是按照条件出现的先后顺序进行顺向思维的。

逆向思维是不依据题目内条件出现的先后顺序,而是从反方向(或从结果)出发而进行逆转推理的一种思维方式。

逆向思维与顺向思维是训练的最主要形式,也是思维形式上的一对矛盾,正确地进行逆向思维,对开拓应用题的解题思路,促进思维的灵活性,都会收到积极的效果,解:这是一道典型的“还原法”问题,如果用顺向思维的方法,将难以解答。

正确的解题思路就是用逆向思维的方法,从最后的结果出发,一步步地向前逆推,在逆向推理的过程中,对原来题目的算法进行逆向运算,即:加变减,减变加,乘变除,除变乘。

列式计算为:此题如果按照顺向思维来考虑,要根据归一的思路,先找出磨1吨面粉序是一致的。

如果从逆向思维的角度来分析,可以形成另外两种解法:①不着眼于先求1吨面粉需要多少吨小麦,而着眼于1吨小麦可磨多少列式计算为:由此,可得出下列算式:答:(同上)掌握逆向思维的方法,遇到问题可以进行正、反两个方面的思考,在开拓思路的同时,也促进了逻辑思维能力的发展。

二、对应思维方法对应思维是一种重要的数学思维,也是现代数学思想的主要内容之一。

对应思维包含一般对应和量率对应等内容,一般对应是从一一对应开始的。

例1 小红有7个三角,小明有5个三角,小红比小明多几个三角?这里的虚线表示的就是一一对应,即:同样多的5个三角,而没有虚线的2个,正是小红比小明多的三角。

一般对应随着知识的扩展,也表现在以下的问题上。

这是一道求平均数的应用题,要求出每小时生产化肥多少吨,必须先求出上、下午共生产化肥多少吨以及上、下午共工作多少小时。

这里的共生产化肥的吨数与共工作的小时数是相对应的,否则求出的结果就不是题目中所要求的解。

在简单应用题中,培养与建立对应思维,这是解决较复杂应用题的基础。

这是因为在较复杂的应用题里,间接条件较多,在推导过程中,利用对应思维所求出的数,虽然不一定是题目的最后结果,但往往是解题的关键所在。

小学数学应用题解题10个思路应用题解题思路解题技巧

小学数学应用题解题10个思路应用题解题思路解题技巧

1.顺向综合思路“直接思路”是解题中的常规思路。

它一般是通过分析、综合、归纳等方法,直接找到解题的途径。

【顺向综合思路】从已知条件出发,根据数量关系先选择两个已知数量,提出可以解决的问题;然后把所求出的数量作为新的已知条件,与其他的已知条件搭配,再提出可以解决的问题;这样逐步推导,直到求出所要求的解为止。

这就是顺向综合思路,运用这种思路解题的方法叫“综合法”。

例1 兄弟俩骑车出外郊游,弟弟先出发,速度为每分钟200米,弟弟出发5分钟后,哥哥带一条狗出发,以每分钟250米的速度追赶弟弟,而狗以每分钟300米的速度向弟弟追去,追上弟弟后,立即返回,见到哥哥后又立即向弟弟追去,直到哥哥追上弟弟,这时狗跑了多少千米?分析(按顺向综合思路探索):(1)根据弟弟速度为每分钟200米,出发5分钟的条件,可以求什么?可以求出弟弟走了多少米,也就是哥哥追赶弟弟的距离。

(2)根据弟弟速度为每分钟200米,哥哥速度为每分钟250米,可以求什么?可以求出哥哥每分钟能追上弟弟多少米。

(3)通过计算后可以知道哥哥追赶弟弟的距离为1000米,每分钟可追上的距离为50米,根据这两个条件,可以求什么?可以求出哥哥赶上弟弟所需的时间。

(4)狗在哥哥与弟弟之间来回不断奔跑,看起来很复杂,仔细想一想,狗跑的时间与谁用的时间是一样的?狗跑的时间与哥哥追上弟弟所用的时间是相同的。

(5)已知狗以每分钟300米的速度,在哥哥与弟弟之间来回奔跑,直到哥哥追上弟弟为止,和哥哥追上弟弟所需的时间,可以求什么?可以求出这时狗总共跑了多少距离?这个分析思路可以用下图(图2.1)表示。

例2 下面图形(图2.2)中有多少条线段?分析(仍可用综合思路考虑):我们知道,直线上两点间的一段叫做线段,如果我们把上面任意相邻两点间的线段叫做基本线段,那么就可以这样来计数。

(1)左端点是A的线段有哪些?有 AB AC AD AE AF AG共 6条。

(2)左端点是B的线段有哪些?有 BC、BD、BE、BF、BG共5条。

(完整版)小学数学解题的19种方法总结

(完整版)小学数学解题的19种方法总结

小学数学解题的19种方法总结一、形象思维方法形象思维方法是指人们用形象思维来认识、解决问题的方法。

它的思维基础是具体形象,并从具体形象展开来的思维过程。

形象思维的主要手段是实物、图形、表格和典型等形象材料。

它的认识特点是以个别表现一般,始终保留着对事物的直观性。

它的思维过程表现为表象、类比、联想、想象。

它的思维品质表现为对直观材料进行积极想象,对表象进行加工、提炼进而提示出本质、规律,或求出对象。

它的思维目标是解决实际问题,并且在解决问题当中提高自身的思维能力。

1、实物演示法利用身边的实物来演示数学题目的条件和问题,及条件与条件,条件与问题之间的关系,在此基础上进行分析思考、寻求解决问题的方法。

这种方法可以使数学内容形象化,数量关系具体化。

比如:数学中的相遇问题。

通过实物演示不仅能够解决“同时、相向而行、相遇”等术语,而且为学生指明了思维方向。

再如,在一个圆形(方形)水塘周围栽树问题,如果能进行一个实际操作,效果要好得多。

二年级数学教材中,“三个小朋友见面握手,每两人握一次,共要握几次手”与“用三张不同的数字卡片摆成两位数,共可以摆成多少个两位数”。

像这样的有关排列、组合的知识,在小学教学中,如果实物演示的方法,是很难达到预期的教学目标的。

特别是一些数学概念,如果没有实物演示,小学生就不能真正掌握。

长方形的面积、长方体的认识、圆柱的体积等的学习,都依赖于实物演示作思维的基础。

所以,小学数学教师应尽可能多地制作一些数学教(学)具,而且这些教(学)具用过后要好好保存,可以重复使用。

这样可以有效地提高课堂教学效率,提升学生的学习成绩。

2、图示法借助直观图形来确定思考方向,寻找思路,求得解决问题的方法。

图示法直观可靠,便于分析数形关系,不受逻辑推导限制,思路灵活开阔,但图示依赖于人们对表象加工整理的可靠性上,一旦图示与实际情况不相符,易使在此基础上的联想、想象出现谬误或走入误区,最后导致错误的结果。

比如有的数学教师爱徒手画数学图形,难免造成不准确,使学生产生误解。

2019年小学数学-四年级小学数学解题思路大全

2019年小学数学-四年级小学数学解题思路大全

1.想数码例如,1989年“从小爱数学”邀请赛试题6:两个四位数相加,第一个四位数的每一个数码都不小于5,第二个四位数仅仅是第一个四位数的数码调换了位置。

某同学的答数是16246。

试问该同学的答数正确吗?(如果正确,请你写出这个四位数;如果不正确,请说明理由)。

思路一:易知两个四位数的四个数码之和相等,奇数+奇数=偶数,偶数+偶数=偶数,这两个四位数相加的和必为偶数。

相应位数两数码之和,个、十、百、千位分别是17、13、11、15。

所以该同学的加法做错了。

正确答案是思路二:每个数码都不小于5,百位上两数码之和的11只有一种拆法5+6,另一个5只可能与8组成13,6只可能与9组成15。

这样个位上的两个数码,8+9=16是不可能的。

不要把“数码调换了位置”误解为“数码顺序颠倒了位置。

”2.尾数法例1比较 1222×1222和 1221×1223的大小。

由两式的尾数2×2=4,1×3=3,且4>3。

知 1222×1222>1221×1223例2二数和是382,甲数的末位数是8,若将8去掉,两数相同。

求这两个数。

由题意知两数的尾数和是12,乙数的末位和甲数的十位数字都是4。

由两数十位数字之和是8-1=7,知乙数的十位和甲数的百位数字都是3。

甲数是348,乙数是34。

例3请将下式中的字母换成适当的数字,使算式成立。

由3和a5乘积的尾数是1,知a5只能是7;由3和a4乘积的尾数是7-2=5,知a4是5;……不难推出原式为142857×3=428571。

3.从较大数想起例如,从1~10的十个数中,每次取两个数,要使其和大于10,有多少种取法?思路一:较大数不可能取5或比5小的数。

取6有6+5;取7有7+4,7+5,7+6;…………………………………………取10有九种 10+1,10+2,……10+9。

共为 1+3+5+7+9=25(种)。

思路二:两数不能相同。

【精品】2019最新小学数学解题思路大全

【精品】2019最新小学数学解题思路大全
你还能想出不同的添法吗?
1+2+3+4+5+6+7+8+9=45。若去掉7和8间的“+”,式左为1+2+3+4+5+6+78+9,比原式和增大了78-(7+8)=63,即
1+2+3+4+5+6+78+9
=45+63=108。
为使其和等于100,式左必须减去8。加4改为减4,即可1+2+3-4+5+6+78+9=100。
0.5-0.5+0.5+0.5÷0.5=1.5
(0.5+0.5)×0.5+0.5+0.5=1.5
0.5+0.5+0.5+0.5-0.5=1.5
0.5÷0.5+0.5÷0.5-0.5=1.5
0.5÷0.5÷0.5+0.5-0.5=2
(0.5+0.5)÷0.5+0.5-0.5=2
(0.5+0.5+0.5-0.5)÷0.5=2
例如
1+23-4+5+6+78-9=100123+45-67+8-9=100
你还能想出不同的添法吗?
[(0.5+0.5)×0.5+0.5]÷0.5=2
.想平均数
思路一:由“任意三个连续自然数的平均数是中间的数”。设第一个数为“1”,则中间数占
知这三个数是14、15、16。
二、一个数分别为
16-1=15,
15-1=14或16-2=14。
若先求第一个数,则
思路三:设第三个数为“1”,则第二、三个数,
知是15、16。
两个相同数的商为1;
1除以0.5,商等于2;……
解法很多,只举几种:
(0.5-0.5)×0.5×0.5×0.5=0
0.5-0.5-(0.5-0.5)×0.5=0
(0.5+0.5+0.5)×(0.5-0.5)=0\
(0.5+0.5-0.5-0.5)×0.5=0

小学数学解题思路

小学数学解题思路

小学数学解题思路标题: 小学数学解题思路【一】选择题解题思路选择题是小学数学试卷中的常见题型。

解答选择题时,要注意以下几点:1. 仔细阅读题目,理解问题的要求。

2. 根据题目给出的条件和提示,筛选出正确的选项,进行排除。

3. 利用计算或推理方法,确定最终的答案。

【二】填空题解题思路填空题是小学数学试卷中的一种题型。

解答填空题时,需要注意以下几点:1. 仔细阅读题目,理解问题的要求。

2. 分析题目给出的条件,找出与空格的关系。

3. 利用计算、列举、推理等方法,填入适当的数值或符号,使得等式成立。

4. 检查填写结果,确保答案的准确性。

【三】计算题解题思路计算题是小学数学试卷中的一种题型。

解答计算题时,应注意以下几点:1. 仔细阅读题目,理解问题的要求。

2. 分析题目给出的条件和运算要求,选择合适的计算方法。

3. 进行逐步的计算过程,注意运算的先后顺序。

4. 检查计算结果,确保答案的准确性。

【四】解决问题的思考方法解决数学问题需要一定的思考方法。

以下是一种常用的思考方法:1. 理清问题的条件和要求,确定所求解的未知数。

2. 利用已知条件和题目给出的信息,建立数学模型。

3. 运用适当的算法或解题方法,进行计算和推理。

4. 对计算结果进行判断和验证,得出最终的解答。

【五】推理题的解题思路推理题是小学数学试卷中的一类题型。

解答推理题时,需要注意以下几点:1. 仔细阅读题目,理解问题的要求。

2. 根据给定的条件和提示,进行推理和分析。

3. 运用逻辑思维和数学知识,找出问题的规律和解法。

4. 根据推理过程,得出最终的结论。

以上是关于小学数学解题思路的论述,包括选择题解题思路、填空题解题思路、计算题解题思路、解决问题的思考方法和推理题的解题思路。

希望对您的数学教学工作有所帮助。

小学数学常用的十一种解题思路

小学数学常用的十一种解题思路

小学数学常用的十一种解题思路“直接思路”是解题中的常规思路。

它一般是通过分析、综合、归纳等方法,直接找到解题的途径。

【顺向综合思路】从已知条件出发,根据数量关系先选择两个已知数量,提出可以解决的问题;然后把所求出的数量作为新的已知条件,与其他的已知条件搭配,再提出可以解决的问题;这样逐步推导,直到求出所要求的解为止。

这就是顺向综合思路,运用这种思路解题的方法叫“综合法”。

例 1 兄弟俩骑车出外郊游,弟弟先出发,速度为每分钟200 米,弟弟出发 5 分钟后,哥哥带一条狗出发,以每分钟250 米的速度追赶弟弟,而狗以每分钟300 米的速度向弟弟追去,追上弟弟后,立即返回,见到哥哥后又立即向弟弟追去,直到哥哥追上弟弟,这时狗跑了多少千米?分析(按顺向综合思路探索):(1)根据弟弟速度为每分钟200 米,出发 5 分钟的条件,可以求什么?可以求出弟弟走了多少米,也就是哥哥追赶弟弟的距离。

(2)根据弟弟速度为每分钟200 米,哥哥速度为每分钟250 米,可以求什么?可以求出哥哥每分钟能追上弟弟多少米。

(3)通过计算后可以知道哥哥追赶弟弟的距离为1000 米,每分钟可追上的距离为50 米,根据这两个条件,可以求什么?可以求出哥哥赶上弟弟所需的时间。

(4)狗在哥哥与弟弟之间来回不断奔跑,看起来很复杂,仔细想一想,狗跑的时间与谁用的时间是一样的?狗跑的时间与哥哥追上弟弟所用的时间是相同的。

(5)已知狗以每分钟300 米的速度,在哥哥与弟弟之间来回奔跑,直到哥哥追上弟弟为止,和哥哥追上弟弟所需的时间,可以求什么?可以求出这时狗总共跑了多少距离?这个分析思路可以用下图(图 2.1)表示。

例 2 下面图形(图2.2)中有多少条线段?分析(仍可用综合思路考虑):我们知道,直线上两点间的一段叫做线段,如果我们把上面任意相邻两点间的线段叫做基本线段,那么就可以这样来计数。

(1)左端点是A 的线段有哪些?有AB AC AD AE AF AG 共6 条。

小学数学常用的11种解题思路

小学数学常用的11种解题思路

一、直接思路“直接思路”是解题中的常规思路。

它一般是通过分析、综合、归纳等方法,直接找到解题的途径。

【顺向综合思路】从已知条件出发,根据数量关系先选择两个已知数量,提出可以解决的问题;然后把所求出的数量作为新的已知条件,与其他的已知条件搭配,再提出可以解决的问题;这样逐步推导,直到求出所要求的解为止。

这就是顺向综合思路,运用这种思路解题的方法叫“综合法”。

例1 兄弟俩骑车出外郊游,弟弟先出发,速度为每分钟200米,弟弟出发5分钟后,哥哥带一条狗出发,以每分钟250米的速度追赶弟弟,而狗以每分钟300米的速度向弟弟追去,追上弟弟后,立即返回,见到哥哥后又立即向弟弟追去,直到哥哥追上弟弟,这时狗跑了多少千米?分析(按顺向综合思路探索):(1)根据弟弟速度为每分钟200米,出发5分钟的条件,可以求什么?可以求出弟弟走了多少米,也就是哥哥追赶弟弟的距离。

(2)根据弟弟速度为每分钟200米,哥哥速度为每分钟250米,可以求什么?可以求出哥哥每分钟能追上弟弟多少米。

(3)通过计算后可以知道哥哥追赶弟弟的距离为1000米,每分钟可追上的距离为50米,根据这两个条件,可以求什么?可以求出哥哥赶上弟弟所需的时间。

(4)狗在哥哥与弟弟之间来回不断奔跑,看起来很复杂,仔细想一想,狗跑的时间与谁用的时间是一样的?狗跑的时间与哥哥追上弟弟所用的时间是相同的。

(5)已知狗以每分钟300米的速度,在哥哥与弟弟之间来回奔跑,直到哥哥追上弟弟为止,和哥哥追上弟弟所需的时间,可以求什么?可以求出这时狗总共跑了多少距离。

这个分析思路可以用下图(图2.1)表示。

例2 下面图形(图2.2)中有多少条线段?分析(仍可用综合思路考虑):我们知道,直线上两点间的一段叫做线段,如果我们把上面任意相邻两点间的线段叫做基本线段,那么就可以这样来计数。

(1)左端点是A的线段有哪些?有 AB AC AD AE AF AG共 6条。

(2)左端点是B的线段有哪些?有 BC、BD、BE、BF、BG共5条。

小学数学解题思路大全

小学数学解题思路大全

1.想数码例如,1989年“从小爱数学”邀请赛试题6:两个四位数相加,第一个四位数的每一个数码都不小于5,第二个四位数仅仅是第一个四位数的数码调换了位置。

某同学的答数是16246。

试问该同学的答数正确吗?(如果正确,请你写出这个四位数;如果不正确,请说明理由)。

思路一:易知两个四位数的四个数码之和相等,奇数+奇数=偶数,偶数+偶数=偶数,这两个四位数相加的和必为偶数。

相应位数两数码之和,个、十、百、千位分别是17、13、11、15。

所以该同学的加法做错了。

正确答案是思路二:每个数码都不小于5,百位上两数码之和的11只有一种拆法5+6,另一个5只可能与8组成13,6只可能与9组成15。

这样个位上的两个数码,8+9=16是不可能的。

不要把“数码调换了位置”误解为“数码顺序颠倒了位置。

”2.尾数法例1比较 1222×1222和 1221×1223的大小。

由两式的尾数2×2=4,1×3=3,且4>3。

知 1222×1222>1221×1223例2二数和是382,甲数的末位数是8,若将8去掉,两数相同。

求这两个数。

由题意知两数的尾数和是12,乙数的末位和甲数的十位数字都是4。

由两数十位数字之和是8-1=7,知乙数的十位和甲数的百位数字都是3。

甲数是348,乙数是34。

例3请将下式中的字母换成适当的数字,使算式成立。

由3和a5乘积的尾数是1,知a5只能是7;由3和a4乘积的尾数是7-2=5,知a4是5;……不难推出原式为142857×3=428571。

3.从较大数想起例如,从1~10的十个数中,每次取两个数,要使其和大于10,有多少种取法?思路一:较大数不可能取5或比5小的数。

取6有6+5;取7有7+4,7+5,7+6;…………………………………………取10有九种 10+1,10+2,……10+9。

共为 1+3+5+7+9=25(种)。

思路二:两数不能相同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【精品】2019最新小学数学解题思路大全由3和a5乘积的尾数是1,知a5只能是7;由3和a4乘积的尾数是7-2=5,知a4是5;……不难推出原式为142857×3=428571。

3.从较大数想起例如,从1~10的十个数中,每次取两个数,要使其和大于10,有多少种取法?思路一:较大数不可能取5或比5小的数。

取6有6+5;取7有7+4,7+5,7+6;…………………………………………取10有九种 10+1,10+2,……10+9。

共为 1+3+5+7+9=25(种)。

思路二:两数不能相同。

较小数为1的只有一种取法1+10;为2的有2+9,2+10;……较小数为9的有9+10。

共有取法1+2+3+4+5+4+3+2+1=25(种)这是从较小数想起,当然也可从9或8、7、……开始。

思路三:两数和最大的是19。

两数和大于10的是11、12、 (19)和是11的有五种1+10,2+9,3+8,4+7,5+6;和是11~19的取法5+4+4+3+3+2+2+1+1=25(种)。

4.想大小数之积用最大与最小数之积作内项(或外项)的积,剩的相乘为外项(或内项)的积,由比例基本性质知交换所得比例式各项的位置,可很快列出全部的八个比例式。

5.由得数想例如,思考题:在五个0.5中间加上怎样的运算符号和括号,等式就成立?其结果是0,0.5,1,1.5,2。

从得数出发,想:两个相同数的差,等于0;一个数加上或减去0,仍等于这个数;一个因数是0,积就等于0;0除以一个数(不是0),商等于0;两个相同数的商为1;1除以0.5,商等于2;……解法很多,只举几种:(0.5-0.5)×0.5×0.5×0.5=00.5-0.5-(0.5-0.5)×0.5=0(0.5+0.5+0.5)×(0.5-0.5)=0\(0.5+0.5-0.5-0.5)×0.5=0(0.5-0.5)×0.5×0.5+0.5=0.50.5+0.5+0.5-0.5-0.5=0.5(0.5+0.5)×(0.5+0.5—0.5)=0.5(0.5+0.5)×0.5+0.5-0.5=0.5(0.5-0.5)×0.5+0.5+0.5=10.5÷0.5+(0.5-0.5)×0.5=1(0.5-0.5)÷0.5+0.5+0.5=1(0.5+0.5)÷0.5-(0.5+0.5)=10.5-0.5+0.5+0.5÷0.5=1.5(0.5+0.5)×0.5+0.5+0.5=1.50.5+0.5+0.5+0.5-0.5=1.50.5÷0.5+0.5÷0.5-0.5=1.50.5÷0.5÷0.5+0.5-0.5=2(0.5+0.5)÷0.5+0.5-0.5=2(0.5+0.5+0.5-0.5)÷0.5=2[(0.5+0.5)×0.5+0.5]÷0.5=2.想平均数思路一:由“任意三个连续自然数的平均数是中间的数”。

设第一个数为“1”,则中间数占知这三个数是14、15、16。

二、一个数分别为16-1=15,15-1=14 或 16-2=14。

若先求第一个数,则思路三:设第三个数为“1”,则第二、三个数,知是15、16。

思路四:第一、三个数的比是7∶8,第一个数是2÷(8-7)×7=14。

若先求第三个数,则2÷(8-7)×8=16。

7.想奇偶数例1 思考题:在1、2、3、4、5、6、7、8、9九个数字中,不改变它们的顺序、在它们中间添上加、减两种符号,使所得的结果都等于100。

1+23-4+5+6+78-9=100123+45-67+8-9=100你还能想出不同的添法吗?1+2+3+4+5+6+7+8+9=45。

若去掉7和8间的“+”,式左为1+2+3+4+5+6+78+9,比原式和增大了78-(7+8)=63,即1+2+3+4+5+6+78+9=45+63=108。

为使其和等于100,式左必须减去8。

加4改为减4,即可1+2+3-4+5+6+78+9=100。

“减去4”可变为“减1、减3”,即-1+2-3+4+5+6+78+9=100二年级小学生没学过负“-1”,不能介绍。

如果式左变为12+3+4+5+6+7+89。

[12-(1+2)]+[89-(8+9)]=81。

即 12+3+4+5+6+7+89=45+81=100+26。

要将“+”变为“-”的数和为13,在3、4、5、6、7中有6+7,3+4+6,因而有12+3+4+5-6-7+89=100,12-3-4+5-6+7+89=100,同理得12+3-4+5+67+8+9=100,1+23-4+56+7+8+9=100,1+2+34-5+67-8+9=100,123-4-5-6-7+8-9=100,123+4-5+67-89=100,123-45-67+89=100。

为了减少计算。

应注意:(1)能否在1、23、4、5、6、7、89中间添上加、减(不再去掉某两数间的加号),结果为100呢?1、23、5、7、89的和或差是奇数,4、6的和或差是偶数,奇数±偶数=奇数,结果不会是100。

(2)有一个是四位数,结果也不可能为100。

因为1234减去余下数字组成(按顺序)的最大数789,再减去余下的56,差大于100。

例2 求59~199的奇数和。

由从1开始的连续n个奇数和、等于奇数个数n的平方1+3+5+7+……+(2n-1)=n2奇数比它对应的序数2倍少1。

用n表示任意一个自然数,它对应的奇数为2n-1。

例如,32对应奇数2×32-1=63。

奇数199,从1起的连续奇数中排列在100(2n-1=199,n=100)的位置上。

知1~199的奇数和是1002=10000。

此和包括59,2n-1=57、n=29、1~57的奇数和为292=841。

所求为 10000-841=9159。

或者 59=30×2-1,302=900,10000-900+59=9159。

例1 思考题:在1、2、3、4、5、6、7、8、9九个数字中,不改变它们的顺序、在它们中间添上加、减两种符号,使所得的结果都等于100。

例如1+23-4+5+6+78-9=100123+45-67+8-9=100你还能想出不同的添法吗?1+2+3+4+5+6+7+8+9=45。

若去掉7和8间的“+”,式左为1+2+3+4+5+6+78+9,比原式和增大了78-(7+8)=63,即1+2+3+4+5+6+78+9=45+63=108。

为使其和等于100,式左必须减去8。

加4改为减4,即可1+2+3-4+5+6+78+9=100。

“减去4”可变为“减1、减3”,即-1+2-3+4+5+6+78+9=100二年级小学生没学过负数“-1”,不能介绍。

如果式左变为12+3+4+5+6+7+89。

[12-(1+2)]+[89-(8+9)]=81。

即 12+3+4+5+6+7+89=45+81=100+26。

要将“+”变为“-”的数和为13,在3、4、5、6、7中有6+7,3+4+6,因而有12+3+4+5-6-7+89=100,12-3-4+5-6+7+89=100,同理得12+3-4+5+67+8+9=100,1+23-4+56+7+8+9=100,1+2+34-5+67-8+9=100,123-4-5-6-7+8-9=100,123+4-5+67-89=100,123-45-67+89=100。

为了减少计算。

应注意:(1)能否在1、23、4、5、6、7、89中间添上加、减(不再去掉某两数间的加号),结果为100呢?1、23、5、7、89的和或差是奇数,4、6的和或差是偶数,奇数±偶数=奇数,结果不会是100。

(2)有一个是四位数,结果也不可能为100。

因为1234减去余下数字组成(按顺序)的最大数789,再减去余下的56,差大于100。

例2 求59~199的奇数和。

由从1开始的连续n个奇数和、等于奇数个数n的平方1+3+5+7+……+(2n-1)=n2奇数比它对应的序数2倍少1。

用n表示任意一个自然数,它对应的奇数为2n-1。

例如,32对应奇数2×32-1=63。

奇数199,从1起的连续奇数中排列在100(2n-1=199,n=100)的位置上。

知1~199的奇数和是1002=10000。

此和包括59,2n-1=57、n=29、1~57的奇数和为292=841。

所求为 10000-841=9159。

或者 59=30×2-1,302=900,10000-900+59=9159。

8.约倍数积法任意两个自然数的最大公约数与最小公倍数的积,等于这两个自然数的积。

证明:设M、N(都是自然数)的最大公约数为P,最小公倍数为Q、且M、N不公有的因数各为a、b。

那么M×N=P×a×P×b。

而 Q=P×a×b,所以M×N=P×Q。

例1 甲乙两数的最大公约数是7,最小公倍数是105。

甲数是21,乙数是多少?例2 已知两个互质数的最小公倍数是155,求这两个数。

这两个互质数的积为1×155=155,还可分解为5×31。

所求是1和155,5和31。

例3 两数的最大公约数是4,最小公倍数是40,大数是数的2.5倍,求各数。

由上述定理和题意知两数的积,是小数平方的2.5倍。

小数的平方为4×40÷2.5=64。

小数是8。

大数是8×2.5=20。

算理:4×40=8×20=8×(8×2.5)=82×2.5。

9.想份数10巧用分解质因数例1 四个比1大的整数的积是144,写出由这四个数组成的比例式。

144=24×32=(22×3)×[(2×3)×2]=(4×3)×(6×2)可组成4∶6=2∶3等八个比例式。

例2 三个连续自然数的积是4896,求这三个数。

4896=25×32×17=24×17×(2×32)=16×17×181728=26×33=(22×3)3=123385=5×7×11例4 1992年小学数学奥林匹克试题初赛(C)卷题3:找出1992的所有不同的质因数,它们的和是多少?1992=2×2×2×3×832+3+83=88例5 甲数比乙数大9,两数的积是1620,求这两个数。

相关文档
最新文档