智能包装研究及应用进展

智能包装研究及应用进展
智能包装研究及应用进展

智能包装研究及应用进展

摘要:包装的创新旨在提高、结合或者是扩展传统包装的四大基本功能。智能包装就是包装创新的体现,它是指对环境因素具备“识别”和“判断”,并对感知信息作出响应的功能型包装。本文阐明了智能包装的定义与分类,详细分析了智能包装在国内外的发展、应用现状及市场前景,并提出了智能包装在各个领域的发展趋势,如时间- 温度指示剂(TTI)、气体指示剂(GI)、射频识别技术(RFID)等领域。本文不仅全面地总结了智能包装的发展历程,并且是包装研究人员的创新灵感来源。

关键词:智能包装;食品包装;指示剂;RFID

引言

虽然传统的包装对早期的商品物流系统做出了巨大的贡献,但随着现代社会变得越来越复杂,社会中的每一个个体(商品生产、加工、物流运营商、零售商和消费者)都需要具有创新性的包装, 来保证商品的安全、质量和可追溯性,这需要可以集成在包装的技术。为了包装创新商业的可行性和成功性被目标群体所接受, 他们必须符合日益严厉的监管要求,最低限度地添加防腐剂,最后获得比使用新技术的花费还要有益的结果。此外,包装的创新也应该旨在减少环境压力,考虑可持续发展问题(防止浪费、有效地利用资源、流程优化、回收和再利用)。

如图1,传统意义上包装的功能有四个,分别是保护、流通、便捷和储存。这几个功能并不是互相排斥的,例如,食品包装通过信息流通功能可以为消费者提供便捷的使用方法,也可以为生产者提供物流信息以实施监管。活性包装的出现突破了传统包装难以保存新鲜食物的缺陷。但是,随着科技的发展,智能包装将在活性包装的基础上结合物理、化学、计算机等科技使得包装“智能化”,智能包装能够在一定程度上代替人工,做出有效的沟通和合理决策,并且第一时间能够获取、存储、处理和分享信息。

智能包装和聪明包装往往在各种会议和研讨会上交替使用, 但这些术语也被几个期刊和杂志的作者赋予不同的含义。Brody 等人[1] 定义的智能包装为一个可以感觉和沟通的包装系统, 而聪明包装是一个同时拥有活性包装和智能包装的功能的术语。Clarke[2] 定义的智能包装是一个包含逻辑能力的术语,聪明包装是一个具有沟通功能的术语。Rijk[3] 定义的智能包装, 通过监控包装中食品的条件来传达关于在运输和储存过程中食物质量的信息。这些定义的一个主要弱点是他们自由地组合智能包装

(聪明包装)的特性,却没有认真判断其意义和目的。模棱两可, 含糊不清的定义也大大限制了智能包装的效用。

1 智能包装的定义

根据《现代汉语词典》,“智能”这个词的定义是“智慧和能力”,可以自我发现故障,自我修复,并根据实际情况做出优化反应,发挥控制功能的能力。如图2,智能包装是指对环境因素具有“控制”、“识别”和“判断”功能的包装,它可以识别和显示包装空间的温度、湿度、压力以及密封的程度、时间和包装内容物的泄露物质等重要参数。因此,智能包装可应用于数据记录媒介,如:二维码和RFID ;或者是应用于包装指示剂,如:气体指示剂、生物传感器和时间—温度指示剂(TTI)。智能包装是一个作为能使用智能功能( 如检测、传感、记录、跟踪、沟通,并应用科学逻辑) 以促进决策的制定,从而实现延长货架寿命、提高安全、提高质量、提供信息、警告可能出现的问题等功能的包装系统。我们认为智能包装的独特性在于它的沟通能力:因为包装与商品在供应链过程中经常一起移动,包装是商品最好的搭档,包装也处于传达商品即时状态最好的位置。我们相信智能包装的出现表示包装的概念有了另一范式的提升——包装从一个平庸的执行者到一个聪明的沟通者的改变。正如前面提到的,规范智能包装定义的目的是鼓励人们以创新和有效的方式提升包装的交流功能。

2 智能包装的分类

智能包装是一个多元学科的交叉应用领域,支撑智能包装的学科主要有材料科学、人工智能、现代控制理论、微电子学、计算机科学等等。智能包装分为三类,分别是功能材料型智能包装、功能结构型智能包装及信息型智能包装,如表1。

2.1 功能材料型智能包装

功能材料型智能包装是为了实现改善和增加包装的功能,而应用新型智能包装材料,以达到和完成特定包装的目的。目前研制的功能材料型智能包装通常是采用湿敏、光电、温敏、气敏等功能材料,并且对环境因素具有“识别”和”判断”功能。复合制成的包装材料可以识别和显示包装内部的温度、湿度、压力以及密封的程度、时间等一些重要参数。功能材料型智能包装对于需长期储存的包装商品很有发展前景。功能材料型智能包装一般具有时间- 温度记录标志、氧气和二氧化碳等气体指示标志、光致变色标志、物理冲击记录标志、微生物污染标志等功能。这些功能材料与包装材料复合使包装变得更加“智能”[4]。时间- 温度记录标志(图3)是指通过机械、化学和酶的作用机理,提供产品的储存条件信息,比如瑞士Ciba 公司的QnVn 标签[5] ;氧气和二氧化碳等气体指示标志即通过氧化还原染色剂来监测包装是否泄漏,能够为消费者提供现场判断依据,从而确定包装食品的食用安全性,为消费者的身心健康起到保护作用,如,气调包装破损后,外界氧气进入包装内,通过智能包装体系的应用,可以将与氧气反应变色的油墨印刷在包装内,随着氧气浓度的增大,油墨的颜色变化较明显,从而确定包装的完好程度,如图4 ;光致变色标志,如美国国际造纸公司将以色列能量纸公司(Power Paper)开发出来的一种超薄柔软电池用于包装,即将新型电池像油墨一样“印刷”在产品的包装上,使包装具有声音、灯光,以及其他特殊效果,因而制造商更有效地通过产品包装来吸引消费者;物理冲击记录标志,如光学涂料试验中心和PA 技术公司研制出的一种在外力作用下会变色的塑料薄膜,膜上涂有不同波长的反向干涉涂层,在正常情况下涂层呈明亮色彩,一旦被动用,涂层便开始产生变化,比如剥落、变成灰色、剥落部分产生花纹等,均为消费者提供了此包装曾启封过的警示信号[5] ;微生物污染标志,通过pH 染色剂或与某些代谢物反应的染色剂来监测食品包装中的微生物。2.2 功能结构型智能包装功能结构型智能包装为了使包装具有某些特殊功能和智能型特点,而增加或改进部分包装结构。功能结构的增加或改进一般侧重包装的安全性、可靠性和部分自动功能,从而使包装的商品使用更加安全和便捷。这种功能结构型智能包装表现有自动加热、自动冷却、自动报警等。这三种包装都是增加了包装的部分结构,而使包装具有部分自动功能。自动加热型包装是一种多层、无缝的容器,以注塑成型方法制成,容器内层分成多个间隔,产品可自我加热,如图5。其加热原理是:当使用者拿下容器上的箔,并按压容器底部时,容器内

的水及石灰石便会产生化学反应,释放热能,进而令产品加热[5]。比如日本自加热清酒罐和雀巢公司推出的330 mL 自动加热牛奶咖啡罐。自动冷却型包装内置一个冷凝器、一个蒸发格及一包以盐做成的干燥剂,在包装的底部储藏冷却时由催化作用所产生的蒸气及液体,它能在几分钟内将容器内物品的温度降低至17℃。比如Crown Cork & Seal 公司和Tempra 技术公司合作研发的自动冷却罐结构。自动报警型包装即将一个封闭的报警系统内嵌在包装袋底部,靠压力作用实现报警。当包装袋内食品胀袋产生的压力大于设计的标准压力时,报警系统就会自动报警, 来提醒商家和消费者食品质量已不适宜食用[6]。

表 1 智能包装的分类

2.3 信息型智能包装信息型智能包装主要是指能反映包装内容物及其内在品质和储存、运输、销售过程信息的新型包装。这种智能包装应具有记录商品在仓储、运输、销售期间,周围环境对其内在品质影响的信息及商品生产信息、销售分布信息的功能。记录和反映这些信息的技术涉及微生物、化学、动力学和电子技术[7]。信息型智能包装具有极好的发展活力和前景。RFID 技术即为信息型智能包装的应用典范,如图6。射频识别技术RFID 是一种非接触式的自动识别技术,它通过射频信号自动识别目标对象并获取相关数据,可工作于各种恶劣环境,并且识别工作无须人工干预。此技术不仅优化整个包装供应链(产品从生产、物流到消费),而且使物流管理、反馈控制、信息识别的效率和准确度得到提高,更为重要的是可凭借其辨识读取的不可被复制性和加密设置,对基于传统材料和设计的包装防伪给予强有力的补充[8]。它可识别高速运动物体并可同时识别多个标签,操作快捷方便,应用在包装最重要的两大领域——物流和防伪。

3 智能包装的应用现状及发展

3.1 智能包装的国内应用现状及发展中国包装行业近年来飞速发展,是中国经济经济增长不可忽视的贡献者,发展趋势见图表1。2014 年全国包装工业总产值完成14800 亿元,成为仅次于美国的世界第二包装大国。为迈向包装强国,重点抓包装制造业、现代包装服务业和绿色资源再生业。包装行业的高新技术开发资金由当初的年3000 万元,逐步增长到现今的年1.2 亿元,带动企业科技创新,获得百个专利。2015 年,中国包装工业总产值已接近突破 1.5 万亿。我国对功能材料型智能包装、功能结构型智能包装方面的研究相对较晚,尤其是气调包装。我国气调保鲜技术虽然起步比较晚,但是发展迅速[9]。20 世纪90 年代以来,随着人们对食品气调贮藏的认识逐步提高,我国的食品气调贮藏已经占果实贮藏总量的百分之十几。但气调包装的普及与推广应用还需要一个过程。尽管我国在智能包装的技术研发水平和应用领域还存在一些不足,但随着我国科技力量的不断提升,我们在某些方面也取得了许多令人可喜的成绩。

智能包装技术方面,中国农业大学已成功开发用于新鲜猪肉的TTI 标签,但还没有得到大量的应用;其他智能包装体系如鲜度指示、病源微生物指示等也在进行研究,上海海洋大学

新开发的快速检测食品新鲜度的“电子鼻”和检测致病菌的“生态芯片”技术;无线射频识别电子标签(RFID)虽然在2007 年开始用于月饼产品,但还未普及到其他食品;全球首条集装箱电子标签国际航线诞生于上海,对整个航运业产生了深远的影响;中国第一张“RFID 手机地铁票”在广州正式试用;国家数字图书馆、武汉图书馆RFID 项目成功启动;芬欧蓝泰投资1 亿元在广州兴建了其世界最大的电子标签生产基地来强化与中国电子标签使用者、系统集成商的联系[10],将有助于我国智能包装技术发展。

3.2 智能包装技术的国外应用及发展在1970 年代,因为无处不在的杂货店为了促进库存商品的重新排序和更加方便有序的结帐,UPC 条形码(通用产品代码)诞生了[11]。UPC 条形码是一种线状的符号组成的棒状和空间来代表12 位数的数据。其微薄的存储容量只允许储存非常有限的信息,如厂家编号和项目编号,对额外信息的编码不留余地。随着扫描仪变得越来越强大和价格越来越低廉,二维条形码也越来越受欢迎[12]。它允许附加的信息繁多,如营养信息,烹饪指令,食品生产商的网站地址,甚至是图形、音频和视频。便携式数据的优点是,它们立即可用,无需访问外部数据库。条形码和RFID 标签可以使电子记录信息共享,尤其是使外部仪器能够快速测量界面的质量属性和监控食品安全。例如,pH 值、微生物快速检测设备[13] 或无损质量测量仪器[14]。然而,随着广度和深度的增加,可追溯系统本身并不足以改善食品安全;科学相关的食品模型和用户友好的软件也需要充分利用可用的额外食物相关的数据。为预防因错误造成的诉讼并且提高患者保健质量,阿斯特捷利康(AstraZeneca) 公司做出了贡献25 亿枚用于耳咽管病症麻醉剂的RFID 标签已经完全解决了过去使用麻醉剂发生的剂量错误。医院采血错误和输血错误在一些地方不断增加,因此2006 年,标本和血袋的RFID 标签在美国、法国英国和德国很快被采纳。最近,一些研究小组在食品包装上结合RFID 标签和传感器。通过结合射频识别系统与食品反应分泌的聚合物,如生物胺,可以获得基于射频识别系统的探测信号的电子势的变化[15]。另一种传感器是使用RFID 标签去检测水蒸气、乙醇、氨、甲苯等物质[16]。通过一些先进的集成技术和通信解决方案,如RFID、GPS、有线和无线传感器、增强的通信协议等。预计我们将很快能够监视、管理和控制( 实时或远程) 智能包装的许多方面,如交通、供应链、物流、个性化广告、环境、病人健康,跟踪和追踪的对象等。2013 年,Thin Film Electronics ASA 宣布它已经成功演示了一个独立的、完整的完全由电池供电的印刷电子温度跟踪传感器系统,它是为监测易腐货物而设计的。公司预计,它将在包装上商业化其新的“智能传感器标签”[17]。近年来,随着食品安全的问题得到重视,新鲜度指示标签与包装结合的智能包装提供直接的造成食品中的微生物生长或化学变化的产品质量信息,这可以直接通过肉眼来观察。新鲜度指标也可以用来预估一个易腐产品的剩余保质期Vanprob 公司研发的食物freshTM 指示器,这是一种计时器,可以设置在一个给定的时间内消耗,从几天到几周或数月的时间。他们对于解决开启后食物的存储问题,是一个节约成本的解决方案。食物新鲜的指示器可以应用于如罐、真空包装或纸箱等包装中,该种标签是由PET 塑料制成,并且厚度小于50 微米。法国的Monoprix“不二价”超市连锁店正在许多新鲜食品上使用一种被称为“时间- 温度指示” 的包装技术,简称TTI。这种标签像射击用的靶子,有许多圈套圈的透明圆环,中心的环含有一种化学物质。由于食品上的细菌随温度和时间的增加而增加,因此化学物质变黑的程度会越来越严重。当内圈变黑时,就意味着食品不再新鲜。消费者可以根据这种标签颜色的变化判断食品保鲜程度来选购食品,还可以作为因食品变质而要求退货的凭证。Envision America 的可发声标签系统经过在美国芝加哥地区的多年试验后,早在2006 年已向全美国推广。通过Envision America 系统,一个记录患者信息的普通RFID 标签可以复制这些信息的副本。附近的设备可读出这些信息用以帮助盲人、视力不佳者、文盲、诵读困难者、因病痛而颤抖的人,以及在黑暗的地方需要阅读说明书的人。

[18]。

4 智能包装的发展前景

4.1 智能包装在食品安全中的前景随着经济的增长和生活水平的逐渐提高,人们对食品安全的日益关注以及对减少易腐烂食品和药品损失的强烈需求将刺激市场对智能包装的需求。据报道,包装的外观对于各行各业都非常重要,随着工业 4.0 概念的到来,食品包装也逐渐走向高端化,智能包装开始走进人们的视野中,要说智能包装智能在哪,最关乎的就是食品安全问题,智能包装能检测食品的质量,或者是鉴别真伪,在最大程度上保障消费者的权益,实现产品可追溯功能。任何一个新兴产业在最开始都是不成熟的,会面临一些障碍[19]。消费者在超市购买商品时,会遇到一些食品包装,外观看似完好,也在保质期内,但是,因为微生物和霉菌的滋生往往是肉眼无法看到的。我们无法判断食品能否食用,导致食品安全事故的发生。可以看出,食品安全问题在国内、外都备受关注。而智能包装技术可以方便消费者选择安全放心的食品,可以延长食品的保质期,有利于食品的保存和运输,具有广阔的市场前景。特别是在市场监管机制还不健全、假冒伪劣产品还很猖獗的情况下,消费者更加需要智能包装技术的帮助。研究人员预测,在不久的将来,用智能包装技术生产的包装袋的数量,将占食品包装袋总量的20%~40%。

4.2 智能包装在药品包装中的前景近年来,材料科学、现代控制技术、计算机技术与人工智能等相关技术的进步,带动了智能包装的飞速的发展。美国知名市场调研机构Freedonia 曾发表一篇名为《活性及智能化包装》的研究报告称,随着人口老龄化进程的不断推进,美国包装市场智能化的趋势正在日益扩大。据预计,2017 年美国智能化包装市值将达35 亿美元。未来 3 年,其复合年增长率为8%。生产效率高、自动化程度高、可靠性好、灵活性强、技术含量高的包装设备是目前行业内一直追求的。打造出新型包装机械,引领包装机械向集成化、高效化、智能化是未来发展的大方向。报告指出,2012 年食品和饮料领域是智能化包装行业的两大终端市场。Freedonia 表示,为迎合老年人对产品包装的特殊需求,一些新型智能包装产品正在不断涌向市场。“科技的不断进步使得越来越多的创新型产品包装走上了商业化道路。未来几年,智能化包装市场前景将十分可期,其应用领域也将会不断扩大和深化。”Fr eedonia 市场分析师Esther Palevsky 说道。据预测,随着美国老龄化问题的日益突出,药品包装有望成为该国未来几年该国智能化包装增长最快的应用市场。

4.3 智能包装在信息技术中的前景RFID 技术即为信息型智能包装的应用典范。有专家预计,在未来几年,每个独立包装的产品上都会贴上智能标签,2015 年,RFID 标签的年需求量将达到10000 亿枚,其中大多数将被用在智能包装上。仅仅从RFID 的需求就可以看到智能

包装的巨大的市场及其潜在的机遇。我国的RFID 技术在以下几个领域中发展前景较好。安全防护领域,包括身份识别与门禁系统、汽车防盗、电子物品监视系统等;商品生产销售领域,包括生产线产品加工过程自动控制、仓储管理、产品防伪、RFID 卡收费等;管理与数据统计领域,包括动物跟踪和管理、运动计时、文档追踪与图书馆管理等;交通运输领域,包括高速公路自动收费及智能交通管理、火车和货运集装箱的识别、供应链与物流管理、货物的跟踪、管理及监控等[20]。

5 结语

智能包装未来的发展潜力巨大,可以使用天然材料的活性包装与食品直接接触,因为天热包装材料不会有有害物质转移到食品中;可以研制活性包装和智能标签相结合的活性智能包装系统;随着互联网、云端大数据平台和智能家居的逐渐普及,智能标签应被赋予信息交互功能,因此还可以将信息通过云端的接受和存储装置,智能发送到消费者的手机等智能终端,为我们的生活带来便利[21]。目前,智能包装技术在世界各国的应用还刚刚开始,有些技术还处于实验和研究阶段。我们应该牢牢抓住这个机遇,发展我国的包装事业,提升我国包装行业的技术含量,以适应新形式下国际经济发展的要求。随着时代的变迁,商品种类更加繁多复杂,包装所肩负的功能也越来越多[22]。高新技术的浪潮将包装推向了发展的高地,智能化包装是时代发展的必然。为了更好地开发、推广及应用智能包装技术,重点要做好加快高级专业技术人才的培养,培育出一批高素质的专业技术人员与管理人员;加强交叉学科建设和科研平台建设,积极开展对外科技交流与合作,提高我国在智能包装方面的技术水平;加快行业标准的制定,减少资源浪费;利用媒体等宣传手段,提高人们对智能包装的认识,扩大市场需求,促进智能包装技术的推广应用,提高我国商品包装与物流的整体水平。

智能材料及其发展

智能材料及其发展 1.材料的发展 材料是人类用于制造物品、器件、构件、机器或者其他产品的物质,是人类生活、生产的基础,是人类认识自然和改造自然的工具,与信息、能源并列为人类赖以生存、现代文明赖以发展的三大支柱。材料也是人类进化的标志之一,一种新材料的出现必将促进人类文明的发展和科技的进步,从人类出现,经历旧石器时代、新石器时代、青铜时代……,一直到21世纪,材料及材料科学的发展一直伴随着人类的文明的进步。在人类文明的进程中,材料大致经历了一下五个发展阶段。 1)利用纯天然材料的初级阶段:在远古时代人类只能利用纯天然材料(如石头、草木、野兽毛皮、甲骨、泥土等),也就是通常所说的旧石器时代。这一阶段人类只能对纯天然材料进行简单加工。 2)单纯利用火制造材料阶段:这一阶段跨越了新石器时代、青铜时代和铁器时代,它们风别已三大人造材料为象征,即陶、铜、铁。这一时期人类利用火来进行烧结、冶炼和加工,如利用天然陶土烧制陶、瓷、砖、瓦以及后来的玻璃、水泥等,从天然矿石中提炼铜、铁等金属。 3)利用物理和化学原理合成材料阶段:20世纪初,随着科学的发展和各种检测手段及仪器的出现,人类开始研究材料的化学组成、化学键、结构及合成方法,并以凝聚态物理、晶体物理、固体物理为基础研究材料组成、结构和性能之间的关系,并出现了材料科学。这一时期,人类利用一系列物理、化学原理、现象来创造新材料,这一时期出现的合成高分子材料与已有的金属材料、陶瓷材料(无机非金属材料)构成了现代材料的三大支柱。除此之外,人类还合成了一系列的合金材料和无机非金属材料,如超导材料、光纤材料、半导体材料等。 4)材料的复合化阶段:这一阶段以20世纪50年代金属陶瓷的出现为开端,人类开始使用新的物理、化学技术,根据需要制备出性能独特的材料。玻璃钢、铝塑薄膜、梯度功能材料以及抗菌材料都是这一阶段的杰出代表,它们都是为了适应高科技的发展和提高人类文明进步而产生的。 5)材料的智能化阶段:自然界的材料都具有自适应、自诊断、自修复的功能。如所有的动物和植物都能在没有受到毁灭性打击的情况下进行自诊断和修复。受大自然的启发,近三四十年的研发,一些人工材料已经具备了其中的部分功能,即我们所说的智能材料,如形状记忆合金、光致变色玻璃等。但是从严格意义上将,目前研制成功的智能材料离理想的智能材料还有一定的距离。 材料科学的发展主要集中在以下几个方面:超纯化(从天然材料到复合材料)、量子化

智能材料结课论文

高分子智能材料 摘要:从合成、加工、新产品开发及其应用诸方面综述了智能高分子材料,如智能高分子凝胶、形状记忆高分子材料、智能织物、智能高分子膜和智能高分子复合材料等的研究进展,展望了其发展前景,并阐述了智能高分子材料的潜在应用领域。 关键词:高分子材料;智能材料;智能化 一引言 材料的发展经历着结构材料→功能材料→智能材料→模糊材料的过程[1]。智能化是指材料的作用和功能可随外界条件的变化而有意识地调节、修饰和修复[2]。 智能材料的构想来源于仿生学,它的目标就是想研制出一种材料,使它成为具有类似于生物的各种功能的“活”的材料。因此智能材料必须具备感知、驱动和控制这三个基本要素。但是现有的材料一般比较单一,难以满足智能材料的要求,所以智能材料一般由两种或两种以上的材料复合构成一个智能材料系统。这就使得智能材料的设计、制造、加工和性能结构特征均涉及到了材料学的最前沿领域,使智能材料代表了材料科学的最活跃方面和最先进的发展方向。 纵观材料发展,经历了单一型、复合型和杂化型,进而发展为异种材料间不分界的整体式融合型材料,最近几年兴起的智能材料是受集成电路技术的启迪而构思的三维组件式融合性材料。它是通过在原子、分子及其团簇等微观、亚微观水平上进行材料结构设计和控制,赋予材料自感知(传感功能)判断、自结构(处理功能)和自指令(相应功能)等智能性。 由此可知,智能材料不同于以往的传统材料,它模仿生命系统,具有传感、处理和响应功能,而且较机敏材料(只能进行简单线性响应)更近于生命系统,它能根据环境条件的变化程度实现非线性响应已达到最佳适应效果。早在1970年代,田中丰一就发现了智能高分子现象,即当冷却聚丙烯酰胺凝胶时,此凝胶由透明逐渐变得浑浊,最终呈不透明状,加热时,它又转为透明[3]。1980年代,出现了用来制造高分子传感器、分离膜、人工器官的智能高分子材料。1990年

智能包装的分类及原理

智能包装包括:功能材料型智能包装、功能结构型智能包装及信息型智能包装。它具体体现为:利用新型的包装材料、结构与形式对商品的质量和流通安全性进行积极干预与保障;利用信息收集、管理、控制与处理技术完成对运输包装系统的优化管理等。 (一)功能材料型智能包装技术 功能材料型智能包装是指通过应用新型智能包装材料,改善和增加包装的功能,以达到和完成特定包装的目的。 例: 美国国际造纸公司采用以色列能量纸公(PowerPaper)开发出来的一种超薄柔软电池, 用于一些消费产品的包装, 这种新型电池可像油墨一样被“印刷”在产品的包装上,使之增加灯光、声音, 以及其他一些特殊效果, 可让制造商更有效地通过产品包装来吸引消费者。 (二)功能结构型智能包装技术 功能结构型智能包装是指通过增加或改进部分包装结构,而使包装具有某些特殊功能和智能型特点。功能结构的改进往往从包装的安全性、可靠性和部分自动功能入手进行,这种结构上的变化使包装的商品使用更加

安全和方便简洁。 例: 这种功能结构型智能包装最有代表性的是自动加热和自动冷却包装。这两种包装都是增加了包装的部分结构, 而使包装具有部分自动功能。自动加热型包装是一种多层、无缝的容器, 以注塑成形方法制成, 容器内层分成多个间隔, 容许产品自我加热。它的加热原理是:当使用者拿下容器上的箔, 并按压容器底部时, 容器内的水及石灰石便会产生化学反应, 发放热能,进而令产品加热。自动冷却型包装内置一个冷凝器、一个蒸发格及一包以盐做成的干燥剂, 冷却时由催化作用所产生的蒸气及液体会贮藏于包装的底部。这技术也可应用于普通容器, 它能在几分钟内将容器内物品的温度降低至摄氏17℃。这2 种智能自动型包装适合野外作业人士使用, 例如探险、单车、钓鱼爱好者等。 (三)信息型智能包装技术 信息型智能包装技术主要是指以反映包装内容物及其内在品质和运输、销售过程信息为主的新型技术。这项技术包括两方面 : 其一, 商品在仓储、运输、销售期间, 周围环境对其内在质量影响的信息记录与表现; 其二, 商品生产信息和销售分布信息的记录。记录和

耐磨材料的现状及未来发展趋势

耐磨材料的发展现状及未来发展趋势 正因为这些由本征特性TC、HC2所带来的在经济和技术上的巨大潜在能力,吸引了大量的科学工作者采用最先进的技术装备,对高TC超导机制、材料的物理特性、化学性质、合成工艺及显微组织进行了广泛和深入的研究。高温氧化物超导体是非常复杂的多元体系,在研究过程中遇到了涉及多种领域的重要问题,这些领域包括凝聚态物理、晶体化学、工艺技术及微结构分析等。一些材料科学研究领域最新的技术和手段,如非晶技术、纳米粉技术、磁光技术、隧道显微技术及场离子显微技术等都被用来研究高温超导体,其中许多研究工作都涉及了材料科学的前沿问题。高温超导材料的研究工作已在单晶、薄膜、体材料、线材和应用等方面取得了重要进展。 能源材料太阳能电池材料是新能源材料研究开发的热点,IBM公司研制的多层复合太阳能电池,转换率高达40%。美国能源部在全部氢能研究经费中,大约有50%用于储氢技术。固体氧化物燃料电池的研究十分活跃,关键是电池材料,如固体电解质薄膜和电池阴极材料,还有质子交换膜型燃料电池用的有机质子交换膜等,都是目前研究的热点。 生态环境材料生态环境材料是20世纪90年代在国际高技术新材料研究中形成的一个新领域,其研究开发在日、美、德等发达国家十分活跃,主要研究方向是:①直接面临的与环境问题相关的材料技术,例如,生物可降解材料技术,CO2气体的固化技术,SOX、NOX催化转化技术、废物的再资源化技术,环境污染修复技术,材料制备加工中的洁净技术以及节省资源、节省能源的技术;②开发能使经济可持续发展的环境协调性材料,如仿生材料、环境保护材料、氟里昂、石棉等有害物质的替代材料、绿色新材料等;③材料的环境协调性评价。 智能材料智能材料是继天然材料、合成高分子材料、人工设计材料之后的第四代材料,是现代高技术新材料发展的重要方向之一,将支撑未来高技术的发展,使传统意义下的耐磨材料和结构材料之间的界线逐渐消失,实现结构功能化、功能多样化。科学家预言,智能材料的研制和大规模应用将导致材料科学发展的重大革命。国外在智能材料的研发方面取得很多技术突破,如英国宇航公司在导线传感器,用于测试飞机蒙皮上的应变与温度情况;英国开发出一种快速反应形状记忆合金,寿命期具有百万次循环,且输出功率高,以它作制动器时、反应时间,仅为10分钟;在压电材料、磁致伸缩材料、导电高分子材料、电流变液和磁流变液等智能材料驱动组件材料在航空上的应用取得大量创新成果。 2、国内耐磨材料发展的现状和差距 我国非常重视耐磨材料的发展,在国家攻关、“863”、“973”、国家自然科学基金等计划中,耐磨材料都占有很大比例。在“九五”“十五”国防计划中还将特种耐磨材料列为“国防尖端”材料。这些科技行动的实施,使我国在耐磨材料领域取得了丰硕的成果。在“863”计划支持下,开辟了超导材料、平板显示材料、稀土耐磨材料、生物医用材料、储氢等新能源材料,金刚石薄膜,高性能固体推进剂材料,红外隐身材料,材料设计与性能预测等耐磨材料新领域,取得了一批接近或达到国际先进水平的研究成果,在国际上占有了一席之地。镍氢

智能材料的研究现状与未来发展趋势

龙源期刊网 https://www.360docs.net/doc/0b14587036.html, 智能材料的研究现状与未来发展趋势 作者:邓焕 来源:《科学与财富》2017年第36期 摘要:智能材料这一概念在上世纪80年代首次被提出,近年来,关于智能材料在航空航天领域的研究与应用被频繁提及。由于智能材料具备着结构整体性强、可塑性高、功能多样化等优点,因此在航空航天领域得到了广泛的研究与使用,首先根据功能性的不同对智能材料进行了系统的分类与概述,然后对当前智能材料在航空航天领域的主要应用进行了系统性的分析与总结,最后对智能材料在未来的航空航天的应用前景中进行了进一步地展望。 关键词:智能材料;复合材料;航空航天;功能多样化 1 引言 进入二十一世纪以来,全球各大航空航天强国在航天航空领域投入了大量的研发资金,而作为航空航天领域重要环节的航天材料,近年来也不断有着新的突破,而其中被提及最多的就是智能材料在航空航天领域的应用。在智能材料的范畴中,智能复合材料最具有代表性,智能复合材料主要具备着:外界环境感知功能;判断决策功能;自我反馈功能;执行功能等。此外,由于当前智能复合材料都向着轻量化、低成本化的方向发展,因此在航天领域复合材料的设计结构以及使用用途上都有着不同的侧重发展方向。而近年来国内外各国也均加快了各自在该领域的研发使用发展进度,主要的研究大方向还是集中在了智能检测、结构稳定性、低成本化等方向上,本文着重对相关部分进行系统性的概述与总结。 2 航空航天领域智能复合材料的功能介绍 在航空航天领域中,国内外普遍利用智能复合材料以实现在降低航空航天飞行器的自身重量的前提下保证系统结构的稳定性,其次根据复合智能材料具备智能检测自身系统内部工作状态和自愈合等功能实现航空航天材料在微电子与智能应用方向的交叉发展。 2.1 智能复合材料在航天结构检测方向的应用 智能复合材料在航空航天器中的应用,主要是通过将传感器以嵌入的方式与原始预浸料铺层以及湿片铺层等智能复合材料紧密键合,最终集成在控制芯片控制器上实现对整个系统的实时监控诊测、自我修复等供能,值得注意的是,在这一过程中,智能化不仅仅是符合材料的必要功能,复合材料在很大程度上可以有效承受比传统应用材料更大外界机械压力[1]。 除此之外,由于智能复合材料作为传感器的铺放衬底,因此智能复合材料还可以实现对整个材料内部结构的状况进行收集并且将出现的诸如温度异常、结构异常、表面裂痕等隐患及时反馈至中央处理器,这在一定程度上可以有效实现整个系统内部的检测与寿命预测,在这方面的技术上,美国的Acellent公司研发的缠绕型复合材料以压力感应的形式,按照矩形布线形式

智能包装研究及应用进展

智能包装研究及应用进展 摘要:包装的创新旨在提高、结合或者是扩展传统包装的四大基本功能。智能包装就是包装创新的体现,它是指对环境因素具备“识别”和“判断”,并对感知信息作出响应的功能型包装。本文阐明了智能包装的定义与分类,详细分析了智能包装在国内外的发展、应用现状及市场前景,并提出了智能包装在各个领域的发展趋势,如时间- 温度指示剂(TTI)、气体指示剂(GI)、射频识别技术(RFID)等领域。本文不仅全面地总结了智能包装的发展历程,并且是包装研究人员的创新灵感来源。 关键词:智能包装;食品包装;指示剂;RFID 引言 虽然传统的包装对早期的商品物流系统做出了巨大的贡献,但随着现代社会变得越来越复杂,社会中的每一个个体(商品生产、加工、物流运营商、零售商和消费者)都需要具有创新性的包装, 来保证商品的安全、质量和可追溯性,这需要可以集成在包装的技术。为了包装创新商业的可行性和成功性被目标群体所接受, 他们必须符合日益严厉的监管要求,最低限度地添加防腐剂,最后获得比使用新技术的花费还要有益的结果。此外,包装的创新也应该旨在减少环境压力,考虑可持续发展问题(防止浪费、有效地利用资源、流程优化、回收和再利用)。 如图1,传统意义上包装的功能有四个,分别是保护、流通、便捷和储存。这几个功能并不是互相排斥的,例如,食品包装通过信息流通功能可以为消费者提供便捷的使用方法,也可以为生产者提供物流信息以实施监管。活性包装的出现突破了传统包装难以保存新鲜食物的缺陷。但是,随着科技的发展,智能包装将在活性包装的基础上结合物理、化学、计算机等科技使得包装“智能化”,智能包装能够在一定程度上代替人工,做出有效的沟通和合理决策,并且第一时间能够获取、存储、处理和分享信息。 智能包装和聪明包装往往在各种会议和研讨会上交替使用, 但这些术语也被几个期刊和杂志的作者赋予不同的含义。Brody 等人[1] 定义的智能包装为一个可以感觉和沟通的包装系统, 而聪明包装是一个同时拥有活性包装和智能包装的功能的术语。Clarke[2] 定义的智能包装是一个包含逻辑能力的术语,聪明包装是一个具有沟通功能的术语。Rijk[3] 定义的智能包装, 通过监控包装中食品的条件来传达关于在运输和储存过程中食物质量的信息。这些定义的一个主要弱点是他们自由地组合智能包装 (聪明包装)的特性,却没有认真判断其意义和目的。模棱两可, 含糊不清的定义也大大限制了智能包装的效用。

智能材料

智能材料及其在医学领域的应用 目录 1、智能材料的概述 1.1智能材料的定义和基本特征........................................................ 1.2智能材料的构成............................................................................ 1.3智能材料的分类............................................................................ 1.4智能材料的制备............................................................................ 2、智能材料的应用领域 2.1智能材料的研究方向................................................................... 2.2智能材料在医学上的应用............................................................ 2.3智能材料在医疗方法中的应用....................................................

2.4智能材料在医学器械方面的应用................................................. 3、结束语.................................................................... 4、参考文献................................................................ 摘要本文综合评述了智能材料的研究、应用和进展。对智能材料与结构的概念进行了描述,全面总结了智能材料智能材料生物医药方面的应用, 探讨了智能材料光明的应用前景和发展趋势。 关键词智能材料;医学应用;发展 1智能材料的概述 1.1定义:智能材料(Intelligent material),是一种能感知外部刺激,能够判断并适当处理且本身可执行的新型功能材料。智能材料是继天然材料、合成高分子材料、人工设计材料之后的第四代材料,是现代高技术新材料发展的重要方向之一,将支撑未来高技术的发展,使传统意义下的功能材料和结构材料之间的界线逐渐消失,实现结构功能化、功能多样化。科学家预言,智能材料的研制和大规模应用将导致材料科学发展的重大革命。 基本特征:因为设计智能材料的两个指导思想是材料的多功能复合和材料的仿生设计,所以智能材料系统具有或部分具有如下的智能功能和生命特征: (1)传感功能(Sensor)

土木工程智能材料的应用发展研究

土木工程智能材料的应用发展研究 0引言 随着材料技术的快速发展,越来越多的高新技术被运用到工程材料的研发中,各种新型材料层出不穷,以复合材料为基础发展而来的智能材料,为解决相应材料的力学问题提供了科学牢靠的途径。作为有着多学科交叉背景的综合学科,智能材料为土木工程中日益复杂的结构提供了实现的可能性,因此这一学科的研究也日益受到重视。诸如大跨度桥梁、高层建筑、水利枢纽、海洋钻井平台以及油气管网系统之类的基建设施,在其较长的使用期中,外界各种不利作用会使得组成这些结构的材料发生不可逆的变化,从而导致结构出现不同程度地性能衰减、功能弱化,甚至会诱发重大工程事故。若是能将智能材料运用到对这些超规模的工程结构物中,能够时刻评定相应的安全性能、监控损伤,并智能修复,则将为未来工程建设提供新的发展思路。所谓智能材料,是指随时能够对环境条件及内部状态的变化做出精准、高效、合适的响应,同时还具备自主分析、自我调整、自动修复等功能的新材料。受仿生学科的启发,其目标是要开发出能运用到具体工程中、将无机材料变得有生命活力。二十世纪90年代初逐渐兴起的智能材料结构系统,吸引了包括物理、化学、电子、航空航天、土木工程等领域的研究者涉足其中,取得了丰硕的成果。

1智能材料的概念及特点 智能材料发源于“自适应材料”(AdaptiveMate-rial),在Rogers和Claus等人的努力下,智能材料系统逐渐受到全世界各国官方机构的认可与重视,发展迅速。智能材料(IntelligentMaterial,IM)当前没有一个明确的定义,不过大体上都是根据功能做出相应的定义,是继天然材料、合成高分子材料、人工设计材料之后的第四代材料,具有不可限量的前景。智能材料产生的背景决定了其所具有的独特优势,决定了其终将会带来材料科学的重大革新。通常而言,智能材料主要以下七大功能:(1)传感:能够对内外部的作用进行监控与鉴别;(2)反馈:将监控获取的信息进行传输以及反馈;(3)信息识别与积累:识别并记忆反馈来的信息;(4)响应:对内外部的变化做出灵活有效的反应;(5)自诊断:对内外部信息实施自行诊断、分析、评判等;(6)自修复:依特定的方法修复系统的故障;(7)自适应:待外部作用消失后可恢复原状。在具体的工程中,若要实现这么多的功能,仅仅依靠单一材料是无法实现的,因此通常情况下都是通过多种智能材料的组合才能达到目的。 2智能材料在土木工程结构中的应用 2.1光导纤维 光纤维的主要化学成分为二氧化硅,作为信息传递的绝佳介质,有着其他任何材料无法比拟的传导能力。材料主要由内层圆柱

仿生机器人的研究现状及其发展方向

第36卷第6期 上海师范大学学报(自然科学版)Vol.36,No.6 2007年12月 Journal of Shanghai Nor mal University(Natural Sciences)2007,Dec. 仿生机器人的研究现状及其发展方向 王丽慧,周 华 (上海师范大学机械与电子工程学院,上海201418) 摘 要:随着机器人智能化技术的进步,机器人应用领域的拓展,仿生机器人的研究正在引起世界各国研究者的关注.主要对仿生机器人的国内外研究状况进行了综述并对其未来的发展趋势作了展望. 关键词:仿生机器人;研究现状;发展方向 中图分类号:TP24 文献标识码:A 文章编号:100025137(2007)0620058205 人们对机器人的幻想与追求已有3000多年的历史,人类希望制造一种像人一样的机器,以便代替人类完成各种工作.1959年,第一台工业机器人在美国诞生,近几十年,各种用途的机器人相继问世,使人类的许多梦想变成了现实.随着机器人工作环境和工作任务的复杂化,要求机器人具有更高的运动灵活性和在特殊未知环境的适应性,机器人简单的轮子和履带的移动机构已不能适应多变复杂的环境要求.在仿生技术、控制技术和制造技术不断发展的今天,仿人及仿生物机器人相继被研制出来,仿生机器人已经成为机器人家族中的重要成员. 1 仿生机器人的基本概念 仿生机器人就是模仿自然界中生物的外部形状、运动原理和行为方式的系统,能从事生物特点工作的机器人.仿生机器人的类型很多,主要为仿人、仿生物和生物机器人3大类.仿生机器人的主要特点:一是多为冗余自由度或超冗余自由度的机器人,机构复杂;二是其驱动方式有些不同于常规的关节型机器人,通常采用绳索、人造肌肉或形状记忆合金等驱动. 2 仿生机器人的国内外研究现状 2.1 水下仿生机器人 水下机器人由于其所处的特殊环境,在机构设计上比陆地机器人难度大.在水下深度控制、深水压力、线路绝缘处理及防漏、驱动原理、周围模糊环境的识别等诸多方面的设计均需考虑.以往的水下机器人采用的都是鱼雷状的外形,用涡轮机驱动,具有坚硬的外壳以抵抗水压.由于传统的操纵与推进装置的体积大、重量大、效率低、噪音大和机动性差等问题一直限制了微小型无人水下探测器和自主式水下机器人的发展.鱼类在水下的行进速度很快,金枪鱼速度可达105k m/h,而人类最快的潜艇速度只有84km/h.所以鱼的综合能力是人类目前所使用的传统推进和控制装置所无法比拟的,鱼类的推进方式已成为人们研制新型高速、低噪音、机动灵活的柔体潜水器模仿的对象.仿鱼推进器效率可达到70%~ 收稿日期:2007209222 基金项目:上海师范大学理工科校级项目(SK200733). 作者简介:王丽慧(1972-),女,上海师范大学机械与电子工程学院副教授.

仿生学现状及其对科技发展的影响

2009 年春季学期研究生课程考核 (读书报告、研究报告) 考核科目:机械工程专题讲座 学生所在院(系):机电工程学院 学生所在学科:机械设计及理论 学生姓名:李鹏飞 学号:08S008257 学生类别: 考核结果阅卷人

仿生学现状及其对科技发展的影响 仿生学一词最早是在1960年由美国人斯蒂尔(Jack Ellwood Steele)取自拉丁文“bios“(生命方式)和词尾“nic“(具有……性质的)合成的。仿生学可以这样定义:研究生物系统的结构、性状、原理、行为以及相互作用从而为工程技术提供新的设计思想、工作原理和系统构成的技术科学。仿生学(Bionics)是生命科学与机械、材料和信息等工程技术学科相结合的交叉学科,具有鲜明的创新性和应用性。仿生学的目的是研究和模拟生物体的结构、功能、行为及其调控机制,为工程技术提供新的设计理念、工作原理和系统构成。人类进化过程中,通过不断地模仿自然,提升生产能力。仿生的领域和技术随着时代的前进而发展。许多影响人类文明进程的重大发明都源于仿生学。例如:模仿蜘蛛织网捕鱼,模仿游鱼制造舟楫,模仿飞鸟发明飞机……。1960年美国人斯蒂尔根据拉丁文构成Bionics一词,同年召开了全美第一届仿生学讨论会。这标志着现代仿生学的开始。 仿生学具有自己独特的研究方法:一般来讲,工程和生产实践提出技术问题,有针对性地借鉴某种生物体的某些结构的功能,研究并简化其结构、功能和调控机制,择其有用制备出物理模型,建立数学模型。在有用和可用的前提下,采用技术手段,依据数学模型,制备实物模型,最终实现对生物系统的工程模拟。仿生学的发展依赖于生物学和工程技术科学的发展;仿生学的发展也促进了生物学科和工程技术的发展。 现状 仿生学的研究和应用在国内外都得到极大的关注和蓬勃的发展。为迎接全球性竞争和挑战,我国科技专家和决策者在2003年召开了两届香山会议,第214届“飞行和游动生物力学和仿生应用和第220届“仿生学的科学意义与前沿”。国内许多科研机构和大学都相继成立了仿生学研究所和研究室。科学家们正带着自动控制、能量转换信息处理、力学模式和材料构成等大量技术难题到生物系统中去寻找启迪。机器人技术的发展很好地体现了仿生应用的理念。早期的机器人主要是模拟人的重复性劳

智能材料最新进展及展望

智能材料最新进展及展望 李洁能动管(硕)42班2140803011 摘要:本文综述了智能材料的概念、分类,重点介绍了智能材料的基础材料——压电材料、形状记忆材料的设计思路、特异性能和影响因素。智能材料的研究内容非常丰富,涉及了许多前沿学科和高新技术,应用领域十分广阔。智能材料结构系统的研究必将把人类社会文明推向一个新的高度。 关键词:智能材料;压电材料;形状记忆材料;前景 1.智能材料的基本概念及分类 1.1智能材料的基本概念 20世纪80年代中期,人们提出智能材料的概念。智能材料要求材料体系集感知、驱动和信息处理一体,形成类似生物材料那样的具有智能属性的材料,具有自感知、自诊断、自适应、自修复等功能。 对于智能的定义至今尚无统一的定论,我国科学家认为智能材料是模仿生命系统,能感知环境变化,并能实时地改变自身的一种或多种性能参数,做出所期望的、能与变化后的环境相适应的复合材料或材料的复合。 1.2智能材料的分类 智能材料按产生方式可分为天然智能材料和人工智能材料。前者主要指有机自然活体,比如肌肉、骨骼等,而后者是人为制造的具有智能功能的材料,因其中大部分受前者的启发而产生,故又称生物拟态材料。 智能材料按驱动方式可分为嵌入式智能材料(主动式智能材料)和本身具有一定智能的被动式智能材料。前者可以通过改变反馈系统,使其优化反应,能够随不同的条件做出不同的反应,还能够随时间发生变化,因而更加灵活机动,并为今后进一步发展成具有学习和预见能力的材料,促进智能材料向更高级阶段发展奠定了基础。【1】后者是某些材料结构本身具有随环境、时间改变的性能,例如变色太阳镜等。 2.智能材料的最新进展 2.1压电材料 压电材料是能够实现机械能与电能之间相互转换且具备压电效应的一类电

浅谈智能材料

浅谈智能材料 智能材料的构想来源于仿生(仿生就是模仿大自然中生物的一些独特功能制造人类使用的工具,如模仿蜻蜓制造飞机等等),它的目标就是想研制出一种材料,使它成为具有类似于生物的各种功能的“活”的材料。因此智能材料必须具备感知、驱动和控制这三个基本要素。但是现有的材料一般比较单一,难以满足智能材料的要求,所以智能材料一般由两种或两种以上的材料复合构成一个智能材料系统。这就使得智能材料的设计、制造、加工和性能结构特征均涉及到了材料学的最前沿领域,使智能材料代表了材料科学的最活跃方面和最先进的发展方向。 具体来说智能材料需具备以下内涵: (1)具有感知功能,能够检测并且可以识别外界(或者内部)的刺激强度,如电、光、热、应力、应变、化学、核辐射等; (2)具有驱动功能,能够响应外界变化; (3)能够按照设定的方式选择和控制响应; (4)反应比较灵敏、及时和恰当。 (5)当外部刺激消除后,能够迅速恢复到原始状态。 智能材料又可以称为敏感材料,其英文翻译也有若干种,常用的有Intelligent material、Intelligent material and structure、Smart material、Smart material and structure、Adaptive material and structure等。 为增加感性认识,现举一个简单的应用了智能材料的例子:某些太阳镜的镜片当中含有智能材料,这种智能材料能感知周围的光,并能够对光的强弱进行判断,当光强时,它就变暗,当光弱时,它就会变的透明。 作为一种新型材料,一般认为,智能材料由传感器或敏感元件等与传统材料结合而成。这种材料可以自我发现故障,自我修复,并根据实际情况作出优化反应,发挥控制功能。智能材料可分为两大类: (1)嵌入式智能材料,又称智能材料结构或智能材料系统。在基体材料中,嵌入具有传感、动作和处理功能的三种原始材料。传感元件采集和检测外界环境给予的信息,控制处理器指挥和激励驱动元件,执行相应的动作。 (2)有些材料微观结构本身就具有智能功能,能够随着环境和时间的变化改变自己的性能,如自滤玻璃、受辐射时性能自衰减的Inp半导体等。

仿生结构及其功能材料研究发展

仿生结构及其功能材料研究进展 摘要本文结合作者课题组的相关工作, 就多种仿生材料的研究现状进行简要的综述, 并概要展望了其发展趋势. 关键词仿生合成结构材料功能材料智能材料浸润性离子通道 1.光子晶体材料 光子晶体,这是一类特殊的晶体,其原理很像半导体,有一个光子能隙,在此能隙里电磁波无法传播。蛋白石是其中的典型,它的组成仅仅是宏观透明的二氧化硅,其立方密堆积结构的周期性使其具有了光子能带结构,随着能隙位置的变化,反射光也随之变化,最终显示出绚丽的色彩.模仿蛋白石的微观结构,可以合成人工蛋白石结构的光子晶体. 矿物或生物结构色中光子晶体的分子结构、微/纳米结构、周期性结构及其功能的深入研究将为开发新一代光学材料、存储材料及显示材料提供重要的指导作用. 2.仿生空心结构材料 自然界中的许多生物采用了多通道的超细管状结构, 例如: 许多植物的茎都是中空的多通道微米管, 这使其在保证足够强度的前提下可以有效节约原料及输运水分和养料; 为减轻重量以及保温, 鸟类的羽毛也具有多通道管状结构; 许多极地动物的皮毛具有多通道或多空腔的微/纳米管状结构, 使其具有卓越的隔热性能. 3.仿生离子通道材料 生物膜对无机离子的跨膜运输有被动运输(顺离子浓度梯度)和主动运输(逆离子浓度梯度)两种方式. 被动运输的通路称为离子通道, 主动运输的离子载体称为离子泵. 离子通道实际上是控制离子进出细胞的蛋白质, 广泛存在于各种细胞膜上, 具有选择透过性. 生物纳米通道在生命的分子细胞过程中起着至关重要的作用, 如生物能量转换, 神经细胞膜电位的调控, 细胞间的通信和信号传导等[26]. 纳米通道在几何尺寸上与生物分子相近, 利用纳米通道作为生物传感器或传感器载体, 在分子水平上对组成和调控生命体系结构和运行的离子、生物分子和小分子进行检测和分离, 甚至在人工合成的纳米通道体系内模拟某些生物体系的结构和功能, 已成为化学、生命科学、材料学及物理学等领域的研究热点. 4.仿生超强韧纤维材料 天然蜘蛛丝由于具有轻质、高强度、高韧性等优异的力学性能和生物相容性等特性, 因此在国防、军事、建筑、医学等领域具有广阔的应用前景. 随着蜘蛛丝微观结构与性能关系的进一步揭示, 利用不同的合成技术, 国内外许多课题组已成功制备了多种仿蜘蛛丝超强韧纤维材料. 纳米碳管作为一维纳米材料, 重量轻, 具有良好的力学、电学和化学性能, 这为仿生合成具有类似蜘蛛丝性能的功能材料提供了可能并已经得到了验证. 研究发现, 自然界某些生物体中(如昆虫角质层、下颌骨、螫针、钳螯、产卵器等)含有极为少量的金属元素(如Zn、Mn、Ca、Cu等), 以增强这些部位的刚度、硬度等力学性能. 受此启发, 采用改进的原子层沉积处理技术,提高天然蜘蛛牵引丝的抗断裂或变形能力, 增强蜘蛛丝的韧性. 该研究对制造超强韧纤维材料及高科技医疗材料, 包括人工骨骼、人工肌腱、外科手术线等具有重要的指导意义. 5.仿生特殊浸润性表面 自然材料的多尺度微/纳米多级结构赋予其表面特殊浸润性能, 如植物叶表面的自清洁性、滚动各向异性; 昆虫翅膀的自清洁性、水黾腿的超疏水性等. 通过对生物体表面的结构仿生可以实现结构与性能的统一.

智能材料研究进展及应用

各专业全套优秀毕业设计图纸 目录 0 引言 (2) 1 智能材料结构的研究现状 (3) 1.1 智能传感技术 (3) 1.2智能驱动技术 (4) 1.3智能控制技术 (6) 1.4智能信息处理与传输 (6) 2 常用制备方法 (8) 2. 1 物理气相沉积法 (8) 2. 2 喷涂法 (8) 2. 3烧结法 (8) 2. 4 注射成型法 (8) 2.5创构智能材料的物理新技术 (8) 3智能材料的应用领域 (9) 3.1军事领域中的应用 (9) 3.2医学领域中的应用 (11) 3.3建筑领域的应用 (13) 3.4智能服装和纺织品领域的应用 (13) 3.5 未来热点应用 (14) 3 结束语 (15) 参考文献 (15)

智能材料研究进展及应用 侯博 材料与化工学院材料科学与工程 摘要:智能材料是广受瞩目的新兴材料科学门类,经过几十年的发展,已日趋成熟,必将逐渐深入到人类生活之中,且越来越多地影响乃至大范围地改变人们的生活方式。本文介绍了智能材料的基本构成和分类,对对智能材料结构的研究现状进行了阐述,并简单介绍了一些常用的制备方法,概述了其应用,探讨了其研究价值和广阔的发展应用前景。 关键词:智能材料智能传感技术智能驱动技术智能控制技术智能信息处理与传输 0 引言 材料是人类一切生产和生活水平提高的物质基础,是人类进步的里程碑。随着科技的发展,特别是20世纪80年代以来,现代航天、航空、电子、机械等高技术领域取得了飞速的发展,人们对所使用的材料提出了越来越高的要求,传统的结构材料或功能材料已不能满足这些技术的要求,材料科学的发展由传统单一的仅具有承载能力的结构材料或功能材料,向多功能化、智能化的结构材料发展。20世纪80年代末期,受到自然界生物具备的某些能力的启发,美国和日本科学家首先将智能概念引入材料和结构领域,提出了智能材料结构的新概念。 智能材料结构又称机敏结构(Smart/Intelligent Materials and Structures),泛指将传感元件、驱动元件以及有关的信号处理和控制电路集成在材料结构中,通过机、热、光、化、电、磁等激励和控制,不仅具有承受载荷的能力,而且具有识别、分析、处理及控制等多种功能,能进行自诊断、自适应、自学习、自修复的材料结构。智能材料结构是一门交叉的前沿学科,所涉及的专业领域非常广泛,如:力学、材料科学、物理学、生物学、电子学、控制科学、计算机科学与技术等,目前各国都有一大批各学科的专家和学者正积极致力于发展这一学科[1]。当

智能材料

智能材料 智能材料(Intelligent material),是一种能感知外部刺激,能够判断并适当处理且本身可执行的新型功能材料。智能材料是继天然材料、合成高分子材料、人工设计材料之后的第四代材料,是现代高技术新材料发展的重要方向之一,将支撑未来高技术的发展,使传统意义下的功能材料和结构材料之间的界线逐渐消失,实现结构功能化、功能多样化。科学家预言,智能材料的研制和大规模应用将导致材料科学发展的重大革命。一般说来,智能材料有七大功能,即传感功能、反馈功能、信息识别与积累功能、响应功能、自诊断能力、自修复能力和自适应能力。 定义 智能材料目前还没有统一的定义。不过,现有的智能材料的多种定义仍然是大同小异。大体来说, 智能材料料就是指具有感知环境(包括内环境和外环境)刺激,对之进行分析、处理、判断,并采取一定的措施进行适度响应的智能特征的材料。具体来说,智能材料需具备以下内涵:(1)具有感知功能,能够检测并且可以识别外界(或者内部)的刺激强度,如电,光,热,应力,应变,化学,核辐射等; (2)具有驱动功能,能够响应外界变化; (3)能够按照设定的方式选择和控制响应; (4)反应比较灵敏,及时和恰当; (5)当外部刺激消除后,能够迅速恢复到原始状态。 智能材料又可以称为敏感材料,其英文翻译也有若干种,常用的有Intelligent material,Intelligent material and structure,Smart material,Smart material and structure,Adaptive material and structure等.。 分类 作为一种新型材料,一般认为,智能材料由传感器或敏感元件等与传统材料结合而成。这种材料可以自我发现故障,自我修复,并根据实际情况作出优化反应,发挥控制功能。智能材料可分为两大类: (1)嵌入式智能材料,又称智能材料结构或智能材料系统。在基体材料中,嵌入具有传感、动作和处理功能的三种原始材料。传感元件采集和检测外界环境给予的信息,控制处理器指挥和激励驱动元件,执行相应的动作。 (2)有些材料微观结构本身就具有智能功能,能够随着环境和时间的变化改变自己的性能,如自滤玻璃、受辐射时性能自衰减的Inp半导体等。 这只是一种比较笼统的分类方法,由于智能材料还在不断的研究和开发之中,因此相继又出现了许多具有智能结构的新型的智能材料。如,英国宇航公司在导线传感器,用于测试飞机蒙皮上的应变与温度情况;英国开发出一种快速反应形状记忆合金,寿命期具有百万次循环,且输出功率高,以它作制动器时、反应时间,仅为10分钟;在压电材料、磁致伸缩材料、导

智能材料设计技术及应用研究进展_刘俊聪

智能材料设计技术及应用研究进展Design Technology and Application Advance of Intelligent Material 中国兵器工业集团第五三研究所 刘俊聪 王丹勇 李树虎 秦贞明 贾华敏 [摘要] 综述了智能材料的智能传感技术、智能驱动技术、智能控制技术3种关键设计技术,形状记忆材料、压电材料、智能高分子3种基础智能材料以及在船舶、电子、航空航天、土木工程等领域的应用进展,并对其未来技术发展进行了展望。 关键词:智能材料设计技术应用进展材料 [ABSTRACT] Three design technologies, for ex-ample, intelligent censoring technology, intelligent driving technology and intelligent controlling technology and three basic intelligent materials, for example, shape memory al-loy (SMA), piezoelectric material and intelligent polymers are summarized. And then its applications in boating, elec-trics, aerospace, civil engineering are introduced. Finally, the future development of intelligent materials’ design technology is prospected. Keywords: Intelligent material Design technol-ogy Application Advance Materials 20世纪80年代中期,人们提出了智能材料的概念,智能材料要求材料体系集感知、驱动和信息处理于一体,形成类似生物材料那样的具有智能属性的材料[1]。目前的文献中智能材料也被称为机敏材料、机敏结构、自适应结构、智能材料、智能结构,这些概念至今在国内外的文献中没有统一的定论,关于“机敏”和“智能”,不少文献也进行了说明[2-3]。 智能材料是一种能够判断、处理从自身表层或内部获取的关于环境条件及变化的信息并做出反应、以改变自身结构与功能,使其很好地与外界协调的、具有自适应性的材料系统[4]。 智能材料的基础是功能材料,功能材料通常可分为两大类,一类被称为驱动材料,它可以根据温度、电场或磁场的变化来改变自身的形状、尺寸、位置、刚性、阻尼、内耗或结构等,因而对环境具有自适应性功能,可用来制成各种执行器;另一类被称为感知材料,它对来自外界或内部的刺激强度及变化(如应力、应变、热、光、电、磁、化学和辐射等)具有感知,可用来做成各种传感器, 同时具有敏感材料与驱动材料特征的材料,被称为机敏材料。 智能材料在通常情况下不是单一材料,而是由多种材料系统组元通过有机的、紧密或严格的科学组装的一体化系统,是敏感材料、驱动材料和控制材料(系统)的有机结合。智能材料在促进航空航天领域的快速发展方面发挥着愈来愈重要的作用。 1 智能材料设计关键技术 1.1 智能传感技术 智能传感技术是实现智能结构实时、在线和动态检测的基础,其中用于感受周围环境变化以实现传感的一类功能元件叫传感元件,它相当于人的神经系统,通过埋入或粘结于主题材料内部或表面的传感元件能够有效地将所感受的物理量(如力、声、光、电、磁、热等)的变化转换成另一种物理量(如电、光的变化),它是结构实现智能化的基础元件之一。智能结构中的传感元件应满足如下要求:(1)厚度薄,尺寸小,不影响结构外形;(2)与主体材料相容性好,埋入后对原结构强度影响小;(3)性能稳定可靠,传感信号覆盖面宽,电磁兼容性好,抗干扰能力强[5]。 传感元件犹如一种感应器,可以感知外界信息的变化,进而将信息记录并传给材料,同时发出感应。故而,智能传感技术是智能材料发展的一项重要技术。 1.2 智能驱动技术 驱动技术包括驱动元件、激励和控制方式等,是智能结构实现形状或力学性能自适应变化的核心问题,也是困扰结构自适应的一个“瓶颈”。其中,驱动元件是使结构自身适应其环境的一类功能元件,它像人的肌肉,可改变结构的形状、刚度、位置、固有频率、阻尼、摩擦阻力、流体流动速率、温度、电场及磁场等。驱动元件是自适应结构区别于普通结构的根本特征,也是自适应结构从初级形态走向高级形态的关键。对驱动元件的要求如下:(1)与主体材料相容性好,具有较高的结合强度;(2)本身具有较好的机械性能,如弹性模量大、静强度和疲劳强度高、抗冲击等;(3)频率响应宽,响应速度快,激励后的变形量和驱动力大,且易于控制[5]。

智能包装解决方案

智能包装是指除了产品之外,还提供“额外附加”的任何组件。这些组件可以是任何事物或者技术,从延长保质期到温度、PH值、湿度和新鲜度的显示器和指示器,再到跟踪设备。我们一般是采用如下方式来解决智能包装的问题: 1、赋码方式: ●包材一体化:一物一码(包装盒、软包装袋、编织袋、瓶盖、封口膜); ●激光打码:生产包装环节,通过激光打标机在线打码(一物一码); ●油墨喷码:生产包装环节,通过喷码机在线喷码(一物一码); ●TTO热转印:包装袋灌装前,通过TTO热转印设备离线赋码; 2、在线采集: ●视觉读取器:自动读取产线输送带上的产品条码数据(一物一码); ●移动数据终端PDA:手持移动终端,人工采集读取产品大、小包装的条 码数据(一物一码); ●条码扫描枪:工业级扫描枪(USB/RS232接口),安装在电脑桌面上人 工采集读取产品大、小包装的条码数据(一物一码); 3、数据关联: ●工业控制主机:盒(瓶)码、中盒码、大箱码、垛(托盘)码多级包装 数据; ●条码打印机:按照包装规格,打印关联的外箱条码标签(手工粘贴); ●外箱喷码机:安装在包装输送线体,在线喷印纸箱彩盒条码; ●自动贴标机:安装在生产线,自动粘贴盒(瓶)、箱标签; 4、辅助配件:分页机、分流线体(输送带)、PLC控制系统、异常报警剔除、 防呆处理系统、出入库门禁管理(RFID)。

成熟的智能包装解决方案对于解决传统包装中遇到的种种问题都能有非常显著的帮助,倍诺致力于将物联网和移动互联网技术全方位应用于企业数字化、移动化和信息化管理,通过一物一码、包材一体化等赋码方式,有效提升数据采集和生产管理的自动化、信息化水平,促进品牌企业在产品和服务全生命周期实现“信息可查询、来源可追溯、去向可跟踪、责任可追究”,为名优企业的品牌保护、产品溯源、二维码应用和工业4.0智能制造转型升级提供“大数据+saas 云服务”一站式解决方案。

相关文档
最新文档