2015中考三角形
2015中考数学知识点归纳:三角形
2015中考数学知识点归纳:三角形第一部分:点、线、角一、线1、直线2、射线3、线段二、角1、角的两种定义:一种是有公共端点的两条射线所组成的图形叫做角。
另一种是一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。
2.角的平分线3、角的度量:度量角的大小,可用“度”作为度量单位。
把一个圆周分成360等份,每一份叫做一度的角。
1度=60分;1分=60秒。
4.角的分类:(1)锐角(2)直角(3)钝角(4)平角(5)周角5.相关的角:(1)对顶角(2)互为补角(3)互为余角6、邻补角:有公共顶点,一条公共边,另两条边互为反向延长线的两个角做互为邻补角。
注意:互余、互补是指两个角的数量关系,与两个角的位置无关,而互为邻补角则要求两个角有特殊的位置关系。
7、角的性质(1)对顶角相等(2)同角或等角的余角相等(3)同角或等角的补角相等。
三、相交线1、斜线2、两条直线互相垂直3、垂线,垂足4、垂线的性质(l)过一点有且只有一条直线与己知直线垂直。
(2)垂线段最短。
四、距离1、两点的距2、从直线外一点到这条直线的垂线段的长度叫做点到直线的距离。
3、两条平行线的距离:两条直线平行,从一条直线上的任意一点向另一条直线引垂线,垂线段的长度,叫做两条平行线的距离。
五、平行线1、定义:在同一平面内,不相交的两条直线叫做平行线。
说明:也可以说两条射线或两条线段平行,这实际上是指它们所在的直线平行。
2、平行线的判定:(1)同位角相等,两直线平行。
(2)内错角相等,两直线平行。
(3)同旁内角互补两直线平行。
3、平行线的性质(1)两直线平行,同位角相等。
(2)两直线平行,内错角相等。
(3)两直线平行,同旁内角互补。
说明:要证明两条直线平行,用判定公理(或定理)在已知条件中有两条直线平行时,则应用性质定理。
4、如果一个角的两边分别平行于另一个角的两边,那么这两个角_________________.5、如果一个角的两边分别垂直于另一个角的两边,那么这两个角_________________.精心整理,仅供学习参考。
2015湖南中考三角形与四边形
2015湖南中考三角形与四边形第一篇:2015湖南中考三角形与四边形2015湖南中考三角形与四边形班级:姓名:1、【2015郴州】23.(8分)(2015•郴州)如图,AC是▱ABCD的一条对角线,过AC中点O的直线分别交AD,BC于点E,F.(1)求证:△AOE≌△COF;(2)当EF与AC满足什么条件时,四边形AFCE是菱形?并说明理由.2、【2015怀化】17.(本题满分8分)已知:如图,在△ABC 中,DE、DF是△ABC的中位线,连接EF、AD,其交点为O 求证:(1)△CDE≌△DBF(2)OA=ODB D O E第17题图FC A3、【2015怀化】19.(本题满分8分)如图,在Rt△ABC中,∠ACB=90°,AC=1,AB=2(1)求作⊙O,使它过点A、B、C(要求:尺规作图,保留作图痕迹,不写作法);(2)在(1)所作的圆中,求出劣弧BC ⌒的长C A 第19题图B4、(2015•邵阳)21.(8分)如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD 和EF.(1)求证:DE=CF;(2)求EF的长.5、【2015益阳】15.如图5,直线AB∥CD,BC平分∠ABD,∠,求 2的度数.图56、【2015益阳】18.如图8,在□ABCD中,对角线AC与BD 相交于点O,∠CAB=∠ACB,过点B作BE⊥AB交AC于点E.(1)求证:AC⊥BD;(2)若AB=14,∠,求线段OE的长.7、(2015•湘潭)22.(6分)如图,在Rt△ABC中,∠C=90°,△A CD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.8、(2015•永州)23.(8分)如图,在四边形ABCD中,∠A=∠BCD=90°,BC=DC.延长AD到E点,使DE=AB.(1)求证:∠ABC=∠EDC;(2)求证:△ABC≌△EDC.9、【2015岳阳】22、(8分)如图,正方形ABCD中,M为BC上一点,F是AM 的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N (1)求证:△ABM∽△EFA(2)若AB=12,BM=5,求DE的长10、【2015长沙】19.如图,在菱形ABCD中,AB=2,∠ABC=60°,对角线AC、BD相交于点O,将对角线AC所在的直线绕点O顺时针旋转角α(0°<α<90°)后得直线l,直线l与AD、BC 两边分别相交于点E和点F。
2015山东中考试题分类(解直角三角形).doc
(2015中考) 解直角三角形一、选择题1.(2015•济宁)如图,斜面AC 的坡度(CD 与AD 的比)为1:2,AC=3米,坡顶有旗杆BC ,旗杆顶端B 点与A 点有一条彩带相连.若AB=10米,则旗杆BC 的高度为( )A .5米B .6米C .8米D .(3+)米2.(2015•烟台)如图,BD 是菱形ABCD 的对角线,CE ⊥AB 交于点E ,交BD 于点F ,且点E 是AB 中点,则tan ∠BFE 的值是( ) A .B .2C .D .3.(2015山东日照市)如右图,在直角△BAD 中,延长斜边BD到点C ,使DC=12BD,连接AC,若tan B=53,则tan ∠CAD 的值为( ) (A(B) (C) 13 (D) 154.(泰安)如图,轮船从B 处以每小时60海里的速度沿南偏东20° 方向匀速航行,在B 处观测灯塔A 位于南偏东50°方向上,轮船航行 40分钟到达C 处,在C 处观测灯塔A 位于北偏东10°方向上,则C 处 与灯塔A 的距离是( )海里 A .20 B .40 C.3 D.3二、填空题5.(2015•德州)如图,某建筑物BC 上有一旗杆AB ,从与BC 相距38m 的D 处观测旗杆顶部A 的仰角为50°,观测旗杆底部B 的仰角为45°,则旗杆的高度约为 m .(结果精确到0.1m ,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)6.(2015•滨州)如图,菱形ABCD 的边长为15,sin ∠BAC=,则对角线AC 的长为 . 7.(2015•临沂)如图,在▱ABCD 中,连接BD ,AD ⊥BD ,AB=4,sinA=,则▱ABCD 的面积是 . 8.(2015•潍坊)如图,正△ABC 的边长为2,以BC 边上的高AB 1为边作正△AB 1C 1,△ABC 与△AB 1C 1公共部分的面积记为S 1;再以正△AB 1C 1边B 1C 1上的高AB 2为边作正△AB 2C 2,△AB 1C 1与△AB 2C 2公共部分的面积记为S 2;…,以此类推,则S n = .(用含n 的式子表示)9.(2015•潍坊)观光塔是潍坊市区的标志性建筑,为测量其高度,如图,一人先在附近一楼房的底端A 点处观测观光塔顶端C 处的仰角是60°,然后爬到该楼房顶端B 点处观测观光塔底部D 处的俯角是30°.已知楼房高AB 约是45m ,根据以上观测数据可求观光塔的高CD 是 m . 10.(2015山东省聊城市)湖南路大桥于今年5月1日竣工,为徒骇河景区增添了一道亮丽的风景线,某校数学兴趣小组用测量仪测量该大桥的桥塔高度,在距桥塔AB 底部的C 处,测得桥塔顶部A 的仰角为41.5°(如图),已知测量仪CD 的高度为1米,则桥塔AB 的高度为( )(参考数据:sin41.5°≈0.663,cos41.5°≈0.749,tan41.5°≈0.885) A.34米 B.38米 C.45米 D.50米三、解答题11.(2015•济宁)阅读材料:在一个三角形中,各边和它所对角的正弦的比相等,==,利用上述结论可以求解如下题目:BAC北东在△ABC中,∠A、∠B、∠C的对边分别为a,b,c.若∠A=45°,∠B=30°,a=6,求b.解:在△ABC 中,∵=∴b====3.理解应用:如图,甲船以每小时30海里的速度向正北方向航行,当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,且乙船从B1处按北偏东15°方向匀速直线航行,当甲船航行20分钟到达A2时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距10海里.(1)判断△A1A2B2的形状,并给出证明;(2)求乙船每小时航行多少海里?12.(2015•莱芜)为保护渔民的生命财产安全,我国政府在南海海域新建了一批观测点和避风港.某日在观测点A处发现在其北偏西36.9°的C处有一艘渔船正在作业,同时检测到在渔船的正西B处有一股强台风正以每小时40海里的速度向正东方向移动,于是马上通知渔船到位于其正东方向的避风港D处进行躲避.已知避风港D在观测点A的正北方向,台风中心B在观测点A的北偏西67.5°的方向,渔船C与观测点A相距350海里,台风中心的影响半径为200海里,渔船的速度为每小时18海里,问渔船能否顺利躲避本次台风的影响?(sin36.9°≈0.6,tan36.9≈0.75,sin67.5≈0.92,tan67.5≈2.4)13.(2015•青岛)小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B,C两点的俯角分别为45°,35°.已知大桥BC与地面在同一水平面上,其长度为100m,请求出热气球离地面的高度.(结果保留整数)(参考数据:sin35°≈,cos35°≈,tan35°≈)14.(2015•烟台)如图1,滨海广场装有风能、太阳能发电的风光互补环保路灯,灯杆顶端装有风力发电机,中间装有太阳能板,下端装有路灯.该系统工作过程中某一时刻的截面图如图2,已知太阳能板的支架BC垂直于灯杆OF,路灯顶端E距离地面6米,DE=1.8米,∠CDE=60°.且根据我市的地理位置设定太阳能板AB的倾斜角为43°.AB=1.5米,CD=1米,为保证长为1米的风力发电机叶片无障碍安全旋转,对叶片与太阳能板顶端A的最近距离不得少于0.5米,求灯杆OF至少要多高?(利用科学计算器可求得sin43°≈0.6820,cos43°≈0.7314,tan43°≈0.9325,结果保留两位小数)15.(2015•临沂)小强从自己家的阳台上,看一栋楼顶部的仰角为30°,看这栋楼底部的俯角为60°,小强家与这栋楼的水平距离为42m,这栋楼有多高?16.(2015•菏泽)(1)计算:(﹣1)2015+sin30°﹣(π﹣3.14)0+()﹣1;17.(2015•菏泽)(1)如图,M、N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M、N两点之间的直线距离,选择测量点A、B、C,点B、C分别在AM、AN上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N两点之间的直线距离.18.(2015山东日照市,20,10分)如右图,已知,在△ABC中,CA=CB,∠ACB=90°,E、F分别是CA,CB边的三等分点。
2015年初中数学中考总复习全优设计第17课时 直角三角形与锐角三角函数
8
目标解读预测
考点梳理整合
考法探究突破
考点一
考点二
考点三
考点四
考点五
解直角三角形
1.解直角三角形 (1)解直角三角形的定义 在直角三角形中,由已知元素求出所有未知元素的过程叫做解 直角三角形. (2)解直角三角形的常用关系 ①锐角之间的关系:∠A+∠B=90°; ②三边之间的关系:a2+b2=c2; ③边角之间的关系: sin A=∠A 的对边∶斜边, cos A=∠A 的邻边∶斜边, tan A=∠A 的对边∶∠A 的邻边.
=
a .我们把∠A 的正 b
弦、余弦、正切统称为∠A 的三角函数.
7
目标解读预测
考点梳理整合
考法探究突破
考点一
考点二
考点三
考点四
考点五
2.增减性:在 0° 到 90° 之间,正弦值、 正切值随着角度的增大而增 大,余弦值随着角度的增大而减小. 3.取值范围:当∠A 为锐角时,三角函数的取值范围是 0<sin A<1,0<cos A<1,tan A>0. 4.互余两角的函数关系:如果两角互余,则其中一角的正弦等于 另一角的余弦,即:若 α 是一个锐角,则 sin α=cos(90°-α),cos α= sin(90°-α).
★
与特殊角的三角函数值 有关的计算问题. 以实际生活为背景,以解 答题为题型,利用锐角三 角函数解决简单的实际 问题.
★★★
3
目标解读预测
考点梳理整合
考法探究突破
考点一
考点二
考点三
考点四
考点五
直角三角形的概念
定义:有一个角是直角的三角形叫做直角三角形.
【中考宝典】2015年中考数学真题分类汇编:模块四 图形的认识与三角形
一、相交线与平行线1.(2015宜昌)如图,AB ∥CD ,FE ⊥DB ,垂足为E ,∠1=50°,则∠2的度数是( )解析:∵FE⊥DB,∵∠DEF=90°.∵∠1=50°,∴∠D=90°﹣50°=40°.∵AB∥CD,∴∠2=∠D=40°.故选C .2.(2015聊城)直线a 、b 、c 、d 的位置如图所示,如果∠1=58°,∠2=58°,∠3=70°,那么∠4等于()解析:∵∠1=∠2=58°,∴a∥b,∴∠3+∠5=180°,即∠5=180°﹣∠3=180°﹣70°=110°,∴∠4=∠5=110°,故选C .3.(2015崇左)下列各图中,∠1与∠2互为余角的是( C )4.(2015滨州)如图,直线AC ∥BD ,AO 、BO 分别是∠BAC 、∠ABD 的平分线,那么∠BAO 与∠ABO 之间的大小关系一定为( )A . 互余B . 相等C . 互补D . 不等解析:∵AC∥BD,∴∠CAB+∠ABD=180°,∵AO、BO分别是∠BAC、∠ABD的平分线,∴∠CAB=2∠OAB,∠ABD=2∠ABO,∴∠OAB+∠ABO=90°,∴∠AOB=90°,∴OA⊥OB,故选A5. (2015东营)如图,将三角形纸板的直角顶点放在直尺的一边上,∠1=20°,∠2=40°,则∠3等于()A.50° B.30° C.20° D.15°解析:由题意得:∠4=∠2=40°;由外角定理得:∠4=∠1+∠3,∴∠3=∠4﹣∠1=40°﹣20°=20°,故选C.6.(2015昆明)如图,在△ABC中,∠B=40°,过点C作CD∥AB,∠ACD=65°,则∠ACB的度数为()A.60°B.65°C.70°D.75°解析:∵CD∥AB,∴∠A=∠ACD=65°,∴∠ACB=180°﹣∠A﹣∠B=180°﹣65°﹣40°=75°即∠ACB的度数为75°.故选D.7.(2015毕节)如图,直线a∥b,直角三角形ABC的顶点B在直线a上,∠C=90°,∠β=55°,则∠α的度数为()A.15° B.25° C.35° D.55°解析:过点C作CE∥a,∵a∥b,∴CE∥a∥b,∴∠BCE=∠α,∠ACE=∠β=55°,∵∠C=90°,∴∠α=∠BCE=∠ABC﹣∠ACE=35°.故选C.8.(2015黔南州)如图,下列说法错误的是()A.若a∥b,b∥c,则a∥c B.若∠1=∠2,则a∥cC.若∠3=∠2,则b∥c D.若∠3+∠5=180°,则a∥c解析:A、若a∥b,b∥c,则a∥c,利用了平行公理,正确;B、若∠1=∠2,则a∥c,利用了内错角相等,两直线平行,正确;C、∠3=∠2,不能判断b∥c,错误;D、若∠3+∠5=180°,则a∥c,利用同旁内角互补,两直线平行,正确;故选C.9.(2015恩施州)如图,已知AB∥DE,∠ABC=70°,∠CDE=140°,则∠BCD的值为()解析:延长ED交BC于F,∵AB∥DE,∠ABC=70°,∴∠MFC=∠B=70°,∵∠CDE=140°,∴∠FDC=180°﹣140°=40°,∴∠C=∠MFC﹣∠MDC=70°﹣40°=30°,故选B.10.(2015宿迁)如图所示,直线a,b被直线c所截,∠1与∠2是()A.同位角B.内错角C.同旁内角D.邻补角解析:如图所示,∠1和∠2两个角都在两被截直线直线b和a同侧,并且在第三条直线c (截线)的同旁,故∠1和∠2是直线b、a被c所截而成的同位角.故选A.11.(2015庆阳)已知三条不同的直线a、b、c在同一平面内,下列四条命题:①如果a∥b,a⊥c,那么b⊥c;②如果b∥a,c∥a,那么b∥c;③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥C.其中真命题的是①②④.(填写所有真命题的序号)解析:①如果a∥b,a⊥c,那么b⊥c是真命题,故①正确;②如果b∥a,c∥a,那么b∥c是真命题,故②正确;③如果b⊥a,c⊥a,那么b⊥c是假命题,故③错误;④如果b⊥a,c⊥a,那么b∥c是真命题,故④正确.故答案为:①②④.12.(2015云南)如图,直线l1∥l2,并且被直线l3,l4所截,则∠α= 64°.解析:如图1,,∵∠1+56°=120°,∴∠1=120°﹣56°=64°,又∵直线l1∥l2,∴∠α=∠1=64°.故答案为:64°.13.(2015永州)如图,∠1=∠2,∠A=60°,则∠ADC= 120 度.二、三角形1.(2015达州)如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为()解析:∵BD平分∠ABC,∴∠DBC=∠ABD=24°,∵∠A=60°,∴∠ACB=180°﹣60°﹣24°×2=72°,∵BC的中垂线交BC于点E,∴BF=CF,∴∠FCB=24°,∴∠ACF=72°﹣24°=48°,故选A.2.(2015滨州)在△ABC中,∠A:∠B:∠C=3:4:5,则∠C等于()A.45° B.60° C.75° D.90°解析:180°×==75°即∠C等于75°.故选:C.3.(2015长沙)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A. B. C. D.解析:为△ABC中BC边上的高的是A选项.故选A.4.(2015桂林)如图,在△ABC中,∠A=50°,∠C=70°,则外角∠ABD的度数是()A.110°B.120°C.130°D.140°解析:由三角形的外角性质的,∠ABD=∠A+∠C=50°+70°=120°.故选B.5.(2015南通)下列长度的三条线段能组成三角形的是()A.5,6,10 B.5,6,11 C.3,4,8 D.4a,4a,8a(a>0)解析:A、∵10﹣5<6<10+5,∴三条线段能构成三角形,故本选项正确;B、∵11﹣5=6,∴三条线段不能构成三角形,故本选项错误;C、∵3+4=7<8,∴三条线段不能构成三角形,故本选项错误;D、∵4a+4a=8a,∴三条线段不能构成三角形,故本选项错误.故选A.6.(2015宿迁)若等腰三角形中有两边长分别为2和5,则这个三角形的周长为()A.9 B.12 C.7或9 D.9或12解析:当腰为5时,根据三角形三边关系可知此情况成立,周长=5+5+2=12;当腰长为2时,根据三角形三边关系可知此情况不成立;所以这个三角形的周长是12.故选:B.7.(2015连云港)在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是4:3 .解析:∵AD是△ABC的角平分线,∴设△ABD的边AB上的高与△ACD的AC上的高分别为h1,h2,∴h1=h2,∴△ABD与△ACD的面积之比=AB:AC=4:3.8. (2015盐城)如图,点D、E、F分别是△ABC各边的中点,连接DE、EF、DF.若△ABC 的周长为10,则△DEF的周长为 5 .9.(2015昆明)如图,在△ABC中,AB=8,点D、E分别是BC、CA的中点,连接DE,则DE= 4 .解析:∵在△ABC中,点D、E分别是BC、CA的中点,AB=8,∴DE是△ABC的中位线,∴DE=AB=×8=4.10.(2015巴中)若a、b、c为三角形的三边,且a、b满足+(b﹣2)2=0,则第三边c的取值范围是1<c<5 .11.(2015云南)如图,在△ABC中,BC=1,点P1,M1分别是AB,AC边的中点,点P2,M2分别是AP1,AM1的中点,点P3,M3分别是AP2,AM2的中点,按这样的规律下去,P n M n的长为(n为正整数).解析:在△ABC中,BC=1,点P1,M1分别是AB,AC边的中点,点P2,M2分别是AP1,AM1的中点,点P3,M3分别是AP2,AM2的中点,可得:P1M1=,P2M2=,故P n M n=,故答案为:12.(2015聊城)如图,在△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线.若AB=6,则点D到AB的距离是.13.(2015陕西)如图,已知△ABC,请用尺规过点A作一条直线,使其将△ABC分成面积相等的两部分.(保留作图痕迹,不写作法)解:如图,直线AD即为所求:三、全等三角形1.(2015娄底)如图,已知AB=BC,要使△ABD≌△CBD,还需添加一个条件,你添加的条件是∠ABD=∠CBD或AD=CD..(只需写一个,不添加辅助线)解析:答案不唯一.①∠ABD=∠CBD.在△ABD和△CBD中,∵,∴△ABD≌△CBD(SAS);②AD=CD.在△ABD和△CBD中,∵,∴△ABD≌△CBD(SSS).故答案为:∠ABD=∠CBD或AD=CD.2.(2015永州)如图,在△ABC中,已知∠1=∠2,BE=CD,AB=5,AE=2,则CE= 3 .解:△ABE和△ACD中,,∴△ABE≌△ACD(AAS),∴AD=AE=2,AC=AB=5,∴CE=BD=AB﹣AD=3.3.(2015永州)如图,在四边形ABCD中,∠A=∠BCD=90°,BC=DC.延长AD到E点,使DE=AB.(1)求证:∠ABC=∠EDC;(2)求证:△ABC≌△EDC.(1)证明:在四边形ABCD中,∵∠BAD=∠BCD=90°,∴90°+∠B+90°+∠ADC=360°,∴∠B+∠ADC=180°,又∵∠CDE+∠ADE=180°,∴∠ABC=∠CDE,(2)连接AC ,由(1)证得∠ABC=∠CDE,在△ABC 和△EDC 中,,∴△ABC≌△EDC(SAS ).4.(2015崇左)如图,点D 在AB 上,点E 在AC 上,AB=AC ,AD=AE .求证:BE=CD .证明:在△ADE 和△AEB 中,⎪⎩⎪⎨⎧=∠=∠=AE AD A A AC AB ,∴△ADE≌△AEB,∴BE=CD.5.(2015通辽)如图,四边形ABCD 中,E 点在AD 上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE ,求证:△ABC 与△DEC 全等.解:∵∠BCE=∠ACD=90°,∴∠3+∠4=∠4+∠5,∴∠3=∠5,在△ACD中,∠ACD=90°,∴∠2+∠D=90°,∵∠BAE=∠1+∠2=90°,∴∠1=∠D,在△ABC和△DEC中,,∴△ABC≌△DEC(AAS).6. (2015云南)如图,∠B=∠D,请添加一个条件(不得添加辅助线),使得△ABC≌△ADC,并说明理由.解:添加∠BAC=∠DAC.理由如下:在△ABC与△ADC中,,∴△ABC≌△ADC(AAS).7.(2015昆明)如图,点B、E、C、F在同一条直线上,∠A=∠D,∠B=∠DEF,BE=CF.求证:AC=DF.证明:∵BF=EC(已知),∴BF+FC=EC+CF,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS),∴AC=DF(全等三角形对应边相等).8.(2015温州)如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.(1)求证:AB=CD.(2)若AB=CF,∠B=30°,求∠D的度数.证明:(1)∵AB∥CD,∴∠B=∠C,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴AB=CD;(2)∵△ABE≌△CDF,∴AB=CD,BE=CF,∵AB=CF,∠B=30°,∴AB=BE,∴△ABE是等腰三角形,∴∠D=.四、等腰三角形1、(2015陕西)如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()解析:∵AB=AC,∴△ABC是等腰三角形;∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD是△ABC的角平分线,∴∠ABD=∠DBC=∠ABC=36°,∴∠A=∠ABD=36°,∴BD=AD,∴△ABD是等腰三角形;在△BCD中,∵∠BDC=180°﹣∠DBC﹣∠C=180°﹣36°﹣72°=72°,∴∠C=∠BDC=72°,∴BD=BC,∴△BCD是等腰三角形;∵BE=BC,∴BD=BE,∴△BDE是等腰三角形;∴∠BED=(180°﹣36°)÷2=72°,∴∠ADE=∠BED﹣∠A=72°﹣36°=36°,∴∠A=∠ADE,∴DE=AE,∴△ADE是等腰三角形;∴图中的等腰三角形有5个.故选D.2.(2015湘西州)如图,等腰三角形ABC 中,AB=AC ,BD 平分∠ABC,∠A=36°,则∠1的度数为( )A .36°B . 60°C . 72°D . 108°解析:∵∠A=36°,AB=AC ,∴∠ABC=∠C=72°,∵BD 平分∠ABC,∴∠ABD=36°,∴∠1=∠A+∠ABD=72°,故选:C .3.(2015烟台)等腰三角形三边长分别为2a b 、、,且a b 、是关于x 的一元二次方程2610x x n -+-=的两根,则n 的值为( C )A .9 B. 10 C. 9或10 D. 8或104.(2015南通)如图,△ABC 中,D 是BC 上一点,AC=AD=DB ,∠BAC=102°,则∠ADC= 52 度.解析:∵AC=AD=DB,∴∠B=∠BAD,∠ADC=∠C, 设∠ADC=α,∴∠B=∠BAD=,∵∠BAC=102°,∴∠DAC=102°﹣,在△ADC 中,∵∠ADC+∠C+∠DAC=180°,∴2α+102°﹣=180°,解得:α=52°.故答案为:52.5.(2015西宁)等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是 110°或70° .解析:此题要分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在外部. 根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣20°=70°.故答案为:110°或70°6.(2015攀枝花)如图,在平面直角坐标系中,O为坐标原点,矩形OABC中,A(10,0),C(0,4),D为OA的中点,P为BC边上一点.若△POD为等腰三角形,则所有满足条件的点P的坐标为(2.5,4),或(3,4),或(2,4),或(8,4).解析:∵四边形OABC是矩形∴∠OCB=90°,OC=4,BC=OA=10,∵D为OA的中点,∴OD=AD=5,①当PO=PD时,点P在OD得垂直平分线上,∴点P的坐标为:(2.5,4);②当OP=OD时,如图1所示:则OP=OD=5,PC==3,∴点P的坐标为:(3,4);③当DP=DO时,作PE⊥OA于E,则∠PED=90°,DE==3;分两种情况:当E在D的左侧时,如图2所示:OE=5﹣3=2,∴点P的坐标为:(2,4);当E在D的右侧时,如图3所示:OE=5+3=8,∴点P的坐标为:(8,4);综上所述:点P的坐标为:(2.5,4),或(3,4),或(2,4),或(8,4);故答案为:(2.5,4),或(3,4),或(2,4),或(8,4).7.(2015成都)如图,直线m∥n,△ABC为等腰三角形,∠BAC=90°,则∠1=45 度.解析:∵△ABC为等腰三角形,∠BAC=90°,∴∠ABC=∠ACB=45°,∵直线m∥n,∴∠1=∠ABC=45°,质,以及平行线的性质,关键是证明∠2=∠3推出BC=CF.8.(2015庆阳)如图,在△ABC中,∠C=60°,∠A=40°.(1)用尺规作图作AB的垂直平分线,交AC于点D,交AB于点E(保留作图痕迹,不要求写作法和证明);(2)求证:BD平分∠CBA.解:(1)如图1所示:(2)连接BD,如图2所示:∵∠C=60°,∠A=40°,∴∠CBA=80°,∵DE是AB的垂直平分线,∴∠A=∠DBA=40°,∴∠DBA=∠CBA,∴BD平分∠CBA.9.(2015青岛)【问题提出】用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?【问题探究】不妨假设能搭成m种不同的等腰三角形,为探究m与n之间的关系,我们可以先从特殊入手,通过试验、观察、类比、最后归纳、猜测得出结论.【探究一】(1)用3根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?此时,显然能搭成一种等腰三角形.所以,当n=3时,m=1.(2)用4根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形.所以,当n=4时,m=0.(3)用5根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?若分成1根木棒、1根木棒和3根木棒,则不能搭成三角形.若分成2根木棒、2根木棒和1根木棒,则能搭成一种等腰三角形.所以,当n=5时,m=1.(4)用6根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?若分成1根木棒、1根木棒和4根木棒,则不能搭成三角形.若分成2根木棒、2根木棒和2根木棒,则能搭成一种等腰三角形.所以,当n=6时,m=1.综上所述,可得:表①【探究二】(1)用7根相同的木棒搭一个三角形,能搭成多少种不同的三角形?(仿照上述探究方法,写出解答过程,并将结果填在表②中)(2)用8根、9根、10根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?(只需把结果填在表②中)表②你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,…【问题解决】:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(设n分别等于4k﹣1,4k,4k+1,4k+2,其中k是正整数,把结果填在表③中)表③【问题应用】:用2016根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(写出解答过程),其中面积最大的等腰三角形每腰用了672 根木棒.(只填结果)10. (2015宿迁)如图,已知AB=AC=AD,且AD∥BC,求证:∠C=2∠D.证明:∵AB=AC=AD,∴∠C=∠ABC,∠D=∠ABD,∴∠ABC=∠CBD+∠D,∵AD∥BC,∴∠CBD=∠D,∴∠ABC=∠D+∠D=2∠D,又∵∠C=∠ABC,∴∠C=2∠D.五、直角三角形与勾股定理1.(2015毕节)下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A. ,,B. 1,,C. 6,7,8 D. 2,3,4解析:A、()2+()2≠()2,不能构成直角三角形,故错误;B、12+()2=()2,能构成直角三角形,故正确;C、62+72≠82,不能构成直角三角形,故错误;D、22+32≠42,不能构成直角三角形,故错误.故选:B.2.(2015宿迁)如图,在Rt△ABC中,∠ACB=90°,点D,E,F分别为AB,AC,BC的中点.若C D=5,则EF的长为 5 .解析:∵△ABC是直角三角形,CD是斜边的中线,∴CD=AB,又∵EF是△ABC的中位线,∴AB=2CD=2×5=10cm,∴EF=×10=5cm故答案为:5.3.(2015枣庄)如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于8 .4.(2015庆阳)在底面直径为2cm,高为3cm的圆柱体侧面上,用一条无弹性的丝带从A至C按如图所示的圈数缠绕,则丝带的最短长度为cm.(结果保留π)解析:如图所示,∵无弹性的丝带从A至C,∴展开后AB=2πcm,BC=3cm,由勾股定理得:AC==cm.故答案为:.5.(2015东营)如图,一只蚂蚁沿着边长为2的正方体表面从点A出发,经过3个面爬到点B,如果它运动的路径是最短的,则AC的长为.解析:将正方体展开,右边与后面的正方形与前面正方形放在一个面上,展开图如图所示,此时AB最短,∵△BCM∽△ACN,∴=,即==2,即MC=2NC,∴CN=MN=,在Rt△ACN中,根据勾股定理得:AC==,故答案为:.。
2015年全国中考数学试卷解析分类汇编(第一期)专题22等腰三角形
最大最全最精的教育资源网等腰三角形一 .选择题1,( 2015 威海 ,第 9 题 4 分)【答案】:B【分析】依据等腰三角形两底角相等求出∠ABC=∠ ACB,再求出∠ CBD,而后依据∠ ABD =∠ABC ﹣∠ CBD 计算即可得解.21*cnjy*com【备考指导】本题观察了等腰三角形的性质,主要利用了等腰三角形两底角相等,熟记性质是解题的重点.2..( 2015 ·山东潍坊第11 题 3 分)如图,有一块边长为6cm 的正三角形纸板,在它的三个角处罚别截去一个相互全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是() 21 教育名师原创作品A . cm2B.2C.cm 2D.cm2cm考点:二次函数的应用;睁开图折叠成几何体;等边三角形的性质..剖析:如图,由等边三角形的性质能够得出∠A=∠B=∠ C=60°,由三个筝形全等就能够得出 AD=BE=BF=CG=CH =AK ,依据折叠后是一个三棱柱就能够得出DO=PE=PF=QG=QH =OK ,四边形 ODEP 、四边形 PFGQ 、四边形 QHKO 为矩形,且全等.连结 AO 证明△ AOD≌△ AOK 就能够得出∠ OAD =∠OAK =30°,设 OD =x,则 AO=2 x,由勾股最大最全最精的教育资源网就能够求出结论.解答:解:∵△ ABC 为等边三角形,∴∠ A=∠B=∠ C=60°, AB=BC=AC.∵筝形 ADOK ≌筝形 BEPF ≌筝形 AGQH ,∴AD =BE=BF=CG=CH =AK .∵折叠后是一个三棱柱,∴DO =PE=PF=QG=QH =OK ,四边形ODEP 、四边形PFGQ 、四边形QHKO 都为矩形.∴∠ ADO=∠ AKO =90°.连结 AO,在 Rt△ AOD 和 Rt△ AOK 中,,∴R t△ AOD≌ Rt△ AOK(HL ).∴∠ OAD=∠ OAK=30°.设 OD=x,则 AO=2x,由勾股定理就能够求出 AD =x,∴DE =6﹣ 2x,∴纸盒侧面积=3x( 6﹣2x) =﹣ 62x +18x,=﹣6 ( x﹣2,) +∴当 x= 时,纸盒侧面积最大为.应选 C.评论:本题观察了等边三角形的性质的运用,全等三角形的判断及性质的运用,勾股定理的运用,矩形的面积公式的运用,二次函数的性质的运用,解答时表示出纸盒的侧面积是关键. 2·1·c·n·j·y3. (2015?江苏苏州 ,第 7 题 3 分 )如图,在△ ABC 中, AB=AC,D 为 BC 中点,∠ BAD =35 °,2015年全国中考数学试卷解析分类汇编(第一期)专题22等腰三角形最大最全最精的教育资源网A . 35° B. 45° C. 55° D. 60°【难度】★【考点剖析】观察等腰三角形三线合一,早年选择填空也常观察三角形基础题目,难度很小。
广东省各市2015年中考数学试题分类汇编 专题10 三角形问题
专题10:三角形问题1. (2015年广东梅州3分)如图,AB 是⊙O 的弦,AC 是⊙O 的切线,A 为切点,BC 经过圆心. 若∠B =20°,则∠C 的大小等于【 】A. 20°B. 25°C. 40D. 50° 【答案】D.【考点】等腰三角形的性质;三角形内角和外角性质;切线的性质.【分析】如答图,连接AO ,∵,20AO BO B =∠=︒ ,∴40AOC ∠=︒.∵AC 是⊙O 的切线,∴AC AO ⊥,即90OAC ∠=︒. ∴50C ∠=︒. 故选D.2. (2015年广东佛山3分)下列给出5个命题: ①对角线互相垂直且相等的四边形是正方形; ②六边形的内角和等于720°; ③相等的圆心角所对的弧相等;④顺次连结菱形各边中点所得的四边形是矩形; ⑤三角形的内心到三角形三个顶点的距离相等. 其中正确命题的个数是【 】A. 2个B. 3个C. 4个D. 5个 【答案】A.【考点】命题和定理;正方形的判定;多边形内角和定理;圆周角定理;三角形中位线定理;菱形的性质;矩形的判定;三角形的内心性质.【分析】根据相关知识对各选项进行分析,判作出断:①对角线互相垂直且相等的平行四边形才是正方形,命题不正确.②根据多边形内角和公式,得六边形的内角和等于()62180720-⨯︒=︒,命题正确. ③同圆或等圆满中,相等的圆心角所对的弧才相等,命题不正确.④根据三角形中位线定理、菱形的性质和矩形的判定可知:顺次连结菱形各边中点所得的四边形是矩形,命题正确.⑤三角形的内心到三角形三边的距离相等,命题不正确. 其中正确命题的个数是2个. 故选A.3. (2015年广东广州3分)已知圆的半径是 】A. C. 【答案】C.【考点】正多边形和圆;等边三角形的判定和性质;锐角三角函数定义;特殊角的三角函数值. 【分析】如答图,圆的内接正六边形可分割为六个全等的等边三角形,∵060OA OAB =∠=,∴sin 3OH OA OAB =⋅∠==.∴11322OAB S AB OH ∆=⋅⋅=⋅=∴66OAB S S ∆==⋅=正六边形故选C.4. (2015年广东广州3分)已知2是关于x 的方程2230x mx m -+=的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则三角形ABC 的周长为【 】A. 10B. 14C. 10或14D. 8或10 【答案】B.【考点】一元二次方程的解和解一元二次方程;确定三角形的条件.【分析】∵2是关于x 的方程2230x mx m -+=的一个根,∴4430m m -+=,解得4m =.∴方程为28120x x -+=,解得122,6x x == . ∵这个方程的两个根恰好是等腰三角形ABC 的两条边长, ∴根据三角形三边关系,只能是6,6,2. ∴三角形ABC 的周长为14. 故选B.5. (2015年广东深圳3分)如图,已知正方形ABCD 的边长为12,BE =EC ,将正方形边CD 沿DE 折叠到DF ,延长EF 交AB 于G ,连接DG ,现在有如下4个结论:①ADG FDG ∆∆≌;②2GB AG =;③GDE BEF ∆∆∽;④725BEF S ∆=.在以上4个结论中,正确的有【 】A. 1B. 2C.3D. 4 【答案】C.【考点】折叠问题;正方形的性质;全等、相似三角形的判定和性质;勾股定理.【分析】由折叠和正方形的性质可知,0,90DF DC DA DFC C ==∠=∠= ,∴090DFG A ∠=∠=.又∵DG DG =,∴()ADG FDG HL ∆∆≌. 故结论①正确.∵正方形ABCD 的边长为12,BE =EC ,∴6BE EC EF ===. 设AG FG x ==,则6,12EG x BG x =+=- ,在Rt BEG ∆中,由勾股定理,得222EG BE BG =+,即()()222662x x +=+-,解得,4x =.∴4,8AG GF BG === .∴2GB AG =. 故结论②正确. ∵6BE EF ==,∴BEF ∆是等腰三角形.易知GDE ∆不是等腰三角形,∴GDE ∆和BEF ∆不相似. 故结论③错误. ∵11682422BEG S BE BG ∆=⋅⋅=⋅⋅=,∴67224105BEF BEGEFS SEG∆∆=⋅=⋅=.故结论④正确.综上所述,4个结论中,正确的有①②④三个.故选C.6. (2015年广东3分)如图,直线a∥b,∠1=75°,∠2=35°,则∠3的度数是【】A. 75°B. 55°C. 40°D. 35°【答案】C.【考点】平行线的性质;三角形外角性质.【分析】如答图,∵a∥b,∴∠1=∠4.∵∠1=75°,∴∠4=75°.根据“三角形的一个外角等于与它不相邻的两个内角之和”得∠4=∠2+∠3,∵∠2=35°,∴∠3=40°.故选C.7. (2015年广东3分)如图,已知正△ABC的边长为2,E,F,G分别是AB,BC,CA上的点,且AE=BF=CG,设△EFG的面积为y,AE的长为x,则y关于x的函数图象大致是【】A. B. C. D.【答案】D.【考点】由实际问题列函数关系式(几何问题);二次函数的性质和图象. 【分析】根据题意,有AE =BF =CG ,且正三角形ABC 的边长为2,∴2===-BE CF AG x . ∴△AEG 、△BEF 、△CFG 三个三角形全等.在△AEG 中,2==-,AE x AG x ,∴()122=⋅⋅⋅=-V AEG S AE AG sinA x x .∴()2332442=-=⋅-=-V V ABC AEG y S S x x x x ∴其图象为开口向上的二次函数. 故选D.8. (2015年广东汕尾4分)如图,AB 是⊙O 的弦,AC 是⊙O 的切线,A 为切点,BC 经过圆心. 若∠B =20°,则∠C 的大小等于【 】A. 20°B. 25°C. 40D. 50° 【答案】D.【考点】等腰三角形的性质;三角形内角和外角性质;切线的性质.【分析】如答图,连接AO ,∵,20AO BO B =∠=︒ ,∴40AOC ∠=︒.∵AC 是⊙O 的切线,∴AC AO ⊥,即90OAC ∠=︒. ∴50C ∠=︒. 故选D.1. (2015年广东梅州3分)已知:△ABC 中,点E 是AB 边的中点,点F 在AC 边上,若以A 、E 、F 为顶点的三角形与△ABC 相似,则需要增加的一个条件是 ▲ .(写出一个即可) 【答案】F 是AC 的中点(答案不唯一).【考点】开放型;三角形中位线定理;相似三角形的判定【分析】△ABC 中,点E 是AB 边的中点,点F 在AC 边上,若以A 、E 、F 为顶点的三角形与△ABC 相似,则根据三角形中位线定理和相似三角形的判定需要增加的一个条件可以是:F 是AC 的中点或EF ∥BC 或∠AEF =∠B 或∠AEF =∠C 或∠AFE =∠B 或∠AFE =∠C ,等,答案不唯一.2. (2015年广东佛山3分)如图,在Rt △ABC 中,AB =BC ,∠B =90°,AC =,四边形BDEF 是△ABC 的内接正方形(点D 、E 、F 在三角形的边上).则此正方形的面积是 ▲ .【答案】25.【考点】等腰直角三角形的判定和性质;正方形的性质.【分析】∵在Rt △ABC 中,AB =BC ,∠B =90°,AC =,∴AB =BC =10,45A ∠=︒.∵四边形BDEF 是正方形,∴AEF ∆是等腰直角三角形. ∴5BF EF AF ===.∴此正方形的面积25.3. (2015年广东广州3分)如图,ABC ∆中,DE 是BC 的垂直平分线,DE 交AC 于点E ,连接BE ,若BE =9,BC =12,则cosC = ▲ .【答案】23. 【考点】线段垂直平分线的性质;锐角三角函数定义.【分析】∵DE 是BC 的垂直平分线,∴0,,90BD CD BE CE EDC ==∠= .∵BE =9,BC =12,∴6,9CD CE == . ∴6293CD cosC CE ===.4. (2015年广东广州3分)如图,四边形ABCD 中,∠A =90°,AB =AD =3,点M ,N 分别为线段BC ,AB 上的动点(含端点,但点M 不与点B 重合),点E ,F 分别为DM ,MN 的中点,则EF 长度的最大值为 ▲ .【答案】3.【考点】双动点问题;三角形中位线定理;勾股定理. 【分析】如答图,连接DN ,∵点E ,F 分别为DM ,MN 的中点,∴12EF DN =. ∴要使EF 最大,只要DN 最大即可.根据题意,知当点N 到达点B 与B 重合时,DN 最大.∵∠A =90°,AB =AD =3,∴6DN DB ===,此时,132EF DN ==. 5. (2015年广东深圳3分)如图,已知点A 在反比例函数(0)ky x x=<上,作Rt ABC ∆,点D 为斜边AC 的中点,连DB 并延长交y 轴于点E ,若BCE ∆的面积为8,则k = ▲ .【答案】16.【考点】反比例函数的应用;相似三角形的判定和性质;直角三角形斜边上中线的性质;等腰三角形的性质.. 【分析】由题意,182BCE S BC OE ∆=⋅⋅=,∴16BC OE ⋅=. ∵点D 为斜边AC 的中点,∴BD DC =. ∴DBC DCB EBO ∠=∠=∠. 又∵ABC EOB ∠=∠,∴ABC EOB ∆∆∽. ∴BC ABOB OE=. ∴16k OB AB BC OE =⋅=⋅=.6. (2015年广东4分)如图,菱形ABCD 的边长为6,∠ABC =60°,则对角线AC 的长是 ▲ .【答案】6.【考点】菱形的性质;等边三角形的判定和性质. 【分析】∵四边形ABCD 是菱形,∴AB =B C =6.∵∠ABC =60°,∴△ABC 为等边三角形,∴AC =AB =B C =6.7. (2015年广东4分)若两个相似三角形的周长比为2:3,则它们的面积比是 ▲ . 【答案】4:9.【考点】相似三角形的性质.【分析】∵两个相似三角形的周长比为2:3,∴这两个相似三角形的相似比2:3.又∵相似三角形的面积比等于相似比的平方,∴这两个相似三角形的它们的面积比是4:9.8. (2015年广东4分)如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是 ▲ .【答案】4.【考点】等底同高三角形面积的性质;转换思想和数形结合思想的应用.【分析】如答图,各三角形面积分别记为①②③④⑤⑥,∵△ABC 三边的中线AD ,BE ,CF 的公共点G ,∴AG =2GD . ∴①=②,③=⑥,④=⑤,①+②=2③,④+⑤=2⑥. ∵12=△ABC S ,∴12=①+②+③+④+⑤+⑥.∴1222=①+②④+⑤①+②++④+⑤+, ∴()12312422=⇒+=⇒+=2②2⑤2②++2⑤+②⑤②⑤,即图中阴影部分面积是4.9. (2015年广东汕尾5分)已知:△ABC 中,点E 是AB 边的中点,点F 在AC 边上,若以A 、E 、F 为顶点的三角形与△ABC 相似,则需要增加的一个条件是 ▲ .(写出一个即可) 【答案】F 是AC 的中点(答案不唯一).【考点】开放型;三角形中位线定理;相似三角形的判定【分析】△ABC 中,点E 是AB 边的中点,点F 在AC 边上,若以A 、E 、F 为顶点的三角形与△ABC 相似,则根据三角形中位线定理和相似三角形的判定需要增加的一个条件可以是:F 是AC 的中点或EF ∥BC 或∠AEF =∠B 或∠AEF =∠C 或∠AFE =∠B 或∠AFE =∠C ,等,答案不唯一.10. (2015年广东汕尾5分)如图,在□ABCD 中,BE 平分∠ABC ,BC = 6,DE = 2,则□ABCD 周长等于 ▲ .【答案】20.【考点】平行四边形的性质;平行的性质;角平分线的性质;等腰三角形的判定. 【分析】∵四边形ABCD 是平行四边形,∴,//AD BC AD BC = .∴AEB EBC ∠=∠.∵BC = 6,DE = 2,∴6,4AD AE == .∵BE 平分∠ABC ,即ABE EBC ∠=∠.∴AEB ABE ∠=∠.∴4AB AE ==. ∴□ABCD 周长等于()220AB BC +=.11. (2015年广东珠海4分)如图,在111ABC D 中,已知,,111111745A B B C AC === ,依次连接111A B C D 的三边中点,得222A B C D ,再依次连接222A B C D 的三边中点得333A B C D ,…,则555A B C D 的周长为▲ .【答案】1.【考点】探索规律题(图形的变化类);三角形中位线定理.【分析】∵A B C D 222的三顶点在A B C D 111的三边中点,∴A B C D 222的周长是A B C D 111周长的12; ∵A B C D 333的三顶点在A B C D 222的三边中点,∴A B C D 333的周长是A B C D 222周长的12,是A B C D 111周长的212; ∵A B C D 444的三顶点在A B C D 333的三边中点,∴A B C D 444的周长是A B C D 333周长的12,是A B C D 111周长的312; ∵A B C D 555的三顶点在A B C D 444的三边中点,∴A B C D 555的周长是A B C D 444周长的12,是A B C D 111周长的412. 又∵,,A B B C AC === 111111745, ∴A B C D 555的周长为()()A B B C A C ++=++=111114117451216.1. (2015年广东梅州9分)如图,已知△ABC.按如下步骤作图: ①以A 为圆心,AB 长为半径画弧;②以C 为圆心,CB 长为半径画弧,两弧相交于点D ; ③连结BD ,与AC 交于点E ,连结AD ,CD . (1)求证:△ABC ≌△ADC ;(2)若∠BAC = 30°,∠BCA = 45°,AC = 4,求BE 的长.【答案】解:(1)证明:由作法可知:AB AD CB CD ==,,又∵AC AC =,∴ABC ADC SSS V V ≌().(2)由(1)可得,AB AD BAC DAC =∠=∠,,∴AE ⊥BD ,即AC ⊥BE .在Rt △ABE 中,∠BAC =30°,∴AE . 在Rt △BEC 中,∠BCE =45°,∴EC = BE .又AE + EC = AC = 4 + BE = 4. ∴BE =2.∴BE 的长为2.【考点】尺规作图;全等三角形的判定和性质;等腰三角形的性质;锐角三角函数定义;特殊角的三角函数值.【分析】(1)由作法,根据SSS 即可证明ABC ADC V V ≌.(2)根据等腰三角形三线合一的性质,得到两直角三角形,得到AE 和EC = BE ,从而根据AE + EC = AC = 4列式求解.2. (2015年广东梅州10分)在Rt △ABC 中,∠A =90°,AC = AB = 4,D ,E 分别是边AB ,AC 的中点.若等腰Rt △ADE 绕点A 逆时针旋转,得到等腰Rt △AD 1E 1,设旋转角为α(0<α≤180°),记直线BD 1与CE 1的交点为P .(1)如图1,当α=90°时,线段BD 1的长等于 ▲ ,线段CE 1的长等于 ▲ ;(直接填写结果) (2)如图2,当α=135°时,求证:BD 1 = CE 1 ,且BD 1⊥CE 1 ; (3)求点P 到AB 所在直线的距离的最大值.(直接写出结果)【答案】解:(1)(2)证明:当α=135°时,由旋转可知∠D 1AB = E 1AC = 135°.又∵AB =AC ,AD 1=AE 1,∴△D 1AB ≌△△E 1AC (SAS ). ∴BD 1=CE 1 且 ∠D 1BA = ∠E 1CA .设直线BD 1与AC 交于点F ,有∠BFA =∠CFP .∴∠CPF =∠FAB =90°,∴BD 1⊥CE 1.(3)1【考点】面动旋转问题;等腰直角三角形的性质;勾股定理;全等、相似三角形的判定和性质.【分析】(1)如题图1,当α=90°时,线段BD 1=;线段CE 1的长等==(2)由SAS 证明△D 1AB ≌△△E 1AC 即可证明BD 1 = CE 1 ,且BD 1⊥CE 1 .(3)如答图2,当四边形AD 1PE 1为正方形时,点P 到AB 所在直线的距离距离最大,此时1122AD PD PB ===+,∵1ABD PBH ∆∆∽,∴1AD ABPH PB=.∴2PH =.∴1PH =+∴当四边形AD 1PE 1为正方形时,点P 到AB 所在直线的距离距离的最大值为13. (2015年广东佛山6分)如图,△ABC 是等腰三角形,AB =AC . 请你用尺规作图将△ABC 分成两个全等的三角形,并说明这两个三角形全等的理由.(保留作图痕迹,不写作法)【答案】解:如答图,过点A 作AD BC ⊥于点D ,则根据等腰三角形三线合一的性质,由AAS 可得ABD ACD ∆∆≌.【考点】尺规作图;等腰三角形的性质;全等三角形的判定. 【分析】作△ABC 底边上的高,则ABD ACD ∆∆≌.4. (2015年广东佛山6分)如图,在水平底面上树立着一面墙AB ,墙外有一盏路灯D .光线DC 恰好通过墙的最高点B ,且与地面形成37°角.墙在灯光下的影子为线段AC ,并测得AC =5.5米(1)求墙AB 的高度(结果精确到0.1米)(参考数据:tan37°≈0.75, sin37°≈0.60,cos37°≈0.80) (2)如果要缩短影子AC 的长度,同时不能改变墙的高度和位置,请你写出两种不同的方法.【答案】解:(1)∵tan ABACB AC∠=, ∴tan 5.5tan 37 5.50.75 4.125 4.1AB AC ACB =⋅∠=⋅︒≈⨯=≈. 答:墙AB 的高度为4.1米.(2)如果要缩短影子AC 的长度,同时不改变墙的高度和位置,可以将路灯的电线杆加长或将路灯的电线杆向墙边靠近.【考点】解直角三角形的应用(仰角俯角问题);锐角三角函数定义;. 【分析】(1)直接根据正切函数定义求解.(2)要缩短影子AC 的长度,就要加大仰角ACB ∠,由于不能改变墙的高度和位置,那就得将路灯的电线杆加长或将路灯的电线杆向墙边靠近.5. (2015年广东佛山11分)如图,在ABCD Y 中,对角线AC 、BD 相交于点O ,点E 、F 是AD 上的点,且AE EF FD ==. 连结BE 、BF ,使它们分别与AO 相交于点G 、H .(1)求 : EG BG 的值; (2)求证:AG OG =;(3)设 ,AG a GH b HO c ===,,求 : : a b c 的值.【答案】解:(1)∵AE EF FD ==,∴13AE AD =. ∵四边形ABCD 是平行四边形,∴//AD BC .∴AEG CBG ∆∆∽.∴13EG AE BG AD ==,即1: 3EG BG =.(2)证明:由(1)AEG CBG ∆∆∽,∴13AG CG =. ∵四边形ABCD 是平行四边形,∴AO OC =. ∴2CG AO AG =-. ∴123AG AO AG =-,即12AG AO =.∴AG OG =.(3)如答图,过点F 作//FM AC 交BD 于点M ,∵AE EF FD ==,∴13DM DF DO DA ==.∴16DM BD =,56BM BD =. ∵12BO BD =.∴35BO BM =. ∵//FM AC ,∴BOH BMF ∆∆∽.∴35HO BO FM BM ==,即35HO FM =. ∵//FM AC ,∴DFM DAO ∆∆∽.∴13FM DF AO DA ==,即13FM AO =. ∴33115535HO FM AO AO ==⋅=.由(2)得12AG AO =,∴1132510GH AO AG HO AO AO AO AO =--=--=. ∵ ,AG a GH b HO c ===,, ∴131532: : : : : : 5 : 3 : 22105101010a b c AO AO AO ===.【考点】平行四边形的综合题;平行四边形的性质;平行的性质;相似三角形的判定和性质;数形结合思想的应用.【分析】(1)由平行四边形对边平行的性质可得AEG CBG ∆∆∽,从而得出结果.(2)由(1)AEG CBG ∆∆∽得到13AG CG =,从而根据平行四边形对角线互相平分的性质得出结论. (3)作辅助线“过点F 作//FM AC 交BD 于点M ”,构造两组相似三角形BOH BMF ∆∆∽和BOH BMF ∆∆∽,通过相似三角形对应边成比例的性质,求出AG GH HO 、、与AO 的关系即可求得 : : a b c 的值.6. (2015年广东广州9分)如图,正方形ABCD 中,点E 、F 分别在AD ,CD 上,且AE DF =,连接BE ,AF .求证:BE AF =.【答案】证明:∵四边形ABCD 是正方形,∴0,90AD AB D EAB =∠=∠= .又∵AE DF =,∴()EAB FDA SAS ∆∆≌. ∴BE AF =.【考点】正方形的性质;全等三角形的判定和性质.【分析】要证BE AF =,只要证它们是全等三角形的对应边即可,而要证EAB FDA ∆∆≌,一方面,已知AE DF =,另一方面,由四边形ABCD 是正方形可得0,90AD AB D EAB =∠=∠= ,从而构成全等三角形的SAS 而得证.7. (2015年广东广州10分)如图,AC 是⊙O 的直径,点B 在⊙O 上,∠ACB =30°.(1)利用尺规作∠ABC 的平分线BD ,交AC 于点E ,交⊙O 于点D ,连接CD (保留作图痕迹,不写作法); (2)在(1)所作的图形中,求ABE ∆与CDE ∆的面积之比.【答案】解:(1)作图如下:(2)如答图2,过点B 作BM AC ⊥于点M ,过点C 作AN BD ⊥于点N ,设AB a =,∵AC 是⊙O 的直径,∴90ABC ∠=︒. ∵∠ACB =30°,∴,BC BM ==. ∵BD 是∠ABC 的平分线,∴45ABD CBD ∠=∠=︒.∴2CN a =.∴BM CN ==. 又∵,BAE CDE ABE DCE ∠=∠∠=∠ ,∴ABE CDE ∆∆∽.∴2212ABE CDE S BM S CN ∆∆⎛⎫=== ⎪⎝⎭. 【考点】尺规作图;圆周角定理;解直角三角形的应用;锐角三角函数定义;特殊角的三角函数值;相似三角形的判定和性质.【分析】(1)按角平分线的基本作法作图即可.(2)要求ABE ∆与CDE ∆的面积之比,考虑到两三角形相似,只要求出其相似比即可,结合已知条件作辅助线“过点B 作BM AC ⊥于点M ,过点C 作AN BD ⊥于点N ”得到两三角形对应边上的高BM 和CN ,设AB a =,通过解直角三角形,把BM 和CN 用a 的代数式表示,求比,问题即可得到解决.8. (2015年广东深圳8分)小丽为了测旗杆AB 的高度,小丽眼睛距地图1.5米,小丽站在C 点,测出旗杆A 的仰角为30o ,小丽向前走了10米到达点E ,此时的仰角为60o ,求旗杆的高度.【答案】解:由题意,0030,60,10ADG AFG DF ∠=∠== ,∴030DAF AFG ADG ∠=∠-∠=.∴FAD FDA ∠=∠.∴10DF AF ==.∴sin 102AG AF AFG =⋅∠=⨯=.∵ 1.5BG CD ==,∴32AB AG BG =+=+【考点】解直角三角形的应用(仰角俯角问题);锐角三角函数定义;特殊角的三角函数值.【分析】把旗杆的高度AB 分成两段,AG BG ,AG 通过解直角三角形得到,BG 由矩形的性质得到. 9. (2015年广东6分)如图,已知锐角△AB C.(1)过点A 作BC 边的垂线MN ,交BC 于点D (用尺规作图法,保留作图痕迹,不要求写作法); (2)在(1)条件下,若BC =5,AD =4,tan ∠BAD =34,求DC 的长.【答案】解:(1)作图如答图所示,AD 为所作.(2)在Rt △ABD 中,AD =4,tan ∠BAD =34=BD AD , ∴344=BD ,解得BD =3. ∵BC =5,∴DC =AD ﹣BD =5﹣3=2.【考点】尺规作图(基本作图);解直角三角形的应用;锐角三角函数定义. 【分析】(1)①以点A 为圆心画弧交BC 于点E 、F ;②分别以点E 、F 为圆心,大于12EF 长为半径画弧,两交于点G ; ③连接AG ,即为BC 边的垂线MN ,交BC 于点D .(2)在Rt △ABD 中,根据正切函数定义求出BD 的长,从而由BC 的长,根据等量减等量差相等求出DC 的长.10. (2015年广东汕尾9分)如图,已知△ABC.按如下步骤作图: ①以A 为圆心,AB 长为半径画弧;②以C 为圆心,CB 长为半径画弧,两弧相交于点D ; ③连结BD ,与AC 交于点E ,连结AD ,CD . (1)求证:△ABC ≌△ADC ;(2)若∠BAC = 30°,∠BCA = 45°,AC = 4,求BE 的长.【答案】解:(1)证明:由作法可知:AB AD CB CD ==,,又∵AC AC =,∴ABC ADC SSS V V ≌().(2)由(1)可得,AB AD BAC DAC =∠=∠,,∴AE ⊥BD ,即AC ⊥BE .在Rt △ABE 中,∠BAC =30°,∴AE . 在Rt △BEC 中,∠BCE =45°,∴EC = BE .又AE + EC = AC = 4 + BE = 4. ∴BE =2.∴BE 的长为2.【考点】尺规作图;全等三角形的判定和性质;等腰三角形的性质;锐角三角函数定义;特殊角的三角函数值.【分析】(1)由作法,根据SSS 即可证明ABC ADC V V ≌.(2)根据等腰三角形三线合一的性质,得到两直角三角形,得到AE 和EC = BE ,从而根据AE + EC = AC = 4列式求解.11. (2015年广东汕尾11分)在Rt △ABC 中,∠A =90°,AC = AB = 4,D ,E 分别是边AB ,AC 的中点.若等腰Rt △ADE 绕点A 逆时针旋转,得到等腰Rt △AD 1E 1,设旋转角为α(0<α≤180°),记直线BD 1与CE 1的交点为P .(1)如图1,当α=90°时,线段BD 1的长等于 ▲ ,线段CE 1的长等于 ▲ ;(直接填写结果) (2)如图2,当α=135°时,求证:BD 1 = CE 1 ,且BD 1⊥CE 1 ; (3)求点P 到AB 所在直线的距离的最大值.(直接写出结果)【答案】解:(1)(2)证明:当α=135°时,由旋转可知∠D 1AB = E 1AC = 135°.又∵AB =AC ,AD 1=AE 1,∴△D 1AB ≌△△E 1AC (SAS ). ∴BD 1=CE 1 且 ∠D 1BA = ∠E 1CA .设直线BD 1与AC 交于点F ,有∠BFA =∠CFP .∴∠CPF =∠FAB =90°,∴BD 1⊥CE 1.(3)1【考点】面动旋转问题;等腰直角三角形的性质;勾股定理;全等、相似三角形的判定和性质.【分析】(1)如题图1,当α=90°时,线段BD 1=;线段CE 1的长等==(2)由SAS 证明△D 1AB ≌△△E 1AC 即可证明BD 1 = CE 1 ,且BD 1⊥CE 1 .(3)如答图2,当四边形AD 1PE 1为正方形时,点P 到AB 所在直线的距离距离最大,此时1122AD PD PB ===+,∵1ABD PBH ∆∆∽,∴1AD ABPH PB=.∴2PH =.∴1PH =+∴当四边形AD 1PE 1为正方形时,点P 到AB 所在直线的距离距离的最大值为112. (2015年广东珠海7分)如图,某塔观光层的最外沿点E 为蹦极项目的起跳点.已知点E 离塔的中轴线AB 的距离OE 为10米,塔高AB 为123米(AB 垂直地面BC ),在地面C 处测得点E 的仰角45α=°从C 沿CB方向前行40米到达D 点,在D 处测得塔尖A 的仰角为60β=°,求点E 离地面的高度EF .(结果精确到1米,1.4, 1.7)【答案】解:在Rt ADB D 中,0tan tan 60ABDB β==123DB =,∴DB ==∴104030CF DB FB CD =-+=+=+在中,∵45α=?,∴30100EF CF ==+.答:点E 离地面的高度EF 为100米.【考点】解直角三角形的应用(仰角俯角问题);锐角三角函数定义;特殊角的三角函数值.【分析】在Rt ADB D 和Rt ECF D 中,应用锐角三角函数定义和特殊角的三角函数值求解即可.13. (2015年广东珠海7分)已知,ABC AB AC D = ,将ABC D 沿BC 方向平移得到DEF D .(1)如图1,连接,BD AF ,则BD ▲ AF (填“>”,“<”或“=”号);(2)如图2,M 为AB 边上一点,过M 作BC 的平行线MN 分别交边,,AC DE DF 于点,,G H N ,连接,BH GF .求证:BH GF =.【答案】解:(1)=.(2)证明: ∵将ABC D 沿BC 方向平移得到DEF D ,MN ∥AB ,∴根据平移的性质,得,,MG HN GC NF MGCHNF ==?? . ∵AB AC =,∴ABC ACB ??.又∵MN ∥AB ,∴四边形BCGM 是等腰梯形.∴,MB GC GMBMGC =?? . ∴,MB MF GMB HNF =?? .又∵MG HN =,∴MH GN =.在BMH D 和FNG D 中,∵,,MB MF HMBGNF MH NG =?? , ∴BMH D ≌()FNG SAS D .∴BH GF =. 【考点】面动平移问题;平移的性质,平行的性质;等腰梯形的判定和性质;全等三角形的判定和性质.【分析】(1)根据平移的性质,应用SAS 证明ABF D ≌DFB D 即可得出BD AF =的结论.(2)根据平移的性质,结合等腰梯形的判定和性质,应用SAS 证明BMH D ≌FNG D 即可得出BH GF =的结论.14. (2015年广东珠海9分)五边形ABCDE 中,90,EAB ABC BC AB D BC ??°Ð== ,且满足以点B 为圆心,AB 长为半径的圆弧AC 与边DE 相切与点F ,连接,BE BD .(1)如图1,求EBD Ð的度数;(2)如图2,连接AC ,分别与,BE BD 相交于点,G H ,若115,D AB BC ?=?,求AG HC ×的值.【答案】解:(1)如答图1,连接BF ,∵圆弧AC 与边DE 相切与点F ,∴BF DE ^.在Rt BAE D 和Rt BEF D 中,∵,BA BF BE BE == ,∴Rt BAE D ≌()Rt BEF HL D .∴12??.同理,34??.∵90ABC ??,∴2345???,即45EBD ??.(2)如答图2,连接BF 并延长交CD 的延长线于点P ,∵415??,∴由(1)知,3415???,即30PBC??. ∵90ABC ??,12??,∴1230???.在Rt ABE D 中,∵1,130AB =?? ,∴33AE BE == . 在ABE D 和CBP D 中,13090PBC AB CB BAE BCP ì???ïï=íï???ïî,∴ABE D ≌()CBP ASA D .∴BP BE ==∴1PF -. ∵60P ??,∴2DF =-∴2CD DF ==-∵45,75EAGDCH AGE BDC ??靶=?? ,∴AEG D ∽CHD D . ∴AG AE CD CH=.∴AG CH CD AE ??.∴(2AG CH ?-【考点】直线和圆的位置关系;切线的性质;全等、相似三角形的判定和性质;锐角三角函数定义;特殊角的三角函数值.【分析】(1)作辅助线“连接BF ”,构成两组全等三角形得到12??,34??,从而根据直角求解.(2)作辅助线“连接BF 并延长交CD 的延长线于点P ”,构成全等三角形ABE D ≌CBP D,得到3BP BE ==13PF =-,通过证明AEG D ∽CHD D ,列比例式即可求得结果.。
(完整word)2015年中考数学真题分类汇编勾股定理解析,推荐文档
勾股定理一•选择题1. (2015?荷泽)将一副直角三角尺如图放置,若 / AOD=20 °则/ BOC 的大小为()A . 140°B . 160°C . 170°D . 150°考点:直角三角形的性质.分析:利用直角三角形的性质以及互余的关系,进而得出 / COA 的度数,即可得出答案.解答:•••将一副直角三角尺如图放置,/ AOD=20 ° ••• / COA=90 °- 20°=70°••• / BOC=90 °+70°=160° 故选:B .点评:此题主要考查了直角三角形的性质,得出/ COA 的度数是解题关键.2. (2015?大连)如图,在 △ ABC 中,/ C=90° AC=2,点 D 在 BC 上,/ ADC=2 / B , AD=J^ , 则BC 的长为()考点:勾股定理;等腰三角形的判定与性质.分析: 根据/ ADC=2 / B , Z ADC= / B+ / BAD 判断出DB=DA ,根据勾股定理求出 DC 的长,从 而求出BC 的长. 解答:•/ Z ADC=2 Z B , Z ADC= Z B+ Z BAD , • Z B= Z DAB , • DB=DA=.",在 Rt △ ADC 中,DC= “ - 二=| 一 」 一=1 ; ••• BC= .,+1 .故选 D .点评: 本题主要考查了勾股定理,同时涉及三角形外角的性质,二者结合,是一道好题.3. (2015?黑龙江)△ ABC 中,AB=AC=5 , BC=8,点P 是BC 边上的动点,过点 P 作PD 丄AB 于 点D , PE 丄AC 于点E ,贝U PD+PE 的长是()A . 4.8B . 4.8 或 3.8C .3.8 D . 5考点:勾股定理;等腰三角形的性质. 专题:动点型..■- 1 D. . - + 1分析:过A点作AF丄BC于F,连结AP,根据等腰三角形三线合一的性质和勾股定理可得AF的长,由图形得S ABC=S ABP+S ACP,代入数值,解答出即可.解答:过A点作AF丄BC于F,连结AP,•/ △ ABC 中,AB=AC=5 , BC=8 , /• BF=4 , :. △ ABF 中,AF=込:」-|. -:=3,点评:本题主要考查了勾股定理、等腰三角形的性质,解答时注意,将一个三角形的面积转化成两 个三角形的面积和;体现了转化思想.4. (2015?淄博)如图,在 Rt △ ABC 中,/ BAC=90 ° / ABC 的平分线 BD 交AC 于点D , DE 是 BC 的垂直平分线,点 E 是垂足.已知 DC=5 , AD=3,则图中长为 4的线段有(考点:勾股定理;角平分线的性质;含30度角的直角三角形.分析: 利用线段垂直平分线的性质得出BE-EC-4 ,再利用全等三角形的判定与性质得出AB-BE-4 ,进而得出答案.解答:••• / BAC-90 ° / ABC 的平分线 BD 交AC 于点D , DE 是BC 的垂直平分线,点 E 是垂足,••• AD=DE=3 , BE=EC , •/ DC=5 , AD=3 , /• BE=EC=4 ,i r ZA=Z&ED在 AABD 和厶 EBD 中,* Z 血二ZDBE , • △ ABD △ EBD (AAS ) , • AB=BE=4 ,;BD=EB•••图中长为4的线段有3条.故选:B .点评:此题主要考查了勾股定理以及角平分线的性质以及全等三角形的判定与性质,正确得出BE=AB 是解题关键.5. (2015?天水)如图,在四边形 ABCD 中,/ BAD= / ADC=90 ° AB=AD=2 氏,CD^2,点 PA . 2B . 3C . 4 D. 5丄 >8>3=丄 ^5>PD+2 2丄 >5>PE,2 .故选: 3条C .2条在四边形ABCD 的边上.若点考点: 等腰直角三角形;点到直线的距离.分析:首先作出AB 、AD 边上的点P (点A )至^ BD 的垂线段AE ,即点P 到BD 的最长距离,作出BC 、CD 的点P (点C )到BD 的垂线段CF ,即点P 到BD 的最长距离,由已知计算出 AE 、CF的长与鲁匕较得出答案.解答: 过点A 作AE 丄BD 于E ,过点C 作CF 丄BD 于F ,•/ / BAD= / ADC=90 °° AB=AD=2 :■:, CD= ?;」,/• / ABD= / ADB=45 °, /• Z CDF=90 ° - / ADB=45 °° •/sin Z ABD=翌,/• AE=AB ?sin Z ABD=2 V^?sin45 °2一迁^^=2』,AB226. (2015?烟台)如图,正方形 ABCD 的边长为2,其面积标记为S i ,以CD 为斜边作等腰直角三角 形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S 2, ••按照此规律继续下去,贝V S 2015的值为( )BD 的最大距考点: 专题:等腰直角三角形;正方形的性质.分析:根据题意可知第2个正方形的边长是[-,则第3个正方形的边长是进而可找出规律,第 n 个正方形的边长是 )X 戈,那么易求S 2015的值.离比较得出答案.第n 个正方形的边长是•:‘..,所以S 2015的值是(丄)2012,故选C点评:本题考查了正方形的性质、等腰直角三角形的性质、勾股定理•解题的关键是找出第 方形的边长.7. (2015?桂林)下列各组线段能构成直角三角形的一组是()A . 30, 40, 50B .7, 12, 13 C . 5, 9, 12 D . 3, 4, 6考点:勾股定理的逆定理.分析:根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三 角形判定则可.如果有这种关系,这个就是直角三角形.解答: 解:A 、: 302+402=502,二该三角形符合勾股定理的逆定理,故是直角三角形,故正确;B 、 : 72+122鬥32,二该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;C 、 T 52+92为22,二该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;D 、 : 32+42托2,该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误; 故选A .点评:本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关 系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.& (2015?淮安)下列四组线段中,能组成直角三角形的是()A.a=1, b=2, c=3 B . a=2, b=3, c=4 C . a=2, b=4, c=5 D . a=3, b=4, c=5考点:勾股定理的逆定理.分析: 根据勾股定理的逆定理对各选项进行逐一分析即可.解答:解:A 、I 12+22=5希2,不能构成直角三角形,故本选项错误;B 、 I 22+32=13證2,不能构成直角三角形,故本选项错误;C 、 I 22+42=20苑2,不能构成直角三角形,故本选项错误;D 、 ••• 32+42=25=52,-能构成直角三角形,故本选项正确.故选D . 点评:本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形是解答此题的关键.9. (2015?广西)下列各组线段中,能够组成直角三角形的一组是()A . 1 , 2, 3B .2, 3, 4 C . 4, 5, 6 D . 1, - 7, . ■:考点:勾股定理的逆定理.分析:根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是 直角三角形判定则可. 解答:解:A 、12+22总2,不能组成直角三角形,故错误;B 、 22+32證2,不能组成直角三角形,故错误;C 、 42+52书2,不能组成直角三角形,故错误;D 、 12+ (「J 2= ( :) 2,能够组成直角三角形,故正确.解答:根据题意:第一个正方形的边长为2;第二个正方形的边长为:「:;n 个正第三个正方形的边长为:故选D .=13 (Cm ).点评:本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关 系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.10.(2015?毕节市)下列各组数据中的三个数作为三角形的边长, 其中能构成直角三角形的是 ()A .二.,仇;B .1,.二.:C. 6, 7, 8 D . 2, 3, 4 考点: 勾股定理的逆定理.分析:知道三条边的大小, 用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.解答:解:A 、( :■;) 2+ ( .,|) 2工(口)2,不能构成直角三角形,故错误;B 、 12+ (.二)2=C :■;) 2,能构成直角三角形,故正确; C 、 62+72老2,不能构成直角三角形,故错误;D 、 22+32證2,不能构成直角三角形,故错误.故选:B .点评:本题考查勾股定理的逆定理的应用•判断三角形是否为直角三角形,已知三角形三边的长, 只要利用勾股定理的逆定理加以判断即可.11. (2015?资阳)如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm ,底面周长为10cm ,在容器内壁离容器底部 3cm 的点B 处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm的点A 处,则蚂蚁吃到饭粒需爬行的最短路径是()2| cm考点:平面展开-最短路径问题.分析:将容器侧面展开,建立A 关于EF 的对称点A 根据两点之间线段最短可知 A B 的长度即为 所求. 解答:解:如图:•••高为12cm ,底面周长为10cm ,在容器内壁离容器底部 3cm 的点B 处有一饭粒, 此时蚂蚁正好在容器外壁,离容器上沿 3cm 与饭粒相对的点 A 处,/• A D=5cm , BD=12 - 3+AE=12cm , •••将容器侧面展开,作 A 关于EF 的对称点A 连接A B ,则A B 即为最短距离,A B=V A / D 2+BD 2第5页(共23页)13cm B .点评:本题考查了平面展开——最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行 计算是解题的关键•同时也考查了同学们的创造性思维能力.二.填空题12. (2015?南昌)如图,在厶ABC 中,AB=BC=4 , AO=BO , P 是射线 CO 上的一个动点,/ AOC=60 ° 则当△ PAB为直角三角形时,AP 的长为_2 :;或 2 7或2.考点:勾股定理;含30度角的直角三角形;直角三角形斜边上的中线. 专题:分类讨论.分析:利用分类讨论,当/ APB=90。
江苏省13市2015年中考数学试题分类解析汇编 专题10 三角形问题
专题10:三角形问题1. (2015年江苏南京2分)如图,在△ABC 中,DE ∥BC ,12AD DB =,则下列结论中正确的是【 】A.12AE AC = B. 12DE BC = C.13ADE =ABC ∆∆的周长的周长 D. 13ADE =ABC ∆∆的面积的面积 【答案】C.【考点】比例的计算;相似三角形的判定和性质. 【分析】∵12AD DB =,∴13AD AB =. ∵DE ∥BC ,∴ADE ABC ∆∆∽. ∴13ADE AD =ABC AB ∆=∆的周长的周长.故选C.2. (2015年江苏苏州3分)如图,在△ABC 中,AB =AC ,D 为BC 中点,∠BAD =35°,则∠C 的度数为【 】A .35°B .45°C .55°D .60° 【答案】C.【考点】等腰三角形的性质;直角三角形两锐角的关系. 【分析】∵在△ABC 中,AB =AC ,D 为BC 中点,∴根据等腰三角形三线合一的性质,得∠BAD=∠CAD ,AD ⊥BC . 又∵∠BAD =35°,∴∠CAD =35°.∴根据直角三角形两锐角互余的性质,得∠C =55°.故选C.3. (2015年江苏苏州3分)如图,在一笔直的海岸线l 上有A 、B 两个观测站,AB =2km ,从A 测得船C 在北偏东45°的方向,从B 测得船C 在北偏东22.5°的方向,则船C 离海岸线l 的距离(即CD 的长)为【 】A .4kmB .(2+kmC ..(4-km 【答案】B .【考点】解直角三角形的应用(方向角问题);矩形的判定和性质;等腰直角三角形的判定和性质. 【分析】如答图,过点B 作BE ⊥AC 交AC 于点E ,过点E 作EF ⊥CD 交CD 于点F ,则根据题意,四边形BDEF 是矩形,△ABE 、△EFC 和△ADC 都是等腰直角三角形,∵AB =2,∴DF=BF= AB =2,AE =. ∵∠EBC =∠BCE =22.5°,∴CE =BE =2.∴CF ==∴2CD DF CF =+=(km ).∴船C 离海岸线l 的距离为(2 km. 故选B .4. (2015年江苏泰州3分)如图,△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线分别交 AC 、AD 、AB 于点E 、O 、F ,则图中全等的三角形的对数是【 】A. 1对B. 2对C. 3对D. 4对 【答案】D.【考点】等腰三角形的性质;线段垂直平分线的性质;全等三角形的判定.【分析】∵AB =AC ,D 是BC 的中点,∴根据等腰三角形三线合一的性质,易得,,ADB ADC ODB ODC AOB AOC ∆∆∆∆∆∆ ≌≌≌. ∵EF 是AC 的垂直平分线,∴根据线段垂直平分线上的点到线段两端的距离相等的性质,易得AOE COE ∆∆≌. 综上所述,图中全等的三角形的对数是4对. 故选D.5. (2015年江苏无锡3分)45tan ︒的值为【 】A.12B. 1C. 2【答案】B .【考点】特殊角的三角函数值.【分析】根据45°角这个特殊角的三角函数值,可得451tan ︒=.故选B .6. (2015年江苏无锡3分)如图,Rt △ABC 中,∠ACB =90º,AC =3,BC =4,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B ′处,两条折痕与斜边AB 分别交于点E 、F ,则线段B ′F 的长为【 】A.35 B. 45 C. 23【答案】B .【考点】翻折变换(折叠问题);折叠的性质;等腰直角三角形的判定和性质;勾股定理.【分析】根据折叠的性质可知34CD AC B C BC ACE DCE BCF B CF CE AB =='==∠=∠∠=∠'⊥,,,,,∴431B D DCE B CF ACE BCF '=-=∠+∠'=∠+∠,.∵90ACB ∠=︒,∴45ECF ∠=︒. ∴ECF V 是等腰直角三角形. ∴45EF CE EFC =∠=︒,. ∴135BFC B FC ∠=∠'=︒. ∴90B FD ∠'=︒. ∵1122ABC S AC BC AB CE =⋅⋅=⋅⋅V ,∴AC BC AB CE ⋅=⋅.在Rt ABC V 中,根据勾股定理,得A B=5,∴123455CE CE ⋅=⋅⇒=.∴125EF CE ==.在Rt AEC V 中,根据勾股定理,得95AE ==,∴95ED AE ==.∴35DF EF ED =-=.在Rt B FD 'V 中,根据勾股定理,得45B F '===.故选B .7. (2015年江苏徐州3分)如图,菱形中,对角线AC 、BD 交于点O ,E 为AD 边中点,菱形ABCD 的周长为28,则OE 的长等于【 】A. 3.5B. 4C. 7D. 14 【答案】A.【考点】菱形的性质;直角三角形斜边上中线的性质.【分析】∵四边形ABCD 是菱形,且周长为28,∴7,AD AC BD =⊥ .∵E 为AD 边中点,∴根据直角三角形斜边上中线等于斜边 一半的性质,得 3.5OE =. 故选A.8. (2015年江苏盐城3分)将一块等腰直角三角板与一把直尺如图放置,若∠1=60°,则∠2的度数为【 】A. 85°B. 75°C. 60°D. 45° 【答案】B.【考点】等腰直角三角形的性质;三角形内角和定理;平行的性质. 【分析】如答图,∵ABC ∆是等腰直角三角形,∴45A ∠=︒. ∵在AIJ ∆中,∠1=60°,∴375∠=︒. ∵DE ∥GF ,∴2375∠=∠=︒. 故选B.9. (2015年江苏盐城3分)若一个等腰三角形的两边长分别是2和5,则它的周长为【 】A. 12B. 9C. 12或9D. 9或7 【答案】A.【考点】等腰三角形的性质;三角形构成条件;分类思想的应用.【分析】根据等腰三角形的性质,如果等腰三角形的两边长分别为2和5,则另一边可能是2或5.但根据三角形两边之和大于第三边,两边之差小于第三边的三边关系,2,2,5不构成三角形 因此这个等腰三角形的三边只能是2,5,5,周长为12. 故选A.10. (2015年江苏扬州3分)如图,若锐角△ABC 内接于⊙O ,点D 在⊙O 外(与点C 在AB 同侧), 则下列三个结论:①D C ∠>∠sin sin ;②D C ∠>∠cos cos ;③D C ∠>∠tan tan 中,正确的结论为【 】A. ①②B. ②③C. ①②③D. ①③ 【答案】D.【考点】圆周角定理;三角形外角性质;锐角三角函数的性质.【分析】如答图,设AD 与⊙O 相交于点E ,连接BE .∵,>C AEB AEB D ∠=∠∠∠ ,∴>C D ∠∠.∵正弦、正切函数值随锐角的增大而增大,余弦函数值随锐角的增大而减小, ∴sin sin C D ∠>∠, cos <cos C D ∠∠, tan tan C D ∠>∠. ∴正确的结论为①③. 故选D.11. (2015年江苏淮安3分)下列四组线段组成直角三角形的是【 】A. 1,2,3a b c ===B. 2,3,4a b c ===C. 2,4,5a b c ===D. 3,4,5a b c === 【答案】D.【考点】勾股定理逆定理.【分析】根据勾股定理逆定理,因为222345+=,所以能组成直角三角形的是3,4,5a b c === .故选D. 12. (2015年江苏南通3分)下列长度的三条线段能组成三角形的是【 】A. 5,6,10B. 5,6,11C. 3,4,8D. 4a ,4a ,8a (a >0) 【答案】A .【考点】三角形三边关系.【分析】根据三角形的三边关系对各选项进行逐一分析即可:A 、∵10﹣5<6<10+5,∴三条线段能构成三角形,故本选项正确;B 、∵11﹣5=6,∴三条线段不能构成三角形,故本选项错误;C 、∵3+4=7<8,∴三条线段不能构成三角形,故本选项错误;D 、∵4a +4a =8a ,∴三条线段不能构成三角形,故本选项错误. 故选A .13. (2015年江苏南通3分)如图,在平面直角坐标系中,直线OA 过点(2,1),则tan α的值是【 】12D. 2 【答案】C .【考点】坐标与图形性质;锐角三角函数定义.【分析】如答图,设(2,1)点是B ,过点B 作BC ⊥x 轴于点C .则OC=2,BC=1, ∴12BC tan OC α==. 故选C .14. (2015年江苏宿迁3分)若等腰三角形中有两边长分别为2和5,则这个三角形的周长为【 】A. 9B. 12C. 7或9D. 9或12 【答案】B .【考点】等腰三角形的性质;三角形三边关系;分类思想的应用..【分析】当腰为5时,根据三角形三边关系可知此情况成立,周长=5+5+2=12;当腰长为2时,根据三角形三边关系可知此情况不成立.所以这个三角形的周长是12.故选B.1. (2015年江苏连云港3分)在△ABC中,AB=4,AC=3,AD是△ABC的角平分线,则△ABD与△ACD的面积之比是▲ .【答案】43.【考点】角平分线的性质;等高三角形的面积.【分析】如图,过点D分别作AB、AC的高线DE、DF,∵AD是△ABC的角平分线,∴DE=DF.∵AB=4,AC=3,∴142132ABDACDAB DES ABS ACAC DF⋅==⋅VV=.2. (2015年江苏连云港3分)如图,在△ABC中,∠BAC=60°,∠ABC=90°,直线l1∥l2∥l3,l1与l2之间距离是1,l2与l3之间距离是2,且l1,l2,l3分别经过点A,B,C,则边AC的长为▲ ..【考点】平行线的性质;锐角三角函数定义;特殊角的三角函数值;相似三角形的判定和性质;勾股定理.【分析】如答图,过点B作EF⊥l2,交l1于E,交l3于F,∵∠BAC=60°,∠ABC=90°,∴BCtan BACAB∠==∵直线l1∥l2∥l3,∴EF⊥l1,EF⊥l3. ∴∠AEB=∠BFC=90°.∵∠ABC=90°,∴∠EAB=90°﹣∠ABE=∠FBC.∴△BFC∽△AEB,∴FC BC EB AB==∵EB=1,∴FC在Rt△BF C中,BC==.在Rt △ABC中,BCAC sin BAC===∠. 3. (2015年江苏苏州3分)如图,在△ABC 中,CD 是高,CE 是中线,CE =CB ,点A 、D 关于点F 对称,过点F 作FG ∥CD ,交AC 边于点G ,连接GE .若AC =18,BC =12,则△CEG 的周长为 ▲ .【答案】27.【考点】点对称的性质;等腰三角形的性质;三角形中位线的性质. 【分析】∵CE =CB ,BC =12,∴CE =CB =12.∵点E 是A B 的中点,∴EG 是△ABC 的中位线. ∴162GE BC ==. 又∵点A 、D 关于点F 对称,FG ∥CD ,∴FG 是△ADC 的中位线. ∵AC =18,∴192CG AC ==. ∴△CEG 的周长为:CE +GE +CG =12+6+9=27.4. (2015年江苏泰州3分)如图,△ABC 中,D 为BC 上一点,∠BAD =∠C ,AB =6,BD =4,则CD 的长为 ▲ .【答案】5.【考点】相似三角形的判定和性质.【分析】∵∠BAD =∠C ,∠B =∠B ,∴ABD CBA ∆∆∽.∴BD ABBA CB=. ∵AB =6,BD =4,∴4664DC =+,解得5DC =. 5. (2015年江苏泰州3分)如图, 矩形ABCD 中,AB =8,BC =6,P 为AD 上一点,将△ABP 沿BP 翻折至△EBP ,PE 与CD 相交于点O ,且OE =OD ,则AP 的长为 ▲ .【答案】245. 【考点】翻折变换(折叠问题);矩形的性质;折叠对称的性质;勾股定理,全等三角形的判定和性质;方程思想的应用.【分析】如答图,∵四边形ABCD 是矩形,∴90,6,8D A C AD BC CD AB ∠=∠=∠=︒==== . 根据折叠对称的性质,得ABP EBP ∆∆≌, ∴,90,8EP AP E A BE AB =∠=∠=︒== .在ODP ∆和OEG ∆中,∵D EOD OE DOP EOG ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴ODP ∆≌()OEG ASA ∆.∴,OP OG PG GE == . ∴DG EP =.设AP EP x ==,则6,PD GE x DG x ==-= ,∴()8,862CG x BG x x =-=--=+ . 在Rt BCG ∆中,根据勾股定理,得222BC CG BG +=,即()()222682x x +-=+.解得245x =. ∴AP 的长为245. 6. (2015年江苏无锡2分)命题“全等三角形的面积相等”的逆命题...是 ▲ 命题.(填“真”或“假”) 【答案】假.【考点】命题与定理;逆命题;真假的判定.【分析】把一个命题的条件和结论互换就得到它的逆命题;分析是否为真命题,需要分别分析题设是否能推出结论,如果能就是真命题.因此,“全等三角形的面积相等”的逆命题是“面积相等的三角形是全等三角形”,根据全等三角形的定义,不符合要求,因此是假命题.7. (2015年江苏无锡2分)已知:如图,AD 、BE 分别是△ABC 的中线和角平分线,AD ⊥BE ,AD =BE =6,则AC 的长等于 ▲ .. 【考点】三角形中位线定理;勾股定理;全等三角形的判定和性质;相似三角形的判定和性质;平行四边形的判定和性质.【分析】如答图所示,延长AD 至F ,使DF =AD ,过点F 作FG ∥BE 与AC 延长线交于点G ,过点C 作CH ∥BE ,交AF 于点H ,连接BF ,在Rt AFG V 中,2126AF AD FG BE ====,,根据勾股定理得:AG ==在BDF V 和CDA V 中,∵AD DF ADC FDB BD CD =⎧⎪∠=∠⎨⎪=⎩,∴BDF CDA SAS V V ≌(). ∴ACD BFD ∠=∠. ∴AG ∥BF . ∴四边形EBFG 是平行四边形. ∴6FG BE ==.在BOD V 和CHD V 中,∵BOD DHCODB HDC BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴BOD CHD AAS V V ≌().∴3OD DH ==. ∵CH ∥FG ,∴AHC AFG V V ∽.∴AC AHAG AF =912=,解得:2AC =.8. (2015年江苏徐州3分)如图,在△ABC 中,∠C =31°,∠ABC 的平分线BD 交AC 于点D ,如果DE 垂直平分BC ,那么∠A = ▲ °.【答案】87.【考点】线段垂直平分的性质;等腰三角形的性质;三角形内角和定理. 【分析】∵DE 垂直平分BC ,∴BD CD =.∵∠C =31°,∴31DBC C ∠=∠=︒.∵∠ABC 的平分线BD 交AC 于点D ,∴262ABC DBC ∠=∠=︒. ∴18087A ABC C ∠=︒-∠-∠=︒.9. (2015年江苏盐城3分)如图,在△ABC 与△ADC 中,已知AD =AB ,在不添加任何辅助线的前提下,要使△ABC ≌△ADC ,只需要再添加的一个条件可以是 ▲ .【答案】BAC DAC ∠=∠或BC DC =(答案不唯一). 【考点】开放型;全等三角形的判定.【分析】在△ABC 与△ADC 中,已知AD =AB ,又有公共边AC =AC ,因此,在不添加任何辅助线的前提下,根据SAS ,添加BAC DAC ∠=∠,可使△ABC ≌△ADC ; 根据SSS ,添加BC DC =,可使△ABC ≌△ADC . 答案不唯一.10. (2015年江苏盐城3分)如图,点D 、E 、F 分别是△ABC 各边的中点,连接DE 、EF 、DF ,若△ABC 的周长为10,则△DEF 的周长为 ▲ .【答案】5.【考点】三角形中位线定理.【分析】∵点D 、E 、F 分别是△ABC 各边的中点,∴111,,222DE AC DF BC EF BA === . ∵△ABC 的周长为10,∴△DEF 的周长为5.11. (2015年江苏盐城3分)设△ABC 的面积为1,如图①将边BC 、AC 分别2等份,1BE 、1AD 相交于点O ,△AOB 的面积记为1S ;如图②将边BC 、AC 分别3等份,1BE 、1AD 相交于点O ,△AOB 的面积记为2S ;……, 依此类推,则n S 可表示为 ▲ .(用含n 的代数式表示,其中n 为正整数)【答案】121n +. 【考点】探索规律题(图形的变化类);平行的判定和性质;相似三角形的判定和性质;等底或等高三角形面积的性质.【分析】如答图,连接11D E ,可知11D E ∥BA .在图①中,由题意,得11ABO OD E ∆∆∽,且1112D E BA =,∴1111123OE OB OE BE =⇒=.∴1AE O ∆和1BE A ∆的1AE 边上高的比是13.∴1111233AE O BE A ABO BE A S S S S ∆∆∆∆=⇒=.又∵112AE B ABC S S ∆∆=,∴1211323ABO ABC ABC S S S S ∆∆∆==⋅=.在图②中,由题意,得11ABO OD E ∆∆∽,且1123D E BA =,∴1112235OE OB OE BE =⇒=.∴1AE O ∆和1BE A ∆的1AE 边上高的比是25.∴1112355AE O BE A ABO BE A S S S S ∆∆∆∆=⇒=.又∵113AE B ABC S S ∆∆=,∴2311535ABO ABC ABC S S S S ∆∆∆==⋅=.在图③中,由题意,得11ABO OD E ∆∆∽,且1134D E BA =,∴1113347OE OB OE BE =⇒=.∴1AE O ∆和1BE A ∆的1AE 边上高的比是37.∴1113477AE O BE A ABO BE A S S S S ∆∆∆∆=⇒=.又∵114AE B ABC S S ∆∆=,∴3411747ABO ABC ABC S S S S ∆∆∆==⋅=.……依此类推, n S 可表示为121n ABC S S n ∆=+,∵1ABC S ∆=,∴121n S n =+.12. (2015年江苏扬州3分)如图,已知Rt △ABC 中,∠ABC =90°,AC =6,BC =4,将△ABC 绕直角顶点C 顺时针旋转90°得到△DEC ,若点F 是DE 的中点,连接AF ,则AF = ▲ .【答案】5.【考点】面动旋转问题;直角三角形斜边上中线的性质;等腰三角形的性质;三角形中位线定理;勾股定理.【分析】如答图,连接CF ,过点F 作FG AC ⊥于点G ,∵在Rt △ABC 中,∠ABC =90°,点F 是DE 的中点, ∴12CF EF DF DE ===.∴CEF ∆是等腰三角形. ∵将△ABC 绕直角顶点C 顺时针旋转90°得到△DEC ,BC =4,AC =6, ∴4,6CE CD == .∵FG AC ⊥,∴122EG CG CE ===.∴4AG AC CG =-=又∵G F 、分别是EC ED 、的中点,∴GF 是△DEC 的中位线.∴132GF CD ==.在Rt △AGF 中,∵4AG =,3GF =,∴由勾股定理,得AF =5.13. (2015年江苏扬州3分)如图,已知△ABC 的三边长为a b c 、、,且<<a b c ,若平行于三角形一边的直线l 将△ABC 的周长分成相等的两部分,设图中的小三角形①、②、③的面积分别为123s s s 、、,则123s s s 、、的大小关系是 ▲ (用“<”号连接).【答案】132<<s s s .【考点】阅读理解型问题;代数几何综合问题;图形的分割;平行的性质;相似三角形的判定和性质;不等式的性质.【分析】设△ABC 的周长为m ,面积为S ,如答图,设,AD x AE y == ,则,BD c x CE b y =-=- . ∵平行于三角形一边的直线l 将△ABC 的周长分成相等的两部分, ∴AD AE BD CE BC +=++,即x y c x b y a +=-+-+. ∴()1122x y a b c m +=++=. ∵DC ∥BC ,∴ADE ABC ∆∆∽.∴21s AD S AB ⎛⎫= ⎪⎝⎭且()122m AD AE AD AE x y mAB AC AB AC c b b c b c ++=====++++.()2mb c =+.()2m a b =+()2ma c =+. ∵<<abc ,∴()()()0<<<<<<222m m ma b a c b c b c a c b c +++⇒⇒+++∴132<<s s s .14. (2015年江苏常州2分)如图,在△ABC 中,DE ∥BC ,AD :DB =1:2,DE =2,则BC 的长是 ▲ .【答案】6.【考点】相似三角形的判定和性质..【分析】∵DE ∥BC ,∴ADE ABC ∆∆∽.∴AD DEAB BC =. ∵AD :DB =1:2,DE =2,∴12612BC BC=⇒=+.15. (2015年江苏常州2分)如图是根据某公园的平面示意图建立的平面直角坐标系,公园的入口位于坐标原点O ,古塔位于点A (400,300),从古塔出发沿射线OA 方向前行300m 是盆景园B ,从盆景园B 向左转90°后直行400m 到达梅花阁C ,则点C 的坐标是 ▲ .【答案】(400,800).【考点】全等三角形的判定和性质;勾股定理的应用;坐标确定位置. 【分析】如答图,连接AC ,∵A (400,300),∴OD =400m ,AD =300m. 由题意可得:AB =300m ,BC =400m ,在△AOD 和△ACB 中,∵090AD ABODA ABC DO BC =⎧⎪∠=∠=⎨⎪=⎩,∴△AOD ≌△ACB (SAS ).∴∠CAB =∠OAD .∵B 、O 在一条直线上,∴C 、A 、D 也在一条直线上. ∴AC=AO =500m , CD =AC =AD =800m. ∴C 点坐标为:(400,800).16. (2015年江苏淮安3分)如图,A 、B 两地被一座小山阻隔,为了测量A 、B 两地之间的距离,在地面上选一点C ,连接CA 、CB ,分别取CA 、CB 的中点D 、E ,测得DE 的长度为360米,则A 、B 两地之间的距离是 ▲ 米.【答案】720.【考点】三角形中位线定理.【分析】根据三角形中位线求出AB =2DE ,代入求出即可:∵D 、E 分别是AC 、BC 的中点,DE =360米, ∴AB =2DE =720米.17. (2015年江苏南通3分)如图,△ABC 中,D 是BC 上一点,AC =AD =DB ,∠BAC =102°,则∠ADC = ▲ 度.【答案】52.【考点】等腰三角形的性质。
2015年中考数学真题----解直角三角形
解直角三角形一.选择题1,(2015威海,第2题4分)【答案】D【解析】根据三角函数的定义,边AC=BCtan26其按键顺序正确的是【备考指导】本题考查了解直角三角形的知识,解答本题的关键是利用三角函数的知识解直角三角形,求解相关线段的长度,难度一般.2.(2015·湖南省衡阳市,第12题3分)如图,为了测得电视塔的高度AB,在D处用高为1米的测角仪CD,测得电视塔顶端A的仰角为30°,再向电视塔方向前进100米到达F处,又测得电视塔顶端A的仰角为60°,则这个电视塔的高度AB(单位:米)为().A.B.51 C.D.1013. (2015•浙江滨州,第12题3分)如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转.若∠BOA的两边分别与函数、的图象交于B、A两点,则∠OAB大小的变化趋势为( )A.逐渐变小B.逐渐变大C.时大时小D.保持不变【答案】D考点:反比例函数,三角形相似,解直角三角形5. (2015•绵阳第10题,3分)如图,要在宽为22米的九州大道两边安装路灯,路灯的灯臂CD长2米,且与灯柱BC成120°角,路灯采用圆锥形灯罩,灯罩的轴线DO与灯臂CD 垂直,当灯罩的轴线DO通过公路路面的中心线时照明效果最佳,此时,路灯的灯柱BC高度应该设计为()A.(11﹣2)米B.(11﹣2)米C.(11﹣2)米D.(11﹣4)米考点:解直角三角形的应用..分析:出现有直角的四边形时,应构造相应的直角三角形,利用相似求得PB、PC,再相减即可求得BC长.解答:解:如图,延长OD,BC交于点P.∵∠ODC=∠B=90°,∠P=30°,OB=11米,CD=2米,∴在直角△CPD中,DP=DC•cot30°=2m,PC=CD÷(sin30°)=4米,∵∠P=∠P,∠PDC=∠B=90°,∴△PDC∽△PBO,∴=,∴PB===11米,∴BC=PB﹣PC=(11﹣4)米.故选:D.点评:本题通过构造相似三角形,综合考查了相似三角形的性质,直角三角形的性质,锐角三角函数的概念.6.(2015•山东日照,第10题4分)如图,在直角△BAD中,延长斜边BD到点C,使DC=BD,连接AC,若tanB=,则tan∠CAD的值()A.B.C.D.考点:解直角三角形..分析:延长AD,过点C作CE⊥AD,垂足为E,由tanB=,即=,设AD=5x,则AB=3x,然后可证明△CDE∽△BDA,然后相似三角形的对应边成比例可得:,进而可得CE=x,DE=,从而可求tan∠CAD==.解答:解:如图,延长AD,过点C作CE⊥AD,垂足为E,∵tanB=,即=,∴设AD=5x,则AB=3x,∵∠CDE=∠BDA,∠CED=∠BAD,∴△CDE∽△BDA,∴,∴CE=x,DE=,∴AE=,∴tan∠CAD==.故选D.点评:本题考查了锐角三角函数的定义,相似三角形的判定和性质以及直角三角形的性质,是基础知识要熟练掌握,解题的关键是:正确添加辅助线,将∠CAD放在直角三角形中.7.(2015•山东聊城,第10题3分)湖南路大桥于今年5月1日竣工,为徒骇河景区增添了一道亮丽的风景线.某校数学兴趣小组用测量仪器测量该大桥的桥塔高度,在距桥塔AB底部50米的C处,测得桥塔顶部A的仰角为41.5°(如图).已知测量仪器CD的高度为1米,则桥塔AB的高度约为()A.34米B.38米C. 45米D.50米考点:解直角三角形的应用-仰角俯角问题..分析:Rt△ADE中利用三角函数即可求得AE的长,则AB的长度即可求解.解答:解:过D作DE⊥AB于E,∴DE=BC=50米,在Rt△ADE中,AE=DE•tan41,5°≈50×0.88=44(米),∵CD=1米,∴BE=1米,∴AB=AE+BE=44+1=45(米),∴桥塔AB的高度为45米.点评:本题考查仰角的定义,注意能借助仰角构造直角三角形并解直角三角形是解此题的关键,注意数形结合思想的应用.8(2015山东济宁,9,3分)如图,斜面AC的坡度(CD与AD的比)为1:2,AC=米,坡顶有一旗杆BC,旗杆顶端B点与A点有一条彩带相连,若AB=10米,则旗杆BC的高度为( )A.5米B.6米C. 8米D. 米【答案】A考点:解直角三角形二.填空题1. (2015•浙江滨州,第14题4分)如图,菱形ABCD的边长为15,sin∠BAC=,则对角线AC的长为.【答案】24考点:菱形的性质,解直角三角形2. (2015•绵阳第18题,3分)如图,在等边△ABC内有一点D,AD=5,BD=6,CD=4,将△ABD绕A点逆时针旋转,使AB与AC重合,点D旋转至点E,则∠CDE的正切值为3.考点:旋转的性质;等边三角形的性质;解直角三角形..专题:计算题.分析:先根据等边三角形的性质得AB=AC,∠BAC=60°,再根据旋转的性质得AD=AE=5,∠DAE=∠BNAC=60°,CE=BD=6,于是可判断△ADE为等边三角形,得到DE=AD=5;过E 点作EH⊥CD于H,如图,设DH=x,则CH=4﹣x,利用勾股定理得到52﹣x2=62﹣(4﹣x)2,解得x=,再计算出EH,然后根据正切的定义求解.解答:解:∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,∵△ABD绕A点逆时针旋转得△ACE,∴AD=AE=5,∠DAE=∠BNAC=60°,CE=BD=6,∴△ADE为等边三角形,∴DE=AD=5,过E点作EH⊥CD于H,如图,设DH=x,则CH=4﹣x,在Rt△DHE中,EH2=52﹣x2,在Rt△DHE中,EH2=62﹣(4﹣x)2,∴52﹣x2=62﹣(4﹣x)2,解得x=,∴EH==,在Rt△EDH中,tan∠HDE===3,即∠CDE的正切值为3.故答案为:3.点评:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的性质和解直角三角形.3.(2015•广东广州,第15题3分)如图,△ABC中,DE是BC的垂直平分线,DE交AC于点E,连接BE.若BE=9,BC=12,则cosC= .考点:线段垂直平分线的性质;解直角三角形.分析:根据线段垂直平分线的性质,可得出CE=BE,再根据等腰三角形的性质可得出CD=BD,从而得出CD:CE,即为cos C.解答:解:∵DE是BC的垂直平分线,∴CE=BE,∴CD=BD,∵BE=9,BC=12,∴CD=6,CE=9,∴cosC===,故答案为.点评:本题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.4. (2015•四川省内江市,第22题,6分)在△ABC中,∠B=30°,AB=12,AC=6,则BC= 6.考点:含30度角的直角三角形;勾股定理..分析:由∠B=30°,AB=12,AC=6,利用30°所对的直角边等于斜边的一半易得△ABC是直角三角形,利用勾股定理求出BC的长.解答:解:∵∠B=30°,AB=12,AC=6,∴△ABC是直角三角形,∴BC===6,故答案为:6.°点评:此题考查了含30°直角三角形的性质,以及勾股定理,熟练掌握性质及定理是解本题的关键.5.(2015•山东东营,第14题3分)4月26日,2015黄河口(东营)国际马拉松比赛拉开帷幕,中央电视台体育频道用直升机航拍技术全程直播.如图,在直升机的镜头下,观测马拉松景观大道A处的俯角为,B处的俯角为.如果此时直升机镜头C处的高度CD为200米,点A、D、B在同一直线上,则AB两点的距离是米.【答案】200(+1)【解析】试题分析:∵∠CDA=∠CDB=90°,∠A=30°,∠B=45°,∴AD=CD=200,BD=CD=200,∴AB=AD+BD=200(+1)(米);考点:解直角三角形的应用.6.(2015湖南邵阳第17题3分)如图,某登山运动员从营地A沿坡角为30°的斜坡AB到达山顶B,如果AB=2000米,则他实际上升了1000米.考点:解直角三角形的应用-坡度坡角问题..分析:过点B作BC⊥水平面于点C,在Rt△ABC中,根据AB=200米,∠A=30°,求出BC的长度即可.解答:解:过点B作BC⊥水平面于点C,在Rt△ABC中,∵AB=2000米,∠A=30°,∴BC=ABsin30°=2000×=1000.故答案为:1000.点评:本题考查了解直角三角形的应用,解答本题的关键是根据坡角构造直角三角形,利用三角函数的知识进行求解.7.(2015湖北荆州第15题3分)15.如图,小明在一块平地上测山高,先在B处测得山顶A的仰角为30°,然后向山脚直行100米到达C处,再测得山顶A的仰角为45°,那么山高AD为137米(结果保留整数,测角仪忽略不计,≈1.414,,1.732)考点:解直角三角形的应用-仰角俯角问题.专题:计算题.分析:根据仰角和俯角的定义得到∠ABD=30°,∠ACD=45°,设AD=xm,先在Rt△ACD中,利用∠ACD的正切可得CD=AD=x,则BD=BC+CD=x+100,然后在Rt△ABD 中,利用∠ABD的正切得到x=(x+100),解得x=50(+1),再进行近似计算即可.解答:解:如图,∠ABD=30°,∠ACD=45°,BC=100m,设AD=xm,在Rt△ACD中,∵tan∠ACD=,∴CD=AD=x,∴BD=BC+CD=x+100,在Rt△ABD中,∵tan∠ABD=,∴x=(x+100),∴x=50(+1)≈137,即山高AD为137米.故答案为137.点评:本题考查了解直角三角形﹣的应用﹣仰角俯角:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.8.(2015•江苏南昌,第13题3分)如图1是小志同学书桌上的一个电子相框,将其侧面抽象为如图2所示的几何图形,已知BC =BD =15cm , ∠CBD =40°,则点B 到CD 的距离为 cm (参考数据:sin 20°≈ 0.342, com 20°≈0.940, sin 40°≈ 0.643, com 40°≈ 0.766.精确到0.1cm ,可用科学计算器).((第13题)图2图1OABCP答案:解析:如右图,作BE ⊥CD 于点E .∵BC =BD , BE ⊥CD ,∴∠CBE =∠DBE =20°, 在Rt △BCD中,cos ,BEDBE=BDÐ ∴cos BE 2015?, ∴BE ≈15×0.940=14.19.(2015•江苏南昌,第14题3分)如图,在△ABC 中,AB =BC =4,AO=BO ,P 是射线CO 上的一个动点,∠AOC =60°,则当△P AB 为直角三角形时,AP 的长为 .(第14题)AB答案:解析:如图,分三种情况讨论:图(1)中,∠APB =90°,∵AO =BO , ∠APB =90°,∴PO =AO =BO =2, 又∠AOC =60°, ∴△APO 是等边三角形,(1)BA(2)BA∴AP=2;图(2)中,∠APB=90°,∵AO=BO, ∠APB=90°,∴PO=AO=BO=2, 又∠AOC=60°, ∴∠BAP=30°,在Rt△ABP中,AP=cos30°×4=23.图(3)中,∠ABP=90°, ∵BO=AO=2 , ∠BOP=∠AOC=60°,∴PB=23, ∴AP=()2242327+=∴AP的长为2,23或2710. (2015•浙江金华,第16题4分)图1是一张可以折叠的小床展开后支撑起来放在地面的示意图,此时,点A,B,C在同一直线上,且∠ACD=90°.图2是小床支撑脚CD折叠的示意图,在折叠过程中,ΔACD变形为四边形ABC'D',最后折叠形成一条线段BD".(1)小床这样设计应用的数学原理是▲(2)若AB:BC=1:4,则tan∠CAD的值是▲【答案】(1)三角形的稳定性和四边形的不稳定性;(2)815.【考点】线动旋转问题;三角形的稳定性;旋转的性质;勾股定理;锐角三角函数定义.【分析】(1)在折叠过程中,由稳定的ΔACD变形为不稳定四边形ABC'D',最后折叠形成一条线段BD",小床这样设计应用的数学原理是:三角形的稳定性和四边形的不稳定性。
2015年上海中考数学专题-等腰相似直角三角形存在性问题试题一和参考答案
2015年上海中考数学专题-等腰相似直角三角形存在性问题试题一和参考答案研究创造才智,知识成就未来。
以下是上海市初中数学考试的几道题目。
题目一:等腰相似直角三角形存在性问题给定顶点为P(4,-4)的二次函数图像,经过原点,并且点A在该图像上。
连接OA与对称轴l的交点为M,点M和N 关于点P对称,连接AN和ON。
1) 求该二次函数的关系式。
2) 若点A的坐标是(6,-3),求△ANO的面积。
3) 当点A在对称轴l右侧的二次函数图像上运动时,请回答以下问题:①证明:∠ANM=∠XXX。
②△ANO能否为直角三角形?如果能,请求出所有符合条件的点A的坐标,如果不能,请说明理由。
题目二:等腰三角形的存在性问题在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△XXX与△XXX重合在一起,△XXX不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE、始终经过点A,EF与AC交于M点。
1) 求证:△ABE∽△ECM。
2) 探究:在△DEF运动过程中,重叠部分能否构成等腰三角形?若能,请求出BE的长;若不能,请说明理由。
3) 当线段AM最短时,求重叠部分的面积。
题目三:抛物线问题已知抛物线y=3/2x^2+bx+63经过A(2,0)。
设顶点为点P,与x轴的另一交点为点B。
1) 求b的值,求出点P、点B的坐标。
2) 如图,在直线y=3x上是否存在点D,使四边形OPBD 为平行四边形?若存在,求出点D的坐标;若不存在,请说明理由。
3) 在x轴下方的抛物线上是否存在点M,使△AMP≌△AMB?如果存在,请举例验证你的猜想;如果不存在,请说明理由。
题目四:三角形问题在△ABC中,∠ABC=45°,tan∠ACB=1.把△XXX的一边BC放置在x轴上,有OB=14,OC=AC与y轴交于点E。
1) 求AC所在直线的函数解析式。
2) 过点O作OG⊥AC,垂足为G,求△OEG的面积。
人教版八年级数学上册第11-20章 三角形 2015年中考试题汇编含精讲解析-28
18.1 平行四边形1一.选择题(共17小题)1.(2015•河北)如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③B.②⑤C.①③④D.④⑤2.(2015•山西)如图,在△ABC中,点D、E分别是边AB,BC的中点.若△DBE的周长是6,则△ABC的周长是()A.8 B.10 C.12 D.143.(2015•铁岭)如图,点D、E、F分别为△ABC各边中点,下列说法正确的是()A.DE=DF B.EF=AB C.S△ABD=S△ACD D.AD平分∠BAC4.(2015•安顺)如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:25.(2015•衢州)如图,在▱ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC边于点E,则CE的长等于()A.8cm B.6cm C.4cm D.2cm6.(2015•玉林)如图,在▱ABCD中,BM是∠ABC的平分线交CD于点M,且MC=2,▱ABCD的周长是在14,则DM等于()A.1 B. 2 C. 3 D. 47.(2015•绥化)如图,▱ABCD的对角线AC、BD交于点O,AE平分∠BAD交BC于点E,=AB•AC;③OB=AB;且∠ADC=60°,AB=BC,连接OE.下列结论:①∠CAD=30°;②S▱ABCD④OE=BC,成立的个数有()A.1个B.2个C.3个D.4个8.(2015•河南)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()A.4 B. 6 C.8 D.109.(2015•本溪)如图,▱ABCD的周长为20cm,AE平分∠BAD,若CE=2cm,则AB的长度是()A.10cm B.8cm C.6cm D.4cm10.(2015•福建)如图,在▱ABCD中,O是对角线AC,BD的交点,下列结论错误的是()A.AB∥CD B.AB=CD C.AC=BD D.OA=OC11.(2015•营口)▱ABCD中,对角线AC与BD交于点O,∠DAC=42°,∠CBD=23°,则∠COD是()A.61° B.63° C.65° D.67°12.(2015•巴彦淖尔)如图,P为平行四边形ABCD的边AD上的一点,E,F分别为PB,PC的中点,△PEF,△PDC,△PAB的面积分别为S,S1,S2.若S=3,则S1+S2的值为()A.24 B.12 C.6 D.313.(2015•陕西)在▱ABCD中,AB=10,BC=14,E,F分别为边BC,AD上的点,若四边形AECF为正方形,则AE的长为()A.7 B.4或10 C.5或9 D.6或814.(2015•常州)如图,▱ABCD的对角线AC、BD相交于点O,则下列说法一定正确的是()A.AO=OD B.AO⊥OD C.AO=OC D.AO⊥AB15.(2015•淄博)如图,在平行四边形ABCD中,∠B=60°,将△ABC沿对角线AC折叠,点B的对应点落在点E处,且点B,A,E在一条直线上,CE交AD于点F,则图中等边三角形共有()A.4个B.3个C.2个D.1个16.(2015•连云港)已知四边形ABCD,下列说法正确的是()A.当AD=BC,AB∥DC时,四边形ABCD是平行四边形B.当AD=BC,AB=DC时,四边形ABCD是平行四边形C.当AC=BD,AC平分BD时,四边形ABCD是矩形D.当AC=BD,AC⊥BD时,四边形ABCD是正方形17.(2015•绵阳)如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD的面积为()A.6 B.12 C.20 D.24二.填空题(共13小题)18.(2015•泰安)如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点.若AB=8,AD=12,则四边形ENFM的周长为.19.(2015•巴中)如图,在△ABC中,AB=5,AC=3,AD、AE分别为△ABC的中线和角平分线,过点C作CH⊥AE于点H,并延长交AB于点F,连结DH,则线段DH的长为.20.(2015•盐城)如图,点D、E、F分别是△ABC各边的中点,连接DE、EF、DF.若△ABC的周长为10,则△DEF的周长为.21.(2015•无锡)已知:如图,AD、BE分别是△ABC的中线和角平分线,AD⊥BE,AD=BE=6,则AC的长等于.22.(2015•宿迁)如图,在Rt△ABC中,∠ACB=90°,点D,E,F分别为AB,AC,BC 的中点.若CD=5,则EF的长为.23.(2015•广州)如图,四边形ABCD中,∠A=90°,AB=3,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为.24.(2015•云南)如图,在△ABC中,BC=1,点P1,M1分别是AB,AC边的中点,点P2,M2分别是AP1,AM1的中点,点P3,M3分别是AP2,AM2的中点,按这样的规律下去,P n M n的长为(n为正整数).25.(2015•珠海)如图,在△A1B1C1中,已知A1B1=7,B1C1=4,A1C1=5,依次连接△A1B1C1三边中点,得△A2B2C2,再依次连接△A2B2C2的三边中点得△A3B3C3,…,则△A5B5C5的周长为.26.(2015•衢州)如图,小聪与小慧玩跷跷板,跷跷板支架高EF为0.6米,E是AB的中点,那么小聪能将小慧翘起的最大高度BC等于米.27.(2015•昆明)如图,在△ABC中,AB=8,点D、E分别是BC、CA的中点,连接DE,则DE=.28.(2015•陕西)如图,AB是⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是.29.(2015•衡阳)如图所示,小明为了测量学校里一池塘的宽度AB,选取可以直达A、B 两点的点O处,再分别取OA、OB的中点M、N,量得MN=20m,则池塘的宽度AB为m.30.(2015•苏州)如图,在△ABC中,CD是高,CE是中线,CE=CB,点A、D关于点F 对称,过点F作FG∥CD,交AC边于点G,连接GE.若AC=18,BC=12,则△CEG的周长为.18.1 平行四边形1参考答案与试题解析一.选择题(共17小题)1.(2015•河北)如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③B.②⑤C.①③④D.④⑤考点:三角形中位线定理;平行线之间的距离.分析:根据三角形的中位线平行于第三边并且等于第三边的一半可得MN=AB,从而判断出①不变;再根据三角形的周长的定义判断出②是变化的;确定出点P到MN的距离不变,然后根据等底等高的三角形的面积相等确定出③不变;根据平行线间的距离相等判断出④不变;根据角的定义判断出⑤变化.解答:解:∵点A,B为定点,点M,N分别为PA,PB的中点,∴MN是△PAB的中位线,∴MN=AB,即线段MN的长度不变,故①错误;PA、PB的长度随点P的移动而变化,所以,△PAB的周长会随点P的移动而变化,故②正确;∵MN的长度不变,点P到MN的距离等于l与AB的距离的一半,∴△PMN的面积不变,故③错误;直线MN,AB之间的距离不随点P的移动而变化,故④错误;∠APB的大小点P的移动而变化,故⑤正确.综上所述,会随点P的移动而变化的是②⑤.故选B.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,等底等高的三角形的面积相等,平行线间的距离的定义,熟记定理是解题的关键.2.(2015•山西)如图,在△ABC中,点D、E分别是边AB,BC的中点.若△DBE的周长是6,则△ABC的周长是()A.8 B.10 C.12 D.14考点:三角形中位线定理.分析:首先根据点D、E分别是边AB,BC的中点,可得DE是三角形BC的中位线,然后根据三角形中位线定理,可得DE=AC,最后根据三角形周长的含义,判断出△ABC的周长和△DBE的周长的关系,再结合△DBE的周长是6,即可求出△ABC的周长是多少.解答:解:∵点D、E分别是边AB,BC的中点,∴DE是三角形BC的中位线,AB=2BD,BC=2BE,∴DE∥BC且DE=AC,又∵AB=2BD,BC=2BE,∴AB+BC+AC=2(BD+BE+DE),即△ABC的周长是△DBE的周长的2倍,∵△DBE的周长是6,∴△ABC的周长是:6×2=12.故选:C.点评:(1)此题主要考查了三角形中位线定理的应用,要熟练掌握,解答此题的关键是要明确:三角形的中位线平行于第三边,并且等于第三边的一半.(2)此题还考查了三角形的周长和含义的求法,要熟练掌握.3.(2015•铁岭)如图,点D、E、F分别为△ABC各边中点,下列说法正确的是()A.DE=DF B.EF=AB C.S△ABD=S△ACD D.AD平分∠BAC考点:三角形中位线定理.分析:根据三角形中位线定理逐项分析即可.解答:解:A、∵点D、E、F分别为△ABC各边中点,∴DE=AC,DF=AB,∵AC≠AB,∴DE≠DF,故该选项错误;B、由A选项的思路可知,B选项错误、C、∵S△ABD=BD•h,S△ACD=CD•h,BD=CD,∴S△ABD=S△ACD,故该选项正确;D、∵BD=CD,AB≠AC,∴AD不平分∠BAC,故选C.点评:本题考查了三角形中位线定理的运用,解题的根据是熟记其定理:三角形的中位线平行于第三边,并且等于第三边的一半.4.(2015•安顺)如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2 B.3:1 C.1:1 D.1:2考点:平行四边形的性质;相似三角形的判定与性质.专题:几何图形问题.分析:根据题意得出△DEF∽△BCF,进而得出=,利用点E是边AD的中点得出答案即可.解答:解:∵▱ABCD,故AD∥BC,∴△DEF∽△BCF,∴=,∵点E是边AD的中点,∴AE=DE=AD,∴=.故选:D.点评:此题主要考查了平行四边形的性质以及相似三角形的判定与性质等知识,得出△DEF ∽△BCF是解题关键.5.(2015•衢州)如图,在▱ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC边于点E,则CE的长等于()A.8cm B.6cm C.4cm D.2cm考点:平行四边形的性质.分析:由平行四边形的性质得出BC=AD=12cm,AD∥BC,得出∠DAE=∠BEA,证出∠BEA=∠BAE,得出BE=AB,即可得出CE的长.解答:解:∵四边形ABCD是平行四边形,∴BC=AD=12cm,AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BEA=∠BAE,∴BE=AB=8cm,∴CE=BC﹣BE=4cm;故答案为:C.点评:本题考查了平行四边形的性质、等腰三角形的判定;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.6.(2015•玉林)如图,在▱ABCD中,BM是∠ABC的平分线交CD于点M,且MC=2,▱ABCD的周长是在14,则DM等于()A.1 B.2 C. 3 D. 4考点:平行四边形的性质.分析:根据BM是∠ABC的平分线和AB∥CD,求出BC=MC=2,根据▱ABCD的周长是14,求出CD=5,得到DM的长.解答:解:∵BM是∠ABC的平分线,∴∠ABM=∠CBM,∵AB∥CD,∴∠ABM=∠BMC,∴∠BMC=∠CBM,∴BC=MC=2,∵▱ABCD的周长是14,∴BC+CD=7,∴CD=5,则DM=CD﹣MC=3,故选:C.点评:本题考查的是平行四边形的性质和角平分线的定义,根据平行四边形的对边相等求出BC+CD是解题的关键,注意等腰三角形的性质的正确运用.7.(2015•绥化)如图,▱ABCD的对角线AC、BD交于点O,AE平分∠BAD交BC于点E,且∠ADC=60°,AB=BC,连接OE.下列结论:①∠CAD=30°;②S=AB•AC;③OB=AB;▱ABCD④OE=BC,成立的个数有()A.1个B.2个C.3个D.4个考点:平行四边形的性质;等腰三角形的判定与性质;等边三角形的判定与性质;含30度角的直角三角形.分析:由四边形ABCD是平行四边形,得到∠ABC=∠ADC=60°,∠BAD=120°,根据AE 平分∠BAD,得到∠BAE=∠EAD=60°推出△ABE是等边三角形,由于AB=BC,得到AE=BC,得到△ABC是直角三角形,于是得到∠CAD=30°,故①正确;由于AC⊥AB,=AB•AC,故②正确,根据AB=BC,OB=BD,且BD>BC,得到AB≠OB,得到S▱ABCD故③错误;根据三角形的中位线定理得到OE=AB,于是得到OE=BC,故④正确.解答:解:∵四边形ABCD是平行四边形,∴∠ABC=∠ADC=60°,∠BAD=120°,∵AE平分∠BAD,∴∠BAE=∠EAD=60°∴△ABE是等边三角形,∴AE=AB=BE,∵AB=BC,∴AE=BC,∴∠BAC=90°,∴∠CAD=30°,故①正确;∵AC⊥AB,=AB•AC,故②正确,∴S▱ABCD∵AB=BC,OB=BD,∵BD>BC,∴AB≠OB,故③错误;∵CE=BE,CO=OA,∴OE=AB,∴OE=BC,故④正确.故选C.点评:本题考查了平行四边形的性质,等边三角形的判定和性质,直角三角形的性质,平行四边形的面积公式,熟练掌握性质定理和判定定理是解题的关键.8.(2015•河南)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()A.4 B. 6 C.8 D.10考点:平行四边形的性质;等腰三角形的判定与性质;勾股定理;作图—基本作图.专题:计算题.分析:由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到AO ⊥BF,BO=FO=BF=3,再根据平行四边形的性质得AF∥BE,所以∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长.解答:解:连结EF,AE与BF交于点O,如图,∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,而BO⊥AE,∴AO=OE,在Rt△AOB中,AO===4,∴AE=2AO=8.故选C.点评:本题考查了平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.也考查了等腰三角形的判定与性质和基本作图.9.(2015•本溪)如图,▱ABCD的周长为20cm,AE平分∠BAD,若CE=2cm,则AB的长度是()A.10cm B.8cm C.6cm D.4cm考点:平行四边形的性质.分析:根据平行四边形的性质得出AB=CD,AD=BC,AD∥BC,推出∠DAE=∠BAE,求出∠BAE=∠AEB,推出AB=BE,设AB=CD=xcm,则AD=BC=(x+2)cm,得出方程x+x+2=10,求出方程的解即可.解答:解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,AD∥BC,∴∠DAE=∠BAE,∵AE平分∠BAD,∴∠DAE=∠BAE,∴∠BAE=∠AEB,∴AB=BE,设AB=CD=xcm,则AD=BC=(x+2)cm,∵▱ABCD的周长为20cm,∴x+x+2=10,解得:x=4,即AB=4cm,故选D.点评:本题考查了平行四边形的在,平行线的性质,等腰三角形的判定的应用,解此题的关键是能推出AB=BE,题目比较好,难度适中.10.(2015•福建)如图,在▱ABCD中,O是对角线AC,BD的交点,下列结论错误的是()A.AB∥CD B.AB=CD C.AC=BD D.OA=OC考点:平行四边形的性质.分析:根据平行四边形的性质推出即可.解答:解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,OA=OC,但是AC和BD不一定相等,故选C.点评:本题考查了平行四边形的性质的应用,能熟记平行四边形的性质是解此题的关键,注意:平行四边形的对边相等且平行,平行四边形的对角线互相平分.11.(2015•营口)▱ABCD中,对角线AC与BD交于点O,∠DAC=42°,∠CBD=23°,则∠COD是()A.61° B.63° C.65° D.67°考点:平行四边形的性质.分析:由平行四边形的性质可知:AD∥BC,进而可得∠DAC=∠BCA,再根据三角形外角和定理即可求出∠COD的度数.解答:解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠BCA=42°,∴∠COD=∠CBD+∠BCA=65°,故选C.点评:本题考查了平行四边形的性质以及三角形的外角和定理,题目比较简单,解题的关键是灵活运用平行四边形的性质,将四边形的问题转化为三角形问题.12.(2015•巴彦淖尔)如图,P为平行四边形ABCD的边AD上的一点,E,F分别为PB,PC的中点,△PEF,△PDC,△PAB的面积分别为S,S1,S2.若S=3,则S1+S2的值为()A.24 B.12 C.6 D.3考点:平行四边形的性质;三角形中位线定理.分析:过P作PQ平行于DC,由DC与AB平行,得到PQ平行于AB,可得出四边形PQCD 与ABQP都为平行四边形,进而确定出△PDC与△PCQ面积相等,△PQB与△ABP面积相等,再由EF为△BPC的中位线,利用中位线定理得到EF为BC的一半,且EF平行于BC,得出△PEF与△PBC相似,相似比为1:2,面积之比为1:4,求出△PBC的面积,而△PBC 面积=△CPQ面积+△PBQ面积,即为△PDC面积+△PAB面积,即为平行四边形面积的一半,即可求出所求的面积.解答:解:过P作PQ∥DC交BC于点Q,由DC∥AB,得到PQ∥AB,∴四边形PQCD与四边形APQB都为平行四边形,∴△PDC≌△CQP,△ABP≌△QPB,∴S△PDC=S△CQP,S△ABP=S△QPB,∵EF为△PCB的中位线,∴EF∥BC,EF=BC,∴△PEF∽△PBC,且相似比为1:2,∴S△PEF:S△PBC=1:4,S△PEF=3,∴S△PBC=S△CQP+S△QPB=S△PDC+S△ABP=S1+S2=12.故选:B.点评:此题考查了平行四边形的性质,相似三角形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.13.(2015•陕西)在▱ABCD中,AB=10,BC=14,E,F分别为边BC,AD上的点,若四边形AECF为正方形,则AE的长为()A.7 B.4或10 C.5或9 D.6或8考点:平行四边形的性质;勾股定理;正方形的性质.专题:分类讨论.分析:设AE的长为x,根据正方形的性质可得BE=14﹣x,根据勾股定理得到关于x的方程,解方程即可得到AE的长.解答:解:如图:设AE的长为x,根据正方形的性质可得BE=14﹣x,在△ABE中,根据勾股定理可得x2+(14﹣x)2=102,解得x1=6,x2=8.故AE的长为6或8.故选:D.点评:考查了平行四边形的性质,正方形的性质,勾股定理,关键是根据勾股定理得到关于AE的方程.14.(2015•常州)如图,▱ABCD的对角线AC、BD相交于点O,则下列说法一定正确的是()A.AO=OD B.AO⊥OD C.AO=OC D.AO⊥AB考点:平行四边形的性质.分析:根据平行四边形的性质:对边平行且相等,对角线互相平分进行判断即可.解答:解:对角线不一定相等,A错误;对角线不一定互相垂直,B错误;对角线互相平分,C正确;对角线与边不一定垂直,D错误.故选:C.点评:本题考查度数平行四边形的性质,掌握平行四边形的对边平行且相等,对角线互相平分是解题的关键.15.(2015•淄博)如图,在平行四边形ABCD中,∠B=60°,将△ABC沿对角线AC折叠,点B的对应点落在点E处,且点B,A,E在一条直线上,CE交AD于点F,则图中等边三角形共有()A.4个B.3个C.2个D.1个考点:平行四边形的性质;等边三角形的判定;翻折变换(折叠问题).分析:根据折叠的性质可得∠E=∠B=60°,进而可证明△BEC是等边三角形,再根据平行四边形的性质可得:AD∥BC,所以可得∠EAF=60°,进而可证明△EFA是等边三角形,由等边三角形的性质可得∠EFA=∠DFC=60°,又因为∠D=∠B=60°,进而可证明△DFC是等边三角形,问题得解.解答:解:∵将△ABC沿对角线AC折叠,点B的对应点落在点E处,∴∠E=∠B=60°,∴△BEC是等边三角形,∵四边形ABCD是平行四边形,∴AD∥BC,∠D=∠B=60°,∴∠B=∠EAF=60°,∴△EFA是等边三角形,∵∠EFA=∠DFC=60°,∠D=∠B=60°,∴△DFC是等边三角形,∴图中等边三角形共有3个,故选B.点评:本题考查了平行四边形的性质、折叠的性质以及等边三角形的判定和性质,解题的关键是熟记等边三角形的各种判定方法特别是经常用到的判定方法:三个角都相等的三角形是等边三角形.16.(2015•连云港)已知四边形ABCD,下列说法正确的是()A.当AD=BC,AB∥DC时,四边形ABCD是平行四边形B.当AD=BC,AB=DC时,四边形ABCD是平行四边形C.当AC=BD,AC平分BD时,四边形ABCD是矩形D.当AC=BD,AC⊥BD时,四边形ABCD是正方形考点:平行四边形的判定;矩形的判定;正方形的判定.分析:由平行四边形的判定方法得出A不正确、B正确;由矩形和正方形的判定方法得出C、D不正确.解答:解:∵一组对边平行且相等的四边形是平行四边形,∴A不正确;∵两组对边分别相等的四边形是平行四边形,∴B正确;∵对角线互相平分且相等的四边形是矩形,∴C不正确;∵对角线互相垂直平分且相等的四边形是正方形,∴D不正确;故选:B.点评:本题考查了平行四边形的判定、矩形的判定、正方形的判定;熟练掌握平行四边形、矩形、正方形的判定方法是解决问题的关键.17.(2015•绵阳)如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD的面积为()A.6 B.12 C.20 D.24考点:平行四边形的判定与性质;全等三角形的判定与性质;勾股定理.分析:根据勾股定理,可得EC的长,根据平行四边形的判定,可得四边形ABCD的形状,根据平行四边形的面积公式,可得答案.解答:解:在Rt△BCE中,由勾股定理,得CE===5.∵BE=DE=3,AE=CE=5,∴四边形ABCD是平行四边形.四边形ABCD的面积为BC•BD=4×(3+3)=24,故选:D.点评:本题考查了平行四边形的判定与性质,利用了勾股定理得出CE的长,又利用对角线互相平分的四边形是平行四边形,最后利用了平行四边形的面积公式.二.填空题(共13小题)18.(2015•泰安)如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点.若AB=8,AD=12,则四边形ENFM的周长为20.考点:三角形中位线定理;勾股定理;矩形的性质.分析:根据M是边AD的中点,得AM=DM=6,根据勾股定理得出BM=CM=10,再根据E、F分别是线段BM、CM的中点,即可得出EM=FM=5,再根据N是边BC的中点,得出EM=FN,EN=FM,从而得出四边形EN,FM的周长.解答:解:∵M、N分别是边AD、BC的中点,AB=8,AD=12,∴AM=DM=6,∵四边形ABCD为矩形,∴∠A=∠D=90°,∴BM=CM=10,∵E、F分别是线段BM、CM的中点,∴EM=FM=5,∴EN,FN都是△BCM的中位线,∴EN=FN=5,∴四边形ENFM的周长为5+5+5+5=20,故答案为20.点评:本题考查了三角形的中位线,勾股定理以及矩形的性质,是2015年中考常见的题型,难度不大,比较容易理解.19.(2015•巴中)如图,在△ABC中,AB=5,AC=3,AD、AE分别为△ABC的中线和角平分线,过点C作CH⊥AE于点H,并延长交AB于点F,连结DH,则线段DH的长为1.考点:三角形中位线定理;等腰三角形的判定与性质.分析:首先证明△ACF是等腰三角形,则AF=AC=3,HF=CH,则DH是△BCF的中位线,利用三角形的中位线定理即可求解.解答:解:∵AE为△ABC的角平分线,CH⊥AE,∴△ACF是等腰三角形,∴AF=AC,∵AC=3,∴AF=AC=3,HF=CH,∵AD为△ABC的中线,∴DH是△BCF的中位线,∴DH=BF,∵AB=5,∴BF=AB﹣AF=5﹣3=2.∴DH=1,故答案为:1.点评:本题考查了等腰三角形的判定以及三角形的中位线定理,正确证明HF=CH是关键.20.(2015•盐城)如图,点D、E、F分别是△ABC各边的中点,连接DE、EF、DF.若△ABC的周长为10,则△DEF的周长为5.考点:三角形中位线定理.分析:由于D、E分别是AB、BC的中点,则DE是△ABC的中位线,那么DE=AC,同理有EF=AB,DF=BC,于是易求△DEF的周长.解答:解:如上图所示,∵D、E分别是AB、BC的中点,∴DE是△ABC的中位线,∴DE=AC,同理有EF=AB,DF=BC,∴△DEF的周长=(AC+BC+AB)=×10=5.故答案为5.点评:本题考查了三角形中位线定理.解题的关键是根据中位线定理得出边之间的数量关系.21.(2015•无锡)已知:如图,AD、BE分别是△ABC的中线和角平分线,AD⊥BE,AD=BE=6,则AC的长等于.考点:三角形中位线定理;勾股定理.专题:计算题.分析:延长AD至F,使DF=AD,过点F作平行BE与AC延长线交于点G,过点C作CH∥BE,交AF于点H,连接BF,如图所示,在直角三角形AGF中,利用勾股定理求出AG的长,利用SAS证得△BDF≌△CDA,利用全等三角形对应角相等得到∠ACD=∠BFD,证得AG∥BF,从而证得四边形EBFG是平行四边形,得到FG=BE=6,利用AAS得到三角形BOD与三角形CHD全等,利用全等三角形对应边相等得到OD=DH=3,得出AH=9,然后根据△AHC∽△AFG,对应边成比例即可求得AC.解答:解:延长AD至F,使DF=AD,过点F作FG∥BE与AC延长线交于点G,过点C 作CH∥BE,交AF于点H,连接BF,如图所示,在Rt△AFG中,AF=2AD=12,FG=BE=6,根据勾股定理得:AG==6,在△BDF和△CDA中,∴△BDF≌△CDA(SAS),∴∠ACD=∠BFD,∴AG∥BF,∴四边形EBFG是平行四边形,∴FG=BE=6,在△BOD和△CHD中,,∴△BOD≌△CHD(AAS),∴OD=DH=3,∵CH∥FG,∴△AHC∽△AFG,∴=,即=,解得:AC=,故答案为:点评:本题考查了三角形全等的判定和性质,三角形相似的判定和性质,平行四边形的判定和性质以及勾股定理的应用,作出辅助线构建直角三角形和平行四边形是解题的关键.22.(2015•宿迁)如图,在Rt△ABC中,∠ACB=90°,点D,E,F分别为AB,AC,BC 的中点.若CD=5,则EF的长为5.考点:三角形中位线定理;直角三角形斜边上的中线.分析:已知CD是Rt△ABC斜边AB的中线,那么AB=2CD;EF是△ABC的中位线,则EF应等于AB的一半.解答:解:∵△ABC是直角三角形,CD是斜边的中线,∴CD=AB,又∵EF是△ABC的中位线,∴AB=2CD=2×5=10cm,∴EF=×10=5cm.故答案为:5.点评:此题主要考查了三角形中位线定理以及直角三角形斜边上的中线等知识,用到的知识点为:(1)直角三角形斜边的中线等于斜边的一半;(2)三角形的中位线等于对应边的一半.23.(2015•广州)如图,四边形ABCD中,∠A=90°,AB=3,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为3.考点:三角形中位线定理;勾股定理.专题:动点型.分析:根据三角形的中位线定理得出EF=DN,从而可知DN最大时,EF最大,因为N与B重合时DN最大,此时根据勾股定理求得DN=DB=6,从而求得EF的最大值为3.解答:解:∵ED=EM,MF=FN,∴EF=DN,∴DN最大时,EF最大,∵N与B重合时DN最大,此时DN=DB==6,∴EF的最大值为3.故答案为3.点评:本题考查了三角形中位线定理,勾股定理的应用,熟练掌握定理是解题的关键.24.(2015•云南)如图,在△ABC中,BC=1,点P1,M1分别是AB,AC边的中点,点P2,M2分别是AP1,AM1的中点,点P3,M3分别是AP2,AM2的中点,按这样的规律下去,P n M n的长为(n为正整数).考点:三角形中位线定理.专题:规律型.分析:根据中位线的定理得出规律解答即可.解答:解:在△ABC中,BC=1,点P1,M1分别是AB,AC边的中点,点P2,M2分别是AP1,AM1的中点,点P3,M3分别是AP2,AM2的中点,可得:P1M1=,P2M2=,故P n M n=,故答案为:点评:此题考查三角形中位线定理,关键是根据中位线得出规律进行解答.25.(2015•珠海)如图,在△A1B1C1中,已知A1B1=7,B1C1=4,A1C1=5,依次连接△A1B1C1三边中点,得△A2B2C2,再依次连接△A2B2C2的三边中点得△A3B3C3,…,则△A5B5C5的周长为1.考点:三角形中位线定理.专题:规律型.分析:由三角形的中位线定理得:A2B2、B2C2、C2A2分别等于A1B1、B1C1、C1A1的一半,所以△A2B2C2的周长等于△A1B1C1的周长的一半,以此类推可求出△A5B5C5的周长为△A1B1C1的周长的.解答:解:∵A2B2、B2C2、C2A2分别等于A1B1、B1C1、C1A1的一半,∴以此类推:△A5B5C5的周长为△A1B1C1的周长的,∴则△A5B5C5的周长为(7+4+5)÷16=1.故答案为:1点评:本题主要考查了三角形的中位线定理,关键是根据三角形的中位线定理得:A2B2、B2C2、C2A2分别等于A1B1、B1C1、C1A1的一半,所以△A2B2C2的周长等于△A1B1C1的周长的一半.26.(2015•衢州)如图,小聪与小慧玩跷跷板,跷跷板支架高EF为0.6米,E是AB的中点,那么小聪能将小慧翘起的最大高度BC等于 1.2米.考点:三角形中位线定理.专题:应用题.分析:先求出F为AC的中点,根据三角形的中位线求出BC=2EF,代入求出即可.解答:解:∵EF⊥AC,BC⊥AC,∴EF∥BC,∵E是AB的中点,∴F为AC的中点,∴BC=2EF,∵EF=0.6米,∴BC=1.2米,故答案为:1.2.点评:本题考查了三角形的中位线性质,平行线的性质和判定的应用,解此题的关键是求出BC=2EF,注意:垂直于同一直线的两直线平行.27.(2015•昆明)如图,在△ABC中,AB=8,点D、E分别是BC、CA的中点,连接DE,则DE=4.考点:三角形中位线定理.分析:根据三角形的中位线等于第三边的一半即可得出DE=AB=4.解答:解:∵在△ABC中,点D、E分别是BC、CA的中点,AB=8,∴DE是△ABC的中位线,∴DE=AB=×8=4.故答案为4.点评:本题考查了三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.28.(2015•陕西)如图,AB是⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是3.考点:三角形中位线定理;等腰直角三角形;圆周角定理.分析:根据中位线定理得到MN的最大时,AC最大,当AC最大时是直径,从而求得直径后就可以求得最大值.解答:解:∵点M,N分别是AB,BC的中点,∴MN=AC,∴当AC取得最大值时,MN就取得最大值,当AC时直径时,最大,如图,∵∠ACB=∠D=45°,AB=6,∴AD=6,∴MN=AD=3故答案为:3.点评:本题考查了三角形的中位线定理、等腰直角三角形的性质及圆周角定理,解题的关键是了解当什么时候MN的值最大,难度不大.29.(2015•衡阳)如图所示,小明为了测量学校里一池塘的宽度AB,选取可以直达A、B 两点的点O处,再分别取OA、OB的中点M、N,量得MN=20m,则池塘的宽度AB为40 m.考点:三角形中位线定理.专题:应用题.分析:根据题意知MN是△ABO的中位线,所以由三角形中位线定理来求AB的长度即可.解答:解:∵点M、N是OA、OB的中点,∴MN是△ABO的中位线,∴AB=AMN.又∵MN=20m,∴AB=40m.故答案是:40.点评:此题考查的是三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半.30.(2015•苏州)如图,在△ABC中,CD是高,CE是中线,CE=CB,点A、D关于点F 对称,过点F作FG∥CD,交AC边于点G,连接GE.若AC=18,BC=12,则△CEG的周长为27.考点:三角形中位线定理;等腰三角形的性质;轴对称的性质.分析:先根据点A、D关于点F对称可知点F是AD的中点,再由CD⊥AB,FG∥CD可知FG是△ACD的中位线,故可得出CG的长,再根据点E是AB的中点可知GE是△ABC 的中位线,故可得出GE的长,由此可得出结论.解答:解:∵点A、D关于点F对称,∴点F是AD的中点.∵CD⊥AB,FG∥CD,∴FG是△ACD的中位线,AC=18,BC=12,∴CG=AC=9.∵点E是AB的中点,∴GE是△ABC的中位线,∵CE=CB=12,。
2015全国中考数学真题分类汇编:--认识三角形
分类训练十五认识三角形时间:30分钟满分50分得分考点1 三角形的三边关系(每小题3分,共12分)1、(2015•大连)下列长度的三条线段能组成三角形的是()A.1,2,3 B.1,,3 C.3,4,8 D.4,5,62、(2015•泉州)已知△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值()A.11 B.5 C.2 D.13、(2015•佛山)各边长度都是整数、最大边长为8的三角形共有个.4、(2015•巴中)若a、b、c为三角形的三边,且a、b满足+(b﹣2)2=0,则第三边c的取值范围是.考点2 三角形的内角和、外角和定理(每小题3分,共18分)1、(2015•柳州)如图,图中∠1的大小等于()A.40°B.50°C.60°D.70°2、(2015•绵阳)如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=()A.118°B.119°C.120°D.121°3、(2015•甘孜州)如图,在△ABC中,∠B=40°,∠C=30°,延长BA至点D,则∠CAD的大小为()A.110°B.80°C.70°D.60°4、(2015•淮安)将一副三角尺按如图所示的方式放置,使含30°角的三角尺的短直角边和含45°角的三角尺的一条直角边重合,则∠1的度数是.考点2第1题图考点2第2题图考点2第3题图5.(2015•枣庄)如图,平面上直线a,b分别经过线段OK两端点(数据如图),则a,b相交所成的锐角是.6、(2015•南充)如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE的大小是度.考点3、三角形中的重要线段(1---6题各3分,7--8题各4分,共20分)1、(2015•长沙)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A .B.C.D.2、(2015•广安)下列四个图形中,线段BE是△ABC的高的是()3、(2015•北海)三角形三条中线的交点叫做三角形的()A .内心B.外心C.中心D.重心4、(2015•河北)如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB 的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB 的大小.其中会随点P的移动而变化的是()A .②③B.②⑤C.①③④D.④⑤A .B.C.D.考点2第4题图考点2第5题图考点2第6题图5、(2015•衡阳)如图所示,小明为了测量学校里一池塘的宽度AB,选取可以直达A、B两点的点O 处,再分别取OA、OB的中点M、N,量得MN=20m,则池塘的宽度AB为m.6、(2015•盐城)如图,点D、E、F分别是△ABC各边的中点,连接DE、EF、DF.若△ABC的周长为10,则△DEF的周长为.7、(2015•泰安)如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点.若AB=8,AD=12,则四边形ENFM的周长为.8、(2015•广州)如图,四边形ABCD中,∠A=90°,AB=3,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为.分类训练十六认识三角形答案考点1 三角形的三边关系1、D.解析:根据三角形的三边满足任意两边之和大于第三边来进行判断.解:A、1+2=3,不能组成三角形,故本选项错误;B、1+<3,不能组成三角形,故本选项错误;C、3+4<8,不能组成三角形,故本选项错误;D、4+5>6,能组成三角形,故本选项正确.考点3第4题图考点3第5题图考点3第6题图考点3第8题图考点3第7题图故选D.2、B.解析:根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边列出不等式即可.解:根据三角形的三边关系,6﹣4<AC<6+4,即2<AC<10,符合条件的只有5,故选:B.3、20.解析:利用三角形三边关系进而得出符合题意的答案即可.解:∵各边长度都是整数、最大边长为8,∴三边长可以为:1,8,8;2,7,8;2,8,8;3,6,8;3,7,8;3,8,8;4,5,8;4,6,8;4,7,8;4,8,8;5,5,8;5,6,8;5,7,8;5,8,8;6,6,8;6,7,8;6,8,8;7,7,8;7,8,8;8,8,8;故各边长度都是整数、最大边长为8的三角形共有20个.故答案为:20.4、1<c<5.解析:根据非负数的性质列式求出a、b,再根据三角形的任意两边之和大于第三边,两边只差小于第三边求解即可.解:由题意得,a2﹣9=0,b﹣2=0,解得a=3,b=2,∵3﹣2=1,3+2=5,∴1<c<5.故答案为:1<c<5.考点2 三角形的内角和、外角和定理1、D.解析:根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解:由三角形的外角性质得,∠1=130°﹣60°=70°.故选D.2、C.解析:由三角形内角和定理得∠ABC+∠ACB=120°,由角平分线的性质得∠CBE+∠BCD=60°,再利用三角形的内角和定理得结果.解:∵∠A=60°,∴∠ABC+∠ACB=120°,∵BE,CD是∠B、∠C的平分线,∴∠CBE=∠ABC,∠BCD=,∴∠CBE+∠BCD=(∠ABC+∠BCA)=60°,∴∠BFC=180°﹣60°=120°,故选:C.3、C.解析:根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解:由三角形的外角性质得:∠CAD=∠B+∠C=40°+30°=70°.故选C.4、75°.解析:根据含30°角的三角尺的短直角边和含45°角的三角尺的一条直角边重合,得出平行线,再利用平行线的性质和对顶角相等得出∠2=45°,再利用三角形的外角性质解答即可.解:如图,∵含30°角的三角尺的短直角边和含45°角的三角尺的一条直角边重合,∴AB∥CD,∴∠3=∠4=45°,∴∠2=∠3=45°,∵∠B=30°,∴∠1=∠2+∠B=30°+45°=75°,故答案为:75°.5、30°.解析:根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解:由三角形的外角性质得,a,b相交所成的锐角的度数是100°﹣70°=30°.故答案为:30°.6、60解析:由∠A=80°,∠B=40°,根据三角形任意一个外角等于与之不相邻的两内角的和得到∠ACD=∠B+∠A,然后利用角平分线的定义计算即可.解:∵∠ACD=∠B+∠A,而∠A=80°,∠B=4°,∴∠ACD=80°+40°=120°.∵CE平分∠ACD,∴∠ACE=60°,故答案为60考点3、三角形中的重要线段1、A.解析:根据三角形高线的定义:过三角形的顶点向对边引垂线,顶点和垂足之间的线段叫做三角形的高线解答.解:为△ABC中BC边上的高的是A选项.故选A.2、D.解析:根据三角形高的画法知,过点B作AC边上的高,垂足为E,其中线段BE是△ABC的高,再结合图形进行判断.解:线段BE是△ABC的高的图是选项D.故选D.3、D.解析:根据三角形的重心概念作出回答,结合选项得出结果.解:三角形的重心是三角形三条中线的交点.故选D.4、B.解析:根据三角形的中位线平行于第三边并且等于第三边的一半可得MN=AB,从而判断出①不变;再根据三角形的周长的定义判断出②是变化的;确定出点P到MN的距离不变,然后根据等底等高的三角形的面积相等确定出③不变;根据平行线间的距离相等判断出④不变;根据角的定义判断出⑤变化.解:∵点A,B为定点,点M,N分别为PA,PB的中点,∴MN是△PAB的中位线,∴MN=AB,即线段MN的长度不变,故①错误;PA、PB的长度随点P的移动而变化,所以,△PAB的周长会随点P的移动而变化,故②正确;∵MN的长度不变,点P到MN的距离等于l与AB的距离的一半,∴△PMN的面积不变,故③错误;直线MN,AB之间的距离不随点P的移动而变化,故④错误;∠APB的大小点P的移动而变化,故⑤正确.综上所述,会随点P的移动而变化的是②⑤.故选B.5、40.解析:根据题意知MN是△ABO的中位线,所以由三角形中位线定理来求AB的长度即可.解:∵点M、N是OA、OB的中点,∴MN是△ABO的中位线,∴AB=AMN.又∵MN=20m,∴AB=40m.故答案是:40.6、5.解析:由于D、E分别是AB、BC的中点,则DE是△ABC 的中位线,那么DE=AC,同理有EF=AB,DF=BC,于是易求△DEF的周长.解:如上图所示,∵D、E分别是AB、BC的中点,∴DE是△ABC的中位线,∴DE=AC,同理有EF=AB,DF=BC,∴△DEF的周长=(AC+BC+AB)=×10=5.故答案为5.7、20.解析:根据M是边AD的中点,得AM=DM=6,根据勾股定理得出BM=CM=10,再根据E、F分别是线段BM、CM的中点,即可得出EM=FM=5,再根据N是边BC的中点,得出EM=FN,EN=FM,从而得出四边形EN,FM的周长.解:∵M、N分别是边AD、BC的中点,AB=8,AD=12,∴AM=DM=6,∵四边形ABCD为矩形,∴∠A=∠D=90°,∴BM=CM=10,∵E、F分别是线段BM、CM的中点,∴EM=FM=5,∴EN,FN都是△BCM的中位线,∴EN=FN=5,∴四边形ENFM的周长为5+5+5+5=20,故答案为20.8、3.解析:根据三角形的中位线定理得出EF=DN,从而可知DN最大时,EF最大,因为N与B重合时DN最大,此时根据勾股定理求得DN=DB=6,从而求得EF的最大值为3.解:∵ED=EM,MF=FN,∴EF=DN,∴DN最大时,EF最大,∵N与B重合时DN最大,此时DN=DB==6,∴EF的最大值为3.故答案为3.。
2015年深圳中考数学三角形、四边形综合
图11 A B D C C′ G图12 D 2015年深圳中考数学专题3(能力提高)------深圳中考数学三角形与四边形综合题精讲一、真题回顾:1、(04深圳)等腰梯形ABCD 中,AB//CD ,AD=BC ,延长AB 到E ,使BE=CD ,连结CE(1)求证:CE=CA ;(2)上述条件下,若AF ⊥CE 于点F ,且AF 平分∠DAE ,52AE CD ,求sin ∠CAF 的值。
2、(11深圳)如图11,一张矩形纸片ABCD ,其中AD =8cm ,AB =6cm ,先沿对角线BD 对折,点C 落在点C ′的位置,BC ′交AD 于点G 。
(1)求证:AG =C ′G ;(2)如图12,再折叠一次,使点D 与点A 重合,得折痕EN ,EN 交AD 于点M ,求EM 的长。
3、(13深圳)如图4,在等腰梯形ABCD 中,已知AD//BC ,AB=DC ,AC 与BD 交于点O ,廷长BC 到E ,A B E C D A B EC D F使得CE=AD,连接DE。
(1)求证:BD=DE。
(2)若AC⊥BD,AD=3,ABCDS=16,求AB的长。
4、(14深圳)已知BD垂直平分AC,∠BCD=∠ADF,AF⊥AC,(1)证明ABDF是平行四边形(2)若AF=DF=5,AD=6,求AC的长二、强化训练:EFC1、如图(1),在矩形ABCD中,把∠B、∠D分别翻折,使点B、D分别落在对角线BC上的点E、F处,折痕分别为CM、AN.(1)求证:△AND≌△CBM.(2)请连接MF、NE,证明四边形MFNE是平行四边形,四边形MFNE是菱形吗?请说明理由?(3)P、Q是矩形的边CD、AB上的两点,连结PQ、CQ、MN,如图(2)所示,若PQ=CQ,PQ∥MN。
且AB=4,BC=3,求PC的长度.2、如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°.点E为底AD上一点,将△ABE沿直线BE折叠,点A落在梯形对角线BD上的G处,EG的延长线交直线BC于点F.(1)点E可以是AD的中点吗?为什么?(2)求证:△ABG∽△BFE;(3)设AD=a,AB=b,BC=c①当四边形EFCD为平行四边形时,求a,b,c应满足的关系;②在①的条件下,当b=2时,a的值是唯一的,求∠C的度数.3、如图,在矩形ABCD(AB<AD)中,将△ABE沿AE对折,使AB边落在对角线AC上,点B的对应点为F ,同时将△CEG 沿EG 对折,使CE 边落在EF 所在直线上,点C 的对应点为H .(1)证明:AF ∥HG (图(1));(2)△AEF 和△EGH (图(1))之间有什么关系,请说明理由。
2015沈阳中考数学,涉及的施瓦尔兹三角形问题的初等解析
2015沈阳中考数学,涉及的施瓦尔兹三角形问题的初等解析前言:本文所涉知识全部在初中学力范围内,任何具备同等学力者均可无障碍阅读本文,或自行研究该问题。
这恰说明,思维习惯、思维工具具有更深远的意义。
命题:任意锐角三角形,在三条边上任取3个与这个锐角三角形顶点不重合的动点,连接这3个动点组成1个新三角形。
这个新三角形的周长是否存在最小值?如存在,最小值是多少?此时3个动点的位置在哪里?解析:记这个锐角三角形为△ABC,BC上动点为P(与B,C不重合),AB上动点为Q(与A,B不重合),AC上动点为R(与A,C不重合)。
如图,以BC所在直线为x轴,过A作BC垂线为y轴,建立直角坐标系。
记A(0,a),B(b,0),C(c,0),记△PQR周长为L。
步骤:一、固定点P(p,0),研究此时L是否存在包含参数p 的最小值;二、如步骤一存在L最小值,记为L(p),研究p变化时L(p)是否存在最小值;三、如步骤二存在L(p)最小值,记为Min(L)。
证明Min(L)即为△PQR周长的最小值;四、如步骤三完成,解析此时Min(L)的值与P,Q,R 的位置。
步骤一辅助线:如图,令P’与P关于AB对称,P’’与P关于AC 对称。
连接PP’,PP’’,P’P’’,记Q’,R’为P’P’’与AB,AC的交点,连接PQ’,PR’。
(思考1:这些辅助线能够合理存在吗?)求解过程中可能用到的一些工具(思考2:这两条直线的表达式合理吗?):直线AB解析式:y=-ax/b+a直线AC解析式:y=-ax/c+a我们的目标是证明△PQ’R’的周长即为L(p)。
辅助线:连接P’Q,P’R,P’’R。
由于P’与P关于AB对称,P’’与P关于AC对称,不难证明:△PQ’R’的周长=P’Q’+Q’R’+R’P’’=P’P’’△PQR的周长=P’Q+QR+RP’’在三角形中,两边和不小于第三边,所以P’Q+QR≥P’R,P’R+ RP’’≥P’P’’,即有△PQR的周长≥P’P’’=△PQ’R’的周长注意到,Q,R为AB,AC上任意选取的点,所以当P固定时,△PQR的周长最小值存在,即为△PQ’R’的周长,记为L(p);步骤二(过程略)可以求得P’和P’’坐标,如下计算L(p)= P’P’’,利用距离公式或勾股定理可得当p=0时,L(p)有最小值为步骤三记步骤二中Min(L)所对应的P(0,0)为A’,Q为C’,R为B’,下面我们证明任意△PQR的周长都不小于于△A’ B’ C’的周长,即Min(L)。
2015年武汉中考
2015年武汉中考一.选择题(共1小题)1.如图,△ABC,△EFG均是边长为2的等边三角形,点D是边BC、EF的中点,直线AG、FC相交于点M.当△EFG绕点D旋转时,线段BM长的最小值是()A.2﹣B.+1 C.D.﹣1二.填空题(共1小题)2.如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=1,ON=3,点P、Q分别在边OB、OA上,则MP+PQ+QN的最小值是.三.解答题(共1小题)3.已知抛物线y=x2+c与x轴交于A(﹣1,0),B两点,交y轴于点C.(1)求抛物线的解析式;(2)点E(m,n)是第二象限内一点,过点E作EF⊥x轴交抛物线于点F,过点F作FG⊥y轴于点G,连接CE、CF,若∠CEF=∠CFG.求n的值并直接写出m 的取值范围(利用图1完成你的探究).(3)如图2,点P是线段OB上一动点(不包括点O、B),PM⊥x轴交抛物线于点M,∠OBQ=∠OMP,BQ交直线PM于点Q,设点P的横坐标为t,求△PBQ 的周长.2015年武汉中考参考答案与试题解析一.选择题(共1小题)1.如图,△ABC,△EFG均是边长为2的等边三角形,点D是边BC、EF的中点,直线AG、FC相交于点M.当△EFG绕点D旋转时,线段BM长的最小值是()A.2﹣B.+1 C.D.﹣1【分析】取AC的中点O,连接AD、DG、BO、OM,如图,易证△DAG∽△DCF,则有∠DAG=∠DCF,从而可得A、D、C、M四点共圆,根据两点之间线段最短可得BO≤BM+OM,即BM≥BO﹣OM,当M在线段BO与该圆的交点处时,线段BM最小,只需求出BO、OM的值,就可解决问题.【解答】解:AC的中点O,连接AD、DG、BO、OM,如图.∵△ABC,△EFG均是边长为2的等边三角形,点D是边BC、EF的中点,∴AD⊥BC,GD⊥EF,DA=DG,DC=DF,∴∠ADG=90°﹣∠CDG=∠FDC,=,∴△DAG∽△DCF,∴∠DAG=∠DCF.∴A、D、C、M四点共圆.根据两点之间线段最短可得:BO≤BM+OM,即BM≥BO﹣OM,当M在线段BO与该圆的交点处时,线段BM最小,此时,BO===,OM=AC=1,则BM=BO﹣OM=﹣1.故选:D.【点评】本题主要考查了等边三角形的性质、等腰三角形的性质、相似三角形的判定与性质、四点共圆的判定、勾股定理、两点之间线段最短等知识,求出动点M的运动轨迹是解决本题的关键.二.填空题(共1小题)2.如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=1,ON=3,点P、Q分别在边OB、OA上,则MP+PQ+QN的最小值是.【分析】作M关于OB的对称点M′,作N关于OA的对称点N′,连接M′N′,即为MP+PQ+QN的最小值.【解答】解:作M关于OB的对称点M′,作N关于OA的对称点N′,连接M′N′,即为MP+PQ+QN的最小值.根据轴对称的定义可知:∠N′OQ=∠M′OB=30°,∠ONN′=60°,∴△ONN′为等边三角形,△OMM′为等边三角形,∴∠N′OM′=90°,∴在Rt△M′ON′中,M′N′==.故答案为.【点评】本题考查了轴对称﹣﹣最短路径问题,根据轴对称的定义,找到相等的线段,得到等边三角形是解题的关键.三.解答题(共1小题)3.已知抛物线y=x2+c与x轴交于A(﹣1,0),B两点,交y轴于点C.(1)求抛物线的解析式;(2)点E(m,n)是第二象限内一点,过点E作EF⊥x轴交抛物线于点F,过点F作FG⊥y轴于点G,连接CE、CF,若∠CEF=∠CFG.求n的值并直接写出m 的取值范围(利用图1完成你的探究).(3)如图2,点P是线段OB上一动点(不包括点O、B),PM⊥x轴交抛物线于点M,∠OBQ=∠OMP,BQ交直线PM于点Q,设点P的横坐标为t,求△PBQ 的周长.【分析】(1)将点A的坐标代入抛物线解析式即可求得c的值,则可得抛物线解析式;(2)过点C作CH⊥EF于点H,易证△EHC∽△FGC,再根据相似三角形的性质可得n的值;(3)首先表示出点P的坐标,再根据△OPM∽△QPB,然后由对应边的比值相等得出PQ和BQ的长,从而可得△PBQ的周长.【解答】解:(1)把A(﹣1,0)代入得c=﹣,∴抛物线解析式为(2)如图1,过点C作CH⊥EF于点H,∵∠CEF=∠CFG,FG⊥y轴于点G∴△EHC∽△FGC∵E(m,n)∴F(m,)又∵C(0,﹣)∴EH=n+,CH=﹣m,FG=﹣m,CG=m2又∵,则∴n+=2∴n=当F点位于E点上方时,则∠CEF>90°;又∠CFG肯定为锐角,故这种情形不符合题意.由此当n=时,代入抛物线解析式,求得m=±2,又E点位于第二象限,所以﹣2<m<0.(3)由题意可知P(t,0),M(t,)∵PM⊥x轴交抛物线于点M,∠OBQ=∠OMP,∴△OPM∽△QPB.∴.其中OP=t,PM=,PB=1﹣t,∴PQ=.BQ=∴PQ+BQ+PB=.∴△PBQ的周长为2.【点评】本题考查了二次函数的综合应用,同时涉及了相似三角形的判定与性质,具有一定的综合性与难度,解题时要注意数形结合思想与方程思想的运用.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年湖南中考数学复习
三角形
考点:三角形内角和,高,中线,角平分线,中位线,全等相似的判定,解直角三角形等。
一、选择题
1. 如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点.将Rt△ABC沿CD折叠,使B点落在AC边上的B′处,则∠ADB′等于【】
A.25° B.30° C.35° D.40°
2. 如图,为测量池塘边A、B两点的距离,小明在池塘的一侧选取一点O,测得OA、OB的中点分别是点D、E,且DE=14米,则A、B间的距离是【】
A.18米B.24米C.28米D.30米
3.如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,则添加的条件不能为【】
A.BD=CE B.AD=AE C.DA=DE D.BE=CD
4. 下列事件中是必然事件的为【】
A.有两边及一角对应相等的三角形全等
B.方程x2﹣x+1=0有两个不等实根
C.面积之比为1:4的两个相似三角形的周长之比也是1:4
D.圆的切线垂直于过切点的半径
二、填空题
1. 如图,在△ABC中,点D,点E分别是边AB,AC的中点,则△ADE和△ABC的周长之比等于.
2. 如图,点D、E分别在线段AB,AC上,AE=AD,不添加新的线段和字母,要使△ABE≌△ACD,需添加的一个条件是(只写一个条件即可).
3.如图所示,将△ABC绕AC的中点O顺时针旋转180°得到△CDA,添加一个条件
,使四边形ABCD为矩形.
4. 如图,OP=1,过P作PP1⊥OP,得OP1;再过P1作P1P2⊥OP1且P1P2=1,得OP2
又过P2作P2P3⊥OP2且P2P3=1,得OP3=2;…依此法继续作下去,得OP2012= ▲ .
5. 同一时刻,物体的高与影子的长成比例,某一时刻,高1.6m的人影长啊1.2m,一电线杆影长为9m,则电线杆的高为m.
三、解答题
题型一:解三角形
1. 如图,在△ABC中,AD是BC边上的高,AE是BC边上的中线,∠C=45°,sinB=1
3
,AD=1.
(1)求BC的长;
(2)求tan∠DAE的值.
2. 国家海洋局将中国钓鱼岛最高峰命名为“高华峰”,并对钓鱼岛进行常态化立体巡航.如图1,在一次巡航过程中,巡航飞机飞行高度为2001米,在点A测得高华峰顶F点的俯角为30°,保持方向不变前进1200米到达B点后测得F点俯角为45°,如图2.请据此计算
钓鱼岛的最高海拔高度多少米.=1.414)
3. 某校有一露天舞台,纵断面如图所示,AC垂直于地面,AB表示楼梯,AE为舞台面,楼梯的坡角∠ABC=45°,坡长AB=2m,为保障安全,学校决定对该楼梯进行改造,降低坡度,拟修新楼梯AD,使∠ADC=30°.
(1)求舞台的高AC(结果保留根号);
(2)在楼梯口B左侧正前方距离舞台底部C点3m处有一株大树,修新楼梯AD时底端D 是否会触到大树?并说明理由.
4.钓鱼岛自古以来就是中国的神圣领土,为宣誓主权,我海监船编队奉命在钓鱼岛附近海域进行维权活动,如图,一艘海监船以30海里/小时的速度向正北方向航行,海监船在A处时,测得钓鱼岛C在该船的北偏东30°方向上,航行半小时后,该船到达点B处,发现此时钓鱼岛C与该船距离最短.
(1)请在图中作出该船在点B处的位置;
(2)求钓鱼岛C到B处距离(结果保留根号)
题型二:相似与全等的判定
5. 如图,在等腰Rt△ABC中,∠C=90°,正方形DEFG的顶点D地边AC上,点E、F在边AB 上,点G在边BC上。
(1)求证:△ADE≌△BGF;
(2)若正方形DEFG的面积为16cm2,求AC的长。
6. 如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3
(1)求证:BN=DN;
(2)求△ABC的周长.
7.已知在△ABC中,∠ABC=90°,AB=3,BC=4.点Q是线段AC上的一个动点,过点Q作AC 的垂线交线段AB(如图1)或线段AB的延长线(如图2)于点P.
(1)当点P在线段AB上时,求证:△APQ∽△ABC;
(2)当△PQB为等腰三角形时,求AP的长.
题型三:三角形综合
8. 如图,在△ABC中,∠B=45°,BC=5,高AD=4,矩形EFPQ的一边QP在BC边上,E、F 分别在AB、AC上,AD交EF于点H.
(1)求证:AH EF AD BC
;
(2)设EF=x,当x为何值时,矩形EFPQ的面积最大?并求出最大面积;
(3)当矩形EFPQ的面积最大时,该矩形EFPQ以每秒1个单位的速度沿射线DA匀速向上运动(当矩形的边PQ到达A点时停止运动),设运动时间为t秒,矩形EFPQ与△ABC重叠部分的面积为S,求S与t的函数关系式,并写出t的取值范围.。