2017-2018学年八年级数学下册2一元一次不等式与一元一次不等式组2.4一元一次不等式(第1课时)课件(新版)

合集下载

一元一次不等式(第2课时)(课件)八年级数学下册(北师大版)

一元一次不等式(第2课时)(课件)八年级数学下册(北师大版)

随堂练习
解:(1)设该种商品每次降价的百分率为x%, 依题意得:400×(1-x%)2=324, 解得:x=10,或x=190(舍去). 答:该种商品每次降价的百分率为10%.
随堂练习
(2)设第一次降价后售出该种商品m件,则第二次降价后售出该 种商品(100-m)件, 第一次降价后的单件利润为:400×(1-10%)-300=60(元/件); 第二次降价后的单件利润为:324-300=24(元/件). 依题意得:
探究新知
例3:青年志愿者爱心小分队赴山村送温暖,准备为困 难村民购买一些米面.已知购买1袋大米、4袋面粉,共 需240元;购买2袋大米、1袋面粉,共需165元. (1)求每袋大米和面粉各多少元? (2)如果爱心小分队计划购买这些米面共40袋,总费用 不超过2 140元,那么至少购买多少袋面粉?
探究新知
(比如有的时候只能取整数)
谢谢~
随堂练习
6.2021年5月14日至15日,“一带一路”国际合作高峰论坛在北京 举行,本届论坛期间,中国同30多个国家签署经贸合作协议,某 厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家 和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件 甲种商品比2件乙种商品的销售收入多1500元.
10
≥ 5%
探究新知
例1:某种商品进价为200元,标价为300元出售,商场规定可以打折销售, 但其利润率不能少于5%. 请你计算一下,这种商品最多可以按几折销售?
不等关系:(出售价-进价)÷进价≥利润率 解:设该商品可以打 x 折销售.
则 (300×0.1x-200)÷200≥5%. 解得 x ≥ 7. 答:这种商品最多可以按七折销售.
解:(1)设每袋大米x元,每袋面粉y元,根据题意,得:

北师大版初中数学八年级下册第二单元《一元一次不等式与一元一次不等式组》(较易)(含答案解析)

北师大版初中数学八年级下册第二单元《一元一次不等式与一元一次不等式组》(较易)(含答案解析)

北师大版初中数学八年级下册第二单元《一元一次不等式与一元一次不等式组》(较易)(含答案解析)考试范围:第二单元;   考试时间:120分钟;总分:120分,第I 卷(选择题)一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1. x 与1的和是非负数,用不等式表示为.( ) A. x +1<0B. x +1≤0C. x +1≥0D. x +1>02. 下列式子: ①x +y =1; ②x >y; ③x +2y; ④x −y ≥1; ⑤x <0中,属于不等式的有( )A. 2个B. 3个C. 4个D. 5个3. 由ax >b 得到x <ba ,则a 应满足的条件是.( ) A. a ≤0B. a >0C. a ≥0D. a <04. 已知实数a 、b ,若a >b ,则下列结论正确的是( ) A. a −5<b −5B. 2+a <2+bC. −a4>−b4D. 3a >3b5. 下列不等式的一个解是x =3的是.( ) A. x +3>5B. x +3>6C. x +3>7D. x +3>86. 下列各数中,是不等式2(x −5)<x −8的解的是.( ) A. 4 B. −5C. 3D. 57. 解不等式2+x3>2x−15的过程中,下列错误的一步是.( ) A. 5(2+x)>3(2x −1) B. 10+5x >6x −3 C. 5x −6x >−3−10D. x >138. 不等式4x −a >7x +5的解集是x <−1,则a 的值为.( ) A. −2B. 2C. 5D. 89. 如图,直线y =x +32与y =kx −1相交于点P ,点P 的纵坐标为12,则关于x 的不等式x +32>kx −1的解集是( )A. x >−1B. x <−1C. x>12D. x<1210. 如图是一次函数y1=kx+b与y2=x+a的图象,则不等式kx+b<x+a的解集是( )A. x<3B. x>3C. x>a−bD. x<a−b11. 定义新运算“☆”如下:当a>b时,a☆b=ab+b;当a<b时,a☆b=ab−b.若3☆(x+2)>0,则x的取值范围是.( )A. −1<x<1或x<2B. x<−2或1<x<2C. −2<x<1或x>1D. x<−2或x>212. 一个关于x的一元一次不等式组的解集在数轴上的表示如图所示,则该不等式组的解集是.( )A. x>1B. x≥1C. x>3D. x≥3第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 某生物兴趣小组要在温箱里培养A,B两种菌苗,A种菌苗的生长温度x(℃)的范围是35≤x≤38,B种菌苗的生长温度y(℃)的范围是34≤y≤36.那么温箱里的温度t(℃)的范围是____.14. 若a>b,则ac2_______bc2.15. 如图,函数y=3x+b和y=ax−3的图像交于点P(−2,−5),则不等式3x+b>ax−3的解集是.16. 一元一次不等式组中各个不等式解集的,叫做这个一元一次不等式组的解集.三、解答题(本大题共9小题,共72.0分。

必考点解析北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组章节练习试题(含解析)

必考点解析北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组章节练习试题(含解析)

第二章一元一次不等式和一元一次不等式组章节练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分) 1、不等式820x ->的解集在数轴上表示正确的是 ( ) A .B .C .D .2、下列各式:①1﹣x :②4x +5>0;③x <3;④x 2+x ﹣1=0,不等式有( )个. A .1B .2C .3D .43、如图,一次函数y kx b =+(,k b 为常数,且0k ≠)的图像经过点(3,2)-,则关于x 的不等式2kx b +<的解集为( )A .3x >-B .3x <-C .2x >D .2x <4、关于x 的方程3﹣2x =3(k ﹣2)的解为非负整数,且关于x 的不等式组()21323x x k x x ⎧--≥⎪⎨+≤⎪⎩无解,则符合条件的整数k 的值的和为( ) A .5B .2C .4D .65、如果x >y ,则下列不等式正确的是( ) A .x ﹣1<y ﹣1B .5x <5yC .33x y >D .﹣2x >﹣2y6、若不等式﹣3x <1,两边同时除以﹣3,得( ) A .x >﹣13B .x <﹣13C .x >13D .x <137、下列变形中,错误的是( ) A .若3a +5>2,则3a >2-5B .若213x ->,则23x <-C .若115x -<,则x >﹣5D .若1115x >,则511x > 8、已知两直线()0y kx k k =+≠与36y x =-相交于第四象限,则k 的取值范围是( ) A .60k -<<B .30k -<<C .3k <-D .6k <-9、已知一次函数y=ax +b (a 、b 是常数),x 与y 的部分对应值如下表:下列说法中,正确的是( ) A .图象经过第二、三、四象限 B .函数值y 随自变量 x 的增大而减小 C .方程ax +b =0的解是x =2 D .不等式ax +b >0的解集是x >-110、已知关于x 的不等式组0320x a x ->⎧⎨->⎩的整数解共有3个,则a 的取值范围是( )A .21a -≤<-B .21a -<≤C .21a -<<-D .21a -≤≤第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、不等式组250112x x -<⎧⎪⎨+≥-⎪⎩所有整数解的和是___.2、不等式组:3561162x x x x <+⎧⎪+-⎨≥⎪⎩,写出其整数解的和_____.3、不等式3141x +>-的解集是______.4、如果一个三角形的两边长分别为2,5,则第三边x 可以取的整数解为______5、已知a >b ,且c ≠0,用“>”或“<”填空. (1)2a ________a +b(2)2ac _______2b c (3)c -a _______c -b (4)-a |c |_______-b |c |三、解答题(5小题,每小题10分,共计50分)1、春节将至,小明家亲友团准备去某地旅游,甲旅行社的优惠办法是:买4张全票其余人按半价优惠;乙旅行社的优惠办法是:一律按原价的七五折优惠;已知这两家旅行社的原价均为4000元每人. (1)若亲友团有6人,甲、乙旅行社各需多少费用? (2)亲友团为多少人时,甲、乙旅行社的费用相同?(3)当亲友团人数满足什么条件时,甲旅行社的收费更优惠?当亲友团人数满足什么条件时,乙旅行社的收费更优惠?(直接写出结果,不需说明理由)2、(1)解方程组:2523517x y x y +=⎧⎨-=⎩(2)解不等式组()202131x x x +>⎧⎨+≥-⎩3、解不等式()()()()11851x x x x +-+>+-.4、解不等式3x ﹣1≤x +3,并把解在数轴上表示出来.5、如图,已知一次函数y 1=k 1x +b 1的图象与一次函数y 2=k 2x +b 2的图象交于点A ,根据图象回答下列问题.(1)求关于x 的方程k 1x +b 1=k 2x +b 2的解; (2)求出关于x 的不等式k 1x +b 1>k 2x +b 2的解集;(3)当满足什么条件时,直线y 1=k 1x +b 1与直线为y 2=k 2x +b 2没有公共点?-参考答案-一、单选题 1、B 【分析】先解不等式,得到不等式的解集,再在数轴上表示不等式的解集即可. 【详解】 解:820x ->, 移项得:28,x解得:4,x <所以原不等式得解集:4x <. 把解集在数轴上表示如下:故选B 【点睛】本题考查的是一元一次不等式的解法,在数轴上表示不等式的解集,掌握“画图时,小于向左拐,大于向右拐”是解本题的关键,注意实心点与空心圈的使用. 2、B 【分析】主要依据不等式的定义:用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式来判断. 【详解】解:根据不等式的定义可知,所有式子中是不等式的是②4x +5>0; ③x <3,有2个. 故选:B . 【点睛】本题主要考查了不等式的定义,用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子叫作不等式. 3、A 【分析】根据图像的意义当x =-3时,kx +b =2,根据一次函数的性质求解即可. 【详解】解:∵当x =-3时,kx +b =2, 且y 随x 的增大而减小, ∴不等式2kx b +<的解集3x >-, 故选A . 【点睛】本题考查了一次函数与不等式的关系,一次函数图像的性质,灵活运用数形结合思想确定不等式的解集是解题的关键. 4、C先求出3﹣2x=3(k﹣2)的解为x932k-=,从而推出3k≤,整理不等式组可得整理得:1xx k≤-⎧⎨≥⎩,根据不等式组无解得到k>﹣1,则﹣1<k≤3,再由整数k和932kx-=是整数进行求解即可.【详解】解:解方程3﹣2x=3(k﹣2)得x932k-=,∵方程的解为非负整数,∴932k-≥0,∴3k≤,把()213x xx k⎧--≥⎨≥⎩整理得:1xx k≤-⎧⎨≥⎩,由不等式组无解,得到k>﹣1,∴﹣1<k≤3,即整数k=0,1,2,3,∵932kx-=是整数,∴k=1,3,综上,k=1,3,则符合条件的整数k的值的和为4.故选C.【点睛】本题主要考查了解一元一次方程,根据一元一次不等式组的解集情况求参数,解题的关键在于能够熟练掌握相关知识进行求解.5、C根据不等式的性质解答.①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变. 【详解】 解:A .∵x >y ,∴x ﹣1>y ﹣1,故本选项不符合题意;B .∵x >y ,∴5x >5y ,故本选项不符合题意;C .∵x >y ,∴33x y,故本选项符合题意; D .∵x >y ,∴﹣2x <﹣2y ,故本选项不符合题意; 故选:C . 【点睛】此题考查了不等式的性质,熟记不等式的性质并正确应用是解题的关键. 6、A 【分析】根据题意直接利用不等式的性质进行计算即可得出答案. 【详解】解:不等式﹣3x <1,两边同时除以﹣3,得x >﹣13. 故选:A .本题主要考查不等式的基本性质.解不等式依据不等式的性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.特别是在系数化为1这一个过程中要注意不等号的方向的变化. 7、B 【分析】根据不等式的两边都加(或减)同一个数(或同一个整式),不等号的方向不变;不等式的两边都乘以同一个正数,不等号的方向不变;不等式的两边都乘以(或除以)同一个负数,不等号的方向改变. 【详解】解:A 、不等式的两边都减5,不等号的方向不变,故A 不符合题意;B 、不等式的两边都乘以32-,不等号的方向改变得到32x <-,故B 符合题意;C 、不等式的两边都乘以(﹣5),不等号的方向改变,故C 不符合题意;D 、不等式的两边都乘以同一个正数,不等号的方向不变,故D 不符合题意; 故选:B . 【点睛】本题考查了不等式的性质,熟记不等式的性质并根据不等式的性质计算式解题. 8、A 【分析】先求出交点坐标,然后列不等式组即可求解. 【详解】 解:由题意得,36y kx ky x =+⎧⎨=-⎩,解得6393k x k k y k --⎧=⎪⎪-⎨-⎪=⎪-⎩, ∵两直线()0y kx k k =+≠与36y x =-相交于第四象限,∴603903k k k k --⎧>⎪⎪-⎨-⎪<⎪-⎩, ∴-6<k <0; 故选:A . 【点睛】本题考查一次函数的图象及性质,以及不等式组的解法,能够掌握直线交点坐标的求法,牢记象限内点的坐标特点是解题的关键. 9、D 【分析】利用待定系数法求一出函数解析式,把表格数据代入两组数值得02a b b -+=⎧⎨=⎩,解方程组求出一次函数解析式,根据一次函数性质可判断选项. 【详解】解:设一次函数解析式为y kx b =+,由表格可知,一次函数过点(-1,0),(0,2),则: 02a b b -+=⎧⎨=⎩,解得:22a b =⎧⎨=⎩, ∴一次函数解析式为:22y x =+,∴2020a b =>=>,,故函数经过第一、二、三象限,故选项A 错误;∴=20a >,故函数值y 随x 增大而增大,故选项B 错误;令220x +=,得x=-1,故选项C 错误;令220x +>,得1x >-,故选项D 正确;故选:D .【点睛】本题主要考查了一次函数的图象和性质,待定系数法求根一次函数解析式,表格信息,解方程组是解题的关键.10、A【分析】先分别求出每个不等式的解集,然后确定不等式组的解集,最后根据整数解的个数确定a 的范围.【详解】解:0320x a x ->⎧⎨->⎩①② 解不等式①得:x >a ,解不等式②得:x<32, ∴不等式组的解集是a <x<32, ∵原不等式组的整数解有3个为1,0,-1,∴-2≤a <-1.故选择:A.【点睛】本题考查了解一元一次不等式、解一元一次不等式组、不等式组的整数解的应用,确定不等式组的解集是解答本题的关键.二、填空题1、-3【分析】分别解不等式得到不等式组的解集,确定整数解得到答案.【详解】解:250112xx-<⎧⎪⎨+≥-⎪⎩①②,解不等式①,得52x<,解不等式②,得3x≥-,∴不等式组的解集为532x-≤<,∴整数解为:-3、-2、-1、0、1、2,-3-2-1+0+1+2=-3,故答案为:-3.【点睛】此题考查求不等式组的整数解,有理数的加减法,解不等式,熟练掌握解不等式的解法是解题的关键.2、0【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,即可求出整数解,最后相加即可.【详解】 解:3561162x x x x <+⎧⎪⎨+-≥⎪⎩①②,解不等式①,得3x >-;解不等式②,得2x ≤.∴不等式组的解集为32x -<≤,∴不等式组的整数解分别为-2、-1、0、1、2,∴不等式组的整数解的和为:210120--+++=.故答案为:0.【点睛】本题考查求不等式组的整数解.正确的求出不等式组中每一个不等式的解集是解答本题的关键.3、x >-5【分析】根据不等式的性质求解即可.【详解】解:3141x +>-,3x>-15,解得x >-5,故答案为:x >-5.【点睛】此题考查求不等式的解集,正确掌握解不等式的步骤及方法是解题的关键.4、4、5、6【分析】根据三角形三边关系可得5252x -<<+,得出整数解即可.【详解】解:∵三角形的两边长分别为2,5,则5252x -<<+,即37x ,∴第三边x 可以取的整数解为:4、5、6,故答案为:4、5、6.【点睛】本题考查了三角形的三边关系,熟知两边之和大于第三边,两边之差小于第三边,是解本题的关键.5、> > < <【分析】(1)根据不等式的性质:不等式两边同时加上一个数,不等号不变号,即可得;(2)根据不等式的性质:不等式两边同时除以一个正数,不等号不变号,即可得;(3)根据不等式的性质:不等式两边同时乘以一个负数,改变不等式的符号,再根据不等式两边同时加上一个数,不等号不变号,即可得;(4)根据不等式的性质:不等式两边同时乘以一个负数,改变不等式的符号,再根据不等式两边同时乘以一个正数,不等号不变号,即可得.【详解】解:(1)∵a b >,∴a a b a +>+,即:2a b a >+;(2)∵a b >,20c >,∴22a b c c >; (3)∵a b >,∴a b -<-,∴c a c b -<-;(4)∵a b >,∴a b -<-,0c >, ∴a c b c -<-;故答案为:(1)>;(2)>;(3)<;(4)<.【点睛】题目主要考查不等式的基本性质,熟练掌握不等式的性质并综合运用是解题关键.三、解答题1、(1)甲旅行社费用20000元,乙旅行社费用18000元;(2)8人;(3)亲友团人数超过8人时,甲旅行社的收费更优惠,亲友团人数少于8人时,乙旅行社的收费更优惠.【分析】(1)由题意直接根据甲、乙旅行社的优惠办法列式进行计算即可;(2)根据题意设亲友团有x 人,进而依据甲、乙旅行社的费用相同建立方程求解即可;(3)由题意直接根据(2)的结论可知当亲友团人数满足什么条件时,甲、乙旅行社的收费更优惠.【详解】解:(1)甲旅行社费用=1400044000(64)200002⨯+⨯⨯-=元, 乙旅行社费用=0.754000618000⨯⨯=元;(2)设亲友团有x 人,甲旅行社费用=1400044000(4)200080002x x ⨯+⨯⨯-=+ 乙旅行社费用=0.7540003000x x ⨯=由20008000x +=3000x解得:x =8∴亲友团有8人,甲、乙旅行社的费用相同(3)由(2)可知当亲友团有8人,甲、乙旅行社的费用相同,则8x >,有200080003000x x +<,即亲友团人数超过8人时,甲旅行社的收费更优惠;则8x <,有200080003000x x +>,亲友团人数少于8人时,乙旅行社的收费更优惠.【点睛】本题考查一元一次方程的运用以及一元一次不等式的运用,读懂题意并根据题意列出方程和不等式求解是解题的关键.2、(1)43x y =⎧⎨=⎩;(2)﹣2﹤x ≤3. 【分析】(1)方程运用加减消元法求解即可;(2)分别求出每个不等式的解集,再取它们的公共部分即可【详解】解:(1)2523517x y x y +=⎧⎨-=⎩①②①+②×5得:27x =23+17×5,解得:x=4,将x=4代入②中,得:20﹣y=17,解得:y=3,∴原方程组的解为43xy=⎧⎨=⎩.(2)202(1)31xx x+>⎧⎨+≥-⎩①②,解:解①得:x﹥﹣2,解②得:x≤3,∴不等式组的解集为:﹣2﹤x≤3【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.3、x<3【分析】利用平方差公式、多项式乘多项式法则计算,移项合并,把x系数化为1,即可求出解集.【详解】解:去括号得:x2-1+8>x2+4x-5,移项合并得:4x<12,解得:x<3.【点睛】本题考查了平方差公式、多项式乘多项式,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.4、x ≤2;数轴表示见解析.【分析】按移项、合并同类项、系数化为1的步骤求得不等式的解集,然后在数轴上表示出来即可.【详解】解:313x x -≤+,移项,得331x x -≤+,合并同类项,得24x ≤,系数化为1,得x ≤2,把解集在数轴上表示如图所示:【点睛】本题考查了解一元一次不等式,在数轴上表示不等式的解集,熟练掌握解一元一次不等式的基本步骤以及在数轴上表示解集的方法是解题的关键.5、(1)x =3;(2)x <3;(3)k 1=k 2,b 1≠b 2【分析】(1)由题意根据两一次函数图象的交点横坐标即可得出方程的解即可求得;(2)根据题意可将两函数交点坐标左边的图象所对应的自变量的取值即可;(3)根据题意可知当两函数图象平行时,直线y 1=k 1x +b 1与直线为y 2=k 2x +b 2没有公共点.【详解】解:(1)∵一次函数y 1=k 1x +b 1和y 2=k 2x +b 2的图象交于点A (3,5),∴关于x 的方程k 1x +b 1=k 2x +b 2的解为x =3.(2)一次函数y 1=k 1x +b 1与一次函数y 2=k 2x +b 2的图象相交于点A (3,5),所以不等式k1x+b1>k2x+b2的解集是x<3.(3)∵两直线平行,则k1=k2,b1≠b2,∴当k1=k2,b1≠b2时,直线y1=k1x+b1与直线为y2=k2x+b2没有公共点.【点睛】本题考查两条直线相交或平行问题,熟练掌握两函数图象与方程解之间,函数图象与不等式之间的关系是解题的关键.。

最新北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组章节测评试卷(含答案详解)

最新北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组章节测评试卷(含答案详解)

第二章一元一次不等式和一元一次不等式组章节测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若m >n ,则下列不等式不成立的是( )A .m +4>n +4B .﹣4m <﹣4nC .44m n >D .m ﹣4<n ﹣42、下列说法中,正确的是( )A .x =3是不等式2x >1的解B .x =3是不等式2x >1的唯一解C .x =3不是不等式2x >1的解D .x =3是不等式2x >1的解集3、一次函数y =mx ﹣n (m ,n 为常数)的图象如图所示,则不等式mx ﹣n ≥0的解集是( )A .x ≥2B .x ≤2C .x ≥3D .x ≤34、在数轴上表示不等式1x >-的解集正确的是( )A.B.C.D.5、已知a>b,下列变形一定正确的是()A.3a<3b B.4+a>4﹣b C.ac2>bc2D.3+2a>3+2b6、设m为整数,若方程组3131x y mx y m+=-⎧⎨-=+⎩的解x、y满足175x y+>-,则m的最大值是()A.4 B.5 C.6 D.77、如图,一次函数y=ax+b的图象交x轴于点(2,0),交y轴与点(0,4),则下面说法正确的是()A.关于x的不等式ax+b>0的解集是x>2B.关于x的不等式ax+b<0的解集是x<2C.关于x的方程ax+b=0的解是x=4D.关于x的方程ax+b=0的解是x=28、一次函数y=kx+b的图象如图所示,则下列说法错误的是()A.y随x的增大而减小B.k<0,b<0C.当x>4时,y<0x的图象D.图象向下平移2个单位得y=﹣129、一个不等式的解集为x≤1,那么在数轴上表示正确的是()A.B.C.D.10、下列说法正确的是()A.若a<b,则3a<2b B.若a>b,则ac2>bc2 C.若﹣2a>2b,则a<b D.若ac2<bc2,则a<b第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、某种药品的说明书上贴有如下的标签,一次服用这种药品的剂量范围是_________mg .2、如图所示,在天平右盘中的每个砝码的质量都是1g ,则物体A 的质量m (g)的取值范围为_____________.3、当|x ﹣4|=4﹣x 时,x 的取值范围是___.4、如果a >b ,那么﹣2﹣a ___﹣2﹣b .(填“>”、“<”或“=”)5、已知点M (-6,3-a )是第二象限的点,则a 的取值范围是________.三、解答题(5小题,每小题10分,共计50分)1、学校计划购买甲、乙两种品牌的羽毛球拍若干副.已知购买3副甲种品牌球拍和2副乙种品牌球拍共需230元;购买2副甲种品牌球拍和1副乙种品牌球拍共需140元.(1)甲、乙两种品牌球拍的单价分别是多少元?(2)学校准备购买这两种品牌球拍共100副,要求乙种品牌球拍数量不超过甲种品牌球拍数量的3倍,那么购买多少副甲种品牌球拍最省钱?2、人和人之间讲友情,有趣的是,数与数之间也有相类似的关系.若两个不同的自然数的所有真因数(即除了自身以外的正因数)之和相等,我们称这两个数为“亲和数”.例如:18的正因数有1、2、3、6、9、18,它的真因数之和为1236921++++=;51的正因数有1、3、17、51,它的真因数之和为131721++=,所以称18和51为“亲和数”.又如要找8的亲和数,需先找出8的真因数之和为1247++=,而7133=++,所以8的亲和数为1339⨯⨯=,数还可以与动物形象地联系起来,我们称一个两头(首位与末位)都是1的数为“两头蛇数”.例如:121、1351等.(1)10的真因数之和为_______;(2)求证:一个四位的“两头蛇数”11ab 与它去掉两头后得到的两位数的3倍的差,能被7整除;(3)一个百位上的数为4的五位“两头蛇数”,能被16的“亲和数”整除,若这个五位“两头蛇数”的千位上的数字小于十位上的数字,求满足条件的五位“两头蛇数”.3、解不等式组求它的整数解:()202131x x x ->⎧⎪⎨+≥-⎪⎩ 4、解不等式(组)(1)3(1)5x x -≤+(2)4614312163x x x x +>-⎧⎪++⎨-≤⎪⎩ 5、为做好“园林城市创建”工作,打造美丽城市,达州市绿化提质改造工程正如火如荼地进行.某施工队计划购买甲、乙两种树苗共400棵对芙蓉路的某桥标段道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元.(1)若购买两种树苗的总金额为90000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少于购买乙种树苗的金额,至少应购买甲种树苗多少棵?-参考答案-一、单选题1、D【分析】根据不等式的基本性质对各选项进行逐一分析即可.【详解】解:A .∵m >n ,∴m +4>n +4,故该选项正确,不符合题意;B .∵m >n ,∴44m n -<-,故该选项正确,不符合题意;C .∵m >n , ∴44m n >,故该选项正确,不符合题意; D .∵m >n ,∴44m n ->-,故该选项错误,符合题意;故选:D .【点睛】本题考查不等式的基本性质.掌握不等式的基本性质“1.不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;2.不等式两边都乘(或除以)同一个正数,不等号的方向不变;3.不等式两边都乘(或除以)同一个负数,不等号的方向改变.”是解答本题的关键.2、A【分析】对A 、B 、C 、D 选项进行一一验证,把已知解代入不等式看不等式两边是否成立.【详解】解:A 、当x =3时,2×3>1,成立,故A 符合题意;B 、当x =3时,2×3>1成立,但不是唯一解,例如x =4也是不等式的解,故B 不符合题意;C 、当x =3时,2×3>1成立,是不等式的解,故C 不符合题意;D 、当x =3时,2×3>1成立,是不等式的解,但不是不等式的解集,其解集为:x >12,故D 不符合题意;故选:A .【点睛】此题着重考查不等式中不等式的解、唯一解、解集概念之间的区别和联系,是一道非常好的基础题.3、D【分析】观察直线位于x轴及x轴上方的图象所对应的自变量的值即可完成解答.【详解】由图象知:不等式的解集为x≤3故选:D【点睛】本题考查了一次函数与一元一次不等式的关系,数形结合是解答本题的关键.4、A【分析】根据在数轴上表示不等式的解集的方法进行判断即可.【详解】在数轴上表示不等式1x>-的解集如下:故选:A.【点睛】本题考查不等式在数轴上的表示,掌握不等式在数轴上的画法是解题的关键.5、D【分析】根据不等式的基本性质逐项排查即可.【详解】解:A.在不等式的两边同时乘或除以同一个正数,不等号的方向不发生改变,这里应该是3a>3b,故A不正确,不符合题意;B.无法证明,故B选项不正确,不符合题意;C .当c =0时,不等式不成立,故C 选项不正确,不符合题意;D .不等式的两边同时乘2再在不等式的两边同时3,不等式,成立,故D 选项正确,符合题意. 故选:D .【点睛】本题主要考查了不等式的性质,1.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变; 2.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变;3.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变.6、B【分析】先把m 当做常数,解一元二次方程,然后根据175x y +>-得到关于m 的不等式,由此求解即可 【详解】解:3131x y m x y m +=-⎧⎨-=+⎩①② 把①×3得:9333x y m +=-③,用③+①得:1042x m =-,解得25m x -=, 把25m x -=代入①得6315m y m -+=-,解得125m y --=, ∵175x y +>-, ∴21217555m m ---+>-,即131755m ->-, 解得6m <,∵m 为整数,∴m 的最大值为5,故选B.【点睛】本题主要考查了解二元一次方程组和解一元一次不等式和求不等式的整数解,解题的关键在于能够熟练掌握解二元一次方程组的方法.7、D【分析】直接根据函数图像与x轴的交点,进行逐一判断即可得到答案.【详解】解:A、由图象可知,关于x的不等式ax+b>0的解集是x<2,故不符合题意;B、由图象可知,关于x的不等式ax+b<0的解集是x>2,故不符合题意;C、由图象可知,关于x的方程ax+b=0的解是x=2,故不符合题意;D、由图象可知,关于x的方程ax+b=0的解是x=2,符合题意;故选:D.【点睛】本题主要考查了一次函数图像与x轴的交点问题,利用一次函数与x轴的交点求不等式的解集,解题的关键在于能够利用数形结合的思想求解.8、B【分析】由一次函数的图象的走势结合一次函数与y轴交于正半轴,可判断A,B,由图象可得:当x>4时,函数图象在x轴的下方,可判断C,先求解一次函数的解析式,再利用一次函数图象的平移可判断D,从而可得答案.【详解】解:一次函数y=kx+b的图象从左往右下降,所以y随x的增大而减小,故A不符合题意;k b故B符合题意;一次函数y=kx+b, y随x的增大而减小,与y轴交于正半轴,所以0,0,由图象可得:当x >4时,函数图象在x 轴的下方,所以y <0,故C 不符合题意;由函数图象经过0,2,4,0,240b k b ,解得:1,22k b 所以一次函数的解析式为:12,2y x 把122y x =-+向下平移2个单位长度得:12y x =-,故D 不符合题意; 故选B 【点睛】本题考查的是一次函数的性质,一次函数的平移,利用待定系数法求解一次函数的解析式,掌握“一次函数的图象与性质”是解本题的关键.9、C【分析】根据数轴上数的大小关系解答.【详解】解:解集为x ≤1,那么在数轴上表示正确的是C ,故选:C .【点睛】此题考查利用数轴表示不等式的解集,正确掌握数轴上数的大小关系及表示解集的方法是解题的关键.10、D【分析】利用不等式的性质,即可求解.【详解】解:A、若a<b,则3a<3b,故本选项错误,不符合题意;B、若a>b,当c=0时,则ac2=bc2,故本选项错误,不符合题意;C、若﹣2a>﹣2b,则a<b,故本选项错误,不符合题意;D、若ac2<bc2,则a<b,故本选项正确,符合题意;故选:D【点睛】本题主要考查了不等式的性质,熟练掌握不等式的性质是解题的关键.二、填空题1、20~45【分析】根据60≤2次服用的剂量≤90,60≤3次服用的剂量≤90,列出两个不等式组,求出解集,再求出解集的并集即可.【详解】解:设一次服用的剂量为x mg,根据题意得;60≤2x≤90或60≤3x≤90,解得30≤x≤45或20≤x≤30,则一次服用这种药品的剂量范围是:20~45mg.故答案为:20~45.【点睛】此题考查一元一次不等式组的应用,得到不同次数服用剂量的数量关系是解决本题的关键.2、1<m<2【分析】根据左右两个天平的倾斜得出不等式即可;【详解】由第一幅图得m >1,由第二幅图得m <2,故1<m <2;故答案是:1<m <2.【点睛】本题主要考查了一元一次不等式的解集,准确分析计算是解题的关键.3、4x ≤【分析】根据绝对值的意义进行分析解答【详解】解:∵ |4|4x x =-=-,∴40x -≥,故答案为:4x ≤.【点睛】本题考查绝对值的意义,解一元一次不等式,熟练掌握基础知识即可.4、<【分析】根据不等式的基本性质:不等式的两边乘(或除以)同一个负数,不等号的方向改变;不等式两边加上同一个数,不等式的方向不变.【详解】解:∵a >b ,∴﹣a <﹣b ,∴﹣2﹣a <﹣2﹣b ,故答案为:<.【点睛】本题考查不等式的性质,熟练掌握不等式的基本性质是解题的关键.5、a<3【分析】根据第二象限的符号特点(-,+),建立不等式解答即可.【详解】∵M(-6,3-a)是第二象限的点,∴3-a>0,解得a<3,故答案为:a<3.【点睛】本题考查了坐标与象限,不等式的解法,根据点的位置,正确建立不等式求解是解题的关键.三、解答题1、(1)甲种品牌球拍的单价是50元,乙种品牌球拍的单价是40元(2)购买25副甲种品牌球拍最省钱【分析】(1)设甲种品牌球拍的单价是x元,乙种品牌球拍的单价是y元,根据“购买3副甲种品牌球拍和2副乙种品牌球拍共需230元;购买2副甲种品牌球拍和1副乙种品牌球拍共需140元”,即可得出关于x,y的二元一次方程组,解之即可得出甲、乙两种品牌球拍的单价;(2)设购买m副甲种品牌球拍,则购买(100﹣m)副乙种品牌球拍,根据乙种品牌球拍数量不超过甲种品牌球拍数量的3倍,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,设学校购买100副球拍所需费用为w元,利用总价=单价×数量,即可得出w关于m的函数关系式,再利用一次函数的性质,即可解决最值问题.(1)解:设甲种品牌球拍的单价是x 元,乙种品牌球拍的单价是y 元,依题意得:{3x +2x =2302x +x =140, 解得:5040x y =⎧⎨=⎩. 答:甲种品牌球拍的单价是50元,乙种品牌球拍的单价是40元.(2)解:设购买m 副甲种品牌球拍,则购买(100﹣m )副乙种品牌球拍,依题意得:100﹣m ≤3m ,解得:m ≥25.设学校购买100副球拍所需费用为w 元,则w =50m +40(100﹣m )=10m +4000.∵10>0,∴w 随m 的增大而增大,∴当m =25时,w 取得最小值,∴购买25副甲种品牌球拍最省钱.【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出w 关于m 的函数关系式.2、(1)8;(2)见解析;(3)10461,11451,12441.【分析】(1)先求出10的真因数,再求10的真因数之和即可;(2)先把给出的数用代数式表示111001+10010ab a b =+,10ab a b =+,根据要求列代数式得1121001100103(10)ab ab a b a b -=++-+=7(10143)a b ++,说明括号中的数为整式即可;(3)设五位“两头蛇数”为141x y (x y <),先求出16的真因数之和15,找到16的亲和数为131133⨯⨯= ,根据能被16的“亲和数”整除,将五位数写成33的倍数与剩余部分为14133315333010106x y x x y =⨯+⨯+++,可得553x y ++能被33整除,根据08x ≤≤,19y ≤≤且x y <,得出555388x y ≤++≤能被33整除得出6x y +=即可.【详解】.解:(1)10的真因数为1,2,5,10的真因数之和为1+2+5=8,故答案为8;(2)11100010010+1=1001+10010ab a b a b =+++,10ab a b =+, ∵1131001100103(10)ab ab a b a b -=++-+,=7071001a b ++,=7(10143)a b ++,又因为09a ≤≤,09b ≤≤的整数,∴10143a b ++为整数,∴一个四位“两头蛇数”与它去掉两头后得到的两位数的3倍的差能被7整除;(3)设五位“两头蛇数”为141x y (x y <),∵末位数为1,∴不能被2(真因数)整除,∵16的真因数之和1248151311=+++==++,∴16的亲和数为131133⨯⨯= ,1411040110001033315633301010x y x y x x y =++=⨯++⨯++能被33整除,101062(553)x y x y ∴++=++能被33整除,又2不能被33整除,553x y ∴++能被33整除,08x ≤≤又,19y ≤≤且x y <,∴555388x y ≤++≤,55333x y ∴++=或66.5530x y ∴+=或5563x y +=(舍去),6x y ∴+=,09x y ≤≤<,∴06x y ==,或1,5x y ==或2,4x y ==,所以五位“两头蛇数”为10461,11451,12441.【点睛】本题考查数字之间的新定义,仔细阅读题目,把握实质,明确真因数与亲和数,整除性质,五位数的代数式表示,不等式组的解集,二元一次方程的非负整数解,掌握真因数与亲和数,整除性质,五位数的代数式表示,不等式组的解集,二元一次方程的非负整数解是解题关键.3、不等式组的解集为23x <≤,不等式组的整数解为3.【分析】先求出每个不等式的解集,然后求出不等式组的解集,最后求出不等式组的整数解即可.【详解】解:()202131x x x ->⎧⎪⎨+≥-⎪⎩①② 解不等式①得:2x >,解不等式②得:3x ≤,∴不等式组的解集为23x <≤,∴不等式组的整数解为3.【点睛】本题主要考查了解一元一次不等式组和求一元一次不等式组的整数解,解题的关键在于能够熟练掌握解不等式组的方法.4、(1)4x ≤;(2)1x >-【分析】(1)根据解不等式的基本步骤求解即可;(2)先求得每一个不等式的解集,后确定出解集即可.【详解】(1)∵3(1)5x x -≤+ ,∴335x x -≤+,∴28x ≤,∴4x ≤;(2)4614312163x x x x +>-⎧⎪⎨++-≤⎪⎩①② 由①:1x >-,由②:4x ≥-,1x ∴>-.【点睛】本题考查了一元一次不等式和一元一次不等式组的解法,熟练掌握解题的基本步骤是解题的关键.5、(1)购买甲种树苗300棵,则购买乙种树苗100棵;(2)至少应购买甲种树苗240棵【分析】(1)设购买甲种树苗x棵,则购买乙种树苗(400-x)棵,根据购买两种树苗的总金额为90000元建立方程求出其解即可;(2)设应购买甲种树苗a棵,则购买乙种树苗(400-a)棵,根据购买甲种树苗的金额不少于购买乙种树苗的金额建立不等式求出其解即可.【详解】解:(1)设购买甲种树苗x棵,则购买乙种树苗(400-x)棵,由题意得200x+300(400-x)=90000,解得:x=300,∴购买乙种树苗400-300=100棵,答:购买甲种树苗300棵,则购买乙种树苗100棵;(2)设应购买甲种树苗a棵,则购买乙种树苗(400-a)棵,由题意,得200a≥300(400-a),解得:a≥240.答:至少应购买甲种树苗240棵.【点睛】本题考查了列一元一次方程解实际问题的运用,一元一次不等式的解法的运用,解答时建立方程和不等式是关键.。

八年级数学下册 第2章 一元一次不等式与一元一次不等式组2.4.2一元一次不等式的实际应用习

八年级数学下册 第2章 一元一次不等式与一元一次不等式组2.4.2一元一次不等式的实际应用习

解:嘉嘉所列方程为 101-x=2x, 解得 x=3323. 又∵x 为整数,∴x=3323不合题意. ∴淇淇的说法不正确.
(2)据工作人员透露:B品牌球比A品牌球至少多28个,试
通过列不等式的方法说明A品牌球最多有几个. 解:∵A 品牌乒乓球有 x 个,
∴B 品牌乒乓球有(101-x)个.
依题意得
(1)求每支A种型号的毛笔和每支B种型号的毛笔各多少元; 解:设每支 A 种型号的毛笔 x 元,每支 B 种型号的毛笔 y 元. 由题意得32xx+ +y3=y=222, 4,解得xy==46., 答:每支 A 种型号的毛笔 6 元,每支 B 种型号的毛笔 4 元.
(2)君辉中学决定购买以上两种型号的毛笔共80支,总费用 不超过420元,那么该中学最多可以购买多少支A种型号 的毛笔? 解:设该中学可以购买a支A种型号的毛笔. 由题意得6a+4(80-a)≤420, 解得a≤50. 答:该中学最多可以购买50支A种型号的毛笔.
3 【2021·常德】某汽车贸易公司销售A,B两种型号的 新能源汽车,A型车进货价格为每台12万元,B型车进 货价格为每台15万元.该公司销售2台A型车和5台B型 车,可获利3.1万元;销售1台A型车和2台B型车,可 获利1.3万元.
(1)求销售一台A型、一台B型新能源汽车的利润各是多少 万元; 解:设销售一台 A 型新能源汽车的利润是 x 万元,销售 一台 B 型新能源汽车的利润是 y 万元. 依题意得2xx++25y=y=13.3.1,,解得xy==00..53., 答:销售一台 A 型新能源汽车的利润是 0.3 万元,销售 一台 B 型新能源汽车的利润是 0.5 万元.
(1)求《西游记》和《水浒传》每本的售价分别是多少元; 解:设《西游记》每本的售价为 x 元,《水浒传》每本 的售价为 y 元. 依题意得5400xx+ +6300yy= =64 620000, ,解得xy==6600., 答:《西游记》每本的售价为 60 元,《水浒传》每本的 售价为 60 元.

八年级数学北师大版初二下册--第二单元 《一元一次不等式与一元一次不等式组回顾与思考》课件

八年级数学北师大版初二下册--第二单元  《一元一次不等式与一元一次不等式组回顾与思考》课件

1 -5 -4 -3 -2 -1 -11 2 3 4 x
解:(1)x=1;(2).x<1;(3).x>1
-2
归纳:利用两个一次函数的图象求一元一次不等 式的解集:关键是确定两个一次函数图象的交点 坐标.
知识点三:一元一次不等式组
(一)一元一次不等式组: 一般地,关于同一未知数的几个一元一次不等式合在
性质3:不等式的两边乘以(或除以)同一个负数,不等 号的方向改变。
即:如果a>b,c<0,那么ac<bc,a/c<b/c.
1.设a>b,用“<”或“>”填空:
(1)a-3 > b-3 (2) a > b (3)-4a < -4b 22
2.单项选择: (1)由x>y 得ax>ay的条件是( A ) A.a>0 B.a<0 C.a≥0 D.a≤0 (2)由x>y得ax≤ay的条件是( D ) A.a>0 B.a<0 C.a≥0 D.a≤0 (3)由a>b得am2>bm2 的条件是( C ) A.m>0 B.m<0 C.m≠0 D.m是任意有理数
2.高速公路施工需要爆破,根据现场实际情况,操作 人员点燃导火线后,要在炸药爆破前跑到400米外的 安全区域,已知导火索燃烧速度是1.2厘米/秒,人跑 步的速度是5米/秒,问导火索至少需要多长? 分析:导火索燃烧的时间≥人跑出400米外的时间.
解:设导火索至少需要x厘米长,据题意有:
x 1.2

400 5
1.解不等式 2x 1 5 x 5 ,并把它的解集在数轴上 34
表示出来. 解: 去分母得: 4(2x 1) 12(5 x 5) 4 去括号得: 8x-4≥15x-60
移项得: 8x-15x≥-60+4
合并同类项得:
-7x≥-56

初中数学《一元一次不等式和一元一次不等式组》单元教学设计以及思维导图

初中数学《一元一次不等式和一元一次不等式组》单元教学设计以及思维导图

一元一次不等式和一元一次不等式组
主题单元学习目标
知识与技能:
1、经历将一些实际问题抽象成不等式的过程,体会不等式也是刻画现实世界中量与量之间关系的有效数学模型进一步发展符号感。

2、能够根据具体问题中的大小关系了解不等式的意义。

3、掌握不等式的基本性质。

4、理解不等式组的解及解集的含义,会解简单的一元一次不等式并能在数轴上表示一元一次不等式的解集,会解一元一次不等式组并会在数轴上确定其解集,初步体会数形结合的思想。

其他:纸、笔
学习活动设计
活动一、
如下图,正方形的边长和圆的直径都是acm。

1、如果要使正方形的周长不大于25cm,那么 a 应满足怎样的关系式?
2、如果要使圆的周长不小于100cm,那么a 应满足怎样的关系式?
3、当 a= 8 时,正方形和圆的周长哪个大?a = 12 呢?
4、你能得到什么猜想?改变a的取值再试一试。

观察由上述问题得到的关系式,它们有什么共同特点?
由4a 4a4a≤25, πa ≥100 ,3x+5>240得,这些关系式都是用不等号连接的式子.由此
一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式
活动二、。

北师大版初2数学8年级下册 第2章 一元一次不等式和一元一次不等式组 易错题专练(含答案)

北师大版初2数学8年级下册 第2章 一元一次不等式和一元一次不等式组 易错题专练(含答案)

【自己做】(1)已知关于x 的方程3k -5x =-9的解是非负数,求k 的取值范围.(2) 已知关于x 的不等式(1-a )x >2的解集为x <a -12 ,则a 的取值范围是 .(3)如果不等式组⎩⎨⎧<+>-00b x a x 的解集是3<x <5,那么a= ,b= .(4) 如果不等式 ⎩⎨⎧><m x x 8 无解,那么m 的取值范围是 ( ) A .m >8 B.m ≥8 C.m <8 D.m ≤8(5)如果不等式组⎩⎨⎧>-<+m x x x 148的解集是3>x ,则m 的取值范围是( ).A .m≤3 B . m≥3 C .m=3 D .m <3(6)关于x 的不等式组()⎪⎩⎪⎨⎧->-+--<-325251263x x a x x 有三个整数解,则a 的取值范围是 .【自己解答】(7) 若方程组⎩⎨⎧+=++=+3654,2m y x m y x 的解x ,y 均为正数,求m 的取值范围.提示:先将m 当作已知数,将x 、y 用含m 的式子表示出来,然后利用x ,y 均为正数,列出含m 的不等式组,解出m 的取值范围【自己解】2.解不等式(组)【】(1)解不等式1213312+-≥+)(x x ,并将解集在数轴上表示出来;(2)解不等式组⎪⎩⎪⎨⎧≤+--+<-1215312)1(315x x x x ,并把它的解集表示在数轴上.3.一元一次不等式(组)与一次函数利用一次函数解一元一次不等式(组):实质就是比较两个函数y 值得大小,函数值(y )越大,图像越高,函数值(y )越小,图像越高低,这里一般是让求自变量x 的取值范围,找出与x 轴交点的横坐标(指一元一次不等式),看让求图像在x 轴以上的自变量的取值范围(还是图像在x 轴以下的自变量的取值范围);或找出函数交点的横坐标,然后看在该交点以左满足题意还是交点以右满足题意.(1)函数y =kx +b (k 、b 为常数,k ≠0)的图象如图所示,则关于x 的不等式kx+b>0的解集为( ).A .x>0B .x<0C .x<2D .x>2(2)直线b x k y l +=11:与直线x k y l 22:=在同一平面直角坐标系中的图象如图所示,则关于x 的不等式x k b x k 21>+的解为4.一元一次不等式(组)应用题◆一件商品的进价是500元,标价为600元,打折销售后要保证获利不低于8%,则此商品最多打多少折?解:◆某商贩去菜摊买黄瓜,他上午买了30斤,价格为每斤x 元;下午,他又买了20斤.价格为每斤y 元.后来他以每斤2y x +元的价格卖完后,结果发现自己赔了钱,其原因是( )x <y B .x >yC .x ≤yD .x ≥y 解答题:(1)某商场文具部的某种毛笔每支售价25元,书法练习本每本售价5元。

新北师大版八年级数学下册第2章《一元一次不等式与一元一次不等式组 》综合练习题含答案解析 (24)

新北师大版八年级数学下册第2章《一元一次不等式与一元一次不等式组 》综合练习题含答案解析 (24)

(共25题)一、选择题(共10题)1. 若关于 x 的不等式组 {2x −6+m <0,4x −m >0 有解,则在其解集中,整数的个数不可能是 ( )A . 1B . 2C . 3D . 42. 如图表示下列四个不等式组中其中一个的解集,这个不等式组是 ( )A . {x ≥2,x >−3B . {x ≤2,x <−3C . {x ≥2,x <−3D . {x ≤2,x >−33. 把不等式组 {2x +3>1,3x +4≥5x的解集表示在数轴上如图,正确的是 ( )A .B .C .D .4. 若 a >b ,则下列不等式成立的是 ( ) A . a −1<b −1 B . −8a <−8b C . 4a <4bD . ac >bc5. 若 x <y 成立,则下列不等式成立的是 ( ) A . x −2<y −2 B . −x <−y C . x +1>y +1D . −3x <−3y6. 不等式 x −1>0 的解集是 ( ) A . x >1B . x <1C . x >−1D . x <−17. 不等式组{5x +2>3(x −1)12x −1≤7−32x的所有非负整数解的和是( ) A .10 B .7 C .6 D .08. 已知 a >b ,则下列不等关系中正确的是 ( ) A . ac >bcB . a +c >b +cC . a −1>b +1D . ac 2>bc 29. 不等式组 {x +9<5x +1,x ≥2x −3 的解集是 ( )A .x >2B .x ≤3C .2<x ≤3D .x ≥310. 不等式 2x ≥x −1 的解集在数轴上表示正确的是 ( )A .B .C .D .二、填空题(共7题)11. 在平面直角坐标系中,点 P (m,m −2) 在第一象限内,则 m 的取值范围是12. 已知关于 x 的不等式组 {x −a <0,9−2x ≤3 有且只有 2 个整数解,且 a 为整数,则 a 的值为 .13. 定义新运算:对于任意实数 a ,b 都有:a ⊕b =a (a −b )+1,其中等式右边是通常的加法、减法及乘法运算.如:2⊕5=2×(2−5)+1=2×(−3)+1=−5,那么不等式 3⊕x <13 的解集为 .14. 当 x 满足条件 时,代数式 6−3x 5的值不大于零.15. 对于有理数 m ,我们规定 [m ] 表示不大于 m 的最大整数,例如 [1.2]=1,[3]=3,[−2.5]=−3,若 [x+23]=−5,则整数 x 的取值是 .16. 一元一次不等式需满足的三个条件是:① ,② ,③ ,这样的不等式叫做一元一次不等式.17. 如图,周长为 a 的圆上仅有一点 A 在数轴上,点 A 所表示的数为 1.该圆沿着数轴向右滚动一周后点 A 对应的点为点 B ,且滚动中恰好经过 3 个整数点(不包括 A ,B 两点),则 a 的取值范围为 .三、解答题(共8题)18. 已知不等式 18x −2>x 与 ax −3>2x 的解集相同,求 a 的值.19. 解不等式组 {2x−13−5x+12≤1,5x −1<3(x +1), 并写出该不等式组的整数解.20. 列方程解应用题.(1) 某车间 32 名工人生产螺母和螺钉,每人每天平均生产螺钉 1500 个或螺母 5000 个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉?(2) 一家游泳馆每年 6∼8 月份出售夏季会员证,每张会员证 80 元,只限本人使用凭证购入场券每张 1 元,不凭证购入场卷每张 3 元,请用所学数学知识分析,什么情况下购会员证更合算?21. 解不等式组 {3x ≥4x −4, ⋯⋯①5x −11≥−1. ⋯⋯②请结合题意填空,完成本题的解答. (1) 解不等式 ①,得 . (2) 解不等式 ②,得 .(3) 把不等式 ① 和 ② 的解集在数轴上表示出来:(4) 原不等式组的解集为 .22. 已知两个语句:①式子 2x −1 的值比 1 大; ②式子 2x −1 的值不小于 1. 请回答下列问题:(1) 两个语句表达的意思是否一样?(不用说明理由)(2) 把两个语句分别用数学式子表示出来,并选择一个求其解集.23. 解方程组:{x +3>5 ⋯⋯①2x −3<x +2 ⋯⋯②24. 解不等式组:{4x >2x −6,x−13≤x+19, 并把解集在数轴上表示出来.25. 解不等式:x−52+1>x −3.答案一、选择题(共10题)1. 【答案】C【解析】解不等式2x−6+m<0,得x<6−m2,解不等式4x−m>0,得x>m4,∵不等式组有解,∴m4<6−m2,解得m<4,如果m=2,则不等式组的解集为12<x<2,整数解为x=1,有1个;如果m=0,则不等式组的解集为0<x<3,整数解为x=1,2,有2个;如果m=−1,则不等式组的解集为−14<x<72,整数解为x=0,1,2,3,有4个.故选C.【知识点】含参一元一次不等式组2. 【答案】D【知识点】常规一元一次不等式组的解法3. 【答案】B【解析】解不等式2x+3>1,得:x>−1,解不等式3x+4≥5x,得:x≤2,则不等式组的解集为−1<x≤2,故选:B.【知识点】常规一元一次不等式组的解法4. 【答案】B【知识点】不等式的性质5. 【答案】A【解析】A、不等式的两边都减去2,不等号的方向不变,故本选项正确;B、不等式的两边都乘以−1,不等号的方向改变,故本选项错误;C、不等式的两边都加上1,不等号的方向不变,故本选项错误;D、不等式的两边都乘以−3,不等号的方向改变,故本选项错误.【知识点】不等式的性质6. 【答案】A【知识点】常规一元一次不等式的解法7. 【答案】A【解析】【分析】分别求出每一个不等式的解集,即可确定不等式组的解集,继而可得知不等式组的非负整数解.【解析】解:{5x +2>3(x −1)①12x −1≤7−32x②, 解不等式①得:x >−2.5, 解不等式②得:x ≤4,∴不等式组的解集为:−2.5<x ≤4,∴不等式组的所有非负整数解是:0,1,2,3,4,∴不等式组的所有非负整数解的和是0+1+2+3+4=10, 故选:A .【点评】本题主要考查解一元一次不等式组的基本技能,准确求出每个不等式的解集是解题的根本,确定不等式组得解集及其非负整数解是关键. 【知识点】常规一元一次不等式组的解法8. 【答案】B【解析】A .不等式两边都乘以 c ,当 c <0 时,不等号的方向改变,原变形错误,故此选项不符合题意;B .不等式两边都加上 c ,不等号的方向不变,原变形正确,故此选项符合题意;C .不等式的两边一边加 1 一边减 1,不等号的方向不确定,原变形错误,故此选项不符合题意;D .不等式的两边都乘以 c 2,当 c =0 时,变为等式,原变形错误,故此选项不符合题意. 【知识点】不等式的性质9. 【答案】C【解析】{x +9<5x +1, ⋯⋯①x ≥2x −3, ⋯⋯②解不等式 ①,得 x >2, 解不等式 ②,得 x ≤3, ∴ 不等式组的解集为 2<x ≤3. 【知识点】常规一元一次不等式组的解法10. 【答案】C【知识点】常规一元一次不等式的解法二、填空题(共7题) 11. 【答案】 m >2【知识点】常规一元一次不等式组的解法12. 【答案】 5【解析】 {x −a <0,9−2x ≤3解得:{x <a,x ≥3,∴3≤x <a ,∵ 有且只有 2 个整数解, ∴4<a ≤5, ∵a 为整数, ∴a =5.【知识点】含参一元一次不等式组13. 【答案】 x >−1【解析】 ∵a ⊕b =a (a −b )+1,∴3⊕x =3(3−x )+1<13,解得 x >−1. 【知识点】常规一元一次不等式的解法14. 【答案】 x ≥2【知识点】常规一元一次不等式的解法15. 【答案】 −17 或 −16 或 −15【解析】 ∵[x+23]=−5,∴−5≤x+23<−4,∴−15≤x +2<−12, ∴−17≤x <−14,∴ 整数 x 的取值为 −17 或 −16 或 −15. 【知识点】常规一元一次不等式组的解法16. 【答案】只含有一个未知数;未知数的最高次数是 1 ;系数不等于 0【知识点】一元一次不等式的概念17. 【答案】 3<a ≤4【解析】根据题意可知,三个整数点表示的数为 2,3,4,所以 4<a +1≤5,所以 a 的取值范围为3<a≤4.【知识点】不等式的概念三、解答题(共8题)18. 【答案】解不等式18x−2>x得,x<−167;由不等式ax−3>2x得,(a−2)x>3,∵两不等式的解集相同,∴a−2<0,∴x<3a−2,∴3a−2=−167,解得:a=1116.故a的值为:1116.【知识点】含参一元一次方程的解法、常规一元一次不等式的解法19. 【答案】{2x−13−5x+12≤1, ⋯⋯①5x−1<3(x+1), ⋯⋯②解不等式①,得x≥−1,解不等式②,得x<2,∴不等式组的解集为−1≤x<2,∴不等式组的整数解为−1,0,1.【知识点】常规一元一次不等式组的解法20. 【答案】(1) 设为了使每天的产品刚好配套,应该分配x名工人生产螺钉,则(32−x)名工人生产螺母,根据题意得:1500x×2=5000(32−x),解得:x=20.则为了使每天的产品刚好配套,应该分配20名工人生产螺钉.(2) 假设游泳x次,则购证后花费为(80+x)元,不购证花费3x元,根据题意得:80+x<3x,解得:x>40.答:6∼8月游泳次数大于40的话,购证更划算.【知识点】和差倍分、一元一次不等式的应用21. 【答案】(1) x≤4(2) x≥2(3) 如图所示:(4) 2≤x≤4【解析】(1) 解不等式 ① 得 x ≤4. (2) 解不等式 ② 得 x ≥2.【知识点】常规一元一次不等式组的解法、常规一元一次不等式的解法、数轴的概念22. 【答案】(1) 两个语句表达的意思不一样.(2) ① 2x −1>1; 两边同加上 1,得 2x >2, 两边再同除以 2,得 x >1. ② 2x −1≥1;两边同加上 1,得 2x ≥2, 两边再同除以 2,得 x ≥1.【知识点】常规一元一次不等式的解法、一元一次不等式的概念、不等式的概念23. 【答案】解不等式①,得 x >2.解不等式②,得 x <5.所以,这个不等式组的解集是 2<x <5. 【知识点】常规一元一次不等式组的解法24. 【答案】{4x >2x −6, ⋯⋯①x−13≤x+19. ⋯⋯②解不等式①得:x >−3,解不等式②得:x ≤2.∴ 不等式组的解集为−3<x ≤2.在数轴上表示不等式组的解集为:【知识点】常规一元一次不等式组的解法25. 【答案】(x −5)+2>2(x −3),x −5+2>2x −6,x −2x >5−2−6,−x >−3,x <3.【知识点】常规一元一次不等式的解法。

北师大版八年级数学下册第二章2.4第1课一元一次不等式的解法(2)

北师大版八年级数学下册第二章2.4第1课一元一次不等式的解法(2)

合并同类项得:-x>5
合并同类项得:-x=5
两边都除以-1得:x<-5
两边都除以-1得:x=-5
解不等式 2x 5 3x 2 2,并将其解集表示在数轴上. 64
解:去分母:2(2x-5)≤3(3x+2)-24 去括号:4x-15≤9x+9-24 移项:4x-9x≤9-24+10 合并同类项:-5x≤-5 系数化为1:x≥1 解集表示如下:
类型二:已知解集求字母系数的取值范围
若关于x的不等式(m+1)x<m+1的解集是x<1,
则m满足的条件是__m__>__-___1
解:不等式两边同除以(m+1)时,不等号的方向不变, 根据不等式性质知(m+1)为正数, 即m+1>0, 解得m>-1
类型二:已知解集求字母系数的取值范围
已知不等式 3x-a≤0 的正整数解恰是1,2,3,则a 的取值范围
∴最大正整数x=2
5.
已知方程组3x+x+3yy==11+-3mm
①, ② 的解满足 x+y>0,
求 m 的取值范围.
解:由①+②得:(3x+y)+(x+3y)=(1+3m) +(1-m)
即4(x+y)=2+2m ∵x+y>0 ∴4(x+y)>0 ∴2+2m>0 ∴m>-1
6. 若关于 x 的方程(x-2)+3k=x+3 k的解是非负数,则 k
2.4 一元一次不等式
第2课时 一元一次不等式的解法(二)
复习回顾
1、不等式的性质:
不等式的性质1:不等式两边同时加上或减去同一个数(式),不等号的方向 不变;
不等式的性质2:不等式两边同时乘以或除以一个正数,不等号的方向不变; 不等式的性质3:不等式两边同时乘以或除以一个负数,不等号的方要改变。

第二章《一元一次不等式与一元一次不等式组》小结与复习-八年级数学下册课件(北师大版)

第二章《一元一次不等式与一元一次不等式组》小结与复习-八年级数学下册课件(北师大版)

巩固练习 拓展提高
6. 某公司为了扩大经营,决定购进6台机器用于生产某种活塞,


现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生 价格(万元/台) 7
5
产活塞的数量如下表所示,经过预算,本次购买机器所耗资金不能
每台日产量(个) 100 60
超过34万元,则按该公司的要求可以有几种购买方案?
> 大于,高出 大于
小于或等于 号

不大于, 小于或 不超过 等于
大于或等于 号

不小于, 大于或
至少
等于
不等号

不相等 不等于
Hale Waihona Puke 创设情境 引入新课比较不等式与等式的基本性质:
变形 两边都加上(或减去)同一个整式 两边都乘以(或除以)同一个正数 两边都乘以(或除以)同一个负数
等式 仍成立 仍成立 仍成立
解不等式的应用问题的步骤包括审、设、列、解、 找、答这几个环节,而在这些步骤中,最重要的是 利用题中的已知条件,列出不等式(组),然后通 过解出不等式(组)确定未知数的范围,利用未知 数的特征(如整数问题),依据条件,找出对应的 未知数的确定数值,以实现确定方案的解答.
巩固练习 拓展提高
7. 暑假期间,两名家长计划带领若干名学生去旅游,他们联系了报价均为每人500元的两家 旅行社,经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折收费;乙旅行社的 优惠条件是家长、学生都按八折收费.假设这两位家长带领x名学生去旅游,他们应该选择哪家旅 行社?
创设情境 引入新课
一元一次不等式与一次函数在决策型应用题中的应用
实际问题
写出两个函数表达式
画出图象
分析图象

【解析版】中考数学常考易错点:2.4《一元一次不等式(组)》

【解析版】中考数学常考易错点:2.4《一元一次不等式(组)》

一元一次不等式(组)易错清单1.对不等式的性质理解有误.【例1】(2014·山东滨州)已知a,b都是实数,且a<b,则下列不等式的变形正确的是().A. a+x>b+xB. -a+1<-b+1C. 3a<3bD. >【解析】根据不等式的性质1,可判断A,根据不等式的性质3,1可判断B,根据不等式的性质2,可判断C,D.不等式的两边都加或都减同一个整式,不等号的方向不变,故A错误;不等式的两边都乘或除以同一个负数,不等号的方向改变,故B错误;不等式的两边都乘以或除以同一个正数,不等号的方向不变,故C正确,D错误.【答案】 C【误区纠错】注意在不等式的两边同时乘以或除以同一个负数不等号的方向改变.2.在判断不等式成立或由不等式变形求某字母的范围时,要认真观察不等式的形状与不等号的方向.【例2】(2014·山东潍坊)若不等式组无解,则实数a的取值范围是().A. a≥-1B. a<-1C. a≤1D. a≤-1【解析】分别求出各不等式的解集,再与已知不等式组无解相比较即可得出a的取值范围.由①得,x≥-a,由②得,x<1,∵不等式组无解,∴-a≥1,解得a≤-1.【答案】 D【误区纠错】学生在考虑有解无解题目时,弄不清什么时候该带等号什么时候不该带等号导致出错.3.用一元一次不等式(组)解决实际问题时不能正确确定问题中的不等关系.【例3】(2014·四川绵阳)某商品的标价比成本价高m%,根据市场需要,该商品需降价n%出售,为了不亏本,n应满足().A. n≤mB. n≤C. n≤D. n≤【解析】根据最大的降价率即是保证售价大于等于成本价相等,进而得出不等式即可.设进价为a元,由题意,得a(1+m%)(1-n%)-a≥0,即(1+m%)(1-n%)-1≥0,整理,得100n+mn≤100m,故n≤.【答案】 B【误区纠错】解决问题的关键是读懂题意,找到关键描述语,根据题目中的数量关系,得出正确的不等关系是解题关键.名师点拨1.掌握不等式性质.2.能够说明一元一次不等式组解集的含义.3.能利用类比思想,对照一元一次方程求解思想解一元一次不等式(组).4.能根据题意中的不等语句(如不低于最少、至多等)列不等式组解决实际问题.提分策略1.与不等式(组)的解集有关的问题.已知不等式组的解集求字母(或有关字母代数式)的值,一般先求出已知不等式(组)的解集,再结合给定的解集,得出等量关系或者不等关系.【例1】关于x的不等式组有四个整数解,则a的取值范围是().A. -<a≤-B. -≤a<-C. -≤a≤-D. -<a<-【解析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求a的取值范围即可.设由①得x>8;由②得x<2-4a,故不等式组的解集为8<x<2-4a.因为不等式组有四个整数解,为9,10,11,12,所以解得-≤a<-.【答案】 B2.一元一次不等式(组)的应用.(1)一元一次不等式(组)与方程(组)相结合解决实际问题.近几年,中考注重对学生“知识联系实际”的考查比较多,实际问题中往往蕴含着方程与不等式,分析问题中的等量关系和不等关系,建立方程(组)模型和不等式(组)模型,从而把实际问题转化为数学模型,然后运用数学知识来解决.【例2】某商场用3600元购进甲、乙两种商品,销售完后共获利6000元.其中甲种商品每件进价120元,售价138元;乙种商品每件进价100元,售价120元.(1)该商场购进甲、乙两种商品各多少件?(2)商场第二次以原进价购进甲、乙两种商品.购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于8160元,乙种商品最低售价为每件多少元?【答案】(1)设商场购进甲种商品x件,乙种商品y件,根据题意,得解得故该商场购进甲种商品200件,乙种商品120件.(2)设乙种商品每件售价z元,根据题意,得120(z-100)+2×200×(138-120)≥8160,解得z≥108.故乙种商品最低售价为每件108元.(2)运用一元一次不等式(组)进行方案设计.利用一元一次不等式(组)解决方案的问题实质就是一个由列不等式(组)——求解——由实际问题取值的过程,由于一元一次不等式(组)的解一般情况下是无穷多个,但由于实际问题的限制,可能只有其中的某个或某些满足实际问题,这样也就随之产生了一种或几种设计方案.【例3】某服装店欲购甲、乙两种新款运动服,甲款每套进价350元,乙款每套进价200元,该店计划用不低于7600元且不高于8000元的资金订购30套甲、乙两款运动服.(1)该店订购这两款运动服,共有哪几种方案?(2)若该店以甲款每套400元,乙款每套300元的价格全部出售,哪种方案获利最大?【答案】(1)设该店订购甲款运动服x套,则订购乙款运动服(30-x)套,由题意,得解得≤x≤.∵x为整数,∴x取11,12,13.∴30-x取19,18,17.该店订购这两款运动服,共有3种方案:方案一:甲款11套,乙款19套;方案二:甲款12套,乙款18套;方案三:甲款13套,乙款17套.(2)解法一:设该店全部出售甲、乙两款运动服后获利y元,则y=(400-350)x+(300-200)(30-x)=50x+3000-100x=-50x+3000.∵-50<0,∴y随x的增大而减小.∴当x=11时,y最大.∴方案一,即甲款11套,乙款19套时,获利最大.解法二:三种方案分别获利为:方案一:(400-350)×11+(300-200)×19=2450(元);方案二:(400-350)×12+(300-200)×18=2400(元);方案三:(400-350)×13+(300-200)×17=2350(元).∵2450>2400>2350,∴方案一,即甲款11套,乙款19套,获利最大.专项训练一、选择题1.(2014·湖北黄冈模拟)某商贩去菜摊买黄瓜,他上午买了30斤,价格为每斤x元;下午他又买了20斤,价格为每斤y元.后来他以每斤元的价格卖完后,结果发现自己赔了钱,其原因是().A. x<yB. x>yC. x≤yD. x≥y2. (2014·湖北黄石九中模拟)若不等式组无解,则a的取值范围是().A. a≤3B. a<3C. a≥3D. a>33.(2014·安徽安庆二模)对于实数x,我们规定[x]表示不大于x的最大整数,例如[1.2]=1,[3]=3,[-2.5]=-3.若=5,则x的取值可以是().A. 51B. 45C. 40D. 564. (2014·广西玉林模拟)把不等式组的解集表示在数轴上,正确的是().A BC D5. (2013·河北三模)若不等式组有解,则a的取值范围是().A. a>-1B. a≥-1C. a≤1D. a<1二、填空题6. (2014·湖北襄阳模拟)不等式组的整数解是.7. (2014·浙江杭州模拟)如果不等式组的解集是x<2,那么m的取值范围是.8. (2013·江苏南京高淳区模拟)不等式组的解集是.三、解答题9. (2014·四川成都七中模拟)已知关于x,y的方程组的解都不大于1,求m的取值范围.10. (2014·浙江宁波北仓区模拟)从2012年7月起,浙江省执行居民阶梯电价新规定,新规定中将原先的按月抄见电量实行阶梯式累进加价改为按年抄见电量实行阶梯式累进加价,原方案如下:新方案如下:(1)按原方案计算,;若小华家每月的用电量不变,则按新方案计算,小华家平均每月电费支出是增加还是减少了,增加或减少了多少元?(2)为了节省开支,小华计划2014年的电费不超过2214元,则小华家2014年最多能用电多少千瓦时?11. (2013·上海模拟)试确定实数a的取值范围,使不等式组恰有两个整数解.12. (2013·浙江湖州模拟)某商店需要购进甲、乙两种商品共160件,其进价和售价如下表(注:获利=售价-进价):(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.13.(2013·广东深圳育才二中一模)某校为开展好阳光体育活动,欲购买单价为20元的排球和单价为80元的篮球共100个.(1)设购买排球数为x个,购买两种球的总费用为y元,请你写出y与x的函数关系式(不要求写出自变量的取值范围);(2)如果购买两种球的总费用不超过6620元,并且篮球数不少于排球数的3倍,那么有哪几种购买方案?(3)从节约开支的角度来看,你认为采用哪种方案更合算?参考答案与解析1. B[解析]由题意,得-=>0,∴x>y.2. A[解析]解1+x>a,得x>a-1;解2x-4≤0,得x≤2,因为不等式组无解,所以a-1≤2,即a≤3.3. A[解析]=[5.5]=5.4. C[解析]原不等式组的解集是-1<x≤1.5. D[解析]由第一个不等式,得x≥a;由第二个不等式,得x<1,因为原不等式组有解,所以a<1.6.-2,-1,0[解析]原不等式组的解集是-3<x<1,所以整数解是-2,-1,0.7.m≥2[解析]由第一个不等式,得x<2,因为原不等式组的解集是x<2,所以m≥2.8. 0≤x<2[解析]由第二个不等式,得x<2.故原不等式组的解集为0≤x<2.9.解方程组得∵∴解得-3≤m≤5.10. (1)因为50×0.538=26.9<83.7,而50×0.538+(200-50)×(0.538+0.03)=112.1>83.7,所以小华家该月的用电量属于第二档.设小华家该月的用电量为x千瓦时,由题意,得50×0.538+(x-50)×(0.538+0.03)=83.7,解得x=150.所以小华家该月的用电量为150千瓦时.按新方案计算:因为150×12=1800<2760,所以用电量属于第一档,150×0.538=80.7(元),83.7-80.7=3(元).所以小华家平均每月电费支出减少了3元.(2)因为2760×0.538=1484.88<2214,而2760×0.538+(4800-2760)×(0.538+0.05)=2684.4>2214,所以小华家2014用电量属于第二档.设小华家2014用电量为y千瓦时,由题意,得2760×0.538+(y-2760)×(0.538+0.05)≤2214,解得y≤4000,所以小华家2014最多能用电4000千瓦时.11.由+>0,得x>-;由x+>(x+1)+a,得x<2a.∴原不等式组的解集是-<x<2a.又原不等式组恰有2个整数解,∴x=0,1.∴1<2a≤2,解得<a≤1.12. (1)设甲种商品应购进x件,乙种商品应购进y件.根据题意,得解得故甲种商品购进100件,乙种商品购进60件.(2)设甲种商品购进a件,则乙种商品购进(160-a)件.根据题意,得解得 65<a<68.∵a为非负整数,∴a取66,67.∴160-a相应取94,93.故有两种购货方案:方案一:甲种商品购进66件,乙种商品购进94件;方案二:甲种商品购进67件,乙种商品购进93件.其中获利最大的是方案一.13. (1)y=20x+80(100-x)=8000-60x.(2)设购买排球x个,则篮球的个数是(100-x),根据题意,得解得23≤x≤25.∵x为整数,∴x取23,24,25.∴有3种购买方案:方案一:当买排球23个时,篮球的个数是77个;方案二:当买排球24个时,篮球的个数是76个;方案三:当买排球25个时,篮球的个数是75个.(3)∵y=8000-60x中,k=-60<0,∴y随x的增大而减小.又23≤x≤25,∴采用方案三(买排球25个,篮球75个方案)更合算.。

北师大版数学八年级下册第二章一元一次不等式与一元一次不等式组回顾与思考(教案)

北师大版数学八年级下册第二章一元一次不等式与一元一次不等式组回顾与思考(教案)
1.培养学生的逻辑推理能力,通过对一元一次不等式与不等式组的性质与解法的学习,使学生能够运用逻辑推理方法解决问题。
2.提升学生的数学建模能力,使学生能够从实际生活中抽象出一元一次不等式与不等式组模型,并运用所学知识解决实际问题。
3.培养学生的数据分析观念,通过对不等式与不等式组解集的分析,让学生体会数据在不同情境下的意义,提高数据处理能力。
4.关注个体差异,针对不同学生的学习情况,给予个性化的指导。
举例:对于一元一次不等式2x - 3 > 5,学生需要掌握将不等式化简求解的步骤,并理解每一步的原理。
2.教学难点
-不等式性质的理解与应用:学生往往在加减乘除同一个数时,对不等号方向的变化容易混淆。
-不等式组解集的确定:在求解不等式组时,如何根据各个不等式的解集来确定整个不等式组的解集,学生可能会感到困惑。
在新课讲授后的实践活动中,学生们分组讨论了与一元一次不等式相关的实际问题,并进行了实验操作。这个环节让我看到了学生的积极性和合作精神,他们通过讨论和实际操作,加深了对不等式的理解。然而,我也发现有些小组在讨论过程中存在依赖思想,个别成员参与度不高,这需要我在今后的教学中加强对学生的引导和关注。
在小组讨论环节,学生们围绕不等式在实际生活中的应用展开了热烈的讨论。我发现,通过这种形式,学生们能够更好地将所学知识与生活实际联系起来,提高了解决问题的能力。但同时,我也注意到有些学生在提出观点时缺乏条理性,这让我意识到在今后的教学中,需要加强对学生逻辑思维能力的培养。
3.重点难点解析:在讲授过程中,我会特别强调一元一次不等式的性质和一元一次不等式组的解法这两个重点。对于难点部分,如不等式性质的理解,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)

北师大版八年级下册第二章《一元一次不等式与一元一次不等式组》 回顾与思考

北师大版八年级下册第二章《一元一次不等式与一元一次不等式组》 回顾与思考

12.一元一次不等式组: 一般地,关于同一未知数的几个一元一次不等式合在一起,就组 成一个一元一次不等式组。 13.一元一次不等式组的解集: 一般地,一元一次不等式组中各个不等式解集的公共部分,叫这个 一元一次不等式组的解集。 14.一元一次不等式组的解集的取法:
最简不等式组(a<b)
数轴表示
a
a a a b b
例:1.解下列不等式,并把它们的解集在数轴上表示出来。
(1) 2(5x+3) ≤x-3(1-2x)
x 2 (2) (x 1) 1 2
2.不等式2x-7<5-2x的正整数解有( B ) A、1个; B、2个; C、3个; D、4个
解一元一次方程
解一元一次不等式
解法 (1)去分母; 步骤 (2)去括号; (3)移项; (4)合并同类项 ; (5)系为非正数,y X-y=1+3a
(1)求a的取值范围. (2)化简|a-3|+ |a+2| 9.在双休日,某公司 组织48名员工到水上公 园坐船游园,公司先派一个人去了解船只租 赁情况,这个人看到的租金价格如下:
船型 大船 小船 每只限载人数 5 3 租金(元) 3 2
那么,怎么设计租船方案,才能使所付资金最少? (不能超载)

4、不等式1-3x >x-5的自然数解是————
5、若不等式3x+a <2的解集是x <5,则 a=———— 6、满足2-3x >x+7的最大负整数是——— x >a 7、若 x >b 的解集是x >b,则a——b
3. 3m-2 <0 4. 0、1 5. -13 6. -2 7. ≤
8、方程组
为负数 .

八年级数学下册第二章一元一次不等式与一元一次不等式组一元一次不等式应用题精讲及分类训练北师大版

八年级数学下册第二章一元一次不等式与一元一次不等式组一元一次不等式应用题精讲及分类训练北师大版

一元一次不等式(组)解应用题精讲及分类练习识别不等式(组)类应用题的几个标志,供解题时参考。

一.下列情况列一元一次不等式解应用题1。

应用题中只含有一个不等量关系,文中明显存在着不等关系的字眼,如“至少”、“至多”、“不超过”等.例1.为了能有效地使用电力资源,宁波市电业局从1月起进行居民峰谷用电试点,每天8:00至22:00用电千瓦时0.56元(“峰电”价),22:00至次日8:00每千瓦时0。

28元(“谷电”价),而目前不使用“峰谷”电的居民用电每千瓦时0.53元。

当“峰电”用量不超过...每月总电量的百分之几时,使用“峰谷”电合算?分析:本题的一个不等量关系是由句子“当‘峰电’用量不超过...每月总电量的百分之几时,使用‘峰谷’电合算"得来的,文中带加点的字“不超过..."明显告诉我们该题是一道需用不等式来解的应用题。

解:设当“峰电”用量占每月总用电量的百分率为x时,使用“峰谷”电合算,月用电量总量为y。

依题意得0。

56xy+0。

28y(1-x)<0。

53y。

解得x<89℅答:当“峰电”用量占每月总用电量的89℅时,使用“峰谷”电合算.2.应用题仍含有一个不等量关系,但这个不等量关系不是用明显的不等字眼来表达的,而是用比较隐蔽的不等字眼来表达的,需要根据题意作出判断.例2.周未某班组织登山活动,同学们分甲、乙两组从山脚下沿着一条道路同时向山顶进发.设甲、乙两组行进同一段路程所用的时间之比为2:3.⑴直接写出甲、乙两组行进速度之比;⑵当甲组到达山顶时,乙组行进到山腰A处,且A处离山顶的路程尚有1.2千米.试问山脚离山顶的路程有多远?⑶在题⑵所述内容(除最后的问句外)的基础上,设乙组从A处继续登山,甲组到达山顶后休息片刻,再从原路下山,并且在山腰B 处与乙组相遇.请你先根据以上情景提出一个相应的问题,再给予解答(要求:①问题的提出不得再增添其他条件;②问题的解决必须利用上述情景提供的所有已知条件).解:⑴甲、乙两组行进速度之比为3:2.⑵设山腰离山顶的路程为x 千米,依题意得方程为232.1=-x x , 解得x =6.3(千米).经检验x =6.3是所列方程的解,答:山脚离山顶的路程为6.3千米.⑶可提问题:“问B 处离山顶的路程小于多少千米?”再解答如下:设B 处离山顶的路程为m千米(m>0)甲、乙两组速度分别为3k 千米/时,2k 千米/时(k >0) 依题意得k m 3<km 22.1-,解得m<0.72(千米).答:B处离山顶的路程小于0.72千米.说明:本题由于所要提出的问题被两个条件所限制,因此,所提问题应从句子“乙组从A处继续登山,甲组到达山顶后休.息片刻...,再从原路下山,并且在山腰B处与乙组相遇”去突破,若注意到“甲组到达山顶后休息片刻...."中加点的四个字,我们就可以看出题中隐含着这样一个不等关系:乙组从A处走到B处所用的时间比甲组从山顶下到B处所用的时间来得少,即可提出符合题目要求的问题且可解得正确的答案。

八年级下册数学一元一次不等式与一元一次不等式组知识点总结

八年级下册数学一元一次不等式与一元一次不等式组知识点总结

一元一次不等式与一元一次不等式组是初中数学中的一个重要知识点,以下是该知识点的主要内容以及学习方法和应用:
一、定义:
1. 一元一次不等式:只含有一个未知数,并且未知数的最高次数是1,可以用不等号连接的整式方程。

2. 一元一次不等式组:由几个一元一次不等式组成的方程组。

二、解题步骤:
1. 分别解每个不等式;
2. 找出解集的规律;
3. 画出数轴;
4. 根据数轴写出不等式组的解集。

三、注意事项:
1. 解不等式时要根据不等式的性质,不能丢三落四;
2. 解不等式组时要根据同大取大、同小取小、大小小大中间找、大大小小找不到的原则。

四、应用:
不等式与不等式组可以应用于日常生活、工程问题、经济问题等领域,帮助我们解决实际问题。

例如,在购物时我们可以用不等式比较不同商品的价格,或者在工程问题中用不等式表示某些量的范围等。

五、练习方法:
1. 课本例题练习:通过解决课本例题来加深对一元一次不等式与一元一次不等式组的理解;
2. 课后习题练习:通过解决课后习题来巩固知识点;
3. 自测练习:自己出题并解答,以加深对知识点的掌握;
4. 专题练习:针对某一知识点进行专题练习,以加深对该知识点的理解和掌握。

六、总结:
一元一次不等式与一元一次不等式组是初中数学中的重要知识点,需要我们通过多练习来加深对知识点的理解和掌握。

同时,我们也要学会在实际问题中应
用这些知识点,以增强我们的数学应用能力。

八年级数学一元一次不等式

八年级数学一元一次不等式
值。
在数轴上标出关键点并判断范围
对于一元一次不等式,首先找出 不等式中的关键点,即不等号两
边的数值。
在数轴上标出这些关键点,然后 根据不等式的性质确定解的范围。
如果不等式是严格不等式(<或 >),则解的范围不包括关键点; 如果是不严格不等式(≤或≥),
则解的范围包括关键点。
用数轴表示不等式解集
在数轴上标出关键点后,根据不等式 的性质用不同颜色的线段或箭头表示 解集的范围。
若满足,则公共解集正确;若不满足 ,则需要重新检查计算过程和解集范 围。
04 一元一次不等式在数轴上 表示方法
数轴概念及性质回顾
数轴是一条直线,其上有正整数、 零和负整数的标记,每个数在数
轴上都有唯一确定的位置。
数轴上的数从左到右依次增大, 即右边的数总比左边的数大。
数轴上的任意两点之间的距离等 于这两点所表示的数的差的绝对
简化不等式
移动项后,简化不等式并 求解。
系数化为1法
确定系数
找到不等式中含有未知数 的项的系数。
化系数为1
通过除以系数的方式,将 含有未知数的项的系数化 为1。
注意事项
在化系数为1的过程中,要 确保不等号的方向不变, 并且当系数为负数时,不 等号的方向需要改变。
03 一元一次不等式组解法
确定各不等式解集
对于每个不等式,首 先确定未知数的系数 和常数项。
解出每个不等式的解 集,并用数轴表示。
根据未知数的系数正 负,确定不等式的解 集方向。
找出公共解集
01
观察数轴上各个不等式的解集, 找出它们的交集部分。
02
公共解集必须满足所有不等式的 条件,即同时满足所有不等式的 解集。

初中数学第二章一元一次不等式与一元一次不等式组复习

初中数学第二章一元一次不等式与一元一次不等式组复习

第二章一元一次不等式与一元一次不等式组一、知识结构脉络1、能使不等式成立的未知数的值,叫做不等式的解.2、不等式的解不唯一,把所有满足不等式的解集合在一起,构成不等式的解集.3、求不等式解集的过程叫解不等式.4、由几个一元一次不等式组所组成的不等式组叫做一元一次不等式组5、不等式组的解集:一元一次不等式组各个不等式的解集的公共部分。

6、等式基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式.基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式.二、知识点梳理1、不等式的基本性质(如下表)2.运算性质(1)若a>b,c>d,则a 十c>b 十d(同向不等式相加)(2)若a>b,c<d,则a 一c>b 一d(异向不等式相减)(3)若a>b>0,c>d>0,ac>bd(4)若a>b>0,0<c<d,则db c a >(5)(5)若a>b>0,则ba 11<性质文字叙述数学语言(I)不等式的两边加(或减)同一个数或(式子),不等号的方向不变若a>b 则a 土c>b 土c (II)不等式的两边乘以(或除以)同一个正数,不等号的方向不变若a>b 且c>0则ac>bc 或c b c a >(III)不等式的两边乘以(或除以)同一个负数,不等号的方向改变若a>b 且c<0则ac<bc 或cb c a <(6)若a>b>0,n 为正整数,则nn b a >(7)(7)若a>b>0,n 为不小于2的整数则n n ba >3、解不等式的步骤:(1)去分母(2)去括号(3)移项(4)合并同类项(5)未知数的系数化为1。

要注意把系数化为1时,如果不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;如果不等式的两边都乘以(或除以)同一个负数,不等号的方向要改变;解不等式要根据题目的要求和特点合理灵活地选择解题步骤。

八年级数学下册第二章一元一次不等式与一元一次不等式组一元一次不等式北师大版

八年级数学下册第二章一元一次不等式与一元一次不等式组一元一次不等式北师大版

2.4.1一元一次不等式学习目标1.理解并掌握一元一次不等式的定义;2.会解简单的一元一次不等式,并能在数轴上表示其解集.自主导学温故知新1、解一元一次方程:2、将下列不等式的解集分别表示在数轴上:(1)(2)知识点一:一元一次不等式1、观察下列不等式:(1) 6+3x>30 (2) x+17<5x (3) x≥5 (4)这些不等式有哪些共同点?一元一次不等式的定义:尝试练习1.下列不等式中,属于一元一次不等式的是()A.4>1 B.3x-<4 C.D.4x-3<2y-7知识点二:解一元一次不等式(仔细研读课本P46-47完成下列题目)解不等式,并把它的解集表示在数轴上.解:去分母,得去括号,得移项,得合并同类项,得系数化为1,得这个不等式的解集在数轴上的表示如图所示:尝试练习:解下列不等式,并把它们的解集表示在数轴上(1) (2)合作探究1.若是关于x的一元一次不等式,则该不等式的解集为.2、求不等式4(4x+1)24的正整数解。

巩固作业1.下列不等式中,属于一元一次不等式的是()A.4>1 B.3x-24<4 C.D.4x-3<2y-7 2.与不等式有相同解集的是()A.3x-3<(4x+1)-1 B.3(x-3)<2(4x+1)-1 C.2(x-3)<3(2x+1)-6 D.3x-9<4x-43.不等式的解集是()A.x可取任何数 B.全体正数 C.全体负数 D.无解4.不等式2x-1≥3x一5的正整数解的个数为 ( )A.1 B.2 C.3 D.45.不等式与的解集相同,则.6、解下列不等式,并把它们的解集分别表示在数轴上;(1) 5x<20 (2) <1(3) x-22(x+1) (4) <学习目标1.进一步熟练掌握解一元一次不等式;2.会利用一元一次不等式解决简单的应用题.自主导学温故知新解下列不等式,并把它们的解集分别表示在数轴上。

(1)(2)利用一元一次不等式解决简单的实际问题1、某种商品进价为200元,标价300元出售,商场规定可以打折销售,但其利润不能少于5﹪。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档