高一数学必修二《圆与方程》知识点整理
高一数学必修二第四章圆与方程知识点总结
1 数学必修2第四章"圆与方程"知识点1、圆的标准方程:222()()x a y b r -+-=(圆心(),A a b ,半径长为r )圆心()0,0O ,半径长为r 的圆的方程222x y r +=。
2、点与圆的位置关系:设圆的标准方程222()()x a y b r -+-=,点00(,)M x y ,将M 带入圆的标准方程,结果>r2在外,<r2在内3、圆的一般方程:()2222040x y Dx Ey F D E F ++++=+->(1)当2240D E F +->时,表示以,22D E ⎛⎫-- ⎪⎝⎭(2)当2240D E F +-=时,表示一个点,22D E ⎛⎫-- ⎪⎝⎭;(3)当2240D E F +-<时,不表示任何图形. 4、直线与圆的位置关系:几何角度:圆心到直线的距离与半径大小比较;或代数角度:带入方程组算△>0、=0、<0 .5、圆与圆的位置关系:几何角度判断(圆心距与半径和差的关系)(1)相离1212C C r r ⇔>+;(2)外切1212C C r r ⇔=+;(3)相交121212r r C C r r ⇔-<<+;(4)内切1212C C r r ⇔=-;(5)内含1212C C r r ⇔<-.6、过两圆221110x y D x E y F ++++=与222220x y D x E y F ++++=交点的圆的方程 2222111222()()0x y D x E y F x y D x E y F λ+++++++++=(1)λ≠-.当1λ=-时,即两圆公共弦所在的直线方程.7、点1111(,,)P x y z ,2222(,,)P x y z 间的距离12PP =。
高一数学必修二《圆与方程》知识点整理
高一数学必修二《圆与方程》知识点整理一、标准方程()()222x a y b r -+-=1.求标准方程的方法——关键是求出圆心(),a b 和半径r①待定系数:往往已知圆上三点坐标,例如教材119P 例2 ②利用平面几何性质往往涉及到直线与圆的位置关系,特别是:相切和相交 相切:利用到圆心与切点的连线垂直直线 相交:利用到点到直线的距离公式及垂径定理2.特殊位置的圆的标准方程设法(无需记,关键能理解) 条件 方程形式 圆心在原点 ()2220x y r r +=≠ 过原点 ()()()2222220x a y b a bab -+-=++≠圆心在x 轴上 ()()2220x a y rr -+=≠ 圆心在y 轴上 ()()2220x y b rr +-=≠ 圆心在x 轴上且过原点 ()()2220x a y a a -+=≠ 圆心在y 轴上且过原点 ()()2220x y b bb +-=≠与x 轴相切 ()()()2220x a y b bb -+-=≠ 与y 轴相切 ()()()2220x a y b a a -+-=≠与两坐标轴都相切 ()()()2220x a y b a a b -+-==≠二、一般方程()2222040x y Dx Ey F D E F ++++=+->1.220Ax By Cxy Dx Ey F +++++=表示圆方程则22220004040A B A B C C D E AF D E F A A A ⎧⎪=≠=≠⎧⎪⎪⎪=⇔=⎨⎨⎪⎪+->⎩⎛⎫⎛⎫⎪+-⋅> ⎪ ⎪⎪⎝⎭⎝⎭⎩ 2.求圆的一般方程一般可采用待定系数法:如教材122P 例r 4 3.2240D E F +->常可用来求有关参数的范围三、点与圆的位置关系1.判断方法:点到圆心的距离d 与半径r 的大小关系d r <⇒点在圆内;d r =⇒点在圆上;d r >⇒点在圆外 2.涉及最值:(1)圆外一点B ,圆上一动点P ,讨论PB 的最值min PB BN BC r ==- max PB BM BC r ==+(2)圆内一点A ,圆上一动点P ,讨论PA 的最值min PA AN r AC ==- max PA AM r AC ==+思考:过此A 点作最短的弦?(此弦垂直AC ) 四、直线与圆的位置关系1.判断方法(d 为圆心到直线的距离)(1)相离⇔没有公共点⇔0d r ∆<⇔> (2)相切⇔只有一个公共点⇔0d r ∆=⇔= (3)相交⇔有两个公共点⇔0d r ∆>⇔<这一知识点可以出如此题型:告诉你直线与圆相交让你求有关参数的范围. 2.直线与圆相切 (1)知识要点 ①基本图形②主要元素:切点坐标、切线方程、切线长等 问题:直线l 与圆C 相切意味着什么? 圆心C 到直线l 的距离恰好等于半径r (2)常见题型——求过定点的切线方程①切线条数点在圆外——两条;点在圆上——一条;点在圆内——无 ②求切线方程的方法及注意点... i )点在圆外如定点()00,P x y ,圆:()()222x a y b r -+-=,[()()22200x a y b r -+->]第一步:设切线l 方程()00y y k x x -=-第二步:通过d r =k ⇒,从而得到切线方程特别注意:以上解题步骤仅对k 存在有效,当k 不存在时,应补上——千万不要漏了! 如:过点()1,1P 作圆2246120x y x y +--+=的切线,求切线方程.答案:3410x y -+=和1x = ii )点在圆上1) 若点()00x y ,在圆222x y r +=上,则切线方程为200x x y y r += 会在选择题及填空题中运用,但一定要看清题目.2) 若点()00x y ,在圆()()222x a y b r -+-=上,则切线方程为()()()()200x a x a y b y b r --+--=碰到一般方程则可先将一般方程标准化,然后运用上述结果.由上述分析,我们知道:过一定点求某圆的切线方程,非常重要的第一步就是——判断点与圆的位置关系,得出切线的条数.③求切线长:利用基本图形,22222AP CP r AP CP r =-⇒=-求切点坐标:利用两个关系列出两个方程1AC AP AC rk k ⎧=⎨⋅=-⎩3.直线与圆相交(1)求弦长及弦长的应用问题 垂径定理....及勾股定理——常用 弦长公式:()()222121212114l kx k x x x x ⎡⎤=+-=++-⎣⎦(2)判断直线与圆相交的一种特殊方法(一种巧合):直线过定点,而定点恰好在圆内.(3)关于点的个数问题例:若圆()()22235x y r -++=上有且仅有两个点到直线4320x y --=的距离为1,则半径r 的取值范围是_________________. 答案:()4,6 4.直线与圆相离会对直线与圆相离作出判断(特别是涉及一些参数时) 五、对称问题1.若圆()222120x y m x my m ++-+-=,关于直线10x y -+=,则实数m 的值为____. 答案:3(注意:1m =-时,2240D E F +-<,故舍去)变式:已知点A 是圆C :22450x y ax y +++-=上任意一点,A 点关于直线210x y +-=的对称点在圆C 上,则实数a =_________.2.圆()()22131x y -+-=关于直线0x y +=对称的曲线方程是________________. 变式:已知圆1C :()()22421x y -+-=与圆2C :()()22241x y -+-=关于直线l 对称,则直线l 的方程为_______________.3.圆()()22311x y -++=关于点()2,3对称的曲线方程是__________________.4.已知直线l :y x b =+与圆C :221x y +=,问:是否存在实数b 使自()3,3A 发出的光线被直线l 反射后与圆C 相切于点247,2525B ⎛⎫⎪⎝⎭?若存在,求出b 的值;若不存在,试说明理由.六、最值问题 方法主要有三种:(1)数形结合;(2)代换;(3)参数方程 1.已知实数x ,y 满足方程22410x y x +-+=,求:(1)5yx -的最大值和最小值;——看作斜率 (2)y x -的最小值;——截距(线性规划)(3)22x y +的最大值和最小值.——两点间的距离的平方2.已知AOB ∆中,3OB =,4OA =,5AB =,点P 是AOB ∆内切圆上一点,求以PA ,PB ,PO 为直径的三个圆面积之和的最大值和最小值.数形结合和参数方程两种方法均可!3.设(),P x y 为圆()2211x y +-=上的任一点,欲使不等式0x y c ++≥恒成立,则c 的取值范围是____________. 答案:21c ≥(数形结合和参数方程两种方法均可!)七、圆的参数方程()222cos 0sin x r x y r r y r θθ=⎧+=>⇔⎨=⎩,θ为参数 ()()()222cos 0sin x a r x a y b r r y b r θθ=+⎧-+-=>⇔⎨=+⎩,θ为参数 八、相关应用1.若直线240mx ny +-=(m ,n R ∈),始终平分圆224240x y x y +---=的周长,则m n ⋅的取值范围是______________.2.已知圆C :222440x y x y +-+-=,问:是否存在斜率为1的直线l ,使l 被圆C 截得的弦为AB ,以AB 为直径的圆经过原点,若存在,写出直线l 的方程,若不存在,说明理由.提示:12120x x y y +=或弦长公式2121d k x =+-. 答案:10x y -+=或40x y --=3.已知圆C :()()22341x y -+-=,点()0,1A ,()0,1B ,设P 点是圆C 上的动点,22d PA PB =+,求d 的最值及对应的P 点坐标.4.已知圆C :()()221225x y -+-=,直线l :()()211740m x m y m +++--=(m R ∈) (1)证明:不论m 取什么值,直线l 与圆C 均有两个交点; (2)求其中弦长最短的直线方程.5.若直线y x k =-+与曲线21x y =--k 的取值范围.6.已知圆2260x y x y m ++-+=与直线230x y +-=交于P ,Q 两点,O 为坐标原点,问:是否存在实数m ,使OP OQ ⊥,若存在,求出m 的值;若不存在,说明理由. 九、圆与圆的位置关系1.判断方法:几何法(d 为圆心距)(1)12d r r >+⇔外离 (2)12d r r =+⇔外切 (3)1212r r d r r -<<+⇔相交 (4)12d r r =-⇔内切 (5)12d r r <-⇔内含 2.两圆公共弦所在直线方程圆1C :221110x y D x E y F ++++=,圆2C :222220x y D x E y F ++++=,则()()()1212120D D x E E y F F -+-+-=为两相交圆公共弦方程. 补充说明:若1C 与2C 相切,则表示其中一条公切线方程; 若1C 与2C 相离,则表示连心线的中垂线方程. 3圆系问题(1)过两圆1C :221110x y D x E y F ++++=和2C :222220x y D x E y F ++++=交点的圆系方程为()22221112220x y D x E y F x y D x E y F λ+++++++++=(1λ≠-) 说明:1)上述圆系不包括2C ;2)当1λ=-时,表示过两圆交点的直线方程(公共弦) (2)过直线0Ax By C ++=与圆220x y Dx Ey F ++++=交点的圆系方程为()220x y Dx Ey F Ax By C λ+++++++=(3)有关圆系的简单应用 (4)两圆公切线的条数问题①相内切时,有一条公切线;②相外切时,有三条公切线;③相交时,有两条公切线;④相离时,有四条公切线 十、轨迹方程(1)定义法(圆的定义):略(2)直接法:通过已知条件直接得出某种等量关系,利用这种等量关系,建立起动点坐标的关系式——轨迹方程.例:过圆221x y +=外一点()2,0A 作圆的割线,求割线被圆截得的弦的中点的轨迹方程.分析:222OP AP OA +=(3)相关点法(平移转换法):一点随另一点的变动而变动↓ ↓动点 主动点特点为:主动点一定在某一已知的方程所表示的(固定)轨迹上运动.例1.如图,已知定点()2,0A ,点Q 是圆221x y +=上的动点,AOQ ∠的平分线交AQ 于M ,当Q 点在圆上移动时,求动点M 的轨迹方程.分析:角平分线定理和定比分点公式.例2.已知圆O :229x y +=,点()3,0A ,B 、C 是圆O 上的两个动点,A 、B 、C 呈逆时针方向排列,且3BAC π∠=,求ABC ∆的重心G 的轨迹方程.法1:3BAC π∠=,BC ∴为定长且等于33设(),G x y ,则33333A B C B C A B C B C x x x x x x y y y y y y ++++⎧==⎪⎪⎨+++⎪==⎪⎩取BC 的中点为33,24E x ⎡⎫∈-⎪⎢⎣⎭,333,42E y ⎛⎤∈- ⎥ ⎝⎦ 222OE CE OC +=,2294E E x y ∴+=(1)2222B C E B C E B C E B C Ex x x x x x y y y y y y +⎧=⎪+=⎧⎪⇒⎨⎨+=+⎩⎪=⎪⎩,3233322323E E E E x x x x y y yy +-⎧⎧==⎪⎪⎪⎪∴⇒⎨⎨⎪⎪==⎪⎪⎩⎩故由(1)得:()2222333933110,,,122422x y x y x y ⎛⎤-⎛⎫⎛⎫⎡⎫+=⇒-+=∈∈- ⎥ ⎪ ⎪⎪⎢ ⎝⎭⎝⎭⎣⎭⎝⎦法2:(参数法)设()3cos ,3sin B θθ,由223BOC BAC π∠=∠=,则 223cos ,3sin 33C ππθθ⎛⎫⎛⎫⎛⎫++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭设(),G x y ,则()()233cos 3cos 231cos cos 133323sin 3sin 23sin sin 2333A B C A B C x x x x y y y y πθθπθθπθθπθθ⎧⎛⎫+++ ⎪⎪++⎛⎫⎝⎭⎪===+++ ⎪⎪⎝⎭⎨⎛⎫⎪++ ⎪⎪++⎛⎫⎝⎭===++⎪ ⎪⎝⎭⎩4,33ππθ⎛⎫∈ ⎪⎝⎭,由()()()22112-+得:()2233110,,,122x y x y ⎛⎤⎡⎫-+=∈∈- ⎥⎪⎢ ⎣⎭⎝⎦参数法的本质是将动点坐标(),x y 中的x 和y 都用第三个变量(即参数)表示,通过消.参.得到动点轨迹方程,通过参数的范围得出x ,y 的范围. (4)求轨迹方程常用到得知识①重心(),G x y ,33A B C A B C x x x x y y y y ++⎧=⎪⎪⎨++⎪=⎪⎩②中点(),P x y ,121222x x x y y y +⎧=⎪⎪⎨+⎪=⎪⎩③内角平分线定理:BD AB CDAC=④定比分点公式:AMMB λ=,则1AB M x x x λλ+=+,1A B M y y y λλ+=+ ⑤韦达定理.。
最新人教版高中数学必修2第四章《圆与方程》本章概要
第四章圆与方程
本章概要
本章主要内容包括圆的标准方程、圆的一般方程、直线与圆的位置关系、圆与圆的位置关系、空间直角坐标系中点的坐标及空间中两点间的距离公式.
圆与直线是常见的两个几何图形,在实际生活和生产实践中有广泛的应用,它是众多知识的交汇点之一,要注意与其他多方面知识的联系与运用.
圆这一章属于解析几何学的基础知识,它不但是进一步学习圆锥曲线与其他曲线方程的基础,也是学习导数、微分、积分等的基础,在解决实际问题中有广泛的应用.
平面解析几何的基本思想方法是利用平面直角坐标系,把点用坐标表示,直线、圆等用方程表示.并用代数方法研究几何问题,这就是人们常说的“坐标法”.这种方法与平面几何中的综合法、向量法都可以建立联系,另外还可以推广到空间中去解决立体几何问题.
学习策略
初中数学中我们学习了两方面的知识:直线形的和曲线形的.圆就是曲线形中我们重点学习过的内容,所以学习本章前要对圆的相关知识进行回顾复习.此外,学习本章时要注重处理问题的方法与技巧.
1.确定圆的方程,一般用待定系数法.如果条件与圆心和半径有关,通常选择圆的标准方程;如果已知点的坐标,条件与圆心无直接关系,一般选用圆的一般方程.
2.直线与圆的位置关系可以根据方程组解的情况来判断.但利用圆心到直线的距离与圆的半径进行比较更方便.
3.直线与圆相交,求弦长或求与弦长有关系的问题,利用平面几何中的垂径定理往往比较简单.
4.过一点作圆的切线,应首先判断点是否在圆上,如果点在圆上,可直接利用公式写出圆的切线方程;如果点在圆外,必有两条切线,如果关于斜率k的方程只有一解,则另一条切线必为斜率不存在的直线,务必要补上.
5.学习过程中要注意数形结合思想的运用,充分利用图形的性质减少运算量,节省时间,提高准确度,会起到事半功倍的效果.。
高一数学必修二《圆与方程》知识点整理(20200219214201)
y y1 y2
3
2
BD AB
③内角平分线定理:
CD AC
④定比分点公式: AM MB
⑤韦达定理 .
,则 xM xA
xB , yM yA
yB
1
1
6
x2 y2 Dx Ey F 0 D 2 E 2 4F 0
1. Ax2 By2 Cxy Dx Ey F 0表示圆方程则
AB 0
C0
2
D A
2
E
F
4
0
A
A
AB0 C0 D 2 E 2 4 AF 0
2.求圆的一般方程一般可采用待定系数法:
3. D 2 E 2 4F 0 常可用来求有关参数的范围
三、圆系方程: 四、参数方程: 五、点与圆的位置关系
x2 y2 D2x E2 y F2 0 (
1)
说明: 1)上述圆系不包括 C2 ; 2)当
1 时,表示过两圆交点的直线方程(公共弦)
( 2 ) 过 直 线 A x B y C 0 与 圆 x2 y2 Dx Ey F 0 交 点 的 圆 系 方 程 为
x2 y2 Dx Ey F
Ax By C 0
(3)有关圆系的简单应用 (4)两圆公切线的条数问题 ①相内切时,有一条公切线;②相外切时,有三条公切线;③相交时,有两条公切线;④相 离时,有四条公切线 十、轨迹方程 (1)定义法(圆的定义) :略 (2)直接法:通过已知条件直接得出某种等量关系,利用这种等量关系,建立起动点坐标 的关系式——轨迹方程 .
2
2
d PA PB ,求 d 的最值及对应的 P 点坐标 .
2
2
4.已知圆 C : x 1 y 2 25 ,直线 l : 2m 1 x m 1 y 7m 4 0( m R )
高二数学必修二 第四章 圆与圆的方程知识点总结
第四章 圆 与 方 程★1、圆的定义:平面内到一定点的距离等于定长的点的集合叫做圆,定点为圆心,定长为圆的半径。
设M (x,y )为⊙A 上任意一点,则圆的集合可以写作:P = {M | |MA| = r }★2、圆的方程(1点00(,)M x y 与圆222()()x a y b r -+-=的位置关系:当2200()()x a y b -+->2r ,点在圆外; 当2200()()x a y b -+-=2r ,点在圆上 当2200()()x a yb -+-<2r ,点在圆内; (2 (x+D/2)+(y+E/2)=(D +E -4F)/4 (0422>-+F E D )当0422>-+F E D 时,方程表示圆,此时圆心为⎪⎭⎫ ⎝⎛--2,2E D ,半径为F E D r 42122-+=当0422=-+F E D时,表示一个点;当0422<-+F E D 时,方程不表示任何图形。
(3)求圆的方程的方法:①待定系数法:先设后求。
确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a ,b ,r ;若利用一般方程,需要求出D ,E ,F ;②直接法:直接根据已知条件求出圆心坐标以及半径长度。
另外要注意多利用圆的几何性质:如弦的中垂线必经过圆心,以此来确定圆心的位置。
★3、直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况:(1)设直线0:=++C By Ax l ,圆()()222:r b y a x C =-+-,圆心()b a C ,到l 的距离为相离与C l r d ⇔>;相切与C l r d ⇔=;相交与C l r d ⇔< (2)过圆外一点的切线k ,②若求得两个相同的解,带入切线方程,得到一条切线;接下来验证过该点的斜率不存在的直线(此 时,该直线一定为另一条切线):圆(x-a)2+(y-b)2=r 2,圆上一点为(x 0,y 0),则过此点的切线方程为★4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d )之间的大小比较来确定。
高中数学必修2--第四章《圆与方程》知识点总结与练习知识讲解
第三节圆_的_方_程[知识能否忆起]1.圆的定义及方程2.点与圆的位置关系点M (x 0,y 0)与圆(x -a )2+(y -b )2=r 2的位置关系: (1)若M (x 0,y 0)在圆外,则(x 0-a )2+(y 0-b )2>r 2. (2)若M (x 0,y 0)在圆上,则(x 0-a )2+(y 0-b )2=r 2. (3)若M (x 0,y 0)在圆内,则(x 0-a )2+(y 0-b )2<r 2.[小题能否全取]1.(教材习题改编)方程x 2+y 2+4mx -2y +5m =0表示圆的充要条件是( ) A.14<m <1 B .m <14或m >1C .m <14D .m >1解析:选B 由(4m )2+4-4×5m >0得m <14或m >1.2.(教材习题改编)点(1,1)在圆(x -a )2+(y +a )2=4内,则实数a 的取值范围是( ) A .(-1,1)B .(0,1)C .(-∞,-1)∪(1,+∞)D .(1,+∞)解析:选A ∵点(1,1)在圆的内部, ∴(1-a )2+(1+a )2<4, ∴-1<a <1.3.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为( ) A .x 2+(y -2)2=1B .x 2+(y +2)2=1C .(x -1)2+(y -3)2=1D .x 2+(y -3)2=1解析:选A 设圆心坐标为(0,b ),则由题意知(0-1)2+(b -2)2=1,解得b =2,故圆的方程为x 2+(y -2)2=1.4.(2012·潍坊调研)圆x 2-2x +y 2-3=0的圆心到直线x +3y -3=0的距离为________.解析:圆心(1,0),d =|1-3|1+3=1.答案:15.(教材习题改编)圆心在原点且与直线x +y -2=0相切的圆的方程为 ____________________.解析:设圆的方程为x 2+y 2=a 2(a >0) ∴|2|1+1=a ,∴a =2,∴x 2+y 2=2. 答案:x 2+y 2=21.方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件是: (1)B =0;(2)A =C ≠0;(3)D 2+E 2-4AF >0.2.求圆的方程时,要注意应用圆的几何性质简化运算. (1)圆心在过切点且与切线垂直的直线上. (2)圆心在任一弦的中垂线上.(3)两圆内切或外切时,切点与两圆圆心三点共线.典题导入[例1] (1)(2012·顺义模拟)已知圆C 关于y 轴对称,经过点(1,0)且被x 轴分成两段弧长之比为1∶2,则圆C 的方程为( )A.⎝⎛⎭⎫x ±332+y 2=43B.⎝⎛⎭⎫x ±332+y 2=13C .x 2+⎝⎛⎭⎫y ±332=43D .x 2+⎝⎛⎭⎫y ±332=13(2)已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则圆C 的方程为________________. [自主解答] (1)由已知知圆心在y 轴上,且被x 轴所分劣弧所对圆心角为2π3,设圆心(0,b ),半径为r ,则r sin π3=1,r cos π3=|b |,解得r =23,|b |=33,即b =±33.故圆的方程为x 2+⎝⎛⎭⎫y ±332=43.(2)圆C 的方程为x 2+y 2+Dx +F =0,则⎩⎪⎨⎪⎧26+5D +F =0,10+D +F =0, 解得⎩⎪⎨⎪⎧D =-4,F =-6.圆C 的方程为x 2+y 2-4x -6=0. [答案] (1)C (2)x 2+y 2-4x -6=0由题悟法1.利用待定系数法求圆的方程关键是建立关于a ,b ,r 或D ,E ,F 的方程组. 2.利用圆的几何性质求方程可直接求出圆心坐标和半径,进而写出方程,体现了数形结合思想的运用.以题试法1.(2012·浙江五校联考)过圆x 2+y 2=4外一点P (4,2)作圆的两条切线,切点分别为A ,B ,则△ABP 的外接圆的方程是( )A .(x -4)2+(y -2)2=1B .x 2+(y -2)2=4C .(x +2)2+(y +1)2=5D .(x -2)2+(y -1)2=5解析:选D 易知圆心为坐标原点O ,根据圆的切线的性质可知OA ⊥P A ,OB ⊥PB ,因此P ,A ,O ,B 四点共圆,△P AB 的外接圆就是以线段OP 为直径的圆,这个圆的方程是(x -2)2+(y -1)2=5.典题导入[例2] (1)(2012·湖北高考)过点P (1,1)的直线,将圆形区域{(x ,y )|x 2+y 2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为( )A .x +y -2=0B .y -1=0C .x -y =0D .x +3y -4=0(2)P (x ,y )在圆C :(x -1)2+(y -1)2=1上移动,则x 2+y 2的最小值为________. [自主解答] (1)当圆心与P 的连线和过点P 的直线垂直时,符合条件.圆心O 与P 点连线的斜率k =1,∴直线OP 垂直于x +y -2=0.(2)由C (1,1)得|OC |=2,则|OP |min =2-1,即(x 2+y 2)min =2-1.所以x 2+y 2的最小值为(2-1)2=3-2 2.[答案] (1)A (2)3-2 2由题悟法解决与圆有关的最值问题的常用方法 (1)形如u =y -bx -a的最值问题,可转化为定点(a ,b )与圆上的动点(x ,y )的斜率的最值问题(如A 级T 9);9.(2012·南京模拟)已知x ,y 满足x 2+y 2=1,则y -2x -1的最小值为________.解析:y -2x -1表示圆上的点P (x ,y )与点Q (1,2)连线的斜率,所以y -2x -1的最小值是直线PQ与圆相切时的斜率.设直线PQ 的方程为y -2=k (x -1)即kx -y +2-k =0.由|2-k |k 2+1=1得k =34,结合图形可知,y -2x -1≥34,故最小值为34. 答案:34(2)形如t =ax +by 的最值问题,可转化为动直线的截距的最值问题(如以题试法2(2)); (3)形如(x -a )2+(y -b )2的最值问题,可转化为动点到定点的距离的最值问题(如例(2)).以题试法2.(1)(2012·东北三校联考)与曲线C :x 2+y 2+2x +2y =0相内切,同时又与直线l :y =2-x 相切的半径最小的圆的半径是________.(2)已知实数x ,y 满足(x -2)2+(y +1)2=1则2x -y 的最大值为________,最小值为________.解析:(1)依题意,曲线C 表示的是以点C (-1,-1)为圆心,2为半径的圆,圆心C (-1,-1)到直线y =2-x 即x +y -2=0的距离等于|-1-1-2|2=22,易知所求圆的半径等于22+22=322.(2)令b =2x -y ,则b 为直线2x -y =b 在y 轴上的截距的相反数,当直线2x -y =b 与圆相切时,b 取得最值.由|2×2+1-b |5=1.解得b =5±5,所以2x -y 的最大值为5+5,最小值为5- 5.答案:(1)322 (2)5+5 5-5典题导入[例3] (2012·正定模拟)如图,已知点A (-1,0)与点B (1,0),C 是圆x 2+y 2=1上的动点,连接BC 并延长至D ,使得|CD |=|BC |,求AC 与OD 的交点P 的轨迹方程.[自主解答] 设动点P (x ,y ),由题意可知P 是△ABD 的重心. 由A (-1,0),B (1,0),令动点C (x 0,y 0), 则D (2x 0-1,2y 0),由重心坐标公式得 ⎩⎪⎨⎪⎧x =-1+1+2x 0-13,y =2y 03,则⎩⎪⎨⎪⎧x 0=3x +12,y 0=3y 2(y 0≠0),代入x 2+y 2=1,整理得⎝⎛⎭⎫x +132+y 2=49(y ≠0), 故所求轨迹方程为⎝⎛⎭⎫x +132+y 2=49(y ≠0).由题悟法求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法: (1)直接法:直接根据题目提供的条件列出方程. (2)定义法:根据直线、圆、圆锥曲线等定义列方程. (3)几何法:利用圆与圆的几何性质列方程.(4)代入法:找到要求点与已知点的关系,代入已知点满足的关系式等.以题试法3.(2012·郑州模拟)动点P 到点A (8,0)的距离是到点B (2,0)的距离的2倍,则动点P 的轨迹方程为( )A .x 2+y 2=32B .x 2+y 2=16C .(x -1)2+y 2=16D .x 2+(y -1)2=16解析:选B 设P (x ,y ),则由题意可得2(x -2)2+y 2=(x -8)2+y 2,化简整理得x 2+y 2=16.[题后悟道] 该题是圆与集合,不等式交汇问题,解决本题的关键点有: ①弄清集合代表的几何意义;②结合直线与圆的位置关系求得m 的取值范围. 针对训练若直线l :ax +by +4=0(a >0,b >0)始终平分圆C :x 2+y 2+8x +2y +1=0,则ab 的最大值为( )A .4B .2C .1D.14解析:选C 圆C 的圆心坐标为(-4,-1), 则有-4a -b +4=0,即4a +b =4. 所以ab =14(4a ·b )≤14⎝ ⎛⎭⎪⎫4a +b 22=14×⎝⎛⎭⎫422=1.当且仅当a =12,b =2取得等号.1.圆(x +2)2+y 2=5关于原点P (0,0)对称的圆的方程为( ) A .(x -2)2+y 2=5 B .x 2+(y -2)2=5 C .(x +2)2+(y +2)2=5D .x 2+(y +2)2=5解析:选A 圆上任一点(x ,y )关于原点对称点为(-x ,-y )在圆(x +2)2+y 2=5上,即(-x +2)2+(-y )2=5.即(x -2)2+y 2=5.2.(2012·辽宁高考)将圆x 2+y 2-2x -4y +1=0平分的直线是( ) A .x +y -1=0 B .x +y +3=0 C .x -y +1=0D .x -y +3=0解析:选C 要使直线平分圆,只要直线经过圆的圆心即可,圆心坐标为(1,2).A ,B ,C ,D 四个选项中,只有C 选项中的直线经过圆心.3.(2012·青岛二中期末)若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是( )A .(x -3)2+⎝⎛⎭⎫y -732=1 B .(x -2)2+(y -1)2=1 C .(x -1)2+(y -3)2=1D.⎝⎛⎭⎫x -322+(y -1)2=1 解析:选B 依题意设圆心C (a,1)(a >0),由圆C 与直线4x -3y =0相切,得|4a -3|5=1,解得a =2,则圆C 的标准方程是(x -2)2+(y -1)2=1.4.(2012·海淀检测)点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是( ) A .(x -2)2+(y +1)2=1 B .(x -2)2+(y +1)2=4 C .(x +4)2+(y -2)2=4D .(x +2)2+(y -1)2=1解析:选A设圆上任一点为Q (x 0,y 0),PQ 的中点为M (x ,y ),则⎩⎨⎧x =4+x2,y =-2+y2,解得⎩⎪⎨⎪⎧x 0=2x -4,y 0=2y +2.因为点Q 在圆x 2+y 2=4上,所以(2x -4)2+(2y +2)2=4,即(x -2)2+(y +1)2=1.5.(2013·杭州模拟)若圆x 2+y 2-2x +6y +5a =0,关于直线y =x +2b 成轴对称图形,则a -b 的取值范围是( )A .(-∞,4)B .(-∞,0)C .(-4,+∞)D .(4,+∞)解析:选A 将圆的方程变形为(x -1)2+(y +3)2=10-5a ,可知,圆心为(1,-3),且10-5a >0,即a <2.∵圆关于直线y =x +2b 对称,∴圆心在直线y =x +2b 上,即-3=1+2b ,解得b =-2,∴a -b <4.6.已知点M 是直线3x +4y -2=0上的动点,点N 为圆(x +1)2+(y +1)2=1上的动点,则|MN |的最小值是( )A.95 B .1 C.45D.135解析:选C 圆心(-1,-1)到点M 的距离的最小值为点(-1,-1)到直线的距离d =|-3-4-2|5=95,故点N 到点M 的距离的最小值为d -1=45. 7.如果三角形三个顶点分别是O (0,0),A (0,15),B (-8,0),则它的内切圆方程为________________.解析:因为△AOB 是直角三角形,所以内切圆半径为r =|OA |+|OB |-|AB |2=15+8-172=3,圆心坐标为(-3,3),故内切圆方程为(x +3)2+(y -3)2=9.答案:(x +3)2+(y -3)2=98.(2013·河南三市调研)已知圆C 的圆心与抛物线y 2=4x 的焦点关于直线y =x 对称,直线4x -3y -2=0与圆C 相交于A ,B 两点,且|AB |=6,则圆C 的方程为__________.解析:设所求圆的半径是R ,依题意得,抛物线y 2=4x 的焦点坐标是(1,0),则圆C 的圆心坐标是(0,1),圆心到直线4x -3y -2=0的距离d =|4×0-3×1-2|42+(-3)2=1,则R 2=d 2+⎝⎛⎭⎫|AB |22=10,因此圆C 的方程是x 2+(y -1)2=10.答案:x 2+(y -1)2=109.(2012·南京模拟)已知x ,y 满足x 2+y 2=1,则y -2x -1的最小值为________.解析:y -2x -1表示圆上的点P (x ,y )与点Q (1,2)连线的斜率,所以y -2x -1的最小值是直线PQ与圆相切时的斜率.设直线PQ 的方程为y -2=k (x -1)即kx -y +2-k =0.由|2-k |k 2+1=1得k =34,结合图形可知,y -2x -1≥34,故最小值为34. 答案:3410.过点C (3,4)且与x 轴,y 轴都相切的两个圆的半径分别为r 1,r 2,求r 1r 2. 解:由题意知,这两个圆的圆心都在第一象限, 且在直线y =x 上,故可设两圆方程为 (x -a )2+(y -a )2=a 2,(x -b )2+(y -b )2=b 2, 且r 1=a ,r 2=b .由于两圆都过点C , 则(3-a )2+(4-a )2=a 2,(3-b )2+(4-b )2=b 2 即a 2-14a +25=0,b 2-14b +25=0. 则a 、b 是方程x 2-14x +25=0的两个根.故r 1r 2=ab =25.11.已知以点P 为圆心的圆经过点A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且|CD |=410.(1)求直线CD 的方程; (2)求圆P 的方程.解:(1)直线AB 的斜率k =1,AB 的中点坐标为(1,2). 则直线CD 的方程为y -2=-(x -1), 即x +y -3=0.(2)设圆心P (a ,b ),则由P 在CD 上得a +b -3=0.① 又∵直径|CD |=410,∴|P A |=210, ∴(a +1)2+b 2=40.②由①②解得⎩⎪⎨⎪⎧ a =-3,b =6或⎩⎪⎨⎪⎧a =5,b =-2.∴圆心P (-3,6)或P (5,-2). ∴圆P 的方程为(x +3)2+(y -6)2=40 或(x -5)2+(y +2)2=40.12.(2012·吉林摸底)已知关于x ,y 的方程C :x 2+y 2-2x -4y +m =0. (1)当m 为何值时,方程C 表示圆;(2)在(1)的条件下,若圆C 与直线l :x +2y -4=0相交于M 、N 两点,且|MN |=455,求m 的值.解:(1)方程C 可化为(x -1)2+(y -2)2=5-m ,显然只要5-m >0,即m <5时方程C 表示圆.(2)因为圆C 的方程为(x -1)2+(y -2)2=5-m ,其中m <5,所以圆心C (1,2),半径r =5-m ,则圆心C (1,2)到直线l :x +2y -4=0的距离为d =|1+2×2-4|12+22=15,因为|MN |=455,所以12|MN |=255,所以5-m =⎝⎛⎭⎫152+⎝⎛⎭⎫2552, 解得m =4.1.(2012·常州模拟)以双曲线x 26-y 23=1的右焦点为圆心且与双曲线的渐近线相切的圆的方程是( )A .(x -3)2+y 2=1B .(x -3)2+y 2=3C .(x -3)2+y 2=3D .(x -3)2+y 2=9解析:选B 双曲线的渐近线方程为x ±2y =0,其右焦点为(3,0),所求圆半径r =|3|12+(±2)2=3,所求圆方程为(x -3)2+y 2=3.2.由直线y =x +2上的点P 向圆C :(x -4)2+(y +2)2=1引切线PT (T 为切点),当|PT |最小时,点P 的坐标是( )A .(-1,1)B .(0,2)C .(-2,0)D .(1,3)解析:选B 根据切线长、圆的半径和圆心到点P 的距离的关系,可知|PT |=|PC |2-1,故|PT |最小时,即|PC |最小,此时PC 垂直于直线y =x +2,则直线PC 的方程为y +2=-(x-4),即y =-x +2,联立方程⎩⎪⎨⎪⎧y =x +2,y =-x +2,解得点P 的坐标为(0,2).3.已知圆M 过两点C (1,-1),D (-1,1),且圆心M 在x +y -2=0上. (1)求圆M 的方程;(2)设P 是直线3x +4y +8=0上的动点,P A 、PB 是圆M 的两条切线,A ,B 为切点,求四边形P AMB 面积的最小值.解:(1)设圆M 的方程为(x -a )2+(y -b )2=r 2(r >0).根据题意,得⎩⎪⎨⎪⎧(1-a )2+(-1-b )2=r 2,(-1-a )2+(1-b )2=r 2,a +b -2=0.解得a =b =1,r =2,故所求圆M 的方程为(x -1)2+(y -1)2=4.(2)因为四边形P AMB 的面积S =S △P AM +S △PBM =12|AM |·|P A |+12|BM |·|PB |, 又|AM |=|BM |=2,|P A |=|PB |,所以S =2|P A |, 而|P A |=|PM |2-|AM |2=|PM |2-4,即S =2|PM |2-4.因此要求S 的最小值,只需求|PM |的最小值即可, 即在直线3x +4y +8=0上找一点P ,使得|PM |的值最小,所以|PM |min =|3×1+4×1+8|32+42=3,所以四边形P AMB 面积的最小值为S =2|PM |2min -4=232-4=2 5.1.在圆x 2+y 2-2x -6y =0内,过点E (0,1)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为( )A .5 2B .10 2C .15 2D .20 2解析:选B 由题意可知,圆的圆心坐标是(1,3),半径是10,且点E (0,1)位于该圆内,故过点E (0,1)的最短弦长|BD |=210-(12+22)=25(注:过圆内一定点的最短弦是以该点为中点的弦),过点E (0,1)的最长弦长等于该圆的直径,即|AC |=210,且AC ⊥BD ,因此四边形ABCD 的面积等于12|AC |×|BD |=12×210×25=10 2.2.已知两点A (-2,0),B (0,2),点C 是圆x 2+y 2-2x =0上任意一点,则△ABC 面积的最小值是________.解析:l AB :x -y +2=0,圆心(1,0)到l 的距离d =32, 则AB 边上的高的最小值为32-1. 故△ABC 面积的最小值是12×22×⎝⎛⎭⎫32-1=3- 2.答案:3- 23.(2012·抚顺调研)已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点.(1)求线段AP中点的轨迹方程;(2)若∠PBQ=90°,求线段PQ中点的轨迹方程.解:(1)设AP的中点为M(x,y),由中点坐标公式可知,P点坐标为(2x-2,2y).因为P点在圆x2+y2=4上,所以(2x-2)2+(2y)2=4.故线段AP中点的轨迹方程为(x-1)2+y2=1.(2)设PQ的中点为N(x,y),在Rt△PBQ中,|PN|=|BN|,设O为坐标原点,连接ON,则ON⊥PQ,所以|OP|2=|ON|2+|PN|2=|ON|2+|BN|2,所以x2+y2+(x-1)2+(y-1)2=4.故线段PQ中点的轨迹方程为x2+y2-x-y-1=0.一、直线与圆的位置关系(圆心到直线的距离为d,圆的半径为r)二、圆与圆的位置关系(⊙O1、⊙O2半径r1、r2,d=|O1O2|)[小题能否全取]1.(教材习题改编)圆(x-1)2+(y+2)2=6与直线2x+y-5=0的位置关系是()A.相切B.相交但直线不过圆心C.相交过圆心D.相离解析:选B由题意知圆心(1,-2)到直线2x+y-5=0的距离d=5,0<d<6,故该直线与圆相交但不过圆心.2.(2012·银川质检)由直线y =x +1上的一点向圆x 2+y 2-6x +8=0引切线,则切线长的最小值为( )A.7B .2 2C .3D. 2解析:选A 由题意知,圆心到直线上的点的距离最小时,切线长最小.圆x 2+y 2-6x +8=0可化为(x -3)2+y 2=1,则圆心(3,0)到直线y =x +1的距离为42=22,切线长的最小值为(22)2-1=7.3.直线x -y +1=0与圆x 2+y 2=r 2相交于A ,B 两点,且AB 的长为2,则圆的半径为( )A.322B.62C .1D .2解析:选B 圆心(0,0)到直线x -y +1=0的距离d =12.则r 2=⎝⎛⎭⎫12|AB |2+d 2=32,r =62. 4.(教材习题改编)若圆x 2+y 2=1与直线y =kx +2没有公共点,则实数k 的取值范围是________.解析:由题意知21+k2>1,解得-3<k < 3.答案:(-3, 3)5.已知两圆C 1:x 2+y 2-2x +10y -24=0,C 2:x 2+y 2+2x +2y -8=0,则两圆公共弦所在的直线方程是____________.解析:两圆相减即得x -2y +4=0. 答案:x -2y +4=01.求圆的弦长问题,注意应用圆的几何性质解题,即用圆心与弦中点连线与弦垂直的性质,可用勾股定理或斜率之积为-1列方程来简化运算.2.对于圆的切线问题,要注意切线斜率不存在的情况.典题导入[例1] (2012·陕西高考) 已知圆C :x 2+y 2-4x =0,l 是过点P (3,0)的直线,则( )A .l 与C 相交B .l 与C 相切C .l 与C 相离D .以上三个选项均有可能[自主解答] 将点P (3,0)的坐标代入圆的方程,得 32+02-4×3=9-12=-3<0, 所以点P (3,0)在圆内.故过点P 的直线l 定与圆C 相交. [答案] A本例中若直线l 为“x -y +4=0”问题不变. 解:∵圆的方程为(x -2)2+y 2=4, ∴圆心(2,0),r =2. 又圆心到直线的距离为d =62=32>2. ∴l 与C 相离.由题悟法判断直线与圆的位置关系常见的方法(1)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系. (2)代数法:联立直线与圆的方程消元后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内可判断直线与圆相交.以题试法1.(2012·哈师大附中月考)已知直线l 过点(-2,0),当直线l 与圆x 2+y 2=2x 有两个交点时,其斜率k 的取值范围是( )A .(-22,22)B .(-2,2) C.⎝⎛⎭⎫-24,24D.⎝⎛⎭⎫-18,18 解析:选C 易知圆心坐标是(1,0),圆的半径是1,直线l 的方程是y =k (x +2),即kx -y +2k =0,根据点到直线的距离公式得|k +2k |k 2+1<1,即k 2<18,解得-24<k <24.典题导入[例2] (1)(2012·广东高考)在平面直角坐标系xOy 中,直线3x +4y -5=0与圆x 2+y 2=4相交于A 、B 两点,则弦AB 的长等于( )A .33B .2 3 C. 3D .1(2)(2012·天津高考)设m ,n ∈R ,若直线(m +1)x +(n +1)y -2=0与圆(x -1)2+(y -1)2=1相切,则m +n 的取值范围是( )A .[1-3,1+ 3 ]B .(-∞,1- 3 ]∪[1+3,+∞)C .[2-22,2+2 2 ]D .(-∞,2-2 2 ]∪[2+22,+∞)[自主解答] (1)圆x 2+y 2=4的圆心(0,0),半径为2,则圆心到直线3x +4y -5=0的距离d =532+42=1.故|AB |=2r 2-d 2=24-1=2 3.(2)圆心(1,1)到直线(m +1)x +(n +1)y -2=0的距离为|m +n |(m +1)2+(n +1)2=1,所以m +n+1=mn ≤14(m +n )2,整理得[(m +n )-2]2-8≥0,解得m +n ≥2+22或m +n ≤2-2 2.[答案] (1)B (2)D由题悟法1.圆的弦长的常用求法:(1)几何法:设圆的半径为r ,弦心距为d ,弦长为l ,则⎝⎛⎭⎫l 22=r 2-d 2. (2)代数方法:运用韦达定理及弦长公式: |AB |=1+k 2|x 1-x 2|=(1+k 2)[(x 1+x 2)2-4x 1x 2]. [注意] 常用几何法研究圆的弦的有关问题.2.求过一点的圆的切线方程时,首先要判断此点与圆的位置关系,若点在圆内,无解;若点在圆上,有一解;若点在圆外,有两解.以题试法2.(2012·杭州模拟)直线y =kx +3与圆(x -2)2+(y -3)2=4相交于M ,N 两点,若|MN |≥23,则k 的取值范围是( )A.⎣⎡⎦⎤-34,0B.⎣⎡⎦⎤-33,33 C .[-3, 3]D.⎣⎡⎦⎤-23,0解析:选B 如图,设圆心C (2,3)到直线y =kx +3的距离为d ,若|MN |≥23,则d 2=r 2-⎝⎛⎭⎫12|MN |2≤4-3=1,即|2k |21+k2≤1,解得-33≤k ≤ 33.典题导入[例3] (1)(2012·山东高考)圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为( )A .内切B .相交C .外切D .相离(2)设两圆C 1、C 2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C 1C 2|=________. [自主解答] (1)两圆圆心分别为(-2,0),(2,1),半径分别为2和3,圆心距d =42+1=17.∵3-2<d <3+2,∴两圆相交.(2)由题意可设两圆的方程为(x -r i )2+(y -r i )2=r 2i ,r i >0,i =1,2.由两圆都过点(4,1)得(4-r i )2+(1-r i )2=r 2i ,整理得r 2i -10r i +17=0,此方程的两根即为两圆的半径r 1,r 2,所以r 1r 2=17,r 1+r 2=10,则|C 1C 2|=(r 1-r 2)2+(r 1-r 2)2=2×(r 1+r 2)2-4r 1r 2=2×100-68=8. [答案] (1)B (2)8由题悟法两圆位置关系的判断常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法.若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差得到.以题试法3.(2012·青岛二中月考)若⊙O :x 2+y 2=5与⊙O 1:(x -m )2+y 2=20(m ∈R )相交于A 、B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长是________.解析:依题意得|OO 1|=5+20=5,且△OO 1A 是直角三角形,S △O O 1A =12·|AB |2·|OO 1|=12·|OA |·|AO 1|,因此|AB |=2·|OA |·|AO 1||OO 1|=2×5×255=4. 答案:4[典例](2012·东城模拟)直线l过点(-4,0)且与圆(x+1)2+(y-2)2=25交于A,B两点,如果|AB|=8,那么直线l的方程为()A.5x+12y+20=0B.5x-12y+20=0或x+4=0C.5x-12y+20=0D.5x+12y+20=0或x+4=0[尝试解题]过点(-4,0)的直线若垂直于x轴,经验证符合条件,即方程为x+4=0满足题意;若存在斜率,设其直线方程为y=k(x+4),由被圆截得的弦长为8,可得圆心(-1,2)到直线y=k(x+4)的距离为3,即|3k-2|1+k2=3,解得k=-512,此时直线方程为5x+12y+20=0,综上直线方程为5x+12y+20=0或x+4=0.[答案] D——————[易错提醒]—————————————————————————1.解答本题易误认为斜率k一定存在从而错选A.2.对于过定点的动直线设方程时,可结合题意或作出符合题意的图形分析斜率k是否存在,以避免漏解.——————————————————————————————————————针对训练1.过点A(2,4)向圆x2+y2=4所引切线的方程为__________________.解析:显然x=2为所求切线之一.当切线斜率存在时,设切线方程为y-4=k(x-2),即kx -y +4-2k =0,那么|4-2k |k 2+1=2,k =34,即3x -4y +10=0.答案:x =2或3x -4y +10=02.已知直线l 过(2,1),(m,3)两点,则直线l 的方程为________________. 解析:当m =2时,直线l 的方程为x =2; 当m ≠2时,直线l 的方程为y -13-1=x -2m -2,即2x -(m -2)y +m -6=0.因为m =2时,方程2x -(m -2)y +m -6=0, 即为x =2,所以直线l 的方程为2x -(m -2)y +m -6=0. 答案:2x -(m -2)y +m -6=0一、选择题1.(2012·人大附中月考)设m >0,则直线2(x +y )+1+m =0与圆x 2+y 2=m 的位置关系为( )A .相切B .相交C .相切或相离D .相交或相切解析:选C 圆心到直线l 的距离为d =1+m 2,圆半径为m .因为d -r =1+m 2-m =12(m -2m +1)=12(m -1)2≥0,所以直线与圆的位置关系是相切或相离.2.(2012·福建高考)直线x +3y -2=0与圆x 2+y 2=4相交于A ,B 两点,则弦AB 的长度等于( )A .2 5B .2 3 C. 3D .1解析:选B 因为圆心(0,0)到直线x +3y -2=0的距离为1,所以AB =24-1=2 3.3.(2012·安徽高考)若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 的取值范围是( )A .[-3,-1]B .[-1,3]C .[-3,1]D .(-∞,-3]∪[1,+∞)解析:选C 欲使直线x -y +1=0与圆(x -a )2+y 2=2有公共点,只需使圆心到直线的距离小于等于圆的半径2即可,即|a -0+1|12+(-1)2≤2,化简得|a +1|≤2,解得-3≤a ≤1.4.过圆x 2+y 2=1上一点作圆的切线与x 轴,y 轴的正半轴交于A ,B 两点,则|AB |的最小值为( )A. 2B. 3 C .2D .3解析:选C 设圆上的点为(x 0,y 0),其中x 0>0,y 0>0,则切线方程为x 0x +y 0y =1.分别令x =0,y =0得A ⎝⎛⎭⎫1x 0,0,B ⎝⎛⎭⎫0,1y 0,则|AB |= ⎝⎛⎭⎫1x 02+⎝⎛⎭⎫1y 02=1x 0y 0≥1x 20+y 202=2.当且仅当x 0=y 0时,等号成立.5.(2013·兰州模拟)若圆x 2+y 2=r 2(r >0)上仅有4个点到直线x -y -2=0的距离为1,则实数r 的取值范围为( )A .(2+1,+∞)B .(2-1, 2+1)C .(0, 2-1)D .(0, 2+1)解析:选A 计算得圆心到直线l 的距离为22= 2>1,如图.直线l :x -y -2=0与圆相交,l 1,l 2与l 平行,且与直线l 的距离为1,故可以看出,圆的半径应该大于圆心到直线l 2的距离 2+1.6.(2013·临沂模拟)已知点P (x ,y )是直线kx +y +4=0(k >0)上一动点,P A ,PB 是圆C :x 2+y 2-2y =0的两条切线,A ,B 是切点,若四边形P ACB 的最小面积是2,则k 的值为( )A. 2B.212C .2 2D .2解析:选D 圆心C (0,1)到l 的距离d =5k 2+1, 所以四边形面积的最小值为2×⎝⎛⎭⎫12×1×d 2-1=2,解得k 2=4,即k =±2. 又k >0,即k =2.7.(2012·朝阳高三期末)设直线x -my -1=0与圆(x -1)2+(y -2)2=4相交于A 、B 两点,且弦AB 的长为23,则实数m 的值是________.解析:由题意得,圆心(1,2)到直线x -my -1=0的距离d =4-3=1,即|1-2m -1|1+m 2=1,解得m =±33. 答案:±338.(2012·东北三校联考)若a ,b ,c 是直角三角形ABC 三边的长(c 为斜边),则圆C :x 2+y 2=4被直线l :ax +by +c =0所截得的弦长为________.解析:由题意可知圆C :x 2+y 2=4被直线l :ax +by +c =0所截得的弦长为2 4-⎝ ⎛⎭⎪⎫c a 2+b 22,由于a 2+b 2=c 2,所以所求弦长为2 3. 答案:2 39.(2012·江西高考)过直线x +y -22=0上点P 作圆x 2+y 2=1的两条切线,若两条切线的夹角是60°,则点P 的坐标是________.解析:∵点P 在直线x +y -22=0上,∴可设点P (x 0,-x 0+22),且其中一个切点为M .∵两条切线的夹角为60°,∴∠OPM =30°.故在Rt △OPM 中,有OP =2OM =2.由两点间的距离公式得OP =x 20+(-x 0+22)2=2,解得x 0= 2.故点P 的坐标是( 2, 2).答案:( 2, 2)10.(2012·福州调研)已知⊙M :x 2+(y -2)2=1,Q 是x 轴上的动点,QA ,QB 分别切⊙M 于A ,B 两点.(1)若|AB |=423,求|MQ |及直线MQ 的方程;(2)求证:直线AB 恒过定点.解:(1)设直线MQ 交AB 于点P ,则|AP |=223,又|AM |=1,AP ⊥MQ ,AM ⊥AQ ,得|MP |= 12-89=13,又∵|MQ |=|MA |2|MP |,∴|MQ |=3.设Q (x,0),而点M (0,2),由x 2+22=3,得x =±5,则Q 点的坐标为(5,0)或(-5,0).从而直线MQ 的方程为2x +5y -25=0或2x -5y +25=0.(2)证明:设点Q (q,0),由几何性质,可知A ,B 两点在以QM 为直径的圆上,此圆的方程为x (x -q )+y (y -2)=0,而线段AB 是此圆与已知圆的公共弦,相减可得AB 的方程为qx-2y +3=0,所以直线AB 恒过定点⎝⎛⎭⎫0,32. 11.已知以点C ⎝⎛⎭⎫t ,2t (t ∈R ,t ≠0)为圆心的圆与x 轴交于点O 、A ,与y 轴交于点O 、B ,其中O 为原点.(1)求证:△AOB 的面积为定值;(2)设直线2x +y -4=0与圆C 交于点M 、N ,若|OM |=|ON |,求圆C 的方程.解:(1)证明:由题设知,圆C 的方程为(x -t )2+⎝⎛⎭⎫y -2t 2=t 2+4t 2,化简得x 2-2tx +y 2-4ty =0, 当y =0时,x =0或2t ,则A (2t,0);当x =0时,y =0或4t,则B ⎝⎛⎭⎫0,4t , 所以S △AOB =12|OA |·|OB | =12|2t |·⎪⎪⎪⎪4t =4为定值. (2)∵|OM |=|ON |,则原点O 在MN 的中垂线上,设MN 的中点为H ,则CH ⊥MN ,∴C 、H 、O 三点共线,则直线OC 的斜率k =2t t =2t 2=12,∴t =2或t =-2. ∴圆心为C (2,1)或C (-2,-1),∴圆C 的方程为(x -2)2+(y -1)2=5或(x +2)2+(y +1)2=5,由于当圆方程为(x +2)2+(y +1)2=5时,直线2x +y -4=0到圆心的距离d >r ,此时不满足直线与圆相交,故舍去,∴圆C 的方程为(x -2)2+(y -1)2=5.12.在平面直角坐标系xOy 中,已知圆x 2+y 2-12x +32=0的圆心为Q ,过点P (0,2),且斜率为k 的直线与圆Q 相交于不同的两点A 、B .(1)求k 的取值范围;(2)是否存在常数k ,使得向量OA +OB 与PQ 共线?如果存在,求k 值;如果不存在,请说明理由.解:(1)圆的方程可写成(x -6)2+y 2=4,所以圆心为Q (6,0).过P (0,2)且斜率为k 的直线方程为y =kx +2,代入圆的方程得x 2+(kx +2)2-12x +32=0,整理得(1+k 2)x 2+4(k -3)x +36=0.①直线与圆交于两个不同的点A 、B 等价于Δ=[4(k -3)]2-4×36(1+k 2)=42(-8k 2-6k )>0,解得-34<k <0,即k 的取值范围为⎝⎛⎭⎫-34,0. (2)设A (x 1,y 1)、B (x 2,y 2)则OA +OB =(x 1+x 2,y 1+y 2),由方程①得x 1+x 2=-4(k -3)1+k 2.② 又y 1+y 2=k (x 1+x 2)+4.③因P (0,2)、Q (6,0),PQ =(6,-2),所以OA +OB 与PQ 共线等价于-2(x 1+x 2)=6(y 1+y 2),将②③代入上式,解得k =-34. 而由(1)知k ∈⎝⎛⎭⎫-34,0,故没有符合题意的常数k.1.已知两圆x 2+y 2-10x -10y =0,x 2+y 2+6x -2y -40=0,则它们的公共弦所在直线的方程为________________;公共弦长为________.解析:由两圆的方程x 2+y 2-10x -10y =0,x 2+y 2+6x -2y -40=0,相减并整理得公共弦所在直线的方程为2x +y -5=0.圆心(5,5)到直线2x +y -5=0的距离为105=25,弦长的一半为50-20=30,得公共弦长为230. 答案:2x +y -5=0 2302.(2012·上海模拟)已知圆的方程为x 2+y 2-6x -8y =0,a 1,a 2,…,a 11是该圆过点(3,5)的11条弦的长,若数列a 1,a 2,…,a 11成等差数列,则该等差数列公差的最大值是________.解析:容易判断,点(3,5)在圆内部,过圆内一点最长的弦是直径,过该点与直径垂直的弦最短,因此,过(3,5)的弦中,最长为10,最短为46,故公差最大为10-4610=5-265. 答案:5-2653.(2012·江西六校联考)已知抛物线C :y 2=2px (p >0)的准线为l ,焦点为F ,圆M 的圆心在x 轴的正半轴上,圆M 与y 轴相切,过原点O 作倾斜角为π3的直线n ,交直线l 于点A ,交圆M 于不同的两点O 、B ,且|AO |=|BO |=2.(1)求圆M 和抛物线C 的方程;(2)若P 为抛物线C 上的动点,求PM ,·PF ,的最小值; (3)过直线l 上的动点Q 向圆M 作切线,切点分别为S 、T ,求证:直线ST 恒过一个定点,并求该定点的坐标.解:(1)易得B (1,3),A (-1,-3),设圆M 的方程为(x -a )2+y 2=a 2(a >0), 将点B (1,3)代入圆M 的方程得a =2,所以圆M 的方程为(x -2)2+y 2=4,因为点A (-1,-3)在准线l 上,所以p 2=1,p =2,所以抛物线C 的方程为y 2=4x . (2)由(1)得,M (2,0),F (1,0),设点P (x ,y ),则PM ,=(2-x ,-y ),PF ,=(1-x ,-y ),又点P 在抛物线y 2=4x 上,所以PM ,·PF ,=(2-x )(1-x )+y 2=x 2-3x +2+4x =x 2+x +2,因为x ≥0,所以PM ,·PF ,≥2,即PM ,·PF ,的最小值为2. (3)证明:设点Q (-1,m ),则|QS |=|QT |=m 2+5,以Q 为圆心,m 2+5为半径的圆的方程为(x +1)2+(y -m )2=m 2+5,即x 2+y 2+2x -2my -4=0,①又圆M 的方程为(x -2)2+y 2=4,即x 2+y 2-4x =0,②由①②两式相减即得直线ST 的方程3x -my -2=0,显然直线ST 恒过定点⎝⎛⎭⎫23,0.1.两个圆:C 1:x 2+y 2+2x +2y -2=0与C 2:x 2+y 2-4x -2y +1=0的公切线有且仅有( )A .1条B .2条C .3条D .4条解析:选B 由题知C 1:(x +1)2+(y +1)2=4,则圆心C 1(-1,-1),C 2:(x -2)2+(y -1)2=4,圆心C 2(2,1),两圆半径均为2,又|C 1C 2|=(2+1)2+(1+1)2=13<4,则两圆相交⇒只有两条外公切线.2.(2012·江苏高考)在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________.解析:设圆心C (4,0)到直线y =kx -2的距离为d ,则d =|4k -2|k 2+1,由题意知,问题转化为d ≤2,即d =|4k -2|k 2+1≤2,得0≤k ≤43,所以k max =43. 答案:43 3.过点(-1,-2)的直线l 被圆x 2+y 2-2x -2y +1=0截得的弦长为 2,则直线l 的斜率为________.解析:将圆的方程化成标准方程为(x -1)2+(y -1)2=1,其圆心为(1,1),半径r =1.由弦长为2得弦心距为22.设直线方程为y +2=k (x +1),即kx -y +k -2=0,则|2k -3|k 2+1=22,化简得7k 2-24k +17=0,得k =1或k =177. 答案:1或1774.圆O 1的方程为x 2+(y +1)2=4,圆O 2的圆心为O 2(2,1).(1)若圆O 2与圆O 1外切,求圆O 2的方程;(2)若圆O 2与圆O 1交于A 、B 两点,且|AB |=22,求圆O 2的方程.解:(1)设圆O 2的半径为r 2,∵两圆外切,∴|O 1O 2|=r 1+r 2,r 2=|O 1O 2|-r 1=2(2-1),故圆O 2的方程是(x -2)2+(y -1)2=4(2-1)2.(2)设圆O 2的方程为(x -2)2+(y -1)2=r 22,又圆O 1的方程为x 2+(y +1)2=4,此两圆的方程相减,即得两圆公共弦AB 所在直线的方程:4x +4y +r 22-8=0. 因为圆心O 1(0,-1)到直线AB 的距离为 |r 22-12|42= 4-⎝⎛⎭⎫2222=2, 解得r 22=4或r 22=20.故圆O 2的方程为(x -2)2+(y -1)2=4或(x -2)2+(y -1)2=20.。
数学人教版必修二圆的方程知识点
数学人教版必修二圆的方程知识点数学人教版必修二圆的方程知识点1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.2、圆的方程(1)标准方程,圆心,半径为r;(2)一般方程当时,方程表示圆,此时圆心为,半径为当时,表示一个点; 当时,方程不表示任何图形.(3)求圆方程的方法:一般都采用待定系数法:先设后求.确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置.3、直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况:(1)设直线,圆,圆心到l的距离为,则有; ;(2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)= r24、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.设圆,两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.当时两圆外离,此时有公切线四条;当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;当时两圆相交,连心线垂直平分公共弦,有两条外公切线;当时,两圆内切,连心线经过切点,只有一条公切线;当时,两圆内含; 当时,为同心圆.注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线圆的辅助线一般为连圆心与切线或者连圆心与弦中点数学集合的运算知识点运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={x|xA,且xB}.由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作‘A并B’),即AB={x|xA,或xB}).学数学的方法学习方法很多女生在学习数学的时候喜欢按部就班,注重基础,但是却很少做难题,所以便导致了解题能力薄弱。
高中数学必修2知识点总结:第四章-圆与方程
高中数学必修2知识点总结第四章 圆与方程4.1.1 圆的标准方程1、圆的标准方程:222()()x a y b r -+-=圆心为A(a,b),半径为r 的圆的方程2、点00(,)M x y 与圆222()()x a y b r -+-=的关系的判断方法:(1)2200()()x a y b -+->2r ,点在圆外 (2)2200()()x a y b -+-=2r ,点在圆上 (3)2200()()x a y b -+-<2r ,点在圆内4.1.2 圆的一般方程1、圆的一般方程:022=++++F Ey Dx y x2、圆的一般方程的特点:(1)①x2和y2的系数相同,不等于0. ②没有xy 这样的二次项.(2)圆的一般方程中有三个特定的系数D 、E 、F ,因之只要求出这三个系数,圆的方程就确定了.(3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显。
4.2.1 圆与圆的位置关系1、用点到直线的距离来判断直线与圆的位置关系.设直线l :0=++c by ax ,圆C :022=++++F Ey Dx y x ,圆的半径为r ,圆心)2,2(ED --到直线的距离为d ,则判别直线与圆的位置关系的依据有以下几点:(1)当r d >时,直线l 与圆C 相离;(2)当r d =时,直线l 与圆C 相切; (3)当r d <时,直线l 与圆C 相交;4.2.2 圆与圆的位置关系两圆的位置关系.设两圆的连心线长为l ,则判别圆与圆的位置关系的依据有以下几点:(1)当21r r l +>时,圆1C 与圆2C 相离;(2)当21r r l +=时,圆1C 与圆2C 外切; (3)当<-||21r r 21r r l +<时,圆1C 与圆2C 相交;(4)当||21r r l -=时,圆1C 与圆2C 内切;(5)当||21r r l -<时,圆1C 与圆2C 内含;4.2.3 直线与圆的方程的应用1、利用平面直角坐标系解决直线与圆的位置关系;2、过程与方法用坐标法解决几何问题的步骤:第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题; 第二步:通过代数运算,解决代数问题; 第三步:将代数运算结果“翻译”成几何结论.4.3.1空间直角坐标系1、点M 对应着唯一确定的有序实数组),,(z y x ,x 、y 、z 分别是P 、Q 、R 在x 、y 、z 轴上的坐标2、有序实数组),,(z y x ,对应着空间直角坐标系中的一点3、空间中任意点M 的坐标都可以用有序实数组),,(z y x 来表示,该数组叫做点M 在此空间直角坐标系中的坐标,记M ),,(z y x ,x 叫做点M 的横坐标,y 叫做点M 的纵坐标,z 叫做点M 的竖一、知识概述 1、圆的标准方程圆心为(a ,b),半径为r 的圆的标准方程为(x -a)2+(y -b)2=r 2.由于圆的标准方程中含有三个参数a ,b ,r ,因此必须具备三个独立条件才能确定一个圆.2、圆的一般方程对于方程x2+y2+Dx+Ey+F=0.(1)当D2+E2-4F>0时,方程表示以为圆心、为半径的圆.此时方程就叫做圆的一般方程.(2)当D2+E2-4F=0时,方程表示一个点.(3)当D2+E2-4F<0时,方程不表示任何图形.即圆的一般方程为x2+y2+Dx+Ey+F=0(D2+E2-4F>0).圆的一般方程也含有三个待定的系数D,E,F,因此必须具备三个独立条件,才能确定一个圆.3、圆的参数方程(1)以(a,b)为圆心,r为半径的圆的参数方程为,特别地,以原点为圆心的圆的参数方程为.(2)θ的几何意义:圆上的点与圆心的连线与过圆心和x轴平行的直线所成的角.4、用待定系数法求圆的方程的大致步骤是:(1)根据题意选择方程的形式:标准方程或一般方程;(2)根据条件列出关于a,b,r或D,E,F的方程组;(3)解出a,b,r或D,E,F,代入标准方程或一般方程.二、重难点知识归纳:1、理解圆的定义,以及圆的标准方程与一般方程的推导.2、注意圆的一般方程成立的条件.3、利用待定系数法求圆的方程.三、典型例题剖析。
高中数学必修2__第四章《圆与方程》知识点总结与练习
第三节圆_的_方_程[知识能否忆起]1.圆的定义及方程 定义 平面内与定点的距离等于定长的点的集合(轨迹) 标准 方程 (x -a )2+(y -b )2=r 2(r >0)圆心:(a ,b ),半径:r一般 方程 x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)圆心:⎝⎛⎭⎫-D 2,-E 2, 半径:12D 2+E 2-4F2.点与圆的位置关系点M (x 0,y 0)与圆(x -a )2+(y -b )2=r 2的位置关系: (1)若M (x 0,y 0)在圆外,则(x 0-a )2+(y 0-b )2>r 2. (2)若M (x 0,y 0)在圆上,则(x 0-a )2+(y 0-b )2=r 2. (3)若M (x 0,y 0)在圆内,则(x 0-a )2+(y 0-b )2<r 2.[小题能否全取]1.(教材习题改编)方程x 2+y 2+4mx -2y +5m =0表示圆的充要条件是( ) A.14<m <1 B .m <14或m >1C .m <14D .m >1解析:选B 由(4m )2+4-4×5m >0得m <14或m >1.2.(教材习题改编)点(1,1)在圆(x -a )2+(y +a )2=4内,则实数a 的取值范围是( ) A .(-1,1)B .(0,1)C .(-∞,-1)∪(1,+∞)D .(1,+∞)解析:选A ∵点(1,1)在圆的内部, ∴(1-a )2+(1+a )2<4, ∴-1<a <1.3.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为( ) A .x 2+(y -2)2=1B .x 2+(y +2)2=1C .(x -1)2+(y -3)2=1D .x 2+(y -3)2=1解析:选A 设圆心坐标为(0,b ),则由题意知(0-1)2+(b -2)2=1,解得b =2,故圆的方程为x 2+(y -2)2=1.4.(2012·潍坊调研)圆x 2-2x +y 2-3=0的圆心到直线x +3y -3=0的距离为________.解析:圆心(1,0),d =|1-3|1+3=1.答案:15.(教材习题改编)圆心在原点且与直线x +y -2=0相切的圆的方程为 ____________________.解析:设圆的方程为x 2+y 2=a 2(a >0) ∴|2|1+1=a ,∴a =2,∴x 2+y 2=2. 答案:x 2+y 2=21.方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件是: (1)B =0;(2)A =C ≠0;(3)D 2+E 2-4AF >0.2.求圆的方程时,要注意应用圆的几何性质简化运算. (1)圆心在过切点且与切线垂直的直线上. (2)圆心在任一弦的中垂线上.(3)两圆内切或外切时,切点与两圆圆心三点共线.圆的方程的求法典题导入[例1] (1)(2012·顺义模拟)已知圆C 关于y 轴对称,经过点(1,0)且被x 轴分成两段弧长之比为1∶2,则圆C 的方程为( )A.⎝⎛⎭⎫x ±332+y 2=43B.⎝⎛⎭⎫x ±332+y 2=13C .x 2+⎝⎛⎭⎫y ±332=43D .x 2+⎝⎛⎭⎫y ±332=13(2)已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则圆C 的方程为________________. [自主解答] (1)由已知知圆心在y 轴上,且被x 轴所分劣弧所对圆心角为2π3,设圆心(0,b ),半径为r ,则r sin π3=1,r cos π3=|b |,解得r =23,|b |=33,即b =±33.故圆的方程为x 2+⎝⎛⎭⎫y ±332=43.(2)圆C 的方程为x 2+y 2+Dx +F =0,则⎩⎪⎨⎪⎧26+5D +F =0,10+D +F =0, 解得⎩⎪⎨⎪⎧D =-4,F =-6.圆C 的方程为x 2+y 2-4x -6=0. [答案] (1)C (2)x 2+y 2-4x -6=0由题悟法1.利用待定系数法求圆的方程关键是建立关于a ,b ,r 或D ,E ,F 的方程组. 2.利用圆的几何性质求方程可直接求出圆心坐标和半径,进而写出方程,体现了数形结合思想的运用.以题试法1.(2012·浙江五校联考)过圆x 2+y 2=4外一点P (4,2)作圆的两条切线,切点分别为A ,B ,则△ABP 的外接圆的方程是( )A .(x -4)2+(y -2)2=1B .x 2+(y -2)2=4C .(x +2)2+(y +1)2=5D .(x -2)2+(y -1)2=5解析:选D 易知圆心为坐标原点O ,根据圆的切线的性质可知OA ⊥P A ,OB ⊥PB ,因此P ,A ,O ,B 四点共圆,△P AB 的外接圆就是以线段OP 为直径的圆,这个圆的方程是(x -2)2+(y -1)2=5.与圆有关的最值问题典题导入[例2] (1)(2012·湖北高考)过点P (1,1)的直线,将圆形区域{(x ,y )|x 2+y 2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为( )A .x +y -2=0B .y -1=0C .x -y =0D .x +3y -4=0(2)P (x ,y )在圆C :(x -1)2+(y -1)2=1上移动,则x 2+y 2的最小值为________. [自主解答] (1)当圆心与P 的连线和过点P 的直线垂直时,符合条件.圆心O 与P 点连线的斜率k =1,∴直线OP 垂直于x +y -2=0.(2)由C (1,1)得|OC |=2,则|OP |min =2-1,即(x 2+y 2)min =2-1.所以x 2+y 2的最小值为(2-1)2=3-2 2.[答案] (1)A (2)3-2 2由题悟法解决与圆有关的最值问题的常用方法 (1)形如u =y -bx -a的最值问题,可转化为定点(a ,b )与圆上的动点(x ,y )的斜率的最值问题(如A 级T 9);9.(2012·南京模拟)已知x ,y 满足x 2+y 2=1,则y -2x -1的最小值为________.解析:y -2x -1表示圆上的点P (x ,y )与点Q (1,2)连线的斜率,所以y -2x -1的最小值是直线PQ与圆相切时的斜率.设直线PQ 的方程为y -2=k (x -1)即kx -y +2-k =0.由|2-k |k 2+1=1得k =34,结合图形可知,y -2x -1≥34,故最小值为34. 答案:34(2)形如t =ax +by 的最值问题,可转化为动直线的截距的最值问题(如以题试法2(2)); (3)形如(x -a )2+(y -b )2的最值问题,可转化为动点到定点的距离的最值问题(如例(2)).以题试法2.(1)(2012·东北三校联考)与曲线C :x 2+y 2+2x +2y =0相内切,同时又与直线l :y =2-x 相切的半径最小的圆的半径是________.(2)已知实数x ,y 满足(x -2)2+(y +1)2=1则2x -y 的最大值为________,最小值为________.解析:(1)依题意,曲线C 表示的是以点C (-1,-1)为圆心,2为半径的圆,圆心C (-1,-1)到直线y =2-x 即x +y -2=0的距离等于|-1-1-2|2=22,易知所求圆的半径等于22+22=322.(2)令b =2x -y ,则b 为直线2x -y =b 在y 轴上的截距的相反数,当直线2x -y =b 与圆相切时,b 取得最值.由|2×2+1-b |5=1.解得b =5±5,所以2x -y 的最大值为5+5,最小值为5- 5.答案:(1)322 (2)5+5 5-5与圆有关的轨迹问题典题导入[例3] (2012·正定模拟)如图,已知点A (-1,0)与点B (1,0),C 是圆x 2+y 2=1上的动点,连接BC 并延长至D ,使得|CD |=|BC |,求AC 与OD 的交点P 的轨迹方程.[自主解答] 设动点P (x ,y ),由题意可知P 是△ABD 的重心. 由A (-1,0),B (1,0),令动点C (x 0,y 0), 则D (2x 0-1,2y 0),由重心坐标公式得 ⎩⎪⎨⎪⎧x =-1+1+2x 0-13,y =2y 03,则⎩⎪⎨⎪⎧x 0=3x +12,y 0=3y 2(y 0≠0),代入x 2+y 2=1,整理得⎝⎛⎭⎫x +132+y 2=49(y ≠0), 故所求轨迹方程为⎝⎛⎭⎫x +132+y 2=49(y ≠0).由题悟法求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法: (1)直接法:直接根据题目提供的条件列出方程. (2)定义法:根据直线、圆、圆锥曲线等定义列方程. (3)几何法:利用圆与圆的几何性质列方程.(4)代入法:找到要求点与已知点的关系,代入已知点满足的关系式等.以题试法3.(2012·郑州模拟)动点P 到点A (8,0)的距离是到点B (2,0)的距离的2倍,则动点P 的轨迹方程为( )A .x 2+y 2=32B .x 2+y 2=16C .(x -1)2+y 2=16D .x 2+(y -1)2=16解析:选B 设P (x ,y ),则由题意可得2(x -2)2+y 2=(x -8)2+y 2,化简整理得x 2+y 2=16.与圆有关的交汇问题是近几年高考命题的热点,这类问题,要特别注意圆的定义及其性质的运用. 同时,要根据条件,合理选择代数方法或几何方法, 凡是涉及参数的问题,一定要注意参数的变化对问 题的影响,以便确定是否分类讨论.同时要有丰富 的相关知识储备,解题时只有做到平心静气地认真 研究,不断寻求解决问题的方法和技巧,才能真正 把握好问题.[典例] (2011·江苏高考)设集合A =⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪m2≤(x -2)2+y 2≤m 2,x ,y ∈R ,B ={(x ,y )|2m ≤x +y ≤2m +1,x ,y ∈R }.若A ∩B ≠∅,则实数m 的取值范围是________.[解析] 由题意知A ≠∅,则m 2≤m 2,即m ≤0或m ≥12.因为A ∩B ≠∅,则有:(1)当2m +1<2,即m <12时,圆心(2,0)到直线x +y =2m +1的距离为d 1=|2-2m -1|2≤|m |,化简得2m 2-4m +1≤0,解得1-22≤m ≤1+22,所以1-22≤m ≤12; (2)当2m ≤2≤2m +1,即12≤m ≤1时,A ∩B ≠∅恒成立;(3)当2m >2,即m >1时,圆心(2,0)到直线x +y =2m 的距离为d 2=|2-2m |2≤|m |,化简得m 2-4m +2≤0, 解得2-2≤m ≤2+2, 所以1<m ≤2+ 2.综上可知:满足题意的m 的取值范围为⎣⎡⎦⎤12,2+2. [答案] ⎣⎡⎦⎤12,2+2 [题后悟道] 该题是圆与集合,不等式交汇问题,解决本题的关键点有: ①弄清集合代表的几何意义;②结合直线与圆的位置关系求得m 的取值范围. 针对训练若直线l :ax +by +4=0(a >0,b >0)始终平分圆C :x 2+y 2+8x +2y +1=0,则ab 的最大值为( )A .4B .2C .1D.14解析:选C 圆C 的圆心坐标为(-4,-1), 则有-4a -b +4=0,即4a +b =4. 所以ab =14(4a ·b )≤14⎝ ⎛⎭⎪⎫4a +b 22=14×⎝⎛⎭⎫422=1.当且仅当a =12,b =2取得等号.1.圆(x +2)2+y 2=5关于原点P (0,0)对称的圆的方程为( ) A .(x -2)2+y 2=5 B .x 2+(y -2)2=5 C .(x +2)2+(y +2)2=5D .x 2+(y +2)2=5解析:选A 圆上任一点(x ,y )关于原点对称点为(-x ,-y )在圆(x +2)2+y 2=5上,即(-x +2)2+(-y )2=5.即(x -2)2+y 2=5.2.(2012·辽宁高考)将圆x 2+y 2-2x -4y +1=0平分的直线是( )A .x +y -1=0B .x +y +3=0C .x -y +1=0D .x -y +3=0解析:选C 要使直线平分圆,只要直线经过圆的圆心即可,圆心坐标为(1,2).A ,B ,C ,D 四个选项中,只有C 选项中的直线经过圆心.3.(2012·青岛二中期末)若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是( )A .(x -3)2+⎝⎛⎭⎫y -732=1 B .(x -2)2+(y -1)2=1 C .(x -1)2+(y -3)2=1D.⎝⎛⎭⎫x -322+(y -1)2=1 解析:选B 依题意设圆心C (a,1)(a >0),由圆C 与直线4x -3y =0相切,得|4a -3|5=1,解得a =2,则圆C 的标准方程是(x -2)2+(y -1)2=1.4.(2012·海淀检测)点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是( ) A .(x -2)2+(y +1)2=1 B .(x -2)2+(y +1)2=4 C .(x +4)2+(y -2)2=4D .(x +2)2+(y -1)2=1解析:选A设圆上任一点为Q (x 0,y 0),PQ 的中点为M (x ,y ),则⎩⎨⎧x =4+x 02,y =-2+y2,解得⎩⎪⎨⎪⎧x 0=2x -4,y 0=2y +2.因为点Q 在圆x 2+y 2=4上,所以(2x -4)2+(2y +2)2=4,即(x -2)2+(y +1)2=1.5.(2013·杭州模拟)若圆x 2+y 2-2x +6y +5a =0,关于直线y =x +2b 成轴对称图形,则a -b 的取值范围是( )A .(-∞,4)B .(-∞,0)C .(-4,+∞)D .(4,+∞)解析:选A 将圆的方程变形为(x -1)2+(y +3)2=10-5a ,可知,圆心为(1,-3),且10-5a >0,即a <2.∵圆关于直线y =x +2b 对称,∴圆心在直线y =x +2b 上,即-3=1+2b ,解得b =-2,∴a -b <4.6.已知点M 是直线3x +4y -2=0上的动点,点N 为圆(x +1)2+(y +1)2=1上的动点,则|MN |的最小值是( )A.95B .1C.45D.135解析:选C 圆心(-1,-1)到点M 的距离的最小值为点(-1,-1)到直线的距离d =|-3-4-2|5=95,故点N 到点M 的距离的最小值为d -1=45. 7.如果三角形三个顶点分别是O (0,0),A (0,15),B (-8,0),则它的内切圆方程为________________.解析:因为△AOB 是直角三角形,所以内切圆半径为r =|OA |+|OB |-|AB |2=15+8-172=3,圆心坐标为(-3,3),故内切圆方程为(x +3)2+(y -3)2=9.答案:(x +3)2+(y -3)2=98.(2013·河南三市调研)已知圆C 的圆心与抛物线y 2=4x 的焦点关于直线y =x 对称,直线4x -3y -2=0与圆C 相交于A ,B 两点,且|AB |=6,则圆C 的方程为__________.解析:设所求圆的半径是R ,依题意得,抛物线y 2=4x 的焦点坐标是(1,0),则圆C 的圆心坐标是(0,1),圆心到直线4x -3y -2=0的距离d =|4×0-3×1-2|42+(-3)2=1,则R 2=d 2+⎝⎛⎭⎫|AB |22=10,因此圆C 的方程是x 2+(y -1)2=10.答案:x 2+(y -1)2=109.(2012·南京模拟)已知x ,y 满足x 2+y 2=1,则y -2x -1的最小值为________.解析:y -2x -1表示圆上的点P (x ,y )与点Q (1,2)连线的斜率,所以y -2x -1的最小值是直线PQ与圆相切时的斜率.设直线PQ 的方程为y -2=k (x -1)即kx -y +2-k =0.由|2-k |k 2+1=1得k =34,结合图形可知,y -2x -1≥34,故最小值为34. 答案:3410.过点C (3,4)且与x 轴,y 轴都相切的两个圆的半径分别为r 1,r 2,求r 1r 2. 解:由题意知,这两个圆的圆心都在第一象限, 且在直线y =x 上,故可设两圆方程为 (x -a )2+(y -a )2=a 2,(x -b )2+(y -b )2=b 2,且r 1=a ,r 2=b .由于两圆都过点C , 则(3-a )2+(4-a )2=a 2,(3-b )2+(4-b )2=b 2 即a 2-14a +25=0,b 2-14b +25=0. 则a 、b 是方程x 2-14x +25=0的两个根. 故r 1r 2=ab =25.11.已知以点P 为圆心的圆经过点A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且|CD |=410.(1)求直线CD 的方程; (2)求圆P 的方程.解:(1)直线AB 的斜率k =1,AB 的中点坐标为(1,2). 则直线CD 的方程为y -2=-(x -1), 即x +y -3=0.(2)设圆心P (a ,b ),则由P 在CD 上得a +b -3=0.① 又∵直径|CD |=410,∴|P A |=210, ∴(a +1)2+b 2=40.②由①②解得⎩⎪⎨⎪⎧ a =-3,b =6或⎩⎪⎨⎪⎧a =5,b =-2.∴圆心P (-3,6)或P (5,-2). ∴圆P 的方程为(x +3)2+(y -6)2=40 或(x -5)2+(y +2)2=40.12.(2012·吉林摸底)已知关于x ,y 的方程C :x 2+y 2-2x -4y +m =0. (1)当m 为何值时,方程C 表示圆;(2)在(1)的条件下,若圆C 与直线l :x +2y -4=0相交于M 、N 两点,且|MN |=455,求m 的值.解:(1)方程C 可化为(x -1)2+(y -2)2=5-m ,显然只要5-m >0,即m <5时方程C 表示圆.(2)因为圆C 的方程为(x -1)2+(y -2)2=5-m ,其中m <5,所以圆心C (1,2),半径r =5-m ,则圆心C (1,2)到直线l :x +2y -4=0的距离为d =|1+2×2-4|12+22=15,因为|MN |=455,所以12|MN |=255, 所以5-m =⎝⎛⎭⎫152+⎝⎛⎭⎫2552, 解得m =4.1.(2012·常州模拟)以双曲线x 26-y 23=1的右焦点为圆心且与双曲线的渐近线相切的圆的方程是( )A .(x -3)2+y 2=1B .(x -3)2+y 2=3C .(x -3)2+y 2=3D .(x -3)2+y 2=9解析:选B 双曲线的渐近线方程为x ±2y =0,其右焦点为(3,0),所求圆半径r =|3|12+(±2)2=3,所求圆方程为(x -3)2+y 2=3.2.由直线y =x +2上的点P 向圆C :(x -4)2+(y +2)2=1引切线PT (T 为切点),当|PT |最小时,点P 的坐标是( )A .(-1,1)B .(0,2)C .(-2,0)D .(1,3)解析:选B 根据切线长、圆的半径和圆心到点P 的距离的关系,可知|PT |=|PC |2-1,故|PT |最小时,即|PC |最小,此时PC 垂直于直线y =x +2,则直线PC 的方程为y +2=-(x-4),即y =-x +2,联立方程⎩⎪⎨⎪⎧y =x +2,y =-x +2,解得点P 的坐标为(0,2).3.已知圆M 过两点C (1,-1),D (-1,1),且圆心M 在x +y -2=0上. (1)求圆M 的方程;(2)设P 是直线3x +4y +8=0上的动点,P A 、PB 是圆M 的两条切线,A ,B 为切点,求四边形P AMB 面积的最小值.解:(1)设圆M 的方程为(x -a )2+(y -b )2=r 2(r >0).根据题意,得⎩⎪⎨⎪⎧(1-a )2+(-1-b )2=r 2,(-1-a )2+(1-b )2=r 2,a +b -2=0.解得a =b =1,r =2,故所求圆M 的方程为(x -1)2+(y -1)2=4. (2)因为四边形P AMB 的面积S =S △P AM +S △PBM =12|AM |·|P A |+12|BM |·|PB |, 又|AM |=|BM |=2,|P A |=|PB |,所以S =2|P A |, 而|P A |=|PM |2-|AM |2=|PM |2-4,即S =2|PM |2-4.因此要求S 的最小值,只需求|PM |的最小值即可, 即在直线3x +4y +8=0上找一点P ,使得|PM |的值最小, 所以|PM |min =|3×1+4×1+8|32+42=3,所以四边形P AMB 面积的最小值为S =2|PM |2min -4=232-4=2 5.1.在圆x 2+y 2-2x -6y =0内,过点E (0,1)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为( )A .5 2B .10 2C .15 2D .20 2解析:选B 由题意可知,圆的圆心坐标是(1,3),半径是10,且点E (0,1)位于该圆内,故过点E (0,1)的最短弦长|BD |=210-(12+22)=25(注:过圆内一定点的最短弦是以该点为中点的弦),过点E (0,1)的最长弦长等于该圆的直径,即|AC |=210,且AC ⊥BD ,因此四边形ABCD 的面积等于12|AC |×|BD |=12×210×25=10 2.2.已知两点A (-2,0),B (0,2),点C 是圆x 2+y 2-2x =0上任意一点,则△ABC 面积的最小值是________.解析:l AB :x -y +2=0,圆心(1,0)到l 的距离d =32,则AB 边上的高的最小值为32-1. 故△ABC 面积的最小值是12×22×⎝⎛⎭⎫32-1=3- 2.答案:3- 23.(2012·抚顺调研)已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点.(1)求线段AP 中点的轨迹方程;(2)若∠PBQ =90°,求线段PQ 中点的轨迹方程.解:(1)设AP 的中点为M (x ,y ),由中点坐标公式可知,P 点坐标为(2x -2,2y ). 因为P 点在圆x 2+y 2=4上,所以(2x -2)2+(2y )2=4. 故线段AP 中点的轨迹方程为(x -1)2+y 2=1.(2)设PQ 的中点为N (x ,y ),在Rt △PBQ 中,|PN |=|BN |,设O 为坐标原点,连接ON ,则ON ⊥PQ ,所以|OP |2=|ON |2+|PN |2=|ON |2+|BN |2,所以x 2+y 2+(x -1)2+(y -1)2=4.故线段PQ 中点的轨迹方程为x 2+y 2-x -y -1=0.第四节直线与圆、圆与圆的位置关系[知识能否忆起]一、直线与圆的位置关系(圆心到直线的距离为d ,圆的半径为r )相离相切相交图形量化 方程观点 Δ<0 Δ=0 Δ>0 几何观点d >rd =rd <r二、圆与圆的位置关系(⊙O 1、⊙O 2半径r 1、r 2,d =|O 1O 2|) 相离外切相交内切内含图形量化 d >r 1+r 2d =r 1+r 2|r 1-r 2|<d <r 1+r 2d =|r 1-r 2|d <|r 1-r 2|[小题能否全取]1.(教材习题改编)圆(x -1)2+(y +2)2=6与直线2x +y -5=0的位置关系是( ) A .相切 B .相交但直线不过圆心 C .相交过圆心D .相离解析:选B 由题意知圆心(1,-2)到直线2x +y -5=0的距离d =5,0<d <6,故该直线与圆相交但不过圆心.2.(2012·银川质检)由直线y =x +1上的一点向圆x 2+y 2-6x +8=0引切线,则切线长的最小值为( )A.7B .2 2C .3D. 2解析:选A 由题意知,圆心到直线上的点的距离最小时,切线长最小.圆x 2+y 2-6x +8=0可化为(x -3)2+y 2=1,则圆心(3,0)到直线y =x +1的距离为42=22,切线长的最小值为(22)2-1=7.3.直线x -y +1=0与圆x 2+y 2=r 2相交于A ,B 两点,且AB 的长为2,则圆的半径为( )A.322B.62C .1D .2解析:选B 圆心(0,0)到直线x -y +1=0的距离d =12.则r 2=⎝⎛⎭⎫12|AB |2+d 2=32,r =62. 4.(教材习题改编)若圆x 2+y 2=1与直线y =kx +2没有公共点,则实数k 的取值范围是________.解析:由题意知21+k 2>1,解得-3<k < 3.答案:(-3, 3)5.已知两圆C 1:x 2+y 2-2x +10y -24=0,C 2:x 2+y 2+2x +2y -8=0,则两圆公共弦所在的直线方程是____________.解析:两圆相减即得x-2y+4=0.答案:x-2y+4=01.求圆的弦长问题,注意应用圆的几何性质解题,即用圆心与弦中点连线与弦垂直的性质,可用勾股定理或斜率之积为-1列方程来简化运算.2.对于圆的切线问题,要注意切线斜率不存在的情况.直线与圆的位置关系的判断典题导入[例1](2012·陕西高考)已知圆C:x2+y2-4x=0,l是过点P(3,0)的直线,则() A.l与C相交B.l与C相切C.l与C相离D.以上三个选项均有可能[自主解答]将点P(3,0)的坐标代入圆的方程,得32+02-4×3=9-12=-3<0,所以点P(3,0)在圆内.故过点P的直线l定与圆C相交.[答案] A本例中若直线l为“x-y+4=0”问题不变.解:∵圆的方程为(x-2)2+y2=4,∴圆心(2,0),r=2.=32>2.又圆心到直线的距离为d=62∴l与C相离.由题悟法判断直线与圆的位置关系常见的方法(1)几何法:利用圆心到直线的距离d和圆半径r的大小关系.(2)代数法:联立直线与圆的方程消元后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内可判断直线与圆相交.以题试法1.(2012·哈师大附中月考)已知直线l 过点(-2,0),当直线l 与圆x 2+y 2=2x 有两个交点时,其斜率k 的取值范围是( )A .(-22,22)B .(-2,2) C.⎝⎛⎭⎫-24,24D.⎝⎛⎭⎫-18,18 解析:选C 易知圆心坐标是(1,0),圆的半径是1,直线l 的方程是y =k (x +2),即kx -y +2k =0,根据点到直线的距离公式得|k +2k |k 2+1<1,即k 2<18,解得-24<k <24.直线与圆的位置关系的综合典题导入[例2] (1)(2012·广东高考)在平面直角坐标系xOy 中,直线3x +4y -5=0与圆x 2+y 2=4相交于A 、B 两点,则弦AB 的长等于( )A .33B .2 3 C. 3D .1(2)(2012·天津高考)设m ,n ∈R ,若直线(m +1)x +(n +1)y -2=0与圆(x -1)2+(y -1)2=1相切,则m +n 的取值范围是( )A .[1-3,1+ 3 ]B .(-∞,1- 3 ]∪[1+3,+∞)C .[2-22,2+2 2 ]D .(-∞,2-2 2 ]∪[2+22,+∞)[自主解答] (1)圆x 2+y 2=4的圆心(0,0),半径为2,则圆心到直线3x +4y -5=0的距离d =532+42=1.故|AB |=2r 2-d 2=24-1=2 3.(2)圆心(1,1)到直线(m +1)x +(n +1)y -2=0的距离为|m +n |(m +1)2+(n +1)2=1,所以m +n+1=mn ≤14(m +n )2,整理得[(m +n )-2]2-8≥0,解得m +n ≥2+22或m +n ≤2-2 2.[答案] (1)B (2)D由题悟法1.圆的弦长的常用求法:(1)几何法:设圆的半径为r ,弦心距为d ,弦长为l ,则⎝⎛⎭⎫l 22=r 2-d 2. (2)代数方法:运用韦达定理及弦长公式: |AB |=1+k 2|x 1-x 2|=(1+k 2)[(x 1+x 2)2-4x 1x 2]. [注意] 常用几何法研究圆的弦的有关问题.2.求过一点的圆的切线方程时,首先要判断此点与圆的位置关系,若点在圆内,无解;若点在圆上,有一解;若点在圆外,有两解.以题试法2.(2012·杭州模拟)直线y =kx +3与圆(x -2)2+(y -3)2=4相交于M ,N 两点,若|MN |≥23,则k 的取值范围是( )A.⎣⎡⎦⎤-34,0B.⎣⎡⎦⎤-33,33 C .[-3, 3]D.⎣⎡⎦⎤-23,0 解析:选B 如图,设圆心C (2,3)到直线y =kx +3的距离为d ,若|MN |≥23,则d 2=r 2-⎝⎛⎭⎫12|MN |2≤4-3=1,即|2k |21+k 2≤1,解得-33≤k ≤ 33.圆与圆的位置关系典题导入[例3] (1)(2012·山东高考)圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为( )A .内切B .相交C .外切D .相离(2)设两圆C 1、C 2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C 1C 2|=________. [自主解答] (1)两圆圆心分别为(-2,0),(2,1),半径分别为2和3,圆心距d =42+1=17.∵3-2<d <3+2,∴两圆相交.(2)由题意可设两圆的方程为(x -r i )2+(y -r i )2=r 2i ,r i >0,i =1,2.由两圆都过点(4,1)得(4-r i )2+(1-r i )2=r 2i ,整理得r 2i -10r i +17=0,此方程的两根即为两圆的半径r 1,r 2,所以r 1r 2=17,r 1+r 2=10,则|C 1C 2|=(r 1-r 2)2+(r 1-r 2)2=2×(r 1+r 2)2-4r 1r 2=2×100-68=8. [答案] (1)B (2)8由题悟法两圆位置关系的判断常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法.若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差得到.以题试法3.(2012·青岛二中月考)若⊙O :x 2+y 2=5与⊙O 1:(x -m )2+y 2=20(m ∈R )相交于A 、B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长是________.解析:依题意得|OO 1|=5+20=5,且△OO 1A 是直角三角形,S △O O 1A =12·|AB |2·|OO 1|=12·|OA |·|AO 1|,因此|AB |=2·|OA |·|AO 1||OO 1|=2×5×255=4. 答案:4[典例](2012·东城模拟)直线l过点(-4,0)且与圆(x+1)2+(y-2)2=25交于A,B两点,如果|AB|=8,那么直线l的方程为()A.5x+12y+20=0B.5x-12y+20=0或x+4=0C.5x-12y+20=0D.5x+12y+20=0或x+4=0[尝试解题]过点(-4,0)的直线若垂直于x轴,经验证符合条件,即方程为x+4=0满足题意;若存在斜率,设其直线方程为y=k(x+4),由被圆截得的弦长为8,可得圆心(-1,2)到直线y=k(x+4)的距离为3,即|3k-2|1+k2=3,解得k=-512,此时直线方程为5x+12y+20=0,综上直线方程为5x+12y+20=0或x+4=0.[答案] D——————[易错提醒]—————————————————————————1.解答本题易误认为斜率k一定存在从而错选A.2.对于过定点的动直线设方程时,可结合题意或作出符合题意的图形分析斜率k是否存在,以避免漏解.——————————————————————————————————————针对训练1.过点A(2,4)向圆x2+y2=4所引切线的方程为__________________.解析:显然x=2为所求切线之一.当切线斜率存在时,设切线方程为y-4=k(x-2),即kx -y +4-2k =0,那么|4-2k |k 2+1=2,k =34,即3x -4y +10=0.答案:x =2或3x -4y +10=02.已知直线l 过(2,1),(m,3)两点,则直线l 的方程为________________. 解析:当m =2时,直线l 的方程为x =2; 当m ≠2时,直线l 的方程为y -13-1=x -2m -2,即2x -(m -2)y +m -6=0.因为m =2时,方程2x -(m -2)y +m -6=0, 即为x =2,所以直线l 的方程为2x -(m -2)y +m -6=0. 答案:2x -(m -2)y +m -6=0一、选择题1.(2012·人大附中月考)设m >0,则直线2(x +y )+1+m =0与圆x 2+y 2=m 的位置关系为( )A .相切B .相交C .相切或相离D .相交或相切解析:选C 圆心到直线l 的距离为d =1+m 2,圆半径为m .因为d -r =1+m 2-m =12(m -2m +1)=12(m -1)2≥0,所以直线与圆的位置关系是相切或相离.2.(2012·福建高考)直线x +3y -2=0与圆x 2+y 2=4相交于A ,B 两点,则弦AB 的长度等于( )A .2 5B .2 3 C. 3D .1解析:选B 因为圆心(0,0)到直线x +3y -2=0的距离为1,所以AB =24-1=2 3.3.(2012·安徽高考)若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 的取值范围是( )A .[-3,-1]B .[-1,3]C .[-3,1]D .(-∞,-3]∪[1,+∞)解析:选C 欲使直线x -y +1=0与圆(x -a )2+y 2=2有公共点,只需使圆心到直线的距离小于等于圆的半径2即可,即|a -0+1|12+(-1)2≤2,化简得|a +1|≤2,解得-3≤a ≤1.4.过圆x 2+y 2=1上一点作圆的切线与x 轴,y 轴的正半轴交于A ,B 两点,则|AB |的最小值为( )A. 2B. 3 C .2 D .3解析:选C 设圆上的点为(x 0,y 0),其中x 0>0,y 0>0,则切线方程为x 0x +y 0y =1.分别令x =0,y =0得A ⎝⎛⎭⎫1x 0,0,B ⎝⎛⎭⎫0,1y 0,则|AB |= ⎝⎛⎭⎫1x 02+⎝⎛⎭⎫1y 02=1x 0y 0≥1x 20+y 202=2.当且仅当x 0=y 0时,等号成立.5.(2013·兰州模拟)若圆x 2+y 2=r 2(r >0)上仅有4个点到直线x -y -2=0的距离为1,则实数r 的取值范围为( )A .(2+1,+∞)B .(2-1, 2+1)C .(0, 2-1)D .(0, 2+1)解析:选A 计算得圆心到直线l 的距离为22= 2>1,如图.直线l :x -y -2=0与圆相交,l 1,l 2与l 平行,且与直线l 的距离为1,故可以看出,圆的半径应该大于圆心到直线l 2的距离 2+1.6.(2013·临沂模拟)已知点P (x ,y )是直线kx +y +4=0(k >0)上一动点,P A ,PB 是圆C :x 2+y 2-2y =0的两条切线,A ,B 是切点,若四边形P ACB 的最小面积是2,则k 的值为( )A. 2B.212 C .2 2 D .2解析:选D 圆心C (0,1)到l 的距离d =5k 2+1, 所以四边形面积的最小值为2×⎝⎛⎭⎫12×1×d 2-1=2, 解得k 2=4,即k =±2.又k >0,即k =2.7.(2012·朝阳高三期末)设直线x -my -1=0与圆(x -1)2+(y -2)2=4相交于A 、B 两点,且弦AB 的长为23,则实数m 的值是________.解析:由题意得,圆心(1,2)到直线x -my -1=0的距离d =4-3=1,即|1-2m -1|1+m 2=1,解得m =±33. 答案:±338.(2012·东北三校联考)若a ,b ,c 是直角三角形ABC 三边的长(c 为斜边),则圆C :x 2+y 2=4被直线l :ax +by +c =0所截得的弦长为________.解析:由题意可知圆C :x 2+y 2=4被直线l :ax +by +c =0所截得的弦长为2 4-⎝ ⎛⎭⎪⎫c a 2+b 22,由于a 2+b 2=c 2,所以所求弦长为2 3. 答案:2 39.(2012·江西高考)过直线x +y -22=0上点P 作圆x 2+y 2=1的两条切线,若两条切线的夹角是60°,则点P 的坐标是________.解析:∵点P 在直线x +y -22=0上,∴可设点P (x 0,-x 0+22),且其中一个切点为M .∵两条切线的夹角为60°,∴∠OPM =30°.故在Rt △OPM 中,有OP =2OM =2.由两点间的距离公式得OP = x 20+(-x 0+22)2=2,解得x 0= 2.故点P 的坐标是( 2, 2).答案:( 2, 2)10.(2012·福州调研)已知⊙M :x 2+(y -2)2=1,Q 是x 轴上的动点,QA ,QB 分别切⊙M 于A ,B 两点.(1)若|AB |=423,求|MQ |及直线MQ 的方程; (2)求证:直线AB 恒过定点.解:(1)设直线MQ 交AB 于点P ,则|AP |=223,又|AM |=1,AP ⊥MQ ,AM ⊥AQ ,得|MP |= 12-89=13, 又∵|MQ |=|MA |2|MP |,∴|MQ |=3. 设Q (x,0),而点M (0,2),由x 2+22=3,得x =±5, 则Q 点的坐标为(5,0)或(-5,0).从而直线MQ 的方程为2x +5y -25=0或2x -5y +25=0.(2)证明:设点Q (q,0),由几何性质,可知A ,B 两点在以QM 为直径的圆上,此圆的方程为x (x -q )+y (y -2)=0,而线段AB 是此圆与已知圆的公共弦,相减可得AB 的方程为qx-2y +3=0,所以直线AB 恒过定点⎝⎛⎭⎫0,32. 11.已知以点C ⎝⎛⎭⎫t ,2t (t ∈R ,t ≠0)为圆心的圆与x 轴交于点O 、A ,与y 轴交于点O 、B ,其中O 为原点.(1)求证:△AOB 的面积为定值;(2)设直线2x +y -4=0与圆C 交于点M 、N ,若|OM |=|ON |,求圆C 的方程.解:(1)证明:由题设知,圆C 的方程为(x -t )2+⎝⎛⎭⎫y -2t 2=t 2+4t 2, 化简得x 2-2tx +y 2-4ty =0, 当y =0时,x =0或2t ,则A (2t,0);当x =0时,y =0或4t,则B ⎝⎛⎭⎫0,4t , 所以S △AOB =12|OA |·|OB | =12|2t |·⎪⎪⎪⎪4t =4为定值. (2)∵|OM |=|ON |,则原点O 在MN 的中垂线上,设MN 的中点为H ,则CH ⊥MN , ∴C 、H 、O 三点共线,则直线OC 的斜率k =2t t =2t 2=12,∴t =2或t =-2. ∴圆心为C (2,1)或C (-2,-1),∴圆C 的方程为(x -2)2+(y -1)2=5或(x +2)2+(y +1)2=5,由于当圆方程为(x +2)2+(y +1)2=5时,直线2x +y -4=0到圆心的距离d >r ,此时不满足直线与圆相交,故舍去,∴圆C 的方程为(x -2)2+(y -1)2=5.12.在平面直角坐标系xOy 中,已知圆x 2+y 2-12x +32=0的圆心为Q ,过点P (0,2),且斜率为k 的直线与圆Q 相交于不同的两点A 、B .(1)求k 的取值范围;(2)是否存在常数k ,使得向量OA +OB 与PQ 共线?如果存在,求k 值;如果不存在,请说明理由.解:(1)圆的方程可写成(x -6)2+y 2=4,所以圆心为Q (6,0).过P (0,2)且斜率为k 的直线方程为y =kx +2,代入圆的方程得x 2+(kx +2)2-12x +32=0,整理得(1+k 2)x 2+4(k -3)x +36=0.①直线与圆交于两个不同的点A 、B 等价于Δ=[4(k -3)]2-4×36(1+k 2)=42(-8k 2-6k )>0,解得-34<k <0,即k 的取值范围为⎝⎛⎭⎫-34,0. (2)设A (x 1,y 1)、B (x 2,y 2)则OA +OB =(x 1+x 2,y 1+y 2),由方程①得x 1+x 2=-4(k -3)1+k 2.② 又y 1+y 2=k (x 1+x 2)+4.③ 因P (0,2)、Q (6,0),PQ =(6,-2), 所以OA +OB 与PQ 共线等价于-2(x 1+x 2)=6(y 1+y 2),将②③代入上式,解得k =-34. 而由(1)知k ∈⎝⎛⎭⎫-34,0,故没有符合题意的常数k .1.已知两圆x 2+y 2-10x -10y =0,x 2+y 2+6x -2y -40=0,则它们的公共弦所在直线的方程为________________;公共弦长为________.解析:由两圆的方程x 2+y 2-10x -10y =0,x 2+y 2+6x -2y -40=0,相减并整理得公共弦所在直线的方程为2x +y -5=0.圆心(5,5)到直线2x +y -5=0的距离为105=25,弦长的一半为50-20=30,得公共弦长为230. 答案:2x +y -5=0 2302.(2012·上海模拟)已知圆的方程为x 2+y 2-6x -8y =0,a 1,a 2,…,a 11是该圆过点(3,5)的11条弦的长,若数列a 1,a 2,…,a 11成等差数列,则该等差数列公差的最大值是________.解析:容易判断,点(3,5)在圆内部,过圆内一点最长的弦是直径,过该点与直径垂直的弦最短,因此,过(3,5)的弦中,最长为10,最短为46,故公差最大为10-4610=5-265. 答案:5-2653.(2012·江西六校联考)已知抛物线C :y 2=2px (p >0)的准线为l ,焦点为F ,圆M 的圆心在x 轴的正半轴上,圆M 与y 轴相切,过原点O 作倾斜角为π3的直线n ,交直线l 于点A ,交圆M 于不同的两点O 、B ,且|AO |=|BO |=2.(1)求圆M 和抛物线C 的方程;(2)若P 为抛物线C 上的动点,求PM ,·PF ,的最小值;(3)过直线l 上的动点Q 向圆M 作切线,切点分别为S 、T ,求证:直线ST 恒过一个定点,并求该定点的坐标.解:(1)易得B (1,3),A (-1,-3),设圆M 的方程为(x -a )2+y 2=a 2(a >0), 将点B (1,3)代入圆M 的方程得a =2,所以圆M 的方程为(x -2)2+y 2=4,因为点A (-1,-3)在准线l 上,所以p 2=1,p =2,所以抛物线C 的方程为y 2=4x . (2)由(1)得,M (2,0),F (1,0),设点P (x ,y ),则PM ,=(2-x ,-y ),PF ,=(1-x ,-y ),又点P 在抛物线y 2=4x 上,所以PM ,·PF ,=(2-x )(1-x )+y 2=x 2-3x +2+4x =x 2+x +2,因为x ≥0,所以PM ,·PF ,≥2,即PM ,·PF ,的最小值为2.(3)证明:设点Q (-1,m ),则|QS |=|QT |=m 2+5,以Q 为圆心,m 2+5为半径的圆的方程为(x +1)2+(y -m )2=m 2+5,即x 2+y 2+2x -2my -4=0,①又圆M 的方程为(x -2)2+y 2=4,即x 2+y 2-4x =0,②由①②两式相减即得直线ST 的方程3x -my -2=0,显然直线ST 恒过定点⎝⎛⎭⎫23,0.1.两个圆:C 1:x 2+y 2+2x +2y -2=0与C 2:x 2+y 2-4x -2y +1=0的公切线有且仅有( )A .1条B .2条C .3条D .4条解析:选B 由题知C 1:(x +1)2+(y +1)2=4,则圆心C 1(-1,-1),C 2:(x -2)2+(y。
高中数学必修2--圆与方程知识点归纳总结
圆与方程知识点1.圆的标准方程:以点),(b a C 为圆心,r 为半径的圆的标准方程是222)()(r b y a x =-+-.特例:圆心在坐标原点,半径为r 的圆的方程是:222r y x =+.2.点与圆的位置关系:(1).设点到圆心的距离为d,圆半径为r:a.点在圆内d<r;b.点在圆上d=r;c.点在圆外d>r(2).给定点),(00y x M 及圆222)()(:r b y a x C =-+-.①M 在圆C 内22020)()(r b y a x <-+-⇔②M 在圆C 上22020)()r b y a x =-+-⇔(③M 在圆C 外22020)()(r b y a x >-+-⇔(3)涉及最值:1圆外一点B ,圆上一动点P ,讨论PB 的最值min PB BN BC r ==-max PB BM BC r==+2圆内一点A ,圆上一动点P ,讨论PA 的最值min PA AN r AC==-max PA AM r AC==+思考:过此A 点作最短的弦?(此弦垂直AC )3.圆的一般方程:022=++++F Ey Dx y x .(1)当0422>-+F E D 时,方程表示一个圆,其中圆心⎪⎭⎫⎝⎛--2,2E D C ,半径2422FE D r -+=.(2)当0422=-+F E D 时,方程表示一个点⎪⎭⎫ ⎝⎛--2,2E D .(3)当0422<-+F E D 时,方程不表示任何图形.注:方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的充要条件是:0=B 且0≠=C A 且0422 AF E D -+.4.直线与圆的位置关系:直线0=++C By Ax 与圆222)()(r b y a x =-+-圆心到直线的距离22B A C Bb Aa d +++=1)无交点直线与圆相离⇔⇔>r d ;2)只有一个交点直线与圆相切⇔⇔=r d ;3)有两个交点直线与圆相交⇔⇔<r d ;弦长|AB|=222d r -还可以利用直线方程与圆的方程联立方程组⎩⎨⎧=++++=++022F Ey Dx y x C By Ax 求解,通过解的个数来判断:(1)当0>∆时,直线与圆有2个交点,,直线与圆相交;(2)当0=∆时,直线与圆只有1个交点,直线与圆相切;(3)当0<∆时,直线与圆没有交点,直线与圆相离;5.两圆的位置关系(1)设两圆2121211)()(:r b y a x C =-+-与圆2222222)()(:r b y a x C =-+-,圆心距221221)()(b b a a d -+-=1条公切线外离421⇔⇔+>r r d ;2条公切线外切321⇔⇔+=r r d ;3条公切线相交22121⇔⇔+<<-r r d r r ;4条公切线内切121⇔⇔-=r r d ;5无公切线内含⇔⇔-<<210r r d ;外离外切相交内切(2)两圆公共弦所在直线方程圆1C :221110x y D x E y F ++++=,圆2C :222220x y D x E y F ++++=,则()()()1212120D D x E E y F F -+-+-=为两相交圆公共弦方程.补充说明:1若1C 与2C 相切,则表示其中一条公切线方程;2若1C 与2C 相离,则表示连心线的中垂线方程.(3)圆系问题过两圆1C :221110x y D x E y F ++++=和2C :222220x y D x E y F ++++=交点的圆系方程为()22221112220x y D x E y F x y D x E y F λ+++++++++=(1λ≠-)补充:1上述圆系不包括2C ;22)当1λ=-时,表示过两圆交点的直线方程(公共弦)3过直线0Ax By C ++=与圆220x y Dx Ey F ++++=交点的圆系方程为()220x y Dx Ey F Ax By C λ+++++++=6.过一点作圆的切线的方程:(1)过圆外一点的切线:①k 不存在,验证是否成立②k 存在,设点斜式方程,用圆心到该直线距离=半径,即⎪⎩⎪⎨⎧+---=-=-1)()(2110101R x a k y b R x x k y y 求解k,得到切线方程【一定两解】例1.经过点P(1,—2)点作圆(x+1)2+(y —2)2=4的切线,则切线方程为。
必修二数学圆与方程知识点总结(精选3篇)
必修二数学圆与方程知识点总结(精选3篇)必修二数学圆与方程知识点总结篇11、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.2、圆的方程(1)标准方程,圆心,半径为r;(2)一般方程当时,方程表示圆,此时圆心为,半径为当时,表示一个点;当时,方程不表示任何图形.(3)求圆方程的方法:一般都采用待定系数法:先设后求.确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置.3、直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况:(1)设直线,圆,圆心到l的距离为,则有;;(2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)= r24、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.设圆,两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定.当时两圆外离,此时有公切线四条。
当时两圆外切,连心线过切点,有外公切线两条,内公切线一条。
当时两圆相交,连心线垂直平分公共弦,有两条外公切线。
当时,两圆内切,连心线经过切点,只有一条公切线。
当时,两圆内含;当时,为同心圆。
注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线。
圆的辅助线一般为连圆心与切线或者连圆心与弦中点。
数学集合的运算知识点运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={x|xA,且xB}.由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B 的并集.记作:AB(读作‘A并B’),即AB={x|xA,或xB}).学数学的方法学习方法很多女生在学习数学的时候喜欢按部就班,注重基础,但是却很少做难题,所以便导致了解题能力薄弱。
人教版数学必修二第四章圆与方程知识点总结
第四章圆与方程4.1 圆的方程4.1.1 圆的标准方程1.以(3,-1)为圆心,4为半径的圆的方程为()A.(x+3)2+(y-1)2=4B.(x-3)2+(y+1)2=4C.(x-3)2+(y+1)2=16D.(x+3)2+(y-1)2=162.一圆的标准方程为x2+(y+1)2=8,则此圆的圆心与半径分别为()A.(1,0),4 B.(-1,0),2 2C.(0,1),4 D.(0,-1),2 23.圆(x+2)2+(y-2)2=m2的圆心为________,半径为________.4.若点P(-3,4)在圆x2+y2=a2上,则a的值是________.5.以点(-2,1)为圆心且与直线x+y=1相切的圆的方程是____________________.6.圆心在y轴上,半径为1,且过点(1,2)的圆的方程为()A.x2+(y-2)2=1B.x2+(y+2)2=1C.(x-1)2+(y-3)2=1D.x2+(y-3)2=17.一个圆经过点A(5,0)与B(-2,1),圆心在直线x-3y-10=0上,求此圆的方程.8.点P(5a+1,12a)在圆(x-1)2+y2=1的内部,则a的取值范围是()A.|a|<1B.a<113C.|a|<1 5D.|a|<1 139.圆(x-1)2+y2=25上的点到点A(5,5)的最大距离是__________.10.设直线ax-y+3=0与圆(x-1)2+(y-2)2=4相交于A,B两点,且弦AB的长为2 3,求a的值.4.1.2 圆的一般方程1.圆x 2+y 2-6x =0的圆心坐标是________.2.若方程x 2+y 2+Dx +Ey +F =0表示以(2,-4)为圆心,以4为半径的圆,则F =________.3.若方程x 2+y 2-4x +2y +5k =0表示圆,则k 的取值范围是( ) A .k >1 B .k <1 C .k ≥1 D .k ≤14.已知圆的方程是x 2+y 2-2x +4y +3=0,则下列直线中通过圆心的是( ) A .3x +2y +1=0 B .3x +2y =0 C .3x -2y =0 D .3x -2y +1=05.圆x 2+y 2-6x +4y =0的周长是________.6.点(2a,2)在圆x 2+y 2-2y -4=0的内部,则a 的取值范围是( ) A .-1<a <1 B .0<a <1C .-1<a <15D .-15<a <17.求下列圆的圆心和半径. (1)x 2+y 2-x =0;(2)x 2+y 2+2ax =0(a ≠0); (3)x 2+y 2+2ay -1=0.8.过点A (11,2)作圆x 2+y 2+2x -4y -164=0的弦,其中弦长为整数的共有( ) A .16条 B .17条 C .32条 D .34条 9.已知点A 在直线2x -3y +5=0上移动,点P 为连接M (4,-3)和点A 的线段的中点,求P 的轨迹方程.10.已知方程x 2+y 2-2(t +3)x +2(1-4t 2)y +16t 4+9=0表示一个圆. (1)求t 的取值范围; (2)求圆的圆心和半径;(3)求该圆的半径r 的最大值及此时圆的标准方程.4.2 直线、圆的位置关系 4.2.1 直线与圆的位置关系1.直线y =x +3与圆x 2+y 2=4的位置关系为( ) A .相切B .相交但直线不过圆心C .直线过圆心D .相离2.下列说法中正确的是( )A .若直线与圆有两个交点,则直线与圆相切B .与半径垂直的直线与圆相切C .过半径外端的直线与圆相切D .过圆心且与切线垂直的直线过切点3.若直线x +y =2与圆x 2+y 2=m (m >0)相切,则m 的值为( ) A.12 B.22C. 2 D .2 4.(20XX 年陕西)已知点M (a ,b )在圆O :x 2+y 2=1外,则直线ax +by =1与圆O 的位置关系是( )A .相切B .相交C .相离D .不确定5.经过点M (2,1)作圆x 2+y 2=5的切线,则切线方程为( ) A.2x +y =5 B.2x +y +5=0 C .2x +y =5 D .2x +y +5=06.(20XX 年浙江)直线y =2x +3被圆x 2+y 2-6x -8y =0所截得的弦长等于________. 7.已知直线kx -y +6=0被圆x 2+y 2=25所截得的弦长为8,求k 的值.8.由直线y=x+1上的一点向圆(x-3)2+y2=1引切线,则切线长的最小值为() A.1 B.2 2 C.7 D.39.已知圆C:(x-2)2+(y-3)2=4,直线l:(m+2)x+(2m+1)y=7m+8.(1)证明:无论m为何值,直线l与圆C恒相交;(2)当直线l被圆C截得的弦长最短时,求m的值.10.已知圆C:x2+y2-8y+12=0,直线l∶ax+y+2a=0.(1)当a为何值时,直线l与圆C相切;(2)当直线l与圆C相交于A,B两点,且AB=2 2时,求直线l的方程.4.2.2 圆与圆的位置关系1.已知两圆的方程x2+y2=4和x2+y2-6x+8y+16=0,则此两圆的位置关系是() A.外离B.外切C.相交D.内切2.圆x2+y2+2x+1=0和圆x2+y2-y+1=0的公共弦所在直线方程为()A.x-2y=0 B.x+2y=0C.2x-y=0 D.2x+y=03.已知直线x=a(a>0)和圆(x+1)2+y2=9相切,那么a的值是()A.2 B.3C.4 D.54.两圆x2+y2-4x+2y+1=0与x2+y2+4x-4y-1=0的公切线有()A.1条B.2条C.3条D.4条5.已知两圆相交于两点A(1,3),B(m,-1),两圆圆心都在直线2x-y+c=0上,则m +c的值是()A.-1 B.2C.3D.06.圆x2+y2-2x-5=0与圆x2+y2+2x-4y-4=0的交点为AB,则线段AB的垂直平分线方程为()A.x+y-1=0B.2x-y+1=0C.x-2y+1=0D.x-y+1=07.若圆x2+y2=4与圆x2+y2+2ay-6=0(a>0)的公共弦长为2 3,求实数a的值.8.两圆(x-3)2+(y-4)2=25和(x-1)2+(y-2)2=r2相切,则半径r=____________.9.已知两圆C1:x2+y2-10x-10y=0与C2:x2+y2+6x-2y-40=0,求:(1)它们的公共弦所在直线的方程;(2)公共弦长.10.已知圆x2+y2-4ax+2ay+20(a-1)=0.(1)求证:对任意实数a,该圆恒过一定点;(2)若该圆与圆x2+y2=4相切,求a的值.4.2.3 直线与圆的方程的应用1.方程x2+y2+2ax-2ay=0(a≠0)表示的圆()A.关于x轴对称B.关于y轴对称C.关于直线x-y=0对称D.关于直线x+y=0对称2.若直线x+y+m=0与圆x2+y2=m相切,则m为()A.0或2 B.2C. 2 D.无解3.过原点的直线与圆(x+2)2+y2=1相切,若切点在第三象限,则该直线方程为() A.y=3xB.y=-3xC.y=3 3xD.y=-3 3x4.若直线ax+by=1与圆x2+y2=1相离,则点P(a,b)与圆的位置关系是() A.在圆上B.在圆外C.在圆内D.都有可能5.圆x2+y2-4x-4y-1=0上的动点P到直线x+y=0的最小距离为()A.1 B.0C.2 2 D.2 2-36.过点P(2,1)作圆C:x2+y2-ax+2ay+2a+1=0的切线只有一条,则a的取值是() A.a=-3 B.a=3C.a=2 D.a=-27.与圆x2+y2-4x-6y+12=0相切且在两坐标轴上的截距相等的直线有()A.4条B.3条C.2条D.1条8.设圆x 2+y 2-4x -5=0的弦AB 的中点P (3,1),则直线AB 的方程为____________.9.若实数x ,y 满足等式(x -2)2+y 2=3,那么yx的最大值为( )A.12B.33C.32D. 310.已知圆C :x 2+y 2-4x -14y +45=0及点Q (-2,3).(1)若点P (a ,a +1)在圆上,求线段PQ 的长及直线PQ 的斜率; (2)若M 为圆C 上任一点,求|MQ |的最大值和最小值;(3)若实数m ,n 满足m 2+n 2-4m -14n +45=0,求k =n -3m +2的最大值和最小值.4.3 空间直角坐标系 4.3.1 空间直角坐标系1.点P (-1,0,1)位于( ) A .y 轴上 B .z 轴上C .xOz 平面内D .yOz 平面内2.在空间直角坐标系中,点(-2,1,4)关于x 轴的对称点的坐标是( ) A .(-2,1,-4) B .(-2,-1,-4) C .(2,-1,4) D .(2,1,-4)3.点P (-4,1,3)在平面yOz 上的投影坐标是( ) A .(4,1,0) B .(0,1,3) C .(0,3,0) D .都不对4.在空间直角坐标系中,点P (1,2,3),过点P 作平面yOz 的垂线PQ 垂足为Q ,则Q 的坐标为( )A .(0,2,0)B .(0,2,3)C .(1,0,3)D .(1,2,0)5.点(2,-3,0)在空间直角坐标系中的位置是在()A.y轴上B.xOy平面上C.xOz平面上D.第一象限内6.设x,y为任意实数,相应的点P(x,y,3)的集合是()A.z轴上的两个点B.过z轴上的点(0,0,3),且与z轴垂直的直线C.过z轴上的点(0,0,3),且与z轴垂直的平面D.以上答案都有可能7.点A(1,-3,2)关于点(2,2,3)的对称点的坐标为()A.(3,-1,5)B.(3,7,4)C.(0,-8,1)D.(7,3,1)8.已知点A(3,y,4),B(x,4,2),线段AB的中点是C(5,6,z),则x=______,y=______,z=________.9.点P(2,3,5)到平面xOy的距离为________.10.如图K4-3-1,在四棱锥P-ABCD中,底面ABCD为正方形,且边长为2a,棱PD ⊥底面ABCD,|PD|=2b,取各侧棱的中点E,F,G,H,试建立适当的空间直角坐标系,写出点E,F,G,H的坐标.图K4-3-14.3.2 空间两点间的距离公式1.在空间直角坐标系中,点A(2,1,5)与点B(2,1,-1)之间的距离为()A. 6 B.6C. 3 D.22.坐标原点到下列各点的距离最大的是()A.(1,1,1) B.(2,2,2)C.(2,-3,5) D.(3,3,4)3.已知A(1,1,1),B(-3,-3,-3),点P在x轴上,且|P A|=|PB|,则点P的坐标为() A.(-3,0,0) B.(-3,0,1)C.(0,0,-3) D.(0,-3,0)4.设点B是A(-3,2,5)关于xOy平面的对称点,则|AB|=()A.10 B.10C.2 10 D.405.已知空间坐标系中,A(3,3,1),B(1,0,5),C(0,1,0),AB的中点为M,线段CM的长|CM|=()A.534 B.532C.532 D.1326.方程(x-12)2+(y+3)2+(z-5)2=36的几何意义是____________________________.7.已知点A在y轴上,点B(0,1,2),且|AB|=5,求点A的坐标.8.以A(1,2,1),B(1,5,1),C(1,2,7)为顶点的三角形是________三角形.9.已知点A(x,5-x,2x-1),B(1,x+2,2-x),当|AB|取最小值时,x的值为________.10.在空间直角坐标系中,已知A(3,0,1)和B(1,0,-3),问:(1)在y轴上是否存在点M,满足|MA|=|MB|;(2)在y轴上是否存在点M,使△MAB为等边三角形?若存在,试求出点M的坐标.第四章 圆与方程4.1 圆的方程4.1.1 圆的标准方程 1.C 2.D3.(-2,2) |m | 4.±5 5.(x +2)2+(y -1)2=26.A 解析:方法一(直接法):设圆心坐标为(0,b ),则由题意知(0-1)2+(b -2)2=1,解得b =2,故圆的方程为x 2+(y -2)2=1.方法二(数形结合法):作图由点到圆心的距离为1,易知圆心为(0,2),故圆的方程为x 2+(y -2)2=1.7.解:方法一:设圆心P (a ,b ), 则⎩⎨⎧a -3b -10=0,(a -5)2+b 2=(a +2)2+(b -1)2,解得⎩⎪⎨⎪⎧a =1,b =-3.圆的半径r =(a -5)2+b 2=(1-5)2+(-3)2=5. ∴圆的标准方程为(x -1)2+(y +3)2=25.方法二:线段AB 的中点P ′⎝⎛⎭⎫5-22,0+12,即P ′⎝⎛⎭⎫32,12.直线AB 的斜率k =1-0-2-5=-17. ∴弦AB 的垂直平分线的方程为y -12=7⎝⎛⎭⎫x -32, 即7x -y -10=0.解方程组⎩⎪⎨⎪⎧ x -3y -10=0,7x -y -10=0,得⎩⎪⎨⎪⎧x =1,y =-3.即圆心P (1,-3). 圆的半径r =(1-5)2+(-3)2=5.∴圆的标准方程为(x -1)2+(y +3)2=25. 8.D 9.41+510.解:∵弦AB 的长为2 3,则由垂径定理,圆心(1,2)到直线的距离等于1,∴|a -2+3|a 2+1=1,∴a =0.4.1.2 圆的一般方程 1.(3,0) 2.4 3.B 4.A 5.2 13π 6.A7.解:(1)⎝⎛⎭⎫x -122+y 2=14,圆心⎝⎛⎭⎫12,0,半径r =12. (2)(x +a )2+y 2=a 2,圆心(-a,0),半径r =|a |.(3)x 2+(y +a )2=1+a 2,圆心(0,-a ),半径r =1+a 2.8.C 解析:圆的标准方程是:(x +1)2+(y -2)2=132,圆心(-1,2),半径r =13.过点A (11,2)的最短的弦长为10,最长的弦长为26(分别只有一条),还有长度为11,12,…,25的各2条,所以共有长为整数的弦2+2×15=32(条).9.解:设点P 的坐标为(x ,y ),A 的坐标为(x 0,y 0). ∵点A 在直线2x -3y +5=0上,∴有2x 0-3y 0+5=0.又∵P 为MA 的中点,∴有⎩⎨⎧x =4+x 02,y =-3+y 02.∴⎩⎪⎨⎪⎧x 0=2x -4,y 0=2y +3. 代入直线的方程,得2(2x -4)-3(2y +3)+5=0,化简,得2x -3y -6=0即为所求.10.解:(1)由圆的一般方程,得[-2(t +3)]2+4(1-4t 2)2-4(16t 4+9)>0,解得-17<t <1. (2)圆心为⎝⎛⎭⎫--2(t +3)2,-2(1-4t 2)2,即(t +3,4t 2-1),半径r =12[-2(t +3)]2+4(1-4t 2)2-4(16t 4+9) =-7t 2+6t +1.(3)r =-7t 2+6t +1=-7⎝⎛⎭⎫t -372+167, 所以当t =37时,r max =4 77, 故圆的标准方程为⎝⎛⎭⎫x -2472+⎝⎛⎭⎫y +13492=167. 4.2 直线、圆的位置关系4.2.1 直线与圆的位置关系1.D 2.D 3.D4.B 解析:点M (a ,b )在圆O :x 2+y 2=1外,有a 2+b 2>1,圆心到直线ax +by =1的距离为d =1a 2+b 2<1=r ,所以直线与圆O 相交. 5.C 解析:因为点(2,1)在圆x 2+y 2=5上,所以切线方程为2x +y =5.6.4 5 解析:圆(x -3)2+(y -4)2=25,圆心(3,4)到直线2x -y +3=0的距离为d =|6-4+3|5=5,弦长等于252-(5)2=4 5. 7.解:设直线kx -y +6=0被圆x 2+y 2=25所截得的弦长为AB ,其中点为C ,则△OCB 为直角三角形.因为圆的半径为|OB |=5,半弦长为|AB |2=|BC |=4, 所以圆心到直线kx -y +6=0的距离为3.由点到直线的距离公式得6k 2+1=3.解得k =±3. 8.C9.(1)证明:由(m +2)x +(2m +1)y =7m +8,得mx +2x +2my +y =7m +8,即m (x +2y -7)+(2x +y -8)=0.由⎩⎪⎨⎪⎧ x +2y -7=0,2x +y -8=0,解得⎩⎪⎨⎪⎧x =3,y =2. ∴无论m 为何值,直线l 恒过定点(3,2).(2)解:过圆内的一点的所有弦中,最长的弦是过该点的直径,最短的弦是垂直于过该点的直径的那条弦,∵圆心(2,3),定点(3,2),直径的斜率为-1,∴最短的弦的斜率为1,故最短弦的方程为x -y -1=0.∴m =-1.10.解:将圆C 的方程x 2+y 2-8y +12=0配方,得标准方程为x 2+(y -4)2=4,则此圆的圆心为(0,4),半径为2.(1)若直线l 与圆C 相切,则有|4+2a |a 2+1=2. 解得a =-34.故当a =-34时,直线l 与圆C 相切. (2)过圆心C 作CD ⊥AB ,则根据题意和圆的性质,得⎩⎨⎧ CD =|4+2a |a 2+1,CD 2+DA 2=AC 2=22,DA =12AB =2,解得a =-7或a =-1.∴直线l 的方程是7x -y +14=0或x -y +2=0.4.2.2 圆与圆的位置关系1.B 2.D 3.A4.C 解析:圆化为标准方程,得(x -2)2+(y +1)2=4,(x +2)2+(y -2)2=9,∴圆心O 1(2,-1),r 1=2,O 2(-2,2),r 2=3.∵|O 1O 2|=5=r 1+r 2,∴两圆外切.∴公切线有3条.5.D 6.A7.解:由已知两个圆的方程可得相交弦的直线方程为y =1a .利用圆心(0,0)到直线的距离d =⎪⎪⎪⎪1a ,得⎪⎪⎪⎪1a =22-(3)2=1,解得a =1或a =-1(舍). 8.5-2 29.解:(1)将两圆方程C 1:x 2+y 2-10x -10y =0与C 2:x 2+y 2+6x -2y -40=0相减,得2x +y -5=0.∴公共弦所在直线的方程为2x +y -5=0. (2)圆C 1:x 2+y 2-10x -10y =0的标准方程为(x -5)2+(y -5)2=50,圆心为(5,5),半径为5 2,圆心到直线2x +y -5=0的距离为2 5,根据勾股定理和垂径定理,知公共弦长为2 30.10.(1)证明:将圆的方程整理,得(x 2+y 2-20)+a (-4x +2y +20)=0,此方程表示过圆x 2+y 2=20与直线-4x +2y +20=0的交点的圆系,解方程组⎩⎪⎨⎪⎧ x 2+y 2=20,4x -2y -20=0,得⎩⎪⎨⎪⎧x =4,y =-2. 故对任意实数a ,该圆恒过定点(4,-2).(2)解:圆的方程可化为(x -2a )2+(y +a )2=5a 2-20a +20=5(a -2)2.①若两圆外切,则2+5(a -2)2=5a 2,解得a =1+55或a =1-55(舍); ②若两圆内切,则|5(a -2)2-2|=5a 2,解得a =1-55,或a =1+55(舍). 综上所述,a =1±55. 4.2.3 直线与圆的方程的应用1.D 解析:该圆的圆心(-a ,a ),在直线x +y =0上,故关于直线x +y =0对称.2.B 解析:圆心(0,0)到直线x +y +m =0的距离d =|m |2=m ,m =2. 3.C4.C 解析:由于直线ax +by =1与圆x 2+y 2=1相离,则1a 2+b2>1,即a 2+b 2<1, ∴P 在圆内.5.C 6.A7.A 解析:过原点的直线也满足条件.8.x +y -4=09.D 解析:方法一:∵实数x ,y 满足(x -2)2+y 2=3,∵记P (x ,y )是圆(x -2)2+y 2=3上的点,y x是直线OP 的斜率,记为k .∴直线OP :y =kx ,代入圆的方程,消去y ,得(1+k 2)x 2-4x +1=0.直线OP 与圆有公共点的充要条件是Δ=(-4)2-4(1+k 2)≥0,∴-3≤k ≤ 3.方法二:同方法一,直线OP 与圆有公共点的条件是|k ·2-0|k 2+1≤3,∴-3≤k ≤ 3. 10.解:(1)∵点P (a ,a +1)在圆上,∴a 2+(a +1)2-4a -14(a +1)+45=0.解得a =4,∴P (4,5).∴|PQ |=(4+2)2+(5-3)2=210,k PQ =3-5-2-4=13. (2)∵圆心坐标C 为(2,7),半径为2 2,∴|QC |=(2+2)2+(7-3)2=4 2.∴|MQ |max =4 2+2 2=6 2,|MQ |min =4 2-2 2=2 2.(3)设点(-2,3)的直线l 的方程为y -3=k (x +2),即kx -y +2k +3=0,方程m 2+n 2-4m -14n +45=0,即(m -2)2+(n -7)2=8表示圆.易知直线l 与圆方程相切时,k 有最值,∴|2k -7+2k +3|1+k 2=2 2.∴k =2±3. ∴k =n -3m +2的最大值为2+3,最小值为2- 3. 4.3 空间直角坐标系4.3.1 空间直角坐标系1.C 解析:点P 的y 轴坐标为0,则点P 在平面xOz 上.2.B 解析:点P (a ,b ,c )关于x 轴的对称点为P ′(a ,-b ,-c ).3.B 4.B 5.B 6.C 7.B8.7 8 3 9.510.解:由图知,DA ⊥DC ,DC ⊥DP ,DP ⊥DA ,故以D 为原点,DA ,DC ,DP 所在直线分别为x ,y ,z 轴建立空间直角坐标系. ∵E ,F ,G ,H 分别为侧棱中点,由立体几何知识可知,平面EFGH ∥底面ABCD , 从而这4个点的竖坐标都为P 的竖坐标的一半,也就是b .由H 为DP 的中点,得H (0,0,b ).E 在底面ABCD 上的投影为AD 的中点,∴E (a,0,b ).同理G (0,a ,b ).F 在坐标平面xOz 和yOz 上的投影分别为点E 和G ,故F 与E 的横坐标相同,都是a ,点F 与G 的纵坐标也同为a ,又F 的竖坐标为b ,故F (a ,a ,b ).4.3.2 空间两点间的距离公式1.B 2.C 3.A 4.A 5.C6.以点(12,-3,5)为球心,半径长为6的球7.解:由题意设A (0,y,0),则(y -1)2+4=5,得y =0或y =2,故点A 的坐标为(0,0,0)或(0,2,0).8.直角 解析:因为|AB |2=9,|BC |2=9+36=45,|AC |2=36,所以|BC |2=|AB |2+|AC |2,所以△ABC 为直角三角形.9.87解析:|AB | =(x -1)2+(5-x -x -2)2+(2x -1-2+x )2=14⎝⎛⎭⎫x -872+57, 故当x =87时,|AB |取得最小值. 10.解:(1)假设在y 轴上存在点M ,满足|MA |=|MB |.设M (0,y,0),由|MA |=|MB |,可得32+y 2+12=12+y 2+32.显然,此式对任意y ∈R 恒成立.∴y 轴上所有点都满足关系|MA |=|MB |.(2)假设在y 轴上存在点M ,使△MAB 为等边三角形.由(1)可知,y 轴上任一点都有|MA |=|MB |,∴只要满足|MA |=|AB |,就可以使得△MAB 是等边三角形. ∵|MA |=10+y 2,|AB |=(1-3)2+(0-0)2+(-3-1)2=20,∴10+y 2=20,解得y =±10.故y 轴上存在点M ,使△MAB 为等边三角形,点M 的坐标为(0,10,0)或(0,-10,0).。
高中数学《圆的方程》知识点整理
圆与方程的知识点整理一、标准方程:____________________________1.求标准方程的方法——关键是求出圆心(),a b和半径r①待定系数:往往已知圆上三点坐标,例如教材119P例2②利用平面几何性质往往涉及到直线与圆的位置关系,特别是:相切和相交相切:利用到圆心与切点的连线垂直直线相交:利用到点到直线的距离公式及垂径定理2.特殊位置的圆的标准方程设法(无需记,关键能理解)条件方程形式圆心在原点() 2220 x y r r+=≠过原点()()() 2222220 x a y b a b a b-+-=++≠圆心在x轴上()()2220 x a y r r-+=≠圆心在y轴上()()2220 x y b r r+-=≠圆心在x轴上且过原点()()2220 x a y a a-+=≠圆心在y轴上且过原点()()2220 x y b b b+-=≠与x轴相切()()() 2220 x a y b b b-+-=≠与y轴相切()()() 2220 x a y b a a-+-=≠与两坐标轴都相切()()() 2220 x a y b a a b-+-==≠练习:1.圆心为(1,1)且过原点的圆的方程是()A.(x-1)2+(y-1)2=1B.(x+1)2+(y+1)2=1C.(x+1)2+(y+1)2=2D.(x-1)2+(y-1)2=22.当a为任意实数时,直线(a-1)x-y+a+1=0恒过定点C,则以C为圆心,半径为5的圆的方程为()A.x2+y2-2x+4y=0B.x2+y2+2x+4y=0C.x2+y2+2x -4y =0D.x2+y2-2x -4y =03.如图,已知圆C 与x 轴相切于点T(1,0),与y 轴正半轴交于两点A ,B(B 在A 的上方),且|AB|=2. (1)圆C 的标准方程为________.(2)圆C 在点B 处的切线在x 轴上的截距为________.4.在平面直角坐标系xOy 中,以点(1,0)为圆心且与直线mx -y -2m -1=0(m ∈R)相切的所有圆中,半径最大的圆的标准方程为_____________.5.过直线2x +y +4=0和圆(x +1)2+(y -2)2=4的交点,并且面积最小的圆的方程为( ) A.x2+y2+265x -125y +375=0 B.x2+y2+265x -125y -375=0 C.x2+y2-265x -125y +375=0 D.x2+y2-265x -125y -375=0 6.以(1,0)为圆心,且与直线x-y+3=0相切的圆的方程是( )A.(x-1)2+y2=8B.(x+1)2+y2=8C.(x-1)2+y2=16D.(x+1)2+y2=167.已知抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点F 的距离为5,则以M 为圆心且与y 轴相切的圆的方程为( ) A.(x-1)2+(y-4)2=1 B.(x-1)2+(y+4)2=1 C.(x-1)2+(y-4)2=16D.(x-1)2+(y+4)2=168.抛物线y2=4x 与其过焦点且垂直于x 轴的直线交于A 、B 两点,其准线与x 轴的交点为M,则过M,A,B 三点的圆的标准方程是( ) A.x2+y2=5 B.(x-1)2+y2=1 C.(x-1)2+y2=2 D.(x-1)2+y2=4圆C 经过两点A(3,2),B(4,1),且圆心在直线2x+y-4=0上,则圆C 的方程是 ____________.二、一般方程()2222040x y Dx Ey F D E F ++++=+->1.220Ax By Cxy Dx Ey F +++++=表示圆方程则22220004040A B A B C C D E AF D E F A A A ⎧⎪=≠=≠⎧⎪⎪⎪=⇔=⎨⎨⎪⎪+->⎩⎛⎫⎛⎫⎪+-⋅> ⎪ ⎪⎪⎝⎭⎝⎭⎩2.求圆的一般方程一般可采用待定系数法:如教材122P 例r 43.2240D E F +->常可用来求有关参数的范围练习:.已知a ∈R ,方程a2x2+(a +2)y2+4x +8y +5a =0表示圆,则圆心坐标是________.半径是________. 三、点与圆的位置关系1.判断方法:点到圆心的距离d 与半径r 的大小关系d r <⇒点在圆内;d r =⇒点在圆上;d r >⇒点在圆外 2.涉及最值:(1)圆外一点B ,圆上一动点P ,讨论PB的最值min PB BN BC r==- max PB BM BC r ==+(2)圆内一点A ,圆上一动点P ,讨论PA的最值min PA AN r AC ==-max PA AM r AC==+思考:过此A 点作最短的弦?(此弦垂直AC ) 练习:1.设P 是圆(x-3)2+(y+1)2=4上的动点,Q 是直线x=-3上的动点,则|PQ|的最小值为( ) A.6B.4 C .3 D.2 2.设P(x ,y)是圆(x -2)2+y2=1上的任意点,则(x -5)2+(y +4)2的最大值为( )A.6B.25C.26D.36四、直线与圆的位置关系1.判断方法(d 为圆心到直线的距离) (1)相离⇔没有公共点⇔0d r ∆<⇔> (2)相切⇔只有一个公共点⇔0d r ∆=⇔=(3)相交⇔有两个公共点⇔0d r ∆>⇔<这一知识点可以出如此题型:告诉你直线与圆相交让你求有关参数的范围. 2.直线与圆相切 (1)知识要点 ①基本图形②主要元素:切点坐标、切线方程、切线长等 问题:直线l 与圆C 相切意味着什么? 圆心C 到直线l 的距离恰好等于半径r (2)常见题型——求过定点的切线方程 ①切线条数点在圆外——两条;点在圆上——一条;点在圆内——无 ②求切线方程的方法及注意点 i )点在圆外 如定点()00,P x y ,圆:()()222x a y b r -+-=,[()()2220x a y b r -+->]第一步:设切线l 方程()00y y k x x -=-第二步:通过d r =k ⇒,从而得到切线方程特别注意:以上解题步骤仅对k 存在有效,当k 不存在时,应补上——千万不要漏了! 如:过点()1,1P 作圆2246120x y x y +--+=的切线,求切线方程. 答案:3410x y -+=和1x = ii )点在圆上若点()00x y ,在圆222x y r +=上,则切线方程为200x x y y r +=会在选择题及填空题中运用,但一定要看清题目.若点()00x y ,在圆()()222x a y b r -+-=上,则切线方程为()()()()200x a x a y b y b r --+--=碰到一般方程则可先将一般方程标准化,然后运用上述结果.由上述分析,我们知道:过一定点求某圆的切线方程,非常重要的第一步就是——判断点与圆的位置关系,得出切线的条数.③求切线长:利用基本图形,222AP CP r AP =-⇒=求切点坐标:利用两个关系列出两个方程1AC AP AC r k k ⎧=⎨⋅=-⎩ 3.直线与圆相交(1)求弦长及弦长的应用问题 垂径定理及勾股定理——常用弦长公式:12l x =-=(2)判断直线与圆相交的一种特殊方法(一种巧合):直线过定点,而定点恰好在圆内. (3)关于点的个数问题例:若圆()()22235x y r -++=上有且仅有两个点到直线4320x y --=的距离为1,则半径r的取值范围是_________________.4.直线与圆相离会对直线与圆相离作出判断(特别是涉及一些参数时) 练习:1.过点(1,2)总可以作两条直线与圆x2+y2+kx+2y+k2-15=0相切,则实数k 的取值范围是 .2.已知圆M :x2+y2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( ) A.内切 B.相交 C.外切 D.相离3.已知圆x2+y2+2x -2y +a =0截直线x +y +2=0所得弦的长度为4,则实数a 的值是( ) A.-2 B.-4 C.-6D.-8 4.圆C :(x -1)2+y2=25,过点P(2,-1)作圆的所有弦中,以最长弦和最短弦为对角线的四边形的面积是( ) A.1013 B.921 C.1023D.9115.若圆(x -5)2+(y -1)2=r2(r>0)上有且仅有两点到直线4x +3y +2=0的距离等于1,则实数r 的取值范围为( ) A.[4,6] B.(4,6) C.[5,7] D.(5,7)6.若直线x-y+1=0与圆(x-a)2+y2=2有公共点,则实数a 的取值范围是( )A.[-3,-1]B.[-1,3]C.[-3,1]D.(-∞,-3]∪[1,+∞) 7.若直线3x+y+a=0过圆x2+y2+2x-4y=0的圆心,则a 的值为( ) A.-1B.1 C .3 D.-38.直线y=2x+3被圆x2+y2-6x-8y=0所截得的弦长等于 .9.过点(-1,-2)的直线l 被圆x2+y2-2x-2y+1=0截得的弦长为错误!未找到引用源。
高一数学必修二《圆与方程》知识点整理[1]
高一数学必修二《圆与方程》知识点整理(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高一数学必修二《圆与方程》知识点整理(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高一数学必修二《圆与方程》知识点整理(word版可编辑修改)的全部内容。
《圆与方程》知识点整理一、标准方程()()222x a y b r -+-=1。
求标准方程的方法—-关键是求出圆心(),a b 和半径r①待定系数:往往已知圆上三点坐标,例如教材119P 例2②利用平面几何性质往往涉及到直线与圆的位置关系,特别是:相切和相交相切:利用到圆心与切点的连线垂直直线相交:利用到点到直线的距离公式及垂径定理二、一般方程()2222040x y Dx Ey F D E F ++++=+->1。
220Ax By Cxy Dx Ey F +++++=表示圆方程则222200004040A B A B C C D E AF D E F A A A ⎧⎪=≠=≠⎧⎪⎪⎪=⇔=⎨⎨⎪⎪+->⎩⎛⎫⎛⎫⎪+-⋅> ⎪ ⎪⎪⎝⎭⎝⎭⎩2。
求圆的一般方程一般可采用待定系数法:3.2240D E F +->常可用来求有关参数的范围三、圆系方程:四、参数方程:五、点与圆的位置关系1.判断方法:点到圆心的距离d 与半径r 的大小关系d r <⇒点在圆内;d r =⇒点在圆上;d r >⇒点在圆外2.涉及最值:(1)圆外一点B ,圆上一动点P ,讨论PB 的最值 min PB BN BC r ==-max PB BM BC r ==+(2)圆内一点A ,圆上一动点P ,讨论PA 的最值min PA AN r AC ==- max PA AM r AC ==+思考:过此A 点作最短的弦?(此弦垂直AC )六、直线与圆的位置关系1。
高中的高二数学必修二第四章圆与圆的方程学习知识点优秀总结计划
第四章圆与方程★1、圆的定义:平面内到必定点的距离等于定长的点的会合叫做圆,定点为圆心,定长为圆的半径。
设 M (x,y )为⊙ A 上随意一点,则圆的会合能够写作:P = { M | |MA| = r }★2、圆的方程( 1)标准方程x a 2 y b 2 r 2,圆心a,b ,半径为 r ;点 M ( x0 , y0 ) 与圆 ( x a) 2 ( y b) 2 r 2 的地点关系:当( x0 a) 2 ( y0 b)2>r2,点在圆外; 当 ( x0 a)2 ( y0 b) 2=r2,点在圆上当 ( x a) 2 ( y0 b)2<r2,点在圆内;( 2)一般方程x2 y 2 Dx Ey F 0(x+D/2) 2+(y+E/2) 2=(D 2+E2-4F)/4 ( D 2 E 2 4F 0 )当 D 2 E 2 4F 0 时,方程表示圆,此时圆心为 D , E ,半径为 r 1 D2 E 2 4F2 2 2当 D 2 E 2 4F 0 时,表示一个点;当 D 2 E 2 4F 0 时,方程不表示任何图形。
( 3)求圆的方程的方法:待定系数法:先设后求。
确立一个圆需要三个独立条件,若利用圆的标准方程,需求出 a, b, r;若利用一般方程,需要求出 D, E, F;直接法:直接依据已知条件求出圆心坐标以及半径长度。
此外要注意多利用圆的几何性质:如弦的中垂线必经过圆心,以此来确立圆心的地点。
★3、直线与圆的地点关系:直线与圆的地点关系有相离,相切,订交三种状况:( 1 )设直线l : Ax By C 02 22,圆心 C a, b 到l 的距离为,圆 C : x a y brAa Bb C,则有 d r l与 C相离; d r l 与 C相切; d rl与 C订交dB 2A2( 2)过圆外一点的切线:设点斜式方程,用圆心到该直线距离=半径,求解k,①若求得两个不一样的解,带入所设切线的方程即可;②若求得两个同样的解,带入切线方程,获得一条切线;接下来考证过该点的斜率不存在的直线(此时,该直线必定为另一条切线)(3)过圆上一点的切线方程:圆 (x-a)2+(y-b) 2=r 2,圆上一点为 (x0, y0) ,则过此点的切线方程为0 0-b)(y-b)= r 2(x -a)(x-a)+(y两圆的地点关系判断条件公切线条数外离d>r 1+r2 4 条外切d=r1+r2 3 条订交| r1-r2| <d<r1+2 条r2内切d= | r1-r2| 1 条内含d< | r1-r2| 0 条★4、圆与圆的地点关系:经过两圆半径的和(差),与圆心距(d)之间的大小比较来确立。
数学必修二圆的方程知识点总结
数学必修二圆的方程知识点总结总结是指对某一阶段的工作、学习或思想中的经验或情况加以总结和概括的书面材料,它可以给我们下一阶段的学习和工作生活做指导,快快来写一份总结吧。
但是却发现不知道该写些什么,以下是小编收集整理的数学必修二圆的方程知识点总结,希望能够帮助到大家。
圆的方程1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。
2、圆的方程(1)标准方程,圆心,半径为r;(2)一般方程当时,方程表示圆,此时圆心为,半径为当时,表示一个点;当时,方程不表示任何图形。
(3)求圆方程的方法:一般都采用待定系数法:先设后求。
确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。
3、直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况:(1)设直线,圆,圆心到l的距离为,则有;;(2)过圆外一点的'切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程(3)过圆上一点的切线方程:圆(x—a)2+(y—b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0—a)(x—a)+(y0—b)(y—b)=r24、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。
设圆,两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。
当时两圆外离,此时有公切线四条;当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;当时两圆相交,连心线垂直平分公共弦,有两条外公切线;当时,两圆内切,连心线经过切点,只有一条公切线;当时,两圆内含;当时,为同心圆。
注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线圆的辅助线一般为连圆心与切线或者连圆心与弦中点数学如何预习上课前对即将要上的数学内容进行阅读,做到心中有数,以便于掌握听课的主动权。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学必修二《圆与方程》知识点整理一、标准方程()()222x a y b r-+-=1.求标准方程的方法——关键是求出圆心(),a b和半径r①待定系数:往往已知圆上三点坐标,例如教材119P例2②利用平面几何性质往往涉及到直线与圆的位置关系,特别是:相切和相交相切:利用到圆心与切点的连线垂直直线相交:利用到点到直线的距离公式及垂径定理2.特殊位置的圆的标准方程设法(无需记,关键能理解)条件方程形式圆心在原点()2220x y r r+=≠过原点()()()2222220x a y b a b a b-+-=++≠圆心在x轴上()()2220x a y r r-+=≠圆心在y轴上()()2220x y b r r+-=≠圆心在x轴上且过原点()()2220x a y a a-+=≠圆心在y轴上且过原点()()2220x y b b b+-=≠与x轴相切()()()2220x a y b b b-+-=≠与y轴相切()()()2220x a y b a a-+-=≠与两坐标轴都相切()()()2220x a y b a a b-+-==≠二、一般方程()2222040x y Dx Ey F D E F++++=+->1.220Ax By Cxy Dx Ey F+++++=表示圆方程则222200004040A B A BC CD E AFD E FA A A⎧⎪=≠=≠⎧⎪⎪⎪=⇔=⎨⎨⎪⎪+->⎩⎛⎫⎛⎫⎪+-⋅>⎪ ⎪⎪⎝⎭⎝⎭⎩2.求圆的一般方程一般可采用待定系数法:如教材122P 例r 43.2240D E F +->常可用来求有关参数的范围三、点与圆的位置关系1.判断方法:点到圆心的距离d 与半径r 的大小关系d r <⇒点在圆内;d r =⇒点在圆上;d r >⇒点在圆外 2.涉及最值:(1)圆外一点B ,圆上一动点P ,讨论PB 的最值min PB BN BC r ==- max PB BM BC r ==+(2)圆内一点A ,圆上一动点P ,讨论PA 的最值min PA AN r AC ==- max PA AM r AC ==+思考:过此A 点作最短的弦?(此弦垂直AC ) 四、直线与圆的位置关系1.判断方法(d 为圆心到直线的距离)(1)相离⇔没有公共点⇔0d r ∆<⇔> (2)相切⇔只有一个公共点⇔0d r ∆=⇔= (3)相交⇔有两个公共点⇔0d r ∆>⇔<这一知识点可以出如此题型:告诉你直线与圆相交让你求有关参数的范围. 2.直线与圆相切(1)知识要点 ①基本图形②主要元素:切点坐标、切线方程、切线长等 问题:直线l 与圆C 相切意味着什么? 圆心C 到直线l 的距离恰好等于半径r (2)常见题型——求过定点的切线方程①切线条数点在圆外——两条;点在圆上——一条;点在圆内——无②求切线方程的方法及注意点...i)点在圆外如定点()00,P x y,圆:()()222x a y b r-+-=,[()()22200x a y b r-+->]第一步:设切线l方程()00y y k x x-=-第二步:通过d r=k⇒,从而得到切线方程特别注意:以上解题步骤仅对k存在有效,当k不存在时,应补上——千万不要漏了!如:过点()1,1P作圆2246120x y x y+--+=的切线,求切线方程.答案:3410x y-+=和1x=ii)点在圆上1)若点()00x y,在圆222x y r+=上,则切线方程为200x x y y r+=会在选择题及填空题中运用,但一定要看清题目.2)若点()00x y,在圆()()222x a y b r-+-=上,则切线方程为()()()()200x a x a y b y b r--+--=碰到一般方程则可先将一般方程标准化,然后运用上述结果.由上述分析,我们知道:过一定点求某圆的切线方程,非常重要的第一步就是——判断点与圆的位置关系,得出切线的条数.③求切线长:利用基本图形,22222AP CP r AP CP r=-⇒=-求切点坐标:利用两个关系列出两个方程1AC APAC rk k⎧=⎨⋅=-⎩3.直线与圆相交(1)求弦长及弦长的应用问题垂径定理....及勾股定理——常用弦长公式:()()222121212114l k x x k x x x x⎡⎤=+-=++-⎣⎦(暂作了解,无需掌握)(2)判断直线与圆相交的一种特殊方法(一种巧合):直线过定点,而定点恰好在圆内. (3)关于点的个数问题例:若圆()()22235x y r-++=上有且仅有两个点到直线4320x y--=的距离为1,则半径r的取值范围是_________________. 答案:()4,64.直线与圆相离会对直线与圆相离作出判断(特别是涉及一些参数时)五、对称问题1.若圆()222120x y m x my m ++-+-=,关于直线10x y -+=,则实数m 的值为____.答案:3(注意:1m =-时,2240D E F +-<,故舍去)变式:已知点A 是圆C :22450x y ax y +++-=上任意一点,A 点关于直线210x y +-=的对称点在圆C 上,则实数a =_________.2.圆()()22131x y -+-=关于直线0x y +=对称的曲线方程是________________. 变式:已知圆1C :()()22421x y -+-=与圆2C :()()22241x y -+-=关于直线l 对称,则直线l 的方程为_______________.3.圆()()22311x y -++=关于点()2,3对称的曲线方程是__________________.4.已知直线l :y x b =+与圆C :221x y +=,问:是否存在实数b 使自()3,3A 发出的光线被直线l 反射后与圆C 相切于点247,2525B ⎛⎫⎪⎝⎭?若存在,求出b 的值;若不存在,试说明理由.六、最值问题 方法主要有三种:(1)数形结合;(2)代换;(3)参数方程 1.已知实数x ,y 满足方程22410x y x +-+=,求:(1)5yx -的最大值和最小值;——看作斜率 (2)y x -的最小值;——截距(线性规划)(3)22x y +的最大值和最小值.——两点间的距离的平方2.已知AOB ∆中,3OB =,4OA =,5AB =,点P 是AOB ∆内切圆上一点,求以PA ,PB ,PO 为直径的三个圆面积之和的最大值和最小值.数形结合和参数方程两种方法均可!3.设(),P x y 为圆()2211x y +-=上的任一点,欲使不等式0x y c ++≥恒成立,则c 的取值范围是____________. 答案:21c ≥-(数形结合和参数方程两种方法均可!) 七、圆的参数方程()222cos 0sin x r x y r r y r θθ=⎧+=>⇔⎨=⎩,θ为参数 ()()()222cos 0sin x a r x a y b r r y b r θθ=+⎧-+-=>⇔⎨=+⎩,θ为参数八、相关应用1.若直线240mx ny +-=(m ,n R ∈),始终平分圆224240x y x y +---=的周长,则m n ⋅的取值范围是______________.2.已知圆C :222440x y x y +-+-=,问:是否存在斜率为1的直线l ,使l 被圆C 截得的弦为AB ,以AB 为直径的圆经过原点,若存在,写出直线l 的方程,若不存在,说明理由.提示:12120x x y y +=或弦长公式2121d kx x =+-. 答案:10x y -+=或40x y --=3.已知圆C :()()22341x y -+-=,点()0,1A ,()0,1B ,设P 点是圆C 上的动点,22d PA PB =+,求d 的最值及对应的P 点坐标.4.已知圆C :()()221225x y -+-=,直线l :()()211740m x m y m +++--=(m R ∈) (1)证明:不论m 取什么值,直线l 与圆C 均有两个交点; (2)求其中弦长最短的直线方程.5.若直线y x k =-+与曲线21x y =--恰有一个公共点,则k 的取值范围.6.已知圆2260x y x y m ++-+=与直线230x y +-=交于P ,Q 两点,O 为坐标原点,问:是否存在实数m ,使OP OQ ⊥,若存在,求出m 的值;若不存在,说明理由. 九、圆与圆的位置关系1.判断方法:几何法(d 为圆心距)(1)12d r r >+⇔外离 (2)12d r r =+⇔外切 (3)1212r r d r r -<<+⇔相交 (4)12d r r =-⇔内切 (5)12d r r <-⇔内含 2.两圆公共弦所在直线方程圆1C :221110x y D x E y F ++++=,圆2C :222220x y D x E y F++++=, 则()()()1212120D D x E E y F F -+-+-=为两相交圆公共弦方程. 补充说明:若1C 与2C 相切,则表示其中一条公切线方程; 若1C 与2C 相离,则表示连心线的中垂线方程. 3圆系问题(1)过两圆1C :221110x y D x E y F ++++=和2C :222220x y D x E y F++++=交点的圆系方程为()22221112220x y D x E y F x y D x E y F λ+++++++++=(1λ≠-)说明:1)上述圆系不包括2C ;2)当1λ=-时,表示过两圆交点的直线方程(公共弦) (2)过直线0A x B y C ++=与圆220x y Dx Ey F ++++=交点的圆系方程为()220x y Dx Ey F Ax By C λ+++++++=(3)有关圆系的简单应用 (4)两圆公切线的条数问题①相内切时,有一条公切线;②相外切时,有三条公切线;③相交时,有两条公切线;④相离时,有四条公切线 十、轨迹方程(1)定义法(圆的定义):略(2)直接法:通过已知条件直接得出某种等量关系,利用这种等量关系,建立起动点坐标的关系式——轨迹方程.例:过圆221x y +=外一点()2,0A 作圆的割线,求割线被圆截得的弦的中点的轨迹方程.分析:222OP AP OA +=(3)相关点法(平移转换法):一点随另一点的变动而变动↓ ↓动点 主动点特点为:主动点一定在某一已知的方程所表示的(固定)轨迹上运动.例1.如图,已知定点()2,0A ,点Q 是圆221x y +=上的动点,AOQ ∠的平分线交AQ 于M ,当Q 点在圆上移动时,求动点M 的轨迹方程.分析:角平分线定理和定比分点公式.例2.已知圆O :229x y +=,点()3,0A ,B 、C 是圆O 上的两个动点,A 、B 、C 呈逆时针方向排列,且3BAC π∠=,求ABC ∆的重心G 的轨迹方程.法1:3BAC π∠=,BC ∴为定长且等于33设(),G x y ,则33333A B C B C A B C B C x x x x x x y y y y y y ++++⎧==⎪⎪⎨+++⎪==⎪⎩取BC 的中点为33,24E x ⎡⎫∈-⎪⎢⎣⎭,333,42E y ⎛⎤∈- ⎥ ⎝⎦ 222OE CE OC +=,2294E E x y ∴+=(1)2222B C E B C E B C E B C Ex x x x x x y y y y y y +⎧=⎪+=⎧⎪⇒⎨⎨+=+⎩⎪=⎪⎩,3233322323E E E E x x x x y y yy +-⎧⎧==⎪⎪⎪⎪∴⇒⎨⎨⎪⎪==⎪⎪⎩⎩故由(1)得:()2222333933110,,,122422x y x y x y ⎛⎤-⎛⎫⎛⎫⎡⎫+=⇒-+=∈∈- ⎥ ⎪ ⎪⎪⎢ ⎝⎭⎝⎭⎣⎭⎝⎦法2:(参数法)设()3cos ,3sin B θθ,由223BOC BAC π∠=∠=,则 223cos ,3sin 33C ππθθ⎛⎫⎛⎫⎛⎫++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭设(),G x y ,则()()233cos 3cos 231cos cos 133323sin 3sin 23sin sin 2333A B C A B C x x x x y y y y πθθπθθπθθπθθ⎧⎛⎫+++ ⎪⎪++⎛⎫⎝⎭⎪===+++ ⎪⎪⎝⎭⎨⎛⎫⎪++ ⎪⎪++⎛⎫⎝⎭===++⎪ ⎪⎝⎭⎩4,33ππθ⎛⎫∈ ⎪⎝⎭,由()()()22112-+得:()2233110,,,122x y x y ⎛⎤⎡⎫-+=∈∈- ⎥⎪⎢ ⎣⎭⎝⎦参数法的本质是将动点坐标(),x y 中的x 和y 都用第三个变量(即参数)表示,通过消.参.得到动点轨迹方程,通过参数的范围得出x ,y 的范围. (4)求轨迹方程常用到得知识①重心(),G x y ,33A B C A B C x x x x y y y y ++⎧=⎪⎪⎨++⎪=⎪⎩②中点(),P x y ,121222x x x y y y +⎧=⎪⎪⎨+⎪=⎪⎩③内角平分线定理:BD AB CDAC=④定比分点公式:AMMB λ=,则1A B M x x x λλ+=+,1A B M y y y λλ+=+ ⑤韦达定理.。