高一数学必修一、必修二知识点整合

合集下载

数学-数学必修一必修二知识点大全

数学-数学必修一必修二知识点大全

数学必修一必修二知识点大全数学中的一些美丽定理具有这样的特性:它们极易从事实中归纳出来,但证明却隐藏的极深。

接下来小编在这里给大家分享一些关于数学必修一必修二知识点归纳,供大家学习和参考,希望对大家有所帮助。

数学必修一必修二知识点归纳(一)1.并集(1)并集的定义由所有属于集合A或属于集合B的元素所组成的集合称为集合A与B的并集,记作A∪B(读作"A并B");(2)并集的符号表示A∪B={x|x∪A或x∪B}.并集定义的数学表达式中"或"字的意义应引起注意,用它连接的并列成分之间不一定是互相排斥的.x∪A,或x∪B包括如下三种情况:①x∪A,但xB;②x∪B,但xA;③x∪A,且x∪B.由集合A中元素的互异性知,A与B的公共元素在A∪B中只出现一次,因此,A∪B 是由所有至少属于A、B两者之一的元素组成的集合.例如,设A={3,5,6,8},B={4,5,7,8},则A∪B={3,4,5,6,7,8},而不是{3,5,6,8,4,5,7,8}.2.交集利用下图类比并集的概念引出交集的概念.(1)交集的定义由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集,记作A∩B(读作"A交B").(2)交集的符号表示A∩B={x|x∪A且x∪B}.(二)1.函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(-x);(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;2.复合函数的有关问题(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∪[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

高中数学必修1-必修2知识点总结

高中数学必修1-必修2知识点总结

高中数学必修1知识点总结第一章集合与函数概念一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

2、集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性3、集合的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} 1. 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}2.集合的表示方法:列举法与描述法。

非负整数集(即自然数集)记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作 a∈A ,相反,a不属于集合A 记作 a∉A列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

用确定的条件表示某些对象是否属于这个集合的方法。

①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>2的解集是{x?R| x-3>2}或{x| x-3>2}4、集合的分类:(1).有限集含有有限个元素的集合(2).无限集含有无限个元素的集合(3).空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A2.“相等”关系(5≥5,且5≤5,则5=5)实例:设 A={x|x2-1=0} B={-1,1} “元素相同”结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B任何一个集合是它本身的子集。

A⊆A②真子集:如果A⊂B,且B⊄ A那就说集合A是集合B的真子集,记作A⊆ B(或B⊇ A)③如果 A⊂B, B⊂C ,那么 A⊂C④如果A⊂B 同时 B⊂A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。

高一数学必修一和二知识点

高一数学必修一和二知识点

高一数学必修一和二知识点高一数学必修一和二是高中数学的基础课程,主要涵盖了数学的基本概念、运算法则、函数与方程、几何形体等内容。

本文将会逐一介绍这些知识点。

一、数的性质与运算法则1. 整数的概念与性质整数包括正整数、负整数和零,具有加法、减法、乘法和除法等运算法则。

2. 有理数的概念与性质有理数包括整数和分数,可用数轴表示,有加法、减法、乘法和除法等运算法则。

3. 实数的概念与性质实数包括有理数和无理数,能够用不完全循环小数或无穷小数表示。

4. 多项式的运算法则多项式包括单项式和多项式,具有加法、减法、乘法以及乘方等运算法则。

二、函数与方程1. 函数的概念与性质函数是一种特殊的关系,具有定义域、值域和图像等要素。

函数包括一次函数、二次函数、指数函数、对数函数等。

2. 一元二次方程一元二次方程的标准形式为ax^2 + bx + c = 0,解一元二次方程可使用求根公式或配方法等。

3. 一元一次方程组一元一次方程组是一组包含一个未知数的一次方程,可使用消元法、代入法或加减法等来解。

4. 二元一次方程组二元一次方程组是一组包含两个未知数的一次方程,可使用消元法或代入法等来解。

三、平面直角坐标系与直线1. 平面直角坐标系的概念与性质平面直角坐标系由横轴和纵轴构成,用于表示平面上点的坐标。

2. 直线的性质与方程直线包括斜率、截距和方程等要素,直线的方程可为一般式、点斜式或截距式等形式。

3. 直线的位置关系直线的位置关系包括相交、平行、重合和相交于无穷远点等情况。

4. 直线与圆的位置关系直线与圆的位置关系包括相交、相切和外离等情况。

四、三角函数1. 三角函数的概念与性质三角函数包括正弦函数、余弦函数、正切函数等,可用于表示角度之间的关系。

2. 三角函数的基本关系与恒等式三角函数之间有一系列基本关系与恒等式,如正弦定理、余弦定理、和差化积公式等。

3. 三角函数的图像与变换通过改变三角函数的参数,可实现对三角函数图像的平移、伸缩和翻转等变换。

高一必修一、必修二知识点整理

高一必修一、必修二知识点整理

交集并集补集{|,}A B x x A x B =∈∈且 {|,}A B x x A x B =∈∈或 U C A ={}x x U x A ∈∉且1、德摩根公式:();()U U U U U U C AB C A C B C A B C A C B ==.2、包含关系: A B A A B B =⇔=⇔⊆A B (讨论)3、集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n –2个.三个不等式的解法: (1) 分式不等式 (2) 一元二次不等式(3) 绝对值不等式:当a> 0时,有<⇔-<<x a a x a ; >⇔>x a x a 或x a <-. 对称变换()()x y f x y f x =−−−→=-轴 ;()()y y f x y f x =−−−→=-轴 ; ()()y f x y f x =−−−→=--原点 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象 ()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去4、函数单调性:增函数:设f (x )在x ∈D 上有定义,若对任意的1212,,x x D x x ∈<且,都有12()()f x f x < 成立,则就叫f (x )在x ∈D 上是增函数。

D 则就是f (x )的递增区间。

减函数:设f (x )在x ∈D 上有定义,若对任意的1212,,x x D x x ∈<且,都有12()()f x f x >成立,则就叫f (x )在x ∈D 上是减函数。

D 则就是f (x )的递减区间。

函数 单调 单调性 内层函数 ↓ ↑ ↑ ↓ 外层函数 ↓ ↑ ↓ ↑ 复合函数 ↑↑↓↓等价关系:(1)设[]1212,,,x x a b x x ∈≠那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数.5、函数的奇偶性:(注:是奇偶函数的前提条件是:定义域必须关于原点对称)奇函数:在前提条件下,若有()()()()0f x f x f x f x -=--+=或,则f (x )就是奇函数。

高一数学必修1-2知识点总结

高一数学必修1-2知识点总结

高中数学必修1知识点总结 第一章 集合与函数概念 【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集. ②含有无限个元素的集合叫做无限集. ③不含有任何元素的集合叫做空集(∅). (6)空集的特性①空集是不含任何元素的集合.②空集是任何集合的子集,是任何非空集合的真子集.③空集单独使用时当集合的,但是放在集合里面又可以当元素使用,如{Φ}【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n -非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集B{x A A = ∅=∅ B A ⊆ B B ⊆ B{x A A = A ∅= B A ⊇ B B ⊇Φ=A C U UA C U =【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法(2)一元二次不等式的解法0)【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f 叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a xa xb x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零. ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法: ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值. ③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a yc y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题. ⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.o⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种. 解析法:就是用数学表达式表示两个变量之间的对应关系. 列表法:就是列出表格来表示两个变量之间的对应关系. 图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f)叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a叫做元素b 的原象.〖1.3〗函数的基本性质 【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法增;若y f =则[()]y f g x =为减.(2)函数()(0)af x x a x=+>的图象与性质()f x分别在(,-∞、)+∞上为增函数,分别在[0)、上为减函数.(3)最大(小)值定义 ①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M≤;(2)存在0x I ∈,使得0()f x M=.那么,我们称M 是函数()f x 的最大值,记作max ()f x M=.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作m x f =)(min .【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.若0)0(≠f ,则0=x 必不在)(x f 的定义域上③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象. ①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.高中数学必修1知识点总结第二章 基本初等函数(Ⅰ)〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念①如果,,,1nxa a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n示;当n 是偶数时,正数a 的正的n 表示,负的n 次方根用符号0的n 次方根是0;负数a 没有n次方根.n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当n a =;当n 为偶数时, (0)|| (0)a a a a a ≥⎧==⎨-<⎩.(2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m naa m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质①(0,,)rs r s aa a a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)rr r ab a b a b r R =>>∈【2.1.2】指数函数及其性质(4)指数函数〖2.2〗对数函数 【2.2.1】对数与对数运算(1)对数的定义 ①若(0,1)xaN a a =>≠且,则x 叫做以a 为底N 的对数,记作log a xN =,其中a 叫做底数,N叫做真数.②负数和零没有对数. ③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…).(4)对数的运算性质 如果0,1,0,0aa M N >≠>>,那么①加法:log log log ()aa a M N MN += ②减法:log log log a a aMM N N-=③数乘:log log ()n aa n M M n R =∈ ④log a N a N =⑤loglog (0,)bn a anM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a =>≠且【2.2.2】对数函数及其性质(5)对数函数(6)反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()xy ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()xf y -=改写成1()y f x -=,并注明反函数的定义域.(8)反函数的性质 ①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义 一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对. (0,)+∞上为减函p,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q py x=是奇函数,若p 为奇数q 为偶数时,则q py x=是偶函数,若p 为偶数q 为奇数时,则qpy x=是非奇非偶函数. ⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x=上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式 ①一般式:2()(0)f x ax bx c a =++≠ ②顶点式:2()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a --.②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2b a -+∞上递增,当2bx a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2b a -+∞上递减,当2bx a=-时,2max 4()4ac b f x a -=.③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x轴有两个交点11221212(,0),(,0),||||M x M x M M x x =-. (4)一元二次方程20(0)axbx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布. 设一元二次方程20(0)axbx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=-③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2 ⇔②x 1≤x 2<k ⇔③x 1<k <x 2 ⇔④k 1<x 1≤x 2<k 2 ⇔⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2⇔ f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出. (5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a>时(开口向上)①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =- ③若2b qa->,则()m f q =xxx①若02b x a -≤,则()M f q = ②02b x a->,则()M f p = (Ⅱ)当0a <时(开口向下) ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a =- ③若2b q a->,则()M f q =①若02b x a -≤,则()mf q = ②02b x a->,则()m f p =.高中数学必修1知识点总结第三章 函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。

高一数学必修一必修二知识点2

高一数学必修一必修二知识点2

- 1 -必修1知识点第一章、集合与函数概念 1、§1.1.1.集合2、集合三要素: 确定性、互异性、无序性。

3、常见集合: 正整数集合: 或 ; 整数集合: ;有理数集合: ; 实数集合: . 集合的表示方法: 列举法、描述法. §1.1.2.集合间的基本关系1.一般地, 对于两个集合A.B, 如果集合A 中任意一个元素都是集合B中的元素, 则称集合A 是集合B 的子集。

记作 .2.如果集合 , 但存在元素 , 且 , 则称集合A 是集合B 的真子集.记作:A B.3.把不含任何元素的集合叫做空集.记作: .并规定: 空集合是任何集合的子集. 空集是任何非空集合的真子集. 4.如果集合A 中含有n 个元素, 则集合A 有 个子集. §1.1.3.集合间的基本运算1. 一般地, 由所有属于集合A 或集合B 的元素组成的集合, 称为集合A 与B 的并集.记作: .2. 一般地, 由属于集合A 且属于集合B 的所有元素组成的集合, 称为A 与B 的交集.记作: . 1、3.全集、补集: 2、§1.2.1.函数的概念3、一个函数的构成要素为: 定义域、对应关系、值域.如果两个函数的定义域相同, 并且对应关系完全一致, 则称这两个函数相等.§1.2.2、函数的表示法 解析法、图象法、列表法. 求解析式的方法:1.换元法2.配凑法3.待定系数法4.方程组法 §1.3.1.单调性与最大(小)值注意函数单调性证明的一般格式: 解: 设 且 , 则: =… 五个步骤:取值, 作差, 化简, 定号, 小结 §1.3.2.奇偶性1.一般地, 如果对于函数 的定义域内任意一个 , 都有 , 那么就称函数 为偶函数.偶函数图象关于 轴对称.2、一般地, 如果对于函数 的定义域内任意一个 , 都有 , 那么就称函数 为奇函数.奇函数图象关于原点对称. 第二章、基本初等函数 §2.1.1.指数与指数幂的运算1.一般地, 如果 , 那么 叫做 的 次方根。

数学必修1、2、4、5知识点总结

数学必修1、2、4、5知识点总结

必修1数学基础知识 第一章、集合与函数概念 §1.1.1、集合1、 把研究的对象统称为元素,把一些元素组成的总体叫做集合。

集合三要素:确定性、互异性、无序性。

2、 只要构成两个集合的元素是一样的,就称这两个集合相等。

3、 常见集合:正整数集合:*N 或+N ,整数集合:Z ,有理数集合:Q ,实数集合:R.4、集合的表示方法:列举法、描述法. §1.1.2、集合间的基本关系1、 一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,则称集合A 是集合B 的子集。

记作B A ⊆.2、 如果集合B A ⊆,但存在元素B x ∈,且A x ∉,则称集合A 是集合B 的真子集.记作:A B.3、 把不含任何元素的集合叫做空集.记作:∅.并规定:空集合是任何集合的子集.4、 如果集合A 中含有n 个元素,则集合A 有n2个子集. §1.1.3、集合间的基本运算1、 一般地,由所有属于集合A 或集合B 的元素组成的集合,称为集合A 与B 的并集.记作:B A .2、 一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集.记作:B A .3、全集、补集? §1.2.1、函数的概念1、 设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有惟一确定的数()x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作:()A x x f y ∈=,.2、 一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等. §1.2.2、函数的表示法1、 函数的三种表示方法:解析法、图象法、列表法. §1.3.1、单调性与最大(小)值1、 注意函数单调性证明的一般格式: 解:设[]b a x x ,,21∈且21x x <,则:()()21x f x f -=…§1.3.2、奇偶性1、 一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-,那么就称函数()x f 为偶函数.偶函数图象关于y 轴对称.2、 一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f -=-,那么就称函数()x f 为奇函数.奇函数图象关于原点对称.第二章、基本初等函数(Ⅰ) §2.1.1、指数与指数幂的运算1、 一般地,如果a x n=,那么x 叫做a 的n 次方根。

(完整)高一数学必修一必修二知识点,推荐文档

(完整)高一数学必修一必修二知识点,推荐文档
五个步骤:取值,作差,化简,定号,小结
§2.3、幂函数 1、几种幂函数的图象: y xa
§1.3.2、奇偶性
1、一般地,如果对于函数 f x的定义域内任意一个 x ,都有
f x f x,那么就称函数 f x为偶函数.偶函数图象关于 y 轴
对称.
2、一般地,如果对于函数 f x的定义域内任意一个 x ,都有
B 的真子集.记作:A B. 3、把不含任何元素的集合叫做空集.记作: . 并规定:空集合是任何集合的子集. 空集是任何非空集合的真子集. 4、如果集合 A 中含有 n 个元素,则集合 A 有 2n 个子集.
§1.1.3、集合间的基本运算 1、 一般地,由所有属于集合 A 或集合 B 的元素组成的集合,称为集
1 ③体积:V= S 底 h:
3 ⑶台体:①表面积:S=S 侧+ S上底 S 下底②侧面积:圆台 S 侧= (r r ' )l
§1.2.1、函数的概念 1、一个函数的构成要素为:定义域、对应关系、值域. 2、如果两个函数的定义域相同,并且对应关系完全一致,则称这两个
函数相等. §1.2.2、函数的表示法 解析法、图象法、列表法. 求解析式的方法: 1.换元法 2.配凑法 3.待定系数法 4.方程组法 §1.3.1、单调性与最大(小)值
①如果一条直线上的两点在一个平面内,那么这条直线在此平面内。
§3.1.2、用二分法求方程的近似解 §3.2.1、几类不同增长的函数模型 §3.2.2、函数模型的应用举例 1、解决问题的常规方法:先画散点图,再用适当的函数拟合,最后检
验.
必修 2 知识点
第一部分 立体几何 1.三视图与直观图:⑴画三视图要求:正视图与俯视图长对正;正视 图与侧视图高平齐;侧视图与俯视图宽相等。 ⑵斜二测画法画水平放 置几何体的直观图的要领。 棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四 边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。(侧 棱相等,侧面是平行四边形) 棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,这 些面所围成的多面体叫做棱锥。 棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部 分,这样的多面体叫做棱台。(侧棱延长线交于一点) 2.表(侧)面积与体积公式: ⑴柱体:①表面积:S=S 侧+2S 底;②侧面积:圆柱 S 侧= 2rh ; ③体积:V=S 底 h ⑵锥体:①表面积:S=S 侧+S 底;②侧面积:圆锥 S 侧=rl ;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修一第一章 集合与函数概念 1.1集合的含义与表示集合元素的三大特征:确定性、互异性、无序性。

通常,集合用大写字母表示,集合元素用小写字母表示。

如果a 是集合A 的元素,就说a 属于集合A ,记作a A ∈。

如果a 不是集合A 的元素,就说a 不属于集合A ,记作a A ∉。

非负整数集(自然数集) N 整数集 N *或N + 整数集 Z 有理数集 Q 实数集 R 集合的两种表示方式:列举法,描述法。

1.2集合间的基本关系①一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为B 的子集。

记作:()A BB A ⊆⊇或 读作:A 含于B(或B 包含A)。

②如果两个集合所含的元素完全相同,那么我们称这两个集合相等。

Venn 图法表示集合。

空集的定义:不含任何元素的集合称为空集。

空集的性质:空集是一切集合的子集。

空集是任何非空集合的真子集。

子集的定义:对于两个集合A 与B ,若然任何属于A 的元素也属于B ,我们就说A 是B 的子集。

真子集的定义:如果A 是B 的子集,并且B 中至少有一个元素不属于A ,那么集合A 叫做集合B 的真子集。

1.3集合的基本运算交集、并集、全集、补集。

一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集。

记作:A ∩B 。

读作:A 交B 。

其含义用符号表示为:{|,}.A B x x A x B =∈∈且用Venn 图表示如下:—般地,由所有属于集合A 或属于集合B 的元素所组成的集合,称为集合A 与B 的并集。

记作:A ∪B. 读作:A 并B. 其含义用符号表示为:{|,}A B x x A x B =∈∈或用Venn 图表示如下:补集:一般地,设S 是一个集合,A 是S 的一个真子集,由S 中所有不属于A 的元素组成的集合,叫做子集A 在S 中的补集记作∁sA. 读作A 在S 中的补集。

1.4函数的概念(1)设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A 到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.注意:①“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.(2)构成函数的三要素:定义域、值域、对应关系。

(3)区间的概念①区间的分类:开区间、闭区间、半开半闭区间;②无穷区间;③区间的数轴表示.(4)求函数定义域的方法:1)如果f(x)是整式,那么函数的定义域是实数集R .2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合 .3)如果f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合.4)如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合.(即求各集合的交集)5)满足实际问题有意义.1.5函数的表示法函数的三种常用表示法:解析法、列表法、图像法解析式的特点为:函数关系清楚,容易从自变量的值求出其对应的函数值,便于用解析式来研究函数的性质,还有利于我们求函数的值域。

列表法的特点为:不通过计算就知道自变量取某些值时函数的对应值。

图像法的特点是:能直观形象地表示出函数的变化情况。

注意:①函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等。

②解析法:必须注明函数的定义域。

③图象法:是否连线。

④列表法:选取的自变量要有代表性,应能反映定义域的特征。

1.6映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A 中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A →B为从集合A到集合B的一个映射。

记作“f:A→B”。

说明:(1)这两个集合有先后顺序,A到B的映射与B到A的映射是截然不同的,其中f表示具体的对应法则,可以用多种形式表述.(2)“都有唯一”什么意思?包含两层意思:一是必有一个;二是只有一个,也就是说有且只有一个的意思.增函数:一般地,设函数y=f(x)的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f(x 1)<f(x 2),那么就说f(x)在区间D 上是增函数。

减函数:一般地,设函数y=f(x)的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1>x 2时,都有f(x 1)<f(x 2),那么就说f(x)在区间D 上是增函数。

注意:1) 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质。

2)必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1<x 2时,总有f(x 1)<f(x 2) 。

函数单调性的定义:如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D 叫做y=f(x)的单调区间。

判断函数单调性的步骤:① 任取x 1,x 2∈D ,且x 1<x 2。

② 作差f(x 1)-f(x 2)。

③ 变形(通常是因式分解和配方)。

④ 定号(即判断差f(x 1)-f(x 2)的正负)。

⑤ 下结论(即指出函数f(x)在给定的区间D 上的单调性)。

1.8函数的最大最小值(1) 最大(小)值定义:一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:1)对于任意的x I ∈,都有f(x)<=(>=)M ; 2)存在0x I ∈,使得0()f x M =. 那么,称M 是函数()y f x =的最大值。

(2) 利用函数单调性来判断函数最大(小)值的方法。

①配方法 ②换元法 ③数形结合法偶函数的定义:一般地,对于函数()f x 的定义域内的任意一个x ,都有()()f x f x -=,那么()f x 就叫做偶函数。

奇函数的定义:一般地,对于函数()f x 的定义域的任意一个x ,都有()()f x f x -=-,那么()f x 就叫做奇函数.注意:1)函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质。

2)由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则x -也一定是定义域内的一个自变量(即定义域关于原点对称)。

3)偶函数的图象关于y 轴对称;奇函数的图象关于原点对称。

偶函数在关于原点对称的区间上单调性相反;奇函数在关于原点对称的区间上单调性一致。

第二章 基本初等函数 2.1指数与指数幂的运算n 次方根:一般地,若n x a =,则x 叫做a 的n 次方根,其中n >1,且n ∈N*,当n为偶数时,a 的n.n 为奇数时,a 的nn 称为根指数,a 为被开方数。

n a n a n a n ⎧⎪⎨±⎪⎩为奇数, 的次方根有一个,为正数:为偶数, 的次方根有两个,为n a n a n a n ⎧⎪⎨⎪⎩为奇数, 的次方根只有一个,为负数:为偶数, 的次方根不存在.零的n0= 正数的分数指数幂的意义为:*0,,)m na a m n N =>∈正数的定负分数指数幂的意义与负整数幂的意义相同. 即:*1(0,,)m nm naa m n N a-=>∈规定:0的正分数指数幂等于0,0的负分数指数幂无意义.说明:规定好分数指数幂后,根式与分数指数幂是可以互换的,分数指数幂只是根式的一种新的写法,而不是111(0)n mm m maa a a a =⋅⋅⋅⋅>由于整数指数幂,分数指数幂都有意义,因此,有理数指数幂是有意义的,整数指数幂的运算性质,可以推广到有理数指数幂,即:(1)(0,,)rsr sa a aa r s Q +⋅=>∈(2)()(0,,)r S rsa a a r s Q =>∈(3)()(0,0,)rr ra b a b Q b r Q ⋅=>>∈一般来说,无理数指数幂(0,)pa a p >是一个无理数是一个确定的实数,有理数指数幂的性质同样适用于无理数指数幂.无理指数幂的意义,是用有理指数幂的不足近似值和过剩近似值无限地逼近以确定大小.四则运算的顺序是先算乘方,再算乘除,最后算加减,有括号的先算括号的。

整数幂的运算性质及运算规律扩充到分数指数幂后,其运算顺序仍符合我们以前的四则运算顺序。

2.2指数函数及其性质指数函数的定义:一般地,函数xy a =(a >0且a ≠1)叫做指数函数,其中x 是自变量,函数的定义域为R 。

从图上看x y a =(a >1)与xy a =(0<a <1)两函数图象的特征。

指数函数xy a (a >0且a ≠1),当底数越大时,函数图象间有什么样的关系.利用函数的单调性,结合图象还可以看出:(1)在[,]xa b f x a 上,()=(a >0且a ≠1)值域是[(),()][(),()];f a f b f b f a 或(2)若0,x f x f x x ≠≠∈则()1;()取遍所有正数当且仅当R; (3)对于指数函数()xf x a =(a >0且a ≠1),总有(1);f a =(4)当a >1时,若1x <2x ,则1()f x <2()f x 。

2.3对数对数的定义:一般地,若(0,1)xa N a a =>≠且,那么数x 叫做以a 为底N 的对数,记作log a x N =,a 叫做对数的底数,N 叫做真数。

在对数的概念中,要注意:(1)底数的限制a >0,且a ≠1 (2)log xa a N N x =⇔=指数式⇔对数式 幂底数←a →对数底数 指 数←x →对数 幂 ←N →真数说明:对数式log a N 可看作一记号,表示底为a (a >0,且a ≠1),幂为N 的指数工表示方程xa N =(a >0,且a ≠1)的解。

也可以看作一种运算,即已知底为a (a >0,且a ≠1)幂为N ,求幂指数的运算. 因此,对数式log a N 又可看幂运算的逆运算。

两类对数:① 以10为底的对数称为常用对数,10log N 常记为lg N .② 以无理数e=2.71828…为底的对数称为自然对数,log e N 常记为ln N .以后解题时,在没有指出对数的底的情况下,都是指常用对数,如100的对数等于2,即lg1002=.2.4对数及其性质1的对数是零,负数和零没有对数对数的性质 log 1a a = a >0且a ≠1log a NaN =如果a >0且a ≠1,M >0,N >0,那么:(1)log log log a a a MN M N =+ (2)log log log aa a MM N N=- (3)log log ()na a M n Mn R =∈换底公式:a >0,且a ≠1,c >0,且e ≠1,b >0log log log c a c bb a=一般地,我们把函数log a y x =(a >0且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞)。

相关文档
最新文档