高一数学必修二各章知识点总结[1]
高中数学必修2知识点总结:第一章-空间几何体
高中数学必修2知识点总结第一章 空间几何体1.1柱、锥、台、球的结构特征 1.2空间几何体的三视图和直观图1 三视图:正视图:从前往后 侧视图:从左往右 俯视图:从上往下 2 画三视图的原则:长对齐、高对齐、宽相等 3直观图:斜二测画法 4斜二测画法的步骤:(1).平行于坐标轴的线依然平行于坐标轴;(2).平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变; (3).画法要写好。
5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图1.3 空间几何体的表面积与体积 (一 )空间几何体的表面积1棱柱、棱锥的表面积: 各个面面积之和2 圆柱的表面积3 圆锥的表面积2r rl S ππ+= 4 圆台的表面积22R Rl r rl S ππππ+++= 5 球的表面积24R S π=(二)空间几何体的体积1柱体的体积 h S V ⨯=底 2锥体的体积 h S V ⨯=底313台体的体积 h S S S S V ⨯++=)31下下上上( 4球体的体积 334R V π=222r rl S ππ+=第一章空间几何体1.1 空间几何体的结构一、选择题1、下列各组几何体中是多面体的一组是()A 三棱柱四棱台球圆锥B 三棱柱四棱台正方体圆台C 三棱柱四棱台正方体六棱锥D 圆锥圆台球半球2、下列说法正确的是()A 有一个面是多边形,其余各面是三角形的多面体是棱锥B 有两个面互相平行,其余各面均为梯形的多面体是棱台C 有两个面互相平行,其余各面均为平行四边形的多面体是棱柱D 棱柱的两个底面互相平行,侧面均为平行四边形3、下面多面体是五面体的是()A 三棱锥B 三棱柱C 四棱柱D 五棱锥4、下列说法错误的是()A 一个三棱锥可以由一个三棱锥和一个四棱锥拼合而成B 一个圆台可以由两个圆台拼合而成C 一个圆锥可以由两个圆锥拼合而成D 一个四棱台可以由两个四棱台拼合而成5、下面多面体中有12条棱的是()A 四棱柱B 四棱锥C 五棱锥D 五棱柱6、在三棱锥的四个面中,直角三角形最多可有几个()A 1 个B 2 个C 3个D 4个二、填空题7、一个棱柱至少有————————个面,面数最少的棱柱有————————个顶点,有—————————个棱。
高一数学必修二各章知识点总结
【导语】如果把⾼中三年去挑战⾼考看作⼀次越野长跑的话,那么⾼中⼆年级是这个长跑的中段。
与起点相⽐,它少了许多的⿎励、期待,与终点相⽐,它少了许多的掌声、加油声。
它是孤⾝奋⽃的阶段,是⼀个耐⼒、意志、⾃控⼒⽐拚的阶段。
但它同时是⼀个厚实庄重的阶段,这个时期形成的优势有实⼒。
⾼⼆频道为你整理了《⾼⼀数学必修⼆各章知识点总结》,学习路上,为你加油! 【第⼀章空间⼏何体】 1.1空间⼏何体的结构 1.2空间⼏何体的三视图和直观图 阅读与思考画法⼏何与蒙⽇ 1.3空间⼏何体的表⾯积与体积 探究与发现祖暅原理与柱体、椎体、球体的体积 实习作业 ⼩结 复习参考题 【第⼆章点、直线、平⾯之间的位置关系】 2.1空间点、直线、平⾯之间的位置关系 2.2直线、平⾯平⾏的判定及其性质 2.3直线、平⾯垂直的判定及其性质 阅读与思考欧⼏⾥得《原本》与公理化⽅法 ⼩结 复习参考题 【第三章直线与⽅程】 3.1直线的倾斜⾓与斜率 探究与发现魔术师的地毯 3.2直线的⽅程 3.3直线的交点坐标与距离公式 阅读与思考笛卡⼉与解析⼏何 ⼩结 复习参考题 【第四章圆与⽅程】 4.1圆的⽅程 阅读与思考坐标法与机器证明 4.2直线、圆的位置关系 4.3空间直⾓坐标系 信息技术应⽤⽤《⼏何画板》探究点的轨迹:圆 ⼩结 复习参考题 【函数知识点】 ⼀、定义与定义式: ⾃变量x和因变量y有如下关系: y=kx+b 则此时称y是x的⼀次函数。
特别地,当b=0时,y是x的正⽐例函数。
即:y=kx(k为常数,k≠0) ⼆、⼀次函数的性质: 1.y的变化值与对应的x的变化值成正⽐例,⽐值为k 即:y=kx+b(k为任意不为零的实数b取任何实数) 2.当x=0时,b为函数在y轴上的截距。
三、⼀次函数的图像及性质: 1.作法与图形:通过如下3个步骤 (1)列表; (2)描点; (3)连线,可以作出⼀次函数的图像——⼀条直线。
因此,作⼀次函数的图像只需知道2点,并连成直线即可。
高一数学必修二各章知识点总结(精)(2)[1]
数学必修2知识点1. 多面体的面积和体积公式名称 侧面积(S 侧) 全面积(S 全) 体 积(V ) 棱 柱 棱柱 直截面周长×l S 侧+2S 底S 底·h=S 直截面·h 直棱柱 ChS 底·h棱 锥棱锥 各侧面面积之和S 侧+S 底S 底·h正棱锥 ch ′ 棱 台棱台各侧面面积之和S 侧+S 上底+S 下底h (S 上底+S 下底+)正棱台(c+c ′)h ′表中S 表示面积,c ′、c 分别表示上、下底面周长,h 表示高,h ′表示斜高,l 表示侧棱长。
2. 旋转体的面积和体积公式名称 圆柱 圆锥 圆台 球 S 侧 2πrl πrl π(r1+r2)l S 全2πr (l+r )Πr (l+r )π(r1+r2)l+π(r21+r22)4πR2V πr2h (即πr2l )πr2h πh (r21+r1r2+r22) πR3表中l 、h 分别表示母线、高,r 表示圆柱、圆锥与球冠的底半径,r1、r2分别表示圆台上、下底面半径,R 表示半径。
4、平面的基本性质:公理1、若一条直线上的两点在一个平面内,那么这条直线在此平面内. ,,,l l l αααA∈B∈A∈B∈⇒⊂公理2、过不在一条直线上的三点,有且只有一个平面.,,,,,C C ααααA B ⇒A∈B∈∈三点不共线有且只有一个平面使公理3、若两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.l l αβαβP∈⇒=P∈且推论1、经过一条直线和直线外的一点,有且只有一个平面. 推论2、经过两条相交直线,有且只有一个平面. 推论3、经过两条平行直线,有且只有一个平面.公理4、平行于同一条直线的两条直线互相平行. //,////a b b c a c ⇒5、等角定理:空间中若两个角的两边分别对应平行,那么这两个角相等或互补.推论:若两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等.6、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行. 数学符号表示:,,////a b a b a ααα⊄⊂⇒直线与平面平行的性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行. 数学符号表示://,,//a a b a b αβαβ⊂=⇒7、平面与平面平行的判定定理:(1)一个平面内的两条相交直线与另一个平面平行,则这两个平面平行. 数学符号表示:,,,//,////a b a b a b ββαααβ⊂⊂=P ⇒ (2)垂直于同一条直线的两个平面平行. 符号表示:,//a a αβαβ⊥⊥⇒ (3)平行于同一个平面的两个平面平行.符号表示://,////αγβγαβ⇒面面平行的性质定理:(1)若两个平面平行,那么其中一个平面内的任意直线均平行于另一个平面. //,//a a αβαβ⊂⇒ (2)若两个平行平面同时和第三个平面相交,那么它们的交线平行. //,,//a b a b αβαγβγ==⇒8、直线与平面垂直的判定定理:(1)一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直. 数学符号表示:,,,,m n m n l m l n l ααα⊂⊂=A ⊥⊥⇒⊥(2)若两条平行直线中一条垂直于一个平面,那么另一条也垂直于这个平面. //,a b a b αα⊥⇒⊥(3)若一条直线垂直于两个平行平面中一个,那么该直线也垂直于另一个平面.//,a a αβαβ⊥⇒⊥直线与平面垂直的性质定理:垂直于同一个平面的两条直线平行.,//a b a b αα⊥⊥⇒9、两个平面垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直. ,a a βααβ⊥⊂⇒⊥ 平面与平面垂直的性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直. 数学符号表示:,,,b a a b a αβαβαβ⊥=⊂⊥⇒⊥10、直线的倾斜角和斜率:(1)设直线的倾斜角为α()0180α≤<,斜率为k ,则tan 2k παα⎛⎫=≠ ⎪⎝⎭.当2πα=时,斜率不存在. (2)当090α≤<时,0k ≥;当90180α<<时,0k <. (3)过111(,)P x y ,222(,)P x y 的直线斜率212121()y y k x x x x -=≠-.11、两直线的位置关系:两条直线111:l y k x b =+,222:l y k x b =+斜率都存在,则:(1)1l ∥2l ⇔12k k =且12b b ≠(2)12121l l k k ⊥⇔⋅=-(当1l 的斜率存在2l 的斜率不存在时12l l ⊥) (3)1l 与2l 重合⇔12k k =且12b b =12、直线方程的形式:(1)点斜式:()00y y k x x -=-(定点,斜率存在) (2)斜截式:y kx b =+(斜率存在,在y 轴上的截距) (3)两点式:1121212121(,)y y x x y y x x y y x x --=≠≠--(两点) (4)一般式:()2200x y C A B A +B += +≠(5)截距式:1x ya b+=(在x 轴上的截距,在y 轴上的截距) 13、直线的交点坐标:设11112222:0,:0l A x B y c l A x B y c ++=++=,则: (1)1l 与2l 相交1122A B A B ⇔≠;(2)1l ∥2l 111222A B C A B C ⇔=≠;(3)1l 与2l 重合111222A B C A B C ⇔==. 14、两点111(,)P x y ,222(,)P x y间的距离公式12PP =原点()0,0O 与任一点(),x y P的距离OP =15、点000(,)P x y 到直线:0l x y C A +B +=的距离d =(1)点000(,)P x y 到直线:0l x C A +=的距离0Ax Cd A +=(2)点000(,)P x y 到直线:0l y C B +=的距离0By Cd B+=(3)点()0,0P 到直线:0l x y C A +B +=的距离d =16、两条平行直线10x y C A +B +=与20x y C A +B +=间的距离d =17、过直线1111:0l A x B y c ++=与2222:0l A x B y c ++=交点的直线方程为()111222()()0A x B y C A x B y c R λλ+++++=∈18、与直线:0l x y C A +B +=平行的直线方程为()0x y D C D A +B +=≠与直线:0l x y C A +B +=垂直的直线方程为0x y D B -A += 19、中心对称与轴对称:(1)中心对称:设点1122(,),(,)P x y E x y 关于点00(,)M x y 对称,则12012022x x x y y y +⎧=⎪⎪⎨+⎪=⎪⎩(2)轴对称:设1122(,),(,)P x y E x y 关于直线:0l x y C A +B +=对称,则: a 、0B =时,有122x x C A +=-且12y y =; b 、0A =时,有122y y CB+=-且12x x = c 、0A B ⋅≠时,有12121212022y y Bx x A x x y y A B C -⎧=⎪-⎪⎨++⎪⋅+⋅+=⎪⎩20、圆的标准方程:222()()x a y b r -+-=(圆心(),A a b ,半径长为r )圆心()0,0O ,半径长为r 的圆的方程222x y r +=。
高一数学必修一必修二知识点
精品文档.必修1知识点第一章、集合与函数概念 §1.1.1、集合1、集合三要素:确定性、互异性、无序性。
2、常见集合:正整数集合:*N 或+N ; 整数集合:Z ;有理数集合:Q ; 实数集合:R . 3、集合的表示方法:列举法、描述法. §1.1.2、集合间的基本关系1、一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,则称集合A 是集合B 的子集。
记作B A ⊆. 2、如果集合B A ⊆,但存在元素B x ∈,且A x ∉,则称集合A 是集合B 的真子集.记作:A B.3、把不含任何元素的集合叫做空集.记作:∅.并规定:空集合是任何集合的子集. 空集是任何非空集合的真子集. 4、如果集合A 中含有n 个元素,则集合A 有n 2个子集. §1.1.3、集合间的基本运算1、 一般地,由所有属于集合A 或集合B 的元素组成的集合,称为集合A 与B 的并集.记作:B A Y .2、 一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集.记作:B A I . 3、全集、补集:{|,}UC A x x U x U =∈∉且 §1.2.1、函数的概念1、一个函数的构成要素为:定义域、对应关系、值域.2、如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等.§1.2.2、函数的表示法 解析法、图象法、列表法. 求解析式的方法:1.换元法2.配凑法3.待定系数法4.方程组法 §1.3.1、单调性与最大(小)值注意函数单调性证明的一般格式:解:设[]b a x x ,,21∈且21x x <,则:()()21x f x f -=…五个步骤:取值,作差,化简,定号,小结 §1.3.2、奇偶性1、一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-,那么就称函数()x f 为偶函数.偶函数图象关于y 轴对称.2、一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f -=-,那么就称函数()x f 为奇函数.奇函数图象关于原点对称.第二章、基本初等函数§2.1.1、指数与指数幂的运算1、一般地,如果a x n =,那么x 叫做a 的n 次方根。
【最新】高一数学必修二各章知识点总结
【最新】高一数学必修二各章知识点总结高一数学必修二各章知识点总结如下:第一章:函数与二次函数1. 函数的概念及性质:定义域、值域、奇偶性、单调性等。
2. 二次函数的基本性质:顶点、对称轴、单调性、零点、图像的开口方向。
3. 一次函数与二次函数的比较与关系:求解一次函数与二次函数的交点等。
4. 二次函数的图像与方程:画出给定二次函数的图像,根据图像确定二次函数的方程等。
5. 二次函数与根式、指数、对数的应用。
第二章:三角函数1. 角度制与弧度制的转换。
2. 弧度制下的任意角的三角函数值的计算。
3. 三角函数的简单性质及其关系:同角三角函数的相互关系、倒数三角函数的相互关系等。
4. 三角函数的图像与性质:正弦函数、余弦函数、正切函数的图像与性质等。
5. 三角函数的应用:三角函数在几何、物理、工程等领域的应用。
第三章:指数与对数函数1. 指数的定义、性质及运算规律:指数与乘法、除法、乘方运算规律等。
2. 对数的定义、性质及运算规律:对数与指数的关系、对数运算法则等。
3. 指数函数与对数函数的简单性质与图像:指数函数与对数函数的基本性质、图像和性质等。
4. 指数函数与对数函数的应用:指数与对数在增长与衰减、微积分、金融等领域的应用。
第四章:数列1. 数列的概念与性质:等差数列、等比数列、通项公式、前n 项和等。
2. 数列的运算:数列的加减乘除等。
3. 等差数列与等差中项:等差数列的通项公式、等差数列的求和公式、等差数列的奇数项和、以及奇数和与偶数和等。
4. 等比数列与等比中项:等比数列的通项公式、等比数列的求和公式、等比数列的前n项和、无穷等比级数等。
5. 等差数列与等差中项的应用:等差数列在等价代换、简化形式、利润计算等方面的应用。
第五章:排列与组合1. 排列与组合的基本概念:排列、组合的定义与计算方法等。
2. 排列与组合的计算:排列与组合的计算公式、乘法原理、加法原理等。
3. 排列与组合的应用:排列与组合在概率、几何、数学问题解法等领域的应用。
鲁科版高一数学必修二知识点总结归纳总复习提纲
鲁科版高一数学必修二知识点总结归纳总复习提纲一、直线与方程1. 直线的斜率和截距的概念2. 直线的方程一般形式与一般式之间的转化3. 直线的斜截式和截距式方程4. 直线的点斜式和两点式方程5. 直线的平行和垂直关系二、函数与方程组1. 函数的概念与性质2. 一次函数的概念与图像3. 一次函数的函数式与方程式4. 解一元一次方程的基本方法5. 解一元一次方程组的基本方法6. 线性函数与线性方程组7. 二元一次方程组的图像解法三、二次函数与方程1. 二次函数的概念与性质2. 二次函数的图像及其简单性质3. 二次函数的标准式和一般式方程4. 二次函数的顶点坐标与对称轴5. 解二次方程的基本方法6. 判别式与二次方程的根的性质7. 一元二次方程组的解法四、三角函数与三角方程1. 弧度制与角度制2. 三角函数的概念与性质3. 三角函数的图像及其变换4. 正弦函数与余弦函数的和差化积与积化和差5. 正弦函数与余弦函数的周期性与奇偶性6. 三角函数方程的解法及简单应用五、几何与向量1. 相交线与平行线的性质2. 三角形内角和定理与外角定理3. 三角形的重心、垂心、内心和外心4. 平面向量的概念、性质与运算5. 向量的数量积与向量积的概念与性质6. 向量的坐标表示及其运算7. 平面向量的应用问题六、解析几何与立体几何1. 长方体、正方体与棱柱的概念及性质2. 平面直角坐标系与点的坐标3. 点、直线及平面的位置关系4. 两点间的距离与中点坐标公式5. 判断线段垂直、平行和相交的方法6. 矩形、菱形及其他多边形的性质7. 圆的概念、性质及方程8. 球的概念、性质及方程七、概率与统计1. 随机事件与概率的概念2. 概率的计算方法与性质3. 样本空间与事件的关系4. 频率与概率的比较5. 统计图及其应用6. 数据的整理、分析与描述7. 排列与组合的概念及计算方法以上是鲁科版高一数学必修二的知识点总结归纳总复习提纲,希望对你的学习有所帮助!。
高一必修二数学知识点总结及公式
高一必修二数学知识点总结及公式高中数学的学习,对于每个学生来说都是一次全新的挑战。
特别是高一阶段,作为高中新生的学习起点,需要理解和掌握许多基础数学知识点和公式。
本文将对高一必修二数学知识点进行总结,并给出相应的公式。
一、二次函数二次函数是高中数学中非常重要的一个概念,掌握二次函数的性质和相关的公式对于解题至关重要。
1. 二次函数的标准方程:y = ax² + bx + c,其中 a、b、c 为常数,a ≠ 0。
2. 二次函数的顶点坐标公式:对于二次函数 y = ax² + bx + c,其顶点的横坐标为 x = -b/2a,纵坐标为 y = -(b²-4ac)/4a。
3. 二次函数的对称轴公式:对于二次函数 y = ax² + bx + c,其对称轴的方程为 x = -b/2a。
4. 二次函数图像的开口方向:若 a > 0,则二次函数图像开口向上;若 a < 0,则二次函数图像开口向下。
5. 二次函数的判别式:判别式 D = b²-4ac,D > 0 时,二次函数有两个不同的实根;D = 0 时,二次函数有一个重根;D < 0 时,二次函数没有实根。
二、三角函数三角函数是数学中的重要分支,掌握三角函数的基本概念和公式,对高中数学的学习和后续数学知识的理解都起到至关重要的作用。
1. 正弦函数与余弦函数的定义:对于任意角θ,其正弦函数的值为sinθ,余弦函数的值为cosθ。
2. 正切函数的定义:对于任意角θ,其正切函数的值为tanθ。
3. 三角函数的基本关系式:sin²θ + cos²θ = 1,1 + tan²θ = sec²θ,1 + cot²θ = csc²θ。
4. 常用三角函数的周期性:sin(θ + 2πk) = sinθ,cos(θ + 2πk) = cosθ,tan(θ + πk) = tanθ(其中 k 为整数)。
高一数学必修二知识点总结(优质12篇)
高一数学必修二知识点总结(优质12篇)(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、述职报告、心得体会、工作计划、演讲稿、教案大全、作文大全、合同范文、活动方案、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of practical materials for everyone, such as work summaries, job reports, insights, work plans, speeches, lesson plans, essays, contract samples, activity plans, and other materials. If you want to learn about different data formats and writing methods, please pay attention!高一数学必修二知识点总结(优质12篇)通过知识点总结,我们可以更好地整理、理解和记忆所学的知识。
高一数学必修一必修二各章知识点汇总
高一数学必修一必修二各章知识点汇总————————————————————————————————作者:————————————————————————————————日期:2数学必修1各章知识点总结第一章集合与函数概念一、集合(一)集合有关概念1.集合的含义2.集合的中元素的三个特性:确定性、互异性、无序性3.集合的表示:(1)常用数集及其记法(2)列举法(3)描述法4、集合的分类:有限集、无限集、空集5.常见集合的符号表示:数集自然数集正整数集整数集有理数集实数集符号N*N或+N Z Q R(二)集合间的基本关系1.子集、真子集、空集;2.有n个元素的集合,含有2n个子集,2n-1个真子集;3.空集是任何集合的子集,是任何非空集合的真子集.(三)集合的运算运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B={x|x∈A,且x∈B}.由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即A B={x|x∈A,或x∈B}).设U是一个集合,A是U的一个子集,由U中所有不属于A的元素组成的集合,叫做U中子集A的补集(或余集)记作UC A,即C U A={|,}x xUx A∈∉且韦恩图示A B图1A B图2性质A A=AA Φ=ΦA B=B AA B⊆ AA B⊆ BA A=AA Φ=AA B=B AA B⊇AA B⊇ B(C u A) (C u B)= C u(A B)(C u A) (C u B)= C u(A B)A (C u A)=UA (C u A)= Φ.二、函数(一)函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.定义域:能使函数式有意义的实数x的集合称为函数的定义域.2.常用的函数表示法及各自的优点:○1解析法:必须注明函数的定义域;○2图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;○3列表法:选取的自变量要有代表性,应能反映定义域的特征.优点:解析法:便于算出函数值.列表法:便于查出函数值.图象法:便于量出函数值.求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1;(5)如果函数是由一些基本函数通过四则运算结合而成的,那么它的定义域是使各部分都有意义的x的值组成的集合;(6)指数为零底不可以等于零;(7)实际问题中的函数的定义域还要保证实际问题有意义.相同函数的判断方法:(以下两点必须同时具备)(1)表达式相同(与表示自变量和函数值的字母无关);(2)定义域一致.求函数值域方法 :(先考虑其定义域)(1)函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域.(2)应熟练掌握一次函数、二次函数、指数函数、对数函数的值域,它是求解复杂函数值域的基础.(3)求函数值域的常用方法有:直接法、换元法、配方法、分离常数法、判别式法、单调性法等.2. 函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 .函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据.(2) 画法:描点法;图象变换法常用变换方法有三种:平移变换;对称变换;*伸缩变换.3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.4.映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射.记作“f(对应关系):A(原象集)→B(象集)”对于映射f:A→B来说,则应满足:(1)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(2)集合A中不同的元素,在集合B中对应的象可以是同一个;(3)不要求集合B中的每一个元素在集合A中都有原象.5.分段函数(1)在定义域的不同部分上有不同的解析表达式的函数;(2)各部分的自变量的取值情况;(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.(二)函数的性质1.函数的单调性(局部性质)(1)定义设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量UA34x 1,x 2,当x 1<x 2时,都有f(x 1)<f(x 2),那么就说f(x)在区间D 上是增函数.区间D 称为y=f(x)的单调增区间.如果对于区间D 上的任意两个自变量的值x 1,x 2,当x 1<x 2 时,都有f(x 1)>f(x 2),那么就说f(x)在这个区间上是减函数.区间D 称为y=f(x)的单调减区间.定义的变形应用:如果对任意的12,x x D ∈,且21x x ≠有0)()(1212>--x x x f x f 或者2121(()())()0f x f xxx -->,则函数)(x f 在区间D 上是增函数;如果对任意的12,x x D ∈,且21x x ≠有2121()()0f x f x x x -<-或者2121(()())()0f x f xxx --<,则函数)(x f 在区间D 上是减函数. 注意:函数的单调性是函数的局部性质. (2)图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的. (3)函数单调区间与单调性的判定方法 (A) 定义法: ○1 任取x 1,x 2∈D ,且x 1<x 2; ○2作差f(x 1)-f(x 2);○3 变形(通常是因式分解和配方); ○4 定号(即判断差f(x 1)-f(x 2)的正负); ○5 下结论(指出函数f(x)在给定的区间D 上的单调性). (B)图象法(从图象上看升降) (C)复合函数的单调性复合函数f [g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集.2.函数的奇偶性(整体性质) (1)偶函数一般地,对于函数f(x)的定义域内的任意一个x ,都有f(-x)=f(x),那么f(x)就叫做偶函数. (2)奇函数一般地,对于函数f(x)的定义域内的任意一个x ,都有f(-x)=—f(x),那么f(x)就叫做奇函数. (3)具有奇偶性的函数的图象的特征偶函数的图象关于y 轴对称;奇函数的图象关于原点对称.利用定义判断函数奇偶性的步骤:○1首先确定函数的定义域,并判断其是否关于原点对称; ○2确定f(-x)与f(x)的关系; ○3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 .3.函数的解析表达式(1)函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.(2)求函数的解析式的主要方法有:凑配法; 待定系数法;换元法;消参法.如果已知函数解析式的构造时,可用待定系数法;已知复合函数f [g (x )]的表达式时,可用换元法,这时要注意元的取值范围;当已知表达式较简单时,也可用凑配法;若已知抽象函数表达式,则常用解方程组消参的方法求出f(x) 4.函数最大(小)值(1)利用二次函数的性质(配方法)求函数的最大(小)值;(2)利用图象求函数的最大(小)值;(3)利用函数单调性的判断函数的最大(小)值:函数y=f(x)在区间[a ,b]上单调递增,在区间[b ,c]上单调递减则函数y=f(x)在x=b 处有最大值f(b);函数y=f(x)在区间[a ,b]上单调递减,在区间[b ,c]上单调递增则函数y=f(x)在x=b 处有最小值f(b).第二章 基本初等函数一、指数函数(一)指数与指数幂的运算1.根式的概念:一般地,如果a x n=,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *.◆ 负数没有偶次方根;0的任何次方根都是0,记作00=n .当n 是奇数时,a a nn =,当n 是偶数时,⎩⎨⎧<≥-==)0()0(||a a a a a a nn2.分数指数幂正数的分数指数幂的意义,规定:)1,,,0(*>∈>=n N n m a a a n mn m,)1,,,0(11*>∈>==-n N n m a a aa n m nm nm ◆ 0的正分数指数幂等于0,0的负分数指数幂没有意义3.实数指数幂的运算性质(1)rsr sa a a +⋅=(0,,)a r s R >∈;(2)()r s r sa a =),,0(R s r a ∈>;(3)()r r ra b ab =(0,)a r R >∈. (二)指数函数及其性质1.指数函数的概念:一般地,函数)1,0(≠>=a a a y x且叫做指数函数,其中x 是自变量,函数的定义域为R . 注意:指数函数的底数的取值范围,底数不能是负数、零和1.2.指数函数的图象和性质a >1 0<a <15定义域 R 定义域 R 值域y >0 值域y >0 在R 上单调递增 在R 上单调递减 非奇非偶函数非奇非偶函数函数图象都过定点(0,1)函数图象都过定点(0,1)利用函数的单调性,结合图象还可以看出:(1)在[a ,b]上,)1a 0a (a )x (f x≠>=且值域是)]b (f ),a (f [(a>1)或 )]a (f ),b (f [(0<a<1); (2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈;(3)对于指数函数)1a 0a (a )x (f x≠>=且,总有a )1(f =.二、对数函数(一)对数的概念:一般地,如果N a x=)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数,记作:Nx a log =(a — 底数,N — 真数,N a log — 对数式) 说明:○1 注意底数的限制0>a ,且1≠a ;○2x N N a ax=⇔=log . 两个重要对数:○1 常用对数:以10为底的对数N lg ; ○2 自然对数:以无理数 71828.2=e 为底的对数的对数N ln .指数式与对数式的互化幂值 真数b a = N ⇔log a N = b底数指数 对数(二)对数的运算性质如果0>a ,且1≠a ,0>M ,0>N ,那么: ○1 M a (log ·=)N M a log +N a log ;○2 =N Malog M a log -N a log ; ○3 na M log n =M a log)(R n ∈. 注意:换底公式abb c c a log log log =(0>a ,且1≠a ;0>c ,且1≠c ;0>b ).利用换底公式可得下面的结论:(1)b m n b a nam log log =; (2)ab b alog 1log =.(三)对数函数1、对数函数的概念:函数0(log >=a xy a ,且)1≠a 叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别.如:xy 2log 2=,5log 5x y = 都不是对数函数,而只能称其为对数型函数.○2 对数函数对底数的限制:0a >,且1a ≠.62、对数函数的图象和性质:a >10<a <11111定义域:(0,)+∞ 定义域:(0,)+∞ 值域为R 值域为R 在R 上递增在R 上递减函数图象都过定点(1,0)函数图象都过定点(1,0)三、幂函数1.幂函数定义:一般地,形如αx y =)(R a ∈的函数称为幂函数,其中α为常数.2.幂函数性质归纳:(1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1);(2)当0>α时,幂函数的图象通过原点,并且在区间),0[+∞上是增函数.特别地,当1>α时,幂函数的图象下凸;当10<<α时,幂函数的图象上凸; (3)当0<α时,幂函数的图象在区间),0(+∞上是减函数.在第一象限内,当x 从右边趋向原点时,图象在y 轴右方无限地逼近y 轴正半轴,当x 趋于∞+时,图象在x 轴上方无限地逼近x 轴正半轴.第三章 函数的应用一、方程的根与函数的零点1.函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点. 2.函数零点的意义:函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图象与x 轴交点的横坐标.即:方程0)(=x f 有实数根⇔函数)(x f y =的图象与x 轴有交点⇔函数)(x f y =有零点. 3.函数零点的求法: ○1 (代数法)求方程0)(=x f 的实数根; ○2 (几何法)对于不能用求根公式的方程,可以将它与函数)(x f y =的图象联系起来,并利用函数的性质找出零点. 4.二次函数的零点:二次函数)0(2≠++=a c bx ax y . (1)△>0,方程02=++c bx ax 有两不等实根,二次函数的图象与x 轴有两个交点,二次函数有两个零点.(2)△=0,方程02=++c bx ax 有两相等实根,二次函数的图象与x 轴有一个交点,二次函数有一个二重零点或二阶零点.(3)△<0,方程02=++c bx ax 无实根,二次函数的图象与x 轴无交点,二次函数无零点. 二、函数的应用解答数学应用题的关键有两点:一是认真读题,缜密审题,确切理解题意,明确问题的实际背景,然后进行科学的抽象、概括,将实际问题归纳为相应的数学问题;二是要合理选取参变数,设定变元后,就要寻找它们之间的内在联系,选用恰当的代数式表示问题中的关系,建立相应的函数、方程、不等式等数学模型;最终求解数学模型使实际问题获解.数学必修2各章知识点总结第一章 空间几何体1、柱、锥、台、球的结构特征(要补充直棱柱、正棱柱、正棱锥、正棱台、平行六面体的定义)结 构 特 征 性质 图例 棱柱 (1)两底面相互平行,其余各面都是平行四边形; (2)侧棱平行且相等. 圆柱(1)两底面相互平行;(2)侧面的母线平行于圆柱的轴; (3)是以矩形的一边所在直线为旋转轴,其余三边旋转形成的曲面所围成的几何体.棱锥 (1)底面是多边形,各侧面均是三角形; (2)各侧面有一个公共顶点. 圆锥 (1)底面是圆;(2)是以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转形成的曲面所围成的几何体.棱台 (1)两底面相互平行;(2)是用一个平行于棱锥底面的平面去截棱锥,底面和截面之间的部分.圆台 (1)两底面相互平行;(2)是用一个平行于圆锥底面的平面去截圆锥,底面和截面之间的部分. 球(1)球心到球面上各点的距离相等;(2)是以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体.2、空间几何体的三视图三视图定义:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下) 注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度. 3、空间几何体的直观图——斜二测画法斜二测画法特点:①原来与x 轴平行的线段仍然与x 轴平行且长度不变;②原来与y 轴平行的线段仍然与y 轴平行,长度为原来的一半.74、柱体、锥体、台体的表面积与体积(1)柱体、锥体、台体的表面积(几何体的表面积为几何体各个面的面积的和)表面积相关公式 表面积相关公式棱柱 2S S S =+侧全底 圆柱 222S r r h ππ=+全(r :底面半径,h :高) 棱锥 S S S =+侧全底圆锥 2S r r l ππ=+全(r :底面半径,l :母线长) 棱台S S S S =++侧全上底下底圆台22('')S r r r l r l π=+++全(r :下底半径,r ’:上底半径,l :母线长)(2)柱体、锥体、台体的体积公式体积公式体积公式 棱柱 V S h =底高圆柱 2V r h π=棱锥 13V S h =底高圆锥 213V r h π=棱台1('')3V S SS Sh =++圆台221('')3V r rr r hπ=++ (3)球体的表面积和体积公式:V 球=343R π ; S 球面=24Rπ第二章 空间点、直线、平面之间的位置关系1、空间点、直线、平面之间的位置关系 (1)平面① 平面的概念: 平面是无限伸展的.② 平面的表示:通常用希腊字母α、β、γ表示,如平面α(通常写在一个锐角内);也可以用两个相对顶点的字母来表示,如平面BC.③ 点与平面的关系:点A 在平面α内,记作A α∈;点A 不在平面α内,记作A α∉.点与直线的关系:点A 在直线l 上,记作:A ∈l ; 点A 在直线l 外,记作A ∉l.直线与平面的关系:直线l 在平面α内,记作l ⊂α;直线l 不在平面α内,记作l ⊄α.(2)平面基本性质即三条公理的“文字语言”、“符号语言”、“图形语言”列表如下:公理1 公理2 公理3图形语言文字语言如果一条直线上的两点在一个平面内,那么这条直线在此平面内. 过不在一条直线上的三点,有且只有一个平面.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.符号语言 ,,A l B l l A B ααα∈∈⎫⇒⊂⎬∈∈⎭,,,,ABC ABC α⇒不共线确定平面,l P P P l αβαβ=⎧∈∈⇒⎨∈⎩公理2的三条推论:推论1: 经过一条直线和这条直线外的一点,有且只有一个平面; 推论2: 经过两条相交直线,有且只有一个平面; 推论3: 经过两条平行直线,有且只有一个平面.(3)空间直线与直线之间的位置关系公理4:平行于同一条直线的两条直线互相平行①空间两条直线的位置关系:⎧⎧⎪⎨⎨⎩⎪⎩相交直线:同一平面内,有且只有一个公共点;共面直线平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点. ②异面直线判定:过平面外一点与平面内一点的直线与平面内不过该点的直线是异面直线③异面直线所成角:已知两条异面直线,a b ,经过空间任一点O 作直线//,//a a b b'',把,a b ''所成的锐角(或直角)叫异面直线,a b 所成的角(或夹角). ,a b ''所成的角的大小与点O 的选择无关,为了简便,点O 通常取在异面直线的一条上;异面直线所成的角的范围为(0,90]︒,如果两条异面直线所成的角是直角,则叫两条异面直线垂直,记作a b ⊥. 求两条异面直线所成角的步骤可以归纳为四步:选点→平移→定角→计算.④等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补. (4)空间直线与平面之间的位置关系直线在平面内——有无数个公共点.三种位置关系的符号表示:a α⊂; a ∩α=A ;a ∥α . (5)平面与平面之间的位置关系:平行——没有公共点,记作α∥β.相交——有一条公共直线,记作α∩β=b.2、空间中的平行问题(1)直线与平面平行的判定及其性质线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行.(线线平行⇒线面平行) 符号表示为:,,////a b a b a ααα⊄⊂⇒.线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.线面平行⇒线线平行 符号表示为:////a a a b b αβαβ⎫⎪⊂⇒⎬⎪=⎭(2)平面与平面平行的判定及其性质两个平面平行的判定定理(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行.(线面平行→面面平行),用符号表示为:,,////,//a b a b P a b βββααα⊂⊂=⎫⇒⎬⎭. *(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行.(线线平行→面面平行),*(3)垂直于同一条直线的两个平面平行, 两个平面平行的性质定理(1)如果两个平面平行,那么一个平面内的直线与另一个平面平行.(面面平行→线面平行)用符号表示为:α∥β,a ⊂β//a α⇒β aα b8(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行.(面面平行→线线平行)用符号表示为:α∥β,α∩γ=a ,β∩γ=b //a b ⇒3、空间中的垂直问题(1)线线、面面、线面垂直的定义①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直. ②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直.③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直. (2)垂直关系的判定和性质定理①线面垂直判定定理和性质定理判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面.(线线垂直→线面垂直)用符号表示为:l ⊥m ,l ⊥n ,m ∩n =B ,m ⊂α,n ⊂α⇒l ⊥α性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行. 用符号表示为:a ⊥α,b ⊥α⇒ //a b②面面垂直的判定定理和性质定理判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.(线面垂直→面面垂直)用符号表示为:a ⊂α,α⊥β⇒α⊥β.性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面.(面面垂直→线面垂直)用符号表示为:αβ⊥,l αβ=,a α⊂,a l ⊥⇒a β⊥. 4、空间角问题(1)直线与直线所成的角①两平行直线所成的角:规定为 0.②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角. ③两条异面直线所成的角:过空间任意一点O ,分别作与两条异面直线a ,b 平行的直线b a '',,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角. (2)直线和平面所成的角①平面的平行线与平面所成的角:规定为0.②平面的垂线与平面所成的角:规定为90.③平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角.求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”. (3)二面角和二面角的平面角①二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面.②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内..分别作垂直于...棱的两条射线,这两条射线所成的角叫二面角的平面角.③直二面角:平面角是直角的二面角叫直二面角.两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角④求二面角的方法定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到二面角平面角. *垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角第三章 直线与方程1、直线的倾斜角与斜率 (1)直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角.特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度.因此,倾斜角的取值范围是0°≤α<180°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k 表示.即ta n k α=.斜率反映直线与轴的倾斜程度. 当[)90,0∈α时,0≥k ;当()180,90∈α时,0<k ; 当90=α时,k 不存在. ②过两点的直线的斜率公式:)(211212x x x x y y k ≠--=③设1122(,),A x y B xy ,(),则线段AB 中点坐标公式为1212(,)22x x y y++2、直线的方程(1)直线方程的几种形式名称 方程 适用范围 点斜式 y -y 0=k (x -x 0) 不含垂直于x 轴的直线 斜截式 y =kx +b 不含垂直于x 轴的直线 两点式 y -y1y2-y1=x -x1x2-x1 不含直线x =x 1(x 1≠x 2) 和直线y =y 1(y 1≠y 2) 截距式 xa +yb =1 不含垂直于坐标轴和过原点的直线一般式 Ax +By +C =0(A 2+B 2≠0) 平面直角坐标系内的直线都适用 注意:○1各式的适用范围; ○2特殊的方程如: 平行于x 轴的直线:b y =(b 为常数); 平行于y 轴的直线:a x =(a 为常数).(2)直线系方程(即具有某一共同性质的直线)①平行直线系:平行于已知直线0000=++C y B x A (00,B A 是不全为0的常数)的直线系方程为:000=++C y B x A (C 为参数) ②垂直直线系:垂直于已知直线0000=++C y B x A (00,B A 是不全为0的常数)的直线系方程为:000=+-C y A x B (C 为参数) ③过定点的直线系:(ⅰ)斜率为k 的直线系方程为()00x x k y y -=-,直线过定点()00,y x ;*(ⅱ)过两条直线0:1111=++C y B x A l ,0:2222=++C y B x A l 的交点的直线系方程为 ()()0222111=+++++C y B x A C y B x A λ(λ为参数),其中直线2l 不在直线系中.3、两直线平行与垂直已知111:b x k y l +=,222:b x k y l +=,则212121,//b b k k l l ≠=⇔;12121-=⇔⊥k k l l9注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否. 4、两条直线的交点0:1111=++C y B x A l ,0:2222=++C y B x A l 相交,交点坐标即方程组⎩⎨⎧=++=++00222111C y B x AC y B x A 的一组解.方程组无解21//l l ⇔; 方程组有无数解⇔1l 与2l 重合5、距离公式:(1)平面上任意两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离为|P 1P 2|=222121()()x x y y -+-. 特别地,当12,P P 所在直线与x 轴平行时,1212||||P P x x =-;当12,P P 所在直线与y 轴平行时,1212||||P P y y =-; (2)平面上任意一点P 0(x 0,y 0)到直线l :Ax +By +C =0(A ,B 不同时为0)的距离为d =|Ax0+By0+C|\r(A2+B2).(3)两条平行直线l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0(其中A ,B 不同时为0,且C 1≠C 2)间的距离为d =|C1-C2|\r(A2+B2).第三章 圆与方程1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径.2、圆的方程(1)标准方程()()222rb y a x =-+-,圆心()b a ,,半径为r ;(2)一般方程022=++++F Ey Dx y x 当0422>-+F E D 时,方程表示圆,此时圆心为⎪⎭⎫ ⎝⎛--2,2E D ,半径为F E D r 42122-+= 当0422=-+F E D 时,表示一个点; 当0422<-+F E D 时,方程不表示任何图形. (3)求圆方程的方法:一般都采用待定系数法:先设后求.确定一个圆需要三个独立条件,若利用圆的标准方程,需要求出a ,b ,r ;若利用一般方程, 需要求出D ,E ,F.另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置. 3、直线与圆的位置关系:位置关系 几何特征 方程特征 几何法 代数法 相交 有两个公共点 方程组有两个不同实根 d<r △>0 相切 有且只有一公共点 方程组有且只有一实根 d=r △=0 相离 没有公共点 方程组无实根 d>r △<0(1)弦长公式:利用圆被截得弦的性质(垂径定理):弦长222||d r AB-= (2)过圆外一点的切线:①k 不存在,验证是否成立②k 存在,设点斜式方程,用圆心到该直线距离=半径,求解k ,得到方程【一定两解】;(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r 2,圆上一点为(x 0,y 0),则过此点的切线方程为(x 0-a)(x-a)+(y 0-b)(y-b)= r 24、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d )之间的大小比较来确定.设圆()()221211:r b y a x C =-+-,()()222222:R b y a x C =-+- 当r R d +>时两圆外离,此时有公切线四条; 当r R d +=时两圆外切,连心线过切点,有外公切线两条,内公切线一条; 当r R d r R +<<-时两圆相交,连心线垂直平分公共弦,有两条外公切线;当r R d -=时,两圆内切,连心线经过切点,只有一条公切线; 当r R d -<时,两圆内含; 当0=d时,为同心圆.注意:已知两圆相切,两圆心与切点共线,圆的辅助线一般为连圆心与切线或者连圆心与弦中点. 5.空间直角坐标系(1)定义:从空间某一个定点O 引三条互相垂直且有相同单位长度的数轴Ox 、Oy 、Oz ,这样的坐标系叫做空间直角坐标系O -xyz ,点O 叫做坐标原点,x 轴、y 轴、z 轴叫做坐标轴. 通过每两个坐标轴的平面叫做坐标平面,分别称为xOy 平面、yOz 平面、zOx 平面.(2)任意点坐标表示:空间一点M 的坐标可以用有序实数组(,,)x y z 来表示,有序实数组(,,)x y z 叫做点M 在此空间直角坐标系中的坐标,记作(,,)Mxyz (x 叫做点M 的横坐标,y 叫做点M 的纵坐标,z 叫做点M 的竖坐标)(3)空间两点距离坐标公式:212212212)()()(z z y y x x d -+-+-=。
人教版高一数学必修二知识点总结
人教版高一数学必修二知识点总结
一、函数的概念
1、定义:函数是将一些特定的元素映射成另外一些特定的元素的规律性变化。
2、概念:可以把一组值一一对应起来,并具有相同的规律性的数列称为函数,函数的概念可以用计算、图示、代数表达式等方法表达。
3、函数的特性:函数的特性有唯一性和对称性,即任意一个自变量对应唯一的因变量,而且两个自变量互换,两个因变量也一定会互换。
二、一元函数的图象
1、一元函数的图像:一元函数的图象反映函数的变化规律,是比较直观的表示形式,可以根据函数的表达式,画出函数的图像。
2、特殊的图像:当函数关系是y=x时,则函数的图像是一条直线,当函数关系是y=(1/x)时,则函数的图像是一个反比例曲线,当函数关系是y=k时,则函数的图像是一条水平线。
三、函数的特殊性
1、单调性:函数f(x)在定义域内有且仅有一个最值,称为该函数关系的单调性,当函数f(x)在定义域内单调递增时,称为单调递增;当函数f(x)在定义域内单调递减时,称为单调递减。
2、连续性:在定义域内,任意一点处的函数值之差都可以接近于零,则该函数关系称为连续的。
3、奇偶性:函数f(x)的奇偶性,是指函数f(x)在x=a处的值与函数f(-a)
在x=-a处的值是否有关联性。
如果f(a)=f(-a),则说明函数f(x)具有奇偶性,此时函数的图像关于y轴是对称的。
高一数学必修二知识点归纳
高一数学必修二知识点归纳〔1〕棱柱:几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
〔2〕棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相像,其相像比等于顶点到截面距离与高的比的平方。
〔3〕棱台:几何特征:上下底面是相像的平行多边形侧面是梯形侧棱交于原棱锥的顶点〔4〕圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成几何特征:底面是全等的圆;母线与轴平行;轴与底面圆的半径垂直;侧面绽开图是一个矩形。
〔5〕圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成几何特征:底面是一个圆;母线交于圆锥的顶点;侧面绽开图是一个扇形。
〔6〕圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成几何特征:上下底面是两个圆;侧面母线交于原圆锥的顶点;侧面绽开图是一个弓形。
〔7〕球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:球的截面是圆;球面上任意一点到球心的距离等于半径。
2、空间几何体的三视图定义三视图:正视图〔光线从几何体的前面对后面正投影〕;侧视图〔从左向右〕、俯视图〔从上向下〕注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度。
3、空间几何体的直观图——斜二测画法斜二测画法特点:原来与x轴平行的线段仍旧与x平行且长度不变;原来与y轴平行的线段仍旧与y平行,长度为原来的一半。
4、柱体、锥体、台体的外表积与体积〔1〕几何体的外表积为几何体各个面的面积的和。
〔2〕特别几何体外表积公式〔c为底面周长,h为高,为斜高,l为母线〕〔3〕柱体、锥体、台体的体积公式高中数学必修二学问点总结:直线与方程〔1〕直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特殊地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。
因此,倾斜角的取值范围是0°≤α<180°〔2〕直线的斜率定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。
(完整版)高一数学必修2_第一章空间几何体知识点
第一章空间几何体1.1 空间几何体的结构1. 多面体与旋转体:(1)由若干个平面多边形围成的几何体叫做多面体.围成多面体的各个多边形叫做多面体的面.相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点.(2)由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体,叫做旋转体,这条定直线叫做旋转体的轴.2. 棱柱:(1)有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱.棱柱中,两个互相平行的面叫做棱柱的底面(简称底),其余各面叫做棱柱的侧面,相邻侧面的公共边叫做棱柱的侧棱,侧面与底面的公共顶点叫做棱柱的顶点.(2)侧棱垂直于底面的棱柱叫直棱柱,否则斜棱柱;底面是正多边形的直棱柱叫正棱柱。
(3)棱柱的分类:按底面的多边形的边数分,有三棱柱、四棱柱、五棱柱等.按侧棱与底面的关系分为直棱柱和斜棱柱。
(4)底面是平行四边形的四棱柱叫平行六面体;侧棱与底面垂直的平行六面体叫直平行六面体;底面为矩形的直平行六面体叫长方体;底面为正方形的长方体叫正四棱柱;棱长都相等的正四棱柱叫正方体。
(5)棱柱的性质:①两底面是对应边平行的全等多边形;②侧面、对角面都是平行四边形;③侧棱平行且相等;④平行于底面的截面是与底面全等的多边形。
3. 棱锥:(1)有一个面是多边形,其余各面都是有一公共点的三角形,由这些面所围成的几何体叫做棱锥.棱锥中,这个多边形面叫做棱锥的底面或底,有公共顶点的各个三角形面叫做棱锥的侧面,各侧面的公共顶点叫做棱锥的顶点,相邻侧面的公共边叫做棱锥的侧棱.(2)底面是正多边形,顶点在底面的射影是正多边形的中心的棱锥叫正棱柱。
正棱柱顶点与底面中心的连线段叫正棱锥的高;正棱锥侧面等腰三角形底边上的高叫正棱锥的斜高。
(3)棱锥的分类:按底面的多边形的边数分,有三棱锥、四棱锥、五棱锥等.(4)棱锥的性质:①侧面、对角面都是三角形;②平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.(5)正棱锥的性质:①正棱锥各侧棱都相等,各侧面都是全等的等腰三角形。
高一必修二数学b版知识点总结
高一必修二数学b版知识点总结高一必修二数学B版的教材内容涵盖了大量的数学知识点,下面将对这些知识点进行总结和归纳。
1. 函数与方程1.1 二次函数及其图像:二次函数的标准形式为y=ax²+bx+c,其中a≠0。
通过调整a、b、c的值可以改变二次函数的图像特征,如顶点坐标、开口方向等。
1.2 一次函数:一次函数的标准方程为y=kx+b,其中k表示斜率,b表示截距。
一次函数的图像为一条直线,其斜率决定了线段的倾斜程度。
1.3 方程与不等式:掌握解一元一次方程和一元一次不等式的方法,包括移项、合并同类项、分式消去等。
2. 三角函数与解三角形2.1 三角函数的概念:掌握正弦、余弦、正切等基本三角函数的定义,以及它们在坐标轴上的关系。
熟练运用基本三角函数计算三角形的边长和角度。
2.2 三角函数的图像:掌握三角函数在定义域上的图像变化规律,了解振幅、周期、相位等概念。
2.3 解三角形:根据已知条件解决三角形的问题,包括求角度、边长、面积等。
3. 平面向量3.1 向量的基本概念:了解向量的定义、表示方法以及向量的运算规则,包括向量的加法、减法、数量乘法等。
3.2 平面向量的坐标表示:将平面向量表示为坐标形式,即向量的起点和终点在坐标平面上的坐标。
3.3 向量的模和方向角:掌握求解向量的模和方向角的方法,了解向量在坐标平面上的几何意义。
4. 概率统计4.1 随机事件与概率:理解随机事件的基本概念,掌握计算事件概率的方法,包括频率法和几何法。
4.2 排列与组合:了解排列与组合的概念和性质,能够计算排列和组合的数量。
4.3 统计图表与数据分析:学会制作统计图表,如柱状图、折线图、扇形图等,能够根据图表提取和分析数据。
5. 解析几何5.1 直线与圆的方程:掌握直线的斜截式、点斜式和一般式等方程形式,了解圆的标准方程和一般方程。
5.2 直线与圆的位置关系:学会判断直线与圆的位置关系,包括相切、相交、内切、外接等情况。
高一数学必修二知识点总结log
高一数学必修二知识点总结log一、对数与指数1. 概念和性质对数的定义、指数的定义、对数与指数的关系、对数的性质(对数的基本运算、幂函数的求值、对数函数的图像)2. 常用对数与自然对数常用对数的定义、自然对数的定义、常用对数与自然对数的换算、对数、指数与幂函数的图像二、指数函数与对数函数的分析1. 指数函数的性质指数函数的定义、指数函数的图像、指数函数的性质(增减性、奇偶性、单调性、零点、极限)2. 对数函数的性质对数函数的定义、对数函数的图像、对数函数的性质(增减性、奇偶性、单调性、零点、极限)三、对数与指数方程1. 对数方程对数方程的定义、对数方程的解法(变底公式、利用对数性质化简)2. 指数方程指数方程的定义、指数方程的解法(变底公式、变量转换)四、对数与指数不等式1. 对数不等式对数不等式的定义、对数不等式的解法(基本不等式、利用对数性质化简)2. 指数不等式指数不等式的定义、指数不等式的解法(基本不等式、变量转换)五、指数函数、对数函数与幂函数的应用1. 复利问题复利的概念、复利公式的推导与应用、连续复利的概念与应用2. 半衰期问题半衰期的概念、半衰期公式的推导与应用、放射性元素的衰变六、对数尺度与指数尺度1. 对数尺度对数尺度的定义、对数尺度的转换、对数尺度的应用(音量、测震等)2. 指数尺度指数尺度的定义、指数尺度的转换、指数尺度的应用(星等系统等)七、指数函数的增长速度与单调性1. 指数函数增长速度指数函数的导数与斜率、指数函数的限制性与趋势2. 指数函数的单调性指数函数的增减性、极值、拐点与曲线段数八、对数函数与指数函数的应用1. 相关变量的变化关系对数函数与指数函数的引入、基本模型与实际应用2. 模型的建立与求解实际问题的数学模型、通过对数函数与指数函数进行建模与求解以上是高一数学必修二知识点总结log,希望对你的学习有所帮助。
祝你取得优异的成绩!。
高一数学必修二知识点归纳总结
1.并集
(1)并集的定义
由所有属于集合A或属于集合B的元素所组成的集合称为集合A 与B的并集,记作A∪B(读作"A并B");
(2)并集的符号表示
A∪B={x|x∈A或x∈B}.
并集定义的数学表达式中"或"字的意义应引起注意,用它连接的并列成分之间不一定是互相排斥的.
x∈A,或x∈B包括如下三种情况:
①x∈A,但xB;②x∈B,但xA;③x∈A,且x∈B.
由集合A中元素的互异性知,A与B的公共元素在A∪B中只出现一次,因此,A∪B是由所有至少属于A、B两者之一的元素组成的集合.
例如,设A={3,5,6,8},B={4,5,7,8},则A∪B={3,4,5,6,7,8},而不是{3,5,6,8,4,5,7,8}.
2.交集
利用下图类比并集的概念引出交集的概念.
(1)交集的定义
由属于集合A且属于集合B的所有元素组成的集合,称为A与B 的交集,记作A∩B(读作"A交B").
(2)交集的符号表示
A∩B={x|x∈A且x∈B}.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学必修2知识点1. 多面体的面积和体积公式名称 侧面积(S 侧) 全面积(S 全) 体 积(V ) 棱 柱 棱柱 直截面周长×l S 侧+2S 底S 底·h=S 直截面·h 直棱柱 ChS 底·h棱 锥棱锥 各侧面面积之和S 侧+S 底S 底·h正棱锥 ch ′ 棱 台棱台各侧面面积之和S 侧+S 上底+S 下底h (S 上底+S 下底+)正棱台(c+c ′)h ′表中S 表示面积,c ′、c 分别表示上、下底面周长,h 表示高,h ′表示斜高,l 表示侧棱长。
2. 旋转体的面积和体积公式名称 圆柱 圆锥 圆台 球 S 侧 2πrl πrl π(r1+r2)l S 全2πr (l+r )Πr (l+r )π(r1+r2)l+π(r21+r22)4πR2V πr2h (即πr2l )πr2h πh (r21+r1r2+r22) πR3表中l 、h 分别表示母线、高,r 表示圆柱、圆锥与球冠的底半径,r1、r2分别表示圆台上、下底面半径,R 表示半径。
3、平面的特征:平的,无厚度,可以无限延展.4、平面的基本性质:公理1、若一条直线上的两点在一个平面内,那么这条直线在此平面内. ,,,l l l αααA∈B∈A∈B∈⇒⊂公理2、过不在一条直线上的三点,有且只有一个平面.,,,,,C C ααααA B ⇒A∈B∈∈三点不共线有且只有一个平面使公理3、若两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.l l αβαβP∈⇒=P∈且推论1、经过一条直线和直线外的一点,有且只有一个平面. 推论2、经过两条相交直线,有且只有一个平面. 推论3、经过两条平行直线,有且只有一个平面.公理4、平行于同一条直线的两条直线互相平行. //,////a b b c a c ⇒5、等角定理:空间中若两个角的两边分别对应平行,那么这两个角相等或互补.推论:若两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等.6、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行. 数学符号表示:,,////a b a b a ααα⊄⊂⇒直线与平面平行的性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行. 数学符号表示://,,//a a b a b αβαβ⊂=⇒7、平面与平面平行的判定定理:(1)一个平面内的两条相交直线与另一个平面平行,则这两个平面平行. 数学符号表示:,,,//,////a b a b a b ββαααβ⊂⊂=P ⇒ (2)垂直于同一条直线的两个平面平行. 符号表示:,//a a αβαβ⊥⊥⇒ (3)平行于同一个平面的两个平面平行.符号表示://,////αγβγαβ⇒面面平行的性质定理:(1)若两个平面平行,那么其中一个平面内的任意直线均平行于另一个平面. //,//a a αβαβ⊂⇒ (2)若两个平行平面同时和第三个平面相交,那么它们的交线平行. //,,//a b a b αβαγβγ==⇒8、直线与平面垂直的判定定理:(1)一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直. 数学符号表示:,,,,m n m n l m l n l ααα⊂⊂=A ⊥⊥⇒⊥(2)若两条平行直线中一条垂直于一个平面,那么另一条也垂直于这个平面. //,a b a b αα⊥⇒⊥(3)若一条直线垂直于两个平行平面中一个,那么该直线也垂直于另一个平面.//,a a αβαβ⊥⇒⊥直线与平面垂直的性质定理:垂直于同一个平面的两条直线平行.,//a b a b αα⊥⊥⇒9、两个平面垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直. ,a a βααβ⊥⊂⇒⊥ 平面与平面垂直的性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直. 数学符号表示:,,,b a a b a αβαβαβ⊥=⊂⊥⇒⊥10、直线的倾斜角和斜率:(1)设直线的倾斜角为α()0180α≤<,斜率为k ,则tan 2k παα⎛⎫=≠ ⎪⎝⎭.当2πα=时,斜率不存在. (2)当090α≤<时,0k ≥;当90180α<<时,0k <. (3)过111(,)P x y ,222(,)P x y 的直线斜率212121()y y k x x x x -=≠-.11、两直线的位置关系:两条直线111:l y k x b =+,222:l y k x b =+斜率都存在,则: (1)1l ∥2l ⇔12k k =且12b b ≠(2)12121l l k k ⊥⇔⋅=-(当1l 的斜率存在2l 的斜率不存在时12l l ⊥) (3)1l 与2l 重合⇔12k k =且12b b =12、直线方程的形式:(1)点斜式:()00y y k x x -=-(定点,斜率存在) (2)斜截式:y kx b =+(斜率存在,在y 轴上的截距) (3)两点式:1121212121(,)y y x x y y x x y y x x --=≠≠--(两点) (4)一般式:()2200x y C A B A +B += +≠(5)截距式:1x ya b+=(在x 轴上的截距,在y 轴上的截距) 13、直线的交点坐标:设11112222:0,:0l A x B y c l A x B y c ++=++=,则: (1)1l 与2l 相交1122A B A B ⇔≠;(2)1l ∥2l 111222A B C A B C ⇔=≠;(3)1l 与2l 重合111222A B C A B C ⇔==. 14、两点111(,)P x y ,222(,)P x y间的距离公式12PP =原点()0,0O 与任一点(),x y P的距离OP =15、点000(,)P x y 到直线:0l x y C A +B +=的距离d =(1)点000(,)P x y 到直线:0l x C A +=的距离0Ax Cd A +=(2)点000(,)P x y 到直线:0l y C B +=的距离0By Cd B+=(3)点()0,0P 到直线:0l x y C A +B +=的距离d =16、两条平行直线10x y C A +B +=与20x y C A +B +=间的距离d =17、过直线1111:0l A x B y c ++=与2222:0l A x B y c ++=交点的直线方程为()111222()()0A x B y C A x B y c R λλ+++++=∈18、与直线:0l x y C A +B +=平行的直线方程为()0x y D C D A +B +=≠ 与直线:0l x y C A +B +=垂直的直线方程为0x y D B -A += 19、中心对称与轴对称:(1)中心对称:设点1122(,),(,)P x y E x y 关于点00(,)M x y 对称,则12012022x x x y y y +⎧=⎪⎪⎨+⎪=⎪⎩(2)轴对称:设1122(,),(,)P x y E x y 关于直线:0l x y C A +B +=对称,则: a 、0B =时,有122x x C A +=-且12y y =; b 、0A =时,有122y y CB+=-且12x x = c 、0A B ⋅≠时,有12121212022y y Bx x Ax x y y A B C -⎧=⎪-⎪⎨++⎪⋅+⋅+=⎪⎩20、圆的标准方程:222()()x a y b r -+-=(圆心(),A a b ,半径长为r )圆心()0,0O ,半径长为r 的圆的方程222x y r +=。
21、点与圆的位置关系:设圆的标准方程222()()x a y b r -+-=,点00(,)M x y ,将M 带入圆的标准方程,结果>r2在外,<r2在内 22、圆的一般方程:()2222040x y Dx Ey F D E F ++++=+-> (1)当2240D E F +->时,表示以,22D E ⎛⎫-- ⎪⎝⎭为半径的圆;(2)当2240D E F +-=时,表示一个点,22D E ⎛⎫-- ⎪⎝⎭;(3)当2240D E F +-<时,不表示任何图形. 23、直线与圆的位置关系:几何角度:圆心到直线的距离与半径大小比较;或代数角度:带入方程组算△>0、=0、<0 .24、圆与圆的位置关系:几何角度判断(圆心距与半径和差的关系)(1)相离1212C C r r ⇔>+; (2)外切1212C C r r ⇔=+; (3)相交121212r r C C r r ⇔-<<+; (4)内切1212C C r r ⇔=-; (5)内含1212C C r r ⇔<-. 25、过两圆221110x y D x E y F ++++=与222220x y D x E y F ++++=交点的圆的方程2222111222()()0x y D x E y F x y D x E y F λ+++++++++=(1)λ≠-.当1λ=-时,即两圆公共弦所在的直线方程.26、点1111(,,)P x y z ,2222(,,)P x y z 间的距离12PP =。