三相异步电动机的起动课程实践

合集下载

三相异步电动机实训心得(精品5篇)

三相异步电动机实训心得(精品5篇)

三相异步电动机实训心得(精品5篇)三相异步电动机实训心得篇1三相异步电动机实训心得时光荏苒,转眼间我们已经度过了数个学期,其中也包括了多个与三相异步电动机相关的实训课程。

在这个过程中,我收获了无数的宝贵经验和知识,也更加深刻地理解了三相异步电动机的工作原理和应用技巧。

以下是我对此次实训的详细心得体会。

首先,我对三相异步电动机的认知和掌握更进了一层。

在实训课程中,我们通过实践操作和理论学习相结合的方式,深入了解了三相异步电动机的构造、工作原理和特性。

我明白了三相异步电动机的转子是由磁场和绕组构成的,而转子的转动离不开这个磁场的驱动。

此外,我也了解了三相异步电动机在交流电机中的重要地位和广泛应用。

其次,我在实训过程中提高了解决问题的能力。

当电动机出现故障时,我们通过检查和诊断,找出了问题所在,并采取了有效的解决办法。

这种方法的学习使我掌握了如何有效地分析和解决实际问题。

此外,实训课程也培养了我的团队协作能力。

在团队项目中,我学会了如何与团队成员有效地沟通和协作,共同解决问题,也更加懂得如何在团队中发挥自己的作用。

最后,实训课程也让我对未来有了更明确的规划。

我认识到,无论是在学术研究还是实际工作中,三相异步电动机都有着广泛的应用场景和重要的地位。

我期待未来能够在这一领域中做出更多的贡献。

总之,这些实训课程使我对三相异步电动机有了更深入的了解和掌握,也让我明白了在未来的学习和工作中如何更好地应用这些知识和经验。

这次实训经历将成为我人生中宝贵的财富。

三相异步电动机实训心得篇2三相异步电动机实训心得在实训的过程中,我不仅学到了很多关于专业知识,而且还交到了一些好朋友,师傅领进门,修行靠自身,虽然有的时候我感觉到很累,但是我坚持住了,我从最初的兴趣爱好电动机到现在的我,我觉得我自己在成长,在不断的进步,我感谢老师,也感谢同学,实训让我知道理论与实训是相结合的,仅有理论没有很好的实践是不行的,仅有实践没有很好地理论依据也是不行的,我努力了,我进步了!首先,在刚来到车间开始实训的时候,我们什么也不会,车间里也认准了我们,让我们从头开始,从最基本的开始学起,当看到别人做的时候,他们的工作服上都有很多电火花和烧焦的黑色,这让我很担心,害怕自己会发生一样的情况,也让我认清了自己该做什么,不该做什么,也让我知道了我还有很大的差距,在开始的时候,我们都是好奇的围在电动机旁边,看着他们是怎么运转的,看着电动机的内部结构,让我们对它有了一个初步的了解,但是,我们想当然的认为里面只有电动机,其实,里面还有很小的电容,还有电线,在实习了几天后,我们就开始接触实际了,电动机,变频器,接触器,配电盘,变压器,等等,这些让我们开始了解了电路,让我们知道电动机的工作原理和构造,也让我们知道了一些简单的维修方法,刚开始,师傅把一个带电的直流电动机拿给我们,让我们看,让我们记,让我们摸,让我们去感受它,让我们知道它是有正负极的,当摸到正极的时候,手感觉特别的刺激,而负极却感觉特别的软,在开始的时候,我们还不知道,还继续摸,结果,大家都知道了,哈哈,但是,我并没有恨意,我记住了,实训中最重要的是安全,实训中,大家都很积极,实训中,大家都很团结,实训中,大家都很上进,实训中,让我知道当拿到一样东西的时候,我们首先要了解它,其次,在了解的基础上,我们要学会使用它,最后,就是要好好地维护它!实训的日子很艰苦,很辛苦,但是,却让我学到了很多的东西,让我知道了很多的东西,让我成熟了很多,也让我明白了很多,我以后一定会更加努力,好好地学习,为自己的以后打下一个好的基础!三相异步电动机实训心得篇3三相异步电动机实训心得时光荏苒,转眼间我们的课程已经进入实习阶段。

三相笼型异步电动机点动控制线路教案

三相笼型异步电动机点动控制线路教案

三相笼型异步电动机点动控制线路教案一、教学目标:1. 了解三相笼型异步电动机点动控制线路的基本原理。

2. 学会点动控制线路的安装与调试。

3. 能够分析并解决点动控制线路的常见故障。

二、教学内容:1. 三相笼型异步电动机点动控制线路的基本原理。

2. 点动控制线路的安装与调试步骤。

3. 点动控制线路的常见故障分析与解决方法。

三、教学准备:1. 准备三相笼型异步电动机及其控制设备。

2. 准备相关工具和仪器设备,如螺丝刀、扳手、电压表、电流表等。

3. 准备教学PPT或教案。

四、教学过程:1. 引入新课:通过讲解三相笼型异步电动机的工作原理及其应用,引出点动控制线路的重要性。

2. 讲解点动控制线路的基本原理:讲解点动控制线路的工作原理,包括控制电路和主电路的连接方式,以及各个元件的作用。

3. 演示点动控制线路的安装与调试:通过实际操作,演示点动控制线路的安装与调试过程,包括接线、检查电路、通电测试等步骤。

4. 分析并解决点动控制线路的常见故障:通过案例分析,讲解点动控制线路的常见故障及其原因,并提供解决方法。

5. 课堂小结:总结点动控制线路的特点、安装与调试要点,以及故障处理方法。

五、教学评价:1. 学生能准确描述三相笼型异步电动机点动控制线路的基本原理。

2. 学生能够熟练进行点动控制线路的安装与调试。

3. 学生能够分析并解决点动控制线路的常见故障。

教学反思:在教学过程中,要注意理论与实践相结合,让学生通过实际操作来加深对点动控制线路的理解。

要关注学生的学习情况,及时解答学生的疑问,确保学生能够掌握点动控制线路的相关知识。

六、教学活动:1. 小组讨论:学生分组讨论点动控制线路在实际应用中的案例,分享各自的学习心得。

2. 提问与解答:学生提问,教师解答,针对点动控制线路的安装、调试及故障处理环节进行深入探讨。

3. 实践操作:学生分组进行点动控制线路的安装与调试,教师巡回指导,确保每位学生都能掌握操作要领。

七、教学拓展:1. 对比分析:引导学生分析点动控制线路与其他控制线路(如自锁控制线路、多地控制线路等)的异同,提高学生的综合分析能力。

三相异步电动机正反转控制线路教案

三相异步电动机正反转控制线路教案

三相异步电动机正反转控制线路教案一、教学目标1. 了解三相异步电动机的结构和工作原理。

2. 掌握三相异步电动机的正反转控制线路的构成和原理。

3. 学会使用控制器、接触器、继电器等元器件搭建三相异步电动机的正反转控制线路。

4. 能够对三相异步电动机的正反转控制线路进行调试和故障排除。

二、教学内容1. 三相异步电动机的结构和工作原理。

2. 三相异步电动机的正反转控制线路的构成和原理。

3. 控制器、接触器、继电器等元器件的作用和选用。

4. 三相异步电动机正反转控制线路的搭建和调试方法。

5. 三相异步电动机正反转控制线路的故障排除方法。

三、教学方法1. 采用讲授法,讲解三相异步电动机的结构、工作原理、正反转控制线路的构成和原理等基本知识。

2. 采用演示法,展示三相异步电动机正反转控制线路的搭建和调试过程。

3. 采用实践法,让学生动手搭建和调试三相异步电动机的正反转控制线路,增强实践操作能力。

四、教学准备1. 教室内设置多媒体设备,用于展示图片、视频等教学资源。

2. 准备三相异步电动机、控制器、接触器、继电器等元器件。

3. 准备教学PPT,内容包括三相异步电动机的结构、工作原理、正反转控制线路的构成和原理等。

五、教学过程1. 导入新课:通过展示三相异步电动机的实物图片,引导学生思考三相异步电动机的结构和作用。

2. 讲解基本知识:讲解三相异步电动机的结构、工作原理、正反转控制线路的构成和原理。

3. 演示搭建过程:展示三相异步电动机正反转控制线路的搭建过程,讲解控制器、接触器、继电器等元器件的作用和选用。

4. 学生动手实践:让学生分组动手搭建和调试三相异步电动机的正反转控制线路,教师巡回指导。

5. 总结和拓展:总结本节课所学内容,布置课后作业,拓展学生对三相异步电动机正反转控制线路的应用场景的了解。

教学反思:在授课过程中,要注意理论联系实际,让学生通过动手实践加深对三相异步电动机正反转控制线路的理解。

要注意观察学生的反应,适时调整教学节奏和难度,确保学生能够跟上教学进度。

电工实验报告—异步电动机

电工实验报告—异步电动机

实验三 三相鼠笼异步电动机一、 实验目的 1. 熟悉三相鼠笼式异步电动机的结构和额定值。

2. 学习检查异步电动机绝缘情况的方法。

3. 学习三相异步电动机定子绕组首、末端的判别方法。

4.掌握三相鼠笼式异步电动机的启动和反转方法。

二、 原理说明 1.三相鼠笼式异步电动机的结构异步电动机是基于电磁原理把交流电能转换为机械能的一种旋转电机。

三相鼠笼式异步电动机的基本结构有定子和转子两大部分。

定子主要有定子铁芯、三相对称定子绕组和机座等组成,是电动机的静止部分。

三相定子绕组一般有六根引出线,出线端装在机座外面的接线盒内,如图A 所示,根据三相电压的不同,三相定子绕组可以接成星型或三角形,然后与三相电源相连。

转子主要有转子铁芯、转轴、鼠笼式转子绕组、风扇等组成,是电动机的旋转部分。

小容量三相鼠笼式异步电动机的转子绕组多采用图 A铝浇铸而成,冷却方式一般为扇冷式。

2.三相鼠笼式异步电动机的铭牌三相式异步电动机的额定值标记在电动机的铭牌上,如下表所示为本实验装置三相鼠笼式异步电动机铭牌。

3.三相鼠笼式异步电动机的检查电动机使用前应作必要检查 (1) 机械检查检查引出线是否齐全、牢靠;转子转动是否灵活、匀称、有否异常声响等。

(2) 电气检查a. 用兆欧表检查电机绕组间及绕组与机壳之间的绝缘性能电动机的绝缘电阻可以用兆欧表进行测量。

对额定压1KV 以下的电动机,其绝缘电阻最低不小于1000Ω/V 。

b. 定子绕组首、末端判断 4.三相鼠笼式异步电动机的启动三相鼠笼式异步电动机的直接启动电流可以达到额定电流的4~7图 B倍,但持续很短,不至于引起电机过热而烧坏。

但对容量过大的电动机,直接启动会引起电网电压下降而影响其他电器的使用,通常采取星型换三角型启动方法,它可使电流降低为直接启动电流的1/3。

5.三相鼠笼式异步电动机的反转异步电动机的旋转方向取决于三相电源接入定子绕组的相序,故只要改变三相电源与定子绕组联接的相序就可使电动机改变旋转方向。

三相异步电动机的结构和工作原理教案_电子电路_工程科技_专业资料

三相异步电动机的结构和工作原理教案_电子电路_工程科技_专业资料

三相异步电动机的结构和工作原理教案一、教学目标1. 了解三相异步电动机的结构组成,包括定子、转子、外壳、轴承、端盖等部分。

2. 掌握三相异步电动机的工作原理,包括电磁感应、转子滑差、旋转磁场等概念。

3. 能够分析三相异步电动机的启动、运行、制动过程中的物理现象。

4. 能够运用所学知识对三相异步电动机进行简单的故障分析和维修。

二、教学内容1. 三相异步电动机的结构组成:定子、转子、外壳、轴承、端盖等部分的功能和作用。

2. 三相异步电动机的工作原理:电磁感应、转子滑差、旋转磁场等概念的解释和应用。

3. 三相异步电动机的启动过程:星形接法、三角形接法、自耦变压器启动等方法的原理和应用。

4. 三相异步电动机的运行过程:负载特性、效率、功率因素等参数的计算和分析。

5. 三相异步电动机的制动过程:能耗制动、反接制动、回馈制动等方法的原理和应用。

三、教学方法1. 采用讲授法,讲解三相异步电动机的结构组成、工作原理、启动、运行和制动过程。

2. 利用动画和实物模型展示三相异步电动机的工作原理和启动、运行、制动过程。

3. 开展小组讨论,分析三相异步电动机的故障现象和维修方法。

4. 进行实践操作,让学生动手接线和调试三相异步电动机。

四、教学条件1. 教室环境:宽敞、明亮、安静,配备多媒体教学设备。

2. 教学设备:三相异步电动机、示教板、实验台、工具等。

3. 教学资料:教材、教案、课件、实验指导书等。

五、教学评价1. 课堂问答:检查学生对三相异步电动机结构、工作原理、启动、运行和制动过程的理解程度。

2. 课后作业:布置相关题目,巩固学生对三相异步电动机知识的学习。

3. 实践操作:评估学生在实际操作中运用三相异步电动机知识的能力。

六、教学重点与难点教学重点:1. 三相异步电动机的结构组成和工作原理。

2. 三相异步电动机的启动、运行和制动过程。

教学难点:1. 电磁感应、转子滑差、旋转磁场等概念的理解和应用。

2. 三相异步电动机故障分析和维修方法的运用。

电工电子技术实验

电工电子技术实验

电工电子技术实验实验须知:电工电子技术实验是电工电子技术课程重要的实践教学环节,一方面帮助学生巩固、加深对理论知识的理解,提高分析解决问题的能力,另一方面使学生得到电工电子技术方面实践技能的基本训练,培养学生的动手能力。

学生在每次实验之前,必须认真预习,明确实验目的,理解实验原理,掌握实验步骤,了解实验所需的设备和仪器、仪表的规格、使用条件和使用方法。

实验过程中,必须严格遵守实验室的各项规章制度和安全操作规程,认真进行实践操作,严格遵守“先接线后通电、先断线后拆线”的操作程序,重视人身和设备的安全,服从指导老师的指导。

实验结束后,需将实验数据经指导老师检查后,方可拆除电路,并在做好仪器设备的整理和环境清洁工作后,方可离开。

实验结束后,要认真整理分析实验数据,写出数据真实、条理清楚、内容完整的实验报告。

实验报告包括:实验目的、实验原理、实验设备、实验步骤、实验数据、数据处理、分析讨论、体会建议。

实验1 基尔霍夫定律的验证一、实验目的1、验证基尔霍夫定律,加深对定律的理解;2、使用练习控制屏上的电压表、电流表,为以后实验作准备;二、实验基本原理基尔霍夫电流定律KCL说明了电路中某一节点中各电流之间的相互关系。

定律指出:在任何瞬间,流入和流出任一节点的电流代数和恒等于零。

用数学式子表达为:∑I=KCL不仅使用于任一节点,而且可以推广应用到电流的某一闭合面。

基尔霍夫电压定律KVL说明了电路中任一闭合回路中各部分电压之间的相互关系。

定律指出:在任一瞬间环绕电路中任一闭合回路,所得各段电压的代数和恒等于零。

数学表达式为:∑U=三、实验设备1、直流稳压电源(6V、12V切换)1个、可调直流稳压电源(0-30V)1个。

2、直流数字电压表1个、直流数字毫安表1个。

3、DJG-3电压、电位测定实验板。

四、实验内容1、按DGJ-03上的叠加原理实验线路连线。

如图1-1所示。

E 1E 2+-+-45图1-1 基尔霍夫定律和叠加定律实验电路图2、任意设定各支路电流的参考方向。

三相异步电动机的结构和工作原理教案_电子电路_工程科技_专业资料

三相异步电动机的结构和工作原理教案_电子电路_工程科技_专业资料

三相异步电动机的结构和工作原理教案一、教学目标1. 了解三相异步电动机的基本结构及其各部分的功能。

2. 掌握三相异步电动机的工作原理,并能解释其运行特点。

3. 能够分析三相异步电动机的启动、制动和调速方法。

二、教学内容1. 三相异步电动机的结构1.1 定子1.2 转子1.3 轴承1.4 端盖2. 三相异步电动机的工作原理2.1 旋转磁场的作用2.2 转子感应电流的产生2.3 电磁转矩的形成2.4 电动机的运行特性3. 三相异步电动机的启动、制动和调速3.1 直接启动3.2 减压启动3.3 变频调速3.4 电磁制动三、教学方法1. 采用讲授法,讲解三相异步电动机的结构、工作原理及其启动、制动和调速方法。

2. 利用动画或实物模型展示三相异步电动机的内部结构,增强学生的直观感受。

3. 进行案例分析,让学生参与讨论,提高学生的实际操作能力。

四、教学准备1. 准备三相异步电动机的实物模型或动画演示。

2. 准备相关教材、PPT课件和教学案例。

五、教学过程1. 引入新课:简要介绍三相异步电动机在生产和生活中的应用,激发学生的学习兴趣。

2. 讲解结构:讲解三相异步电动机的各部分结构和功能,引导学生了解电动机的基本构成。

3. 阐述原理:详细讲解三相异步电动机的工作原理,让学生理解电动机是如何工作的。

4. 分析特性:分析三相异步电动机的运行特性,让学生掌握电动机的性能指标。

5. 讨论应用:分组讨论三相异步电动机的启动、制动和调速方法,分享各自的学习心得。

6. 总结提升:总结本节课的主要内容,强调三相异步电动机在工程科技领域的重要性。

7. 课后作业:布置相关习题,巩固所学知识,提高学生的实际应用能力。

六、教学拓展1. 对比分析三相异步电动机与其他类型电动机的优缺点。

2. 探讨三相异步电动机在能效和环保方面的优势。

七、实践操作1. 安排学生参观三相异步电动机的实际运行现场,观察其运行状态。

2. 指导学生进行三相异步电动机的简单故障排查和维修操作。

三相异步电动机实习报告

三相异步电动机实习报告

三相异步电动机实习报告
本次实习主要内容是关于三相异步电动机的相关知识和实际操作,通过实习的
学习和实践,我对三相异步电动机有了更深入的了解和掌握。

首先,我对三相异步电动机的结构和工作原理有了更清晰的认识。

三相异步电
动机是利用三相交流电源产生旋转磁场,从而驱动转子转动,实现机械能转换的装置。

它由定子和转子两部分组成,定子上绕制有三组对称分布的线圈,通以三相交流电源,形成旋转磁场;转子则是感应电动机的转子,通过旋转磁场感应产生转矩,带动机械装置转动。

其次,我学习了三相异步电动机的运行特性和控制方法。

在实践操作中,我了
解到三相异步电动机的运行特性受到电压、频率和负载的影响,需要根据实际情况进行合理的控制和调节。

同时,我还学习了三相异步电动机的启动方法、调速方法和制动方法,这些方法对于实际工程应用具有重要意义。

最后,通过实习,我还深刻体会到了安全操作和维护保养的重要性。

在实际操
作中,我严格遵守操作规程,正确使用设备,做好设备的维护保养工作,确保设备的安全运行。

通过本次实习,我对三相异步电动机有了更深入的了解和掌握,不仅提高了自
己的专业能力,也为以后的工作打下了坚实的基础。

相信在今后的工作中,我会更加努力,不断学习,不断进步,为公司的发展贡献自己的力量。

三相异步电动机实习报告

三相异步电动机实习报告

三相异步电动机实习报告在本次实习中,我主要负责了三相异步电动机的实验研究和数据分析。

三相异步电动机作为一种常见的电动机,广泛应用于工业生产中,具有运行可靠、维护方便、成本低廉等优点。

通过本次实习,我对三相异步电动机的结构、工作原理以及性能特点有了更深入的了解。

首先,我对三相异步电动机的结构进行了学习和实际操作。

三相异步电动机主要由定子和转子两部分组成,定子上绕有三组对称分布的绕组,而转子则是由导体材料制成的。

在实验中,我通过拆解和组装电动机的过程,深入了解了电动机内部各个部件的结构和功能,对电动机的工作原理有了更清晰的认识。

其次,我进行了三相异步电动机的性能测试和数据分析。

在实验室中,我通过连接电路、调节参数等操作,成功实现了对电动机的启动、调速、制动等控制。

通过测量电动机的转速、电流、功率因数等参数,并利用相关仪器进行数据记录和分析,我得出了电动机在不同工况下的性能曲线和特性参数。

这些数据为我进一步了解电动机的运行规律和性能特点提供了重要依据。

最后,我对实验结果进行了总结和分析。

通过对实验数据的分析,我发现电动机的效率随着负载的增加而逐渐降低,而功率因数则随着负载的增加而提高。

同时,我还发现在不同的工作条件下,电动机的运行状态和性能表现存在一定的差异。

这些结论对于进一步优化电动机的运行控制和提高其效率具有一定的指导意义。

通过本次实习,我不仅对三相异步电动机有了更深入的了解,同时也提高了自己的实际操作能力和数据分析能力。

在未来的工作中,我将继续努力,不断提升自己的专业技能,为电动机及其控制系统的研究和应用做出更大的贡献。

总之,本次实习使我受益匪浅,对三相异步电动机有了更深入的了解,也提高了自己的实践操作能力和数据分析能力。

希望在今后的学习和工作中能够继续努力,不断提升自己的专业能力,为电动机及其控制系统的研究和应用做出更大的贡献。

三相异步电动机教案(精)

三相异步电动机教案(精)

三相异步电动机教案(精)教案:三相异步电动机教学内容:本节课的教学内容主要包括教材中的第四章第二节,即三相异步电动机的基本原理、结构、特性及应用。

具体内容包括:1. 三相异步电动机的原理:电磁感应原理、旋转磁场原理。

2. 三相异步电动机的结构:定子、转子、端盖、轴承等。

3. 三相异步电动机的特性:启动特性、运行特性、调速特性等。

4. 三相异步电动机的应用:工业生产、日常生活等。

教学目标:1. 使学生了解和掌握三相异步电动机的基本原理、结构、特性及应用。

2. 培养学生分析和解决实际问题的能力,提高学生的实践操作技能。

3. 培养学生团队合作精神,提高学生的沟通与协作能力。

教学难点与重点:难点:三相异步电动机的启动原理和调速方法。

重点:三相异步电动机的结构、特性和应用。

教具与学具准备:1. 教具:三相异步电动机实物、电路图、多媒体教学设备等。

2. 学具:笔记本、课本、练习题等。

教学过程:1. 实践情景引入:观察和分析周围环境中三相异步电动机的应用实例,引导学生对三相异步电动机产生兴趣和好奇心。

2. 基础知识讲解:介绍三相异步电动机的原理、结构、特性及应用,通过示例和图示使学生理解和掌握。

3. 例题讲解:分析三相异步电动机的启动原理和调速方法,通过实际案例使学生深入理解和掌握。

4. 随堂练习:布置一些相关的练习题,让学生运用所学知识进行解答,巩固所学内容。

5. 小组讨论:让学生分组讨论三相异步电动机的应用场景和实际问题,培养学生的团队合作和沟通能力。

板书设计:板书设计要清晰、简洁,主要包括三相异步电动机的原理、结构、特性及应用等内容,以便学生随时查阅和复习。

作业设计:1. 请简述三相异步电动机的原理。

2. 请描述三相异步电动机的结构。

3. 请说明三相异步电动机的特性。

4. 请举例说明三相异步电动机的应用场景。

课后反思及拓展延伸:本节课通过讲解和练习,使学生了解了三相异步电动机的基本原理、结构、特性及应用。

三相异步电动机Y-△降压起动的控制设计

三相异步电动机Y-△降压起动的控制设计

三相异步电动机Y-△降压起动的控制设计《电⽓控制与PLC应⽤》课程设计说明书设计题⽬:三相异步电动机Y-△换接起动控制设计专业及班级:XXX指导教师:XXX学⽣姓名:XXX学号:XXXX设计时间:XXXXXXXX⽬录⼀、设计题⽬ (1)⼆、控制要求 (1)三、设计内容 (1)1、设计原理 (1)2、I/O配置接线图 (2)3、⼯作过程 (3)4、程序设计梯形图 (4)5、程序设计指令图 (4)6、元件介绍 (4)总结 (8)参考⽂献 (9)⼀、设计题⽬利⽤三菱可编程控制器实现三相异步电动机Y-△降压起动的控制设计。

⼆、控制要求接触器1KM~3KM的作⽤分别是控制电源、Y形起动、△运⾏。

①按下起动按钮SB2后,电动机M先作Y起动,10s钟后⾃动转换为△运⾏。

②若任何情况下外部按下停⽌按钮SB1或热继电器FR动作时,都会导致电动机停⽌。

三、设计内容1、设计原理容量较⼤的电动机。

通常采⽤降压启动⽅式。

降压启动的⽅式很多,有星三⾓启动,⾃耦降压启动,串联电抗器降压启动,延边三⾓形启动等。

本⽂介绍电动机的星三⾓(Y⼀△)启动⽅式。

所谓Y⼀△启动,是指启动时电动机绕组接成星形,启动结束进⼊运⾏状态后,电动机绕组接成三⾓形。

在启动时。

电机定⼦绕组因是星形接法,所以每相绕组所受的电压降低到运⾏电压的57.7%,启动电流为直接启动时的1/3,启动转矩也同时减⼩到直接启动的1/3。

所以这种启动⽅式只能⼯作在空载或轻载启动的场合。

电动机Y-△启动的电路图,U1-U2、V2-V2、Wl-W2是电动机M的三相绕组。

如果将U2、V2和W2在接线盒内短接则电动机被接成星形;如果将U1和W2、V1和U2、W1和V2分别短接,则电动机被接成三⾓形。

实现电动机的Y-△启动控制电路见图1。

图1 2、I/O配置接线图图2 I/O配置接线图表1 I/O配置表2 硬件配置表3、⼯作过程按下启动按钮SB1,接触器KM3线圈得电,KM3的主触点闭合,KM3辅助触点(常开)闭合,接触器KM1和时间继电器的线圈得电,KM1主触点闭合,将电动机的三相绕组接成星形,电动机进⼊星形启动状态;KM1的辅助触点KM1-1闭合,使电路维持在启动状态。

三相异步电动机星三角降压启动控制教学项目设计

三相异步电动机星三角降压启动控制教学项目设计

www�ele169�com | 79实验研究1 项目背景在应用型本科院校《电气控制与PLC》这门课是电气工程自动化类、机械工程自动化、工业控制类等工科专业的一门比较重要的专业必修课,这门课程的实践教学更侧重培养学生的逻辑思考和动手操作能力;以三相异步电动机星三角降压启动实验项目为例,学生需要掌握继电器接触器控制和PLC 控制两种控制方式以及二者的区别和联系。

2 项目内容■2.1 三相异步电动机减压启动大功率的电动机采用全压启动时会产生过大的启动电流,电网电压波动比较大,影响电网内其它负载用电设备的正常运行,通常三相鼠笼型异步电机的启动电流是运行电流的4-7倍,而电网对电压要求一般是正负10%,为了使电动机启动电流不对电网电压形成过大的冲击,需要对这些大功率电动机进行减压启动。

根据减压措施的不同,工业上常用的减压启动方法有星三角降压启动、定子串电阻减压启动、自耦变压器减压启动以及延边三角形减压启动等。

■2.2 星形连接和三角形连接星三角降压启动的电动机三相定子绕组共有六个外接端子:A-X、B-Y、C-Z (以额定电压为380V 的三相鼠笼型异步电动机为例)。

星形启动:X-Y-Z 相连,A、B、C 三个端子接三相交流电压380V,此时每相绕组电压为220V,较直接启动时每相绕组电压380V 相比,启动电流大为降低,避免了过大的启动电流对电网形成的冲击。

此时的转矩相对较小,但电动机可达到一定的转速。

三角形运行:经星形启动电动机持续一段时间(约几十秒钟)达到一定的转速后,交流接触器开关把六个接线端子转换成三角形连接并再次接到380V 电源时,每相绕组电压为380V,转矩和转速大大提高,电动机进入额定条件下的运行过程。

■2.3 星三角降压启动的条件首先电动机满足380V/Δ接线条件,正常运行时定子绕组接线方式是三角形联结的电动机才能采用星三角降压启动方法。

电动机定子绕组接成星形接法起动时,起动电流是三角形接法直接起动时的1/3,起动电流降低了,起动转矩也降为三角形接法直接起动时的1/3,所以星三角降压启动适用于空载或者轻载起动的场合。

三相异步电动机Y-△降压启动控制线路-教学设计

三相异步电动机Y-△降压启动控制线路-教学设计

课程:西门子S7-200PLC定时器、计数器的应用课题:三相异步电动机Y-△降压启动控制线路2、断开延时定时器(TOF)输入端(IN)接通时,定时器位立即为“1”,并把当前值设为0。

输入端(IN)断开时,定时器开始计时,当断开延时定时器(TOF)的计时当前值等于设定时间时,定时器位断开为“0”,并且停止计时。

TOF指令必须用负跳变(由on到off)的输入信号启动计时。

3、有记忆功能的接通延时型定时器(TONR)输入端(IN)接通时,接通有记忆接通延时定时器(TONR),并开始计时,当定时器(TONR)的当前值等于或大于设定值时,该定时器位被置位为“1”。

定时器(TONR)累计值达到设定值后,定时器(TONR)继续计时,一直计到最大值32767。

查阅STEP7-MicroWin软件中有关TOF指令的内容。

查阅STEP7-MicroWin软件中有关TONR指令的内容。

结合STEP7-MicroWin软件的帮助文件,讲解TOF定时器的特点。

结合STEP7-MicroWin软件的帮助文件,讲解TONR定时器的特点。

写出TOF指令的主要特点。

写出TONR指令的主要特点。

输入端(IN)断开时,定时器(TONR)的当前值保持不变,定时器位不变。

输入端(IN)再次接通,定时器当前值从原保持值开始再往上累计时间,继续计时。

可以用定时器(TONR)累计多次输入信号的接通时间。

上电周期或首次扫描时,定时器(TONR)的定时器位为“0”,当前值保持,可利用复位指令(R)清除定时器(TONR)的当前值。

4、应用定时器的注意事项1)不能把一个定时器号同时用作断开延时定时器(TOF)和接通延时定时器(TON)(相当于同一定时器号既用作模拟断电延时型的物理时间继电器功能,又用作模拟通电延时型的物理时间继电器功能)。

2)使用复位(R)指令对定时器复位后,定时器位为“0”,定时器当前值为0。

3)有记忆接通延时定时器(TONR)只能通过复位指仿照教师演示的简单应用程序,自行编程调试,理解三种定时器的工作原理和特点。

三相异步电动机顺启逆停控制电路教学设计

三相异步电动机顺启逆停控制电路教学设计
5min
任务实施
1.原理分析
2.线路的连接
3.功能测试
1.原理分析
三相异步电动机顺启逆停控制电路如图所示,左边为主电路,右边为控制电路。QF是电源开关;KM1为控制M1交流接触器,KM2为控制M2交流接触器;FR1为保护M1的热继电器,FR2为保护M2的热继电器。SB5是控制电动机M1的停止按钮,SB6是控制电动机M2的停止按钮,SB1是控制电动机M1的启动按钮。SB2控制电动机M2的启动按钮。M1、M2是两台三相异步电动机;
7min
课堂小结
小结本次课的主要学习内容
1.组织各组总结,要求学生自主发言;
2.教师总结。
1.小组讨论:总结本次课学习的重点内容,及难点内容,积极发言;
2.听老师发言,做好课堂笔记。
5min
作业布置
巩固提高
布置课堂拓展任务,组织学生整理好学习用品,将教学仪器等摆放规范整齐。
明确任务,按时完成;按照“8S”要求整理工位。
1.学生认真观察教师示范,做好记录;
2.以小组为单位,按照教师示范完成线路的连接。
3以小组为单位,按照教师示范完成电路功能的测试。
45m
检查各小组完成情况
组织学生进行小组评价;请学生就他们的操作情况进行自评,组织学生进行互评,老师进行师评。
1.积极参与评价;
2.听老师的点评。
认真思考老师的问题,积极课堂互动;听讲,做好笔记。
3min
创设分析任务
分析工作场景,思考电动机顺启逆停控制电路的原理图如何设计
创设任务
电动机如何才能够自动循环控制呢?
思考三相异步电动机自动循环控制电路与正反转控制电路相比,电路结构有哪些不同?电路会有哪些改进呢?同学们试着设计该电路的原理图。

三相异步电动机接线实训总结

三相异步电动机接线实训总结

三相异步电动机接线实训总结三相异步电动机接线实训总结实习,我认为最重要就是学会融汇贯通。

所谓融会贯通其实也就是说把课本上所有的知识点全部集中起来变成自己的东西。

因此在今后的学习和生活当中,无论做什么事情或者遇见什么问题都应该首先弄清楚他们之间存在着怎样的联系以及各个环节之间有哪些关键性的知识点。

对课堂上所讲授过的内容有意识地进行提炼、归纳,使它条理化、系统化。

那样不仅能够避免死记硬背,而且还能增强头脑的灵活性,掌握科学的思维方法。

学习也是同样如此,即从宏观到微观,再从微观回到宏观。

看似很繁琐,但若想真正做好却并非易事,需要平时多注意积累与收集信息。

例如,可以制作一个简单的思维导图,以帮助你更加直观明确的去把握书本中的每个章节内容,以便以后更好地复习;利用互联网,把一些零碎的文字,资料集合起来,按照知识点排列顺序,以达到快速查找、高效阅读、深刻记忆的目的。

这次的主要目的是对电机绕组接法进行了解,在老师的指引下熟练掌握实验技巧,在基础课程里运用实际操作来巩固专业课程知识。

毕竟要真正走入工厂并能在工厂里得心应手的运用所学的理论知识,这必须靠长期的经验积累才能够逐渐体现出价值来,在实践中不断检验自身所学知识。

随着实习时间的推移,我发觉我离设计还是比较遥远,不管是知识水平还是设计水平,对产品的整体构造还没有一个完整的概念,只能停留在表面。

还有一个就是平时在校时我们都是理论教学,现场实践的少,到底实践起来差距大吗?有些茫然…第一个星期的时候,老师让我们根据已学过的理论知识画出我们班的设备安装示意图,要求每个人画3-4张。

我拿到图纸,慢慢琢磨,仔细研究,又参考了别人的画法,并借鉴一些优秀作品,试着将自己的想法描绘出来,发现在工艺设计方面和理论学习时有许多的不同。

现场画图比我预期的难度要大得多,花费的时间也多,很难像平时画草图那样凭借想象力轻松完成,有时图上的元器件还需要一个个去测量,最终经过反复修改才能完成任务。

三相笼型异步电动机点动控制线路 教案

三相笼型异步电动机点动控制线路  教案

1. 知识与技能:(1)理解三相笼型异步电动机的点动控制原理;(2)学会点动控制线路的安装与调试;(3)能够分析并解决点动控制过程中的问题。

2. 过程与方法:(1)通过实物演示,观察三相笼型异步电动机的点动过程;(2)动手实践,安装和调试点动控制线路;(3)运用控制原理,分析点动控制过程中的故障。

3. 情感态度与价值观:(1)培养对电气设备的兴趣和好奇心;(2)树立安全操作意识,遵守操作规程;(3)增强团队协作能力,提高动手能力。

二、教学内容1. 三相笼型异步电动机的点动控制原理;2. 点动控制线路的组成及作用;3. 点动控制线路的安装与调试方法;4. 点动控制过程中的故障分析与解决。

三、教学重点与难点1. 重点:三相笼型异步电动机的点动控制原理,点动控制线路的安装与调试。

2. 难点:点动控制过程中的故障分析与解决。

1. 实物演示法:通过实物演示,让学生直观地了解三相笼型异步电动机的点动过程;2. 动手实践法:让学生亲自动手安装和调试点动控制线路,提高操作技能;3. 控制原理分析法:运用控制原理,分析点动控制过程中的故障,培养学生解决问题的能力。

五、教学准备1. 教学器材:三相笼型异步电动机、点动控制线路器材、工具等;2. 教学环境:实验室或实训基地,具备安全操作条件。

六、教学过程1. 引入新课:通过回顾上节课的内容,引导学生进入本节课的学习;2. 讲解点动控制原理:详细讲解三相笼型异步电动机的点动控制原理,让学生理解点动控制的过程;3. 演示点动控制过程:利用实物演示,让学生直观地了解三相笼型异步电动机的点动过程;4. 讲解点动控制线路的组成:介绍点动控制线路的组成部分及其作用;5. 讲解点动控制线路的安装与调试方法:详细讲解点动控制线路的安装步骤和调试方法;6. 动手实践:让学生亲自动手安装和调试点动控制线路,巩固所学知识;7. 故障分析与解决:让学生运用控制原理,分析点动控制过程中的故障,并找出解决方法;8. 总结与评价:对学生的操作技能和解决问题能力进行评价,总结本节课的主要内容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物理与电气工程学院课程实践报告三相异步电动机的起动三相异步电动机的结构与工作原理1.三相异步电动机的构造三相异步电动机的两个基本组成部分为定子(固定部分)和转子(旋转部分)。

此外还有端盖、风扇等附属部分,如图5-1所示。

图 5-1 三相电动机的结构示意图鼠笼式电动机由于构造简单,价格低廉,工作可靠,使用方便,成为了生产上应用得最广泛的一种电动机。

为了保证转子能够自由旋转,在定子与转子之间必须留有一定的空气隙,中小型电动机的空气隙约在0.2~1.0mm之间。

2.三相异步电动机的转动原理1).基本原理为了说明三相异步电动机的工作原理,我们做如下演示实验,如图5-2所示。

图 5-2 三相异步电动机工作原理(1).演示实验:在装有手柄的蹄形磁铁的两极间放置一个闭合导体,当转动手柄带动蹄形磁铁旋转时,将发现导体也跟着旋;若改变磁铁的转向,则导体的转向也跟着改变。

(2).现象解释:当磁铁旋转时,磁铁与闭合的导体发生相对运动,鼠笼式导体切割磁力线而在其内部产生感应电动势和感应电流。

感应电流又使导体受到一个电磁力的作用,于是导体就沿磁铁的旋转方向转动起来,这就是异步电动机的基本原理。

转子转动的方向和磁极旋转的方向相同。

(3).结论:欲使异步电动机旋转,必须有旋转的磁场和闭合的转子绕组。

2).旋转磁场 (1).产生图5-3表示最简单的三相定子绕组AX 、BY 、CZ ,它们在空间按互差1200的规律对称排列。

并接成星形与三相电源U 、V 、W 相联。

则三相定子绕组便通过三相对称电流:随着电流在定子绕组中通过,在三相定子绕组中就会产生旋转磁场(图5-4)。

00sin sin(120)sin(120)U m V mW m i I ti I t i I t ωωω=⎧⎪=-⎨⎪=+⎩图 5-3 三相异步电动机定子接线当ωt=00时,0A i =,AX 绕组中无电流;B i 为负,BY 绕组中的电流从Y 流入B 1流出;C i 为正,CZ 绕组中的电流从C 流入Z 流出;由右手螺旋定则可得合成磁场的方向如图5-4(a )所示。

B当ωt=1200时,0B i =,BY 绕组中无电流;A i 为正,AX 绕组中的电流从A 流入X 流出;C i 为负,CZ 绕组中的电流从Z 流入C 流出;由右手螺旋定则可得合成磁场的方向如图5-4(b )所示。

当ωt=2400时,0C i =,CZ 绕组中无电流;A i 为负,AX 绕组中的电流从X 流入A 流出;B i 为正,BY 绕组中的电流从B 流入Y 流出;由右手螺旋定则可得合成磁场的方向如图5-4(c )所示。

可见,当定子绕组中的电流变化一个周期时,合成磁场也按电流的相序方向在空间旋转一周。

随着定子绕组中的三相电流不断地作周期性变化,产生的合成磁场也不断地旋,因此称为旋转磁场。

(a) ωt = 0° (b) ωt = 120° (c) ωt = 240°XX X(2).旋转磁场的方向旋转磁场的方向是由三相绕组中电流相序决定的,若想改变旋转磁场的方向,只要改变通入定子绕组的电流相序,即将三根电源线中的任意两根对调即可。

这时,转子的旋转方向也跟着改变。

3).三相异步电动机的极数与转速 (1).极数(磁极对数p )三相异步电动机的极数就是旋转磁场的极数。

旋转磁场的极数和三相绕组的安排有关。

当每相绕组只有一个线圈,绕组的始端之间相差1200空间角时,产生的旋转磁场具有一对极,即p=1;当每相绕组为两个线圈串联,绕组的始端之间相差600空间角时,产生的旋转磁场具有两对极,即p=2;同理,如果要产生三对极,即p=3的旋转磁场,则每相绕组必须有均匀安排在空间的串联的三个线圈,绕组的始端之间相差400(=1200/p )空间角。

极数p与绕组的始端之间的空间角θ的关系为:120p θ=(2).转速n三相异步电动机旋转磁场的转速n 0与电动机磁极对数p 有关,它们的关系是:1060f n p=(5-1)由(5-1)可知,旋转磁场的转速n 0决定于电流频率f 1和磁场的极数p 。

对某一异步电动机而言,f 1和p 通常是一定的,所以磁场转速n 0是个常数。

在我国,工频f 1=50Hz ,因此对应于不同极对数p 的旋转磁场转速n 0,见表表5-1(3).转差率s电动机转子转动方向与磁场旋转的方向相同,但转子的转速n 不可能达到与旋转磁场的转速n 0相等,否则转子与旋转磁场之间就没有相对运动,因而磁力线就不切割转子导体,转子电动势、转子电流以及转矩也就都不存在。

也就是说旋转磁场与转子之间存在转速差,因此我们把这种电动机称为异步电动机,又因为这种电动机的转动原理是建立在电磁感应基础上的,故又称为感应电动机。

旋转磁场的转速n 0常称为同步转速。

转差率s ——用来表示转子转速n 与磁场转速n 0相差的程度的物理量。

即:000n n ns n n -∆== (5-2转差率是异步电动机的一个重要的物理量。

当旋转磁场以同步转速n 0开始旋转时,转子则因机械惯性尚未转动,转子的瞬间转速n =0,这时转差率S =1。

转子转动起来之后,n >0,(n 0-n )差值减小,电动机的转差率S <1。

如果转轴上的阻转矩加大,则转子转速n 降低,即异步程度加大,才能产生足够大的感受电动势和电流,产生足够大的电磁转矩,这时的转差率S 增大。

反之,S 减小。

异步电动机运行时,转速与同步转速一般很接近,转差率很小。

在额定工作状态下约为0.015~0.06之间。

根据式(4-2),可以得到电动机的转速常用公式()01n s n =- (5-3)三相异步电动机的起动一、对异步电动机起动性能的要求对异步电动机起动性能有如下要求:(1)具有足够大的起动转矩ST T ,以保证生产机械能够正常地起动;(2)在保证一定大小的起动转矩的前提下,电动机的起动电流ST 1I 越小越好; (3)起动设备力求结构简单,运行可靠,操作方便; (4)起动过程的能量损耗越小越好,起动时间ST t 越短越好。

以上起动性能中最主要的是要求在起动电流比较小的情况下得到较大的起动转矩。

这是因为过大的起动电流的冲击,对于电网和电动机本身都是不利的。

对电网而言,它可能引起电网电压的大幅度下降。

因为电动机的起动电流流过具有一定内阻抗的发电机、变压器和供电线路会造成电压降落,特别是对于那些小容量的电网更为显著。

电网电压的降低会影响接在同一电网上其他负载(主要是其他异步电动机)的正常运行。

对电动机本身来说,当工作在频繁起动的情况下,过大的起动电流将会造成电动机严重发热,以致加速绝缘老化,大大缩短电动机的使用寿命;同时在大电流的冲击下,电动机绕组(尤其是端部)受电动力作用易发生位移和变形,甚至烧毁,另一方面,起动转矩小会拖长起动时间。

二、异步电动机的固有起动特性不论是鼠笼电机还是绕线式电机,如果不采取措施直接接入电源起动,这样的起动特性称为固有起动特性,主要指起动电流和起动转矩。

起动电流I 1st 可根据图3-1计算。

略去激磁电流,令S=1得(3-22)由于额定运行时S N =0.02-0.05,而起动时S=1,所以在额定电压下起动时,起动电流约为额定电流的5-7倍。

这是由于起动时气隙旋转磁场以同步速切割转子,在转子上感应有较大的电势,产生较大的转子电流,从而定子绕组也有较大的电流。

起动转矩如式(3-17)所示。

起动转矩倍数3.19.0-=T K为什么异步电动机的起动电流很大,而起动转矩却不大呢?这是由于起动时1=S ,由式(3-4)可见 ,起动时功率因数很低,大约在0.2左右;另一方面st I 1大,所以定子漏阻抗压降大,电势1E 减小,主磁通m φ要相应减小。

综上所述,异步电动机的固有起动特性并不理想。

从式(3-17)可见,如适当增加转子电阻,可以改善起动特性。

在绕线电机的转子回路中能够通过集电环接入附加电阻。

因此,在既要求限制起动电流又要求有较大起动转矩的场合,通常采用绕线转子异步电动机。

鼠笼式异步电动机转子回路无法外接附加电阻,考虑到运行效率,也不易设计成有较大的转子电阻,为了改善起动性能又保留鼠笼式电动机的结构优点,可以采用特殊结构形式的转子。

电机界进行了大量研究工作,其中,以深槽式电动机和双鼠笼式电动机效果较好,其工作原理留待后文叙述.三、鼠笼式异步电动机的起动鼠笼式电动机有直接起动和降压起动两种方法。

2'212'2111)()(x x r r u I st +++=(一)直接起动——小容量电动机起动方法直接起动也称为全压起动。

这种起动方法最简便,不需要复杂的起动设备,但因起动电流较大,只允许在小容量电动机中使用。

在一般电网容量下,7.5KW 的电动机就认为是小容量,所以KW 5.7P N ≤ 的异步电动机可以直接起动。

但是所谓小容量也是相对的,如果电网容量大就可以允许容量较大的电动机直接起动。

因此,对容量较大的电动机,若能满足下列要求,也可允许直接起动。

()⎥⎦⎤⎢⎣⎡+≤KW KVA I I N ST 起动电机容量电源总容量()3411 式中,I N St K I I =/1为笼型异步电动机的起动电流倍数,其值可根据电动机的型号和规格从有关手册中查得。

(二)降压起动——大中容量电动机轻载起动方法对于不允许直接起动的笼型异步电动机,为限制起动电流,只有降低加在绕组上的电压1U 。

但是由于T 和21U 成正比,因此,这种方法只适用于空载或轻载起动的负载。

降压起动时,可以采用近几年得到应用的电机软起动器,也可以采用传统的降压起动方法,前者在本书第二篇再作介绍,以下介绍三种传统的降压起动方法。

1.定子电路串电阻器或电抗器降压起动 (1)起动线路定子串联电阻起动的原理线路图如图3-8所示。

起动时,先将转换开关QC 投向“起动”侧,然后合上主开关Q ,电机开始起动。

此时起动电阻st R 串入定子电路中,较大的起动电流在st R 上产生了较大的电压降,从而降低了加到定子上的电压,限制了起动电流。

当转速升高到一定数值时,把QC 转换到“运行”侧,切除起动电阻,电动机全压起动,起动结束后将运行于某一稳定转速。

在定子电路中串接电抗st X 起动,效果相同,都能起到减小起动电流的目的。

接线原理图同图3-8,只要将st X 取代st R 即可。

定子串电阻起动能耗较大,所以只在电动机容量较小时使用。

容量较大的异步电动机多用串电抗起动。

(2)起动电流和起动转矩设加在定子绕组上的电压为U 1‘,并令'1u u N=α 在式(3-22)中令k k k z x r x x r r =+=+++222'212'21)()(直接起动时, kNst z u I =1 降压起动时,ααst k N k st I z u z u I 1'1'1===图3-8 笼型异步电动机 电阻减压起动原理图由式(3-17): 2'αstst T T =式中,,r r r K 21+=,x x x K 21+=分别为每相的短路电阻和电抗。

相关文档
最新文档