人教版九年级数学上册 22.3实际问题与二次函数 同步优化训练(二)(含答案)

合集下载

人教版九年级数学上册22.3实际问题与二次函数同步练习(word版_含答案)(含知识点)

人教版九年级数学上册22.3实际问题与二次函数同步练习(word版_含答案)(含知识点)

《实际问题与二次函数》同步练习附答案课堂学习检测1.矩形窗户的周长是6m,写出窗户的面积y(m2)与窗户的宽x(m)之间的函数关系式,判断此函数是不是二次函数,如果是,请求出自变量x的取值范围,并画出函数的图象.2.如图,有一座抛物线型拱桥,已知桥下在正常水位AB时,水面宽8m,水位上升3m,就达到警戒水位CD,这时水面宽4m,若洪水到来时,水位以每小时0.2m的速度上升,求水过警戒水位后几小时淹到桥拱顶.3.如图,足球场上守门员在O处开出一高球,球从离地面1m的A处飞出(A 在y轴上),运动员乙在距O点6m的B处发现球在自己头的正上方达到最高点M,距地面约4m高.球第一次落地后又弹起.据试验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.(1)求足球开始飞出到第一次落地时,该抛物线的表达式;(2)运动员乙要抢到第二个落点D ,他应再向前跑多少米?(取734=,562=)综合、运用、诊断4.如图,有长为24m 的篱笆,围成中间隔有一道篱笆的长方形的花圃,且花圃的长可借用一段墙体(墙体的最大可用长度a =10m).(1)如果所围成的花圃的面积为45m 2,试求宽AB 的长;(2)按题目的设计要求,能围成面积比45m 2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.5.某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销售量m (件)与每件的销售价x (元)满足一次函数m =162-3x .(1)写出商场卖这种商品每天的销售利润y (元)与每件的销售价x (元)间的函数关系式;(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最为合适?最大销售利润为多少?6.某工厂现有80台机器,每台机器平均每天生产384件产品.现准备增加一批同类机器以提高生产总量.在试生产中发现,由于其他生产条件没有改变,因此,每增加一台机器,每台机器平均每天将减少生产4件产品.(1)如果增加x台机器,每天的生产总量为y件,请写出y与x之间的函数关系式;(2)增加多少台机器,可以使每天的生产总量最大?最大生产总量是多少?7.某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程,下面的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s与t之间的关系).根据图象提供的信息,解答下列问题:(1)由已知图象上的三点坐标,求累积利润s(万元)与时间t(月)之间的函数关系式;(2)求截止到几月末公司累积利润可达到30万元;(3)求第8个月公司所获利润为多少万元?拓展、探究、思考8.已知:在平面直角坐标系xOy中,二次函数y=ax2+bx-3(a>0)的图象与x 轴交于A,B两点,点A在点B的左侧,与y轴交于点C,且OC=OB=3OA.(1)求这个二次函数的解析式;(2)设点D是点C关于此抛物线对称轴的对称点,直线AD,BC交于点P,试判断直线AD,BC是否垂直,并证明你的结论;(3)在(2)的条件下,若点M,N分别是射线PC,PD上的点,问:是否存在这样的点M,N,使得以点P,M,N为顶点的三角形与△ACP全等?若存在请求出点M,N的坐标;若不存在,请说明理由.参考答案1.y =-x 2+3x (0<x <3)图略.2.5小时.3.(1).11212++-=x x y (2)17米. 4.(1)设花圃的宽AB =x 米,知BC 应为(24-3x )米,故面积y 与x 的关系式为 y =x (24-3x )=-3x 2+24x .当y =45时,-3x 2+24x =45,解出x 1=3,x 2=5.当x 2=3时,BC =24-3×3>10,不合题意,舍去;当x 2=5时,BC =24-3×5=9,符合题意.故AB 长为5米.(2)能围成面积比45m 2更大的矩形花圃.由(1)知,y =-3x 2+24x =-3(x -4)2+48.103240≤-<x ,.8314<≤∴x 由抛物线y =-3(x -4)2+48知,在对称轴x <4的左侧,y 随x 的增大而增大,当x >4时,y 随x 的增大而减小.∴当314=x 时,y =-3(x -4)2+48有最大值,且最大值为),m (3246)4314(34822=--此时,,m 314=AB BC =10m ,即围成长为10米,宽为314米的矩形ABCD 花圃时,其最大面积为.m 32462 5.(1)y =-3x 2+252x -4860;(2)当x =42时,最大利润为432元.6.解:(1)由题意得y =(80+x )(384-4x )=-4x 2+64x +30720.(2)∵y =-4x 2+64x +30720=-4(x -8)2+30976,∴当x =8时,y 有最大值,为30976.即增加8台机器,可以使每天的生产总量最大,最大生产总量为30976件.7.解:(1)设s 与t 的函数关系式为x =at 2+bt +c ,图象上三点坐标分别为(1,-1.5),(2,-2),(5,2.5).分别代入,得⎪⎩⎪⎨⎧=++-=++-=++∴.5.2525,224,5.1c b a c b a c b a 解得⎪⎪⎩⎪⎪⎨⎧=-==.0,2,21c b a .2212t t s -=∴ (2)把s =30代入,2212t t s -= 解得t 1=10,t 2=-6(舍去).即截止到10月末,公司累积利润可达到30万元.(3)把t =7代入,2212t t s -= 得7月末的累积利润为s 7=10.5(万元).把t =8代入,2212t t s -= 得8月末的累积利润为s 8=16(万元).∴s 8-s 7=16-10.5=5.5(万元).即第8个月公司获利润5.5万元.8.(1)y =x 2-2x -3; (2)AD ⊥BC ;(3)存在,M 1(1,-2),N 1(4,-3).或M 2(0,-3),N 2(3,-4).以下不需要可以删除人教版初中数学知识点总结必备必记目 录七年级数学(上)知识点 (1)第一章 有理数 (1)第二章 整式的加减 (3)第三章 一元一次方程 (4)第四章 图形的认识初步 (5)七年级数学(下)知识点 (6)第五章相交线与平行线 (6)第六章平面直角坐标系 (8)第七章三角形 (9)第八章二元一次方程组 (12)第九章不等式与不等式组 (13)第十章数据的收集、整理与描述 (13)八年级数学(上)知识点 (14)第十一章全等三角形 (14)第十二章轴对称 (15)第十三章实数 (16)第十四章一次函数 (17)第十五章整式的乘除与分解因式 (18)八年级数学(下)知识点 (19)第十六章分式 (19)第十七章反比例函数 (20)第十八章勾股定理 (21)第十九章四边形 (22)第二十章数据的分析 (23)九年级数学(上)知识点 (24)第二十一章二次根式 (24)第二十二章一元二次根式 (25)第二十三章旋转 (26)第二十四章圆 (27)第二十五章概率 (28)九年级数学(下)知识点 (30)第二十六章二次函数 (30)第二十七章相似 (32)第二十八章锐角三角函数 (33)第二十九章投影与视图 (34)七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章有理数一.知识框架二.知识概念1.有理数:(1)凡能写成)0pq,p(pq≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;(2)有理数的分类: ①⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a(a)0a()0a(aa或⎩⎨⎧<-≥=)0a(a)0a(aa;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字. 请判断下列题的对错,并解释.1.近似数25.0的精确度与近似数25一样.2.近似数4千万与近似数4000万的精确度一样.3.近似数660万,它精确到万位.有三个有效数字.4.用四舍五入法得近似数6.40和6.4是相等的.5.近似数3.7x10的二次与近似数370的精确度一样.1、错。

人教版九年级上数学《22.3实际问题与二次函数》同步练习(含答案详解)

人教版九年级上数学《22.3实际问题与二次函数》同步练习(含答案详解)

22.3 实际问题与二次函数测试时间:25分钟一、选择题1.(2018安徽阜阳颍上月考)一个网球发射器向空中发射网球,网球飞行的路线呈一条抛物线,如果网球距离地面的高度h(米)关于运行时间t(秒)的函数解析式为h=-t2+t+1(0≤t≤20),那么网球到达最高点时所需的时间是秒.( )A.7B.8C.9D.102.(2017甘肃定西临洮期中)某市中心广场有各种音乐喷泉,其中一个喷水管喷水的最大高度为3m,此时距喷水管的水平距离为m,如图所示,这个喷泉喷出水流轨迹的函数解析式是( )A.y=-3-+3B.y=-3+3C.y=-12-+3D.y=-12+33.(2017河北保定涿州一模)如图,正方形ABCD的边长为5,点E是AB上一点,点F是AD延长线上一点,且BE=DF.四边形AEGF是矩形,则矩形AEGF的面积y与BE的长x之间的函数关系式为( )A.y=5-xB.y=5-x2C.y=25-xD.y=25-x24.如图是抛物线形拱桥,已知水位在AB位置时,水面宽为4m,水位上升3m,就达到警戒线CD,这时水面CD宽4m.若洪水到来时水位以每小时0.25m的速度上升,那么水过警戒线后小时淹到拱桥顶.( )A.6B.12C.18D.24二、填空题5.(2017上海奉贤一模)用一根长为8m的木条,做一个矩形的窗框.如果这个矩形窗框宽为x m,那么这个窗户的面积y(m2)与x(m)之间的函数关系式为(不写自变量的取值范围).6.如图,某公路隧道横截面为抛物线,其最大高度为8m,以隧道底部宽AB所在直线为x轴,以AB的垂直平分线为y轴建立如图所示的平面直角坐标系,抛物线解析式为y=-x2+b,则隧道底部宽AB是m.三、解答题7.(2017内蒙古鄂尔多斯中考)某商场试销A、B两种型号的台灯,下表是两次进货情况统计:(1)求A、B两种型号台灯的进价各为多少元;(2)经试销发现,A型号台灯售价x(元)与销售数量y(台)满足关系式2x+y=140,此商场决定两种型号台灯共进货100台,并一周内全部售出,若B型号台灯售价定为20元,求A型号台灯售价定为多少时,商场可获得最大利润,并通过计算说明商场获得最大利润时的进货方案.8.(2017辽宁朝阳中考)今年是“精准扶贫”攻坚关键年,某扶贫工作队为对口扶贫村引进建立了一村集体企业,并无偿提供一笔无息贷款作为启动资金,双方约定:①企业生产出的产品全部由扶贫工作队及时联系商家收购;②企业从生产销售的利润中,要保证按时发放工人每月最低工资32000元.已知该企业生产的产品成本为20元/件,月生产量y(千件)与出厂价x(元)(25≤x≤50)的函数关系可用图中的线段AB和BC表示,其中AB的解析式为y=-x+m(m为常数).(1)求该企业月生产量y(千件)与出厂价x(元)之间的函数关系式,并写出自变量x的取值范围;(2)当该企业生产出的产品出厂价定为多少元时,月利润W(元)最大?最大利润是多少?[月利润=(出厂价-成本)×月生产量-工人月最低工资]22.3 实际问题与二次函数测试时间:25分钟一、选择题1.答案 D ∵h=-t2+t+1=-(t-10)2+(0≤t≤20),∴当t=10时,h取得最大值,故选D.2.答案 C 设函数解析式为y=a-+3,将点(0,0)代入,得a+3=0,解得a=-12,∴函数解析式为y=-12-+3,故选C.3.答案 D ∵BE=x(0≤x<5),∴AE=5-x,AF=5+x,∴y=AE·AF=(5-x)(5+x)=25-x2.故选D.4.答案 B 设抛物线解析式为y=ax2+h,又∵B(2,0),D(2,3),∴解得∴y=-x2+6,∴M(0,6),即OM=6m,∴MN=OM-ON=3m,∵=12,∴水过警戒线后12小时淹到拱桥顶.故选B.二、填空题5.答案y=-x2+4x解析易知这个矩形窗框的长为(4-x)m,则这个窗户的面积y(m2)与x(m)之间的函数关系式为y=x(4-x)=-x2+4x,即y=-x2+4x.6.答案8解析∵y=-x2+b,隧道横截面的最大高度为8m,∴b=8,∴抛物线解析式为y=-x2+8.当y=0时,有0=-x2+8,解得x=4或-4,∴隧道底部宽AB是4+4=8(m).三、解答题7.解析(1)设A、B两种型号台灯的进价分别为m元、n元,由题意得解得答:A、B两种型号台灯的进价分别为40元、10元.(2)∵A型号台灯售价x(元)与销售数量y(台)满足关系式2x+y=140,即y=-2x+140,则B型号台灯共进货100-y=(2x-40)台,设商场可获得利润为w元,则w=(x-40)(-2x+140)+(20-10)(2x-40)=-2x2+240x-6000=-2(x-60)2+1200,∵-2<0,∴A型号台灯售价定为60元时,商场可获得最大利润,为1200元.8.解析(1)把(40,3)代入y=-x+m,得3=-×40+m,∴m=5,∴y=-x+5(25≤x≤40),设BC的解析式为y=kx+b,把(40,3),(50,2)代入y=kx+b,得解得∴y=-x+7(40≤x≤50),综上所述:y=--(2)设该企业生产出的产品出厂价定为x元时,月利润W(元)最大,根据题意得,当25≤x≤40时,W=1000-(x-20)-32000=-50x2+6000x-132000=-50(x-60)2+48000,当x=40时,W有最大值,为28000元.当40<x≤50时,W=1000-(x-20)-32000=-100x2+9000x-172000=-100(x-45)2+30500,当x=45时,W有最大值,为30500元.综上,当该企业生产出的产品出厂价定为45元时,月利润最大,最大利润是30500元.。

数学人教版九年级上册22.3实际问题与二次函数(2)同步训练(解析版)

数学人教版九年级上册22.3实际问题与二次函数(2)同步训练(解析版)

2019-2019 学年数学人教版九年级上册22.3 实际问题与二次函数(2)同步训练一、选择题1. ( 2 分 ) 有一座抛物线形拱桥,正常水位桥下边宽度为20 米,拱顶距离水平面 4 米,如图成立直角坐标系,若正常水位时,桥下水深 6 米,为保证过往船只顺利航行,桥下水面宽度不得小于18 米,则当水深超出多少米时,就会影响过往船只的顺利航行()A. 2.76 米B. 6.76 米C. 6米 D.7米【答案】 B【考点】二次函数的实质应用-拱桥问题【分析】【解答】设该抛物线的分析式为y=ax2,在正常水位下x=10,代入分析式可得﹣ 4=a×102? a=﹣故此抛物线的分析式为y=﹣x2.因为桥下水面宽度不得小于18 米所以令 x=9 时可得 y=-=﹣3.24 米此时水深 6+4﹣3.24=6.76 米即桥下水深 6.76 米时正好经过,所以超出 6.76 米时则不可以经过.故答案为: B.【剖析】先依据成立的直角坐标系求得拱形桥抛物线的分析式,再求得桥下水面宽度为 18 米时,水位距拱顶的距离,进而求得正好经过时桥下的水深,即为所求答案 .2. ( 2 分 ) 如图,地道的截面是抛物线,能够用y=表示,该地道内设双行道,限高为3m,那么每条行道宽是()A.不大于 4mB.恰巧 4mC.不小于 4mD.大于 4m,小于 8m【答案】 A【考点】二次函数的实质应用-拱桥问题【分析】【解答】把y=3 代入 y=中得:x=4,x= -4(舍去).∴每条行道宽应不大于4m.故答案为: A.【剖析】依据已知:该地道内设双行道,限高为3m,所以将 y=3 代入函数分析式求出 x 的值,便可得出答案。

3. ( 2 分 ) 如下图,已知△ ABC 中,BC=12,BC 边上的高 h=6,D 为 BC 上一点, EF∥BC,交 AB 于点 E,交 AC 于点 F,设点 E 到边 BC 的距离为x.则△ DEF 的面积 y 对于 x 的函数图象大概为()A.B.C.D.【答案】 D【考点】二次函数的实质应用-几何问题【分析】【解答】过点 A 向 BC 作 AH ⊥BC 于点 H,所以依据相像比可知:,即 EF=2(6-x )所以 y=×2(6-x)x=-x2+6x.(0<x<6)该函数图象是抛物线的一部分,故答案为: D.【剖析】过点 A 向 BC 作 AH ⊥BC 于点 H,利用相像三角形的性质求出EF 的长,再利用三角形的面积公式,表示出y 与 x 的函数分析式,并求出x 的取值范围,即可解答。

2019-2020学年人教版九年级上册数学22.3 实际问题与二次函数 同步练习(有答案)

2019-2020学年人教版九年级上册数学22.3 实际问题与二次函数 同步练习(有答案)

22.3 实际问题与二次函数同步练习一、选择题1、一件工艺品进价为100元,标价135元售出,每天可售出100件,根据销售统计,一件工艺品每降价1元出售,则每天可多售出4件,要使每天获得的利润最大,每件需降价的钱数为( )A.5元B.10元C.0元D.3600元2、若某商品的利润y(元)与售价x(元)之间的函数关系式是y=-x2+8x+9,且售价x的范围是1≤x≤3,则最大利润是( )A.16元B.21元C.24元D.25元3、某公园草坪的防护栏是由100段形状相同的抛物线组成的.为了牢固起见,每段护栏需要每间隔0.4m加设一根不锈钢的支柱,防护栏的最高点距底部0.5m,如图所示,则防护栏不锈钢支柱的总长度至少为( )A.50mB.100mC.160mD.200m4、有一座抛物线形拱桥,正常水位桥下面宽度为20米,拱顶距离水平面4米,如图建立直角坐标系,若正常水位时,桥下水深6米,为保证过往船只顺利航行,桥下水面宽度不得小于18米,则当水深超过多少米时,就会影响过往船只的顺利航行()A.2.76米B.6.76米 C.6 D.7米5、把160元的电器连续两次降价后的价格为y元,若平均每次降价的百分率是x,则y与x的函数关系式为()A.y=320(x﹣1)B.y=320(1﹣x)C.y=160(1﹣x2)D.y=160(1﹣x)26、如图所示,△ABC为等腰直角三角形,∠ACB=90°,AC=BC=2,正方形DEFG边长也为2,且AC与DE在同一直线上,△ABC从C点与D点重合开始,沿直线DE向右平移,直到点A与点E重合为止,设CD的长为x,△ABC与正方形DEFG 重合部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是()7、在1~7月份,某地的蔬菜批发市场指导菜农生产和销售某种蔬菜,并向他们提供了这种蔬菜每千克售价与每千克成本的信息如图所示,则出售该种蔬菜每千克利润最大的月份可能是()A.1月份 B.2月份 C.5月份 D.7月份8、向空中发射一枚炮弹,经x秒后的高度为y米,且时间与高度的关系为y=ax2+bx+c(a≠0).若此炮弹在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最高的是( )A.第8秒 B.第10秒 C.第12秒 D.第15秒二、填空题9、某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天销售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为____________元时,该服装店平均每天的销售利润最大10、如图所示,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50m长的篱笆围成中间有一道篱笆的养鸡场,设它的长为xm,要使鸡场的面积最大,鸡场的长为m.11、如图,在一个直角三角形的内部作一个矩形ABCD,其中AB和AD分别在两直角边上,C点在斜边上,设矩形的一边AB=x m,矩形的面积为y m2,则y的最大值为 m2.12、用一段长为30m的篱笆围成一个一边靠墙的矩形菜园,墙长20m,当矩形的长、宽各取某个特定的值时,菜园的面积最大,这个最大面积是m2.13、某种商品的进价为40元,在某段时间内若以每件x元出售,可卖出(100﹣x)件,当x= 时才能使利润最大.14、某果园有100棵橘子树,平均每一棵树结600个橘子.根据经验估计,每多种一棵树,平均每棵树就会少结5个橘子.设果园增种x棵橘子树,果园橘子总个数为y个,则果园里增种棵橘子树,橘子总个数最多.15、如图是抛物线型拱桥,当拱顶离水面2 m时,水面宽4 m,水面下降2 m,则水面宽度增加m.三、简答题16、如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线.如果不考虑空气阻力,小球的飞行高度y(单位:m)与飞行时间x(单位:s)之间具有函数关系y=﹣5x2+20x,请根据要求解答下列问题:(1)在飞行过程中,当小球的飞行高度为15m时,飞行时间是多少?(2)在飞行过程中,小球从飞出到落地所用时间是多少?(3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?17、图中是抛物线形拱桥,当拱顶离水面2m时,水面宽4m,建立如图所示的平面直角坐标系:(1)求拱桥所在抛物线的解析式;(2)当水面下降1m时,则水面的宽度为多少?18、位于郑州市二七区的二七德化步行街是郑州最早的商业文化购物步行街,在郑州乃至中原都相当有名,德化步行街某店铺经营某种品牌童装,购进时的单价是40元,根据市场调查,当销售单价是60元时,每天销售量是200件,销售单价每降低1元,就可多售出20件.(1)求出销售量y(件)与销售单价x(元)之间的函数关系式;(2)求出销售该品牌童装获得的利润w(元)与销售单价x(元)之间的函数关系式;(3)若童装厂规定该品牌童装的销售单价不低于56元且不高于60元,则此服装店销售该品牌童装获得的最大利润是多少?19、丑橘,又名不知火,是近年来颇受欢迎的柑橘品种.临近春节一水果经销商以6元/千克的价格购进10000千克丑橘,为了保鲜放在冷藏室里,但每天仍有50千克丑橘变质丢弃,且每存放一天需要各种费用共300元,据预测,每天每千克丑橘的市场价格会在进价的基础上上涨0.1元.(1)设x天后每千克丑橘的售价为p元,直接写出p与x的函数关系式;(不要求写出函数自变量的取值范围);(2)若存放x天后将该批丑橘一次性售出,设销售总金额为y元,求出y与x的函数关系式;(3)该水果店将这批丑橘存放多少天后一次性售出,可以获得最大利润,最大利润为多少?20、某化工材料经销公司购进一种化工原料若干千克,物价部门规定其销售单价不低于进价,不高于60元/千克,经市场调查发现:销售单价定为60元/千克时,每日销售20千克;如调整价格,每降价1元/千克,每日可多销售2千克.(1)已知某天售出该化工原料40千克,则当天的销售单价为元/千克;(2)该公司现有员工2名,每天支付员工的工资为每人每天90元,每天应支付其他费用108元,当某天的销售价为46元/千克时,收支恰好平衡.①求这种化工原料的进价;②若公司每天的纯利润(收入﹣支出)全部用来偿还一笔10000元的借款,则至少需多少天才能还清借款?21、某企业信息部进行市场调研发现:信息一:如果单独投资A种产品,所获利润y A(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:信息二:如果单独投资B种产品,则所获利润y B(万元)与投资金额x(万元)之间存在二次函数关系:y B=ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.(1)求出y B与x的函数关系式;(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示y A与x之间的关系,并求出y A与x的函数关系式;(3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?参考答案一、选择题1、A2、C3、C4、B.5、D解:第一次降价后的价格是160(1﹣x),第二次降价为160(1﹣x)×(1﹣x)=160(1﹣x)2则y与x的函数关系式为y=160(1﹣x)2.6、A【解答】解:设CD的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y∴当C从D点运动到E点时,即0≤x≤2时,y=×2×2﹣(2﹣x)×(2﹣x)=﹣x2+2x.当A从D点运动到E点时,即2<x≤4时,y=×[2﹣(x﹣2)]×[2﹣(x﹣2)]=x2﹣4x+8,∴y与x之间的函数关系由函数关系式可看出A中的函数图象与所求的分段函数对应.7、C【解答】解:设x月份出售时,每千克售价为y1元,每千克成本为y2元.根据图甲设y1=kx+b,∴,∴,∴y1=﹣x+7.根据图乙设y2=a(x﹣6)2+1,∴4=a(3﹣6)2+1,∴a=,∴y2=(x﹣6)2+1.∵y=y1﹣y2,∴y=﹣x+7﹣[(x﹣6)2+1],∴y=﹣x2+x﹣6.∵y=﹣x2+x﹣6,∴y=﹣(x﹣5)2+.∴当x=5时,y有最大值,即当5月份出售时,每千克收益最大.故选C.8、B二、填空题9、2210、2511、30012、解:设矩形的长为xm,则宽为m,菜园的面积S=x•=﹣x2+15x=﹣(x﹣15)2+,(0<x≤20)∵当x<15时,S随x的增大而增大,∴当x=15时,S最大值=m2,故答案为:.13、70.解:设获得的利润为w元,由题意可得,w=(x﹣40)(100﹣x)=﹣(x﹣70)2+900,∴当x=70时,w取得最大值,14、1015、(4-4)三、简答题16、【解答】解:(1)当y=15时,15=﹣5x2+20x,解得,x1=1,x2=3,答:在飞行过程中,当小球的飞行高度为15m时,飞行时间是1s或3s;(2)当y=0时,0═﹣5x2+20x,解得,x1=0,x2=4,∵4﹣0=4,∴在飞行过程中,小球从飞出到落地所用时间是4s;(3)y=﹣5x2+20x=﹣5(x﹣2)2+20,∴当x=2时,y取得最大值,此时,y=20,答:在飞行过程中,小球飞行高度第2s时最大,最大高度是20m.【点评】本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答.17、【解答】解:(1)由题意设抛物线解析式为:y=ax2+b(a≠0)∵当拱顶离水面2m时,水面宽4m∴点C(0,2),点B(2,0)代入得:解得∴拱桥所在抛物线的解析式为y=﹣(2)当水位下降1m时,水位纵坐标为﹣1令y=﹣1则﹣1=﹣解得x=±∴水面宽度为【点评】本题为二次函数应用题,考查了待定系数法和通过数形结合求出图象上点坐标.18、解:(1)根据题意得,y=200+(60﹣x)×20=﹣20x+1400,所以销售量y件与销售单价x元之间的函数关系式为y=﹣20x+1400(40≤x≤60);(2)W=(x﹣40)y=(x﹣40)(﹣20x+1400)=﹣20x2+2200x﹣56000,所以销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式W=﹣20x2+2200x﹣56000;(3)根据题意得56≤x≤60,w=﹣20x2+2200x﹣56000=﹣20(x﹣55)2+4500∵a=﹣20<0,∴抛物线开口向下,∴当56≤x≤60时,W随x的增大而减小,∴x=56时,W有最大值,最大值=﹣20(56﹣55)2+4500=4480(元).所以商场销售该品牌童装获得的最大利润是4480元.19、解:(1)由题意得:p=0.1x+6;(2)由题意得:y=p(10000﹣50x)=﹣5x2+700x+60000;(3)设丑橘的总利润为w,则:w=y﹣300x﹣300x﹣6×10000=﹣5x2+100x=﹣5x(x﹣20),∵﹣5<0,∴w有最大值,当x=10时,最大值为500.答:这批丑橘存放40天后一次性售出可以获得最大利润,最大利润为500.【点评】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.20、解:(1)设某天售出该化工原料40千克时的销售单价为x元/千克,(60﹣x)×2+20=40,解得,x=50,故答案为:50;(2)①设这种化工原料的进价为a元/千克,当销售价为46元/千克时,当天的销量为:20+(60﹣46)×2=48(千克),则(46﹣a)×48=108+90×2,解得,a=40,即这种化工原料的进价为40元/千克;②设公司某天的销售单价为x元/千克,每天的收入为y元,则y=(x﹣40)[20+2(60﹣x)]=﹣2(x﹣55)2+450,∴当x=55时,公司每天的收入最多,最多收入450元,设公司需要t天还清借款,则t≥10000,解得,t≥,∵t为整数,∴t=62.即公司至少需62天才能还清借款.21、解:(1)由题意得,将坐标(2,2.4)(4,3.2)代入函数关系式y B=ax2+bx,求解得:∴y B与x的函数关系式:y B=﹣0.2x2+1.6x(2)根据表格中对应的关系可以确定为一次函数,故设函数关系式y A=kx+b,将(1,0.4)(2,0.8)代入得:,解得:,则y A=0.4x;(3)设投资B产品x万元,投资A产品(15﹣x)万元,总利润为W万元,W=﹣0.2x2+1.6x+0.4(15﹣x)=﹣0.2(x﹣3)2+7.8即当投资B3万元,A12万元时所获总利润最大,为7.8万元.。

人教版九年级上册数学实际问题与二次函数同步训练(含答案)

人教版九年级上册数学实际问题与二次函数同步训练(含答案)

人教版九年级上册数学22.3实际问题与二次函数同步训练一、单选题1.飞机着陆后滑行的距离s (单位:米)关于滑行时间t (单位:秒)的函数表达式为2s at bt =+,当滑行时间为10秒时,滑行距离为450米;当滑行时间为20秒时,滑行距离为600米,则飞机的最大滑行距离为( )A .600米B .800米C .1000米D .1200米 2.据省统计局公布的数据,合肥市2021年一月GDP 总值约为6百亿元人民币,若合肥市三月GDP 总值为y 百亿元人民币,平均每个月GDP 增长的百分率为x ,则y 关于x 的函数表达式是( )A .y =6(1+2x )B .y =6(1﹣x )2C .y =6(1+x )2D .y =6+6(1+x )+6(1+x )2 3.某超市将进价为40元件的商品按50元/件出售时,每月可售出500件.经试销发现,该商品售价每上涨1元,其月销量就减少10件.超市为了每月获利8000元,则每件应涨价多少元?若设每件应涨价x 元,则依据题意可列方程为( )A .(5040)(500)8000-+-=x xB .(40)(50010)8000+-=x xC .(5040)(50010)8000-+-=x xD .(50)(50010)8000--=x x 4.在平面直角坐标系中,O 为坐标原点.二次函数致2y x bx c =++的图象与x 轴只有一个交点,且经过点()2,A m c -,()2,B m c +,则AOB 的面积为( ) A .8 B .12 C .16 D .4 5.已知关于x 的方程20x bx c ++=的两个根分别是-1和3,若抛物线22y x bx c =+-与y 轴交于点A ,过A 作AB y ⊥轴,交抛物线于另一交点B ,则AB 的长为( ) A .2 B .3 C .1 D .1.5 6.平面直角坐标系中,点A 的坐标为()0,1,点B 的坐标为()2,1,连接AB ,当抛物线2y x c =+与线段AB 有公共点时,c 的取值范围为( )A .3c <-B .31c -≤≤C .1c >D .01c ≤≤ 7.如图,在长为20m 、宽为14m 的矩形花圃里建有等宽的十字形小径,若小径的宽不超过1m ,则花圃中的阴影部分的面积有( )A .最小值247B .最小值266C .最大值247D .最大值266 8.如图,正方形ABCD 中,AB =4cm ,动点E 从点A 出发,沿折线AB BC -运动到点C 停止,过点E 作EF AE ⊥交CD 于点F ,设点E 的运动路程为x cm ,DF =y cm ,则y 与x 对应关系的图象大致是( )A .B .C .D .二、填空题9.如图,某拱桥桥洞的形状是抛物线,若取水平方向为x 轴,拱桥的拱点O 为原点建立直角坐标系,它可以近似地用函数218y x =-表示(单位:m ).已知目前桥下水面宽4m ,若水位下降1.5m ,则水面宽为______m .10.如图是一个横断面为抛物线形状的拱桥,此时水面宽AB 为3米,拱桥最高点C 离水面的距离CO 也为3米,则当水位上升1米后,水面的宽度为____米.11.如图所示,用长为21米的篱笆,一面利用墙(墙的最大可用长度a 为10米),围成中间隔有一道篱笆的长方形花圃,为便于进出,开了3道宽为1米的门.设花圃的宽AB 为x 米,面积为S 平方米,则S 与x 的之间的函数表达式为 __;自变量x 的取值范围为 __.12.亮亮推铅球,铅球行进高度y (m )与水平距离x (m )之间的关系为()215312y x =--+,则小明推铅球的成绩是______m . 13.随着经济的发展和人们生活水平的提高,越来越多的人选择乘飞机出行.某种型号的飞机着陆后滑行的距离s (单位:m )与滑行的时间(单位:s )的函数关系式为260 1.5s t t =-,那么飞机着陆后滑行_____s 停下.14.如图,物体从点A 抛出,物体的高度y (m )与飞行时间t (s )近似满足函数关系式y =−15(t −3)2+5.(1)OA =______m .(2)在飞行过程中,若物体在某一个高度时总对应两个不同的时间,则t 的取值范围是________.15.跳台滑雪是2022年北京冬奥会比赛项目之一.一名参赛运动员起跳后,他的飞行路线可以看作是抛物线21240453y x x =-++的一部分(如图所示),则这名运动员起跳后的最大飞行高度是______m .16.某企业研发出了一种新产品准备销售,已知研发、生产这种产品的成本为30元/件,据调查年销售量y (万件)关于售价x (元/件)的函数解析式为:()()21404060806070x x y x x ⎧-+≤<⎪=⎨-+≤≤⎪⎩,则当该产品的售价x 为________.(元/件)时,企业销售该产品获得的年利润最大.三、解答题17.甲、乙两家水果店经销同一种水果,采取不同的降价措施增加销售额,提高利润.(1)甲水果店原售价每千克20元,连续两次降价后每千克12.8元,每次降价的百分率相同.求每次降价的百分率;(2)乙水果店原来每千克盈利6元,每天可售出60千克.经市场调查发现,若每千克降价0.5元,日销售量将增加10千克.在进货价不变的情况下,乙水果店决定采取适当的降价措施增加销售盈利.乙水果店降价多少元时,每天销售这种水果获利最多?最多可获利多少元?18.朝天城区某水果店王阿姨到水果批发市场打算购进一种水果销售,经过讨价还价,实际价格每千克比原来少2元,发现原来买这种水果80千克的钱,现在可买88千克.(1)现在实际购进这种水果每千克多少元?(2)王阿姨准备购进这种水果销售,若这种水果的销售量y(千克)与销售单价x(元/千克)满足如图所示的一次函数关系.①求y与x之间的函数关系式;①请你帮王阿姨拿个主意,将这种水果的销售单价定为多少时,能获得最大利润?最大利润是多少?19.精准扶贫工作已经进入攻坚阶段,贫苦户李大叔在政府的帮助下,建起塑料大棚,种植优质草莓,今年二月份正式上市销售.在30天的试销中,每天的销售量与销售天数x满足一次函数关系,部分数据如下表:设第x天的售价为y元/千克,y关于x的函数关系满足如下图像:已知种植销售草莓的成本为5元/千克,每天的利润是w元.(利润=销售收入﹣成本)(1)将表格中的最后一列补充完整;(2)求y关于x的函数关系式;(3)求销售草莓的第几天时,当天的利润最大?最大利润是多少元?20.如图,预防新冠肺炎疫情期间,某校在校门口用塑料膜围成一个临时隔离区,隔离区分成两个区域,中间用塑料膜隔开.学校利用围墙作为一边,用总长为48m的塑料膜围成了如图所示的两块矩形区域;已知围墙的可用长度不超过21m,设AB的长为x m,矩形区域ABCD的面积y m2.(1)求y与x之间的函数解析式,并求出自变量x的取值范围;(2)当矩形ABCD的面积为84m2时,求AB的长度;(3)当AB的长度是多少时,矩形区域ABCD的面积y取得最大值,最大值是多少?答案第1页,共1页 参考答案:1.A2.C3.C4.A5.A6.B7.A8.A9.81011. 2324S x x =-+1463≤<x 12.1113.2014.1650≤t ≤6且t ≠3 15.4516.5017.(1)20%(2)乙水果店每千克该种水果降价1.5元时,销售盈利最多,每天可获利405元 18.(1)实际购进这种水果每千克20元(2)①11440y x y =-+;①销售单价定为30元时利润最大,最大利润为1100元 19.(1)见解析(2)y =119(020)29(2030)x x x ⎧-+<≤⎪⎨⎪<≤⎩ (3)销售草莓的第30天时,当天的利润最大,最大利润是272元 20.(1)y =﹣3x 2+48x ,9≤x <16(2)14米(3)AB 的长度是9m 时,矩形区域ABCD 的面积y 取得最大值,最大值是189m 2。

人教新版九年级数学上册22-3实际问题与二次函数 同步练习【含答案】

人教新版九年级数学上册22-3实际问题与二次函数 同步练习【含答案】

22.3实际问题与二次函数一、单选题1.某农产品市场经销一种销售成本为40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨一元,月销售量就减少10千克.设销售单价为每千克x 元,月销售利润为y 元,则y 与x 的函数关系式为( ) A .y =(x ﹣40)(500﹣10x )B .y =(x ﹣40)(10x ﹣500)C .y =(x ﹣40)[500﹣10(x ﹣50)]D .y =(x ﹣40)[500﹣10(50﹣x )] 2.出售某种文具盒,若每个可获利x 元,一天可售出(6-x)个.当一天出售该种文具盒的总利润y 最大时,x 的值为( )A .1B .2C .3D .4 3.如图是抛物线形拱桥,当拱顶高离水面2m 时,水面宽4m ,水面下降2.5m ,水面宽度增加( )A .1 mB .2 mC .3 mD .6 m 4.某地要建造一个圆形喷水池,在水池中央垂直于地面安装一个柱子OA ,O 恰为水面中心,安置在柱子顶端A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.在过OA 的任一平面上,建立平面直角坐标系(如图),水流喷出的高度y (m )与水平距离x (m )之间的关系式是2y x 2x 3=-++,则下列结论:(1)柱子OA 的高度为3m ;(2)喷出的水流距柱子1m 处达到最大高度;(3)喷出的水流距水平面的最大高度是4m ;(4)水池的半径至少要3m 才能使喷出的水流不至于落在池外.其中正确的有( )A .1个B .2个C .3个D .4 5.如图,隧道的截面是抛物线,可以用y= 21416x -+表示,该隧道内设双行道,限高为3m,那么每条行道宽是()A.不大于4m B.恰好4m C.不小于4m D.大于4m,小于8m6.周长8m的铝合金制成如图所示形状的矩形窗柜,使窗户的透光面积最大,那么这个窗户的最大透光面积是()m2A.45B.83C.4D.567.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间满足函数关系:y=-0.1x2+2.6x+43 (0≤x≤30).y值越大,表示接受能力越强.如果学生的接受能力逐步增强,则x的取值范围是()A.0≤x≤13B.13≤x≤26C.0≤x≤26D.13≤x≤30 8.如图1,△ABC是直角三角形,△A=90°,AB=8cm,AC=6cm点P从点A出发,沿AB方向以2cm/s的速度向点B运动;同时点Q从点A出发,沿AC方向以1cm/s的速度向点C运动,其中一个动点到达终点,则另一个动点也停止运动,则三角形APQ的最大面积是()A.8cm2B.16cm2C.24cm2D.32cm29.某民俗旅游村为接待游客住宿需要,开设了有100张床位的旅馆.当每张床位每天收费100元时,床位可全部租出.若每张床位每天收费提高20元,则相应地减少了10张床位租出.如果每张床位每天以20元为单位提高收费,为使租出的床位少且租金高,那么每张床位每天最合适的收费是()A.140元B.150元C.160元D.180元10.如图所示,已知ABC 中,8BC BC =,上的高4h D =,为BC 上一点,//EF BC ,交AB 于点E ,交AC 于点(F EF 不过A 、)B ,设E 到BC 的距离为x ,则DEF 的面积y 关于x 的函数的图象大致为( ).A .B .C .D .二、填空题11.如图,一座抛物线型拱桥,桥下水面宽度是4m 时,拱高为2m ,一艘木船宽2m.要能顺利从桥下通过,船顶点与桥拱之间的间隔应不少于0.3m ,那么木船的高不得超过 ______m.12.如图,有一个横截面边缘为抛物线的隧道入口,隧道入口处的底面宽度为8m ,两侧距底面4m 高处各有一盏灯,两灯间的水平距离为6m ,则这个隧道入口的最大高度为_________m .13.数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:已知该运动服的进价为每件60元,设售价为x(x≥100)元,则月销量是___________件,销售该运动服的月利润为___________元(用含x的式子表示).14.某商场以30元/件的进价购进一批商品,按50元/件出售,平均每天可以售出100件.经市场调查,单价每降低5元,则平均每天的销售量可增加20件.若该商品想要平均每天获利1400元,则每件应降价多少元?设每件应降价x元,可列方程为_________.15.某体育公园的圆形喷水池的水柱如图△所示,如果曲线APB表示落点B离点O最远的一条水流(如图△),其上的水珠的高度y(米)关于水平距离x(米)的函数解析式为y=-x2+4x+94,那么圆形水池的半径至少为_______米时,才能使喷出的水流不落在水池外.三、解答题16.如图是把一个抛物线形桥拱,量得两个数据,画在纸上的情形.小明说只要建立适当的坐标系,就能求出此抛物线的表达式.你认为他的说法正确吗?如果不正确,请说明理由;如果正确,请你帮小明求出该抛物线的表达式.17.一条隧道的截面如图所示,它的上半部分是一个半圆,下半部分是一个矩形,矩形的一边长为2.5m.(1)求隧道截面的面积S()2m关于半圆半径r()m的函数解析式;(2)当半圆半径为2m时,求截面的面积.(π取3.14,结果精确到0.1)18.在足球比赛中,当守门员远离球门时,进攻队员常常会使用“吊射”的战术(把球高高地挑过守门员的头顶,射入球门).一位球员在离对方球门30m的M处起脚吊射,假如球飞行的路线是一条抛物线,在离球门14m时,足球达到最大高度323m.若以球门底部为坐标原点建立平面直角坐标系,球门PQ的高度为2.44m.(1)通过计算,说明球是否会进球门.(2)如果守门员站在距离球门2m远处,而守门员跳起后最多能摸到2.75m高处,他能否在空中截住这次吊射?19.如图,有长为24m的篱笆,一面利用墙(墙的最大可用长度a为10m),围成中间隔有一道篱笆的长方形花圃(由两个小矩形花圃组成).设花圃的一边AB为x m,面积为S m2.(1)求S与x之间的函数表达式(写出自变量的取值范围).(2)如果要围成面积为45m2的花圃,那么AB的长是多少米?(3)能围成面积比45m2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.答案1.C2.C3.B4.D5.A6.B7.A8.B9.C10.C11.1.212.64713.2400x + 2252024000x x -+-14.(5030)1002014005x x ⎛⎫--+⨯= ⎪⎝⎭15.9216.正确. 22003x y =或236200y x =-+ 17.(1)21π52S r r =+;(2)当2r 时,2π1016.3S =+≈()2m . 18.(1)球不会进球门;(2)守门员不能在空中截住这次吊射. 19.(1)S =-3x 2+24x(143≤x<8);(2)AB 的长为5m ;(3)能围成面积比45m 2更大的花圃,最大面积为1403m 2,,此时AB =143m ,BC =10m .。

【新】人教版九年级数学上册22.3 实际问题与二次函数同步练习含答案

【新】人教版九年级数学上册22.3 实际问题与二次函数同步练习含答案

《实际问题与二次函数》同步练习1带答案1.已知函数y=21x 2-x-12,当函数y 随x 的增大而减小时,x 的取值范围是( ) A. x <1 B. x >1 C. x >-4 D. -4<x <62.某商店购进一批单价为20元的日用商品,如果以单价30元销售,那么半月内可售出400件,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件,如果提高售价,才能在半月内获得最大利润?3.某地要建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子OA ,O 恰在水面中心,安置在柱子顶端A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA 的任一平面上,抛物线形状如图(1)所示.图(2)建立直角坐标系,水流喷出的高度y (米)与水平距离x (米)之间的关系是4522++-=x x y .请回答下列问题: (1) 柱子OA 的高度是多少米?(2) 喷出的水流距水平面的最大高度是多少米?(3) 若不计其他因素,水池的半径至少要多少米才能使喷出的水流不至于落在池外?4.当运动中的汽车撞到物体时,汽车所受到的损坏程度可以用“撞击影响”来衡量.某型汽车的撞击影响可以用公式I=2v 2来表示,其中v (千米/分)表示汽车的速度.① 列表表示I 与v 的关系;② 当汽车的速度扩大为原来的2倍时,撞击影响扩大为原来的多少倍?5.如图,正方形EFGH 的顶点在边长为a 的正方形ABCD 的边上,若AE=x ,正方形EFGH 的面积为y.(1) 求出y 与x 之间的函数关系式;(2) 正方形EFGH 有没有最大面积?若有,试确定E 点位置;若没有,说明理由.答案:1、A 2、售价为35元时,在半月内可获得最大利润 3、(1)45 (2)49 (3)25 4、①略 ②4倍 5、(1)y=2x 2-2ax+a 2 (2) 有.当点E 是AB 的中点时,面积最大.。

人教版九年级上册数学实际问题与二次函数同步训练(含答案)

人教版九年级上册数学实际问题与二次函数同步训练(含答案)

人教版九年级上册数学22.3 实际问题与二次函数同步训练一、单选题1.已知某二次函数,当x <1时,y 随x 的增大而减小;当x >1时,y 随x 的增大而增大,则该二次函数的解析式可以是() A .y 2= 2(x 1)+B .y 2= 2(x 1)-C .=-y 2 2(x 1)+D .=-y 2 2(x 1)-2.在羽毛球比赛中,某次羽毛球的运动路线可以看作是抛物线214y x bx c =-++的一部分,其中出球点B 离地面O 点的距离是1m ,球落地点A 到O 点的距离是4m ,那么这条抛物线的解析式是( ) A .213144y x x =-++B .213144y x x =-+-C .213144y x x =--+D .213144y x x =---3.如图,某拱桥呈抛物线形状,桥的最大高度是16米,跨度是40米,在线段AB 上离中心M 处5米的地方,桥的高度是( )A .12米B .13米C .14米D .15米4.把一根长4a 的铁丝分成两段,每一段弯曲成一个正方形,面积和最小是( )A .2aB .2aC .22aD .24a5.某商品的利润y (元)与售价x (元)之间的函数关系式为y =﹣x 2+8x +9,且售价x 的范围是1≤x ≤3,则最大利润是( ) A .16元B .21元C .24元D .25元6.如图,一个涵洞的截面边缘是抛物线形.现测得当水面宽 1.6m AB =时,涵洞顶点与水面的距离是2m .这时,离开水面1.5m 处,涵洞的宽DE 为( )A B C .0.4 D .0.87.从底面竖直向上抛出一小球,小球的高度h (单位:m )与小球运动时间t (单位:s )之间的关系式是:h =30t ﹣5t 2,这个函数图象如图所示,则小球从第3s 到第5s 的运动路径长为( )A .15mB .20mC .25mD .30m8.小敏在某次投篮中,篮球的运动路线是抛物线215y x =-+3.5的一部分(如图),若命中篮圈中心,则他与篮底的水平距离l 是( )A .3.5mB .3.8mC .4mD .4.5m二、填空题9.矩形的周长为12cm ,设其一边长为xcm ,面积为2cm y ,则y 与x 的函数关系式及自变量x 的取值范围是_________.10.飞机着陆后滑行的距离s (单位:米)与滑行的时间t (单位:秒)之间的函数关系式是21.560s t t =-+,飞机着陆后滑行_____秒才能停下来.11.飞机着陆后滑行的距离s (单位:米)与滑行的时间t (单位:秒)之间的函数关系式是s =96t ﹣1.2t 2,那么飞机着陆后_____秒停下.12.有一个抛物线形的立交桥拱,这个桥拱的最大高度为16m ,跨度为40m .现将它的图形放在坐标系里(如图所示).若在离跨度中心M 点10m 处垂直竖立一铁柱支撑拱顶,这铁柱长______米.13.如图,铅球运动员掷铅球的高度y (m)与水平距离x (m)之间的函数关系式是: 21251233y x x =-++,则该运动员此次掷铅球的成绩是________ m .14.某商品的进价为每件50元,售价为每件60元,每个月可卖出200件.如果每件商品的售价上涨1元,则每个月少卖10件(每件售价不能高于72元),设每件商品的售价上涨x 元(x 为整数),每个月的销售利润为y 元,那么y 与x 的函数关系式是____________.15.“十一”黄金周,某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销售量m (件)与每件的销售价x (元),满足关系:m =140-x .写出商场卖这种商品每天的销售利润 y 与每件的售价x 之间的函数关系式是_________.16.按照防疫要求,学生在进校时必须排队接受体温检测,某校统计了学生早晨到校情况,发现从7:00开始,在校门口的学生人数y 随时间x (单位:分钟)的变化情况的图象是如图所示的某抛物线的一部分,则校门口排队等待体温检测的学生最多时有 ______人.三、解答题17.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为件:(2)当每件商品降价多少元时,该商店每天销售利润最大?18.某商场要经营一种新上市的文具,进价为20元/件,试营销阶段发现:当销售价格为25元/件时,每天的销售量为250件,如调整价格,每上涨1元,每天的销售量就减少10件.(1)请写出商场销售这种文具,每天所得的销售利润w(元)与销售价格/x(元件)之间的函数关系式;(2)销售价格为多少元时,该文具的销售利润最大?(3)商场的营销部结合上述情况,提出了A,B两种营销方案.方案A:该文具的销售价格高于进价且不超过30元/件;方案B:每天销售量不少于10件,且每件文具的利润至少为25元.请通过计算说明哪种方案的最大利润更高.19.如图,在△ABC中,△ABC=90°,AB=8cm,BC=6cm,动点P,Q分别从点A,B同时开始移动(移动方向如图所示),点P的速度为2cm/s,点Q的速度为1cm/s,点P移动到B点后停止,点Q也随之停止运动,设P、Q从点A、B同时出发,运动时间为ts,四边形APQC的面积是S(1)试写出S与t之间的函数关系式,并确定自变量的取值范围;(2)若S是21cm2时,确定t值;(3)t为何值时,S有最大(或最小)值,求出这个最值.20.某商厦灯具部投资销售一种进价为每件20元的护眼台灯,销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.(1)设每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并直接写出自变量x的取值范围.(2)如果想要每月获得的利润为2000元,那么每月的单价定为多少元?(3)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?参考答案:1.B 2.A 3.D 4.C 5.C 6.D 7.B 8.C9.y =−x 2+6x (0<x <6) 10.20 11.40 12.12 13.1014.()2101002000012y x x x =-++≤≤15.21704200y x x =-+- 16.164 17.(1)26(2)当每件商品降价15元时,该商店每天销售利润最大. 18.(1)w = -10x 2+700x -10000(2)销售价格为35元/件时,该文具每天的销售利润最大 (3)方案A 的最大利润更高,理由见解析 19.(1)S =t 2-4t +24(0≤t ≤4) (2)t =1或t =3(3)t =2时,S 有最小值2020.(1)w =-10x 2+700x -10000(20≤x ≤32)(2)如果张明想要每月获得的利润为2000元,张明每月的单价定为30元 (3)当销售单价定为32元时,每月可获得最大利润,最大利润是2160元。

人教版九年级上册数学 22.3实际问题与二次函数 同步练习(含答案)

人教版九年级上册数学 22.3实际问题与二次函数 同步练习(含答案)

22.3实际问题与二次函数同步练习一.选择题1.据省统计局公布的数据,安徽省2019年第二季度GDP总值约为7.9千亿元人民币,若我省第四季度GDP总值为y千亿元人民币,平均每个季度GDP增长的百分率为x,则y关于x的函数表达式是()A.y=7.9(1+2x)B.y=7.9(1﹣x)2C.y=7.9(1+x)2D.y=7.9+7.9(1+x)+7.9(1+x)22.广场上喷水池中的喷头微露水面,喷出的水线呈一条抛物线,水线上水珠的高度y (米)关于水珠和喷头的水平距离x(米)的函数解析式是y=x2+6x(0≤x≤4),那么水珠的高度达到最大时,水珠与喷头的水平距离是()A.1米B.2米C.5米D.6米3.长方形的长为10cm、宽为6cm,它的各边都减少xcm,得到的新长方形的周长为ycm,则y与x之间的关系式是()A.y=32﹣4x(0<x<6)B.y=32﹣4x(0≤x≤6)C.y=(10﹣x)(6﹣x)(0<x<6)D.y=(10﹣x)(6﹣x)(0≤x≤6)4.某商场降价销售一批名牌衬衫,已知所获利利y(元)与降价金额x(元)之间满足函数关系式y=﹣2x2+60x+800,则获利最多为()A.15元B.400元C.800元D.1250元5.羽毛球运动是一项非常受人喜欢的体育运动.某运动员在进行羽毛球训练时,羽毛球飞行的高度h(m)与发球后球飞行的时间t(s)满足关系式h=﹣t2+2t+1.5,则该运动员发球后1s时,羽毛球飞行的高度为()A.1.5m B.2m C.2.5m D.3m6.某地网红秋千在推出后吸引了大量游客前来,其秋千高度h(单位:m)与时间t(单位:s)之间的关系可以近似地用二次函数刻画,其图象如图所示,已知秋千在静止时的高度为0.6m.根据图象,当推出秋千3s后,秋千的高度为()A.10m B.15m C.16m D.18m7.如图,点E、F、G、H分别是正方形ABCD边AB、BC、CD、DA上的点,且AE=BF=CG=DH.设A、E两点间的距离为x,四边形EFGH的面积为y,则y与x的函数图象可能为()A.B.C.D.8.如图1,是某次比赛中垫球时的动作,若将垫球后排球的运动路线近似的看作抛物线,在如图2所示的平面直角坐标系中,已知运动员垫球时(图中点A)离球网的水平距离为5米,排球与地面的垂直距离为0.5米,排球在球网上端0.26米处(图中点B)越过球网(女子排球赛中球网上端距地面的高度为2.24米),落地时(图中点C)距球网的水平距离为2.5米,则排球运动路线的函数表达式为()A.y=﹣x2﹣x+B.y=﹣x2+x+C.y=x2﹣x+D.y=x2+x+9.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.下列结论:①小球在空中经过的路程是40m;②小球运动的时间为6s;③小球抛出3秒时,速度为0;④当t=1.5s时,小球的高度h=30m.其中正确的是()A.①④B.①②C.②③④D.②④10.如图,公园中一正方形水池中有一喷泉,喷出的水流呈抛物线状,测得喷出口高出水面0.8m,水流在离喷出口的水平距离1.25m处达到最高,密集的水滴在水面上形成了一个半径为3m的圆,考虑到出水口过高影响美观,水滴落水形成的圆半径过大容易造成水滴外溅到池外,现决定通过降低出水口的高度,使落水形成的圆半径为2.75m,则应把出水口的高度调节为高出水面()A.0.55米B.米C.米D.0.4米二.填空题11.某公园有一个圆形喷水池,喷出的水流呈抛物线,水流的高度h(单位:m)与水流喷出时间t(单位:s)之间的关系式为h=30t﹣5t2,那么水流从喷出至回落到水池所需要的时间是s.12.航天飞机从某个时间t秒开始,其飞行高度为h=﹣10t2+700t+21000(单位:英尺),对人而言不低于31000英尺时会感觉到失重,则整个过程中能体会到失重感觉的时间为秒.13.某商场四月份的营业额是200万元,如果该商场第二季度每个月营业额的增长率相同,都为x(x>0),六月份的营业额为y万元,那么y关于x的函数解析式是.14.如图所示是某斜拉索大桥,主索塔呈抛物线,主索塔底部在水面部分的宽度AB=50米,主索塔的最高点E距水面的垂直距离为100米,桥面CD距水面的咨度为36米,则桥的宽度CD米.15.抗击疫情,我们每个人都要做到讲卫生,勤洗手,科学消毒,如右图(1)是一瓶消毒洗手液.图(2)是它的示意图,当手按住顶部A下压时,洗手液瞬间从喷口B 流出,路线从抛物线经过C,E两点.瓶子上部分是由弧和弧组成,其圆心分别为D,C.下部分的是矩形CGHD的视图,CG=8cm,GH=10cm,点E到台面GH的距离为14cm,点B到台面的距离为20cm,且B,D,H三点共线.若手心距DH的水平距离为2cm时刚好接洗手液,此时手心距水平台面的高度为cm.三.解答题16.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间满足函数关系y=﹣0.1x2+2.6x+43(0≤x≤30).y值越大,表示接受能力越强.(1)x在什么范围内,学生的接受能力逐步增强?(2)某同学思考10分钟后提出概念,他的接受能力是多少?17.如图,从某建筑物9米高的窗口A处用水管向外喷水,喷出的水成抛物线状(抛物线所在平面与墙面垂直),如果抛物线的最高点M离墙1米,离地面12米,建立平面直角坐标系,如图.(1)求抛物线的解析式;(2)求水流落地点B离墙的距离OB.18.某店购进一种今年新上市的饰品进行销售,饰品的进价为每件40元,售价为每件60元,每月可卖出300件,市场调查反映:调整价格时,售价每涨1元每月要少卖10件,售价每下降1元每月要多卖20件,为了获得更大的利润,现将商品售价调整为60+x(元/件)(x>0即售价上涨,x<0即售价下降),每月商品销量为y(件),月利润为w(元).(1)直接写出y与x之间的函数关系式;(2)当销售价格是多少时才能使月利润最大?求最大月利润?(3)为了使每月利润不少于6000元应如何控制销售价格?参考答案1.C2.B3.A4.D5.C6.B7.A8.A9.C10.B11.612.3013.y=200x2+400x+20014.4015.1716.解:(1)∵y=﹣0.1(x2﹣26x+169)+16.9+43=﹣0.1(x﹣13)2+59.9 ∴对称轴是:直线x=13即当(0≤x≤13)提出概念至(13分)之间,学生的接受能力逐步增强;(2)当x=10时,y=﹣0.1×102+2.6×10+43=59.17.解:(1)根据题意,得A(0,9),顶点M(1,12),设抛物线解析式为y=a(x﹣1)2+12,把A(0,9)代入,得a=﹣3,所以抛物线的解析式为y=﹣3(x﹣1)2+12=﹣3x2+6x+9.答:抛物线的解析式为y=﹣3x2+6x+9.(2)当y=0时,0=﹣3x2+6x+9解得x1=3,x2=﹣1所以B(3,0).答:水流落地点B离墙的距离OB为3米.18.解:(1)由题意可得:y=;(2)由题意可得:w=,化简得:w=,即w=,由题意可知x应取整数,故当x=﹣2或x=﹣3时,w<6125,x=5时,W=6250,故当销售价格为65元时,利润最大,最大利润为6250元;(3)由题意w≥6000,如图,令w=6000,将w=6000代入﹣20≤x<0时对应的抛物线方程,即6000=﹣20(x+)2+6125,解得:x1=﹣5,将w=6000代入0≤x≤30时对应的抛物线方程,即6000=﹣10(x﹣5)2+6250,解得x2=0,x3=10,综上可得,﹣5≤x≤10,故将销售价格控制在55元到70元之间(含55元和70元)才能使每月利润不少于6000元.。

人教版九年级上册数学 22.3 实际问题与二次函数 课后训练(含答案)

人教版九年级上册数学 22.3 实际问题与二次函数 课后训练(含答案)

人教版九年级数学22.3 实际问题与二次函数课后训练一、选择题1. 如图,利用一个直角墙角修建一个梯形储料场ABCD,其中∠C=120°.若新建墙BC与CD的总长为12 m,则该梯形储料场ABCD的最大面积是()A.18 m2B.18 3 m2 C.24 3 m2 D.45 32m22. 某公园草坪的防护栏是由100段形状相同的抛物线组成的.为了牢固起见,每段防护栏需要间距0.4 m加设一根不锈钢的支柱,防护栏的最高点距底部0.5 m(如图),则这条防护栏需要不锈钢支柱的总长度至少为()A.50 m B.100 mC.160 m D.200 m3. 如图,利用一面墙,其他三边用80米长的篱笆围成一块矩形场地,墙长为30米,则围成矩形场地的最大面积为()A.800平方米B.750平方米C.600平方米D.2400平方米4. 如图,在△ABC中,∠C=90°,AB=10 cm,BC=8 cm,点P从点A沿AC 向点C以1 cm/s的速度运动,同时点Q从点C沿CB向点B以2 cm/s的速度运动(点Q运动到点B时,两点同时停止运动),在运动过程中,四边形P ABQ的面积的最小值为()A.19 cm2B.16 cm2C.15 cm2D.12 cm25. 如图,将一个小球从斜坡上的点O处抛出,小球的抛出路线可以用二次函数y=4x-12x2刻画,斜坡可以用一次函数y=12x刻画,下列结论错误的是()A.当小球抛出高度达到7.5 m时,小球距点O的水平距离为3 mB.小球距点O的水平距离超过4 m后呈下降趋势C.小球落地点距点O的水平距离为7 mD.小球距点O的水平距离为2.5 m和5.5 m时的高度相同6. 一种包装盒的设计方法如图所示,四边形ABCD是边长为80 cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四点重合于图中的点O,得到一个底面为正方形的长方体包装盒.设BE=CF=x cm,要使包装盒的侧面积最大,则x应取()A.30 B.25 C.20 D.157. 用长为12 m的篱笆,一边利用足够长的墙围出一块苗圃.如图,围出的苗圃是五边形ABCDE,AE⊥AB,BC⊥AB,垂足分别为A,B,∠C=∠D=∠E.设CD=DE=x m,五边形ABCDE的面积为S m2,则S的最大值为()A.12 3 B.12 C.24 3 D.没有最大值8. 一位篮球运动员在距离篮圈中心水平距离4 m处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5 m时,达到最大高度3.5 m,然后准确落入篮筐内.已知篮圈中心距离地面高度为3.05 m,在如图(示意图)所示的平面直角坐标系中,下列说法正确的是()A.此抛物线的解析式是y=-15x2+3.5B.篮圈中心的坐标是(4,3.05)C.此抛物线的顶点坐标是(3.5,0)D.篮球出手时离地面的高度是2 m二、填空题9. 某种商品每件的进价为20元,经调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,则可卖出(30-x)件.若要使销售利润最大,则每件的售价应为________元.10. 如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF 分开.已知篱笆的总长为900 m(篱笆的厚度忽略不计),当AB=________m时,矩形ABCD的面积最大.11. 某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1 m宽的门.已知计划中的材料可建墙体总长为27 m,则能建成的饲养室总占地面积最大为________m2.12. 如图所示是一座抛物线形拱桥,当水面宽为12 m时,桥拱顶部离水面4 m,以水平方向为x轴,建立平面直角坐标系.若选取点A为坐标原点时的抛物线解析式为y=-19(x-6)2+4,则选取点B为坐标原点时的抛物线解析式为________________.13. 某大学生利用业余时间销售一种进价为60元/件的文化衫,前期了解并整理了销售这种文化衫的相关信息如下:(1)月销量y(件)与售价x(元/件)的关系满足y=-2x+400;(2)工商部门限制售价x满足70≤x≤150(计算月利润时不考虑其他成本).给出下列结论:①这种文化衫的月销量最小为100件;②这种文化衫的月销量最大为260件;③销售这种文化衫的月利润最小为2600元;④销售这种文化衫的月利润最大为9000元.其中正确的是________.(把所有正确结论的序号都填上)14. 飞机着落后滑行的距离s(单位:米)关于滑行时间t(单位:秒)的函数解析式是s=60t-32t2,则飞机着落后滑行的最长时间为________秒.15. 如图是某地一座抛物线形拱桥,桥拱在竖直平面内与水平桥面相交于A,B 两点,桥拱最高点C到AB的距离为9 m,AB=36 m,D,E为桥拱底部的两点,且DE∥AB,点E到直线AB的距离为7 m,则DE的长为________m.三、解答题16. 超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元/件,每天销售量会减少1件.设销售单价增加x元/件,每天售出y 件.(1)请写出y与x之间的函数解析式(不用写x的取值范围);(2)当x为多少时,超市每天销售这种玩具可获得利润2250元?(3)设超市每天销售这种玩具可获利w元,当x为多少时w最大,最大值是多少?17. 如图,已知A,B,C,D为矩形的四个顶点,AB=16 cm,AD=6 cm,动点P,Q分别从点A,C同时出发,点P以3 cm/s的速度向点B移动,点Q以2 cm/s 的速度向点D移动,当其中一点到达终点时,另一点也随之停止移动.(1)经过几秒,P,Q两点之间的距离是10 cm?(2)P,Q两点之间的距离何时最小?18. 如图,排球运动员站在O处练习发球,将球从点O正上方2米的点A处发出,把球看成点,其运行的高度y(米)与运行的水平距离x(米)满足解析式y=a(x -6)2+h.已知球网与点O的水平距离为9米,高度为2.43米,球场的边界距点O的水平距离为18米.(1)当h=2.6时,求y与x之间的函数解析式;(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;(3)若球一定能越过球网,又不出边界,则h的取值范围是多少?人教版 九年级数学 22.3 实际问题与二次函数课后训练-答案一、选择题1. 【答案】C [解析] 如图,过点C 作CE ⊥AB 于点E , 则四边形ADCE 为矩形,∠DCE =∠CEB =90°, 则∠BCE =∠BCD -∠DCE =30°. 设CD =AE =x m ,则BC =(12-x)m.在Rt △CBE 中,∵∠CEB =90°,∠BCE =30°, ∴BE =12BC =(6-12x)m , ∴AD =CE =BC 2-BE 2=(6 3-32x)m ,AB =AE +BE =x +6-12x =(12x +6)m ,∴梯形ABCD 的面积=12(CD +AB)·CE =12(x +12x +6)·(6 3-32x) =-3 38x 2+3 3x +18 3 =-3 38(x -4)2+24 3.∴当x =4时,S 最大=24 3.即CD 的长为4 m 时,梯形储料场ABCD 的面积最大为24 3 m 2.故选C.2. 【答案】C[解析] 以2 m 长线段所在直线为x 轴,以其垂直平分线为y 轴建立平面直角坐标系,求出抛物线的解析式,再求出不锈钢支柱的长度.3. 【答案】B[解析] 设矩形场地中平行于墙的边长为x 米,则垂直于墙的边长为80-x2米,围成矩形场地的面积为y 平方米,则y =x ·(80-x )2=-12x 2+40x =-12(x -40)2+800.∵a <0,∴x <40时,y 随x 的增大而增大,由于墙长为30米,∴0<x ≤30,∴当x =30时,y 取得最大值,为-12×(30-40)2+800=750.4. 【答案】C[解析] 在Rt △ABC 中,∠C =90°,AB =10 cm ,BC =8 cm ,∴AC =AB 2-BC 2=6 cm.设运动时间为t s(0<t≤4),则PC =(6-t)cm ,CQ =2t cm ,∴S 四边形PABQ =S △ABC -S △CPQ =12AC·BC -12PC·CQ =12×6×8-12(6-t)×2t =t 2-6t +24=(t -3)2+15,∴当t =3时,四边形PABQ 的面积取得最小值,最小值为15 cm 2. 故选C.5. 【答案】A[解析] 令y =7.5,得4x -12x 2=7.5.解得x 1=3,x 2=5.可见选项A错误.由y =4x -12x 2得y =-12(x -4)2+8,∴对称轴为直线x =4,当x >4时,y 随x 的增大而减小,选项B 正确.联立y =4x -12x 2与y =12x ,解得⎩⎨⎧x =0,y =0或⎩⎪⎨⎪⎧x =7,y =72.∴抛物线与直线的交点坐标为(0,0),⎝ ⎛⎭⎪⎫7,72,可见选项C 正确. 由对称性可知选项D 正确.综上所述,只有选项A 中的结论是错误的,故选A.6. 【答案】C[解析] 如图,设BE =CF =x cm ,则EF =(80-2x )cm.∵△EFM 和△CFN 都是等腰直角三角形,∴MF =22EF =(40 2-2x )cm ,FN =2CF =2x cm ,∴包装盒的侧面积=4MF ·FN =4·2x (40 2-2x )=-8(x -20)2+3200,故当x=20时,包装盒的侧面积最大.7. 【答案】A[解析] 连接EC,过点D作DF⊥EC,垂足为F.∵∠DCB=∠CDE=∠DEA,∠EAB=∠CBA=90°,∴∠DCB=∠CDE=∠DEA=120°.∵DE=CD,∴∠DEC=∠DCE=30°,∴∠CEA=∠ECB=90°,∴四边形EABC为矩形.∵DE=x m,∴AE=(6-x)m,DF=12x m,EC=3x m,∴S=12·3x·12x+(6-x)·3x=-3 34x2+6 3x(0<x<6),故当x=4时,S最大=123.8. 【答案】A[解析] ∵抛物线的顶点坐标为(0,3.5),∴可设抛物线的函数解析式为y=ax2+3.5.∵篮圈中心(1.5,3.05)在抛物线上,∴3.05=a×1.52+3.5.解得a=-15.∴y=-15x2+3.5.可见选项A正确.由图示知,篮圈中心的坐标是(1.5,3.05),可见选项B错误.由图示知,此抛物线的顶点坐标是(0,3.5),可见选项C错误.将x=-2.5代入抛物线的解析式,得y=-15×(-2.5)2+3.5=2.25,∴这次跳投时,球出手处离地面2.25 m可见选项D错误.故选A.二、填空题9. 【答案】25[解析] 设利润为w元,则w=(x-20)(30-x)=-(x-25)2+25. ∵20≤x≤30,∴当x =25时,二次函数有最大值25.10. 【答案】150[解析] 设AB =x m ,则AB =EF =CD =x m ,所以AD =BC =12(900-3x)m.设矩形ABCD 的面积为y m 2,则y =x·12(900-3x)=-32x 2+450x(0<x <300).由于二次项系数小于0,所以y 有最大值,且当x =-b2a =-4502×(-32)=150时,函数y 取得最大值.故当AB =150 m 矩形ABCD 的面积最大.11. 【答案】75[解析] 设与墙垂直的一边的长为x m ,则与墙平行的一边的长为27-(3x -1)+2=(30-3x)m.因此饲养室总占地面积S =x(30-3x)=-3x 2+30x ,∴当x =-302×(-3)=5时,S 最大,S最大值=-3×52+30×5=75.故能建成的饲养室总占地面积最大为75 m 2.12. 【答案】y =-19(x +6)2+413. 【答案】①②③[解析] 由题意知,当70≤x≤150时,y =-2x +400,∵-2<0,∴y 随x 的增大而减小,∴当x =150时,y 取得最小值,最小值为100,故①正确; 当x =70时,y 取得最大值,最大值为260,故②正确; 设销售这种文化衫的月利润为W 元,则W =(x -60)(-2x +400)=-2(x -130)2+9800, ∵70≤x≤150,∴当x =70时,W 取得最小值,最小值为-2(70-130)2+9800=2600,故③正确;当x =130时,W 取得最大值,最大值为9800,故④错误. 故答案为①②③.14. 【答案】20[解析] 滑行的最长时间实际上是求顶点的横坐标.∵s =60t -32t 2=-32(t -20)2+600,∴当t =20时,s 的最大值为600.15. 【答案】48[解析] 建立如图所示的平面直角坐标系,设AB 与y 轴交于点H.∵AB =36 m ,∴AH =BH =18 m. 由题可知:OH =7 m ,CH =9 m , ∴OC =9+7=16(m).设该抛物线的解析式为y =ax 2+k. ∵抛物线的顶点为C(0,16), ∴抛物线的解析式为y =ax 2+16.把(18,7)代入解析式,得7=18×18a +16, ∴7=324a +16, ∴a =-136, ∴y =-136x 2+16.当y =0时,0=-136x 2+16, ∴-136x 2=-16,解得x =±24, ∴E(24,0),D(-24,0), ∴OE =OD =24 m ,∴DE =OD +OE =24+24=48(m).三、解答题16. 【答案】解:(1)根据题意,得y =-12x +50. (2)根据题意,得(40+x)(-12x +50)=2250, 解得x 1=50,x 2=10.∵每件利润不能超过60元,∴x=50不合题意,舍去,∴x=10.答:当x为10时,超市每天销售这种玩具可获得利润2250元.(3)根据题意,得w=(40+x)(-12x+50)=-12x2+30x+2000=-12(x-30)2+2450.∵a=-12<0,∴当x<30时,w随x的增大而增大,∴当x=20时,w最大=2400.答:当x为20时w最大,最大值是2400.17. 【答案】解:(1)设经过x s,P,Q两点之间的距离是10 cm,则AP=3x,CQ=2x,过点Q作QM⊥AB于点M,则PM=|16-2x-3x|=|16-5x|.根据勾股定理,得PM2+QM2=PQ2,即(16-5x)2+62=102,解得x1=1.6,x2=4.8.答:经过1.6 s或4.8 s,P,Q两点之间的距离是10 cm. (2)∵PQ=(16-5x)2+62,∴当16-5x=0,即x=165时,PQ最小.故当点P,Q出发165s时,PQ最小.18. 【答案】解:(1)当h=2.6时,y=a(x-6)2+2.6.因为点A(0,2)在抛物线上,所以2=a(0-6)2+2.6,解得a=-1 60,所以y与x之间的函数解析式为y=-160(x-6)2+2.6.(2)球能越过球网且会出界.理由:当x=9时,y=-160(9-6)2+2.6=2.45>2.43,所以球能越过球网;当x=18时,y=-160(18-6)2+2.6=-2.4+2.6=0.2>0,所以球会出界.(3)把x=0,y=2代入y=a(x-6)2+h,得a=2-h 36,所以y=2-h36(x-6)2+h.当x=9时,y=2-h36(9-6)2+h=2+3h4>2.43.①当x=18时,y=2-h36(18-6)2+h=8-3h≤0.②由①②解得h≥8 3.。

22 3 实际问题与二次函数 同步练习(含简单答案) 人教版数学九年级上册

22 3 实际问题与二次函数 同步练习(含简单答案)  人教版数学九年级上册

22.3实际问题与二次函数一、单选题 1.长为20cm ,宽为10cm 的矩形,四个角上剪去边长为cm x 的小正方形,然后把四边折起来,作成底面为2cm y 的无盖的长方体盒子,则y 与x 的关系式为( )A .(10)(20)(05)y x x x =--<<B .210204(05)y x x =⨯-<<C .(102)(202)(05)y x x x =--<<D .22004(05)y x x =+<<2.飞机着陆后滑行的距离y (单位:m )关于滑行时间以(单位:)的函数解析式是y =60t ﹣32t 2.在飞机着陆滑行中,滑行最后的150m 所用的时间是( )s .A .10B .20C .30D .10或303.某企业的销售利润原来是m 万元,经过连续两年的增长达到了y 万元,如果每年增长的百分数都是x ,那么y 与x 的函数关系式是( )A .y =x 2+mB .y =m (x -1)2C .y =m (1+x )2D .y =m (1-x )24.在中考体育训练期间,小宇对自己某次实心球训练的录像进行分析,发现实心球飞行高度y (米)与水平距离x (米)之间的关系式为21381055y x x =-++,由此可知小宇此次训练实心球落地时的水平距离为( )A .85米B .8米C .10米D .2米5.如图,在等腰直角三角形ABC 中,∠BAC=90°,AB=AC=4,点E ,G 同时从点A 出发,分别以每秒12个单位的速度在射线AB ,AC 上运动,设运动时间为x 秒,以点A 为顶点的正方形AEFG 与等腰直角三角形ABC 重叠部分的面积为y ,则大致能反映y 与x 之间的函数关系的图象为( )A .B .C .D .6.某班计划在劳动实践基地内种植蔬菜,班长买回来10米长的围栏,准备围成两边靠墙(两墙垂直且足够长)的菜园,为了让菜园面积尽可能大,同学们提出了围成矩形、等腰直角三角形(两直角边靠墙)、扇形这三种方案,如图所示.最佳方案是( )A .方案1B .方案2C .方案1或方案2D .方案37.某池塘的截面如图所示,池底呈抛物线形,在图中建立平面直角坐标系,并标出相关数据(单位:m ).有下列结论:∠30m AB =;∠池底所在抛物线的解析式为21545y x =-; ∠池塘最深处到水面CD 的距离为3.2m ;∠若池塘中水面的宽度减少为原来的一半,则最深处到水面的距离变为1.2m .其中结论错误的是( )A .∠B .∠C .∠D .∠8.如图,晓波家的院墙一边靠墙处,用60米长的铁栅栏围成了三个相连的养殖小院子,总面积为y 平方米,为方便喂养这些不同类的动物,在各个养殖院子之间留出了1米宽的缺口作通道,在平行于墙的一边留下一个1米宽的缺口作小门.若设AB x =米,则y 关于x 的函数关系式为( )A .()604y x x =-B .()632y x x =-C .()602y x x =-D .()634y x x =-9.下表所列为某商店薄利多销的情况,某商品原价为560元,随着不同幅度的降价,日销量(单位为件)发生相应的变化.如果售价为500元时,日销量为( )件.降价(元) 5 10 15 20 25 30 35日销量(件) 780 810 840 870 900 930 960A .1200B .750C .1110D .114010.如图,在等腰△ABC 中,AB =AC =4cm ,∠B =30°,点P 从点B 出发,以32cm/s 的速度沿BC 方向运动到点C 停止,同时点Q 从点B 出发,以1cm/s 的速度沿BA —AC 方向运动到点C 停止.若△BPQ 的面积为y (2cm ),运动时间为x (s ),则下列最能反映y 与x 之间函数关系的图象是( )A .B .C .D .二、填空题11.加工爆米花时,爆开且不糊的颗粒的百分比称为“可食用率”.在特定条件下,可食用率y 与加工时间x (单位:min )满足函数表达式20.2 1.52y x x =-+-,则最佳加工时间为 min .12.如图,小明在期末体育测试中掷出的实心球的运动路线呈抛物线形.若实心球运动的抛物线的解析式为()2139y x k =--+,其中y 是实心球飞行的高度,x 是实心球飞行的水平距离.已知该同学出手点A 的坐标为(0,169),则实心球飞行的水平距离OB 的长度为 m .13.某快递公司十月份快递件数是10万件,如果该公司第四季度每个月快递件数的增长率都为x (x >0),十二月份的快递件数为y 万件,那么y 关于x 的函数解析式是 .14.如图,有一矩形纸片,长、宽分别为8厘米和6厘米,现在长宽上分别剪去宽为x 厘米(6x <)的纸条,则剩余部分(图中阴影部分)的面积y 关于x 的函数关系式为 .15.“水幕电影”的工作原理是把影像打在抛物线状的水幕上,通过光学原理折射出图像,水幕是由若干个水嘴喷出的水柱组成的(如图),水柱的最高点为P ,2AB =m ,9BP =m ,水嘴高5AD =m ,则水柱落地点C 到水嘴所在墙的距离AC 是 m .16.如图,一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离()s m 与时间()t s 的数据如下表.那么s 与t 之间的函数关系式是s = .时间/t s1 2 3 4 … 距离/s m 2 8 1832 …三、解答题17.某超市购进了一种商品,进价为每件8元,销售过程中发现,该商品每天的销售量y (件)与每件售价x (元)之间存在某种函数关系(其中815x ≤≤,且x 为整数),且当8x =时,110y =;当10x =时,100y =;当12x =时,90y =;…,设超市销售这种消毒用品每天获利为w (元).(1)请判断y 与x 符合哪种函数关系,并求y 与x 的函数表达式;(2)若该商店销售这种商品每天获润480元,则每件商品的售价为多少元;(3)当每件商品的售价为多少元时,每天的销售利润最大?最大利润是多少元?18.某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y (件)与销售单价x (元)之间有如表关系:销售单价x (元) 30 35 40 ∠ 70 ∠每天的销售量y (件) 100 90 80 ∠ 20 ∠ (1)求该商品每天的销售量y 与销售单价x 之间的函数关系式;(2)若商店按照单价不低于成本价,且不高于50元销售,则销售单价x 定为多少才能使销售该商品每天获得的利润w (元)最大?最大利润是多少?(3)该商店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为保证捐款后销售该商品每天获得的利润不低于650元,则每天的销售量最少应为多少件?19.园林部门计划在某公园建一个长方形苗圃ABCD .苗圃的一面靠墙(墙最大可用长度为14米).另三边用木栏围成,中间也用垂直于墙的木栏隔开,分成两个区域,并在如图所示的两处各留2米宽的门(门不用木栏),建成后所用木栏总长32米,设苗圃ABCD 的一边CD 长为x 米.(1)BC 长为________米(包含门宽,用含x 的代数式表示);(2)若苗圃ABCD 的面积为296m ,求x 的值;(3)当x 为何值时,苗圃ABCD 的面积最大,最大面积为多少?20.在平面直角坐标系xOy 中,已知直线3y x =-+与x 轴,y 轴分别交于点A ,B ,抛物线23y ax bx a=+-经过点A ,将点B 向右平移5个单位长度,得到点C .(1)求C 点坐标;(2)求抛物线对称轴;(3)若抛物线与线段BC 有一个公共点,结合图像,求a 的取值范围.参考答案:。

第一学期人教版九年级上册22.3《二次函数与实际问题》同步练习(含答案)

第一学期人教版九年级上册22.3《二次函数与实际问题》同步练习(含答案)

《二次函数与实际问题》同步练习1.进入夏季后,某电器商场为减少库存,对电热取暖器连续进行两次降价.若设平均每次降价的百分率是x ,降价后的价格为y 元,原价为a 元,则y 与x 之间的函数关系式为( )A.y =2a(x −1)B.y =2a(1−x)C.y =a(1−x 2)D.y =a(1−x)22.汽车刹车后行驶的距离s (单位:m )最新行驶的时间t (单位:s )的函数解析式是s =20t −5t 2,汽车刹车后到停下来前进的距离是( )A.10mB.20mC.30mD.40m3.已知直线y =mx +n 和抛物线y =ax 2+bx +c 在同一坐标系中的位置如图所示,且抛物线与x 轴交于点(−1, 0)、(2, 0),抛物线与直线交点的横坐标为1和−32,那么不等式mx +n <ax 2+bx +c <0的解集是( )A.1<x <2B.x <−32或x >1C.−32<x <2D.−1<x <24. y =x 2+(1−a)x +1是最新x 的二次函数,当x 的取值范围是1≤x ≤3时,y 在x =1时取得最大值,则实数a 的取值范围是( )A.a ≤−5B.a ≥5C.a =3D.a ≥35.在二次函数y =x 2+2x −3中,当−3≤x ≤0时,y 的最大值和最小值分别是( )A.0,−4B.0,−3C.−3,−4D.0,06.一个边长为3厘米的正方形,若它的边长增加x厘米,面积随之增加y平方厘米,则y最新x的函数解析式是________.(不写定义域)7.已知A(m,n)、B(m+8,n)是抛物线y=−(x−ℎ)2+2018上两点,则n=________.8.两个数的和为6,这两个数的积最大可以达到________.9.抛物线y=x2−4与x轴的两个交点和抛物线的顶点构成的三角形的面积为________.10.二次函数y=ax2−4x−13a有最小值−17,则a=________.11. 已知二次函数y=x2+bx+c的图象与y轴交于点A(0, 4),与x轴交于点B(1, 0)和点C,顶点为D,直线y=mx+n经过点C和D,(1)求二次函数的解析式;(2)根据函数的图象,当x取什么值时,x2+bx+c>mx+n?12.某商店如果将进货单价8元的商品按每件10元售出,每天可销售200件,通过一段时间的摸索,该店主发现这种商品每涨价0.5元,其销售量就减少10件,每降价0.5元,其销售量就增加10件.(1)你能帮助店主设计一种方案,使每天的利润为700元吗?(2)将售价定位每件多少元时,能使每天可获的利润最大?最大利润是多少?13.某商店购进一批单价为30元的日用商品,如果以单价40元销售,那么每星期可售出400件.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.设销售单价为x(元)(x>40)时,该商品每星期获得的利润y (元).(1)求出y与x之间的函数关系式及自变量x的取值范围;(2)求出销售单价为多少元时,每星期获得的利润最大?最大利润是多少?参考答案1.【答案】D2.【答案】B3.【答案】A4.【答案】B5.【答案】A6.【答案】y=x2+6x7.略8.【答案】99.【答案】810.【答案】1或41311.【答案】解:(1)∵ 二次函数y=x2+bx+c的图象与y轴交于点A(0, 4),与x轴交于点B(1, 0),∵ {c=41+b+c=0,解得{c=4b=−5,∵ 二次函数的解析式为:y=x2−5x+4;(2)∵ y=x2−5x+4=(x−1)(x−4),∵ C(4, 0).∵ 当x=−−52=52时,y=4×4−254=−94,∵ D(52, −94).当x<52或x>4时,x2+bx+c>mx+n.12.【答案】解:(1)设每件商品提高x元,则每件利润为(10+x−8)=(x+2)元,每天销售量为(200−20x)件,依题意,得:(x+2)(200−20x)=700.整理得:x2−8x+15= 0.解得:x1=3,x2=5.∵ 把售价定为每件13元或15元能使每天利润达到700元;若设每件商品降价x元,则(2−x)(200+20x)=700.整理得:x2+8x+15=0,解得:x1=−3,x2=−5,∵ 把售价定为每件13元或15元能使每天利润达到700元.(2)设利润为y:则y=(x−8)[200−20(x−10)]=−20x2+560x−3200=−20(x−14)2+720,则当售价定为14元时,获得最大利润;最大利润为720元.13.【答案】销售单价为45元时,每星期获得的利润最大,最大利润是4500元.。

人教版九年级上册:22.3《实际问题与二次函数》同步练习卷 含答案

人教版九年级上册:22.3《实际问题与二次函数》同步练习卷   含答案

人教版九年级上册22.3《实际问题与二次函数》同步练习卷【有答案】一.选择题1.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.设每件商品降价x元后,每星期售出商品的总销售额为y元,则y与x的关系式为()A.y=60(300+20x)B.y=(60﹣x)(300+20x)C.y=300(60﹣20x)D.y=(60﹣x)(300﹣20x)2.用一根长60cm的铁丝围成一个矩形,那么矩形的面积y(cm2)与它的一边长x(cm)之间的函数关系式为()A.y=x2﹣30x(0<x<30)B.y=﹣x2+30x(0≤x<30)C.y=﹣x2+30x(0<x<30)D.y=﹣x2+30x(0<x≤30)3.在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,若a+b=5,则Rt△ABC的面积S关于边长c的函数关系式为()A.S=B.S=C.S=D.S=4.如图是抛物线形拱桥,当拱顶高离水面2m时,水面宽4m,水面下降2.5m,水面宽度增加()A.1 m B.2 m C.3 m D.6 m5.黄山市某塑料玩具生产公司,为了减少空气污染,国家要求限制塑料玩具生产,这样有时企业会被迫停产,经过调研预测,它一年中每月获得的利润y(万元)和月份n之间满足函数关系式y=﹣n2+14n﹣24,则没有盈利的月份为()A.2月和12月B.2月至12月C.1月D.1月、2月和12月6.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.下列结论:①小球在空中经过的路程是40m;②小球运动的时间为6s;③小球抛出3秒时,速度为0;④当t=1.5s时,小球的高度h=30m.其中正确的是()A.①④B.①②C.②③④D.②④7.如图,在△ABC中,∠B=90°,AB=6cm,BC=12cm,动点P从点A开始沿边AB向B以1cm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以2cm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过()秒,四边形APQC的面积最小.A.1B.2C.3D.48.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()A.﹣B.或C.2或D.2或或9.已知二次函数y=ax2+bx+c(a<0)的图象如图,当﹣5≤x≤0时,下列说法正确的是()A.有最小值﹣5、最大值0B.有最小值﹣3、最大值6C.有最小值0、最大值6D.有最小值2、最大值610.如图,点E、F、G、H分别是正方形ABCD边AB、BC、CD、DA上的点,且AE=BF=CG=DH.设A、E两点间的距离为x,四边形EFGH的面积为y,则y与x的函数图象可能为()A.B.C.D.11.如图,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)交于A,B两点,且点A的横坐标是﹣2,点B的横坐标是3,则以下结论:①抛物线y=ax2(a≠0)的图象的顶点一定是原点;②x>0时,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)的函数值都随着x的增大而增大;③AB的长度可以等于5;④△OAB有可能成为等边三角形;⑤当﹣3<x<2时,ax2+kx<b,其中正确的结论是()A.①②B.①②⑤C.②③④D.①②④⑤二.填空题12.中国“一带一路”倡议给沿线国家和地区带来很大的经济效益,沿线某地区居民2017年年人均收入300美元,预计2019年年人均收入将达到y美元.设2017年到2019年该地区居民年人均收入平均增长率为x,那么y与x的函数关系式是.13.如图是抛物线形拱桥,当拱顶离水面2m时,水面宽4m,则水面下降1m时,水面宽度增加m.14.某菜农搭建了一个横截面为抛物线的大棚,尺寸如图,若菜农身高为1.8m,他在不弯腰的情况下,在棚内的横向活动范围是m.15.如图所示,矩形ABCD中,AB=8,BC=6,P是线段BC上一点(P不与B重合),M 是DB上一点,且BP=DM,设BP=x,△MBP的面积为y,则y与x之间的函数关系式为.16.如图,线段AB=10,点P在线段AB上,在AB的同侧分别以AP、BP为边长作正方形APCD和BPEF,点M、N分别是EF、CD的中点,则MN的最小值是.三.解答题17.某店销售一种小工艺品.该工艺品每件进价12元,售价为20元.每周可售出40件.经调查发现,若把每件工艺品的售价提高1元,就会少售出2件.设每件工艺品售价提高x 元,每周从销售这种工艺品中获得的利润为y元.(1)填空:每件工艺品售价提高x元后的利润为元,每周可售出工艺品件,y关于x的函数关系式为;(2)若y=384,则每件工艺品的售价应确定为多少元?18.甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,如图,甲在O点正上方1m的P处发出一球,羽毛球飞行的高度y(m)与水平距离x(m)之间满足函数表达式y=a(x﹣4)2+h,已知点O与球网的水平距离为5m,球网的高度为1.55m.(1)当a=﹣时,①求h的值;②通过计算判断此球能否过网.(2)若甲发球过网后,羽毛球飞行到与点O的水平距离为7m,离地面的高度为m的Q处时,乙扣球成功,求a的值.19.已知二次函数y=x2+bx+c(b,c为常数).(1)当b=2,c=﹣3时,求二次函数的最小值;(2)当c=5时,若在函数值y=1的情况下,只有一个自变量x的值与其对应,求此时二次函数的解析式;(3)当c=b2时,若在自变量x的值满足b≤x≤b+3的情况下,与其对应的函数值y的最小值为21,求此时二次函数的解析式.20.已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),与x轴交于另一点B,抛物线的顶点为D.(1)求此二次函数解析式;(2)连接DC、BC、DB,求证:△BCD是直角三角形;(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.参考答案一.选择题1.解:降价x元,则售价为(60﹣x)元,销售量为(300+20x)件,根据题意得,y=(60﹣x)(300+20x),故选:B.2.解:由题意得:矩形的另一边长=60÷2﹣x=30﹣x,矩形的面积y(cm2)与它的一边长x(cm)之间的函数关系式为y=x(30﹣x)=﹣x2+30x (0<x<30).故选:C.3.解:∵∠C=90°,BC=a,AC=b,AB=c,∴a2+b2=c2,∵Rt△ABC的面积S,∴S=ab,∵a+b=5,∴(a+b)2=25,∴a2+b2+2ab=25,∴c2+4S=25,∴S=.故选:A.4.解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),设顶点式y=ax2+2,把A点坐标(﹣2,0)代入得a=﹣0.5,∴抛物线解析式为y=﹣0.5x2+2,当水面下降2.5米,通过抛物线在图上的观察可转化为:当y=﹣2.5时,对应的抛物线上两点之间的距离,也就是直线y=﹣2.5与抛物线相交的两点之间的距离,可以通过把y=﹣2.5代入抛物线解析式得出:﹣2.5=﹣0.5x2+2,解得:x=±3,2×3﹣4=2,所以水面下降2.5m,水面宽度增加2米.故选:B.5.解:∵y=﹣n2+14n﹣24=﹣(n﹣2)(n﹣12),1≤n≤12且n为整数,∴当y=0时,n=2或n=12,当y<0时,n=1,故选:D.6.解:①由图象可知,小球在空中达到的最大高度为40m,则小球在空中经过的路程一定大于40m,故①错误;。

【中考数学】人教版九年级数学上册第22章223《实际问题与二次函数》同步练习2带答案.doc

【中考数学】人教版九年级数学上册第22章223《实际问题与二次函数》同步练习2带答案.doc

人教版九年级数学上册第22章22. 3《实际问题与二次函数》同步练习1带答案知识点:利用二次函数解决抛物线的问题,如隧道、大桥和拱门等,要恰当地建立平面直角坐标系,从而确定抛物线的解析式,然后利用抛物线的性质解决实际问题。

_、选择1.图(1)是一个横断面为抛物线形状的拱桥,当水面在1时,拱顶(拱桥洞的最高点)离水而2叫水而宽4m・如图(2)建立平面直角坐标系,则抛物线的关系式是( )A. y=-2x2B. y=2x2C、y = —— x2 D、y = —x2' 2 22、有长24n)的篱笆,一面利用围墙围城如图中间隔有一道篱笆的矩形花圃,设花圃的垂直于墙的一边长为xm,面积是sm2,贝ij s与x的关系式是( )A> s = -3x2 +24x B、s = -2x2 +24兀C、s = -3x2-24x D、s = -2x2 +24x3、如图,铅球的出手点C距地面1米.,出手后的运动路线是抛物线,出手后4秒钟达到最大高度3米,•则铅球运行路线的解析式为( )3 3 1 1A、h =一- rB、/? = -—r2 +r c、h =一一尸+f + l D、h =一一r2 + 2r +1 16 16 834、在一幅长60cm,宽40cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的而积是yci『,设金色纸边的宽度为xcm2, 那么y关于x 的函数是( )A、y= (60+2x) (40+2x)B、y= (60+x) (40+x)C、y= (60+2x) (40+x)D、y= (60+x) (40+2x)5、如图所示是一个抛物线形桥拱的示意图,在所给出的平面直角坐标系中,当水位在AB位置时,水面宽度为10m,此时水面到桥拱的距离是4m,则抛物线的函数关系式为( ) , 25 225 2 4 2 4 2A、y=x B A y ~ x C、.y = x Dx y ~”Y-4 4 25 256、国家决定对某药品价格分两次降价,若设平均每次降价的百分率为x,该药品原价为18元,降价后的价格为y元,则y与x的函数关系式为( ).A、y=36 ( 1-x) B、y=36 ( 1+x ) C> y = 18(l + x)2D、y = 18(l-x)27、如图,正方形ABCD的边长为1, E、F分别是边BC和CD ±的动点(不与正方形的顶点重合),不管E、F怎样动,始终保持AE丄EF.设BE二x, DF二y,则y是x的函数,函数关系式是( )值二 ______________4、 将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长各做一个正方形,则这两个正方形的面积之和的最小值是 _____________ 5、 如图,一小孩将一只皮球从A 处抛出去,它经过的路线是某个二次函数图像的一部分,如果他的出手处A 距地面0A 为lm,球路的最高点为B (8,9),则这个二次函数的表达式 为 ,小孩将球抛出约 ______ 米。

人教版九年级上册数学学案:22.3实际问题与二次函数 (2)含答案

人教版九年级上册数学学案:22.3实际问题与二次函数 (2)含答案

课题:22.3实际问题与二次函数 (2)201 年月一、学习目标1.能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能利用二次函数的知识解决实际问题.2.通过探索“面积问题中”的最值的过程,获得利用数学方法解决实际问题的经验,亲自体会到学习数学知识的价值,提高学习兴趣.二、教材导学问题1.某体育用品商店购进一批滑板,每件进价为100元,售价为130元,每星期可卖出80件.商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20件.(1)求商家降价前每星期的销售利润为多少元?(2)降价后,商家要使每星期的销售利润最大,应将售价定为多少元?最大销售利润是多少?问题2.计算机把数据存储在磁盘上,磁盘是带有磁性物质的圆盘,磁盘上有一些同心圆轨道,叫做磁道.如图,现有一张半径为45mm的磁盘.(1)磁盘最内的磁道半径为rmm,其上每0.015的弧长为1个存储单元,这条磁道有多少个存储单元?(2)磁盘上各磁道之间的宽度必须不小于0.3mm,磁盘的外周不是磁道,这张磁盘最多有多少条磁道?(3)如果各磁道的存储单元数目与最内磁道相同,最内磁道的半径r是多少时,磁盘的存储量最大?分析问题(1)磁盘存储量与那几个量有关?(每条磁道的存储量和磁道条数)(2)从中找寻函数关系,解决实际问题.(3)考虑自变量范围,r可以无限增大吗?问题3.如图,某养鸡专业户准备利用一面墙(墙的长度大于50米),用长50米的篱笆围成一个鸡的活动场地矩形ABCD,其中AB边上有一个宽2米的门(PQ=2米)且门不需要篱笆.请你帮助设计一下,当矩形的长AB是多少米时,此矩形面积最大?最大面积是多少平方米?三、引领学习知识点1:利用二次函数求“图形面积”问题中墙不限长的最值如图所示,有长为24m的篱笆,一面利用墙(•墙的长度不限),围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB为x m,面积为S m.(1)求S与x的函数关系式;(2)如果要围成面积为45m2的花圃,AB的长是多少?(3)能围成面积比45m2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.知识点2:利用二次函数求“图形面积”问题中墙限长的最值如图所示,有长为24m的篱笆,一面利用墙(•墙的最大可用长度a为10m),围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB为x m,面积为S m.(1)求S与x的函数关系式;(2)如果要围成面积为45m2的花圃,AB的长是多少?(3)能围成面积比45m2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.归纳:1.在此类面积问题中,墙的长度一般是限定自变量取值范围的,即确定是否可以取到此二次函数的最大值,因此,要特别注意墙的长度这一限制条件.2.此类问题中的隔断部分也属于材料的一部分,注意列式时要考虑在内.3.此类问题如果设置门,则所围部分的实际周长,比材料多门的宽度.课题:22.3实际问题与二次函数 (2)答案二、教材导学问题1.(1) (130-100)×80=2400(元)(2)设应将售价定为元,则销售利润 .当时,有最大值2500. ∴应将售价定为125元,最大销售利润是2500元.问题3.设AB 长x 米,则AD 长21(50+2-x)=(26-21x)米 设面积为S ,则S=x(26 -21x)=-21x 2+26x∵a=-21<0 ∴S 有最大值……1分 当x=-)21(226-⨯=26时 S 最大=26(26-13)=338三、引领学习知识点1:(1)∵m AB x =, ∴()243BC x =-m .∴()2243324S x x x x=-=-+.(2)当45S =时,232445x x -+=,即28150x x -+=.解得1235x x ==,.∴要围成面积为45m 2的花圃,AB 的长是3m 或5m .(3)能围成面积比45m 2更大的花圃.∵()223243448S x x x =-+=--+,∴当=4x 时,S 取最大值48. 知识点2:(1)∵m AB x =, ∴()243BC x =-m .∴()2243324S x x x x=-=-+.∵0024310x x ><-,≤, ∴1483x <≤.x 130(100)(8020)5xy x -=-+⨯24100060000x x =-+-24(125)2500x =--+125x =y∴S 与x 的函数关系式是21432483S x x x ⎛⎫=-+< ⎪⎝⎭≤. (2)当45S =时,232445x x -+=,即28150x x -+=.解得1235x x ==,.而当3x =时,不满足1483x <≤,故舍去,只取5x =.∴要围成面积为45m 2的花圃,AB 的长是5m .(3)不能围成面积比45m 2更大的花圃. ∵()223243448S x x x =-+=--+,∴当=4x 时,S 取最大值48.∵1483x <≤,1443<∴当4x >时,S 随x 的增大而减小.∴不能围成面积比45m 2更大的花辅.。

人教版九年级上册数学22 3实际问题与二次函数 同步练习(含答案)

人教版九年级上册数学22 3实际问题与二次函数 同步练习(含答案)

人教版九年级上册数学22.3实际问题与二次函数同步练习一、单选题1.共享单车为市民出行带来了方便,某单车公司第一个月投放a 辆单车,计划第三个月投放单车y 辆,若第二个月的增长率是x ,第三个月的增长率是第二个月的两倍,那么y 与x 的函数关系是 ( ) A .()()112y a x x =++ B .()21y a x =+ C .()221y a x =+ D .22y x a =+2.某商场经营一种小商品,已知进购时单价是20元.调查发现:当销售单价是30元时,月销售量为240件,而销售单价每上涨1元,月销售量就减少10件,但每件商品的售价不能高于40元.当月销售利润最大时,销售单价为( )A .35元B .36元C .37元D .36或37元 3.抛物线22y x x =+-与x 轴交于A 、B 两点,A 点在B 点左侧,与y 轴交于点C .若点E 在x 轴上,点P 在抛物线上,且以A 、C 、E 、P 为顶点的四边形是平行四边形,则符合条件的点E 有( )A .1个B .2个C .3个D .4个 4.飞机着陆后滑行的距离s (单位:m )与滑行的时间t (单位:s )的函数解析式是260 1.5s t t =-,那么飞机着陆后滑行多长时间才能停下来.( ) A .10s B .20s C .30s D .40s 5.某市为解决当地教育“大班额”问题,计划用三年时间完成对相关学校的扩建,2019年市政府已投资5亿人民币,若每年投资的增长率相同,预计2021年投资额达到y 亿元人民币,设每年投资的增长率为x ,则可得( )A .5(12)y x =+B .25y x =C .()251y x =+D .()251y x =+ 6.如图,若被击打的小球飞行高度h (单位:)m 与飞行时间t (单位:)s 具有函数关系为2205h t t =-,则小球从飞出到落地的所用时间为( )A.3s B.4s C.5s D.6s7.如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m.若水面再下降1.5m,水面宽度为()m.8.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千,拴绳子的地方距地面都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为()二、填空题面宽为12m,这时水面离桥拱顶端的高度是____________________.10.半径是2的圆,如果半径增加x 时,增加的面积s 与x 之间的关系表达式为__________. 11.如图,用一段长为10米的篱笆围成一个一边靠墙(墙的长度不限)的长方形菜园ABCD ,设AB 为x 米,则菜园的面积y (平方米)与x (米)的关系式为______.(不要求写出自变量x 的取值范围)12.一个涵洞成抛物线形,它的截面如图,当水面宽AB =1.6米时,涵洞顶点与水面的距离为2.4m .涵洞所在抛物线的解析式是_____________.13.足球被从地面上踢起,它距地面的高度h (m )可用公式h =-4.9t 2+19.6t 来表示,其中t (s )表示足球被踢出后经过的时间,则球在______s 后落地.14.从喷水池喷头喷出的水珠,在空中形成一条抛物线,如图所示,在抛物线各个位置上,水珠的竖直高度y (单位:m )与它距离喷头的水平距离x (单位:m )之间满足函数关系式2241y x x =-++,喷出水珠的最大高度是______m .15.某商场经营一种小商品,已知购进时单价是20元.调查发现:当销售单价是30元时,月销售量为280件.而销售单价每上涨1元,月销售量就减少10件,当月销售利润最大时,销售单价为___________元.16.如图,一座悬索桥的桥面OA与主悬钢索MN之间用垂直钢索连接,主悬钢索是抛物线形状,两端到桥面的距离OM与AN相等.小强骑自行车从桥的一端0沿直线匀速穿过桥面到达另一端A,当他行驶18秒时和28秒时所在地方的主悬钢索的高度相同,那么他通过整个桥面OA共需_____________秒.三、解答题17.某大型超市购进一款热销的消毒洗衣液,由于原材料价格上涨,今年每瓶洗衣液的进价比去年每瓶洗衣液的进价上涨4元,今年用1440元购进这款洗衣液的数量与去年用1200元购进这款洗衣液的数量相同.当每瓶洗衣液的现售价为36元时,每周可卖出600瓶,为了能薄利多销.该超市决定降价销售,经市场调查发现,这种洗衣液的售价每降价1元,每周的销量可增加100瓶,规定这种消毒洗衣液每瓶的售价不低于进价.(1)求今年这款消毒洗衣液每瓶进价是多少元;(2)当这款消毒洗衣液每瓶的售价定为多少元时,这款洗衣液每周的销售利润最大?最大利润是多少元?18.某学校为美化学校环境,打造绿色校园,决定用篱笆围成一个一面靠墙(墙足够长)的矩形花园,用一道篱笆把花园分为A,B两块(如图所示),花园里种满牡丹和芍药,学校已定购篱笆120米.(1)设计一个使花园面积最大的方案,并求出其最大面积;(2)在花园面积最大的条件下,A ,B 两块内分别种植牡丹和芍药,每平方米种植2株,知牡丹每株售价25元,芍药每株售价15元,学校计划购买费用不超过5万元,求最多可以购买多少株牡丹?19.国庆假期期间,某酒店有20个房间供游客居住,当每个房间每天的定价为100元时,房间恰好全部住满;当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,酒店需对每个房间每天支出20元的各种费用,设每间房间定价x 元()100x ≥.(1)每天有游客居住的房间数为__________(用含x 的代数式表示);(2)当每间房价为多少元时,酒店当天的利润为1800元?(3)当每间房价定为多少元时,酒店的利润m (元)最大,最大利润是多少?20.如图是某隧道截面示意图,它是由抛物线和长方形构成,已知12OA =米,4OB =米,抛物线顶点D 到地面OA 的垂直距离为10米,以OA 所在直线为x 轴,以OB 所在直线为y 轴建立直角坐标系,(1)求抛物线的解析式;(2)一辆特殊货运汽车载着一个长方体集装箱,集装箱宽为4米,最高处与地面距离为6米,隧道内设双向行车道,双向行车道间隔距离为2米,交通部门规定,车载货物顶部距离隧道壁的竖直距离不少于0.5米,才能安全B通行,问这辆特殊货车能否安全通过隧道?参考答案:。

人教版 九年级数学上册 22.3 实际问题与二次函数 同步训练(含答案)

人教版 九年级数学上册 22.3 实际问题与二次函数 同步训练(含答案)

人教版九年级数学上册22.3 实际问题与二次函数同步训练一、选择题(本大题共8道小题)1. 某种服装的销售利润y(万元)与销售数量x(万件)之间满足函数解析式y=-2x2+4x+5,则利润的()A.最大值为5万元B.最大值为7万元C.最小值为5万元D.最小值为7万元2. 某企业生产季节性产品,当产品无利润时,企业自动停产,经过调研,它一年中每月获得的利润y(万元)和月份n之间满足函数关系式y=-n2+12n-11,则企业停产的月份为()A.1月和11月B.1月、11月和12月C.1月D.1月至11月3. 某广场有一喷水池,水从地面喷出,以水平地面为x轴,出水点为原点,建立如图所示的平面直角坐标系,水在空中划出的曲线是抛物线y=-x2+4x(单位:米)的一部分,则水喷出的最大高度是()A.4米B.3米C.2米D.1米4. 小敏用一根长为8 cm的细铁丝围成矩形,则矩形的最大面积是()A.4 cm2B.8 cm2C.16 cm2D.32 cm25. 某公园草坪的防护栏是由100段形状相同的抛物线组成的.为了牢固起见,每段防护栏需要间距0.4 m加设一根不锈钢的支柱,防护栏的最高点距底部0.5 m(如图),则这条防护栏需要不锈钢支柱的总长度至少为()A.50 m B.100 mC .160 mD .200 m6. 如图,铅球运动员掷铅球的高度y (m)与水平距离x (m)之间的函数解析式是y=-112x 2+23x +53,则该运动员此次掷铅球的成绩是( )A .6 mB .12 mC .8 mD .10 m7. 中环桥是省城太原的一座跨汾河大桥(如图①),它由五个高度不同,跨径也不同的抛物线形钢拱通过吊杆,拉索与主梁相连.最高的钢拱如图②所示,此钢拱(近似看成二次函数的图象——抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A ,B 两点,拱高为78米(即最高点O 到AB 的距离为78米),跨径为90米(即AB =90米),以最高点O 为坐标原点,以平行于AB 的直线为x 轴建立平面直角坐标系.则此抛物线形钢拱的函数解析式为( )A .y =26675x 2 B .y =-26675x 2 C .y =131350x 2D .y =-131350x 28. 一位篮球运动员在距离篮圈中心水平距离4 m 处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5 m 时,达到最大高度3.5 m ,然后准确落入篮筐内.已知篮圈中心距离地面高度为3.05 m ,在如图 (示意图)所示的平面直角坐标系中,下列说法正确的是( )A.此抛物线的解析式是y=-15x2+3.5B.篮圈中心的坐标是(4,3.05)C.此抛物线的顶点坐标是(3.5,0)D.篮球出手时离地面的高度是2 m二、填空题(本大题共8道小题)9. 某农场拟建三间长方形种牛饲养室,饲养室的一面靠墙(墙长50 m),中间用两道墙隔开(如图).已知计划中的建筑材料可建墙的总长度为48 m,则这三间长方形种牛饲养室的总占地面积的最大值为________ m2.10. 某商店从厂家以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品的售价为a元,则可卖出(350-10a)件.但物价部门限定每件商品加价不能超过进价的40%,若商店想获得最大利润,则每件商品的价格应定为________元.11. 某种商品每件的进价为20元,经调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,则可卖出(30-x)件.若要使销售利润最大,则每件的售价应为________元.12. 如图所示是一座抛物线形拱桥,当水面宽为12 m时,桥拱顶部离水面4 m,以水平方向为x轴,建立平面直角坐标系.若选取点A为坐标原点时的抛物线解析式为y=-19(x-6)2+4,则选取点B为坐标原点时的抛物线解析式为________________.13. 某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1 m宽的门.已知计划中的材料可建墙体总长为27 m,则能建成的饲养室总占地面积最大为________m2.14. 飞机着落后滑行的距离s(单位:米)关于滑行时间t(单位:秒)的函数解析式是s=60t-32t2,则飞机着落后滑行的最长时间为________秒.15. 某大学生利用业余时间销售一种进价为60元/件的文化衫,前期了解并整理了销售这种文化衫的相关信息如下:(1)月销量y(件)与售价x(元/件)的关系满足y=-2x+400;(2)工商部门限制售价x满足70≤x≤150(计算月利润时不考虑其他成本).给出下列结论:①这种文化衫的月销量最小为100件;②这种文化衫的月销量最大为260件;③销售这种文化衫的月利润最小为2600元;④销售这种文化衫的月利润最大为9000元.其中正确的是________.(把所有正确结论的序号都填上)16. 竖直上抛的小球离地高度是它运动时间的二次函数.小军相隔1秒依次竖直向上抛出两个小球.假设两个小球离手时离地高度相同,在各自抛出后1.1秒时到达相同的最大离地高度.第一个小球抛出后t秒时在空中与第二个小球的离地高度相同,则t=________.三、解答题(本大题共4道小题)17. 某果园有100棵橙子树,平均每棵树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵果树就会少结5个橙子,假设果园多种x棵橙子树.(1)直接写出平均每棵树结的橙子数y(个)与x之间的关系式;(2)果园多种多少棵橙子树时,可以使橙子的总产量最大?最大为多少个?18. 旅游公司在景区内配置了50辆观光车供游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x(元)是5的倍数.发现每天的运营规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元.(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入-管理费)(2)当每辆车的日租金为多少元时,每天的净收入最多?19. 如图,排球运动员王亮站在点O处练习发球,将球从点O正上方2 m的A 处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y =a(x-6)2+h.已知球网与点O的水平距离为9 m,高度为2.43 m,球场的边界距点O的水平距离为18 m.(1)当h=2.6时,①求y关于x的函数解析式(不要求写出自变量x的取值范围);②球能否越过球网?球会不会出界?请说明理由;③若排球运动员张明站在另外半场的点M(m,0),且张明原地起跳接球的最大高度为2.4 m.若张明因接球的高度不够而失球,求m的取值范围.(2)若球一定能越过球网,又不出边界,求h的取值范围.20. 2019·鄂尔多斯某工厂制作A,B两种手工艺品,B每件获利比A多105元,获利30元的A与获利240元的B数量相等.(1)制作一件A和一件B分别获利多少元?(2)工厂安排65人制作A,B两种手工艺品,每人每天制作2件A或1件B.现在在不增加工人的情况下,增加制作C.已知每人每天可制作1件C(每人每天只能制作一种手工艺品),要求每天制作A,C两种手工艺品的数量相等.设每天安排x人制作B,y人制作A,写出y与x之间的函数关系式(不要求写自变量的取值范围).(3)在(1)(2)的条件下,每天制作B不少于5件.当每天制作5件时,每件获利不变.若每增加1件,则当天平均每件获利减少2元.已知C 每件获利30元,求每天制作三种手工艺品可获得的总利润W (元)的最大值及相应x 的值.人教版 九年级数学上册 22.3 实际问题与二次函数 同步训练-答案一、选择题(本大题共8道小题) 1. 【答案】B2. 【答案】B[解析] 由题意知,利润y 和月份n 之间的函数关系式为y =-n 2+12n -11,∴y =-(n -6)2+25, 当n =1时,y =0; 当n =11时,y =0; 当n =12时,y <0.故停产的月份是1月、11月和12月. 故选B.3. 【答案】A[解析] y =-(x 2-4x +4)+4=-(x -2)2+4,∴水喷出的最大高度是4米.4. 【答案】A [解析] 设矩形的一边长为x cm ,则另一边长为()4-x cm ,故矩形的面积S =x ()4-x =-x 2+4x =-(x -2)2+4,所以当x =2时,S 最大值=4.故矩形的最大面积为4 cm 2.5. 【答案】C[解析] 以2 m 长线段所在直线为x 轴,以其垂直平分线为y 轴建立平面直角坐标系,求出抛物线的解析式,再求出不锈钢支柱的长度.6. 【答案】D[解析] 把y =0代入y =-112x 2+23x +53,得-112x 2+23x +53=0,解得x 1=10,x 2=-2.又∵x >0,∴x =10.故选D.7. 【答案】B[解析] 设二次函数的解析式为y =ax 2.由题可知,点A 的坐标为(-45,-78),代入解析式可得-78=a(-45)2,解得a =-26675,∴二次函数解析式为y =-26675x 2.故选B.8. 【答案】A[解析] ∵抛物线的顶点坐标为(0,3.5),∴可设抛物线的函数解析式为y =ax 2+3.5.∵篮圈中心(1.5,3.05)在抛物线上,∴3.05=a×1.52+3.5.解得a =-15.∴y =-15x 2+3.5.可见选项A 正确.由图示知,篮圈中心的坐标是(1.5,3.05),可见选项B 错误. 由图示知,此抛物线的顶点坐标是(0,3.5),可见选项C 错误.将x =-2.5代入抛物线的解析式,得y =-15×(-2.5)2+3.5=2.25,∴这次跳投时,球出手处离地面2.25 m 可见选项D 错误. 故选A.二、填空题(本大题共8道小题)9. 【答案】144 【解析】∵围墙的总长为50 m ,设3间饲养室合计长x m ,则饲养室的宽=48-x 4 m ,∴总占地面积为y =x·48-x 4=-14x 2+12x(0<x <48),由y=-14x 2+12x =-14(x -24)2+144,∵x =24在0<x <48范围内,a =-14<0,∴在0<x≤24范围内,y 随x 的增大而增大,∴x =24时,y 取得最大值,y 最大=144 m 2.10. 【答案】28[解析] 设商店所获利润为y 元.根据题意,得y =(a -21)(350-10a)=-10a 2+560a -7350=-10(a -28)2+490, 即当a =28时,可获得最大利润.又21×(1+40%)=21×1.4=29.4,而28<29.4,所以a =28符合要求. 故商店应把每件商品的价格定为28元,此时可获得最大利润.11. 【答案】25[解析] 设利润为w 元,则w =(x -20)(30-x)=-(x -25)2+25.∵20≤x≤30,∴当x =25时,二次函数有最大值25.12. 【答案】y =-19(x +6)2+413. 【答案】75[解析] 设与墙垂直的一边的长为x m ,则与墙平行的一边的长为27-(3x -1)+2=(30-3x)m.因此饲养室总占地面积S =x(30-3x)=-3x 2+30x ,∴当x =-302×(-3)=5时,S 最大,S最大值=-3×52+30×5=75.故能建成的饲养室总占地面积最大为75 m 2.14. 【答案】20[解析] 滑行的最长时间实际上是求顶点的横坐标.∵s =60t -32t 2=-32(t -20)2+600,∴当t =20时,s 的最大值为600.15. 【答案】①②③[解析] 由题意知,当70≤x≤150时,y =-2x +400,∵-2<0,∴y 随x 的增大而减小,∴当x =150时,y 取得最小值,最小值为100,故①正确; 当x =70时,y 取得最大值,最大值为260,故②正确; 设销售这种文化衫的月利润为W 元,则W =(x -60)(-2x +400)=-2(x -130)2+9800, ∵70≤x≤150,∴当x =70时,W 取得最小值,最小值为-2(70-130)2+9800=2600,故③正确;当x =130时,W 取得最大值,最大值为9800,故④错误. 故答案为①②③.16. 【答案】1.6 秒【解析】本题主要考查了二次函数的对称性问题.由题意可知,各自抛出后1.1秒时到达相同最大离地高度,即到达二次函数图象的顶点处,故此二次函数图象的对称轴为t=1.1;由于两次抛小球的时间间隔为1秒,所以当第一个小球和第二个小球到达相同高度时,则这两个小球必分居对称轴左右两侧,由于高度相同,则在该时间节点上,两小球对应时间到对称轴距离相同. 故该距离为0.5秒,所以此时第一个小球抛出后t=1.1+0.5=1.6秒时与第二个小球的离地高度相同.三、解答题(本大题共4道小题)17. 【答案】解:(1)平均每棵树结的橙子个数y(个)与x之间的关系为:y=600-5x(0≤x≤120).(3分)(2)设果园多种x棵橙子树时,可使橙子的总产量为w,(4分)则w=(600-5x)(100+x)=-5x2+100x+60000=-5(x-10)2+60500.(7分)答:果园多种10棵橙子树时,可使橙子的总产量最大,最大为60500个.(8分)18. 【答案】解:(1)由题意知,若观光车能全部租出,则0<x≤100,由50x-1100>0,(2分)解得x>22,(3分)又∵x是5的倍数,∴每辆车的日租金至少应为25元.(5分)(2)设每天的净收入为y元,当0<x≤100时,y1=50x-1100,(6分)∵y1随x的增大而增大,∴当x=100时,y1的最大值为50×100-1100=3900;(8分)当x>100时,y2=(50-x-1005)x-1100=-15x2+70x-1100=-15(x-175)2+5025.(9分)∴当x=175时,y2的最大值是5025,∵5025>3900,∴当每辆车的日租金为175元时,每天的净收入最多是5025元.(10分)19. 【答案】解:(1)①把x=0,y=2及h=2.6代入y=a(x-6)2+h,得2=a(0-6)2+2.6,∴a=-1 60,∴y=-160(x-6)2+2.6.②球能越过球网,球会出界.理由如下:由①知y=-160(x-6)2+2.6,当x=9时,y=-160×(9-6)2+2.6=2.45>2.43,∴球能越过球网.当x=18时,y=-160×(18-6)2+2.6=0.2>0,∴球会出界.③若运动员张明原地起跳到最大高度时刚好接到球,此时-160(m-6)2+2.6=2.4,解得m1=6+2 3,m2=6-2 3.∵张明接球高度不够,∴6-2 3<m<6+2 3.∵张明在另外半场,∴m的取值范围为9<m<6+2 3.(2)将x=0,y=2代入y=a(x-6)2+h,得a=2-h 36.当x=9时,y=2-h36(9-6)2+h=2+3h4>2.43;①当x=18时,y=2-h36(18-6)2+h=8-3h≤0.②由①②,得h≥8 3.20. 【答案】解:(1)设制作一件A获利a元,则制作一件B获利(105+a)元,由题意得30 a=240a+105,解得a=15.经检验,a=15是原方程的根且符合题意.当a=15时,a+105=120.答:制作一件A获利15元,制作一件B获利120元.(2)设每天安排x人制作B,y人制作A,则2y人制作C,于是有y+x+2y=65,∴y=-13x+653.(3)由题意得:W=15×2×y+[120-2(x-5)]x+2y×30=-2x2+130x+90y,又∵y=-13x+653,∴W=-2x2+130x+90y=-2x2+130x+90(-13x+653)=-2x2+100x+1950,∴抛物线的对称轴为直线x=25,而x=25时,y的值不是整数,根据抛物线的对称性和增减性可得:当x=24或x=26时,W最大.当x=24时,y=-13x+653不是整数,不符合题意;当x=26时,y=13,此时W=-2×262+100×26+1950=3198.答:每天制作三种手工艺品可获得的总利润W的最大值为3198元,此时x的值为26.。

人教版 九年级 上册 22.3实际问题与二次函数 同步练习(带答案)

人教版 九年级 上册 22.3实际问题与二次函数 同步练习(带答案)

实际问题与二次函数同步练习一、选择题1.某广场有一喷水池,水从地面喷出,如图,以水平地面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=−x2+4x(单位:米)的一部分,则水喷出的最大高度是()A. 4米B. 3米C. 2米D. 1米2.关于二次函数y=−2x2+1的图象,下列说法中,正确的是()A. 对称轴为直线x=1B. 顶点坐标为(−2,1)C. 可以由二次函数y=−2x2的图象向左平移1个单位得到D. 在y轴的左侧,图象上升,在y轴的右侧,图象下降3.二次函数y=m2x2−4x+1有最小值−3,则m等于()A. 1B. −1C. ±1D. ±124.如果抛物线y=(m+1)x2的最低点是原点,那么实数m的取值范围是()A. m=−1B. m≠−1C. m<−1D. m>−15.二次函数y=(x−3)2−2的图象上最低点的坐标是()A. (−3,−2)B. (3,−2)C. (−3,2)D. (3,2)6.对于抛物线y=−x2+4,下列说法中错误的是()A. 开向下,对称轴是y 轴B. 顶点坐标是(0,4)C. 当x =0时,y 有最小值是4D. 当x >0时,y 随x 的增大而减小7. 西宁中心广场有各种音乐喷泉,其中一个喷水管喷水的最大高度为3米,此时距喷水管的水平距离为12米,在如图所示的坐标系中,这个喷泉的函数关系式是( )A. y =−(x −12)2+3B. y =−3(x +12)2+3 C. y =−12(x −12)2+3 D. y =−12(x +12)2+3 8. 已知抛物线y =2x 2−4x −1,下列说法中正确的是( )A. 当x =1时,函数取得最小值y =3B. 当x =−1时,函数取得最小值y =3C. 当x =1时,函数取得最小值y =−3D. 当x =−1时,函数取得最小值y =−39. 二次函数y =2x 2−8x +1的对称轴与最小值是( )A. x =−2;−7B. x =2;−7C. x =2;9D. x =−2;−910. 如图,点E 、F 、G 、H 分别在菱形ABCD 的四条边上,BE =BF =DG =DH ,连接EF ,FG ,GH ,HE ,得到四边形EFGH ,若AB =a ,∠A =60°,当四边形EFGH 的面积取得最大时,BE 的长度为( )A. √3a3 B. √2a2 C. a 2 D. a3 11. 已知二次函数y =x 2+8x +12与x 轴的交点为A ,C(点A 在点C 的左侧),与y 轴的交点为B ,顶点部分为D ,若点P(x,y)是四边形ABCD 边上的点,则3x −y 的最大值为( )A. −6B. −8C. −12D. −18。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

22.3实际问题与二次函数同步优化训练(二)1.某商场将进价2000元的冰箱以2400元售出,平均每天能售出8台,为配合国家“家电下乡政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降价50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱y台,请写出y与x的函数关系式(不要求写自变量的范围)(2)若每台冰箱降价x元,商场每天销售这种冰箱的利润是z元,请写出z与x之间的函数表达式(不要求写自变量的取值范围);(3)商场要想在这种冰箱销售中每天赢利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(4)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?2.市政府实施“万元增收工程”.农户小王自主创业,承包了部分土地种植果树.根据科学种植的经验,平均每棵甲种果树的产量y(千克)与种植棵数x(棵)之间满足关系y =﹣0.2x+40,平均每棵乙种果树的产量z(千克)与种植棵数x(棵)之间的部分对应值如下表:种植棵数x(棵)60 65 80 92 平均每棵乙种果树的产量z(千克)32 30.5 26 22.4(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识求出平均每棵乙种果树的产量z(千克)与种植棵数x(棵)之间的函数关系式;(2)若小王种植甲、乙两种果树共200棵,其中种植甲种果树m棵,且甲种果树的种植数量不超过总数量的40%,试求果园的总产量w(千克)与甲种果树的种植数量w(棵)之间的函数关系式,并求出小王种植甲种果树多少棵时,果园的总产量最大,最大是多少?(3)果园丰收,获得最大总产量.小王希望将两种水果均以6元/千克销售完.可按预计价格销售时销量不佳,只售出了总产量的.于是小王将售价降低a%,并迅速销售了总产量的,这时,小王觉得这样销售下去不划算,于是又在降价后的价格基础上提价0.7a%把剩余水果卖完.最终一算,小王所得收益仅比原预期收益少2160元.请通过计算估计出整数a的值.(参考数据:352=1225,362=1296,372=1369,382=1444)3.某产品专卖店出售每件成本为40元的产品,每日销售量y与销售单价x(元)之间满足函数关系y=﹣6x+600.(规定销售期间销售单价不低于成本单价,当天定的销售单价不变)(1)若不计其他因素,该专卖店每日获得利润为W元,试写出利润W与销售单价x之间的关系;销售单价定为多少元时,专卖店可获得最大利润,最大利润是多少元?(2)专卖店原来设有两名营业员,据统计周六的促销日活动中销售量不少于240件,必须增派一名营业员才能保证营业有序进行,设营业员每人每天工资为40元,专卖店周六促销日活动中获得的利润是2880元,求周六促销日当天产品的销售单价.(参考公式:二次函数y=ax2+bx+c(a≠0),当x=﹣时,y最大(小)值=)4.甲、乙两个商场出售一批进价为两百元的衣服,在市场营销中发现此商品的日销售单价x(百元)与日销售量y(件)之间有如下关系:(甲商场日销售量为y1乙商场日销售量为y2)X(百元) 2.5 3 4 6y1(件)24 20 15 10y2(件)27 24 18 6 (1)分析表中数据,从你所学的函数中判断哪种函数能表示其变化规律,可得y1与y2关于x的函数解析式:y1,y2;(2)销售单价定为多少时,该衣服在两个商场的销售量相同且商场能获得利润;(3)设甲商场衣服的销售利润为w(百元),求出w与x之间的函数关系式,若此衣服的售价最高不能超过八百元,请你求出当日销售单价定为多少时,甲商场能获得最大销售利润?5.为了节省材料,某公司利用岸堤(岸堤足够长)为一边AD,用总长为80米的材料围成一个由三块面积相等的小长方形组成的长方形ABCD区域.(1)如图1,已知BC=12米,则AB=米;(2)如图2,若BC=(x+20)米,求长方形ABCD的面积S(用含x的代数式表示),并求S的最大值.6.某地的特色农产品在市场上颇具竞争力,其中香菇远销全国各地,上市时,外商王经理按市场价格10元/千克在该市收购了1800千克香菇存放入冷库中,据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出各种费用合计240元,而且香菇在冷库中最多保存90天,同时,平均每天有6千克的香菇损耗不能出售.(1)若存放x天后,将这批香菇一次性出售,设这批香菇的销售总金额为y元,试写出y与x之间的函数关系式.(2)王经理想获得利润22500元,需将这批香菇存放多少天后出售?(3)王经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少?7.如图所示,一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮圈.已知篮圈中心到地面的距离为3.05m.(1)建立如图所示的直角坐标系,求抛物线的解析式;(2)该运动员身高1.8m,在这次跳投中,球在头顶上方0.25m处出手,问:球出手时,他跳离地面的高度是多少?8.旅游公司在景区内配置了50辆观光车供游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x(元)是5的倍数.发现每天的营运规律如下:当x 不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元.(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入﹣管理费)(2)当每辆车的日租金为多少元时,每天的净收入最多?9.现有一生产季节性产品的企业,有两种营销方案,经测算:方案一一年中获得的每月利润y(万元)和月份x的关系为y=﹣0.5x2+8x﹣14,方案二一年中获得的每月利润y(万元)与月份x的关系为y=﹣x2+14x﹣24.两个函数部分图象如图所示:(1)请你指出:方案一月利润对应的图象是,方案二月利润对应的图象是;(填序号)(2)该企业一年中月利润最高可达万元;(3)生产季节性产品的企业,当它的产品无利润时就会立即停产,则该企业一年中应停产的月份是;(4)企业原计划全年使用营销方案二进行销售,为了使全年能获得更高利润,企业应该如何运用其营销方案,使全年总利润最高?并算出去年最高总利润比原计划多多少?10.企业的工业废料处理有两种方式,一种是运送到垃圾厂进行集中处理,另一种是通过企业的自身设备进行处理.某企业去年每月的工业废料均为120吨,由于垃圾厂处于调试阶段,处理能力有限,该企业采取两种处理方式同时进行.1至6月,该企业向垃圾厂运送的工业废料y1(吨)与月份x(1≤x≤6,且x取整数)之间满足的函数关系如表:月份x(月) 1 2 3 4 5 6 运送的工业废料y1(吨)120 60 40 30 24 207至12月,该企业自身处理的工业废料y2(吨)与月份x(7≤x≤12,且x取整数)之间满足y2=ax2+c(a≠0),其图象如图所示.1至6月,垃圾厂处理每吨工业废料的费用z1(元)与月份x之间满足函数关系式:z1=60x,该企业自身处理每吨工业废料的费用z2(元)与月份x之间满足函数关系式:z2=45x﹣5x2;7至12月,垃圾厂处理每吨工业废料的费用均为120元,该企业自身处理每吨工业废料的费用均为90元.(1)请观察题中的表格和图象,用所学过的一次函数、反比例函数或二次函数的有关知识,分别直接写出y1、y2与x之间的函数关系式;(2)求该企业去年哪个月用于工业废料处理的费用W(元)最多,并求出这个最多费用;(3)今年以来,由于企业的自身设备的全面运行,该企业决定扩大产能并将所有工业废料全部自身处理,估计扩大产能后今年每月的工业废料量都将在去年每月的基础上增加m%,同时每吨工业废料处理的费用将在去年12月份的基础上增加m%.为鼓励节能降耗,减轻企业负担,国家财政对该企业处理工业废料的费用进行了50%的补助,若该企业每月的工业废料处理费用为12150元,求m的值.参考答案1.解:(1)设降价x元,故共下降了个50元,∵每降价50元,平均每天就能多售出4台∴y=8+4×=8+;(2)(1)根据题意,得z=(2400﹣2000﹣x)(8+0.08x)=(400﹣x)(8+0.08x)=﹣0.08x2+24x+3200(3)当z=4800时,﹣0.08x2+24x+3200=4800,解这个方程得x1=100,x2=200.∵若要使老百姓获得更多实惠,则x1=100不符合题意,舍去.答:若要使老百姓获得更多实惠,每台冰箱应降价200元.(4)当x==150时,=5000 答:每台冰箱降价150元时,商场每天销售这种冰箱的利润最高,最高利润是5000元.2.解:(1)观察题中的表格,可知平均每棵乙种果树的产量z(千克)与种植棵数x(棵)之间符合一次函数,设平均每棵乙种果树的产量z(千克)与种植棵数x(棵)之间的函数关系式为:z=kx+b,将(60,32)与(80,26)代入解析式得:,解得:,∴平均每棵乙种果树的产量z(千克)与种植棵数x(棵)之间的函数关系式为:z=﹣0.3x+50;将(80,26)、(92,22.4)代入z=﹣0.3x+50,等式成立;(2)设种植甲种果树m棵,则种植乙种果树200﹣m棵,∴W=m(﹣0.2m+40)+[﹣0.3(200﹣m)+50](200﹣m)=﹣0.5m2+110m﹣2000=﹣0.5(m﹣110)2+4050,∵甲种果树的种植数量不超过总数量的40%,∴甲种果树的种植数量不超过200×40%=80,∴小王种植甲种果树为80棵时,果园的总产量最大,最大是值为:w=﹣0.5×802+90×80=3600(kg);(3)根据题意得:3600××6+3600××(1﹣a%)×6+3600×(1﹣﹣)×(1﹣a%)(1+0.7a%)×6=3600×6﹣2160,解得:a≈19.∴a=19.3.解:(1)w=(x﹣40)(﹣6x+600)=﹣6(x﹣70)2+27000,故销售单价为70元时,最大利润为27000元;(2)①设每件产品应定价x元,由题意列出函数关系式W=(x﹣40)×(﹣6x+600)﹣3×40=2880即:﹣6x2+840x﹣24000﹣120=2880解得:x=50或x=90∵促销日活动中销售量不少于240件,∴x=50∴促销单价为50元.4.解:(1)观察表格可知,x与y1的积为定值60,故y1与x成反比例函数关系∴y1=猜测y2与x成一次函数关系,设其解析式为y2=kx+b,将(3,24),(6,6)代入得解得∴y2=﹣6x+42经检验发现表中数据均符合上述函数关系式.故答案为:=;=﹣6x+42;(2)令=﹣6x+42得60=﹣6x2+42x∴x2﹣7x+10=0∴(x﹣2)(x﹣5)=0∴x1=2,x2=5∵x1=2时,与成本相等,故不能获得利润,舍去.∴销售单价定5百元时,该衣服在两个商场的销售量相同且商场能获得利润.(3)由题意得:w=(x﹣2)•=60﹣∵w随x的增大而减小,且此衣服的售价最高不能超过八百元∴当x=8时,w取最大值,此时w=60﹣=45∴当日销售单价定为8百元时,甲商场能获得最大销售利润45百元.5.解:(1)AB=(80﹣12×3)=22(米),故答案为:22;(2)BC=x+20∴AB=15﹣x则S=(x+20)(15﹣x)=﹣x2+300,∵﹣x2≤0,∴当x=0,即BC=20米时,S的最大值为300平方米.6.解:(1)由题意y与x之间的函数关系式为y=(10+0.5x)(1800﹣6x)=﹣3x2+840x+18000(1≤x≤90,且x为整数);(2)由题意得:﹣3x2+840x+18000﹣10×1800﹣240x=22500解方程得:x1=50,x2=150(不合题意,舍去)故需将这批香菇存放50天后出售;(3)设利润为w,由题意得w=﹣3x2+840x+18000﹣10×1800﹣240x=﹣3(x﹣100)2+30000∵a=﹣3<0,∴抛物线开口方向向下,∴x=90时,w最大=29700,∴王经理将这批香菇存放90天后出售可获得最大利润,最大利润是29700元.7.解:(1)∵当球运行的水平距离为2.5米时,达到最大高度3.5米,∴抛物线的顶点坐标为(0,3.5),∴设抛物线的表达式为y=ax2+3.5.由图知图象过以下点:(1.5,3.05).∴2.25a+3.5=3.05,解得:a=﹣0.2,∴抛物线的表达式为y=﹣0.2x2+3.5.(2)设球出手时,他跳离地面的高度为hm,∵y=﹣0.2x2+3.5,而球出手时,球的高度为h+1.8+0.25=(h+2.05)m,∴h+2.05=﹣0.2×(﹣2.5)2+3.5,∴h=0.2.答:球出手时,他跳离地面的高度为0.2m.8.解:(1)由题意知,若观光车能全部租出,则0<x≤100,由50x﹣1100>0,解得x>22,又∵x是5的倍数,∴每辆车的日租金至少应为25元;(2)设每天的净收入为y元,当0<x≤100时,y1=50x﹣1100,∵y1随x的增大而增大,∴当x=100时,y1的最大值为50×100﹣1100=3900;当x>100时,y2=(50﹣)x﹣1100=50x﹣x2+20x﹣1100=﹣x2+70x﹣1100=﹣(x﹣175)2+5025,当x=175时,y2的最大值为5025,5025>3900,故当每辆车的日租金为175元时,每天的净收入最多是5025元.9.解:(1)方案一:y=﹣0.5x2+8x﹣14=﹣0.5(x2﹣16x)﹣14=﹣0.5(x﹣8)2+18,y的最大值是18,方案二:y=﹣x2+14x﹣24=﹣(x﹣7)2+25,y的最大值是25,∴方案一月利润对应的函数图象是②,方案二对应的图象是①,故答案为:②,①;(2)∵方案一:y=﹣0.5x2+8x﹣14=﹣0.5(x2﹣16x)﹣14=﹣0.5(x﹣8)2+18,y 的最大值是18,方案二:y=﹣x2+14x﹣24=﹣(x﹣7)2+25,y的最大值是25,∴该企业一年中月利润最高可达25万元,故答案为:25;(3)将y=0代入y=﹣0.5x2+8x﹣14,得x=2或x=14,故方案一停产的月份是1月份、2月份;将y=0代入y=﹣x2+14x﹣24,得x=2或x=12,故方案二停产的月份是1月份、2月份、12月份;故答案为:方案一是1月份和2月份,方案二是1月份、2月份、12月份;(4)令﹣0.5x2+8x﹣14≥﹣x2+14x﹣24,得x≤2或x≥10,∴从3月份到10月份选择方案二,11月份和12月份选择方案一,可以使全年总利润最高;∴去年最高总利润比原计划多的钱数是:(﹣0.5×112+8×11﹣14)+(﹣0.5×122+8×12﹣14)﹣(﹣112+14×11﹣24)=14.5(万元),即去年最高总利润比原计划多14.5万元.10.解:(1)由图表可知,y1与x成反比例函数,设,∵点(1,120)在此反比例函数上,∴,得k=120,∴y1=(1≤x≤6,且x取整数);∵由函数图象可知,y2=ax2+c过点(7,19),(12,114),∴解得,∴y2=x2﹣30(7≤x≤12,且x取整数);(2)由题意可得,当1≤x≤6,且x取整数时:W=60x×+=﹣600x2+6000x+1800=﹣600(x﹣5)2+16800,∴当x=5时,W最大=16800(元);当7≤x≤12时,且x取整数时,W=120×[120﹣(x2﹣30)]+90×(x2﹣30)=﹣30x2+15300,∴当x=7时,W最大=13830(元),∵16800>13830,∴去年5月用于污水处理的费用最多,最多费用是16800元;(3)由题意可得,120(1+m%)×90×(1+m%)×(1﹣50%)=12150,解得,m=50或m=﹣250(舍去),即m的值是50.。

相关文档
最新文档