数学北师大版八年级下册图形的平移以及平移的性质

合集下载

北师大版八年级下册数学第三章 图形的平移与旋转第2节《图形的旋转(1)》教学设计

北师大版八年级下册数学第三章 图形的平移与旋转第2节《图形的旋转(1)》教学设计

第三章图形的平移与旋转2.图形的旋转(一)一、学生起点分析学生在七年级下学期已经学习了“生活中的轴对称”一节,而且在本章的第一节,学生又经历了探索图形平移性质的过程,已经积累了相当的图形变换的数学活动经验,同时八年级学生逻辑思维从经验型逐步向理论型发展,观察能力、记忆能力和想象能力也在迅速发展,他们有强烈的独立思考、自主探索的愿望,这些对本节的学习都会有帮助。

但旋转是三种变换中难度较大的一种,图形也比较复杂,因此,学生对旋转图形的形成过程的理解仍会有一定的困难。

二、教学任务分析图形的旋转是继平移、轴对称之后的又一种图形基本变换,是义务教育阶段数学课程标准中图形变换的一个重要组成部分。

教材从学生实际接触、观察到的一些现象出发,从具体到抽象,从感性到理性,从实践到理论,再用理论检验实践,循序渐进地指导学生认识自然界和生活中的旋转,进而探索其性质。

因此,旋转是培养学生思维能力、树立运动变化观点的良好素材;同时“图形的旋转”也为本章后续学习对称图形、中心对称图形做好准备,为今后学习“圆”的知识内容做好铺垫。

教学目标知识与能力:通过具体事例认识旋转,理解旋转前后两个图形对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角彼此相等的性质.过程与方法:经历对生活中与旋转现象有关的图形进行观察、分析、欣赏、以及动手操作、画图等过程,掌握有关画图的操作技能,发展初步的审美能力,增强对图形欣赏的意识.情感态度价值观:引导学生用数学的眼光看待有关问题,发展学生的数学观,学到活生生的数学.重点:类比平移与旋转的异同,掌握旋转的定义和基本性质,并利用数学知识解释生活中的旋转现象.难点:探索旋转的性质,特别是,对应点到旋转中心的距离相等.三、教学过程设计第一环节创设情境,引入新知演示俄罗斯方块游戏,构成游戏的模块均是由一个小正方形平移变换而来,通过学生玩游戏,发现除了平移运动之外还有旋转运动.引导学生列举出一些具有旋转现象的生活实例,引出课题:“生活中的旋转”。

3.1图形的平移第1课时平移的概念及性质-北师大版八年级数学下册课件

3.1图形的平移第1课时平移的概念及性质-北师大版八年级数学下册课件
一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在条直线上)且相等;对应线段平行(或在一条直线 上)且相等,对应角相等.
图形的平移与旋转
因此,平移的对象、平移的方向、平移的距离是平移的三要素.
平移中的对应关系有对应点、对应边、对应角. 再观察下面的图形运动 ,请给平移下定义.
A
线段DF的对应线段是
北师大版数学八年级(下)
第三章 图形的平移与旋转
1.图形的平移
第1 课时 平移的概念及性质
教学目标
1.通过生活实例理解平移的概念. 2.从生活实例中归纳并掌握平移的性质. (重点) 3.利用平移的性质对图形进行平移.(难点)
新课引入
观察坐在观光电梯里的人;传送带上货物;笔直公路上行驶的小车。 这些人、货和车在运动的过程中有什么变化吗?你还能举一些类似 的例子吗?
课后巩固
分层练习
第一层:课本第67页第1题、第3题;
第二层:课本第67页第3题、第5题;
谢谢
2.平移中,原图形上每个点都沿着相同方向移动了相同的距 离;
3.一个图形和它经过平移所得的图形中,对应点所连的线段 平行(或在条直线上)且相等;对应线段平行(或在一条直线 上) 且相等,对应角相等.
小试牛刀
将字母“M”沿着箭头所指的方向平 移,画出平移后的图形.
M
课堂小结
今天你学到了什么?
1.平移的定义
A
B C
D

E
请在图中找出平 行且相等的线段 及相等的角
你还有别 的方法画 出△DEF吗?

F
方法归纳
平移画图步骤: 1、选择关键点。 2、将关键点沿着相同的方向平移相同的 距离,从而找到对应点. 3、把关键点的对应点顺次连接

北师大版八年级下册数学 第三章 图形的平移与旋转 简单的图案设计

北师大版八年级下册数学 第三章 图形的平移与旋转  简单的图案设计

探究新知
方法总结 图案形成过程的分析方法
解这类题首先要仔细观察图形,找出构成该图形的基本 图案,这些基本图案一般都会重复多次出现,然后结合几 种图形变换的概念和性质看这些基本图案通过怎样的 变换才能最终得到所给图形.
巩固练习
变式训练
如图,甲、乙、丙、丁四个图中的图2是由图1经过轴对称、平移、 旋转这三种运动变换而得到的,请分别分析出它们是如何运动变 换的.图中每个方格的单位长度为1.
探究新知
方法总结
设计图案时要注意两点: 一是要把设计的图案当作一个整体,即整体构思; 二是作图的过程中可以把图案中几个相邻的基本图案当作 一个新的基本图案,要明确图案设计及作图的要求,图案作 完后,一定要检验图形是否符合题意.
巩固练习
变式训练
下列四个图形中,若以其中一部分作为基本图案,无论用旋转
还是平移都不能得到的图形是(
)
C
探究新知
知识点 4
图案设计欣赏
运动美
探究新知
运动美
探究新知
探究新知
★★★
★★★
★★★★★ ★★★★★
★★★★★★★★★★★
★★★★★★★★★
★★★★★★★
★★★★★
★★★
组合美

连接中考
(2020·枣庄)如图的四个三角形中,不能 由△ABC经过旋转或平移得到的是 ( B )
正方形组成.
课堂检测
能力提升题
1.为了美化环境,需在一块正方形的空地上分别种植四种不同的 花草.现要将这块空地分割成4块全等图形,且分割后整个图形成 中心对称图形.现给出一种画法(如图①),请按上述要求,再画出3 种不同的画法.
课堂检测 解:答案不唯一.如图所示:

图形的平移 第一课时-八年级数学下册课件(北师大版)

图形的平移 第一课时-八年级数学下册课件(北师大版)
易错点:不能准确地分析出平移对象
解:如图①中的△DEC 即为所求.


易错总结: 解题时要正确理解题意,切忌审题不清.本题中平移的对象是
△AOB,易错理解为平移的对象是长方形ABCD,从而得出错
误的图形,如图②所示.
1 如图,△ABC 经过平移得到△A′B′C ′,则图中平行线段共
有( D ) A.3对 B.4对 C.5对 D.6对
1.图形的平移
第1课时
五星红旗 冉冉升起
汽车沿着笔直的公路行驶
窗 户 沿 着 滑 槽 移 动
飞机在天空飞行 上述这些运动现象都给我们带来了怎样一种感觉?
知识点 1 平移的定义
定义 在平面内,把一个图形上所有的点都按同一个 方向移动相同的距离,图形这种变换称为平移.
注意: “两同”:同向、同距
∠FGH,∠ADC 与 ∠EHG 之间有什么数量关系?
导引:根据平移的性质可知:平移只改变图形的位置,不 改变图形的大小;平移得到的图形与原来的图形是 完全一样的,所以对应的线段之间是平行且相等的.
解:(1)线段AE,BF,CG,DH 的长度相等,都为2 cm. (2)AB 与EF,BC 与FG,CD 与GH,AD 与EH 平行且相等. (3)∠BAD 与∠FEH,∠ABC 与∠EFG,∠BCD 与∠FGH,∠ADC 与∠EHG 对应相等.
2 以下现象:①打开教室的门时,门的移动;②打气 筒打气时,活塞的运动;③钟摆的摆动;④传送带 上,瓶装饮料的移动,其中属于平移的是( D )
A.①②
B.①③
C.②③
D.②④
3 将如图所示的图案平移后, 可以得到的图案是( A )
知识点 2 平移的性质
平移的性质1:

北师大版初中数学八年级下册3.1 图形的平移(第1课时) 课件

北师大版初中数学八年级下册3.1 图形的平移(第1课时) 课件

课堂检测
3.1 图形的平移/
能力提升题
1.如图,将△ABC沿着某一方向平移一定的距离得△DEF, 则下列结论: ①AD=CF; ②AC∥DF; ③∠ABC=∠DFE; ④∠DAE=∠AEB. 正确的序号为:_①___②__④____
课堂检测
3.1 图形的平移/
能力提升题
2.一块矩形场地,长为101 m,宽为70 m,从中留出如图所示的宽 为1 m的小道,其余部分种草,则草坪的面积为_6__9_0_0_____m2.
探究新知
3.1 图形的平移/
知识点 1
平移的概念
问题:请你用一句话描述下面运动.




15




15
8米


李 向
4米



8 米
品 向 右 上 方 移 动
4 米
思考:尝试总结以上运动过程具备什么共同特征?
探究新知
3.1 图形的平移/
两要素
结论
在平面内,将一个图形沿某个方向移动一定的距离,这样的图 形运动称为 平移 .
使其中一个部分沿某个方向平移后能与另一个部分重合,那么
我们把这个图形叫做平移重合图形.下列图形中,平移重合图
形是 ( C )
A.平行四边形 C.正六边形
B.等腰梯形 D.圆
课堂检测
3.1 图形的平移/
基础巩固题
1.下列平移作图错误的是 ( C )
课堂检测
3.1 图形的平移/
Hale Waihona Puke 基础巩固题2.下列各组图形,可以通过平移得到的是 ( A )
课堂检测
3.1 图形的平移/

图形的平移(第1课时)课件 2022—2023学年北师大版数学八年级下册

图形的平移(第1课时)课件 2022—2023学年北师大版数学八年级下册

∵CE平分∠ACF , ∠FCB=∠DCB,
.
∴∠ACF=2∠ECF,∠FCD=2∠FCB
∵∠ACD=∠ACF+∠FCD=2∠ECF+2∠FCB=80°
.
∴∠ECF+∠FCD=40°,
即∠ECB=40°
第三章 图形的平移与旋转
教学过程——典例精析
第三章 图形的平移与旋转
听一听
(3)解:这个比值不会变化,∠CBA:∠CFA=1:2.
感谢聆听
个图形对应线段平行(或在一直线上)且相等。
因为第二个图形是经过第一个图形平移得到的,原图形上的每一个
点都沿着相同的方向移动了相同的距离,所以两个图形上对应点所
连的线段线平行(或在一直线上)且相等。
平移的性质:一个图形和它经过平移得到中,应点所连的线段线平
行(或在一直线上)且相等;对应线段平行(或在一直线上)且相
教学过程——新知探究
第三章 图形的平移与旋转
知识点1 平移的概念及特征
平移的概念特征
如图△DEF是△ABC经过平移得到的.
A
D
F
C
B
E
由于两个图形经过平移得到,两个图形能完全重合,所以平移
前后的两个图形是全等形,互相重合的点叫做对应点,互相重
合的线段称为对应线段,互相重合的角就是对应角.
教学过程——新知探究
值是否随之发生变化?若变化,请说明理由,求出这个比值.
教学过程——典例精析
第三章 图形的平移与旋转
听一听
(1)证明:∵AB∥CD,
.
∴∠A+∠C=180°
∵∠A=∠D,
∴∠C+∠D=180°
∴AC∥BD..
.

初中数学北师大版八年级下册图形的平移以及平移的性质课件

初中数学北师大版八年级下册图形的平移以及平移的性质课件
长为 12 .
太原市期中期末考试链接
(2015-202X)(3分) 4.如图,将三角尺ABC的一边AC沿位置固定的直尺推
移得到△DEF,下列结论不一定正确的是( D )
A.DE∥AB B.四边形ABED是平行四边形 C.AD∥BE D.AD=AB
太原市期中期末考试链接
(202X-202X)(3分) 5.如图,将线段AB沿箭头方向平移2cm得 到线段CD,若AB=3cm,则四边形ABDC 的周长为( B ) A.8cm B.10cm C.12cm D.20cm
对应线段平行(或在同一直线上)且相等.
【基础练习】如图所示,△ABE沿射线XY的方向 平移一定距离后成为△CDF。找出图中存在的 (1)平行且相等的线段。 (2)一组全等三角形。
解:(1)平行且相等的线段有: AB和CD、AE和CF、BE和DF AC、BD和EF(两两平行相等)
(2)△ABE≌△CDF
太原市期中期末考试链接
(202X-202X)(3分) 8.如图,在△ABC中,AB=8,BC= 12,∠B=60°,将△ABC沿着射线 BC的方向平移得到△AˊBˊCˊ,连 接AˊC,若BBˊ=4,则△AˊBˊC 的周长为( B ) A.20 B.24 C.36 D.16
太原市期中期末考试链接
(202X-202X)(3分) 3.如图,△ABC沿线段BA 方向平移得到△DEF,若 AB=6,AE=2.则平移的 距离为( B ) A.2 B.4 C.6 D.8
A
D
C
F
B
E
你能否视察发现平移的性质?
E
H
(1)指出四边形ABCD是
怎样平移得到四边形EFGH
的?沿着什么方向,移动
多少距离?

八年级数学下册第三章图形的平移与旋转知识总结北师大版

八年级数学下册第三章图形的平移与旋转知识总结北师大版

第三章图形的平移与旋转一、平移定义和规律1平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.关键:a. 平移不改变图形的形状和大小(也不会改变图形的方向,但改变图形的位置)。

b. 图形平移三要素:原位置、平移方向、平移距离。

2平移的规律(性质):经过平移,对应点所连的线段平行且相等,对应线段平行且相等、对应角相等。

注意:平移后,原图形与平移后的图形全等。

3简单的平移作图:平移作图要注意:①方向;②距离。

整个平移作图,就是把整个图案的每一个特征点按一定方向和一定的距离平行移动。

二、旋转的定义和规律1旋转的定义:在平面内,将一个图形饶一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。

这个定点称为旋转中心;转动的角称为旋转角.关键:a。

旋转不改变图形的形状和大小(但会改变图形的方向,也改变图形的位置)。

b。

图形旋转四要素:原位置、旋转中心、旋转方向、旋转角。

2旋转的规律(性质):经过旋转,图形上的每一个点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等.(旋转前后两个图形的对应线段相等、对应角相等。

)注意:旋转后,原图形与旋转后的图形全等.3简单的旋转作图:旋转作图要注意:①旋转方向;②旋转角度。

整个旋转作图,就是把整个图案的每一个特征点绕旋转中心按一定的旋转方向和一定的旋转角度旋转移动。

三、中心对称1.中心对称的有关概念:中心对称、对称中心、对称点把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么称这两个图形关于这点对称,也称这两个图形成中心对称,这个点叫做对称中心,两个图形中的对应点叫做对称点。

2.中心对称的基本性质:(1).成中心对称的两个图形具有图形旋转的一切性质。

(2).成中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

3.中心对称图形的有关概念:中心对称图形、对称中心把一个平面图形绕某一点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形.这个点就是它的对称中心。

八级数下册第三章图形的平移与旋转图形的平移第课时平移的概念与性质课件新版北师大版

八级数下册第三章图形的平移与旋转图形的平移第课时平移的概念与性质课件新版北师大版
平行且相等
F
B
G
C E H
A
D
一个图形和它经过平移所得的图形中, 对应点所连的线段平行(或在一条直线上) 且相等;对应线段平行(或在一条直线上) 且相等,对应角相等.
例 1 如图,经过平移,△ABC 的顶点 A 移到了点 D.
(1)指出平移的方向和平移的距离; (2)画出平移后的三角形.
A D
B C
第三章 图形的平移与旋转 1 图形的平移
第1课时 平移的概念与性质
新课导入
在生活中,我们经常见到一些美丽的图案:
生活中物体运动的一些场景
进行新课
E
H
你能否描述一下
什么叫平移?
A
DF
G
B
C
在平面内,把一个图形沿着某个方向移 动一定的距离,这样的图形运动称为平移.
平移不改变图形的性状和大小.
△ABC 经过平移得到△DEF,点 A,B,C 分别平移到了点 D,E,F. 点 A 与点 D 是一组 对应点,线段 AB 与线段 DE 是一组对应线段, ∠BAC 与∠EDF 是一组对应角.
不是,因为四个轮子移动的距离不相等, 与平移的定义不符.
4. 将图中的小船向右平移4格.
课堂小结
在平面内,把一个图形沿着某个方向移 动一定的距离,这样的图形运动称为平移.
平移不改变图形的性状和大小.
一个图形和它经过平移所得的图形 中,对应点所连的线段平行(或在一条 直线上)且相等;对应线段平行(或在 一条直线上)且相等,对应角相等.
A D
B C
解:(1)如图,连接AD,平移的方向是点 A 到点 D 的方向,平移的距离是线段 AD 的长度.
A D
B E
C F

北师大版八年级数学下册《图形的平移》图形的平移与旋转PPT课件(第1课时)

北师大版八年级数学下册《图形的平移》图形的平移与旋转PPT课件(第1课时)

实践探究,交流新知
( 1 ) 变换前后对应点的连线平行且相等:平移变换 是图形的每一个点的变换,一个图形沿某个方向移 动一定的距离,那么每一个点也沿着这个方向移动 相同的距离,所以对应点的连线平行且相等. ( 2 ) 变换前后的图形全等:平移变换是由一个图形 沿着某个方向移动一定的距离,所以平移前后的图 形是全等的. (3)变换前后对应角相等. (4)变换前后对应线段平行且相等.
D.图形的平移由平移的方向和距离决定
2.如图,大长方形的长是10 cm,宽是8 cm,阴影部分的宽均为2 cm,则空白部
分的面积是( D )
A.36cm2 B.40cm2
C.32cm2
D.48cm2
课堂检测,巩固新知
3.如果△ABC沿着北偏东30°的方向移动了2 cm,那么△ABC的边AB上的一点P
课堂检测,巩固新知
5.如图,将△ABC沿射线AB的方向移动2cm到△DEF的位置. (1)写出图中所有平行的直线; (2)写出图中与AD相等的线段,并直接写出其长度; (3)若∠ABC=65°,求∠EFC的度数.
解:(1)AE∥CF,AC∥DF,BC∥EF (2)AD=CF=BE=2 cm (3)∵AE∥CF,∠ABC=65° ∴∠BCF=∠ABC=65° ∵BC∥EF ∴∠EFC+∠BCF=180° ∴∠EFC=115°
学习重点
探索图形平移的主要特征和基本性质,会画简单图形的平移图.
学习难点
探索和理解平移的基本性质.
创设情境,导入新课
请同学们观察如图所示的两幅图片.
问题1:你能发现传送带上的箱子和手扶电梯上的人在移动前后什么没有改变, 什么发生了改变吗? 问题2:在传送带上,如果箱子的把手向前移动了80 cm,那么箱子的其他部位 向什么方向移动?移动的距离是多少? 问题3:如果把移动前后的同一个箱子看成长方体,那么移动前后的长方体各 个面的形状、大小是否相同?

北师大版八年级下册数学期末知识点复习

北师大版八年级下册数学期末知识点复习

北师大版八年级下册数学期末知识点复习八年级下册数学考试知识点复第一章证明(二)一、全等三角形的判定及性质全等三角形的性质是对应相等,即对应的角相等,对应的边相等。

判定全等三角形有五种方法:SSS(分别相等的三边)、SAS(分别相等的两边和它们夹角的正弦值相等)、ASA(分别相等的两角和夹角中间的边)、AAS(分别相等的两角和它们夹角的正弦值相等)、HL(分别相等的斜边和一个直角边的长度)。

等腰三角形的性质是两个底角相等,即等边对等角。

判定等腰三角形有一个角等于另一个角,即等角对等边。

等腰三角形还有一个推论是互相重合,即两个等腰三角形的两个底边相等,两个等腰角也相等。

等边三角形的性质是三个角都相等,每个角都等于60度,是轴对称图形,有一条对称轴。

判定等边三角形有两个方法:有一个角是60度的等腰三角形是等边三角形,三个角都相等的三角形是等边三角形。

直角三角形的勾股定理是直角边的平方和等于斜边的平方,逆定理是如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。

含30度的直角三角形的边的性质是如果一个锐角等于30度,那么它所对的斜边等于另一条直角边的一半。

直角三角形斜边上的中线等于斜边的一半。

线段的垂直平分线的性质是线段垂直平分线上的点到线段两端点的距离相等。

判定线段垂直平分线的方法是到一条线段两个端点距离相等的点在这条线段的中垂线上。

三角形三边的垂直平分线相交于一点,这一点到三个顶点的距离相等。

角平分线的性质是角平分线上的点到角的两边距离相等。

判定角平分线的方法是到一个角的内部,且到角的两边距离相等的点在这个角的平分线上。

三角形的三条角平分线相交于一点,这一点到三条边的距离相等,叫做内心。

二、一元一次不等式和一元一次不等式组不等关系是数学中的一种关系,包括大于、小于、大于等于、小于等于四种形式。

一元一次不等式是形如ax+b>c的不等式,其中a、b、c都是实数,且a不等于0.解一元一次不等式可以用图像法或代数法,将不等式变形为x>或x<的形式。

北师大版数学八年级下册知识点汇总

北师大版数学八年级下册知识点汇总

北师大版数学八年级下册知识点汇总第一章三角形的证明一、全等三角形判定、性质:1.判定(SSS) (SAS) (ASA) (AAS) (HL直角三角形)2.全等三角形的对应边相等、对应角相等。

二、等腰三角形的性质定理:等腰三角形有两边相等;(定义)定理:等腰三角形的两个底角相等(简写成“等边对等角”)。

推论1:等腰三角形顶角的平分线、底边上的中线及底边上的高线互相重合。

(三线合一)推论2:等边三角形的各角都相等,并且每一个角都等于60°。

等腰三角形是以底边的垂直平分线为对称轴的轴对称图形;三、等腰三角形的判定1. 有关的定理及其推论定理:有两个角相等的三角形是等腰三角形(简写成“等角对等边”。

)推论1:三个角都相等的三角形是等边三角形。

推论2:有一个角等于60°的等腰三角形是等边三角形。

2. 反证法:先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立。

这种证明方法称为反证法四、直角三角形1、直角三角形的性质直角三角形的两锐角互余直角三角形两条直角边的平方和等于斜边的平方;在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;在直角三角形中,斜边上的中线等于斜边的一半。

2、直角三角形判定如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形;3、互逆命题、互逆定理在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题.如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理.五、线段的垂直平分线、角平分线1、线段的垂直平分线。

性质:线段垂直平分线上的点到这条线段两个端点的距离相等;三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。

第三章 图形的平移与旋转(回顾与思考)(课件)-八年级数学下册(北师大版)

第三章 图形的平移与旋转(回顾与思考)(课件)-八年级数学下册(北师大版)
考点一:平移的性质 例1. 如图,已知△ABC的周长为20 cm,现将△ABC沿AB方向平移
2 cm至△A′B′C′的位置,连接CC′,则四边形AB′C′C的周长为( C )
A.20 cm B.22 cm C.24 cm D.26 cm
二、考点精讲
考点一:平移的性质 例2. 如图,△ABC是边长为2的等边三角形,将△ABC沿直线BC平移到 △DCE的位置,连接BD,求△ABC平移的距离和BD的长.
解:(1)如图,△A′B′C′即为所求 (3)△ABC 的面积=2×3-12 ×1×3-12 ×1×1-12 ×2×2=6-1.5-0.5-2=2
二、考点精讲
考点四:旋转作图
例8. 如图,在边长均为1个单位长度的小正方形组成的网格中,点A,点B,点O 均为格点(每个小正方形的顶点叫做格点).
(1)作点A关于点O的对称点A1; (2)连接A1B,将线段A1B绕点A1顺时针旋转90°得点B对应点B1,画出旋转后的线 段A1B1; (3)连接AB1,求出四边形ABA1B1的面积.
三、课堂练习
8.如图,△ABC是边长为3的等边三角形,将△ABC沿直线BC向右平移, 使B点与C点重合,得到△DCE,连接BD,交AC于点F. (1)猜想AC与BD的位置关系,并证明你的结论; (2)求线段BD的长.
三、课堂练习
解:(1)AC与BD互相垂直.证明如下: ∵△DCE由等边三角形ABC平移得到, ∴BC=CD. ∵∠ACB=∠ACD=180°-60°-60°=60°, ∴CF是等腰△BCD的角平分线. ∴CF垂直平分BD,即AC⊥BD.
解:∵△DCE 由△ABC 平移而成, ∴△ABC 平移的距离为:BC=2, ∴CD=CB=CE=2, ∴∠BDE=90°,∴△BED 是直角三角形, ∵BE=BC+CE=4,DE=CE=2, ∴BD= BE2-DE2 =2 3

北师大版八年级下册数学:第三章图形的平移与旋转复习课件(共26张PPT)

北师大版八年级下册数学:第三章图形的平移与旋转复习课件(共26张PPT)

2 图形沿轴对折(翻转180°) 图形绕中心旋转180°
3 翻转后和另一个图形重合 旋转后和另一个图形重合
五、图形的平移与坐标变化之间的关系
1、设(x,y)是原图形上的一点,经过平移 后,这个点与其对应点的坐标之间有如下关 系:
2、设(x,y)是原图形上的一点,当它沿x 轴方向平移a个单位长度(a>0)、沿y轴 方向平移b个单位长度(b>0)后,这个点 与其对应点的坐标之间有如下关系:
(一)构建本章认知结构图
一、平移
1、平移的概念:
在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形 运动叫做图形的平移。
2、平移的性质:
(1)平移不改变图形的形状和大小; (2)一个图形和它经过平移所得的图形中,对应点所连的线段平行(或在一条 直线上)且相等;对应线段平行(或在一条直线上)且相等,对应角相等。
的两旁,现准备合作修建一座过街天桥。 (1)天桥建在何处才能使由甲到乙的路线最短?注
意:(天桥必须与街道垂直) (2)天桥建在何处才能使甲乙到天桥的距离相等?


布置作业:
课堂作业:
P87 第1题 P88 第6、7题
课外作业:
P87 的复习题的其他习题
∴∠BP'P=45°,PP' 2=18
仅靠平移 ∴ △ PBP ′是等腰直角三 角形。
∴ ∠PP'C=90°
无法得到 下图由四部分组成,每部分都包括两个小”十”字,红色部分能经过平移得到其他三部分吗?能经过适当的旋转吗?能经过轴对称吗?还有
其他方式吗?
议一议
下图由四部分组成,每部分都包括两个小”十”
∴ ∠PP'C=90°
字,红色部分能经过平移得到其他三部分吗?能经 由例题得△PBP'是等腰直角三角形

北师大版八年级数学下册第三章3.4 简单的图案设计

北师大版八年级数学下册第三章3.4 简单的图案设计

【规律方法】运用平移、旋转、轴对称进行 图案设计的步骤:
1.选择基本图形; 2.制定设计思路;
3.遵照平移、旋转或轴对称的基本操作对基 本图形及其组合进行变化,便可得到图形
知道形成过程 轴对称
图案的设计 设计方法
利用图形变换 平 移 旋转
动手设计
赏析悦目的图案
【解析】(1)△ABC绕点O旋转180°得到的.
(2)△ABC绕点O旋转180°得到的. (3)线段AB,AC绕点O顺时针旋转60°,120°,180°, 240°,300°得到的.
(4)图形OABC绕点O顺时针旋转120°,240°得到的.
(5) 图形OABC绕点O顺时针旋转60°,120°, 180°,240°, 300°得到的.
参考图案
E
O
例4 怎样用圆规画出这个六花瓣图?
这 样 的 作
图 对 你 有
所 启 发 吗

画完之后请同学们思考以下几个问题: 图中A点的位置对六花瓣的形状有没有影响?对花
瓣的位置有影响吗?
(对形状没影响,对位置有影响)
方法归纳
在读清要求后,然后根据要求,进行方案的 尝试设计,一般要经历一个不断修改的过程,使 问题在修正中得以解决.
课外作业
1.练闯考P50(预习导学、课内精炼 1-9题) 2.提供的一元一次不等式组作业 图片
2、下图是由三个正三角形拼成的,它可 以看作由其中一个三角形经过怎样的变化 而得到的?
把中间的正三角形看做“基本图案”,分别以这个三 角形与相邻三角形的公共边所在直线为对称轴作轴对 称图形,也可得到该图案。
2、下图是由三个正三角形拼成的,它可 以看作由其中一个三角形经过怎样的变化 而得到的?
把左边的正三角形看做“基本图案”,以三个正三 角形的公共顶点为旋转中心,按顺时针方向旋转600, 再把左边的正三角形向右平移与正三角形边长相等的 距离,即可得到该图案。

新北师大版八年级数学下册《三章 图形的平移与旋转 1. 直角坐标系中图形的平移与坐标的变化》教案_12

新北师大版八年级数学下册《三章 图形的平移与旋转  1. 直角坐标系中图形的平移与坐标的变化》教案_12

第三章图形的平移与旋转3.1图形的平移第1课时平移的认识1.通过具体实例理解平移的概念,掌握平移的基本性质(重点).2.通过观察、分析、操作、欣赏以及抽象、概括等过程,体会平移来源于生活.自学指导:阅读教材P65~66内容,完成下列问题.知识探究1.平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动叫平移.平移不改变图形的形状和大小,改变的是位置.2.平移的性质:(1)平移前后的两个图形大小、形状一样;(2)经过平移,对应点所连的线段平行(或在一条直线上)且相等;对应线段平行(或在一条直线上)且相等,对应角相等.自学反馈1.下列现象中,属于平移的是(1)(3)(5).(1)火车在笔直的铁轨上行驶;(2)冷水受热过程中小气泡上升变成大气泡;(3)人随电梯上升;(4)钟摆的摆动;(5)飞机起飞前在直线跑道上滑动.2.如图,若线段CD是由线段AB平移而得到的,则线段CD、AB关系是平行且相等.活动1小组讨论例1如图,经过平移,△ABC的顶点A移到了点D,作出平移后的三角形.解:如图,过点B、C分别作线段BE、CF,使得它们与线段AD平行并且相等,连接DE,DF,EF,则△DEF就是△ABC平移后的图形.设顶点B、C分别平移到了点E、F,根据“经过平移,对应点所连的线段平行且相等”,可知线段BE、CF与AD平行且相等.例2如图,点A,B,C,D分别平移到了点E,F,G,H;点A与点E,点B与点F,点C与点G,点D与点H 分别是一对对应点,AB与EF是一对对应线段,∠BAD与∠FEH是一对对应角.(1)在下图中,线段AE、BF、CG、DH有怎样的位置关系?(2)在下面图中,有哪些相等的线段、相等的角?(3)由(1)(2)两个问题,你能归纳出什么结论?解:(1)四边形EFGH是由四边形ABCD平移得到的,由演示可知:线段AE、BF、CG、DH是互相平行的,并且这四条线段又相等.(2)图中相等的线段:AB=EF、BC=FG、CD=GH、AD=EH、AE=BF=CG=DH.图中相等的角:∠ABC=∠EFG、∠BAD=∠FEH、∠ADC=∠EHG、∠BCD=∠FGH.(3)平移的基本性质:经过平移,对应线段,对应角分别相等;对应点所连的线段平行且相等.这个性质也从局部刻画了平移过程中的不变因素:图形的形状和大小.活动2跟踪训练如图,四边形ABCD平移后得到四边形EFGH.填空:(1)CD=GH;(2)∠F=∠B;(3)HE=DA;(4)∠D=∠H.活动3课堂小结1.通过本节课的学习,我们明白了什么叫平移.(在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.)2.总结出了平移的性质.(平移不改变图形的形状和大小.经过平移,对应点所连的线段平行且相等;对应线段平行且相等,对应角相等.)第2课时沿x轴或y轴方向平移的坐标变化探究横向或纵向平移一次,其坐标变化的规律,认识图形变换与坐标之间的内在联系.(重点)自学指导:阅读教材P68~69内容,完成下列问题.知识探究在平面直角坐标系中,一个图形沿x轴正(负)方向平移a(a>0)个单位长度后的图形与原图形相比,对应点的横坐标加上(减去)a,纵坐标不变;图形沿y轴正(负)方向平移a(a>0)个单位长度后的图形与原图形相比,对应点的横坐标不变,纵坐标加上(减去)a.自学反馈1.如图,在平面直角坐标系中,将点A(-2,3)向右平移3个长度单位,那么平移后对应的点A′的坐标是(C)A.(-2,-3) B.(-2,6) C.(1,3) D.(-2,1)2.将点M(-1,-5)向左平移3个单位长度得到点N,则点N所处的象限是(C)A.第一象限B.第二象限C.第三象限D.第四象限活动1小组讨论例1在平面直角坐标系中,点A(-2,3)平移后能与原来的位置关于y轴对称,则应把点A(C) A.向右平移2个单位长度B.向左平移2个单位长度C.向右平移4个单位长度D.向左平移4个单位长度解析:关于y轴成轴对称的两个点的纵坐标相同,横坐标互为相反数,∴点A(-2,3)平移后的坐标为(2,3).∵横坐标增大,∴点A是向右平移得到,平移距离为|2-(-2)|=4.故选C.例2点P(-2,1)向下平移2个单位长度后,关于x轴对称的点P′的坐标为(C)A.(-2,-1) B.(2,-1)C.(-2,1) D.(2,1)沿x轴或y轴方向平移的坐标变化可简记为“横坐标,右移加,左移减;纵坐标,上移加,下移减”.活动2跟踪训练1.将△ABC的各顶点的横坐标分别加上3,纵坐标不变,连接所得三点组成的三角形是由△ABC(B) A.向左平移3个单位长度得到的B.向右平移3个单位长度得到的C.向上平移3个单位长度得到的D.向下平移3个单位长度得到的2.将点P(2m+3,m-2)向上平移1个单位长度得到P′,且P′在x轴上,则m=1.3.线段AB是由线段CD平移得到,点A(-2,1)的对应点为C(1,1),则点B(3,2)的对应点D的坐标是(6,2).活动3课堂小结1.图形沿x轴平移的坐标变化:在平面直角坐标系中,如果把图形中点的横坐标都加上(或减去)一个正数a,相应的新图形就是把原来的图形沿着x轴向右(或向左)平移a个单位长度.2.图形沿y轴平移的坐标变化:在平面直角坐标系中,如果把图形中点的纵坐标都加上(或减去)一个正数a,相应的新图形就是把原来的图形沿着y轴向上(或向下)平移a个单位长度.第3课时沿x轴,y轴方向两次平移的坐标变化探究一次平移既有横向又有纵向时坐标的变化特点.(重点)自学指导:阅读教材P71~73内容,完成下列问题.知识探究一个图形依次沿x轴方向、y轴方向平移后所得图形,可以看成是由原来的图形经过一次平移得到的.自学反馈1.将点A(3,2)沿x轴向左平移4个单位长度,再沿y轴向下平移4个单位长度后得到点A′,则点A′的坐标是(D) A.(1,2)B.(1,-2)C.(-1,2) D.(-1,-2)2.在平面直角坐标系中,将点P(-3,2)向右平移4个单位长度,再向下平移6个单位长度后,得到的点位于(D) A.第一象限B.第二象限C.第三象限D.第四象限活动1小组讨论例如图所示,四边形ABCD各顶点的坐标为A(-3,5),B(-4,3),C(-1,1),D(-1,4),将四边形ABCD先向上平移3个单位长度,再向右平移4个单位长度,得到四边形A′B′C′D′.(1)四边形A′B′C′D′与四边形ABCD对应点的横坐标有什么关系?纵坐标呢?分别写出点A′,B′,C′,D′的坐标;(2)如果将四边形A′B′C′D′看成是由四边形ABCD经过一次平移得到的,请指出这一平移的平移方向和平移距离.解:(1)四边形A′B′C′D′与四边形ABCD相比,对应点的横坐标分别增加了4,纵坐标分别增加了3,A′(1,8),B′(0,6),C′(3,4),D′(3,7).(2)连接AA′,由图可知,AA′=32+42=5,四边形A′B′C′D′可认为是由四边形ABCD沿着由A到A′的方向,平移5个单位长度得到的.一个图形一次沿x轴方向,y轴方向平移后所得的图形,可以看成是由原来图形经过一次平移得到的.活动2跟踪训练1.如果将平面直角坐标系中的点P(a-3,b+2)平移到点(a,b)的位置,那么下列平移方法中正确的是(C) A.向左平移3个单位长度,再向上平移2个单位长度B.向下平移3个单位长度,再向右平移2个单位长度C.向右平移3个单位长度,再向下平移2个单位长度D.向上平移3个单位长度,再向左平移2个单位长度2.在平面直角坐标系中,将点(3,-1)向下平移3个单位长度,可以得到对应点(3,-4);将得到的点向右平移2个单位长度,可以得到对应点(5,-4).3.在平面直角坐标系中,△ABC三个顶点的坐标分别是A(-2,3),B(-4,-1),C(2,0),将△ABC平移至△A1B1C1的位置,点A,B,C的对应点分别是A1,B1,C1,且点A1的坐标为(3,1),请分别写出点B1,C1的坐标.解:B1(1,-3),C1(7,-2).活动3课堂小结学生试述:这节课你学到了些什么?3.2图形的旋转第1课时旋转的认识掌握旋转、旋转中心和旋转角的概念,并理解旋转的性质.(重点)自学指导:阅读教材P75~76内容,完成下列问题.知识探究1.在平面内,将一个图形绕一个定点按某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角称为旋转角.旋转不改变图形的形状和大小.2.一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所组成的角都等于旋转角;对应线段相等,对应角相等.自学反馈1.下面生活中的实例,不是旋转的是(A)A.传送带传送货物B.螺旋桨的运动C.风车风轮的运动D.自行车车轮的运动2.线段MN绕点P进行旋转后,得到线段M1N1,则点M与点P距离=点M1与点P的距离.(填“>”“<”或“=”)活动1小组讨论例1如图,点A,B,C,D都在方格纸的点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转的角度为(C)A.30°B.45°C.90°D.135°对应点与旋转中心的连线的夹角,就是旋转角,∠BOD,∠AOC都是旋转角.由图可知,OB、OD是对应边,∠BOD是旋转角,所以旋转角∠BOD=90°.例2如图,四边形ABCD是边长为4的正方形且DE=1,△ABF是△ADE旋转后的图形.(1)旋转中心是哪一点?(2)旋转了多少度?(3)AF的长度是多少?解:(1)旋转中心是A点.(2)∵△ABF是由△ADE旋转而成的,∴B是D的对应点.又∵∠DAB=90°,∴旋转了90°.(3)∵AD=4,DE=1,∴AE=42+12=17.∵对应点到旋转中心的距离相等且F是E的对应点,∴AF=AE=17.正确的理解旋转的定义和性质.活动2跟踪训练如图,已知P是等边△ABC内的一点,连接AP,BP,将△ABP旋转后能与△CBP′重合,根据图形回答:(1)旋转中心是哪一点?(2)旋转角是几度?(3)连接PP′后,△BPP′是什么三角形?解:(1)∵△ABC为等边三角形,∴AB=BC,∠ABC=60°.又∵将△ABP旋转后能与△CBP′重合,∴AB与CB重合.∴旋转中心是点B.(2)∵将△ABP绕点B顺时针旋转后能与△CBP′重合,∴旋转角等于∠ABC=60°.(3)△BPP′是等边三角形.理由如下:∵旋转角为60°,即∠PBP′=60°,BP=BP′,∴△BPP′是等边三角形.活动3课堂小结1.旋转的概念:将一个图形绕一个顶点按照某个方向转动一个角度,这样的图形运动称为旋转.2.旋转的性质:一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角,对应线段相等,对应角相等.第2课时旋转作图能画出简单图形旋转后的对应图形.(重点)自学指导:阅读教材P78~79内容,完成下列问题.知识探究旋转作图的步骤:(1)确定旋转中心,旋转方向,旋转角;(2)找出图形的关键点;(3)作出关键点经旋转后的对应点;(4)按图形的顺序连接对应点,得到旋转后的图形.自学反馈1.如图,将左边叶片图案旋转180°后,得到的图形是(D)2.把如图所示的图形绕着O点顺时针旋转90°后,得到的图形是(C)活动1小组讨论例如图,画出线段AB绕点A按顺时针方向旋转60°后的线段.解:(1)如图,以AB为一边按顺时针方向画∠BAX,使得∠BAX=60°;(2)在射线AX上取点C,使得AC=AB.线段AC就是线段AB绕点A按顺时针方向旋转60°后的线段.解决这类作图题,紧扣旋转的特征即可.活动2跟踪训练1.对如图所示的图形,下列说法错误的是(C)A.图1绕点“O”顺时针旋转270°到图4B.图1绕点“O”逆时针旋转180°到图3C.图3绕点“O”顺时针旋转90°到图2D.图4绕点“O”顺时针旋转90°到图12.如图,在平面直角坐标系中,点A的坐标为(1,4),将线段OA绕点O顺时针旋转90°得到线段OA′,则点A′的坐标是(C)A.(1,4)B.(4,1)C.(4,-1)D.(2,3)3.如图,线段AB绕点O顺时针旋转一定的角度得到线段A1B1,请用直尺和圆规作出旋转中心O.(不写作法,保留作图痕迹)解:如图所示,点O为所作.4.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点),将△ABC 绕点B顺时针旋转90°得到△A′BC′,请画出△A′BC′.解:如图所示,△A′BC′即为所求.活动3课堂小结根据旋转的性质,掌握旋转作图的步骤.3.3中心对称1.理解中心对称、对称中心、中心对称图形等概念,能识别中心对称图形.(重点)2.通过作图探索成中心对称的两个图形的性质.(重点)3.能运用中心对称的性质作出一个图形关于某点对称的图形,并确定对称中心的位置.(重点)自学指导:阅读教材P81~82内容,完成下列问题.知识探究1.如果把一个图形绕着某一点旋转180°,它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做它们的对称中心.2.成中心对称的两个图形中,对应点所连线段经过对称中心,且被对称中心平分.3.把一个图形绕某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心.自学反馈1.下列手机软件图标中,属于中心对称图形的是(D)2.关于中心对称的两个图形中,对应线段的关系是(D)A.相等B.平行C.相等且平行D.相等且平行或相等且在同一直线上活动1小组讨论例1如图,在中心对称的两个图形中,对称点A,A′和对称中心O在一直线上,并且AO=OA′,另外分别在一直线上的三点还有B,O,B′和C,O,C′,并且BO=B′O,CO=C′O.在成中心对称的两个图形中,连接对称点的连线都经过对称中心,并且被对称中心平分.也就是:(1)对称中心在任意两个对称点的连线上.(2)对称中心到一对对称点的距离相等.根据这个,可以找到关于中心对称的两个图形的对称中心,通常只需连接中心对称图形上的一对对应点,所得线段的中点就是对称中心,同时在证明线段相等时也有应用.例2如图,四边形ABCD和点O,画出四边形A′B′C′D′,使它与已知四边形关于点O成中心对称.解:(1)连接AO并延长AO到A′,使OA′=OA,于是得到点A的对称点A′.(2)同样画出点B、点C和点D的对称点B′,C′和D′.(3)顺次连接A′B′,B′C′,C′D′,D′A′.四边形A′B′C′D′即为所求的四边形.活动2跟踪训练1.下列图形中,是中心对称图形但不是轴对称图形的是(B)2.如图,四边形ABCD与四边形FGHE关于点O成中心对称,则AD=EF,∠ABC=∠FGH.3.如图,已知六边形ABCDEF是以点O为对称中心的中心对称图形,画出六边形ABCDEF的全部图形,并指出所有的对应点和对应线段.解:作法如下:图中A的对应点是D,B的对应点是E,C的对应点是F;AB对应线段是DE,BC对应线段是EF,CD对应线段是AF.4.下列图形:线段、等边三角形、正方形、等腰梯形、正五边形、圆,其中是旋转对称图形的有哪些?解:线段、等边三角形、正方形、正五边形、圆都是旋转对称图形.活动3课堂小结1.把一个图形绕着某一点旋转180°,如果它能够和另一个图形重合,那么,我们就说这两个图形成中心对称,这个点叫做对称中心.2.识别中心对称的方法:如果两个图形的对应点连成的线段都经过某一点,并且被这一点平分,那么这两个图形一定关于这一点成中心对称.3.4简单的图案设计1.能利用平移、旋转或轴对称以及它们的组合解决一些简单的图案设计问题,并会利用它们分析图案.(重点) 2.通过观察、交流、创作,培养学生的动手操作能力和创新能力.(难点)自学指导:阅读教材P85的内容,完成下列问题.自学反馈1.平移、旋转、对称的联系:都是平面内的变换,都不改变图形的形状和大小,只改变图形的位置.2.如图所示的图案由四部分组成,每部分都包括两个小“十”字,其中一部分能经过适当的旋转得到其他三部分吗?能经过平移吗?能经过轴对称吗?还有其他方式吗?解:可以.归纳:图形的平移、旋转、对称是图形变换中最基本的三种变换方式.活动1小组讨论例欣赏图中的图案,并分析这个图案形成的过程.解:图中的图案是由三个“基本图案”组成的,它们分别是三种不同颜色的“爬虫”(形状、大小完全相同).在图中,同色的“爬虫”之间是平移关系,所有同色的“爬虫”可以通过其中一只经过平移而得到的;相邻的不同色的“爬虫”之间可以通过旋转而得到,其中,旋转角为120°,旋转中心为“爬虫”头上、腿上或脚趾上一点.活动2跟踪训练1.国旗上的四个小五角星,通过怎样的移动可以相互得到(D)A.轴对称B.平移C.旋转D.平移和旋转2.下列这些复杂的图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们中每一个图案都可以由一个“基本图案”通过连续旋转得来,旋转的角度是(C)A.30°B.45°C.60°D.90°3.广告设计人员进行图案设计,经常将一个基本图案进行轴对称、平移和旋转等.活动3课堂小结充分运用平移、旋转或轴对称,按照所要表达的意思,对基本图案进行操作,设计出相应图案.。

北师大版八年级下册第三章教案

北师大版八年级下册第三章教案

北师大版八年级下册《第三章图形的平移与旋转》3.1 图形的平移(第一课时)一.教学目标1、知识与技能目标:认识平移、理解平移的基本内涵;理解平移前后两个图形对应点连线平行且相等,对应线段平行且相等,对应角相等的性质。

2、过程与方法目标:①通过探究式的学习,培养学生的归纳总结与猜想的数学能力,培养学生的逆向思维能力。

通过知识的拓展,培养学生的分析问题与解决问题的能力。

②让学生经历观察、分析、操作、欣赏以与抽象概括等过程;经历探索图形平移性质的过程,以与与他人合作交流的过程,进一步发展空间观念,增强审美意识。

3、情感与价值观目标:①在探究式的教学活动中,培养学生主动探索,勇于发现的科学精神;通过多种途径,培养学生细致、严谨、求实的学习习惯;渗透由特殊到一般,化未知为已知的辩证唯物主义思想。

②引导学生观察生活中的图形运动变化现象,自己加以数学上的分析,进而形成正确的数学观,进一步丰富学生的数学活动经验和体验。

有意识的培养学生积极的情感、态度,促进观察、分析、归纳、概括等一般能力与审美意识的发展。

③通过自己动手设计图案,把所学知识加以实践应用,体会数学的实用价值。

通过同学间的合作交流,培养学生的协作能力与学习的自主性。

二.教学重点平移的基本性质三.教学难点平移的基本内涵的理解.四.教学过程一.情景问题,引入课题情境问题引入同学们,还记得游乐园内的一些项目吗?如:旋转木马、荡秋千、小火车、滑梯……它们曾经使我们许多人乐而忘返.不过,你想过没有:小火车在笔直的铁轨上开动时,火车头走了200米,那车尾走了多少米呢?(也走了200米.)其实,数学就在我们身边,它有很多规律等待我们去探索,去发现!无论是年代久远的老牛上的辘轳;还是刚刚耸立起的高楼大厦里的电梯,无论是微观世界里的粒子运动,还是浩翰宇宙中的行星运转.其中最简捷的运动变化形式主要是平移和旋转,让我们走进图形变换的天地,继续探索图形变换的奥秘吧!从今天开始,我们就来探索第三章:图形的平移和旋转.二. 探究——经历新知形成过程,体验探究方法探究问题过程(一)自主学习:的图3—1,然后回答书下面我们来看第一节:图形的平移(同学们仔细观擦:P58上提出的问题)(1)图3—1中,传送带上的电视机的形状、大小在运动前后是否发生了变化?手扶电梯上的人呢?传送带上的电视机的形状、大小在运动前后没有发生改变.手扶电梯上的人也没有变化.(2)在传送带上,如果电视机的某一按键向前移动了80 cm,那么电视机的其他部位向什么方向移动?移动了多少距离?(电视机的其他部位也向前移动,也移动了80 cm).(3)如果把移动前后的同一台电视机的屏幕分别记为四边形ABCD和四边形EFGH(如下图),那么四边形ABCD与四边形EFGH的形状、大小是否相同?(四边形ABCD与四边形EFGH的形状、大小相同)(二)展示交流:1、传送带运送电视机的过程中,电视机的形状、大小、位置等因素中,哪些没有发生改变?哪些发生了变化?手扶电梯上的人呢?(学生讨论、发现、归纳结论)(在传送电视机的过程中,电视机的形状、大小没有变化,它的位置发生了变化.手扶电梯上的人也是位置发生了变化,人没有变化.)在电视机生产车间传输带运送电视机的过程中,对同一台电视机而言,不同时间的位置之间是相互平移的关系;人在电梯上两个不同时刻之间的位置关系也是平移那么,什么是平移呢?在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移(translation).注意:“将一个图形沿某个方向移动一定的距离”,意味着“图形上的每个点都沿.....同一个方向移动了相同的距离.............”.那大家想一想:平移有什么特征呢?(1.平移不改变图形的形状和大小............2平移改变图形的位置).2、想一想,议一议: (1)在下图中,线段AE、BF、CG、DH有怎样的位置关系? (2)在下面图中,有哪些相等的线段、相等的角?(3)由(1)、(2)两个问题,你能归纳出什么结论?(1)四边形EFGH是由四边形ABCD平移得到的,由演示可知:线段AE、BF、CG、DH是互相平行的,并且这四条线段又相等.(2)图中相等的线段:AB=EF、BC=FG、CD=GH、AD=EH、AE=BF=CG=DH.∠ABC=∠EFG、∠BCD=∠FGH∠BAD=∠FEH、∠ADC=∠EHG∠ABC=∠ADC、∠BAD=∠BCD、∠HEF=HGF、∠EFG=∠EHG(3)图形经过平移后,只是位置发生变化,即图形上的每个点都沿同一个方向移动了相同的距离,而线段的长短、角的大小没有发生变化.;经过平移,对应线段,对应角分别相等,对应点的连线是平行的,并且相等.平移的基本性质:1.经过平移,对应线段,对应角分别相等;对应点所连的线段平行且相等.这个性质也从局部刻画了平移过程中的不变因素:图形的形状和大小.注意:平移三要素:几何图形——运动方向——运动距离三、应用——经历应用领悟构想,学会思考方法搭建问题交流平台 (突破难点,最具开放性,一题多解的问题)搭建问题交流平台 (突破难点,最具开放性,一题多解的问题)①出示问题[例1](课本59页例1)如图所示,△ABE沿射线XY的方向平移一定距离后成为△CDF。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

能按要求作出简单平面图形平移后的图形,能用平移的性质解决实际问题.
教学重点:理解图形平移的基本性质,并能按要求作出简单平面图形平移后的图形
教学难点:能运用平移的性质解决实际问题.
作业布置:课本P21习题7.3第3题.
教学过程:
一、探究:
1.请你判断小明跟着妈妈乘观光电梯上楼,一会儿,小明兴奋地大叫起来:“妈妈!妈妈!你看我长高了!我比对面的大楼还要高!”小明说的对吗?为什么?
2.接触平移现象:
教师通过多媒体展示(画面)现实生活中平移的具体实例,你还能举出生活中类似的例子吗?
根据上述一些现象,你能说明什么样的图形运动称为平移?
3.辨一辨、议一议:
在以下现象中,属于平移的是()
①在荡秋千的小朋友;
②打气筒打气时,活塞的运动;
③钟摆的摆动;
④传送带上,瓶装饮料的移动.
A.①②B.①③C.②③D.②④
二、合作:
例1如图,4个小三角形都是等边三角形,边长为1.3cm.你能通过平移△ABC得到其他三角形吗?若能,请画出平移方向,并说出平移的距离.
活动探究:
把图中的三角形ABC(可记为△ABC)向右平移6个格子,画出所得的△A′B′C′.
度量△ABC与△A′B′C′的边、角的大小,你发现什么了呢?
你认为图形平移具有什么特征呢?
例2将A图案剪成若干小块,再分别平移后能够得到B、C、D中的()
A.0个B.1个C.2个D.3个
三、展示:
在所示的方格纸上,将线段AB向左平移4格.得到线段A′B′,再将线段A′B′向上平移3格,得到线段A″B″,连接对应点的线段AA′与BB′,A′A″与B′B″,AA″与BB″.
在连接对应点的线段AA′与BB′,A′A″与B′B″,AA″与BB″的过程中,你有什么发现?
议一议:
(1)下图中的四边形A′B′C′D′是怎样由四边形ABCD平移得到的;
(2)线段AA′、BB′、CC′、DD′之间有什么关系?
(3)取线段AD的中点M,画出点M平移后对应的点M′,连接MM′.线段MM′与线段AA′
有什么关系?
你能否用一句话来概括这种关系?
四、拓展:
例3已知△ABC和点D,平移△ABC,使△ABC的顶点A移动到了点D的位置.。

相关文档
最新文档