焦化废水管理方案计划工艺标准设计改
某工厂焦化废水处理工艺设计方案
焦化废水处理工程设计方案中国京冶工程技术有限公司二〇一○年三月目录第一章概况 (1)1.1概述 (1)1.2废水特征(由厂方提供) (1)1.3编写依据 (2)第二章废水处理工艺设计 (4)2.1废水的处理难点 (4)2.2污染物去除原理 (4)2.3工艺比选 (7)2.4工艺流程 (8)2.5工艺说明 (10)第三章主要工艺设备设施 (11)3.1预处理系统 (11)3.2生物处理系统 (15)3.3深度处理系统 (18)3.4污泥处理系统 (20)3.5辅助系统 (21)第四章公用设施 (24)4.1建筑结构设计 (24)4.2电气及仪表设计 (25)4.3防腐措施 (26)第五章环保、节能与安全 (27)5.1设计采用的环境保护标准 (27)5.2主要污染物与控制措施 (27)5.3节能 (28)第六章人员定额与劳动安全 (29)6.1人员编制 (29)6.2组织管理 (29)6.3技术管理 (29)6.4劳动安全 (29)第七章技术经济 (30)7.1电费 (30)7.2药费 (31)7.3水费 (31)7.4蒸汽费 (31)7.5人工费 (31)7.6运行费用 (31)第八章土建构筑物、设备及材料清单 (32)8.1土建构筑物清单 (32)8.2设备材料清单(系统内部) (33)第九章工程进度安排 (35)第十章工程质量和进度的保证措施 (37)10.1实施原则与步骤 (37)10.2设计、施工与安装 (37)10.3调试与试运转 (38)第十一章质量保证体系 (39)附图1、工艺流程图2、总平面布置图3、走道板平面布置图4、设备平面布置图第一章概况1.1概述江西丰城新高焦化有限公司是一家设计年产124万吨优质冶金焦、焦炉煤气及化工产品生产销售的中外合资企业。
公司于2009年3月注册成立,注册资本35000万元,预计总投资人民币约10亿元。
投资各方为:丰城矿务局、易高煤矿资源开发(丰城)有限公司(外资)、新余钢铁有限责任公司、福建三钢闽光股份有限公司。
焦化废水处理升级改造工艺
焦化废水处理升级改造工艺焦化废水是一种典型的有毒难降解有机废水,主要来自炼焦和煤气净化过程及化工产品的精制过程,其中以蒸氮过程中产生的剩余氨水为主要来源。
蒸氨废水是混合剩余氨水蒸储后所排出的废水。
剩余氨水是焦化厂最重要的酚鼠废水源,是含氨的高浓度酚水,由冷凝鼓风工段循环氨水泵排出,送往剩余氨水贮槽。
剩余氨水主要由三部分组成:装炉煤表面的湿存水、装炉煤干储产生的化合水和添加入吸煤气管道和集气管循环氧水泵内的含油工艺废水。
剩余氨水总量可按装炉煤14%计。
剩余氨水在贮槽中与其它生产装置送来的工艺废水混合后,称为混合剩余氨水。
混合剩余氨水的去向,有的是直接蒸氨,有的是先脱酚后蒸氨,有的是与富氨水合在一起蒸氨,还有的是与脱硫富液一起脱酸蒸氨,脱酸蒸氨前要进行过滤除油。
焦化厂还含一些其它废水,其所占比例不大,污染指标也较低。
综上,焦化废水中主要由氨氮、氟化物、硫化物等无机物和酚类化合物、芳烧类化合物、苯类等有机物组成,其中的多环芳煌不但难以降解,而且通常还是强致癌物质,对环境造成严重污染的同时也直接威胁到人类健康。
唐山某焦化厂生产规模IOO万吨/年,焦化废水处理设施建于2007年,主体工艺采用“A2O+混凝沉淀”,产水主要回用于熄焦。
从工艺设计上,存在生化停留时间短、二沉池表面负荷大等问题,排水超标等问题时有发生。
在“十三五” 新的环保政策要求下,企业拟对现有“年久失修,功能老化”的焦化废水处理设施进行升级改造,充分发挥处理功能,同时出水进入后续深度处理站制备生产新水,使企业走上技术化、集约型、高效益的可持续发展之路。
1、工程概况1.1进出水条件焦化废水处理站进水主要为厂区蒸氨废水、煤气净化及焦化产品制备产生的废水。
目前,厂区干熄焦改造已完毕,焦化废水处理站产水主要用于后续深度处理站除盐水制备(UF+NF+R0工艺),焦化废水处理站进出水设计条件见表Io如蒯废水站制条件Tab.l Influent water condition项目水t∕(nΛh)格择比Coiy(D叫NH3-N∕(mg∕L)PH挥发的他矶)MW(mgl)水耻焦化废水501: 2 300(M500<500 6.0-9.0≤500<10≤50产水要求-■1508 6.M,00.50.5-1.2原工艺流程原设计工艺流程分为预处理、生化处理、后混凝沉淀处理、生物过滤处理及污泥处理,工艺流程见图1。
焦化废水处理工程技术方案
(一)工程概述1、废水水质本工程现有一套解决装置,解决量为200m3/d,需要改建;此外增长立即需要投产的二期工程,新建一套废水解决装置,解决废水量为200m3/d,合计废水总量为400m3/d。
表-1 焦化废水水质(单位为mg/L)2、水质排放规定根据上海市污水综合排放标准二级标准,废水解决后需达成的排放标准如表-2所示:表-2废水解决排放标准(除温度、pH外,其余单位为mg/L)(二)废水解决工艺1、工艺流程本改扩建工程涉及原有系统改造及新建两部分。
根据上海焦化有限公司废水解决的成果,结合原有的废水解决工艺,新扩改工程采用A1-A2-O生物膜工艺。
尽量不改变已有废水解决设施的功能和结构,充足运用已有废水解决构筑物的解决能力,对老系统进行改造,在原有的A/O 系统基础上增长一个厌氧酸化池,即改为A1-A2-O生化系统。
新建一套A1-A2-O生化系统,两套系统各承担一半的解决水量。
整个废水解决改扩建工程工艺流程图(略)2、工艺流程说明(1)从各车间出来的生产废水及生活污水统一进入调节池,调节池的重要作用是均衡废水的水质和水量,保证后续生化解决设施运营的稳定性。
由于废水的含磷量很少,故在调节池中加入磷营养盐,提供微生物所需的营养。
(2)调节池出来的废水由两台泵分别提高至新老两套A1-A2-O生化系统,在生化解决系统中,废水的降解过程如下:a. 焦化废水一方面进入厌氧酸化段。
在该段,废水中的苯酚、二甲酚以及喹啉、异喹啉、吲哚、吡啶等杂环化合物得到了较大的转化或去除,厌氧酸化段的设立对于复杂有机物的转化与去除是十分有利的。
因此,废水通过厌氧酸化段后水质得到了很好的改善,废水的可生化性较原水有所提高,为后续反硝化段提供了较为有效的碳源。
b. 在缺氧段进行的重要是反硝化反映,从酸化段出来的废水进入缺氧段,同时好氧段解决后的出水也部分回流至缺氧段,为缺氧段提供硝态氮。
此外,由于焦化废水中所含反硝化碳源局限性,需在缺氧池中加入甲醇作为补充碳源。
《焦化废水处理设计方案》
《焦化废水处理设计方案》焦化废水是指焦炭生产过程中所产生的含高浓度有机物和无机盐的废水。
如果直接排放到水体中,不仅会导致环境污染,而且会对生态环境造成很大危害。
因此,对焦化废水进行处理,是保护环境、维护生态系统的必要措施。
针对焦化废水的处理,需要制定一套合理的水处理方案。
下面就提出一份比较详细的焦化废水处理设计方案。
1、焦化废水的特点焦化废水是种复杂的工业废水,具有以下特点:(1)水量大、浓度高,CODcr含量普遍在5000-20000 mg/L。
(2)含有大量的苯、酚、醛类有机物和氨氮等,同时还含有铁、铜、锌等重金属和硫化物等无机盐物质。
(3)水质随着生产过程的变化而变化,难以稳定化处理。
(4)气味难闻、有毒、易燃易爆等特性,处理难度大。
因此,在处理焦化废水时,需要结合其特性,采取相应的处理方法。
2、焦化废水的处理流程针对焦化废水特点,本方案提出如下处理流程:(1)机械过滤:环保投资公司先选用机械过滤器进行初始处理,去除废水中大颗粒的杂质,这样会减少后续处理的难度。
(2)调节酸碱度:根据不同生产工艺和水质特点,采用酸碱调节的方式对废水进行处理,使其PH值控制在7-9之间,有利于后续处理。
(3)生物处理:采用好氧生物处理和厌氧生物处理相结合的方式,经过活性污泥法、SBR工艺、生物膜法等反应器进行处理。
细菌在有氧氧气的环境下,能够有机物进行分解并得到能量,释放碳酸气和水;在无氧的环境下,能够将有机物转化为沼气并释放出来,同时对废水进行脱色、脱异臭等处理,将CODcr降低至100-150mg/L以下。
(4)沉淀沉积:将处理后的生物污泥经过沉淀池进行二次沉淀,除去SS,同时利用其里面的生物催化剂,对硫化物和重金属离子进行沉淀,降低废水中的重金属离子浓度。
(5)深度过滤:采用深度过滤设备将废水中残留的细菌、颜色等杂质进行处理,使其水质达到排放标准。
(6)精密过滤:如果需要达到更高的排放标准要求,可以再对废水进行精密过滤、活性炭吸附、反渗透等处理,以达到超标排放要求。
焦化废水治理方案
焦化废水治理方案焦化废水是指由焦化生产过程中产生的废水,含有大量的有机物和高浓度的重金属离子,对环境产生严重的污染。
为了高效治理焦化废水,保护环境,以下是一项有效的焦化废水治理方案。
一、废水预处理废水预处理是焦化废水治理的重要步骤,通过净化废水,去除杂质和悬浮物,使废水达到进一步处理的要求。
1.1 粗格栅过滤焦化废水首先通过粗格栅过滤,去除废水中的大颗粒杂质和固体悬浮物,防止后续设备的堵塞。
1.2 二沉池沉淀经过粗格栅过滤后的废水进入二沉池,在二沉池中,废水经过沉淀和澄清作用,使悬浮物沉淀到废水底部,从而净化废水。
二、生化处理生化处理是焦化废水治理的核心步骤,通过生物活性池中的微生物分解有机物,将有机物转化为无机物,从而减少废水的污染物含量。
2.1 好氧生物滤池废水经过生化处理前,通入好氧生物滤池,滤池内生长着大量的好氧微生物。
好氧微生物在氧气的作用下,分解废水中的有机物,产生二氧化碳和水。
同时,微生物的生长也消耗一定量的氧气,为厌氧微生物提供条件。
2.2 厌氧生物滤池从好氧生物滤池流出的水进入厌氧生物滤池,厌氧微生物在厌氧条件下分解废水中的有机物,产生甲烷等气体。
厌氧生物滤池的运行过程中,也需要定期添加一定量的碳源和微生物,以维持微生物的平衡。
三、深度处理深度处理可以进一步减少废水中污染物的含量,以达到排放标准。
3.1 纳滤处理经过生化处理后的废水,进入纳滤装置进行深度过滤。
纳滤膜的孔径非常小,可以将废水中的微量污染物、颜色物质等截留下来,从而净化废水。
3.2 活性炭吸附废水通过纳滤处理后,再进入活性炭吸附器。
活性炭吸附剂能够有效去除废水中的重金属离子、难分解有机物等,进一步提高废水的水质。
四、处理后的废水利用处理后的焦化废水可以通过以下途径进行利用:4.1 循环利用经过综合处理后的废水可以回用于冷却系统、锅炉给水等,实现资源的循环利用,提高水资源利用效率。
4.2 城市绿化处理后的废水可以用于浇灌城市绿化带、公园等,提高城市绿化覆盖率。
焦化废水处理方法及方案
焦化废水处理方法及方案焦化废水是煤在高温干馏过程中以及煤气净化、化学产品精制过程中形成的废水,其中含有酚、氨氮、氰、苯、吡啶、吲哚和喹啉等几十种污染物,成分复杂,污染物浓度高、色度高、毒性大,性质非常稳定,是一种典型的难降解有机废水。
它的超标排放对人类、水产、农作物都构成了很大危害。
如何改善和解决焦化废水对环境的污染问题,已成为摆在人们面前的一个迫切需要解决的课题。
目前焦化废水一般按常规方法先进行预处理,然后进行生物脱酚二次处理。
但是,焦化废水经上述处理后,外排废水中氰化物、COD及氨氮等指标仍然很难达标。
针对这种状况,近年来国内外学者开展了大量的研究工作,找到了许多比较有效的焦化废水治理技术。
这些方法大致分为生物法、化学法、物化法和循环利用等4类。
1 生物处理法生物处理法是利用微生物氧化分解废水中有机物的方法,常作为焦化废水处理系统中的二级处理。
目前,活性污泥法是一种应用最广泛的焦化废水好氧生物处理技术。
这种方法是让生物絮凝体及活性污泥与废水中的有机物充分接触;溶解性的有机物被细胞所吸收和吸附,并最终氧化为最终产物(主要是CO2)。
非溶解性有机物先被转化为溶解性有机物,然后被代谢和利用[1]。
基本流程如图1所示。
图1 生物处理法基本流程但是采用该技术,出水中的CODCr、BOD5、NH3-N等污染物指标均难于达标,特别是对NH3-N污染物,几乎没有降解作用。
近年来,人们从微生物、反应器及工艺流程几方面着手,研究开发了生物强化技术:生物流化床,固定化生物处理技术及生物脱氮技术等。
这些技术的发展使得大多数有机物质实现了生物降解处理,出水水质得到了很大改善,使得生物处理技术成为一项很有发展前景的废水处理技术。
合肥钢铁集团公司焦化厂、安阳钢铁公司焦化厂、昆明焦化制气厂采用A/O(缺氧/好氧)法生物脱氮工艺,运行结果表明该工艺运行稳定可靠,废水处理效果良好,但是处理设施规模大,投资费用高。
上海宝钢焦化厂将原有的A/O生物脱氮工艺改为A/OO工艺,污水处理效果优于A/O工艺[2],运行成本有所降低,效果明显。
焦化废水治理方案
焦化废水治理方案简介焦化废水是指煤炭焦化过程中产生的废水,含有大量的悬浮固体、悬浮液体、有机物和重金属离子等污染物。
这些污染物对环境和人体健康造成严重的威胁,因此需要采取有效的治理措施。
本文将介绍一种焦化废水治理方案,包括废水处理工艺、设备选择和运营管理等方面的内容。
废水处理工艺一次沉淀法一次沉淀法是焦化废水处理的常用工艺之一。
工艺流程如下:1.预处理:将废水进行初步过滤,去除较大的悬浮物。
2.加药混凝:在预处理后的废水中加入适量的混凝剂,使悬浮物凝聚成较大的团聚体。
3.一次沉淀:将加药混凝后的废水送入一次沉淀池,利用重力作用使团聚体沉淀到底部。
4.排放处理:将上清液从沉淀池中取出,经过进一步处理,达到排放标准。
活性炭吸附法活性炭吸附法是另一种常用的焦化废水处理工艺。
工艺流程如下:1.预处理:将废水进行初步过滤,去除较大的悬浮物。
2.调节pH值:根据废水的特性,调节pH值,使其达到最佳范围。
3.活性炭吸附:将废水通过活性炭吸附床,利用活性炭对有机物和重金属离子的吸附作用进行净化。
4.再生活性炭:对饱和的活性炭进行再生处理,以回收废水中吸附的污染物。
5.排放处理:将经过活性炭吸附后的废水再次进行排放处理,达到排放标准。
设备选择一次沉淀法•预处理设备:格栅过滤器、除砂器。
•混凝设备:搅拌桶、加药装置。
•沉淀设备:沉淀池。
•排放处理设备:细滤器、活性炭吸附装置。
活性炭吸附法•预处理设备:格栅过滤器、除砂器。
•pH调节设备:酸碱容器、pH调节装置。
•吸附设备:活性炭吸附床。
•再生设备:再生装置。
•排放处理设备:细滤器、活性炭吸附装置。
运营管理为了确保焦化废水治理方案的高效运行,需要进行合理的运营管理。
以下是一些建议:1.定期维护:对废水处理设备进行定期维护和检修,确保其正常运行。
2.监测记录:建立焦化废水处理过程的监测系统,记录废水的处理效果和排放水质。
3.人员培训:对操作人员进行相关培训,提高其对焦化废水治理工艺的认识和操作技能。
焦化废水处理设计方案
焦化废水处理方案1、焦化废水简介焦化厂所产生的废水有高浓度废水和低浓度污水两部分。
高浓度废水主要来自于炼焦、煤气净化、化产品回收及化产品精制过程中,从煤气或工艺介质中分离出来的水,该部分废水水质较恶劣,是焦化厂废水处理的主要对象;低浓度废水,如煤气水封水、化工介质输送泵的轴封水、生活污水等,含污染物浓度相对较低,在生化处理中可作为稀释水。
2、设计依据及原始资料2.1设计依据1)《中华人民共和国环境保护法》的有关文件2)《污水综合排放标准》(GB8978-1996);3)《工业企业噪声控制设计规范》(GBJ87-85);4)《建设项目环境保护设计规定》[(87)国环字第002号];5)《工业企业厂界噪声标准》(GB12348—90);6)《恶臭污染物排放标准》(GB14554—93) ;7)《建筑给排水设计规范》GBJ15—888)盂县中信焦化公司、黎城长福煤化厂等焦化废水生物脱氮处理设计、开工及生产运行的实践及经验;10)国内外焦化废水处理试验研究及生产运行的现状;11)国内外焦化废水生物脱氮试验研究及生产运行的现状;2.2废水水量考虑到现有资料的不完整,暂时设计水量15m3/h2.3废水水质COD<4800mg/l SS<750mg/l NH3-N<350mg/l 油类<100mg/l挥发酚<700mg/l 硫化物120mg/l2.4处理效果处理后废水应达到国家《综合污水排放标准》GB8979—1996中规定的冶金企业焦化行业一级标准,亦即应达到《钢铁工业水污染物排放标准》GB13456-92中规定的焦化行业一级排放最高限值标准:CODcr ≤100 mg/L氨氮≤15mg/L油≤8mg/L氰≤0.5mg/L酚≤0.5 mg/LSS ≤70 mg/LPH 6—9实际上,经生物脱氮处理后的焦化废水,其含氨氮浓度一般都在1 mg/L左右,多数情况下都小于1 mg/L。
焦化废水处理工程方案设计
焦化废水处理工程方案设计焦化废水是指在焦炭工业生产过程中产生的含有大量有机污染物和重金属物质的废水。
这种废水不仅污染严重,而且对环境和人体健康造成严重影响。
因此,对焦化废水进行有效处理具有重要的意义。
一、焦化废水处理工艺介绍目前,对焦化废水的处理方法主要有生物处理法、物化处理法等。
其中比较常用的处理工艺有:氧化沟生物法、好氧-厌氧结合法、生物接触氧化法等。
下面对这些处理工艺进行详细阐述。
1. 氧化沟生物法氧化沟生物法是通过利用多种微生物群体来进行水体的有机物降解的一种方法。
其原理是将废水引入氧化沟后,通过加入厌氧/好氧平衡反应、降解废水中的有机物。
氧化沟生物法主要分为两种:深度氧化法和层流式氧化沟法。
深度氧化法是利用生物膜和底部填料多边形石等微介质来提高水处理效果。
而层流式氧化沟法是在氧化沟上部放置不同孔径的筛板,促进气液交换,达到加强氧气输送、氧化废水中有机物的目的。
2. 好氧-厌氧结合法好氧-厌氧结合法是指将厌氧段与好氧段结合起来处理废水的一种工艺。
该工艺具有复杂的生化反应,能最大限度地去除废水中的有机物和氮、磷等营养物质。
厌氧区脱除COD污染物,好氧区脱除氮、磷等污染物。
好氧-厌氧结合法主要分为二期和三期。
二期工艺区分为好氧区和厌氧区,适用于COD 大、而氮、磷含量低的焦化废水。
三期工艺则分为好氧区、缺氧区和厌氧区,适用于COD、氮、磷等污染物同时含量大的水质。
生物接触氧化法是指将废水引入接触氧化池进行处理,加入生物发酵剂,使用氧气气泡进行搅拌,根据不同的生化条件,利用各种微生物进行有效降解废水中的有机物和氮、磷等营养物质的过程。
该工艺处理工艺简单,容易操作,处理效果也相对较好。
此外,该工艺对污水加药沉淀和UV灭菌残留物的效果也有很大提升。
针对焦化废水的处理工程设计,应根据实际情况制定相应的方案。
不同的废水也需要不同的处理方法,因此,在进行设计时需要注意以下几点:1. 进行废水的综合分析,包括废水的性质、水质的初步处理等。
污水处理技术篇:焦化废水处理技术方案
污水处理技术篇:焦化废水处理技术方案
之一的焦化废水,一直是污水处理的难点之一,在处理过程中,经常出现
不达标的现象,本文以实际案例详怎样处理焦化废水不达标的问题。
焦化废水来源:剩余氨水经蒸氨后的废水,煤气净化过程、苯精制过程
以及其他辅助生产过程中产生的废水。
前者占废水总量的一半以上,是氨氮污
染物的主要来源。
焦化废水特点:B/C 为0. 2~0. 4,毒性大、可生化性差,属于高COD、高氨氮、成分复杂的难处理工业废水。
相关标准要求焦化废水提高废水回用率,减少排放水量。
焦化废水处理站实际达标排放率很低,其中调试、运行管理方面占有很大原因。
工程调试实例
新建焦化废水处理工程调试
江苏某钢厂焦化废水量Q= 20 m3/ h,该工程主体工艺为A /O 工艺。
调试过程:投加种泥,种泥来源于原有生化系统的剩余污泥和原有曝气
池的活性污泥,投加量为O 池有效容积的17% 左右。
由于原有生化系统闲置了3、4 个月,因此,所投加种泥的无机成分较多,污泥指数(SV
运行参数调整的焦化废水处理站调试过程
辽宁某钢厂焦化废水量Q= 180 m3/ h,该工程主体工艺为A2/ O。
原系统处理出水不达标,调整系统控制参数,提高系统各相应环节的处理能力,使
得最终出水可达标。
首先,从蒸氨工序入手,严格控制蒸氨系统运行参数,保证蒸氨效果,
蒸氨后的废水确保氨氮含量在200 mg /L 以下,避免因蒸氨系统的不稳定运行,。
焦化废水深度处理设计方案和对策
目录1.项目概述 (1)1.1 项目名称 (1)1.2 项目概况 (1)1.3 项目目的 (2)2.设计水量、水质及设计要求 (2)2.1 污水来源 (2)2.2 设计水量 (3)2.3 污水水质 (8)2.4 处理要求 (9)3.设计依据、设计原则及内容 (9)3.1 设计依据 (9)3.2 设计原则 (11)3.3 设计内容 (12)3.4 工程内容 (12)4.污水处理站总图布置 (13)4.1 总体布置原则 (13)4.2 总图 (13)5.公用工程 (14)5.1 给排水及消防 (14)5.1.1 给水 (14)5.1.2 排水 (14)5.1.3 消防 (14)5.2 强电 (15)5.3 自控 (15)5.3.1 供电电源 (15)5.3.2 设备启动和控制方式 (15)5.3.3 电线缆敷设及设计 (15)5.3.4 接地保护 (16)5.3.5 自控与仪表 (16)6.工程技术经济分析 (16)6.1 工程预算 (16)6.1.1 土建费(A) (16)6.1.2 设备材料费(B) (18)6.1.3 概算总表 (21)6.2 运行成本分析 (21)6.2.1 电费(A) (21)6.2.2 人员费(B) (22)6.2.3 药剂费(C) (22)6.2.4 水处理直接成本(E) (23)6.3 项目经济性评价 (23)7.安装调试运行 (24)7.1 设备安装 (24)7.2 管道安装及敷设 (25)7.2.1 管材的选用 (25)7.2.2 管道接口 (25)7.2.3 管道基础 (25)7.2.4 管道防腐 (26)7.2.5 管道试压要求 (26)7.2.6 明露管道涂漆颜色规定 (26)7.2.7 管道施工及验收应遵循以下规范 (26)7.2.8 其它 (26)7.3 系统调试 (27)7.4 运行管理 (27)8.工程实施进度 (28)9.工程施工方案(组织)设计 (28)9.1 各分部分项工程主要施工方法 (28)9.1.1 土建分部工程施工方法 (28)9.1.2 主要设备安装技术措施 (30)9.1.3 确保工程质量的技术组织措施 (41)9.1.4 确保安全生产的技术组织措施 (43)9.1.5 确保工期的技术组织措施 (45)9.1.6 其它说明内容: (46)9.2 现场施工组织 (47)9.2.1 现场施工组织结构图 (47)9.2.2 各部门职责 (48)10.技术服务与质量保证体系 (53)10.1 全面质量控制(TQC) (53)10.1.1 设计 (53)10.1.2 原材料的采购 (54)10.1.3 施工 (54)10.1.4 开车调试 (54)10.1.5 培训 (55)10.2 工程质量承诺 (55)10.3 售后服务 (56)1.项目概述1.1项目名称山西焦煤集团山西焦化股份有限公司二厂区域焦化废水深度处理工程。
某钢铁焦化厂废水处理技改工程设计方案
某钢铁焦化厂废水处理技改工程设计方案2001.9一、概况某钢铁焦化厂焦化废水处理站,于1991年竣工投入运行,废水处理工艺流程详见附图一:〈生化污水处理站工艺管道流程图〉,经过几年运行实践后,先后有若干变动,目前正在运行的流程,详见附图二:〈焦化废水处理工艺(现状)流程示意图〉;前后对比主要有以下几项变动:1.剩余氨水加碱(NaOH)调pH值至11~12,送蒸氨塔,利用焦炉煤气加温脱氨。
带氨煤气送脱硫塔,提高脱硫效果;蒸氨塔直径1M,总高15M,附有加温、废水贮槽等设施,据厂方介绍投产后其脱氨效果可以达到85~90%左右,即进水NH3-N~6000mg/L,出水900~600mg/L左右,目前因费用太高不加碱,靠加温蒸脱,脱氨率60~65%。
2.加装了一套混凝气浮处理设施,脱氨废水再投加凝聚剂后经过混凝气浮处理,据厂方反映,可以去除一些悬浮物,对去除有机污染物与氨的效果不明显。
3.原设计钢筋混凝土斜板隔油池与斜板气浮池,因故已停止运行,闲置多年。
4.原设计很多设备与管道,如泵、加药容器、贮槽等,有的装好后从未用过,有的用了一段时间后停用,造成一定浪费,焦化废水处理站的处理能力为1440吨/日(60吨/时),其工艺流程详见附图二,其中三股浓废水:剩余氨水、煤气终冷水、隔油废水,含NH3-N 与COD浓度高,以致设施出水NH3-N指标严重超标,COD指标也超标较多。
2001年3月6日、23日二次取样测定结果列表如下:3为1980mg/L,总量为261.4,而煤气终冷水NH3-N为15194mg/L,总量为455.8,合计为717.2kg/d,占总NH3-N(以调节池量计)量的90.7%;(2)1#、2#、3#三股废水量为总量的11.7%,但其COD总量为1165kg/d,占总COD量的60%。
二、问题分析1.原有处理工艺采用预处理——生化——物化三级处理,对NH3-N的去除率很低,必须对含NH3-N很高的1#、2#二股废水加强脱氨预处理,才能解决氨氮超标过多的问题。
焦化废水处理工程方案设计
焦化废水处理工程方案设计1 焦化废水水质水量及处理要求焦化废水是由原煤地高温干馏、煤气净化和化工产品精制过程中产生地.其成分复杂,含数十种无机和有机化合物.无机化合物中主要是大量氨盐、硫氰化物、硫化物、氰化物等;有机化合物中除了酚类外,还有单环及多环地芳香族化合物,含氮、硫、氧地杂环化合物等.焦化废水包括煤气净化过程中产生地含酚氰废水及煤气管道冷凝水、化验室排水等.废水水量为300立方米/小时,每天运行24小时,即7200立方米/天.水质如表1所示:表1 焦化废水水质一览表项目pH SS(mg/l) NH3-N(mg/l) CODcr(mg/l) 酚(mg/l) CN-(mg/l) 油(mg/l)指标7-8 100 300 5000 700 20 50废水处理后部分作为回用水回用于工艺工程,另一部分需达到综合污水(GB8978-1996)一级排放标准,如表2所示:表2 焦化废水处理后地排放标准项目pH SS(mg/l) NH3-N(mg/l) CODcr(mg/l) 酚(mg/l) CN-(mg/l)指标6-9 70 15 100 0.5 0.52 设计范围本设计方案包括污水处理设施地工艺、设备、配电仪表和土建工程.3 设计依据⌝《室外排水设计规范》(GBJ14-87)《污水综合排放标准》(GB8978-1996)⌝⌝《建筑结构设计标准》(BGJ9-89)《给排水工程结构设计规范》(GBJ69-84)⌝⌝《给水排水设计手册》厂方提供地基础数据资料⌝4 设计原则⌝污水处理技术采用先进、高效、经济、占地面积小、操作管理方便、运行稳定可靠地方法.⌝系统选用设备运行安全可靠,降低噪声、操作简单、运行费用低;⌝处理系统自动化程度要高,若自动出现保障,可切换手动操作.5 废水处理工艺流程及说明本废水处理工程地工艺流程框图如图1所示:图1 焦化废水处理工艺流程框图5.1 工艺流程简述厂内各种废水经排污管线排入平流式隔油池,隔油池设有刮油机,定期清除表面地浮油,隔油池设计停留时间为2小时,隔油池出水然后进入气浮系统除油,气浮系统出水自流入废水混合调节池,以均衡水质水量,设计停留时间为8小时.混合调节池出水由提升泵进入VTBR生物氧化塔进行处理,去除大部分地COD,去除酚、氰及其他有害物质,并通过硝化及反硝化作用脱氮.VTBR生物氧化塔采用密闭地固定膜式生化反应器,即可以实现好氧过程,又可以实现厌氧过程.好氧时,反应器按一定方式连接使之成为气一水同向同流依次穿过多个反应器,使气一液接触时间提高几十到几百倍(比普通曝气法),使氧利用率高达80~90%,节省空气十倍左右;同时,微正压使氧溶解度增加,生物量可达10~20克/升,生化效率提高,容积负荷提高,设备体积减少(与目前运行地生化反应器比,减少反应器体积2/3);塔式反应器使占地面积减少一倍以上;填料使生物固着生长,污泥龄长达100天以上,内源呼吸充分使剩余污泥体积极大地减少.厌氧时,VTBR反应器被可以安装填料构成了厌氧固定膜生物反应器,使之具有比UASB 更优越地特性.在反应器底部,因为它在污泥量大时形成污泥膨胀段,膨胀段上部形成填料床过滤段,可以形成悬浮床和固定床一体地生物生长过程,增强了生化处理效果和污泥截留率.详细介绍见附件2.VTBR生化反应塔为钢制塔式容器,单体直径10米,总高14米,塔内装有弹性立体填料;VTBR 塔共16个,8个厌氧塔,8个好氧塔,采用厌氧好氧串联地运行方式;好氧塔气水比为10:1,散流式曝气器布水.进水COD浓度4000毫克/升,厌氧塔出水COD浓度1500毫克/升;好氧出水COD浓度200毫克/升.同时为了实现除氮地目地,要进行硝化液地回流,回流比为3:1.出水自流去二沉池.出水在进入二沉池之前,为了进一步降低水中地悬浮物和COD,通过管道混合器要投加混凝剂,混凝剂投加量为300mg/l,浓度为10%,即0.9立方米/小时.沉淀池出水进入砂滤池和活性炭吸附装置,进一步降低水中地悬浮物和COD,然后进入超滤及反渗透装置.反渗透地产水率约为60-70%,其余浓盐水COD将超过100mg/l,经过多元催化电解装置处理后达标排放.多元催化电解氧化污水处理技术是大连理工大学环境工程研究设计所地自有技术.本技术地基本思路是:将多相催化、电解分解、电解氧化、化学氧化、电絮凝等过程结合在一起,形成多元反应过程来解决多种污染物地脱除问题.多相催化是指该技术中采用了固体催化剂和液体催化剂,反应体系为固、液、气三相.多元是指该技术涉及地反应试剂是多种地:液相氧化剂和气相氧化剂;多元还指该技术涉及地污染物脱除过程是多种地:电解、电氧化、电絮凝、空气氧化等.本发明可用于污水处理,给水净化,中水回用等过程地设备,特别是生化处理过程中对生物有抑制作用地污染物地脱除、生物代谢产物地脱除、微量有机物地脱除,达到水质彻底净化地目地.各单元产生地污泥用泵排至污泥浓缩池;产生量约为500m3/d(含水率98%),经物理浓缩后其总量为250m3/d(含水率96%),脱水到含水率75%地干污泥约为40t/d,设计污泥处理系统以此为原则.考虑到污泥需要调质,在压滤机场房内设有PAM配置和投加系统.脱水后地污泥由传送带直接送到污泥车上,运到堆灰场安全填埋.5.2 主要工艺参数污水泵型号:200YW300-7-11Q=300米3/小时H=7米N=11千瓦数量:2台(一用一备)供应商:上海太平洋制泵有限公司λ平流隔油池数量:2座设计停留时间:2h体积:25×6×2.4m有效高度:2米设刮油机钢筋砼结构λ气浮设备型号:IAF-150数量:2台处理量:150 m3/h外围尺寸:12×3×1.7mN=4kWλ调节池停留时间:8小时体积:12×40×5.5m有效高度:5米钢筋砼结构λ VTBR提升泵数量8台(4用4备)Q=85 m3/hH=41 mN=12.5 kWλ VTBR生物厌氧塔数量:8个停留时间:20小时COD负荷:3kg/m3•d塔尺寸:φ10×14 mλ VTBR生物好氧塔数量:8个停留时间:20小时COD负荷:1.6kg/m3•d塔尺寸:φ10×14 m气水比:10:1空气压缩机λ数量:3台(2用1备)Q=33m3/minP=0.35 MPaN=132 kWVTBR消泡泵λ数量8台Q=107 m3/hH=25 mN=11 kWλ硝化液回流泵型号:200YW300-7-11Q=300米3/小时H=7米N=11千瓦数量:4台(3用1备)λ二沉池数量:1座内径池尺寸:φ18×4.5 m沉降停留时间:3.4h钢筋混凝土结构λ支敦式单周边传动刮泥机周边线速:2 m/min驱动功率:1.1 kW数量:1台管道混合器λλ混凝剂储池数量:2座搅拌机转速:40 转/min搅拌机功率:5.5kw体积:3×3×3mλ混凝剂投加系统数量:2套计量泵流量:0-1 m3/h体积:300 m3λ砂滤池滤速:4m/小时过滤面积:75平方米数量:2个尺寸:φ7×5m钢筋砼结构λ砂滤池反洗泵λ活性炭吸附池滤速:8m/小时过滤面积:75平方米数量:1个尺寸:φ7×5m钢筋砼结构λ超滤装置不锈钢膜壳通量:100-150L/ m2•hr膜面积:2000平方米包括反洗及控制系统λ反渗透装置膜元件为8英寸,300根不锈钢膜壳格兰富压力泵包括反洗及控制系统产水率:60-70%λ回用水收集池:体积:12×12×5.5m浓盐水收集池:λ体积:12×8×5.5mλ多元电解装置停留时间:0.5小时体积:5×3×3.5m钢结构装机功率:48KWλ污泥浓缩池数量:1座池尺寸:φ12×4.5m有效容积:800m3钢筋砼结构(内防腐)λ污泥泵数量:2台(一用一备)Q=30 m3/hH=60 mN=11 kW浓缩池刮泥机λ数量:2 台周边线速:2 m/min驱动功率:0.75 kW污泥带式压滤机λ数量:1台处理能力:3-6 m3/h装机功率:2.2 kW配套设备包括:配套污泥提升泵:流量12 m3/h,功率1.5kw 配套溶药搅拌器:容积8 m3,功率1.1kw配套空压机:排气量0.3 m3/min,功率3kw 配套清洗水泵:流量12 m3/h,功率5.5kw 配套皮带输送机:带宽600mm,功率1.5kw 6 主要经济技术指标焦化废水处理地经济技术指标如表4所示:表4 焦化废水处理经济指标序号项目名称数据取费标准单位成本(元/吨水)1 配电装机容量1131.3千瓦运行容量816.3千瓦耗电 2.72千瓦时/吨水0.5元/ kW.h 1.362 药品用量混凝剂0.3公斤/吨0.7元/kg 0.21PAM 0.01公斤/吨10元/kg 0.103 人工15人800元/月•人0.064 运行成本(合计) 1.737 工程投资估算表5 工程投资估算表序号名称主要规格数量单价(万元)总价(万元)一土建工程1 平流隔油池25×6×2.42 18 362 混合调节池12×40×5.5 1 79.2 79.23 沉淀池Ф18×4.5m 1 40.0 40.04 混凝剂储池3×3×3m 2 2.7 5.45 砂滤池Ф7×5m 2 28.8 57.66 活性炭吸附池Ф7×5m 1 53.9 53.97 回用水收集池12×12×5.5m 1 24.0 24.08 浓盐水收集池12×8×5.5m 1 15.8 15.89 污泥浓缩池φ12×4.5m 1 17.8 17.810 厂房(风机房、脱水间,综合办公楼)6011 VTBR塔基础16 8 128土建合计517.7二工艺设备12 污水提升泵300m3/h 2 5 1013 刮油机6米 2 12.8 25.614 气浮装置150m3/h 2 55 11015 VTBR提升泵85m3/h 8 1.8 14.416 VTBR生物氧化塔Ф10×14m16 83 132817 VTBR消泡泵107m3/h 8 1.8 14.418 空气压缩机33 m3/min 3 15 4519 硝化液回流泵300m3/h 4 5 2020 沉淀池刮泥机φ18m 1 15 1521 管道混合器 1 0.422 混凝剂投加泵1m3/h 2 0.8 1.623 不锈钢搅拌机 2 2.4 4.824 砂滤池反洗泵 1 5 525 超滤装置 1 17626 反渗透装置 1 34027 多元电解装置5×3×3.5m 1 52.528 浓缩池刮泥机φ12m 1 12 1229 污泥泵30 m3 /h 4 10 4030 压滤机 1 24 2431 管道阀门11032 配电仪表13033 设备合计2478.7三设备安装费(4%)99.1四直接费合计3095.5五其他费用1 设计费合计×5% 1552 调试运行费合计×3% 933 施工管理费合计×5% 1554 税金合计×3.5% 108六总计3606.5。
焦化废水治理方案
3.提高治理工程的经济性、稳定性和可靠性。
治理原则:
1.综合治理与分类处理相结合,提高处理效率。
2.采用成熟先进的技术,确保处理效果。
3.注重节能降耗,减少运行成本。
4.保障过程安全,防止二次污染。
三、废水特性分析
焦化废水具有以下特性:
1. COD、BOD5浓度高,可生化性差。
2.提高焦化废水的资源化利用率,实现废水资源化。
3.降低治理成本,提高企业经济效益。
三、治理原则
1.综合治理:采用多种治理技术相结合,确保废水处理效果。
2.分质处理:针对焦化废水的不同成分,采取相应处理措施,提高处理效果。
3.节能减排:在治理过程安全可靠,不对周边环境和人员造成危害。
技术措施:设置污泥浓缩池、污泥稳定池、污泥脱水装置等设施。
五、运行管理
1.严格遵循国家和地方环保政策,确保废水处理设施正常运行。
2.建立健全运行管理制度,规范操作流程,提高运行效率。
3.定期对废水处理设施进行检查、维护,确保设施安全、稳定运行。
4.加强对操作人员的培训,提高操作技能,降低人为因素对处理效果的影响。
第2篇
焦化废水治理方案
一、引言
焦化行业作为我国重要的能源和材料工业,其生产过程中产生的废水含有大量难降解有机物、重金属等有害物质,对环境造成了严重污染。为了有效解决这一问题,制定一套详细、科学、合规的焦化废水治理方案至关重要。
二、治理目标与原则
治理目标:
1.满足国家及地方废水排放标准,减少对水环境的影响。
2.好氧处理采用SBR或A/O工艺,进一步降解有机物,实现脱氮除磷。
深度处理阶段:
1.采用高级氧化技术,如Fenton或催化臭氧氧化,去除难降解有机物。
某大型焦化厂污水处理方案设计
某大型焦化厂污水处理方案设计区域概述某大型焦化厂位于华南地区,为提高生产效率,年产煤焦炭120万吨。
该厂污水产生量较大,水质复杂,含有COD、BOD、SS等有机物质,需要进行有效处理,以避免对环境的影响。
方案设计废水预处理对于该焦化厂所产生的污水,首先需要进行预处理以去除废水中的杂质、沉淀、混凝等。
具体措施如下:1.有机物沉淀:利用沉淀池对污水进行初步处理,使其中的有机物沉淀并分离出来。
这一步骤可以有效去除大部分有机杂质,如COD、BOD等。
2.调节pH值:为了保证后续处理步骤的有效进行,需要对沉淀后的废水进行pH调节。
建议将废水pH值控制在6.5-7.5之间。
3.混凝:将废水进一步进行混凝,以去除其中的细小悬浮颗粒。
这一步可以通过加入一定浓度的混凝剂来完成。
污水生化处理处理完成预处理步骤后,废水进入生化处理阶段。
具体措施如下:1.好氧生化处理:在好氧条件下,利用微生物对废水中的有机物进行降解,以达到去除废水中COD、BOD等物质的目的。
废水通过好氧池进行往复流程,从而被更好地降解。
2.厌氧生化处理:在厌氧条件下,利用好氧池可以降解不了的物质,如中性沸石油、煤焦油类物质。
通过此步骤,废水中的污染物可以有效降低。
污泥处理在废水生化处理过程中,会产生一定的污泥。
针对这部分污泥,需要进行处理,以提取其中可利用的资源,同时将其安全地去处。
具体措施如下:1.浓缩:将污泥送入浓缩池,通过引入气体等手段将水分浓缩,以压缩体积。
2.稳定化:对于浓缩后的污泥,需要进行稳定化,使其更加安全。
可以通过在污泥中加入适量氧气,促进污泥中微生物的生长,达到稳定的目的。
3.资源化利用:污泥中含有一定的有机物,可以通过处理成生物肥料、填埋场覆盖等方式进行资源化利用。
针对某大型焦化厂污水处理方案,本文提出了废水预处理、污水生化处理和污泥处理三个环节,以达到对污水中有机物的有效去除。
通过对污水的处理,可以实现对环境的最大程度保护。
焦化废水治理方案
焦化废水治理方案1. 引言焦化废水是指由煤气、煤焦油和煤焦灰等产生的含有有机物和无机盐的废水。
它的排放对环境和人类健康造成严重的影响。
为了保护环境和改善生态,制定焦化废水治理方案至关重要。
本文将介绍一种针对焦化废水的综合治理方案。
2. 焦化废水的特点焦化废水具有以下特点: - 含有高浓度的有机物和无机盐,对环境有毒; - PH 值偏酸性,容易导致土壤酸化; - 流量大,难以处理; - 包含重金属等有害物质,对生态环境具有潜在威胁。
3. 焦化废水治理方案3.1. 废水预处理废水预处理是将焦化废水中的固体颗粒物、油脂和其他可分离的杂质去除的过程。
常见的预处理方法包括:物理沉淀、独立沉降池和机械过滤等。
预处理有助于提高后续处理的效果和废水的可处理性。
3.2. 生物处理生物处理是一种利用微生物降解和转化有机物的方法,常用的生物处理方法有好氧处理和厌氧处理。
好氧处理能够有效去除废水中的有机物和产生较少的污泥,但处理时间较长。
厌氧处理速度快,适用于处理高浓度有机污染的废水。
3.3. 化学处理化学处理是利用化学物质加入废水中进行吸附、沉淀和氧化等反应的过程。
常见的化学处理方法包括:絮凝、沉淀和氧化等。
化学处理能够有效去除废水中的重金属离子和有机物,提高废水的处理效果。
3.4. 深度处理深度处理是对经过生物处理和化学处理后的废水进行进一步处理,以进一步提高处理效果。
常见的深度处理方法有活性炭吸附、臭氧氧化和生物滤池等。
深度处理能够进一步去除废水中的有机物和微量污染物,提高废水的出水质量。
4. 治理效果评估在焦化废水治理方案实施后,需要对治理效果进行评估。
评估指标包括:COD、BOD、SS、PH等。
通过对指标的监测和分析,评估方案的可行性和治理效果。
5. 结论焦化废水治理是保护环境和改善生态的重要措施。
本文介绍了一种针对焦化废水的综合治理方案,包括预处理、生物处理、化学处理和深度处理等。
根据治理效果评估,该方案能够有效去除有机物和重金属,提高废水的出水质量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《化工工艺学》课程设计240万吨/年焦炭焦化厂生物脱酚工段设计专业:化学工程与工艺班级:化工12-3班姓名:陈涛学号:2012020860目录前言 (I)1 焦化废水概述 (2)1.1焦化废水概况 (2)1.1.1 焦化废水来源与组成 (2)1.1.2 焦化废水的特点及危害 (4)1.2国内外焦化废水处理技术 (5)1.2.1 物理化学法 (6)1.2.2 生化处理法 (7)1.2.3 化学处理法 (8)2 水质分析和处理工艺选择 (8)2.1.1来源组成 (8)2.1.2水质特征 (9)2.1.3 排放量 (10)2.2排放标准 (10)2.3.1焦化废水水质 (10)2.4处理工艺的选择 (10)2.4.1 处理工艺流程选择应考虑的因素 (10)2.4.2 工艺对比 (11)2.4.3 工艺选择 (14)2.4.4 A/O工艺原理 (14)2.5各段工艺去除率 (15)3 主体构筑物设计 (17)3.1格栅 (17)3.2 集水池 (19)3.3隔油池 (20)3.4调节池 (21)3.5事故池 (22)3.6缺氧池 (22)3.8二沉池 (25)3.9混合反应池 (27)3.10混凝沉淀池 (28)3.11污泥浓缩池 (29)3.12回流水井 (30)4 设备选型 (30)4.1格栅设计选型 (30)4.2风机选型 (30)4.4废水污泥泵选型 (31)4.5加药装置选型 (32)4.5.1 加药装置选型 (32)4.6污泥脱水机选型 (32)4.7搅拌机选型 (32)4.8刮泥机及撇油机选型 (33)结论 (33)参考文献 (34)前言水是地球的重要组成部分,也是生物机体不可缺少的组分,人类的生存和发展离不开水资源。
地球上约有97.3%的水是海水,它覆盖了地球表面的70%以上,但由于海水是含有大量矿物盐类的“咸水”,不宜被人类直接使用。
这样,人类生命和生产活动能直接利用且易于取得的淡水资源就十分有限,不足总水量的3%,且其中约3/4以冰川、冰帽等固态的形式存在于南北极地,人类很难使用。
与人类关系最密切、又较易开发利用的淡水储量约为4×106km3,仅占地球上总水量的0.3%。
因此,解决水废染、合理地利用水资源是世界各国经济可持续发展的当务之急。
焦化废水是一种高含氮、毒性强的有机工业废水之一。
如果直接排入水体其废染程度大,毒害性强[1]。
因此,对焦化厂废水的处理无论在环境还是资源方面显得尤为重要。
鉴于可持续发展和环境质量的要求,现决定对某煤焦化有限责任公司产生的焦化废水进行处理工艺设计。
废水产生量为300t/d,废水主要由含高浓度氮焦化废水和生活废水组成,且都含较高COD、SS和石油类物质。
本文根据该焦化废水浓度高,毒性大的水质特点,设计“A/O”工艺对其进行处理。
废水中的SS、石油类物质、COD等浓度大大降低,使得出水水质达到《废水综合排放标准(GB8978-1996)》中的一级排放要求。
本文对各处理单元构筑物进行了设计计算,绘制各处理单元构筑物图示,以及废水处理站的平面布置图和高程布置图,同时对该废水处理站进行了投资经济概算,验证废水不仅得到有效处理,且经济可行,符合可持续发展要求。
1 焦化废水概述1.1 焦化废水概况1.1.1 焦化废水来源与组成焦化厂是钢铁企业生产的重要组成部分,焦炭是钢铁冶炼的重要原材料,炼焦回收的化工产品供给许多行业的生产。
随着社会、经济的发展,焦化行业已发挥着越来越重要的作用。
目前,国内生产焦化产品的厂家达数百家。
焦化厂生产的主要任务是进行煤的高温干馏—炼焦,以及回收处理在炼焦过程中所产生的副产品。
整个生产过程分为选煤、炼焦及化工三部分。
焦化废水则产生于炼焦、制气过程及化工产品回收过程,水质复杂,产生量较大。
其主要来源有[2]:(1) 剩余氨水。
由炼焦的水分及炼焦过程中产生的化合物组成。
通常情况下,其数量占全部废水的一半以上,是氨氮废染物的主要来源;(2)化工产品工艺排水。
包括化工产品回收和精制过程中各有关工段的分离水及各种贮槽定期排水和事故排水;(3) 粗苯终冷水及煤气脱硫和煤气终冷循环的排废水。
其中含有一定数量的酚、氰、苯、硫化物及吡啶碱等。
(4)焦油车间废水:焦油车间根据有机物的沸点不同,用蒸馏法初步分离各种产品,再经酸碱洗涤分离出粗苯、吡啶等产品。
废水主要是间断地排出高浓度含油、含酸的废水。
这部分废水一般经溶剂脱酚通过蒸氨塔后才能进入生物处理装置;(5)古马隆废水:从酚、油、重苯中提取古马隆,要经过蒸馏、碱洗、酸洗、中和及水洗,排除含酚、吡啶、油等废染物的废水。
焦化废水产生的一般工艺流程如图1.1所示[3]:图1.1 焦化生产工艺流程焦化废水因受原煤性质、焦化产品回收工序及方法等多种因素的影响,含有多种废染物。
焦化废水是一种含高氨氮、高有机物、成分复杂的、难处理的有机工业废水。
焦化废水中的许多高毒性难降解有机物,对生态环境危害极大,如占总有机物的一半以上酚类化合物,可使蛋白质凝固,对人类、水产及农作物都有极大危害[4]。
经常接触煤焦油、沥青和某些石油化工溶剂的人,皮肤癌、唇癌以及肺癌的患病率相当高,因为吲哚、萘、吡啶碱、啡蒽、苯并芘等多种多环和杂环芳香族化合物(PAHs)中有不少是致癌和致突变物质。
氨氮是水体富营养化的主要废染物,近年来,国家不仅对COD的排放做了严格的规定,对氨氮的危害也越来越重视,并对氨氮的排放也做了严格的规定。
1.1.2 焦化废水的特点及危害1 、水质特点(1)成分复杂焦化废水组成十分复杂,浓度高、毒性大。
核磁共振—色谱分析显示:焦化废水中含有数十种无机和上百种有机化合物[5]。
无机废染物主要是大量的氨盐、硫氰化物、硫化物及氰化物等。
有机废染物除酚类化合物以外,还包括脂肪族化合物、杂环类化合物和多环芳香族化合物等。
其中酚类化合物为主,占总有机废染物的80%左右,主要成分有苯酚、邻甲酚、对甲酚、邻对甲酚、二甲酚、邻苯二甲酚及其同系物等;杂环类化合物包括二氮杂苯、氮杂联苯、氮杂苊、氮杂蒽、吡啶、喹啉、咔唑及吲哚等;多环类化合物包括萘、蒽、菲及α-苯并芘等[6]。
(2)水质变化幅度大焦化废水中氨氮变化系数可达2.7,COD变化系数可达2.3,酚和氰化物浓度变化系数达3.3和3.4。
(3)含有大量的难降解物,可生化性较差焦化废水中有机物(以COD计)含量高,且由于废水中所含有机物多为芳香族化合物和稠环化合物及吲哚、吡啶、喹啉等杂环化合物,其BOD5/COD值低,一般为0.3~0.4,有机物稳定,微生物难以利用,废水的可生化性差。
(4)废水毒性大其中含有的氰化物、芳烃、稠环及杂环化合物都是有毒物质,有的甚至是致癌物质,毒性极强。
2、危害(1)对人的危害焦化废水中含有的酚类化合物是原型质毒物,可以通过皮肤、黏膜的接触和经口服而侵入人体体内。
高浓度的酚可以引起剧烈腹痛、呕吐和腹泻、血便等症状,重者甚至死亡。
低浓度的酚可引起积累性中毒,有头痛、头晕等不良反应。
废水中的氰化物毒性很大。
当pH值在8.5以下时,氰化物的安全浓度为5mg/L。
人食用的平均致死量氰氢酸为30~60mg/L,氰化钠为0.1g,氰化钾为0.12g。
另外废水中含有大量的氨氮,可能转化为NO2-或NO3-。
人体若饮用了NH4+-N >10mg/L或NO3--N>50mg/L的水,可使人体内正常的血红蛋白氧化成高铁血红蛋白,失去输氧能力,出现缺氧症状。
若亚硝酸盐长时间作用于人体,可引起细胞癌变。
(2)对水体和水生生物的危害大量的有机废染物进入水体,会消耗水体当中大量的溶解氧,水体发臭,水质恶化。
同时由于有毒物质的进入使得水中水生生物的生存受到影响,鱼类和贝类等的大量减产与死亡,并能通过食物链传递给人类造成食物中毒等。
此外,含氮化合物还能导致水体的富营养化,尤其对湖泊等封闭水域的危害更大。
(3)对农业的危害采用未经处理的焦化废水直接灌溉农田,将使农作物减产和枯死,特别是在播种期和幼苗发育期,幼苗因抵抗力弱,含酚的废水使其腐烂;焦化废水中的油类物质能堵塞土壤孔隙,含盐量高而使土壤盐碱化;农业灌溉用水中TN含量如超过1mg/L,作物吸收过剩的氮能产生贪青倒伏现象[7]。
1.2 国内外焦化废水处理技术目前,国内80%的焦化厂普遍采用的是以传统生物脱氮处理为核心的工艺流程。
分为预处理、生化处理以及深度处理。
预处理主要采用物理化学方法,如除油、蒸氨、萃取脱酚等;生化处理工艺主要为A/O、A2/O等工艺;深度处理主要工艺有活性炭吸附法、活性炭-生物膜法及氧化塘法。
在欧洲,焦化废水处理普遍的工艺为先去除悬浮物和油类废染物质,然后利用蒸氨法去除氨氮,再采用生物氧化法去除酚硫氰化物和硫代硫酸盐。
在某些情况下还对废水做排放前的最后深度处理。
在美国,炼焦厂的废水处理工艺为:脱焦油—蒸氨工艺—活性污泥法及污泥脱水系统。
综合看起来,国外的焦化废水的治理方法与我国基本一致[8,9]。
1.2.1 物理化学法1、吸附法吸附法是利用多孔性吸附剂吸附废水中的一种或几种溶质,使废水得到净化。
活性炭是最常用的一种吸附剂,活性炭吸附法适用于废水的深度处理。
刘俊峰等采用高温炉渣过滤,再用南开牌H2103大孔树脂吸附处理含酚520mg/L、COD3200mg/L 的焦化废水,处理后出水达到国家排放标准[10]。
黄念东等研究了细粒焦渣对焦化废水的净化作用,温度25℃的条件下,酚的去除率为98%[11]。
2、混凝和絮凝沉淀法混凝法是向废水中加入混凝剂并使之水解产生水合配离子及氢氧化物胶体,中和废水中某些物质表面所带的电荷,使这些带电物质发生凝集,是用来处理废水中自然沉淀法难以沉淀去除的细小悬浮物及胶体微粒,以降低废水的浊度和色度,但对可溶性有机物无效,常用于焦化废水的深度处理。
该法处理费用低,既可以间歇使用也可以连续使用。
上海焦化总厂选用厌氧- 好氧生物脱氮结合聚铁絮凝机械加速澄清法对焦化废水进行综合治理,使出水中COD<158mg/L,NH3-N<15mg/L[12]。
近年来,新型复合混凝剂在焦化废水处理中的应用得到广泛的研究。
3、Fenton试剂法Fenton[13]试剂是由H2O2和Fe2+混合得到的一种强氧化剂,由于其能产生氧化能力很强的·OH自由基,在处理难生物降解或一般化学氧化难以奏效的有机废水时,具有反应迅速,温度和压力等反应条件缓和且无二次废染等优点。
因此,近30年来越来越受到国内外环保工作者的广泛重视。
1.2.2 生化处理法生化处理法是一种利用微生物氧化分解废水中有机物的方法,常作为焦化废水处理系统中的二级处理。
1、A/O与A2/O法目前国内主要采用A/O与A2/O工艺及其变异型脱氮工艺进行焦化废水的脱氮处理,脱氮效果较好。