河北大学 河大 2006年高等数学 考研真题及答案解析

合集下载

考研数学高数部分试卷与解答2006

考研数学高数部分试卷与解答2006

《考研数学试卷》2006高数部份一、填空题 [2006.一.1.4]()ln 1lim1cos x x x x→+=-2[2006.三.1.4][2006.四.1.4]()11lim nn n n -→∞+⎛⎫=⎪⎝⎭1[2006.二.1.4]曲线4sin 52cos x x y x x +=-的水平渐近线方程为15y =[2006.二.5.4]设函数()y y x =由方程1y y xe =-确定,则x dydx==e -[2006.三.2.4][2006.四.2.4]设函数()f x 在2x =的某邻域内可导,且()()(),21f x f x e f '==,则()2f '''=32e[2006.二.2.4]函数()2301sin ,0,0x t dt x f x x a x ⎧≠⎪=⎨⎪=⎩⎰在0x =处连续,则a =13[2006.二.3.4]广义积分()221xdxx +∞=+⎰12[2006.一.4.4]点()2,1,0到平面3450x y z ++=的距离d[2006.三.3.4][2006.四.3.4]设函数()f u 可微,且()102f '=,则()224z f x y =-在点()1,2处的全微分()1,2dz =42dx dy - [2006.一.3.4]设∑是锥面()01z z =≤≤的下侧,则()231xdydx ydzdx z dxdy ∑++-=⎰⎰2π[2006.一.2.4][2006.二.4.4]微分方程()1y x y x-'=的通解是xy cxe -= 二、单项选择题[2006.二.8.4]设()f x 是奇函数,除0x =外处处连续,0x =是其第一类间断点,则()0xf t dt ⎰是(B )A. 连续的奇函数B. 连续的偶函数C. 在0x =间断的奇函数D. 在0x =间断的偶函数 [2006.三.8.4][2006.四.8.4]设函数()f x 在0x =处连续,且()22lim1h f h h→=,则(C )A.()00f =且()0f -'存在B. ()01f =且()0f -'存在C. ()00f =且()0f +'存在D. ()01f =且()0f +'存在 [2006.二.9.4]设函数()g x 可微,()()()()1,11,12g x h x eh g +''===,则()1g =(C )A.ln 31-B. ln 31--C. ln 21--D. ln 21-[2006.一.7.4][2006.二.7.4][2006.三.7.4][2006.四.7.4]设函数()y f x =具有二阶导数,且()()0,0,f x f x x '''>>∆为自变量x 在点0x 处的增量,y ∆与dy 分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则(A ) A. 0dy y <<∆ B. 0y dy <∆< C. 0y dy ∆<< D. 0dy y <∆<[2006.四.9.4]设函数()f x 与()g x 在[]0,1上连续,且()()f x g x ≤,则对任何()0,1c ∈(D ) A 、()()1122c c f t dt g t dt ≥⎰⎰ B 、()()1122c cf t dtg t dt ≤⎰⎰C 、()()11ccf t dtg t dt ≥⎰⎰ D 、()()11ccf t dtg t dt ≤⎰⎰[2006.一.10.4][2006.二.12.4][2006.三.11.4][2006.四.11.4]设(),f x y 与(),x y ϕ均为可微函数,且(),0y x y ϕ'≠,已知()00,x y 是(),f x y 在约束条件(),0x y ϕ=下的一个极值点,则下列选项正确的是(D )A 、若()00,0x f x y '=,则()00,0y f x y '=B 、若()00,0x f x y '=,则()00,0y f x y '≠C 、若()00,0x f x y '≠,则()00,0y f x y '=D 、若()00,0x f x y '≠,则()00,0y f x y '≠[2006.一.8.4][2006.二.11.4]设(),f x y 为连续函数,则()14cos ,sin d f r r rdr πθθθ=⎰⎰(C )A()0,xf x y dy ⎰⎰B()0,f x y dy ⎰⎰C()0,yf x y dx ⎰⎰D()0,dy f x y dx ⎰⎰[2006.一.9.4][2006.三.9.4]若级数1nn a∞=∑收敛,则级数(D )A.1n n a ∞=∑收敛 B.()11nn n a ∞=-∑收敛C.11n n n a a∞+=∑收敛 D.112n n n a a ∞+=+∑收敛 [2006.三.10.4][2006.四.10.4]设非齐次线性微分方程()()y p x y q x '+=有两个不同的解()()12,,y x y x c ,为任意常数,则该方程的通解是(B )A.()()12c y x y x -⎡⎤⎣⎦B. ()()()112y x c y x y x +-⎡⎤⎣⎦C. ()()12c y x y x +⎡⎤⎣⎦D. ()()()112y x c y x y x ++⎡⎤⎣⎦[2006.二.10.4]函数212x x x y c e c e xe -=++满足的一个微分方程是(D ) A. 23xy y y xe '''--= B. 23xy y y e '''--= C. 23xy y y xe '''+-= D. 23xy y y e '''+-=三、 解答题 [2006.二.15.10][2006.四.19.10]试确定常熟,,A B C 的值,使得()()2311x e Bx Cx Ax o x ++=++,其中()3o x 是当0x →时比3x 高阶的无穷小解法一 因为()23311126xe x x x o x =++++ 将其代入题设等式,整理得()()233111111262B x B C x B C x Ax o x ⎛⎫⎛⎫++++++++=++ ⎪ ⎪⎝⎭⎝⎭故有111210,,233611062B A BC A B C B C ⎧⎪+=⎪⎪++=⇒==-=⎨⎪⎪++=⎪⎩解法二 根据题设和洛必达法则,由于()23110limx x e Bx Cx Axx→++--=()2212lim3x x e B Bx Cx Cx Ax→++++-=()201224lim6x x e B C Bx Cx Cx x→+++++=201224lim 6x B C Bx Cx Cx x→+++++=042lim 6x B C Cx →++=,余同一 [2006.一.16.4[2006.二.18.12] 设数列{}n x 满足()110,sin 1,2,n n x x x n π+<<==(1)证明lim n n x →∞存在,并求该极限(2)计算211lim n x n n n x x +→∞⎛⎫ ⎪⎝⎭解 (1)用数学归纳法证明数列{}n x 单调下降且有下界。

【考研数学】2006年数学一真题、标准答案及解析

【考研数学】2006年数学一真题、标准答案及解析

2006年全国硕士研究生入学考试数学一真题一、填空题(1)0ln(1)lim1cos x x x x→+=-.(2)微分方程(1)y x y x-'=的通解是 .(3)设∑是锥面z =(01z ≤≤)的下侧,则23(1)xdydz ydzdx z dxdy ∑++-=⎰⎰.(4)点(2,1,0)到平面3450x y z ++=的距离z = .(5)设矩阵2112A ⎛⎫= ⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2B A BE =+,则B = .(6)设随机变量X 与Y 相互独立,且均服从区间[0, 3]上的均匀分布,则{}max{,}1P X Y ≤= . 二、选择题(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在0x 处的增量,y ∆与dy分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则(A )0.dx y <<∆ (B )0.y dy <∆<(C )0.y dy ∆<<(D )0.dy y <∆<【 】(8)设(,)f x y 为连续函数,则14(cos ,sin )d f r r rdr πθθθ⎰⎰等于(A)(,).xf x y dy ⎰⎰(B)(,).f x y dy ⎰⎰(C)(,).yf x y dx ⎰⎰(C)(,).f x y dx ⎰⎰【 】(9)若级数1nn a∞=∑收敛,则级数(A )1nn a∞=∑收敛. (B )1(1)nn n a ∞=-∑收敛.(C )11n n n a a ∞+=∑收敛.(D )112n n n a a ∞+=+∑收敛. 【 】(10)设(,)f x y 与(,)x y ϕ均为可微函数,且1(,)0y x y ϕ≠. 已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是(A )若00(,)0x f x y '=,则00(,)0y f x y '=. (B )若00(,)0x f x y '=,则00(,)0y f x y '≠. (C )若00(,)0x f x y '≠,则00(,)0y f x y '=. (D )若00(,)0x f x y '≠,则00(,)0y f x y '≠.【 】(11)设12,,,,a a a 均为n 维列向量,A 是m n ⨯矩阵,下列选项正确的是(A )若12,,,,a a a 线性相关,则12,,,,Aa Aa Aa 线性相关. (B )若12,,,,a a a 线性相关,则12,,,,Aa Aa Aa 线性无关.(C )若12,,,,a a a 线性无关,则12,,,,Aa Aa Aa 线性相关.(D )若12,,,,a a a 线性无关,则12,,,,Aa Aa Aa 线性无关. 【 】(12)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的-1倍加到第2列得C ,记110010001P ⎛⎫⎪= ⎪ ⎪⎝⎭,则(A )1.C P AP -= (B )1.C PAP -=(C ).T C P AP =(D ).TC PAP = 【 】(13)设,A B 为随机事件,且()0,(|)1P B P A B >=,则必有 (A )()().P A B P A ⋃> (B )()().P A B P B ⋃>(C )()().P A B P A ⋃=(D )()().P A B P B ⋃= 【 】(14)设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且12{||1}{||1},P X P Y μμ-<>-<(A )1 2.σσ<(B )1 2.σσ>(C )1 2.μμ<(D )1 2.μμ> 【 】三 解答题 15 设区域D=(){}22,1,0x y xy x +≤≥,计算二重积分2211DxyI dxdy x y +=++⎰⎰. 16 设数列{}n x 满足()110,sin 1,2,...n x x x n ππ+<<== . 求: (Ⅰ)证明lim n x x →∞存在,并求之 .(Ⅱ)计算211lim n x n x n x x +→∞⎛⎫ ⎪⎝⎭. 17 将函数()22xf x x x =+-展开成x 的幂级数.18 设函数()()0,,f u +∞在内具有二阶导数且z f=满足等式22220z zx y∂∂+=∂∂.(Ⅰ)验证()()0f u f u u'''+=. (Ⅱ)若()()()10,11,f f f u '==求函数的表达式. 19 设在上半平面D=(){},0x y y >内,数(),f x y 是有连续偏导数,且对任意的t>0都有()()2,,f tx ty t f x y =.证明: 对L 内的任意分段光滑的有向简单闭曲线L,都有0),(),(=-⎰dy y x xf dx y x yf L.20 已知非齐次线性方程组12341234123414351331x x x x x x x x ax x x bx +++=-⎧⎪++-=-⎨⎪++-=⎩有个线性无关的解 Ⅰ证明方程组系数矩阵A 的秩()2r A = Ⅱ求,a b 的值及方程组的通解21 设3阶实对称矩阵A 的各行元素之和均为3,向量()()121,2,1,0,1,1TTαα=--=-是线性方程组A x =0的两个解, (Ⅰ)求A 的特征值与特征向量 (Ⅱ)求正交矩阵Q 和对角矩阵A,使得TQ AQ A =.22 随机变量x 的概率密度为()()21,1021,02,,40,x x f x x y x F x y ⎧-<<⎪⎪⎪=≤<=⎨⎪⎪⎪⎩令其他为二维随机变量(X,Y)的分布函数.(Ⅰ)求Y 的概率密度()Y f y (Ⅱ)1,42F ⎛⎫-⎪⎝⎭23 设总体X 的概率密度为()()01,0112010x F X x θθθθ<<⎧⎪=-≤<<<⎨⎪⎩其中是未知参数其它,12n ,...,X X X 为来自总体X 的简单随机样本,记N 为样本值12,...,1n x x x 中小于的个数,求θ的最大似然估计.2006年全国硕士研究生入学考试数学一真题解析一、填空题(1)0ln(1)lim1cos x x x x→+-= 2 .221cos 1,)1ln(x x x x -+ (0x →当时)(2)微分方程(1)y x y x-'=的通解是(0)x y cxe x -=≠,这是变量可分离方程.(3)设∑是锥面1)Z ≤≤的下侧,则23(1)2xdydz ydzdx z dxdy π∑++-=⎰⎰补一个曲面221:1x y z ⎧+≤∑⎨=⎩1上侧,2,3(1)P x Q y R z ===-1236P Q Rx y z∂∂∂++=++=∂∂∂ ∴16dxdydz ∑∑Ω+=⎰⎰⎰⎰⎰⎰⎰(Ω为锥面∑和平面1∑所围区域)6V =(V 为上述圆锥体体积)623ππ=⨯=而123(1)0dydz ydzdx z dxdy ∑⨯++-=⎰⎰(∵在1∑上:1,0z dz ==)(4),1,0,450x y z d ++==点(2)到平面3的距离d ====(5)设A = 2 1 ,2阶矩阵B 满足BA =B +2E ,则|B |= .-1 2解:由BA =B +2E 化得B (A -E )=2E ,两边取行列式,得|B ||A -E |=|2E |=4,计算出|A -E |=2,因此|B |=2. (6)91 二、选择题(7)设函数()y f x =具有二阶导数,且()0f x '>,()0f x ''>,x ∆为自变量x 在0x 处的增量,y ∆与dy 分别为()f x 在点0x 处对应的增量与微分.若0>∆x ,则[A]0)(0)(0)(0)(<∆<<<∆<∆<∆<<y dy D dy y C dy y B y dy A()0,()f x f x '>因为则严格单调增加 ()0,()f x f x ''>则是凹的 y dy x ∆<<>∆0,0故又1(8)(,)(cos ,sin )[C](A)(,)(B)(,)xf x y d f r r rdr f x y dyf x y dyπθθθ⎰⎰⎰⎰⎰⎰40设为连续函数,则等于(C)(,)(D)(,)yf x y dxf x y dx ⎰⎰⎰111111111(9)[D]()()(1)()()()2n n n n n n n n n n n n n n n a A a B a a a C a a D a∞=∞∞==∞∞∞+++===-+∑∑∑∑∑∑若级数收敛,则级数收敛收敛收敛收敛也收敛00000000000000000(10)(,)(,)(,)0,(,)(,)0y x y x y x y x y f x y x y x y x y f x y x y f x y f x y f x y f x y f x y f x y f x y f x ϕϕϕ'≠=''''≠''''≠≠设与均为可微函数,且已知(,)是在约束条件下的一个极值点,下列选项正确的是[D](A)若(,)=0,则(,)=0(B)若(,)=0,则(,)0(C)若(,)0,则(,)=0(D)若(,)0,则(,00000000000000000(,)(,)(,)(,)0(1)(,)(,)0(2)(,)0(,)(,)(,)(,)0,(,)(,)(,)(,)0x x x y y y y y xy x y y x y f x y x y f x y x y f x y x y x y f x y f x y x y x y f x y x y x y f x y λλϕλϕλϕϕϕϕλϕϕ≠+'''⎧+=⎪'''+=⎨⎪'=⎩'''''≠∴=-='''≠)0构造格朗日乘子法函数F=F =F =F =今代入(1)得今00,(,)0[]y f x y D '≠则故选(11)设α1,α2,…,αs 都是n 维向量,A 是m ⨯n 矩阵,则( )成立.(A) 若α1,α2,…,αs 线性相关,则A α1,A α2,…,A αs 线性相关. (B) 若α1,α2,…,αs 线性相关,则A α1,A α2,…,A αs 线性无关. (C) 若α1,α2,…,αs 线性无关,则A α1,A α2,…,A αs 线性相关. (D) 若α1,α2,…,αs 线性无关,则A α1,A α2,…,A αs 线性无关. 解: (A)本题考的是线性相关性的判断问题,可以用定义解.若α1,α2,…,αs 线性相关,则存在不全为0的数c 1,c 2,…,c s 使得c 1α1+c 2α2+…+c s αs =0,用A 左乘等式两边,得c 1A α1+c 2A α2+…+c s A αs =0,于是A α1,A α2,…,A αs 线性相关.如果用秩来解,则更加简单明了.只要熟悉两个基本性质,它们是: 1. α1,α2,…,αs 线性无关⇔ r(α1,α2,…,αs )=s. 2. r(AB )≤ r(B ).矩阵(A α1,A α2,…,A αs )=A ( α1, α2,…,αs ),因此r(A α1,A α2,…,A αs )≤ r(α1, α2,…,αs ).由此马上可判断答案应该为(A).(12)设A 是3阶矩阵,将A 的第2列加到第1列上得B ,将B 的第1列的-1倍加到第2列上得C .记 1 1 0P = 0 1 0 ,则 0 0 1(A) C =P -1AP . (B) C =PAP -1.(C) C =P T AP . (D) C =PAP T.解: (B)用初等矩阵在乘法中的作用得出B =PA ,1 -1 0C =B 0 1 0 =BP -1= PAP -1. 0 0 1(13)根据乘法公式与加法公式有: P(AB)=P(B)P(A/B)=P(B)P(A ⋃B)=P(A)+P(B)-P(AB)=P(A) 应选C (14)依题:).1,0(~),10(~2211N Y N x σμσμ--,,1}1{1111⎭⎬⎫<⎩⎨⎧-=<-σσμμX P X P .1}1{2222⎭⎬⎫⎩⎨⎧<-=<-σσμμY P Y P 因 },1{}1{21<-><-μμY P X P即 .11222111⎭⎬⎫⎩⎨⎧<->⎭⎬⎫⎩⎨⎧<-σσμσσμY P X p 所以.,112121σσσσ<>应选A三、解答题{}22222212120222021(15)(,)1,0,1:011ln(1)ln 21122DD DxyD x y x y x I dxdyx y xydxdy x y r I dxdy d dr r x yr ππππθ-+=+≤≥=++=++===+=+++⎰⎰⎰⎰⎰⎰⎰⎰设区域计算二重积分解{}{}{}211112121(16)0,sin (1,2,)(1)lim (2)lim():(1)sin ,01,2sin ,0,lim ,n n n n n n x n n nn n n n n n n n x x x x n x x x x x x n x x x x x x x A π+→∞+→∞+→∞<<===∴<≤≥=≤≥∴=设数列满足求证明存在,并求之计算解因此当时单调减少又有下界,根据准则1,存在递推公式两边取极限得sin ,0A A A =∴=21sin (2)lim(),n x n n n x x ∞→∞原式=为"1"型离散型不能直接用洛必达法则22011sin lim ln()0sin lim()t ttt tt t e t→→=先考虑2323203311(cos sin )1110()0()lim26cos sin sin 1262limlim2262t t t t t t t t t t t t t t tt t t ttteeeee →→→⎡⎤⎡⎤--+--+⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦-=====2(17)()2xf x x x x =+-将函数展开成的幂极数()(2)(1)21x A Bf x x x x x ==+-+-+解:2(1)(2)2,32,3A xB x x x A A ++-====令 11,31,3x B B =-=-=-令)](1[131)21(131)1(131)2(132)(x x x x x f --⨯--⨯=+⨯--⨯=10001111()(1)(1),132332n n nn n n n n n x x x x ∞∞∞+===⎡⎤=--=+-<⎢⎥⎣⎦∑∑∑(18)设函数()(0,)f u +∞在内具有二阶导数,且Z f=满足等式22220z z x y ∂∂+=∂∂ (I )验证()()0f u f u u'''+= (II )若(1)0,(1)1f f '== 求函数()f u 的表达式 证:(I)zzf f xy∂∂''==∂∂()22222zxf f xx y xy∂'''=+∂++()()22322222x y f f x y x y '''=+++()()2223222222zy x f f yx y x y ∂'''=+∂++同理22220()()0z z f x y f u f u u∂∂''+=+=∂∂'''∴+=代入得成立(II )令(),;dp p dp du f u p c du u p u'==-=-+⎰⎰则ln ln ,()cp u c f u p u'=-+∴==22(1)1,1,()ln ||,(1)0,0()ln ||f c f u u c f c f u u '===+===由得于是(19)设在上半平面{}(,)|0D x y y =>内,函数(,)f x y 具有连续偏导数,且对任意0t >都有2(,)(,)f tx ty t f x y-= 证明:对D 内任意分段光滑的有向简单闭曲线L ,都有0),(),(=-⎰dy y x xf dx y x yf L.证:把2(,)(,)f tx ty t f x y t -=两边对求导 得:(,)(,)2(,)x y xf tx ty yf tx ty tf x y ''+=- 令 1t =,则(,)(,)2(,)x y xf x y yf x y f x y ''+=- 再令 (,),(,)P yf x y Q xf x y ==-所给曲线积分等于0的充分必要条件为Q Px y∂∂=∂∂ 今(,)(,)x Qf x y x f xy x∂'=--∂(,)(,)y Pf x y y f xy y∂'=+∂ 要求Q Px y∂∂=∂∂成立,只要(,)(,)2(,)x y xf x y yf x y f x y ''+=- 我们已经证明,Q Px y∂∂∴=∂∂,于是结论成立. (20)已知非齐次线性方程组 x 1+x 2+x 3+x 4=-1, 4x 1+3x 2+5x 3-x 4=-1,a x 1+x 2+3x 3+bx 4=1 有3个线性无关的解.① 证明此方程组的系数矩阵A 的秩为2. ② 求a,b 的值和方程组的通解.解:① 设α1,α2,α3是方程组的3个线性无关的解,则α2-α1,α3-α1是AX =0的两个线性无关的解.于是AX =0的基础解系中解的个数不少于2,即4-r(A )≥2,从而r(A )≤2.又因为A 的行向量是两两线性无关的,所以r(A )≥2.两个不等式说明r(A )=2.② 对方程组的增广矩阵作初等行变换: 1 1 1 1 -1 1 1 1 1 -1 (A |β)= 4 3 5 -1 -1 → 0 –1 1 –5 3 ,a 1 3b 1 0 0 4-2a 4a+b-5 4-2a由r(A )=2,得出a=2,b=-3.代入后继续作初等行变换:1 02 -4 2→ 0 1 -1 5 -3 .0 0 0 0 0得同解方程组x 1=2-2x 3+4x 4,x 2=-3+x 3-5x 4,求出一个特解(2,-3,0,0)T 和AX =0的基础解系(-2,1,1,0)T ,(4,-5,0,1) T .得到方程组的通解:(2,-3,0,0)T +c 1(-2,1,1,0)T +c 2(4,-5,0,1)T , c 1,c 2任意.(21) 设3阶实对称矩阵A 的各行元素之和都为3,向量α1=(-1,2,-1)T , α2=(0,-1,1)T 都是齐次线性方程组AX =0的解.① 求A 的特征值和特征向量.② 求作正交矩阵Q 和对角矩阵Λ,使得Q T AQ =Λ.解:① 条件说明A (1,1,1)T =(3,3,3)T ,即 α0=(1,1,1)T 是A 的特征向量,特征值为3.又α1,α2都是AX =0的解说明它们也都是A 的特征向量,特征值为0.由于α1,α2线性无关, 特征值0的重数大于1.于是A 的特征值为3,0,0.属于3的特征向量:c α0, c ≠0.属于0的特征向量:c 1α1+c 2α2, c 1,c 2不都为0.② 将α0单位化,得η0=(33,33,33)T . 对α1,α2作施密特正交化,的η1=(0,-22,22)T , η2=(-36,66,66)T . 作Q =(η0,η1,η2),则Q 是正交矩阵,并且3 0 0Q T AQ =Q -1AQ = 0 0 0 .0 0 0 (22)随机变量X 的概率密度为⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<<-=其他,020,4101,21)(x x x f X ,令2X Y =,),(y x F 为二维随机变量)(Y X ,的分布函数.(Ⅰ)求Y 的概率密度;(Ⅱ))4,21(-F 解: (Ⅰ)⎪⎪⎩⎪⎪⎨⎧≤<≤<≤<=≤=≤=yy y y y X P y Y P y F Y 4,141,)2(10,)1(0,0)()()(2式式⎰⎰=+=≤≤-=-y yy dx dx y X y P 00434121)()1(式; ⎰⎰+=+=≤≤-=-y y dx dx y X y P 00141214121)()2(式. 所以:⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<<==其他,041,8110,83)()('y yy y y F y f Y Y 这个解法是从分布函数的最基本的概率定义入手,对y 进行适当的讨论即可,在新东方的辅导班里我也经常讲到,是基本题型.(Ⅱ))4,21(-F )212()22,21()4,21()4,21(2-≤≤-=≤≤--≤=≤-≤=≤-≤=X P X X P X X P Y X P 4121211==⎰--dx . (23)设总体X 的概率密度为⎪⎩⎪⎨⎧≤≤-<<=其他,021,110,),(x x x f θθθ,其中θ是未知参数(0<θ<1).n X X X ,,21为来自总体的简单随机样本,记N 为样本值n x x x ,,21中小于1的个数.求θ的最大似然估计.解:对样本n x x x ,,21按照<1或者≥1进行分类:pN p p x x x ,,21<1,pn pN pN x x x ,,21++≥1.似然函数⎩⎨⎧≥<-=++-其他,,01,,,1,,)1()(2121pn pN pN pN p p N n N x x x x x x L θθθ, 在pN p p x x x ,,21<1,pn pN pN x x x ,,21++≥1时, )1ln()(ln )(ln θθθ--+=N n N L , 01)(ln =---=θθθθNn Nd L d ,所以n N=最大θ.。

2006年考研数学一真题与答案

2006年考研数学一真题与答案

2006年考研数学一真题一、填空题(1~6小题,每小题4分,共24分。

)(1)。

【答案】2。

【解析】等价无穷小代换:当时,所以综上所述,本题正确答案是2。

【考点】高等数学—函数、极限、连续—无穷小量的性质及无穷小量的比较(2)微分方程的通解为__________。

【答案】,为任意常数。

【解析】原式等价于(两边积分)即,为任意常数综上所述,本题正确答案是。

【考点】高等数学—常微分方程—一阶线性微分方程(3)设是锥面的下侧,则。

【答案】。

【解析】设,取上侧,则而所以综上所述,本题正确答案是。

【考点】高等数学—多元函数积分学—两类曲面积分的概念、性质及计算(4)点(2,1,0)到平面的距离。

【答案】。

【解析】点到平面的距离公式:其中为点的坐标,为平面方程所以综上所述,本题正确答案是。

【考点】高等数学—向量代数和空间解析几何—点到平面和点到直线的距离(5)设矩阵,为二阶单位矩阵,矩阵满足,则___________。

【答案】2。

【解析】因为,所以。

综上所述,本题正确答案是。

【考点】线性代数—行列式—行列式的概念和基本性质线性代数—矩阵—矩阵的线性运算(6)设随机变量与相互独立,且均服从区间上的均匀分布,则___________。

【答案】。

【解析】本题考查均匀分布,两个随机变量的独立性和他们的简单函数的分布。

事件又根据相互独立,均服从均匀分布,可以直接写出综上所述,本题正确答案是。

【考点】概率论—多维随机变量的分布—二维随机变量的分布二、选择题(7~14小题,每小题4分,共32分,下列每题给出的四个选项中,只有一个选项是符合题目要求的。

)(7)设函数具有二阶导数,且,为自变量在点处的增量,与分别为在点处对应的增量与微分,若,则(A) (B)(C) (D)【答案】A。

【解析】【方法一】由函数单调上升且凹,根据和的几何意义,得如下所示的图由图可得【方法二】由凹曲线的性质,得,于是,即综上所述,本题正确答案是A。

2006年考研数学一真题及答案

2006年考研数学一真题及答案

2006年全国硕士研究生入学考试数学(一)一、填空题 (1)0ln(1)lim1cos x x x x→+=-.(2)微分方程(1)y x y x-'=的通解是 .(3)设∑是锥面z =01z ≤≤)的下侧,则23(1)xdydz ydzdx z dxdy ∑++-=⎰⎰ .(4)点(2,1,0)到平面3450x y z ++=的距离z = .(5)设矩阵2112A ⎛⎫=⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2B A B E =+,则B = .(6)设随机变量X 与Y 相互独立,且均服从区间[0, 3]上的均匀分布,则{}m a x {,}1P X Y ≤=.二、选择题(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在0x 处的增量,y ∆与dy 分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则(A )0.dx y <<∆ (B )0.y dy <∆<(C )0.y dy ∆<<(D )0.dy y <∆<【 】(8)设(,)f x y 为连续函数,则1400(cos ,sin )d f r r rdr πθθθ⎰⎰等于(A )0(,).xf x y dy ⎰⎰(B )00(,).f x y dy ⎰⎰(C )0(,).yf x y dx ⎰⎰(C )00(,).f x y dx ⎰⎰【 】(9)若级数1n n a ∞=∑收敛,则级数(A )1n n a ∞=∑收敛.(B )1(1)n n n a ∞=-∑收敛.(C )11n n n a a ∞+=∑收敛.(D )112n n n a a ∞+=+∑收敛. 【 】(10)设(,)f x y 与(,)x y ϕ均为可微函数,且1(,)0y x y ϕ≠. 已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是 (A )若00(,)0x f x y '=,则00(,)0y f x y '=. (B )若00(,)0x f x y '=,则00(,)0y f x y '≠. (C )若00(,)0x f x y '≠,则00(,)0y f x y '=. (D )若00(,)0x f x y '≠,则00(,)0y f x y '≠.【 】(11)设12,,,,a a a 均为n 维列向量,A 是m n ⨯矩阵,下列选项正确的是 (A )若12,,,,a a a 线性相关,则12,,,,Aa Aa Aa 线性相关. (B )若12,,,,a a a 线性相关,则12,,,,Aa Aa Aa 线性无关.(C )若12,,,,a a a 线性无关,则12,,,,Aa Aa Aa 线性相关.(D )若12,,,,a a a 线性无关,则12,,,,Aa Aa Aa 线性无关. 【 】 (12)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的-1倍加到第2列得C ,记110010001P ⎛⎫⎪= ⎪ ⎪⎝⎭,则 (A )1.C P AP -= (B )1.C PAP -=(C ).TC P AP =(D ).TC PAP = 【 】(13)设,A B 为随机事件,且()0,(|)1P B P A B >=,则必有 (A )()().P A B P A ⋃> (B )()().P A B P B ⋃>(C )()().P A B P A ⋃=(D )()().P A B P B ⋃= 【 】(14)设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且12{||1}{||1},P X P Y μμ-<>-<(A )1 2.σσ< (B )1 2.σσ>(C )1 2.μμ<(D )1 2.μμ> 【 】三 解答题 15 设区域D=(){}22,1,0x y xy x +≤≥,计算二重积分2211DxyI dxdy xy+=++⎰⎰ 。

2006年考研数学试题详解及评分参考

2006年考研数学试题详解及评分参考
.
.
(6) 设随机变量 X 与 Y 相互独立,且均服从区间 [0, 3] 上的均匀分布,则
P{ max { X , Y } £ 1 } =
【答】 应填 1 / 9 .
【解】 P{ max { X , Y } £ 1} = P{ X £ 1, Y £ 1} = P{ X £ 1} × P{Y £ 1} =
(13) 设 A , B 为随机事件,且 P ( B ) > 0 , P ( A | B ) = 1 ,则必有 (C) P ( A U B ) = P ( A) . 【答】 应选 (C). 【解】 因 P ( A | B ) = (A) P ( A U B ) > P ( A) . (D) P ( A U B ) = P ( B ) . (B) P ( A U B ) > P ( B ) .
.
【答】 应填 2 . 【解】 因 x ® 0 时, ln(1 + x) : x, 1 - cos x : (2) 微分方程 y ¢ =
1 2 x×x x ,故原式= lim 1 2 = 2 . x 0 ® 2 2 x
y (1 - x) 的通解是 . x 【答】 应填 y = C x e - x ( C 为任意常数). dy 1 - x 【解】 分离变量,得 = dx . 两边积分,有 ln | y |= ln | x | - x + C1 ,即 y x | y |= eC1 | x | e- x . 记 C = ± eC1 ,则有 y = C x e - x . 由于 y = 0 也是原方程的解,故上式中 C 可以为零,于是得通解 y = C x e - x ( C 为任意常数). x 2 + y 2 ( 0 £ z £ 1 )的下侧,则 òò xdydz + 2 ydzdx + 3( z - 1)dxdy = .

2006年考研数学一试题与答案解析

2006年考研数学一试题与答案解析

2006年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)0ln(1)lim1cos x x x x→+=-. (2)微分方程(1)y x y x-'=の通解是 .(3)设∑是锥面z =(01z ≤≤)の下侧,则23(1)xdydz ydzdx z dxdy ∑++-=⎰⎰ .(4)点(2,1,0)到平面3450x y z ++=の距离z = .(5)设矩阵2112⎛⎫= ⎪-⎝⎭A ,E 为2阶单位矩阵,矩阵B 满足2=+BA B E ,则B = .(6)设随机变量X 与Y 相互独立,且均服从区间[0,3]上の均匀分布,则{}max{,}1P X Y ≤= .二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出の四个选项中,只有一项符合题目要求,把所选项前の字母填在题后の括号内)(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在0x 处の增量,y ∆与dy 分别为()f x 在点0x 处对应の增量与微分,若0x ∆>,则(A)0dx y <<∆ (B)0y dy <∆< (C)0y dy ∆<<(D)0dy y <∆<(8)设(,)f x y 为连续函数,则140(cos ,sin )d f r r rdr πθθθ⎰⎰等于(A)(,)xf x y dy ⎰⎰(B)(,)f x y dy ⎰⎰(C)(,)yf x y dx ⎰⎰(C)(,)f x y dx ⎰⎰(9)若级数1nn a∞=∑收敛,则级数(A)1nn a∞=∑收敛 (B)1(1)nn n a ∞=-∑收敛(C)11n n n a a∞+=∑收敛(D)112n n n a a ∞+=+∑收敛 (10)设(,)f x y 与(,)x y ϕ均为可微函数,且1(,)0y x y ϕ≠.已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下の一个极值点,下列选项正确の是(A)若00(,)0x f x y '=,则00(,)0y f x y '=(B)若00(,)0x f x y '=,则00(,)0y f x y '≠(C)若00(,)0x f x y '≠,则00(,)0y f x y '=(D)若00(,)0x f x y '≠,则00(,)0y f x y '≠(11)设12,,,,s αααL 均为n 维列向量,A 是m n ⨯矩阵,下列选项正确の是 (A)若12,,,,s αααL 线性相关,则12,,,,s A αA αA αL 线性相关 (B)若12,,,,s αααL 线性相关,则12,,,,s A αA αA αL 线性无关(C)若12,,,,s αααL 线性无关,则12,,,,s A αA αA αL 线性相关 (D)若12,,,,s αααL 线性无关,则12,,,,s A αA αA αL 线性无关.(12)设A 为3阶矩阵,将A の第2行加到第1行得B ,再将B の第1列の-1倍加到第2列得C ,记110010001⎛⎫⎪= ⎪ ⎪⎝⎭P ,则(A)1-=C P AP (B)1-=C PAP(C)T =C P AP(D)T=C PAP(13)设,A B 为随机事件,且()0,(|)1P B P A B >=,则必有(A)()()P A B P A >U(B)()()P A B P B >U(C)()()P A B P A =U(D)()()P A B P B =U(14)设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ, 且12{||1}{||1},P X P Y μμ-<>-<则(A)12σσ< (B)12σσ>(C)12μμ<(D)12μμ>三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤) (15)(本题满分10分) 设区域D=(){}22,1,0x y x y x +≤≥,计算二重积分2211DxyI dxdy x y+=++⎰⎰. (16)(本题满分12分) 设数列{}n x 满足()110,sin 1,2,...n x x x n ππ+<<==.求:(1)证明lim n x x →∞存在,并求之.(2)计算211lim n x n x n x x +→∞⎛⎫ ⎪⎝⎭. (17)(本题满分12分) 将函数()22xf x x x=+-展开成x の幂级数. (18)(本题满分12分) 设函数()()0,,f u +∞在内具有二阶导数且z f=满足等式22220z zx y∂∂+=∂∂. (1)验证()()0f u f u u'''+=. (2)若()()10,11,f f '==求函数()f u の表达式.(19)(本题满分12分) 设在上半平面(){},0D x y y =>内,数(),f x y 是有连续偏导数,且对任意の0t >都有()()2,,f tx ty t f x y =.证明: 对L 内の任意分段光滑の有向简单闭曲线L ,都有(,)(,)0Lyf x y dx xf x y dy -=⎰Ñ.(20)(本题满分9分) 已知非齐次线性方程组 有3个线性无关の解,(1)证明方程组系数矩阵A の秩()2r =A .(2)求,a b の值及方程组の通解. (21)(本题满分9分)设3阶实对称矩阵A の各行元素之和均为3,向量()()121,2,1,0,1,1TT=--=-αα是线性方程组0x =A の两个解.(1)求A の特征值与特征向量.(2)求正交矩阵Q 和对角矩阵A ,使得T=Q AQ A . (22)(本题满分9分)随机变量x の概率密度为()()21,1021,02,,40,令其它x x f x x y x F x y ⎧-<<⎪⎪⎪=≤<=⎨⎪⎪⎪⎩为二维随机变量(,)X Y の分布函数.(1)求Y の概率密度()Y f y .(2)1,42F ⎛⎫-⎪⎝⎭. (23)(本题满分9分)设总体X の概率密度为(,0)F X = 10θθ- 0112x x <<≤<其它,其中θ是未知参数(01)θ<<,12n ,...,X X X 为来自总体X の简单随机样本,记N 为样本值12,...,n x x x 中小于1の个数,求θの最大似然估计.2006年全国硕士研究生入学考试数学一真题解析一、 填空题(1)0ln(1)lim 1cos x x x x→+-= 2 .221cos 1,)1ln(x x x x -+Θ (0x →当时)(2)微分方程(1)y x y x-'=の通解是(0)xy cxe x -=≠,这是变量可分离方程.(3)设∑是锥面1)Z ≤≤の下侧,则23(1)2xdydz ydzdx z dxdy π∑++-=⎰⎰补一个曲面221:1x y z ⎧+≤∑⎨=⎩1上侧∴16dxdydz ∑∑Ω+=⎰⎰⎰⎰⎰⎰⎰(Ω为锥面∑和平面1∑所围区域)6V =(V 为上述圆锥体体积)而123(1)0dydz ydzdx z dxdy ∑⨯++-=⎰⎰(∵在1∑上:1,0zdz ==)(4),1,0,450x y z d ++==点(2)到平面3的距离(5)设A = 2 1 ,2阶矩阵B 满足BA =B +2E ,则|B |= .-1 2解:由BA =B +2E 化得B (A -E )=2E ,两边取行列式,得|B ||A -E |=|2E |=4,计算出|A -E |=2,因此|B |=2.(6)91 二、 选择题(7)设函数()y f x =具有二阶导数,且()0f x '>,()0f x ''>,x ∆为自变量x 在0x 处の增量,y ∆与dy 分别为()f x 在点0x 处对应の增量与微分.若0>∆x ,则[A](11)设?1,?2,…,?s 都是n 维向量,A 是m ?n 矩阵,则( )成立.(A) 若?1,?2,…,?s 线性相关,则A ?1,A ?2,…,A ?s 线性相关. (B) 若?1,?2,…,?s 线性相关,则A ?1,A ?2,…,A ?s 线性无关. (C) 若?1,?2,…,?s 线性无关,则A ?1,A ?2,…,A ?s 线性相关. (D) 若?1,?2,…,?s 线性无关,则A ?1,A ?2,…,A ?s 线性无关. 解: (A)本题考の是线性相关性の判断问题,可以用定义解.若?1,?2,…,?s 线性相关,则存在不全为0の数c 1,c 2,…,c s 使得c 1?1+c 2?2+…+c s ?s =0,用A 左乘等式两边,得c 1A ?1+c 2A ?2+…+c s A ?s =0,于是A ?1,A ?2,…,A ?s 线性相关.如果用秩来解,则更加简单明了.只要熟悉两个基本性质,它们是: 1.??1,?2,…,?s ?线性无关? r(?1,?2,…,?s ?)=s. 2. r(AB )? r(B ).矩阵(A ?1,A ?2,…,A ?s )=A (??1,??2,…,?s ?),因此r(A ?1,A ?2,…,A ?s )? r(?1,??2,…,?s ?).由此马上可判断答案应该为(A).(12)设A 是3阶矩阵,将A の第2列加到第1列上得B ,将B の第1列の-1倍加到第2列上得C .记 1 1 0P = 0 1 0 ,则0 0 1(A) C =P -1AP . (B) C =PAP -1. (C) C =P TAP . (D) C =PAP T.解: (B)用初等矩阵在乘法中の作用得出B =PA ,1 -1 0C =B 0 1 0 =BP -1= PAP -1.0 0 1(13)根据乘法公式与加法公式有: P(AB)=P(B)P(A/B)=P(B) P(A ⋃B)=P(A)+P(B)-P(AB)=P(A) 应选C (14)依题:).1,0(~),10(~2211N Y N x σμσμ--,因},1{}1{21<-><-μμY P X P即 .11222111⎭⎬⎫⎩⎨⎧<->⎭⎬⎫⎩⎨⎧<-σσμσσμY P X p 所以.,112121σσσσ<>应选A 三、 解答题(18)设函数()(0,)f u +∞在内具有二阶导数,且Zf=满足等式(I )验证()()0f u f u u'''+= (II )若(1)0,(1)1f f '== 求函数()f u 的表达式证:(I )zzf f xy∂∂''==∂∂(II )令(),;dp p dp du f u p c du u p u'==-=-+⎰⎰则(19)设在上半平面{}(,)|0D x y y =>内,函数(,)f x y 具有连续偏导数,且对任意0t >都有2(,)(,)f tx ty tf x y -=证明:对D 内任意分段光滑の有向简单闭曲线L ,都有0),(),(=-⎰dy y x xf dx y x yf L.证:把2(,)(,)f tx ty t f x y t -=两边对求导得:(,)(,)2(,)x y xf tx ty yf tx ty tf x y ''+=- 令1t =,则(,)(,)2(,)x y xf x y yf x y f x y ''+=-再令 (,),(,)P yf x y Q xf x y ==-所给曲线积分等于0の充分必要条件为Q Px y∂∂=∂∂ 今(,)(,)x Qf x y xf x y x∂'=--∂ 要求Q Px y∂∂=∂∂成立,只要(,)(,)2(,)x y xf x y yf x y f x y ''+=- 我们已经证明,Q Px y∂∂∴=∂∂,于是结论成立. (20)已知非齐次线性方程组??????????????????????x 1+x 2+x 3+x 4=-1, 4x 1+3x 2+5x 3-x 4=-1,??????????? a x 1+x 2+3x 3+bx 4=1 有3个线性无关の解.① 证明此方程组の系数矩阵A の秩为2. ② 求a,b の值和方程组の通解.解:① 设?1,?2,?3是方程组の3个线性无关の解,则?2-?1,?3-?1是AX =0の两个线性无关の解.于是AX =0の基础解系中解の个数不少于2,即4-r(A )?2,从而r(A )?2.又因为A の行向量是两两线性无关の,所以r(A )?2. 两个不等式说明r(A )=2.② 对方程组の增广矩阵作初等行变换:1 1 1 1 -1 1 1 1 1 -1(A |?)= 4 3 5 -1 -1 ? 0 –1 1 –5 3 ,a 1 3b 1 0 0 4-2a 4a+b-5 4-2a 由r(A )=2,得出a=2,b=-3.代入后继续作初等行变换:1 02 -4 2 ? 0 1 -1 5 -3 . 0 0 0 0 0 得同解方程组 x 1=2-2x 3+4x 4, x 2=-3+x 3-5x 4,求出一个特解(2,-3,0,0)T和AX =0の基础解系(-2,1,1,0)T,(4,-5,0,1) T.得到方程组の通解:(2,-3,0,0)T+c 1(-2,1,1,0)T+c 2(4,-5,0,1)T, c 1,c 2任意.(21) 设3阶实对称矩阵A の各行元素之和都为3,向量?1=(-1,2,-1)T,??2=(0,-1,1)T都是齐次线性方程组AX =0の解.① 求A の特征值和特征向量. ② 求作正交矩阵Q 和对角矩阵?,使得 Q TAQ =?.解:① 条件说明A (1,1,1)T=(3,3,3)T,即 ?0=(1,1,1)T是A の特征向量,特征值为3.又?1,?2都是AX =0の解说明它们也都是A の特征向量,特征值为0.由于?1,?2线性无关, 特征值0の重数大于1.于是A の特征值为3,0,0.属于3の特征向量:c ?0, c ?0.属于0の特征向量:c 1?1+c 2?2, c 1,c 2不都为0. ② 将?0单位化,得?0=(33,33,33)T. 对?1,?2作施密特正交化,の?1=(0,-22,22)T ,??2=(-36,66,66)T. 作Q =(?0,?1,?2),则Q 是正交矩阵,并且3 0 0 Q TAQ =Q -1AQ = 0 0 0 . 0 0 0(22)随机变量X の概率密度为⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<<-=其他,020,4101,21)(x x x f X ,令2X Y =,),(y x F 为二维随机变量)(Y X ,の分布函数. (Ⅰ)求Y の概率密度;(Ⅱ))4,21(-F 解:(Ⅰ)⎪⎪⎩⎪⎪⎨⎧≤<≤<≤<=≤=≤=y y y y y X P y Y P y F Y 4,141,)2(10,)1(0,0)()()(2式式⎰⎰=+=≤≤-=-yyy dx dx y X y P 0434121)()1(式; ⎰⎰+=+=≤≤-=-yy dx dx y X y P 0141214121)()2(式. 所以:⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<<==其他,041,8110,83)()('y yy y y F y f Y Y这个解法是从分布函数の最基本の概率定义入手,对y 进行适当の讨论即可,在新东方の辅导班里我也经常讲到,是基本题型. (Ⅱ))4,21(-F )212()22,21()4,21()4,21(2-≤≤-=≤≤--≤=≤-≤=≤-≤=X P X X P X X P Y X P 4121211==⎰--dx .(23)设总体X の概率密度为⎪⎩⎪⎨⎧≤≤-<<=其他,021,110,),(x x x f θθθ,其中θ是未知参数(0<θ<1).n X X X Λ,,21为来自总体の简单随机样本,记N 为样本值n x x x Λ,,21中小于1の个数.求θの最大似然估计.解:对样本n x x x Λ,,21按照<1或者≥1进行分类:pN p p x x x Λ,,21<1,pn pN pN x x x Λ,,21++≥1.似然函数⎩⎨⎧≥<-=++-其他,,01,,,1,,)1()(2121pn pN pN pN p p N n N x x x x x x L ΛΛθθθ,在pN p p x x x Λ,,21<1,pn pN pN x x x Λ,,21++≥1时,)1ln()(ln )(ln θθθ--+=N n N L ,01)(ln =---=θθθθN n N d L d ,所以nN=最大θ.2005年考研数学一真题一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线122+=x x y の斜渐近线方程为 _____________.(2)微分方程x x y y x ln 2=+'满足91)1(-=y の解为. ____________.(3)设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{31=n ρ,则)3,2,1(nu∂∂=.________.(4)设Ω是由锥面22y x z +=与半球面222y x R z --=围成の空间区域,∑是Ωの整个边界の外侧,则⎰⎰∑=++zdxdy ydzdx xdydz ____________.(5)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B , 如果1=A ,那么=B ..(6)从数1,2,3,4中任取一个数,记为X, 再从X ,,2,1Λ中任取一个数,记为Y, 则}2{=Y P =____________.二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出の四个选项中,只有一项符合题目要求,把所选项前の字母填在题后の括号内)(7)设函数n nn xx f 31lim )(+=∞→,则f(x)在),(+∞-∞内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. [ ] (8)设F(x)是连续函数f(x)の一个原函数,""N M ⇔表示“M の充分必要条件是N ”,则必有(A) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数.(C) F(x)是周期函数⇔f(x)是周期函数.(D) F(x)是单调函数⇔f(x)是单调函数. [ ] (9)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ具有一阶导数,则必有(A) 2222y u x u ∂∂-=∂∂. (B ) 2222yu x u ∂∂=∂∂. (C) 222yuy x u ∂∂=∂∂∂. (D)222x u y x u ∂∂=∂∂∂. [ ] (10)设有三元方程1ln =+-xze y z xy ,根据隐函数存在定理,存在点(0,1,1)の一个邻域,在此邻域内该方程(A) 只能确定一个具有连续偏导数の隐函数z=z(x,y). (B) 可确定两个具有连续偏导数の隐函数x=x(y,z)和z=z(x,y). (C) 可确定两个具有连续偏导数の隐函数y=y(x,z)和z=z(x,y).(D) 可确定两个具有连续偏导数の隐函数x=x(y,z)和y=y(x,z). [ ] (11)设21,λλ是矩阵A の两个不同の特征值,对应の特征向量分别为21,αα,则1α,)(21αα+A 线性无关の充分必要条件是(A)01≠λ. (B) 02≠λ. (C) 01=λ. (D) 02=λ. [ ](12)设A 为n (2≥n )阶可逆矩阵,交换A の第1行与第2行得矩阵B, **,B A 分别为A,B の伴随矩阵,则(A) 交换*A の第1列与第2列得*B . (B) 交换*A の第1行与第2行得*B . (C) 交换*A の第1列与第2列得*B -. (D) 交换*A の第1行与第2行得*B -.[ ](13)设二维随机变量(X,Y) の概率分布为 X Y 0 1 0 a 1 b 已知随机事件}0{=X与}1{=+Y X 相互独立,则(A) a=, b= (B) a=, b=(C) a=, b= (D) a=, b= [ ](14)设)2(,,,21≥n X X X n Λ为来自总体N(0,1)の简单随机样本,X 为样本均值,2S 为样本方差,则(A) )1,0(~N X n (B) ).(~22n nSχ(C) )1(~)1(--n t SXn (D) ).1,1(~)1(2221--∑=n F X X n n i i [ ] 三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.) (15)(本题满分11分) 设}0,0,2),{(22≥≥≤+=y x y x y x D,]1[22y x ++表示不超过221y x ++の最大整数. 计算二重积分⎰⎰++Ddxdy y x xy .]1[22 (16)(本题满分12分) 求幂级数∑∞=--+-121))12(11()1(n n n x n n の收敛区间与和函数f(x).(17)(本题满分11分)如图,曲线C の方程为y=f(x),点(3,2)是它の一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处の切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x(18)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明: (I )存在),1,0(∈ξ使得ξξ-=1)(f ;(II )存在两个不同の点)1,0(,∈ζη,使得.1)()(=''ζηf f(19)(本题满分12分)设函数)(y ϕ具有连续导数,在围绕原点の任意分段光滑简单闭曲线L 上,曲线积分⎰++Ly x xydydx y 4222)(ϕの值恒为同一常数.(I )证明:对右半平面x>0内の任意分段光滑简单闭曲线C ,有022)(42=++⎰Cyx xydydx y ϕ;(II )求函数)(y ϕの表达式. (20)(本题满分9分)已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=の秩为2. (I ) 求a の值; (II ) 求正交变换Qy x=,把),,(321x x x f 化成标准形;(III ) 求方程),,(321x x x f =0の解. (21)(本题满分9分)已知3阶矩阵A の第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0の通解..(22)(本题满分9分)设二维随机变量(X,Y)の概率密度为求:(I ) (X,Y)の边缘概率密度)(),(y f x f Y X ; (II )Y X Z-=2の概率密度).(z f Z(23)(本题满分9分)设)2(,,,21>n X X X n Λ为来自总体N(0,1)の简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i Λ=-=求:(I ) i Y の方差n i DY i ,,2,1,Λ=; (II )1Y 与n Y の协方差).,(1n Y Y Cov。

2006年考研数学三真题及解析

2006年考研数学三真题及解析

2006年考研数学(三)真题一、填空题:1-6小题,每小题4分,共24分.把答案填在题中横线上.(1)()11lim ______.nn n n -→∞+⎛⎫=⎪⎝⎭(2)设函数()f x 在2x =的某邻域内可导,且()()e f x f x '=,()21f =,则()2____.f '''=(3)设函数()f u 可微,且()102f '=,则()224z f x y =-在点(1,2)处的全微分()1,2d _____.z =(4)设矩阵2112A ⎛⎫=⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2BA B E =+,则=B .(5)设随机变量X Y 与相互独立,且均服从区间[]0,3上的均匀分布,则{}{}max ,1P X Y ≤=_______.(6)设总体X 的概率密度为()()121,,,,2xn f x e x X X X -=-∞<<+∞ 为总体X 的简单随机样本,其样本方差为2S ,则2____.ES =二、选择题:7-14小题,每小题4分,共32分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在点0x 处的增量,d y y ∆与分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则(A)0d y y <<∆.(B)0d y y <∆<.(C)d 0y y ∆<<.(D)d 0y y <∆<.[](8)设函数()f x 在0x =处连续,且()22lim1h f h h→=,则(A)()()000f f -'=且存在(B)()()010f f -'=且存在(C)()()000f f +'=且存在(D)()()010f f +'=且存在[](9)若级数1nn a∞=∑收敛,则级数(A)1nn a∞=∑收敛.(B )1(1)nn n a ∞=-∑收敛.(C)11n n n a a ∞+=∑收敛.(D)112n n n a a ∞+=+∑收敛.[](10)设非齐次线性微分方程()()y P x y Q x '+=有两个不同的解12(),(),y x y x C 为任意常数,则该方程的通解是(A)[]12()()C y x y x -.(B)[]112()()()y x C y x y x +-.(C)[]12()()C y x y x +.(D)[]112()()()y x C y x y x ++[](11)设(,)(,)f x y x y ϕ与均为可微函数,且(,)0y x y ϕ'≠,已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是(A)若00(,)0x f x y '=,则00(,)0y f x y '=.(B)若00(,)0x f x y '=,则00(,)0y f x y '≠.(C)若00(,)0x f x y '≠,则00(,)0y f x y '=.(D)若00(,)0x f x y '≠,则00(,)0y f x y '≠.[](12)设12,,,s ααα 均为n 维列向量,A 为m n ⨯矩阵,下列选项正确的是(A)若12,,,s ααα 线性相关,则12,,,s A A A ααα 线性相关.(B)若12,,,s ααα 线性相关,则12,,,s A A A ααα 线性无关.(C)若12,,,s ααα 线性无关,则12,,,s A A A ααα 线性相关.(D)若12,,,s ααα 线性无关,则12,,,s A A A ααα 线性无关.[](13)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的1-倍加到第2列得C ,记110010001P ⎛⎫⎪= ⎪ ⎪⎝⎭,则(A)1C P AP -=.(B)1C PAP -=.(C)T C P AP =.(D)TC PAP =.[](14)设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且{}{}1211P X P Y μμ-<>-<则必有(A)12σσ<(B)12σσ>(C)12μμ<(D)12μμ>[]三、解答题:15-23小题,共94分.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分7分)设()1sin,,0,01arctan xy y yf x y x y xy xπ-=->>+,求(Ⅰ)()()lim ,y g x f x y →+∞=;(Ⅱ)()0lim x g x +→.(16)(本题满分7分)计算二重积分d Dx y ,其中D 是由直线,1,0y x y x ===所围成的平面区域.(17)(本题满分10分)证明:当0a b π<<<时,sin 2cos sin 2cos b b b b a a a a ππ++>++.(18)(本题满分8分)在xOy 坐标平面上,连续曲线L 过点()1,0M ,其上任意点()(),0P x y x ≠处的切线斜率与直线OP 的斜率之差等于ax (常数>0a ).(Ⅰ)求L 的方程;(Ⅱ)当L 与直线y ax =所围成平面图形的面积为83时,确定a 的值.(19)(本题满分10分)求幂级数()()1211121n n n x n n -+∞=--∑的收敛域及和函数()s x .(20)(本题满分13分)设4维向量组()()()TTT1231,1,1,1,2,2,2,2,3,3,3,3,a a a ααα=+=+=+()T44,4,4,4a α=+,问a 为何值时1234,,,αααα线性相关?当1234,,,αααα线性相关时,求其一个极大线性无关组,并将其余向量用该极大线性无关组线性表出.(21)(本题满分13分)设3阶实对称矩阵A 的各行元素之和均为3,向量()()TT121,2,1,0,1,1αα=--=-是线性方程组0Ax =的两个解.(Ⅰ)求A 的特征值与特征向量;(Ⅱ)求正交矩阵Q 和对角矩阵Λ,使得TQ AQ =Λ;(Ⅲ)求A 及632A E ⎛⎫- ⎪⎝⎭,其中E 为3阶单位矩阵.(22)(本题满分13分)设随机变量X 的概率密度为()1,1021,0240,X x f x x ⎧-<<⎪⎪⎪=≤<⎨⎪⎪⎪⎩ 其他,令()2,,Y X F x y =为二维随机变量(,)X Y 的分布函数.(Ⅰ)求Y 的概率密度()Y f y ;(Ⅱ)Cov(,)X Y ;(Ⅲ)1,42F ⎛⎫-⎪⎝⎭.(23)(本题满分13分)设总体X 的概率密度为(),01,;1,12,0,x f x x θθθ<<⎧⎪=-≤<⎨⎪⎩其他,其中θ是未知参数()01θ<<,12n ,...,X X X 为来自总体X 的简单随机样本,记N 为样本值12,...,n x x x 中小于1的个数.(Ⅰ)求θ的矩估计;(Ⅱ)求θ的最大似然估计2006年考研数学(三)真题解析二、填空题:1-6小题,每小题4分,共24分.把答案填在题中横线上.(1)()11lim 1.nn n n -→∞+⎛⎫=⎪⎝⎭【分析】将其对数恒等化ln eNN =求解.【详解】()(1)111ln lim (1)ln 1lim lim eennn n n n n n n n n n -→∞-++⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭→∞→∞+⎛⎫== ⎪⎝⎭,而数列{}(1)n-有界,1lim ln 0n n n →∞+⎛⎫=⎪⎝⎭,所以1lim(1)ln 0n n n n →∞+⎛⎫-= ⎪⎝⎭.故()101lim e 1nn n n -→∞+⎛⎫==⎪⎝⎭.(2)设函数()f x 在2x =的某邻域内可导,且()()e f x f x '=,()21f =,则()322e .f '''=【分析】利用复合函数求导即可.【详解】由题设知,()()ef x f x '=,两边对x 求导得()()()2e()ef x f x f x f x '''==,两边再对x 求导得()()23()2e ()2ef x f x f x f x ''''==,又()21f =,故()323(2)2e2e f f '''==.(3)设函数()f u 可微,且()102f '=,则()224z f x y =-在点(1,2)处的全微分()1,2d 4d 2d .z x y =-【分析】利用二元函数的全微分公式或微分形式不变性计算.【详解】方法一:因为22(1,2)(1,2)(4)84z f x y xx ∂'=-⋅=∂,()22(1,2)(1,2)(4)22z f x y y y∂'=-⋅-=-∂,所以()()()1,21,21,2d d d 4d 2d z z z x y x y xy⎡⎤∂∂=+=-⎢⎥∂∂⎣⎦.方法二:对()224z f x y=-微分得()222222d (4)d(4)(4)8d 2d z f x y x y f x y x x y y ''=--=--,故()()1,2d (0)8d 2d 4d 2d z f x y x y '=-=-.(4)设矩阵2112A ⎛⎫= ⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2BA B E =+,则=B 2.【分析】将矩阵方程改写为AX B XA B AXB C ===或或的形式,再用方阵相乘的行列式性质进行计算即可.【详解】由题设,有()2B A E E-=于是有4B A E -=,而11211A E -==-,所以2B =.(5)设随机变量X Y 与相互独立,且均服从区间[]0,3上的均匀分布,则{}{}max ,1P X Y ≤=19.【分析】利用X Y 与的独立性及分布计算.【详解】由题设知,X Y 与具有相同的概率密度1,3()30,x f x ⎧≤≤⎪=⎨⎪⎩ 0 其他.则{}{}{}max ,11,1P X Y P X Y ≤=≤≤{}{}11P X P Y =≤≤{}()2120111d 39P X x ⎛⎫=≤== ⎪⎝⎭⎰.【评注】本题属几何概型,也可如下计算,如下图:则{}{}{}1max ,11,19S P X Y P X Y S ≤=≤≤==阴.(6)设总体X 的概率密度为()()121,,,,2xn f x e x X X X -=-∞<<+∞ 为总体X 的简单随机样本,其样本方差为2S ,则22.ES =【分析】利用样本方差的性质2ES DX =即可.【详解】因为()d e d 02xx EX xf x x x +∞+∞--∞-∞===⎰⎰,22222000()d e d e d e 2e d 2xx xx x EX x f x x x x x x x x+∞+∞+∞+∞---+∞--∞-∞====-+⎰⎰⎰⎰2e2e d 2e 2x x xx x +∞-+∞--+∞=-+=-=⎰,所以()22202DX EX EX =-=-=,又因2S 是DX 的无偏估计量,所以22ES DX ==.二、选择题:7-14小题,每小题4分,共32分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在点0x 处的增量,d y y ∆与分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则(A)0d y y <<∆.(B)0d y y <∆<.(C)d 0y y ∆<<.(D)d 0y y <∆<.[A]【分析】题设条件有明显的几何意义,用图示法求解.【详解】由()0,()0f x f x '''>>知,函数()f x 单调增加,曲线()y f x =凹向,作函数()y f x =的图形如右图所示,显然当0x ∆>时,00d ()d ()0y y f x x f x x ''∆>==∆>,故应选(A).(8)设函数()f x 在0x =处连续,且()22lim1h f h h →=,则(A)()()000f f -'=且存在(B)()()010f f -'=且存在(C)()()000f f +'=且存在(D)()()010f f +'=且存在[C ]【分析】从()22lim1h f h h→=入手计算(0)f ,利用导数的左右导数定义判定(0),(0)f f -+''的存在性.【详解】由()22lim1h f h h→=知,()20lim 0h f h →=.又因为()f x 在0x =处连续,则()20(0)lim ()lim 0x h f f x f h →→===.令2t h =,则()()22(0)1limlim (0)h t f h f t f f ht++→→-'===.所以(0)f +'存在,故本题选(C ).(9)若级数1nn a∞=∑收敛,则级数(A)1nn a∞=∑收敛.(B )1(1)nn n a ∞=-∑收敛.(C)11n n n a a ∞+=∑收敛.(D)112n n n a a ∞+=+∑收敛.[D]【分析】可以通过举反例及级数的性质来判定.【详解】由1n n a ∞=∑收敛知11n n a ∞+=∑收敛,所以级数112n n n a a ∞+=+∑收敛,故应选(D).或利用排除法:取1(1)nn a n =-,则可排除选项(A),(B);取(1)nn a =-.故(D)项正确.(10)设非齐次线性微分方程()()y P x y Q x '+=有两个不同的解12(),(),y x y x C 为任意常数,则该方程的通解是(A)[]12()()C y x y x -.(B)[]112()()()y x C y x y x +-.(C)[]12()()C y x y x +.(D)[]112()()()y x C y x y x ++[B]【分析】利用一阶线性非齐次微分方程解的结构即可.【详解】由于12()()y x y x -是对应齐次线性微分方程()0y P x y '+=的非零解,所以它的通解是[]12()()Y C y x y x =-,故原方程的通解为[]1112()()()()y y x Y y x C y x y x =+=+-,故应选(B).【评注】本题属基本题型,考查一阶线性非齐次微分方程解的结构:*y y Y =+.其中*y 是所给一阶线性微分方程的特解,Y 是对应齐次微分方程的通解.(11)设(,)(,)f x y x y ϕ与均为可微函数,且(,)0y x y ϕ'≠,已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是(A)若00(,)0x f x y '=,则00(,)0y f x y '=.(B)若00(,)0x f x y '=,则00(,)0y f x y '≠.(C)若00(,)0x f x y '≠,则00(,)0y f x y '=.(D)若00(,)0x f x y '≠,则00(,)0y f x y '≠.[D]【分析】利用拉格朗日函数(,,)(,)(,)F x y f x y x y λλϕ=+在000(,,)x y λ(0λ是对应00,x y 的参数λ的值)取到极值的必要条件即可.【详解】作拉格朗日函数(,,)(,)(,)F x y f x y x y λλϕ=+,并记对应00,x y 的参数λ的值为0λ,则000000(,,)0(,,)0x y F x y F x y λλ⎧'=⎪⎨'=⎪⎩,即0000000000(,)(,)0(,)(,)0x x y y f x y x y f x y x y λϕλϕ⎧''+=⎪⎨''+=⎪⎩.消去0λ,得00000000(,)(,)(,)(,)0x y y x f x y x y f x y x y ϕϕ''''-=,整理得000000001(,)(,)(,)(,)x y x y f x y f x y x y x y ϕϕ'''='.(因为(,)0y x y ϕ'≠),若00(,)0x f x y '≠,则00(,)0y f x y '≠.故选(D).(12)设12,,,s ααα 均为n 维列向量,A 为m n ⨯矩阵,下列选项正确的是(A)若12,,,s ααα 线性相关,则12,,,s A A A ααα 线性相关.(B)若12,,,s ααα 线性相关,则12,,,s A A A ααα 线性无关.(C)若12,,,s ααα 线性无关,则12,,,s A A A ααα 线性相关.(D)若12,,,s ααα 线性无关,则12,,,s A A A ααα 线性无关.[A ]【分析】本题考查向量组的线性相关性问题,利用定义或性质进行判定.【详解】记12(,,,)s B ααα= ,则12(,,,)s A A A AB ααα= .所以,若向量组12,,,s ααα 线性相关,则()r B s <,从而()()r AB r B s ≤<,向量组12,,,s A A A ααα 也线性相关,故应选(A).(13)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的1-倍加到第2列得C ,记110010001P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则(A)1C P AP -=.(B)1C PAP -=.(C)T C P AP =.(D)TC PAP =.[B]【分析】利用矩阵的初等变换与初等矩阵的关系以及初等矩阵的性质可得.【详解】由题设可得110110110110010,010010010001001001001B A C B A --⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ,而1110010001P --⎛⎫⎪= ⎪ ⎪⎝⎭,则有1C PAP -=.故应选(B).(14)设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且{}{}1211P X P Y μμ-<>-<则必有(A)12σσ<(B)12σσ>(C)12μμ<(D)12μμ>[A]【分析】利用标准正态分布密度曲线的几何意义可得.【详解】由题设可得12112211X Y P P μμσσσσ⎧-⎫⎧-⎫<><⎨⎬⎨⎬⎩⎭⎩⎭,则12112121σσ⎛⎫⎛⎫Φ->Φ-⎪ ⎪⎝⎭⎝⎭,即1211σσ⎛⎫⎛⎫Φ>Φ ⎪ ⎪⎝⎭⎝⎭.其中()x Φ是标准正态分布的分布函数.又()x Φ是单调不减函数,则1211σσ>,即12σσ<.故选(A).三、解答题:15-23小题,共94分.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分7分)设()1sin,,0,01arctan xy y yf x y x y xy xπ-=->>+,求(Ⅰ)()()lim ,y g x f x y →+∞=;(Ⅱ)()0lim x g x +→.【分析】第(Ⅰ)问求极限时注意将x 作为常量求解,此问中含,0∞⋅∞∞型未定式极限;第(Ⅱ)问需利用第(Ⅰ)问的结果,含∞-∞未定式极限.【详解】(Ⅰ)()()1sin lim ,lim 1arctan y y x y y y g x f x y xy x π→+∞→∞⎛⎫- ⎪⎪==-+ ⎪⎪⎝⎭sin 11111lim 1arctan arctan y x y xy x x x x y ππ→∞⎛⎫ ⎪⎪-⎪⎪-=-=- ⎪+ ⎪ ⎪ ⎪⎝⎭.(Ⅱ)()200011arctan lim lim lim arctan arctan x x x x x x x g x x x x x ππ+++→→→--+⎛⎫=-= ⎪⎝⎭(通分)22222000112arctan 2(1)1lim lim lim 22x x x x x x x x x x x x x xππππ+++→→→-+-+-+++===(16)(本题满分7分)计算二重积分d Dx y ,其中D 是由直线,1,0y x y x ===所围成的平面区域.【分析】画出积分域,将二重积分化为累次积分即可.【详解】积分区域如右图.因为根号下的函数为关于x 的一次函数,“先x 后y ”积分较容易,所以1d d Dx y y x=⎰⎰()311222002122d d 339y y xy y y y y=--==⎰⎰(17)(本题满分10分)证明:当0a b π<<<时,sin 2cos sin 2cos b b b b a a a a ππ++>++.【分析】利用“参数变易法”构造辅助函数,再利用函数的单调性证明.【详解】令()sin 2cos sin 2cos ,0f x x x x x a a a a a x b πππ=++---<≤≤<,则()sin cos 2sin cos sin f x x x x x x x x ππ'=+-+=-+,且()0f π'=.又()cos sin cos sin 0f x x x x x x x ''=--=-<,(0,sin 0x x x π<<>时),故当0a x b π<≤≤<时,()f x '单调减少,即()()0f x f π''>=,则()f x 单调增加,于是()()0f b f a >=,即sin 2cos sin 2cos b b b b a a a a ππ++>++.(18)(本题满分8分)在xOy 坐标平面上,连续曲线L 过点()1,0M ,其上任意点()(),0P x y x ≠处的切线斜率与直线OP 的斜率之差等于ax (常数>0a ).(Ⅰ)求L 的方程;(Ⅱ)当L 与直线y ax =所围成平面图形的面积为83时,确定a 的值.【分析】(Ⅰ)利用导数的几何意义建立微分方程,并求解;(Ⅱ)利用定积分计算平面图形的面积,确定参数.【详解】(Ⅰ)设曲线L 的方程为()y f x =,则由题设可得y y ax x '-=,这是一阶线性微分方程,其中1(),()P x Q x ax x=-=,代入通解公式得()11d d 2e e d x x x xy ax x C x ax C ax Cx -⎛⎫⎰⎰=+=+=+ ⎪⎝⎭⎰,又(1)0f =,所以C a =-.故曲线L 的方程为2y ax ax =-(0)x ≠.(Ⅱ)L 与直线y ax =(>0a )所围成平面图形如右图所示.所以()220d D ax ax ax x ⎡⎤=--⎣⎦⎰()220482d 33a x x x a =-==⎰,故2a =.(19)(本题满分10分)求幂级数()()1211121n n n x n n -+∞=--∑的收敛域及和函数()s x .【分析】因为幂级数缺项,按函数项级数收敛域的求法计算;利用逐项求导或积分并结合已知函数的幂级数展开式计算和函数.【详解】记121(1)()(21)n n n x u x n n -+-=-,则2321121(1)()(1)(21)lim lim (1)()(21)n n n n n n n nx u x n n x x u x n n ++-+→∞→∞-++==--.所以当21,1x x <<即时,所给幂级数收敛;当1x >时,所给幂级数发散;当1x =±时,所给幂级数为1(1)(1),(21)(21)n nn n n n -----,均收敛,故所给幂级数的收敛域为[]1,1-在()1,1-内,()12112111(1)(1)()22()(21)(21)2n n n nn n x x s x x xs x n n n n -+-∞∞==--===--∑∑,而12112211211(1)1(),()(1)211n n n n n n x s x s x x n x --∞∞--==-'''==-=-+∑∑,所以11121()(0)()d arctan 1x xs x s s t t t x t''''-===+⎰⎰,又1(0)0s '=,于是1()arctan s x x '=.同理11100()(0)()d arctan d xxs x s s t t t t'-==⎰⎰()20201arctan d arctan ln 112xxt t t t x x x t =-=-++⎰,又1(0)0s =,所以()211()arctan ln 12s x x x x =-+.故()22()2arctan ln 1s x x x x x=-+.()1,1x ∈-.由于所给幂级数在1x =±处都收敛,且()22()2arctan ln 1s x x x x x =-+在1x =±处都连续,所以()s x 在1x =±成立,即()22()2arctan ln 1s x x x x x =-+,[]1,1x ∈-.(20)(本题满分13分)设4维向量组()()()TTT1231,1,1,1,2,2,2,2,3,3,3,3,a a a ααα=+=+=+()T44,4,4,4a α=+,问a 为何值时1234,,,αααα线性相关?当1234,,,αααα线性相关时,求其一个极大线性无关组,并将其余向量用该极大线性无关组线性表出.【分析】因为向量组中的向量个数和向量维数相同,所以用以向量为列向量的矩阵的行列式为零来确定参数a ;用初等变换求极大线性无关组.【详解】记以1234,,,αααα为列向量的矩阵为A ,则312341234(10)12341234a a A a a a a++==+++.于是当0,010A a a ===-即或时,1234,,,αααα线性相关.当0a =时,显然1α是一个极大线性无关组,且2131412,3,4αααααα===;当10a =-时,1α2α3α4α9234183412741236A -⎛⎫⎪-⎪= ⎪-⎪-⎝⎭,由于此时A 有三阶非零行列式9231834000127--=-≠-,所以123,,ααα为极大线性无关组,且123441230αααααααα+++==---,即.(21)(本题满分13分)设3阶实对称矩阵A 的各行元素之和均为3,向量()()TT121,2,1,0,1,1αα=--=-是线性方程组0Ax =的两个解.(Ⅰ)求A 的特征值与特征向量;(Ⅱ)求正交矩阵Q 和对角矩阵Λ,使得TQ AQ =Λ;(Ⅲ)求A 及632A E ⎛⎫- ⎪⎝⎭,其中E 为3阶单位矩阵.【分析】由矩阵A 的各行元素之和均为3及矩阵乘法可得矩阵A 的一个特征值和对应的特征向量;由齐次线性方程组0Ax =有非零解可知A 必有零特征值,其非零解是0特征值所对应的特征向量.将A 的线性无关的特征向量正交化可得正交矩阵Q ;由TQ AQ =Λ可得到A 和632A E ⎛⎫- ⎪⎝⎭.【详解】(Ⅰ)因为矩阵A 的各行元素之和均为3,所以1311331131A ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则由特征值和特征向量的定义知,3λ=是矩阵A 的特征值,T(1,1,1)α=是对应的特征向量.对应3λ=的全部特征向量为k α,其中k 为不为零的常数.又由题设知120,0A A αα==,即11220,0A A αααα=⋅=⋅,而且12,αα线性无关,所以0λ=是矩阵A 的二重特征值,12,αα是其对应的特征向量,对应0λ=的全部特征向量为1122k k αα+,其中12,k k 为不全为零的常数.(Ⅱ)因为A 是实对称矩阵,所以α与12,αα正交,所以只需将12,αα正交.取11βα=,()()21221111012,3120,61112αββαβββ⎛⎫-⎪-⎛⎫⎛⎫⎪- ⎪⎪=-=--= ⎪ ⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭ ⎪⎝⎭.再将12,,αββ单位化,得1212312,,0ββαηηηαββ⎛⎛⎪====== ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭,令[]123,,Q ηηη=,则1T QQ -=,由A 是实对称矩阵必可相似对角化,得T 300Q AQ ⎡⎤⎢⎥==Λ⎢⎥⎢⎥⎣⎦.(Ⅲ)由(Ⅱ)知T300Q AQ ⎡⎤⎢⎥==Λ⎢⎥⎢⎥⎣⎦,所以T 31110011101110A Q Q ⎛⎫ ⎪ ⎪⎛⎫⎛⎫⎪ ⎪ ⎪=Λ=--=⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎝⎭⎝⎭⎪ ⎪- ⎪⎪⎝⎭⎭.666T T T 333222Q A E Q Q A E Q Q AQ E ⎡⎤⎛⎫⎛⎫⎛⎫-=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦6666633223333022203322E ⎛⎫⎛⎫⎡⎤⎛⎫ ⎪ ⎪⎢⎥ ⎪⎝⎭ ⎪⎛⎫⎢⎥ ⎪ ⎪⎛⎫⎛⎫⎪⎢⎥ ⎪ ⎪=-== ⎪ ⎪ ⎪⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎪⎢⎥ ⎪ ⎪⎝⎭⎢⎥ ⎪⎛⎫ ⎪ ⎪⎢⎥ ⎪⎝⎭⎣⎦⎪⎝⎭⎝⎭,则666T333222A E Q EQ E ⎛⎫⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭⎝⎭.(22)(本题满分13分)设随机变量X 的概率密度为()1,1021,0240,X x f x x ⎧-<<⎪⎪⎪=≤<⎨⎪⎪⎪⎩ 其他,令()2,,Y X F x y =为二维随机变量(,)X Y 的分布函数.(Ⅰ)求Y 的概率密度()Y f y ;(Ⅱ)Cov(,)X Y ;(Ⅲ)1,42F ⎛⎫-⎪⎝⎭.【分析】求一维随机变量函数的概率密度一般先求分布,然后求导得相应的概率密度或利用公式计算.【详解】(I )设Y 的分布函数为()Y F y ,即2()()()Y F y P Y y P X y =≤=≤,则1)当0y <时,()0Y F y =;2)当01y ≤<时,(2()()Y F y P X y P X =<=<<01d 4x x =+=⎰.3)当14y ≤<时,(2()()1Y F y P X y P X =<=-<<10111d d 242x x -=+=⎰.4)当4y ≥,()1Y F y =.所以1()()40,Y Y y f y F y y <<⎪'==≤<⎪⎩其他.(II )22232Cov(,)Cov(,)()()X Y X X E X EX X EX EX EXEX ==--=-,而02101d d 244x x EX x x -=+=⎰⎰,22022105d d 246x x EX x x -=+=⎰⎰,3323107d d 248x x EX x x -=+=⎰⎰,所以7152Cov(,)8463X Y =-⋅=.(Ⅲ)1,42F ⎛⎫-⎪⎝⎭211,4,422P X Y P X X ⎛⎫⎛⎫=≤-≤=≤-≤ ⎪ ⎪⎝⎭⎝⎭11,22222P X X P X ⎛⎫⎛⎫=≤--≤≤=-≤≤- ⎪ ⎪⎝⎭⎝⎭12111d 24x --==⎰.(23)(本题满分13分)设总体X 的概率密度为(),01,;1,12,0,x f x x θθθ<<⎧⎪=-≤<⎨⎪⎩其他,其中θ是未知参数()01θ<<,12n ,...,X X X 为来自总体X 的简单随机样本,记N 为样本值12,...,n x x x 中小于1的个数.(Ⅰ)求θ的矩估计;(Ⅱ)求θ的最大似然估计【分析】利用矩估计法和最大似然估计法计算.【详解】(Ⅰ)因为()1213(;)d d 1d 2EX xf x x x x x x θθθθ+∞-∞==+-=-⎰⎰⎰,令32X θ-=,可得θ的矩估计为32X θ=- .(Ⅱ)记似然函数为()L θ,则()()()()()111(1)N n N N n N L θθθθθθθθθ--=⋅⋅⋅-⋅-⋅⋅-=- 个个.两边取对数得ln ()ln ()ln(1)L N n N θθθ=+--,令d ln()0d1L N n Nθθθθ-=-=-,解得Nnθ=为θ的最大似然估计.。

2006年考研数学二真题答案解析

2006年考研数学二真题答案解析

2006年全国硕士研究生入学考试数学(二)解析一、填空题 (1)曲线4sin 52cos x xy x x+=-的水平渐近线方程为15y =4sin 11lim lim55x x xx y x→∞→∞+==-(2)设函数2301sin ,0(),0xt dt x f x x a x ⎧≠⎪=⎨⎪=⎩⎰ 在x =0处连续,则a =132200()1lim ()lim 33x x sm x f x x →→== (3)广义积分22(1)xdxx +∞=+⎰1222222201(1)11110(1)2(1)2(1)22xdx d x x x x +∞+∞+∞+==-⋅=+=+++⎰⎰(4)微分方程(1)y x y x-'=的通解是xy cxe -=)0(≠x(5)设函数()y y x =由方程1yy xe =-确定,则0x dy dx==e-当x =0时,y =1,又把方程每一项对x 求导,y yy e xe y ''=--01(1)1x x y yyyye y xe ey e xe ===''+=-=-=-+(6) 设A = 2 1 ,2B 满足BA =B +2E ,则|B |= .-1 2解:由BA =B +2E 化得B (A -E )=2E ,两边取行列式,得|B ||A -E |=|2E |=4, 计算出|A -E |=2,因此|B |=2. 二、选择题(7)设函数()y f x =具有二阶导数,且()0,()0,f x f x x '''>>∆为自变量x 在点x 0处的增量,0()y dy f x x ∆与分别为在点处对应增量与微分,若0x ∆>,则[A](A )0dy y <<∆(B )0y dy <∆<(C )0y dy ∆<<(D )0dy y <∆<由()0()f x f x '>可知严格单调增加()0()f x f x ''>可知是凹的即知(8)设()f x 是奇函数,除0x =外处处连续,0x =是其第一类间断点,则()xf t dt ⎰是[B](A )连续的奇函数 (B )连续的偶函数(C )在x =0间断的奇函数 (D )在x =0间断的偶函数(9)设函数()g x 可微,1()(),(1)1,(1)2,g x h x e h g +''===则g (1)等于[C] (A )ln 31- (B )ln 31--(C )ln 21--(D )ln 21- ∵ 1()()()g x h x g x e +''=,1(1)12g e+= g (1)= ln 21--(10)函数212x x x y c e c xe -=++满足的一个微分方程是[D] (A )23x y y y xe '''--= (B )23x y y y e '''--=(C )23xy y y xe '''+-=(D )23xy y y e '''+-=将函数212x x x y c e c xe -=++代入答案中验证即可.(11)设(,)f x y 为连续函数,则14(cos ,sin )d f r r rd πθθθγ⎰⎰等于[C](A )(,)xf x y dy ⎰(B )(,)f x y dy ⎰(C )(,)yf x y dx ⎰(D )(,)f x y dx ⎰(12)设(,)(,)f x y x y ϕ与均为可微函数,且(,)0,y x y ϕ'≠已知00(,)(,)x y f x y 是在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是[D](A )若0000(,)0,(,)0x y f x y f x y ''==则(B )若0000(,)0,(,)0x y f x y f x y ''=≠则 (C )若0000(,)0,(,)0x y f x y f x y ''≠=则 (D )若0000(,)0,(,)0x y f x y f x y ''≠≠则(,)(,)(,)(,)0(1)(,)(,)0(2)(,)0x x xy y y F f x y x y F f x y x y F f x y x y F x y λλϕλϕλϕϕ=+'''=+=⎧⎪'''=+=⎨⎪'==⎩令今000000(,)(,)0,(,)y y y f x y x y x y ϕλϕ''≠∴=-'代入(1) 得 00000000(,)(,)(,)(,)y xx y f x y x y f x y x y ϕϕ'''='今 00000000(,)0,(,)(,)0(,)0x y xy f x y f x y x y f x y ϕ''''≠∴≠≠则 故选[D] (13)设α1,α2,…,αs 都是n 维向量,A 是m ⨯n 矩阵,则( )成立.(A) 若α1,α2,…,αs 线性相关,则A α1,A α2,…,A αs 线性相关. (B) 若α1,α2,…,αs 线性相关,则A α1,A α2,…,A αs 线性无关. (C) 若α1,α2,…,αs 线性无关,则A α1,A α2,…,A αs 线性相关. (D) 若α1,α2,…,αs 线性无关,则A α1,A α2,…,A αs 线性无关. 解: (A)本题考的是线性相关性的判断问题,可以用定义解.若α1,α2,…,αs 线性相关,则存在不全为0的数c 1,c 2,…,c s 使得c 1α1+c 2α2+…+c s αs =0,用A 左乘等式两边,得c 1A α1+c 2A α2+…+c s A αs =0,于是A α1,A α2,…,A αs 线性相关.如果用秩来解,则更加简单明了.只要熟悉两个基本性质,它们是: 1. α1,α2,…,αs ↵∍◊σ⇔ r(α1,α2,…,αs )=s. 2. r(AB )≤ r(B ).矩阵(A α1,A α2,…,A αs )=A ( α1, α2,…,αs ),因此r(A α1,A α2,…,A αs )≤ r(α1, α2,…,αs ).由此马上可判断答案应该为(A).(14)设A 是3阶矩阵,将A 的第2列加到第1列上得B ,将B 的第1列的-1倍加到第2列上得C .记 1 1 0P = 0 1 0 ,则 0 0 1(A) C =P -1AP . (B) C =PAP -1. (C) C =P TAP . (D) C =PAP T. 解: (B)用初等矩阵在乘法中的作用得出B =PA , 1 -1 0C =B 0 1 0 =BP -1= PAP -1. 0 0 1三、解答题(15)试确定A ,B ,C 的常数值,使23(1)1()x e Bx Cx Ax o x ++=++其中3()o x 是当30x x →时比的高阶无穷小.解:泰勒公式2331()26xx x e x o x =++++代入已知等式得 23323[1()][1]1()26x x x o x Bx Cx Ax o x ++++++=++整理得233111(1)()()1()226BB xC B x C o x Ax o x ⎛⎫+++++++++=++ ⎪⎝⎭比较两边同次幂函数得B +1=A ①C +B +12=0 ② 1026B C ++= ③ 式②-③得120233B B +==-则 代入①得13A = 代入②得16C = (16)求arcsin xxe dx e ⎰.解:原式=22arcsin arcsin ()x x xx e t de e t dt e t =⎰⎰令1arcsin arcsin ()t td t t =-=-+⎰2arcsin arcsin 1(2)2(1)t t udu t t u u -=-+=-+-⎰2arcsin 1t dut u =-+-⎰arcsin 11ln 21t u C t u -=-+++arcsin arcsin 12x x x x e e dx C e e ∴=-++⎰. (17)设区域22{(,)||,0}D x y x y x =+≤≥,计算二重积分2211DxyI dxdy x y +=++⎰⎰.解:用极坐标系2201D xydxdy x y ⎛⎫=⎪++⎝⎭⎰⎰11222002ln(1)ln 2122r I d dr r r ππππθ-==+=+⎰⎰. (18)设数列{}n x 满足10x π<<,1sin (1,2,3,)n n x x n +==证明:(1)1lim n n x +→∞存在,并求极限;(2)计算11lim n x n n n x x +→∞⎛⎫ ⎪⎝⎭. 证:(1)212sin ,01,2x x x n =∴<≤≥因此 1sin ,{}n n n n x x x x +=≤单调减少有下界()0n x ≥根据准则1,lim n n x A →∞=存在在1sin n n x x +=两边取极限得sin 0A A A =∴=因此1lim 0n n x +→∞=(2)原式21sin lim "1"n x n n n x x ∞→∞⎛⎫= ⎪⎝⎭为型离散型不能直接用洛必达法则先考虑 2011s i n l i m l n 0s i n l i m t t t t t t t e t →⎡⎤⎢⎥⎣⎦→⎛⎫= ⎪⎝⎭用洛必达法则2011(cos sin )limsin 2t t t t t tt te→-=23233310()0()26cos sin limlim22t t t t t t t t t t tt t ee →→⎡⎤⎡⎤-+--+⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦==33110()261lim26t t t t ee →⎛⎫-++ ⎪⎝⎭-==.(19)证明:当0a b π<<<时,1sin 2cos sin 2cos b b b b a a a aππ++>++. 证:令()sin 2cos f x x x x x π=++ 只需证明0a x π<<<时,()f x 严格单调增加()sin cos 2sin f x x x x x π'=+-+cos sin x x x π=-+()cos sin cos sin 0f x x x x x x x ''=--=-< ()f x '∴严格单调减少又()cos 0f ππππ'=+=故0()0()a x f x f x π'<<<>时则单调增加(严格)()()b a f b f a >>由则得证(20)设函数()(0,)f u +∞在内具有二阶导数,且Z f=满足等式22220z zx y∂∂+=∂∂. (I )验证()()0f u f u u'''+=; (II )若(1)0,(1)1f f '== 求函数()f u 的表达式.证:(I)zzf f xy∂∂''==∂∂()()2223222222zx y f f x x y x y ∂'''=+∂++()()2223222222zy x f f yx y x y ∂'''=+∂++22220()()0z zf x y f u f u u∂∂''+=+=∂∂'''∴+=代入方程得成立(II )令(),;,dp p dp du c f u p c p du u p u u'==-=-+=⎰⎰则22(1)1,1,()ln ||,(1)0,0()ln ||f c f u u c f c f u u '===+==∴=由(21)已知曲线L 的方程221(0)4x t t y t t ⎧=+≥⎨=-⎩(I )讨论L 的凹凸性;(II )过点(1,0)-引L 的切线,求切点00(,)x y ,并写出切线的方程; (III )求此切线与L (对应0x x ≤部分)及x 轴所围的平面图形的面积.解:(I )4222,42,12dx dy dy t t t dt dt dx t t-==-==-222312110(0)2dy d d y dx t dx dx dt t t t dt ⎛⎫⎪⎛⎫⎝⎭=⋅=-⋅=-<> ⎪⎝⎭处(0L t ∴>曲线在处)是凸(II )切线方程为201(1)y x t ⎛⎫-=-+⎪⎝⎭,设2001x t =+,20004y t t =-,则2223200000000241(2),4(2)(2)t t t t t t t t ⎛⎫-=-+-=-+ ⎪⎝⎭得200000020,(1)(2)001t t t t t t +-=-+=>∴=点为(2,3),切线方程为1y x =+(III )设L 的方程()x g y =则()3()(1)S g y y dy =--⎡⎤⎣⎦⎰(2240221t t y x -+===+解出t 得由于(2,3)在L上,由(23221()y x x g y ===+=得可知(309(1)S y y dy ⎡⎤=----⎣⎦⎰33(102)4y dy =--⎰33332202(10)4(4)214(4)3y y y y =-+-=+⨯⨯-8642213333=+-=-(22)已知非齐次线性方程组x 1+x 2+x 3+x 4=-1, 4x 1+3x 2+5x 3-x 4=-1,a x 1+x 2+3x 3+bx 4=1 有3个线性无关的解.① 证明此方程组的系数矩阵A 的秩为2. ② 求a,b 的值和方程组的通解.解:① 设α1,α2,α3是方程组的3个线性无关的解,则α2-α1,α3-α1是AX =0的两个线性无关的解.于是AX =0的基础解系中解的个数不少于2,即4-r(A )≥2,从而r(A )≤2.又因为A 的行向量是两两线性无关的,所以r(A )≥2. 两个不等式说明r(A )=2.② 对方程组的增广矩阵作初等行变换:1 1 1 1 -1 1 1 1 1 -1(A |β)= 4 3 5 -1 -1 → 0 –1 1 –5 3 ,a 1 3b 1 0 0 4-2a 4a+b-5 4-2a 由r(A )=2,得出a=2,b=-3.代入后继续作初等行变换:1 02 -4 2 → 0 1 -1 5 -3 .0 0 0 0 0 得同解方程组x 1=2-2x 3+4x 4, x 2=-3+x 3-5x 4,求出一个特解(2,-3,0,0)T和AX =0的基础解系(-2,1,1,0)T,(4,-5,0,1) T.得到方程组的通解: (2,-3,0,0)T+c 1(-2,1,1,0)T+c 2(4,-5,0,1)T, c 1,c 2任意.(23) 设3阶实对称矩阵A 的各行元素之和都为3,向量α1=(-1,2,-1)T, α2=(0,-1,1)T都是齐次线性方程组AX =0的解. ① 求A 的特征值和特征向量.② 求作正交矩阵Q 和对角矩阵Λ,使得 Q TAQ =Λ.解:① 条件说明A (1,1,1)T=(3,3,3)T,即 α0=(1,1,1)T是A 的特征向量,特征值为3.又α1,α2都是AX =0的解说明它们也都是A 的特征向量,特征值为0.由于α1,α2线性无关, 特征值0的重数大于1.于是A 的特征值为3,0,0.属于3的特征向量:c α0, c ≠0.属于0的特征向量:c 1α1+c 2α2, c 1,c 2不都为0. ② 将α0单位化,得η0=(33,33,33)T. 对α1,α2作施密特正交化,的η1=(0,-22,22)T , η2=(-36,66,66)T. 作Q =(η0,η1,η2),则Q 是正交矩阵,并且3 0 0Q T AQ =Q -1AQ = 0 0 0 . 0 0 0。

河北大学2006年数学分析

河北大学2006年数学分析

河北大学2006年数学分析一、(10分)已知,1(),1x x f x a x <⎧=⎨≥⎩,,0()2,0b x g x x x <⎧=⎨+≥⎩,其中a ,b 为常数,写出[]()f g x 的表达式.二、(15分)求极限11112lim nxx x x n x a a a n →∞⎛⎫+++ ⎪ ⎪ ⎪⎝⎭ .(0i a >,1,2,i = ) 三、(15分)设()y f x =为定义在(),-∞+∞上的已知可导函数且对任意实数a ,b 均满足()()()a b f a b e f b e f a +=+,又已知(0)f e '=,求()f x '的表达式(不必求出()f x 的表达式).四、(15分)假设函数()f x 在[],a b 上连续,在(),a b 内可导,且()0f x '≤. 记1()()x a F x f t dt x a=-⎰,证明:在(),a b 内,()0F x '≤. 五、(15分)设有两条抛物线21y nx n =+和21(1)1y n x n =+++,记它们交点的横坐标的绝对值为n a .(1)求这两条抛物线所围成的平面图形的面积n s ;(2)求级数1n n n s a ∞=∑的和. 六、(15分)设闭曲线C 是由抛物线21y x =-(12x -≤≤)和连接两点(1,0)A -与(2,3)B 的线段所组成,计算曲线积分(取正向)22C ydx xdy I x y -+=+⎰.七、(15分)设z 为,x y 的可微函数,试将222z z x y z x y ∂∂+=∂∂变换成(,)w w u v =的方程,假设x u =,1u y uv =+,1u z uw=+. 八、(15分)若1lnlim ln n n u q n →∞=存在,则级数1n n u ∞=∑(0n u >)当1q >时收敛. 九、(20分)设有幂级数2112()nn n x n n ∞=+∑,求(1)收敛半径及收敛域;(2)和函数在收敛区间内的导函数.十、(15分)计算曲面积分332223(1)I x dydz y dzdx z dxdy ∑=++-⎰⎰,其中∑是曲面221z x y =--(0z ≥)的上侧.。

2006年考研数学一真题及解析

2006年考研数学一真题及解析

Aα 1 , Aα 2 ,⋯ , Aα s 也线性相关,故应选( A).
(12)设 A 为 3 阶矩阵,将 A 的第 2 行加到第 1 行得 B ,再将 B 的第 1 列的 −1 倍加到第 2
⎛ 1 1 0⎞ ⎜ ⎟ 列得 C ,记 P = 0 1 0 ,则 ⎜ ⎟ ⎜ 0 0 1⎟ ⎝ ⎠
(A) C = P 1 AP . (C) C = P T AP .
(1) lim
x→ 0
【分析】 本方程为可分离变量型,先分离变量,然后两边积分即可 【详解】 原方程等价为
dy ⎛ 1 ⎞ = ⎜ − 1⎟ dx , y ⎝x ⎠
两边积分得
ln y = ln x − x + C1 ,整理得
y = Cxe − x .( C = eC1 )
(3)设 Σ 是锥面 z =
消去 λ0 ,得
f x′ ( x 0 , y 0 )ϕ y′ ( x 0 , y 0 ) − f y′ ( x 0 , y 0 )ϕ x′ ( x0 , y0 ) = 0 ,
整理得
f x′ ( x0 , y0 ) =
1
ϕ y′ ( x0 , y0 )
, f y′ ( x0 , y0 )ϕx′ ( x0 , y0 ) .(因为 ϕ y ′ ( x, y) ≠ 0 )
若 f x′ ( x0 , y0 ) ≠ 0 ,则 f y ′ ( x0 , y 0 ) ≠ 0 .故选(D). (11)设 α1 , α 2 ,⋯ , α s 均为 n 维列向量, A 为 m × n 矩阵,下列选项正确的是 (A) (B) (C) 若 α1 ,α 2 ,⋯ ,α s 线性相关,则 Aα 1 , Aα 2 ,⋯ , Aα s 线性相关. 若 α1 ,α 2 ,⋯ ,α s 线性相关,则 Aα 1 , Aα 2 ,⋯ , Aα s 线性无关. 若 α1 ,α 2 ,⋯ ,α s 线性无关,则 Aα 1 , Aα 2 ,⋯ , Aα s 线性相关.

2006考研数三真题及解析

2006考研数三真题及解析

2006年全国硕士研究生入学统一考试数学三试题一、填空题:1-6小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (1) ()11lim _________nn n n -→∞+⎛⎫=⎪⎝⎭(2) 设函数()2f x x =在的某领域内可导,且()()(),21f xf x e f '==,则()2______f '''=(3) 设函数()f u 可微,且()102f '=,则()224z f x y =-在点(1,2)处的全微分()1,2_____dz =(4) 设矩阵2112A ⎛⎫= ⎪-⎝⎭,E 为2阶单位矩阵,矩阵E 满足2BA B E =+,则_________B =(5) 设随机变量X 与Y 相互独立,且均服从区间[]0,3上的均匀分布,则(){}max ,1P X Y ≤=_________(6) 设总体X 的概率密度为()()121,,, (2)xn f x e x x x x -=-∞<<+∞为总体x 的简单随机样本,其样本方差2S ,则E 2S =__________二、选择题:9-14小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(7) 设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x 为自变量x 在0x 处的增量,y 与dy 分别为()f x 在点0x 处对应的增量与微分,若0x > ,则( ) (A)0.dx y << (B)0.y dy << (C)0.y dy <<(D)0.dy y <<(8) 设函数()f x 在0x =处连续,且()22lim1h f h h→=,则( )(A)()()'000f f -=且存在 (B)()()'010f f -=且存在(C)()()'000f f +=且存在 (D)()()'010f f +=且存在(9) 若级数1nn a∞=∑收敛,则级数 ( )(A)1n n a ∞=∑收敛 (B)()11nn n a ∞=-∑收敛(C) 11n n n a a ∞+=∑收敛 (D)112n n n a a ∞+=+∑收敛(10) 设非齐次线性微分方程()()y P x y Q x '+=有两个的解()()12,,y x y x C 为任意常数,则该方程通解是( )(A)()()12C y x y x -⎡⎤⎣⎦ (B)()()()112y x C y x y x +-⎡⎤⎣⎦ (C)()()12C y x y x +⎡⎤⎣⎦ (D)()()()112y x C y x y x ++⎡⎤⎣⎦(11) 设()(),,f x y x y ϕ与均为可微函数,且(),0y x y ϕ'≠,已知()00,x y 是(),f x y 在约束条件(),0x y ϕ=下的一个极值点,下列选项正确的是 ( )(A) 若()()0000,0,,0x y f x y f x y ''==则 (B) 若()()0000,0,,0x y f x y f x y ''=≠则 (C) 若()()0000,0,,0x y f x y f x y ''≠=则 (D) 若()()0000,0,,0x y f x y f x y ''≠≠则(12) 设12,,,s ααα 均为n 维列向量,A 是m n ⨯矩阵,下列选项正确的是( ) (A)若12,,,s ααα 线性相关,则12,,,s A A A ααα 线性相关. (B)若12,,,s ααα 线性相关,则12,,,s A A A ααα 线性无关.(C)若12,,,s ααα 线性无关,则12,,,s A A A ααα 线性相关. (D)若12,,,s ααα 线性无关,12,,,s A A A ααα 线性无关.(13) 设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 第一列的 -1倍加到第2列得C ,记110010001P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则( )(A) 1C P AP -= (B) 1C PAP -= (C) TC P AP = (D) TC PAP =(14) 设随机变量X 服从正态分布()211,N μσ,随机变量Y 服从正态分布()222,N μσ,且{}{}1211P X P Y μμ-<>-<,则必有 ( )(A)12σσ< (B)12σσ> (C) 12μμ< (D) 12μμ>三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分7分)设()1sin,,0,01arctan xy y yf x y x y xy xπ-=->>+, 求 (I) ()()lim ,y g x f x y →+∞=; (II) ()0lim x g x +→.(16)(本题满分7分)计算二重积分D,其中D 是由直线,1,0y x y x ===,所围成的平面区域.(17)(本题满分10分)证明:当0,sin 2cos sin 2cos a b b b b b a a a a πππ<<<++>++时.(18)(本题满分8分)在XOY 坐标平面上,连续曲线L 过点()1,0,M 其上任意点()(),0P x y x ≠处的切线斜率与直线OP 的斜率之差等于(>0)ax a 常数(I) 求L 的方程;(II) 当L 与直线y ax =所围成平面图形的面积为83时,确定a 的值.(19)(本题满分10分)求幂级数()()1211121n n n x n n -+∞=--∑的收敛域及和函数()s x .(20)(本题满分13分)设4维向量组 ()()()1231,1,1,1,2,2,2,2,3,3,3,3,TTTa a a ααα=+=+=+()44,4,4,4Ta α=+问a 为何值时1234,,,αααα线性相关?当1234,,,αααα线性相关时,求其一个极大线性无关组,并将其余向量用该极大线性无关组线性表出.(21)(本题满分13分)设3 阶实对称矩阵A 的各行元素之和均为3,向量()()121,2,1,0,1,1TTαα=--=-是线性方程组0Ax =的两个解.(I) 求A 的特征值与特征向量(II) 求正交矩阵Q 和对角矩阵Λ,使得T Q AQ A =; (III) 求A 及63()2A E -,其中E 为3阶单位矩阵.(22)(本题满分13分)设随机变量X 的概率密度为()1,1021,02,40,X x f x x ⎧-<<⎪⎪⎪=≤<⎨⎪⎪⎪⎩其它()2,,Y X F x y =令为二维随机变量(),X Y 的分布函数,求: (I) Y 的概率密度()Y f y ;(II) ()cov ,X Y ; (III) 1,42F ⎛⎫-⎪⎝⎭.(23)(本题满分13分)设总体X 的概率密度为(),01,1,120,x f x x θθθ<<⎧⎪=-≤<⎨⎪⎩其它,其中θ是未知参数()1201,,,......n X X X θ<<为来自总体X 的简单随机样本,记N 为样本值12,,......n x x x 中小于1的个数,求: (I) θ的矩估计; (II) θ的最大似然估计.2006年全国硕士研究生入学统一考试数学三试题解析一、填空题 (1)【答案】1【详解】题目考察数列的极限,由于数列中有(1)n-,故求此数列的极限,分为奇数列和偶数列两个部分进行。

2006年考研数学三真题及解析

2006年考研数学三真题及解析

2006年考研数学(三)真题一、填空题:1-6小题,每小题4分,共24分.把答案填在题中横线上.(1)()11lim ______.nn n n -→∞+⎛⎫=⎪⎝⎭(2)设函数()f x 在2x =的某邻域内可导,且()()e f x f x '=,()21f =,则()2____.f '''=(3)设函数()f u 可微,且()102f '=,则()224z f x y =-在点(1,2)处的全微分()1,2d _____.z =(4)设矩阵2112A ⎛⎫=⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2BA B E =+,则=B .(5)设随机变量X Y 与相互独立,且均服从区间[]0,3上的均匀分布,则{}{}max ,1P X Y ≤=_______.(6)设总体X 的概率密度为()()121,,,,2xn f x e x X X X -=-∞<<+∞ 为总体X 的简单随机样本,其样本方差为2S ,则2____.ES =二、选择题:7-14小题,每小题4分,共32分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在点0x 处的增量,d y y ∆与分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则(A)0d y y <<∆.(B)0d y y <∆<.(C)d 0y y ∆<<.(D)d 0y y <∆<.[](8)设函数()f x 在0x =处连续,且()22lim1h f h h→=,则(A)()()000f f -'=且存在(B)()()010f f -'=且存在(C)()()000f f +'=且存在(D)()()010f f +'=且存在[](9)若级数1nn a∞=∑收敛,则级数(A)1nn a∞=∑收敛.(B )1(1)nn n a ∞=-∑收敛.(C)11n n n a a ∞+=∑收敛.(D)112n n n a a ∞+=+∑收敛.[](10)设非齐次线性微分方程()()y P x y Q x '+=有两个不同的解12(),(),y x y x C 为任意常数,则该方程的通解是(A)[]12()()C y x y x -.(B)[]112()()()y x C y x y x +-.(C)[]12()()C y x y x +.(D)[]112()()()y x C y x y x ++[](11)设(,)(,)f x y x y ϕ与均为可微函数,且(,)0y x y ϕ'≠,已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是(A)若00(,)0x f x y '=,则00(,)0y f x y '=.(B)若00(,)0x f x y '=,则00(,)0y f x y '≠.(C)若00(,)0x f x y '≠,则00(,)0y f x y '=.(D)若00(,)0x f x y '≠,则00(,)0y f x y '≠.[](12)设12,,,s ααα 均为n 维列向量,A 为m n ⨯矩阵,下列选项正确的是(A)若12,,,s ααα 线性相关,则12,,,s A A A ααα 线性相关.(B)若12,,,s ααα 线性相关,则12,,,s A A A ααα 线性无关.(C)若12,,,s ααα 线性无关,则12,,,s A A A ααα 线性相关.(D)若12,,,s ααα 线性无关,则12,,,s A A A ααα 线性无关.[](13)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的1-倍加到第2列得C ,记110010001P ⎛⎫⎪= ⎪ ⎪⎝⎭,则(A)1C P AP -=.(B)1C PAP -=.(C)T C P AP =.(D)TC PAP =.[](14)设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且{}{}1211P X P Y μμ-<>-<则必有(A)12σσ<(B)12σσ>(C)12μμ<(D)12μμ>[]三、解答题:15-23小题,共94分.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分7分)设()1sin,,0,01arctan xy y yf x y x y xy xπ-=->>+,求(Ⅰ)()()lim ,y g x f x y →+∞=;(Ⅱ)()0lim x g x +→.(16)(本题满分7分)计算二重积分d Dx y ,其中D 是由直线,1,0y x y x ===所围成的平面区域.(17)(本题满分10分)证明:当0a b π<<<时,sin 2cos sin 2cos b b b b a a a a ππ++>++.(18)(本题满分8分)在xOy 坐标平面上,连续曲线L 过点()1,0M ,其上任意点()(),0P x y x ≠处的切线斜率与直线OP 的斜率之差等于ax (常数>0a ).(Ⅰ)求L 的方程;(Ⅱ)当L 与直线y ax =所围成平面图形的面积为83时,确定a 的值.(19)(本题满分10分)求幂级数()()1211121n n n x n n -+∞=--∑的收敛域及和函数()s x .(20)(本题满分13分)设4维向量组()()()TTT1231,1,1,1,2,2,2,2,3,3,3,3,a a a ααα=+=+=+()T44,4,4,4a α=+,问a 为何值时1234,,,αααα线性相关?当1234,,,αααα线性相关时,求其一个极大线性无关组,并将其余向量用该极大线性无关组线性表出.(21)(本题满分13分)设3阶实对称矩阵A 的各行元素之和均为3,向量()()TT121,2,1,0,1,1αα=--=-是线性方程组0Ax =的两个解.(Ⅰ)求A 的特征值与特征向量;(Ⅱ)求正交矩阵Q 和对角矩阵Λ,使得TQ AQ =Λ;(Ⅲ)求A 及632A E ⎛⎫- ⎪⎝⎭,其中E 为3阶单位矩阵.(22)(本题满分13分)设随机变量X 的概率密度为()1,1021,0240,X x f x x ⎧-<<⎪⎪⎪=≤<⎨⎪⎪⎪⎩ 其他,令()2,,Y X F x y =为二维随机变量(,)X Y 的分布函数.(Ⅰ)求Y 的概率密度()Y f y ;(Ⅱ)Cov(,)X Y ;(Ⅲ)1,42F ⎛⎫-⎪⎝⎭.(23)(本题满分13分)设总体X 的概率密度为(),01,;1,12,0,x f x x θθθ<<⎧⎪=-≤<⎨⎪⎩其他,其中θ是未知参数()01θ<<,12n ,...,X X X 为来自总体X 的简单随机样本,记N 为样本值12,...,n x x x 中小于1的个数.(Ⅰ)求θ的矩估计;(Ⅱ)求θ的最大似然估计2006年考研数学(三)真题解析二、填空题:1-6小题,每小题4分,共24分.把答案填在题中横线上.(1)()11lim 1.nn n n -→∞+⎛⎫=⎪⎝⎭【分析】将其对数恒等化ln eNN =求解.【详解】()(1)111ln lim (1)ln 1lim lim eennn n n n n n n n n n -→∞-++⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭→∞→∞+⎛⎫== ⎪⎝⎭,而数列{}(1)n-有界,1lim ln 0n n n →∞+⎛⎫=⎪⎝⎭,所以1lim(1)ln 0n n n n →∞+⎛⎫-= ⎪⎝⎭.故()101lim e 1nn n n -→∞+⎛⎫==⎪⎝⎭.(2)设函数()f x 在2x =的某邻域内可导,且()()e f x f x '=,()21f =,则()322e .f '''=【分析】利用复合函数求导即可.【详解】由题设知,()()ef x f x '=,两边对x 求导得()()()2e()ef x f x f x f x '''==,两边再对x 求导得()()23()2e ()2ef x f x f x f x ''''==,又()21f =,故()323(2)2e2e f f '''==.(3)设函数()f u 可微,且()102f '=,则()224z f x y =-在点(1,2)处的全微分()1,2d 4d 2d .z x y =-【分析】利用二元函数的全微分公式或微分形式不变性计算.【详解】方法一:因为22(1,2)(1,2)(4)84z f x y xx ∂'=-⋅=∂,()22(1,2)(1,2)(4)22z f x y y y∂'=-⋅-=-∂,所以()()()1,21,21,2d d d 4d 2d z z z x y x y xy⎡⎤∂∂=+=-⎢⎥∂∂⎣⎦.方法二:对()224z f x y=-微分得()222222d (4)d(4)(4)8d 2d z f x y x y f x y x x y y ''=--=--,故()()1,2d (0)8d 2d 4d 2d z f x y x y '=-=-.(4)设矩阵2112A ⎛⎫= ⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2BA B E =+,则=B 2.【分析】将矩阵方程改写为AX B XA B AXB C ===或或的形式,再用方阵相乘的行列式性质进行计算即可.【详解】由题设,有()2B A E E-=于是有4B A E -=,而11211A E -==-,所以2B =.(5)设随机变量X Y 与相互独立,且均服从区间[]0,3上的均匀分布,则{}{}max ,1P X Y ≤=19.【分析】利用X Y 与的独立性及分布计算.【详解】由题设知,X Y 与具有相同的概率密度1,3()30,x f x ⎧≤≤⎪=⎨⎪⎩ 0 其他.则{}{}{}max ,11,1P X Y P X Y ≤=≤≤{}{}11P X P Y =≤≤{}()2120111d 39P X x ⎛⎫=≤== ⎪⎝⎭⎰.【评注】本题属几何概型,也可如下计算,如下图:则{}{}{}1max ,11,19S P X Y P X Y S ≤=≤≤==阴.(6)设总体X 的概率密度为()()121,,,,2xn f x e x X X X -=-∞<<+∞ 为总体X 的简单随机样本,其样本方差为2S ,则22.ES =【分析】利用样本方差的性质2ES DX =即可.【详解】因为()d e d 02xx EX xf x x x +∞+∞--∞-∞===⎰⎰,22222000()d e d e d e 2e d 2xx xx x EX x f x x x x x x x x+∞+∞+∞+∞---+∞--∞-∞====-+⎰⎰⎰⎰2e2e d 2e 2x x xx x +∞-+∞--+∞=-+=-=⎰,所以()22202DX EX EX =-=-=,又因2S 是DX 的无偏估计量,所以22ES DX ==.二、选择题:7-14小题,每小题4分,共32分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在点0x 处的增量,d y y ∆与分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则(A)0d y y <<∆.(B)0d y y <∆<.(C)d 0y y ∆<<.(D)d 0y y <∆<.[A]【分析】题设条件有明显的几何意义,用图示法求解.【详解】由()0,()0f x f x '''>>知,函数()f x 单调增加,曲线()y f x =凹向,作函数()y f x =的图形如右图所示,显然当0x ∆>时,00d ()d ()0y y f x x f x x ''∆>==∆>,故应选(A).(8)设函数()f x 在0x =处连续,且()22lim1h f h h →=,则(A)()()000f f -'=且存在(B)()()010f f -'=且存在(C)()()000f f +'=且存在(D)()()010f f +'=且存在[C ]【分析】从()22lim1h f h h→=入手计算(0)f ,利用导数的左右导数定义判定(0),(0)f f -+''的存在性.【详解】由()22lim1h f h h→=知,()20lim 0h f h →=.又因为()f x 在0x =处连续,则()20(0)lim ()lim 0x h f f x f h →→===.令2t h =,则()()22(0)1limlim (0)h t f h f t f f ht++→→-'===.所以(0)f +'存在,故本题选(C ).(9)若级数1nn a∞=∑收敛,则级数(A)1nn a∞=∑收敛.(B )1(1)nn n a ∞=-∑收敛.(C)11n n n a a ∞+=∑收敛.(D)112n n n a a ∞+=+∑收敛.[D]【分析】可以通过举反例及级数的性质来判定.【详解】由1n n a ∞=∑收敛知11n n a ∞+=∑收敛,所以级数112n n n a a ∞+=+∑收敛,故应选(D).或利用排除法:取1(1)nn a n =-,则可排除选项(A),(B);取(1)nn a =-.故(D)项正确.(10)设非齐次线性微分方程()()y P x y Q x '+=有两个不同的解12(),(),y x y x C 为任意常数,则该方程的通解是(A)[]12()()C y x y x -.(B)[]112()()()y x C y x y x +-.(C)[]12()()C y x y x +.(D)[]112()()()y x C y x y x ++[B]【分析】利用一阶线性非齐次微分方程解的结构即可.【详解】由于12()()y x y x -是对应齐次线性微分方程()0y P x y '+=的非零解,所以它的通解是[]12()()Y C y x y x =-,故原方程的通解为[]1112()()()()y y x Y y x C y x y x =+=+-,故应选(B).【评注】本题属基本题型,考查一阶线性非齐次微分方程解的结构:*y y Y =+.其中*y 是所给一阶线性微分方程的特解,Y 是对应齐次微分方程的通解.(11)设(,)(,)f x y x y ϕ与均为可微函数,且(,)0y x y ϕ'≠,已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是(A)若00(,)0x f x y '=,则00(,)0y f x y '=.(B)若00(,)0x f x y '=,则00(,)0y f x y '≠.(C)若00(,)0x f x y '≠,则00(,)0y f x y '=.(D)若00(,)0x f x y '≠,则00(,)0y f x y '≠.[D]【分析】利用拉格朗日函数(,,)(,)(,)F x y f x y x y λλϕ=+在000(,,)x y λ(0λ是对应00,x y 的参数λ的值)取到极值的必要条件即可.【详解】作拉格朗日函数(,,)(,)(,)F x y f x y x y λλϕ=+,并记对应00,x y 的参数λ的值为0λ,则000000(,,)0(,,)0x y F x y F x y λλ⎧'=⎪⎨'=⎪⎩,即0000000000(,)(,)0(,)(,)0x x y y f x y x y f x y x y λϕλϕ⎧''+=⎪⎨''+=⎪⎩.消去0λ,得00000000(,)(,)(,)(,)0x y y x f x y x y f x y x y ϕϕ''''-=,整理得000000001(,)(,)(,)(,)x y x y f x y f x y x y x y ϕϕ'''='.(因为(,)0y x y ϕ'≠),若00(,)0x f x y '≠,则00(,)0y f x y '≠.故选(D).(12)设12,,,s ααα 均为n 维列向量,A 为m n ⨯矩阵,下列选项正确的是(A)若12,,,s ααα 线性相关,则12,,,s A A A ααα 线性相关.(B)若12,,,s ααα 线性相关,则12,,,s A A A ααα 线性无关.(C)若12,,,s ααα 线性无关,则12,,,s A A A ααα 线性相关.(D)若12,,,s ααα 线性无关,则12,,,s A A A ααα 线性无关.[A ]【分析】本题考查向量组的线性相关性问题,利用定义或性质进行判定.【详解】记12(,,,)s B ααα= ,则12(,,,)s A A A AB ααα= .所以,若向量组12,,,s ααα 线性相关,则()r B s <,从而()()r AB r B s ≤<,向量组12,,,s A A A ααα 也线性相关,故应选(A).(13)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的1-倍加到第2列得C ,记110010001P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则(A)1C P AP -=.(B)1C PAP -=.(C)T C P AP =.(D)TC PAP =.[B]【分析】利用矩阵的初等变换与初等矩阵的关系以及初等矩阵的性质可得.【详解】由题设可得110110110110010,010010010001001001001B A C B A --⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ,而1110010001P --⎛⎫⎪= ⎪ ⎪⎝⎭,则有1C PAP -=.故应选(B).(14)设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且{}{}1211P X P Y μμ-<>-<则必有(A)12σσ<(B)12σσ>(C)12μμ<(D)12μμ>[A]【分析】利用标准正态分布密度曲线的几何意义可得.【详解】由题设可得12112211X Y P P μμσσσσ⎧-⎫⎧-⎫<><⎨⎬⎨⎬⎩⎭⎩⎭,则12112121σσ⎛⎫⎛⎫Φ->Φ-⎪ ⎪⎝⎭⎝⎭,即1211σσ⎛⎫⎛⎫Φ>Φ ⎪ ⎪⎝⎭⎝⎭.其中()x Φ是标准正态分布的分布函数.又()x Φ是单调不减函数,则1211σσ>,即12σσ<.故选(A).三、解答题:15-23小题,共94分.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分7分)设()1sin,,0,01arctan xy y yf x y x y xy xπ-=->>+,求(Ⅰ)()()lim ,y g x f x y →+∞=;(Ⅱ)()0lim x g x +→.【分析】第(Ⅰ)问求极限时注意将x 作为常量求解,此问中含,0∞⋅∞∞型未定式极限;第(Ⅱ)问需利用第(Ⅰ)问的结果,含∞-∞未定式极限.【详解】(Ⅰ)()()1sin lim ,lim 1arctan y y x y y y g x f x y xy x π→+∞→∞⎛⎫- ⎪⎪==-+ ⎪⎪⎝⎭sin 11111lim 1arctan arctan y x y xy x x x x y ππ→∞⎛⎫ ⎪⎪-⎪⎪-=-=- ⎪+ ⎪ ⎪ ⎪⎝⎭.(Ⅱ)()200011arctan lim lim lim arctan arctan x x x x x x x g x x x x x ππ+++→→→--+⎛⎫=-= ⎪⎝⎭(通分)22222000112arctan 2(1)1lim lim lim 22x x x x x x x x x x x x x xππππ+++→→→-+-+-+++===(16)(本题满分7分)计算二重积分d Dx y ,其中D 是由直线,1,0y x y x ===所围成的平面区域.【分析】画出积分域,将二重积分化为累次积分即可.【详解】积分区域如右图.因为根号下的函数为关于x 的一次函数,“先x 后y ”积分较容易,所以1d d Dx y y x=⎰⎰()311222002122d d 339y y xy y y y y=--==⎰⎰(17)(本题满分10分)证明:当0a b π<<<时,sin 2cos sin 2cos b b b b a a a a ππ++>++.【分析】利用“参数变易法”构造辅助函数,再利用函数的单调性证明.【详解】令()sin 2cos sin 2cos ,0f x x x x x a a a a a x b πππ=++---<≤≤<,则()sin cos 2sin cos sin f x x x x x x x x ππ'=+-+=-+,且()0f π'=.又()cos sin cos sin 0f x x x x x x x ''=--=-<,(0,sin 0x x x π<<>时),故当0a x b π<≤≤<时,()f x '单调减少,即()()0f x f π''>=,则()f x 单调增加,于是()()0f b f a >=,即sin 2cos sin 2cos b b b b a a a a ππ++>++.(18)(本题满分8分)在xOy 坐标平面上,连续曲线L 过点()1,0M ,其上任意点()(),0P x y x ≠处的切线斜率与直线OP 的斜率之差等于ax (常数>0a ).(Ⅰ)求L 的方程;(Ⅱ)当L 与直线y ax =所围成平面图形的面积为83时,确定a 的值.【分析】(Ⅰ)利用导数的几何意义建立微分方程,并求解;(Ⅱ)利用定积分计算平面图形的面积,确定参数.【详解】(Ⅰ)设曲线L 的方程为()y f x =,则由题设可得y y ax x '-=,这是一阶线性微分方程,其中1(),()P x Q x ax x=-=,代入通解公式得()11d d 2e e d x x x xy ax x C x ax C ax Cx -⎛⎫⎰⎰=+=+=+ ⎪⎝⎭⎰,又(1)0f =,所以C a =-.故曲线L 的方程为2y ax ax =-(0)x ≠.(Ⅱ)L 与直线y ax =(>0a )所围成平面图形如右图所示.所以()220d D ax ax ax x ⎡⎤=--⎣⎦⎰()220482d 33a x x x a =-==⎰,故2a =.(19)(本题满分10分)求幂级数()()1211121n n n x n n -+∞=--∑的收敛域及和函数()s x .【分析】因为幂级数缺项,按函数项级数收敛域的求法计算;利用逐项求导或积分并结合已知函数的幂级数展开式计算和函数.【详解】记121(1)()(21)n n n x u x n n -+-=-,则2321121(1)()(1)(21)lim lim (1)()(21)n n n n n n n nx u x n n x x u x n n ++-+→∞→∞-++==--.所以当21,1x x <<即时,所给幂级数收敛;当1x >时,所给幂级数发散;当1x =±时,所给幂级数为1(1)(1),(21)(21)n nn n n n -----,均收敛,故所给幂级数的收敛域为[]1,1-在()1,1-内,()12112111(1)(1)()22()(21)(21)2n n n nn n x x s x x xs x n n n n -+-∞∞==--===--∑∑,而12112211211(1)1(),()(1)211n n n n n n x s x s x x n x --∞∞--==-'''==-=-+∑∑,所以11121()(0)()d arctan 1x xs x s s t t t x t''''-===+⎰⎰,又1(0)0s '=,于是1()arctan s x x '=.同理11100()(0)()d arctan d xxs x s s t t t t'-==⎰⎰()20201arctan d arctan ln 112xxt t t t x x x t =-=-++⎰,又1(0)0s =,所以()211()arctan ln 12s x x x x =-+.故()22()2arctan ln 1s x x x x x=-+.()1,1x ∈-.由于所给幂级数在1x =±处都收敛,且()22()2arctan ln 1s x x x x x =-+在1x =±处都连续,所以()s x 在1x =±成立,即()22()2arctan ln 1s x x x x x =-+,[]1,1x ∈-.(20)(本题满分13分)设4维向量组()()()TTT1231,1,1,1,2,2,2,2,3,3,3,3,a a a ααα=+=+=+()T44,4,4,4a α=+,问a 为何值时1234,,,αααα线性相关?当1234,,,αααα线性相关时,求其一个极大线性无关组,并将其余向量用该极大线性无关组线性表出.【分析】因为向量组中的向量个数和向量维数相同,所以用以向量为列向量的矩阵的行列式为零来确定参数a ;用初等变换求极大线性无关组.【详解】记以1234,,,αααα为列向量的矩阵为A ,则312341234(10)12341234a a A a a a a++==+++.于是当0,010A a a ===-即或时,1234,,,αααα线性相关.当0a =时,显然1α是一个极大线性无关组,且2131412,3,4αααααα===;当10a =-时,1α2α3α4α9234183412741236A -⎛⎫⎪-⎪= ⎪-⎪-⎝⎭,由于此时A 有三阶非零行列式9231834000127--=-≠-,所以123,,ααα为极大线性无关组,且123441230αααααααα+++==---,即.(21)(本题满分13分)设3阶实对称矩阵A 的各行元素之和均为3,向量()()TT121,2,1,0,1,1αα=--=-是线性方程组0Ax =的两个解.(Ⅰ)求A 的特征值与特征向量;(Ⅱ)求正交矩阵Q 和对角矩阵Λ,使得TQ AQ =Λ;(Ⅲ)求A 及632A E ⎛⎫- ⎪⎝⎭,其中E 为3阶单位矩阵.【分析】由矩阵A 的各行元素之和均为3及矩阵乘法可得矩阵A 的一个特征值和对应的特征向量;由齐次线性方程组0Ax =有非零解可知A 必有零特征值,其非零解是0特征值所对应的特征向量.将A 的线性无关的特征向量正交化可得正交矩阵Q ;由TQ AQ =Λ可得到A 和632A E ⎛⎫- ⎪⎝⎭.【详解】(Ⅰ)因为矩阵A 的各行元素之和均为3,所以1311331131A ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则由特征值和特征向量的定义知,3λ=是矩阵A 的特征值,T(1,1,1)α=是对应的特征向量.对应3λ=的全部特征向量为k α,其中k 为不为零的常数.又由题设知120,0A A αα==,即11220,0A A αααα=⋅=⋅,而且12,αα线性无关,所以0λ=是矩阵A 的二重特征值,12,αα是其对应的特征向量,对应0λ=的全部特征向量为1122k k αα+,其中12,k k 为不全为零的常数.(Ⅱ)因为A 是实对称矩阵,所以α与12,αα正交,所以只需将12,αα正交.取11βα=,()()21221111012,3120,61112αββαβββ⎛⎫-⎪-⎛⎫⎛⎫⎪- ⎪⎪=-=--= ⎪ ⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭ ⎪⎝⎭.再将12,,αββ单位化,得1212312,,0ββαηηηαββ⎛⎛⎪====== ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭,令[]123,,Q ηηη=,则1T QQ -=,由A 是实对称矩阵必可相似对角化,得T 300Q AQ ⎡⎤⎢⎥==Λ⎢⎥⎢⎥⎣⎦.(Ⅲ)由(Ⅱ)知T300Q AQ ⎡⎤⎢⎥==Λ⎢⎥⎢⎥⎣⎦,所以T 31110011101110A Q Q ⎛⎫ ⎪ ⎪⎛⎫⎛⎫⎪ ⎪ ⎪=Λ=--=⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎝⎭⎝⎭⎪ ⎪- ⎪⎪⎝⎭⎭.666T T T 333222Q A E Q Q A E Q Q AQ E ⎡⎤⎛⎫⎛⎫⎛⎫-=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦6666633223333022203322E ⎛⎫⎛⎫⎡⎤⎛⎫ ⎪ ⎪⎢⎥ ⎪⎝⎭ ⎪⎛⎫⎢⎥ ⎪ ⎪⎛⎫⎛⎫⎪⎢⎥ ⎪ ⎪=-== ⎪ ⎪ ⎪⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎪⎢⎥ ⎪ ⎪⎝⎭⎢⎥ ⎪⎛⎫ ⎪ ⎪⎢⎥ ⎪⎝⎭⎣⎦⎪⎝⎭⎝⎭,则666T333222A E Q EQ E ⎛⎫⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭⎝⎭.(22)(本题满分13分)设随机变量X 的概率密度为()1,1021,0240,X x f x x ⎧-<<⎪⎪⎪=≤<⎨⎪⎪⎪⎩ 其他,令()2,,Y X F x y =为二维随机变量(,)X Y 的分布函数.(Ⅰ)求Y 的概率密度()Y f y ;(Ⅱ)Cov(,)X Y ;(Ⅲ)1,42F ⎛⎫-⎪⎝⎭.【分析】求一维随机变量函数的概率密度一般先求分布,然后求导得相应的概率密度或利用公式计算.【详解】(I )设Y 的分布函数为()Y F y ,即2()()()Y F y P Y y P X y =≤=≤,则1)当0y <时,()0Y F y =;2)当01y ≤<时,(2()()Y F y P X y P X =<=<<01d 4x x =+=⎰.3)当14y ≤<时,(2()()1Y F y P X y P X =<=-<<10111d d 242x x -=+=⎰.4)当4y ≥,()1Y F y =.所以1()()40,Y Y y f y F y y <<⎪'==≤<⎪⎩其他.(II )22232Cov(,)Cov(,)()()X Y X X E X EX X EX EX EXEX ==--=-,而02101d d 244x x EX x x -=+=⎰⎰,22022105d d 246x x EX x x -=+=⎰⎰,3323107d d 248x x EX x x -=+=⎰⎰,所以7152Cov(,)8463X Y =-⋅=.(Ⅲ)1,42F ⎛⎫-⎪⎝⎭211,4,422P X Y P X X ⎛⎫⎛⎫=≤-≤=≤-≤ ⎪ ⎪⎝⎭⎝⎭11,22222P X X P X ⎛⎫⎛⎫=≤--≤≤=-≤≤- ⎪ ⎪⎝⎭⎝⎭12111d 24x --==⎰.(23)(本题满分13分)设总体X 的概率密度为(),01,;1,12,0,x f x x θθθ<<⎧⎪=-≤<⎨⎪⎩其他,其中θ是未知参数()01θ<<,12n ,...,X X X 为来自总体X 的简单随机样本,记N 为样本值12,...,n x x x 中小于1的个数.(Ⅰ)求θ的矩估计;(Ⅱ)求θ的最大似然估计【分析】利用矩估计法和最大似然估计法计算.【详解】(Ⅰ)因为()1213(;)d d 1d 2EX xf x x x x x x θθθθ+∞-∞==+-=-⎰⎰⎰,令32X θ-=,可得θ的矩估计为32X θ=- .(Ⅱ)记似然函数为()L θ,则()()()()()111(1)N n N N n N L θθθθθθθθθ--=⋅⋅⋅-⋅-⋅⋅-=- 个个.两边取对数得ln ()ln ()ln(1)L N n N θθθ=+--,令d ln()0d1L N n Nθθθθ-=-=-,解得Nnθ=为θ的最大似然估计.。

2006考研数三真题及解析

2006考研数三真题及解析

2006年全国硕士研究生入学统一考试数学三试题一、填空题:1-6小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (1) ()11lim _________nn n n -→∞+⎛⎫=⎪⎝⎭(2) 设函数()2f x x =在的某领域内可导,且()()(),21f x f x e f '==,则()2______f '''=(3) 设函数()f u 可微,且()102f '=,则()224z f x y =-在点(1,2)处的全微分()1,2_____dz =(4) 设矩阵2112A ⎛⎫= ⎪-⎝⎭,E 为2阶单位矩阵,矩阵E 满足2BA B E =+,则_________B =(5) 设随机变量X 与Y 相互独立,且均服从区间[]0,3上的均匀分布,则(){}max ,1P X Y ≤=_________(6) 设总体X 的概率密度为()()121,,, (2)xn f x e x x x x -=-∞<<+∞为总体x 的简单随机样本,其样本方差2S ,则E 2S =__________二、选择题:9-14小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(7) 设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x 为自变量x 在0x 处的增量,y 与dy 分别为()f x 在点0x 处对应的增量与微分,若0x >,则( ) (A)0.dx y << (B)0.y dy << (C)0.y dy <<(D)0.dy y <<(8) 设函数()f x 在0x =处连续,且()22lim1h f h h→=,则( )(A)()()'000f f -=且存在 (B)()()'010f f -=且存在(C)()()'000f f +=且存在 (D)()()'010f f +=且存在(9) 若级数1nn a∞=∑收敛,则级数 ( )(A)1n n a ∞=∑收敛 (B)()11nn n a ∞=-∑收敛(C) 11n n n a a ∞+=∑收敛 (D)112n n n a a ∞+=+∑收敛(10) 设非齐次线性微分方程()()y P x y Q x '+=有两个的解()()12,,y x y x C 为任意常数,则该方程通解是( )(A)()()12C y x y x -⎡⎤⎣⎦ (B)()()()112y x C y x y x +-⎡⎤⎣⎦ (C)()()12C y x y x +⎡⎤⎣⎦ (D)()()()112y x C y x y x ++⎡⎤⎣⎦(11) 设()(),,f x y x y ϕ与均为可微函数,且(),0y x y ϕ'≠,已知()00,x y 是(),f x y 在约束条件(),0x y ϕ=下的一个极值点,下列选项正确的是 ( )(A) 若()()0000,0,,0x y f x y f x y ''==则 (B) 若()()0000,0,,0x y f x y f x y ''=≠则 (C) 若()()0000,0,,0x y f x y f x y ''≠=则 (D) 若()()0000,0,,0x y f x y f x y ''≠≠则 (12) 设12,,,s ααα均为n 维列向量,A 是m n ⨯矩阵,下列选项正确的是( ) (A)若12,,,s ααα线性相关,则12,,,s A A A ααα线性相关. (B)若12,,,s ααα线性相关,则12,,,s A A A ααα线性无关.(C)若12,,,s ααα线性无关,则12,,,s A A A ααα线性相关.(D)若12,,,s ααα线性无关,12,,,s A A A ααα线性无关.(13) 设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 第一列的 -1倍加到第2列得C ,记110010001P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则( )(A) 1C P AP -= (B) 1C PAP -= (C) TC P AP = (D) TC PAP =(14) 设随机变量X 服从正态分布()211,N μσ,随机变量Y 服从正态分布()222,N μσ,且{}{}1211P X P Y μμ-<>-<,则必有 ( )(A)12σσ< (B)12σσ> (C) 12μμ< (D) 12μμ>三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分7分)设()1sin,,0,01arctan xy y yf x y x y xy xπ-=->>+, 求 (I) ()()lim ,y g x f x y →+∞=; (II) ()0lim x g x +→.(16)(本题满分7分)计算二重积分D,其中D 是由直线,1,0y x y x ===,所围成的平面区域.(17)(本题满分10分)证明:当0,sin 2cos sin 2cos a b b b b b a a a a πππ<<<++>++时.(18)(本题满分8分)在XOY 坐标平面上,连续曲线L 过点()1,0,M 其上任意点()(),0P x y x ≠处的切线斜率与直线OP 的斜率之差等于(>0)ax a 常数(I) 求L 的方程;(II) 当L 与直线y ax =所围成平面图形的面积为83时,确定a 的值.(19)(本题满分10分)求幂级数()()1211121n n n x n n -+∞=--∑的收敛域及和函数()s x .(20)(本题满分13分)设4维向量组 ()()()1231,1,1,1,2,2,2,2,3,3,3,3,TTTa a a ααα=+=+=+()44,4,4,4Ta α=+问a 为何值时1234,,,αααα线性相关?当1234,,,αααα线性相关时,求其一个极大线性无关组,并将其余向量用该极大线性无关组线性表出.(21)(本题满分13分)设3 阶实对称矩阵A 的各行元素之和均为3,向量()()121,2,1,0,1,1TTαα=--=-是线性方程组0Ax =的两个解.(I) 求A 的特征值与特征向量(II) 求正交矩阵Q 和对角矩阵Λ,使得T Q AQ A =; (III) 求A 及63()2A E -,其中E 为3阶单位矩阵.(22)(本题满分13分)设随机变量X 的概率密度为()1,1021,02,40,X x f x x ⎧-<<⎪⎪⎪=≤<⎨⎪⎪⎪⎩其它()2,,Y X F x y =令为二维随机变量(),X Y 的分布函数,求: (I) Y 的概率密度()Y f y ;(II) ()cov ,X Y ; (III) 1,42F ⎛⎫-⎪⎝⎭.(23)(本题满分13分)设总体X 的概率密度为(),01,1,120,x f x x θθθ<<⎧⎪=-≤<⎨⎪⎩其它,其中θ是未知参数()1201,,,......n X X X θ<<为来自总体X 的简单随机样本,记N 为样本值12,,......n x x x 中小于1的个数,求: (I) θ的矩估计; (II) θ的最大似然估计.2006年全国硕士研究生入学统一考试数学三试题解析一、填空题 (1)【答案】1【详解】题目考察数列的极限,由于数列中有(1)n-,故求此数列的极限,分为奇数列和偶数列两个部分进行。

2006年全国硕士研究生入学统一考试数学真题数3--03真题初步答案

2006年全国硕士研究生入学统一考试数学真题数3--03真题初步答案

2006年全国硕士研究生入学统一考试数学三答案一、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (1) 1解: 记(1)1()n n n u n -+= 2(1)22121lim lim()lim()122n n n n n n n u n n-→∞→∞→∞++===21(1)2122lim lim()lim()12121n n n n n n nu n n ---→∞→∞→∞===--所以lim 1n n u →∞=.(2) 32e解:由()()f x f x e '=,有 ()()2()()()()f x f x f x f x ee f x e '''''=== 2()2()2()3()()()(2())2()2f x f x f x f x f x e e f x e f x e ''''''====以2x =代入,得3(2)3(2)22f f e e '''==.(3) 42dx dy -解:方法1:由微分形式不变性,有222222(4)(4)(4)(82)dz f x y d x y f x y xdx ydy ''=--=--(1,2)(0)(84)4-2dzf dx dy dx dy '=-=方法2:求偏导数,22(4)8,zf x y x x∂'=-∂g 22(4)(2y)y z f x y ∂'=--∂. 以11,2,(0)2x y f '===,代入z z dz dx dy x y ∂∂=+∂∂便得如上填. (4) 1 -11 1⎛⎫⎪⎝⎭解:由2BA B E =+化得()2B A E E -=,显然 A E -可逆,且 112E()2()B A E A E --=-=-其中 2 1 1 0 1 1-1 20 1-1 1A E ⎛⎫⎛⎫⎛⎫-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ , 11 -11() 1 12A E -⎛⎫-= ⎪⎝⎭1 -1 1 -11B2 1 1 1 12⎛⎫⎛⎫=⨯= ⎪ ⎪⎝⎭⎝⎭.(5)19解: {}{}{}{}max(,)11,111p x y p x Y p x p Y ≤=≤≤=≤≤=1133⋅=19.(6)2解:因为2()()E S D X =,故只要计算()D X . X 概率密度()f x 是偶函数,所以()0E X =222220()()[()]()()2()D X E X E X E X x f x dx x f x dx +∞+∞-∞=-===⎰⎰202x x e dx ∞-==⎰.二、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(7)A解:方法1:因为()0,f x '>则()f x 严格单调增加 ()0,f x ''> 则()f x 是凹的0x >V 又,故0dy y <<V . 方法2:用两次拉格朗日中值定理 000()()()y dy f x x f x f x x '-=+--V V V 0()()f x f x x ξ''=-V V0()()f x x ηξ''=-V 其中000,x x x x ξηξ<<+<<V由于()0f x ''>,从而0y dy ->V 又由于0()0dy f x x '=>V ,故选[]A(8) C解:因为()f x 在0x =处连续,所以2202220(0)lim ()lim ()lim ()()lim 0x h x h f f x f x x h f h f h h h+→→→→=====又22200()(0)()limlim 1,0h x f x f f h x h x h+→→-==- 所以(0)f +'存在,故选[C ].(9)D解:题设1n n a ∞=∑收敛,所以11n n a ∞+=∑也收敛,所以11()n n n a a ∞+=+∑收敛,从而112n n n a a ∞+=+∑也收敛.[]D 选.(10) B解:线性非齐次微分方程的两个解的差是对应的齐次微分方程的解.因为12()()y x y x ≠,所以12(()())y x y x -是齐次微分方程的一个非零解,C 是任意常数,所以12(()())C y x y x -是对应的齐次微分方程的通解.再加上原非齐次方程的一个特解,便得原非齐次方程的通解,[B ].(11) D解:引入函数(,,)(,)(,)F x y f x y x y λλϕ=+,有000000000000000000(,)(,)0(1)(,)(,)0(2)(,)0(,)(,)(,)(,)0,(,)(,)(,)(,)0,(,)0[]x x xy y y y y x y x y y x y f x y x y f x y x y x y f x y f x y x y x y f x y x y x y f x y f x y D λλϕλϕϕϕϕλϕϕ'''⎧+=⎪'''+=⎨⎪'=⎩'''''≠∴=-=''''≠≠Q F =F =F =代入(1)得今则故选(12) A【考点】本题考的是线性相关性的判断问题,可以用定义解.解:方法1:若12,,,s αααL 线性相关,则存在不全为0的数12s ,,,k k k L 使得11220s s k k k ααα+++=L用A 左乘等式两边,得11220s s k A k A k A ααα+++=L于是12,,,s A A A αααL 线性相关.方法2:如果用秩来解,则更加简单明了.只要熟悉两个基本性质,它们是:1. 12,,,s αααL 线性相关⇔ 12(,,,)s r s ααα<L .2.()()r AB r B <.矩阵1212(,,,)(,,,)s s A A A A αααααα=L L ,因此1212(,,,)(,,,)s s r A A A r s αααααα≤<L L由此马上可判断答案应该为[A ]. (13) B解:用初等矩阵在乘法中的作用得出将A 的第2行加到第1行得B ,即 110010001B A ⎛⎫ ⎪= ⎪ ⎪⎝⎭=PA将B 的第1列的-1倍加到第2列得C ,即110010001C B -⎛⎫⎪= ⎪ ⎪⎝⎭ 记 BQ 因 PQ =110010001⎛⎫ ⎪ ⎪ ⎪⎝⎭110010001-⎛⎫⎪ ⎪ ⎪⎝⎭E =,故1Q P -=从而 11C BP PAP --== ,故选[B ]. (14)A【考点】正态分布的基本性质和正态分布的标准化技巧 解:11111(1)(),X P X P μμσσ--<=<随机变量11-X μσ~(0,1)N ,且其概率密度函数是偶函数.故111111*********[()(0)]2()1X X P P μμφφφσσσσσσ⎧⎫⎧⎫--⎪⎪<=<<=-=-⎨⎬⎨⎬⎪⎪⎩⎭⎩⎭.同理221(1)2()1P Y μφσ-<=-因为()x φ是单调函数,当12{||1}{||1}P X P Y μμ-<>-<时,112()1φσ->212()1φσ-,即1211σσ>,即12σσ>,故选[A ].三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15) 解:(1)1sin()lim (,)lim [1arctan y y xy y yg x f x y xy xπ→+∞→+∞-==-+,由于0x ≠,所以 lim sinlim ,y y xxy y x yyπππ→+∞→+∞==g11limlim ,11y y y xy x x y→+∞→+∞==++所以11()arctan xg x x xπ-=-. 200022200222011arctan 2lim ()lim()limarctan arctan 112arctan 1lim lim 21121lim .21x x x x x x x x x x g x x x x xx x x x x x x x x x x x ππππππ++++++→→→→→→--+=-=-+-++-+++==+()等洛()()()(16)解:10Ddy =⎰⎰3202)03y y x dy =--⎰12023y dy =⎰29=.(17) 证:令()sin 2cos f x x x x x π=++ 只需证明0x π<<时,()f x 单调增加(严格)()sin cos 2sin f x x x x x π'=+-+cos sin x x x π=-+ ()cos sin cos sin 0f x x x x x x x ''=--=-<()f x '∴ 单调减少(严格)又()cos 0f ππππ'=+=,故0()0()x f x f x π'<< >时则单调增加(严格)()()b a f b f a >>由则得证.(18) 解:(1)设所求的曲线方程为()y y x =,按题意,在其上任意一点(,)P x y 处的切线斜率y '与OP 的斜率yx的差等于(0,0)ax a x >≠,即有y y ax x '-=.并且有初始条件(1)0y =.解之,按一阶线性微分方程解的公式,有11ln ln [][][]()dxdx x x x x y e axe dx C e axe dx C x adx C x ax C --⎰⎰=+=+=+=+⎰⎰⎰以上1dx x ⎰不写成ln x 而可以写成ln x 的原因是,题中有初始条件(1)0y =,x 取在1处 而微分方程的解应是连续的,题设0x ≠,故其解只能取在包含1x =而不跨过0x =区间,故0x >,因此ln x 可以写成ln x .再由(1)0y =定出C a =-,于是所求的曲线方程为 (1),0y ax x a =->. (2) 直线y ax =与曲线(1)y ax x =-的交点(0,0)与(2,2)a . 直线y ax =与曲线(1)y ax x =-所围平面图形的面积222004()[(1)][2]3S a ax ax x dx ax ax dx a =--=-=⎰⎰按题意,4833a =,故2a =.(19) 222tan ln(1),11x axc x x x x -+-≤≤解:记-121(-1(2-1)n n n xu n n +=), 有2321-121(-1(1)(21)(-1(2-1)limlim n n n n n n n n xu n n x x u n n +++→∞→∞++==)) 故知当21x <即1x <时,原级数绝对收敛;当21x >,即1x >时,原级数通项不趋于0,级数发散,所以收敛半径1R =.在1x =±处-1(-1(2-1)n n u n n ±=),级数1n n u ∞=∑绝对收敛,故收敛域为[1,1]-.为求和函数,应先在收敛区间内进行,由 -121-1211(-1(-1(2-1)(2-1)n n n n n n x x x n n n n +∞∞===∑∑)) 令-121(-1()(2-1)n n n xf x n n ∞==∑)有 -12-12-121111(-1(-12(-1()()()(2-1)(2-1)2-1n n n n n n n n n x x xf x n n n n n -∞∞∞==='''===∑∑∑)))-121-121-1221112(-12(-1()()()2(-12-12-1n n n n n n n n n x x f x x n n --∞∞∞-===''''===∑∑∑)))2222(-11n nn x x∞===+∑). 再倒回去,有 202()(0)()02arctan 1xxf x f f t dt dt x t '''=+=+=+⎰⎰()(0)()02arctan xxf x f f t dt xdt '=+=+⎰⎰=22022[arctan ]2arctan -ln(1)01xx tdt x t x t -=++⎰. 于是 -121221(-12arctan -ln(1),11(2-1)n n n xx t x x x n n +∞==+-<<∑). 又因在1x =±处,级数收敛,右边和函数的表达式在1x =±处连续,因此,在1x =±处上式仍成立,即有()()1212211()2tan ln(1),1121n n n x s x x axc x x x x n n -+∞=-==-+-≤≤-∑.(20) 解:方法1:记1234[,,,]A αααα=,则1234123412341234(10)1234123412341234a a a a a a aa+++=+++++ 31234000(10)(10)000000a a a a a a=+=+于是当0a =或10a =-时,1234,,,αααα线性相关.当0a =时,1α为1234,,,αααα的一个极大线性无关组,且2131412,3,4αααααα===. 当10a =-时,对A 作初等行变换.92349234183410100012741001001236100010A ----=→---12349234000011001100[,,,]101010101111ββββ---→→=----由于234,,βββ为1234,,,ββββ的一个极大线性无关组,且1234ββββ=---,故234,,ααα 为1234,,,αααα的一个极大线性无关组,且1234αααα=---.方法2:记1234[,,,]A αααα=,对A 施以初等行变换,有12341234123400123400123400a a a a a A B a a a aaa+++-=→=+-+-当0a =时,A 的秩为1,因而1234,,,αααα线性相关,此时1α为1234,,,αααα的一个极大线性无关组,且2131412,3,4αααααα===.0a ≠时,再对B 施以初等行变换,有123412341000011001100[,,,].10101010100111a a B C γγγγ++--→→==----如果10a ≠-,C 的秩为4,故1234,,,αααα线性无关;如果10a =-时,C 的秩为3,故1234,,,αααα线性相关.由于234,,γγγ是1234,,,γγγγ的一个极大线性无关组,且1234γγγγ=---,于是234,,ααα是1234,,,αααα的一个极大线性无关组,1234αααα=---.(21) 解:(1) 由A 的每行元素之和为3,有(1,1,1)(3,3,3)T TA =故,0(1,1,1)Tα=是A 的特征向量,特征值为3.又12,αα都是0AX =的解说明它们也都是A 的特征向量,特征值为0.由于12,αα线性无关, 特征值0的重数大于1.于是A 的特征值为3,0,0.属于3的特征向量:0c α, c 0≠.属于0的特征向量: 1122c c αα+,12,c c 不都为0. (2)将0α单位化,得0()333T η=. 对12,αα作施密特正交化,得1(0, )22T η=-,2(Tη=. 作123(,,)Q ηηη=,则Q 是正交矩阵,并且-13 0 00 0 00 0 0T Q AQ Q AQ ⎛⎫ ⎪== ⎪ ⎪⎝⎭(3)由TQ AQ =Λ,其中1T Q Q -=0003TA Q Q⎡⎤⎢⎥=Λ=⎢⎥⎢⎥⎣⎦0003330000333333⎡⎤⎢⎥⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦666333()()(())222T TA E Q Q E Q E Q-=Λ-=Λ-6613233()022332TQ E Q Q Q-⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=Λ-=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦6666323333()()()222232T T TQ Q QEQ QQ E=⎡⎤-⎢⎥⎢⎥⎢⎥=-==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦. (22)解:(Ⅰ)20,0(1),01()()()(2),141,4YyyF y P Y y P X yyy<⎧⎪≤<⎪=≤=≤=⎨≤<⎪⎪≤⎩式式⎰⎰=+=≤≤-=-yyydxdxyXyP434121)()1(式;⎰⎰+=+=≤≤-=-yydxdxyXyP141214121)()2(式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档