2016年秋季新版北师大版七年级数学上学期1.1、生活中的立体图形同步练习2

合集下载

北师大版七年级数学上册1.1《生活中的立体图形》同步训练(含答案)

北师大版七年级数学上册1.1《生活中的立体图形》同步训练(含答案)

北师大版七年级数学上册1.1《生活中的立体图形》同步训练一、选择题1.下面几何体中,全是由曲面围成的是()A.圆柱B.圆锥C.球D.正方体2.下列说法错误的是()A. 长方体、正方体都是棱柱B. 三棱柱的侧面是三角形C. 直六棱柱有六个侧面、侧面为矩形D. 球体的三种视图均为同样大小的图形3.下列立体图形中,有五个面的是()A. 四棱锥B. 五棱锥C. 四棱柱D. 五棱柱4.将一个直角三角形绕它的最长边(斜边)旋转一周得到的几何体为()A. B. C. D.5.将四个棱长为1的正方体如图摆放,则这个几何体的表面积是()A. 3B. 9C. 12D. 18二、填空题6.一个直棱柱有12条棱,则它是________棱柱.7.一个几何体的面数为12,棱数为30,它的顶点数为________.8.如图,在长方体ABCD﹣EFGH中,与平面ADHE垂直的棱共有________条.9.两个完全相同的长方体的长.宽.高分别为5cm.4cm.3cm,把它们叠放在一起组成个新长方体,在这个新长方体中,体积是________cm3,最大表面积是________cm2.10.一只小蚂蚁从如图所示的正方体的顶点A沿着棱爬向有蜜糖的点B,它只能经过三条棱,请你数一数,小蚂蚁有________种爬行路线.三、解答题11.从棱长为2的正方体毛坯的一角挖去一个棱长为1的小正方体,得到一个如图的零件,求:(1)这个零件的表面积(包括底面);(2)这个零件的体积.12.有3个棱长分别是3cm,4cm,5cm的正方体组合成如图所示的图形.其露在外面的表面积是多少?(整个立体图形摆放在地上)13.现有一个长为5cm,宽为4cm的长方形,绕它的一边旋转一周,得到的几何体的体积是多少?14.已知长方形的长为4cm.宽为3cm,将其绕它的一边所在的直线旋转一周,得到一个几何体,(1)求此几何体的体积;(2)求此几何体的表面积.(结果保留π)15.观察图形,回答下列问题:(1)图 是由几个面组成的,这些面有什么特征?(2)图②是由几个面组成的,这些面有什么特征?(3)图①中共形成了多少条线?这些线都是直的吗?图②呢?(4)图①和图②中各有几个顶点?答案解析部分一、选择题1.【答案】C【考点】几何体的表面积【解析】【解答】解:A、圆柱由上下两个平面和侧面一个曲面组成,不符合题意;B、圆锥由侧面一个曲面和底面一个平面组成,不符合题意;C、球只有一个曲面组成,符合题意;D、正方体是由六个平面组成,不符合题意.故答案为:C.【分析】圆锥两个面围成,一个曲面,一个平面;圆柱三个面围成,一个曲面,两个平面;正方体由6个面围成,六个面都是平面;球球只有一个曲面组成。

数学北师大版七年级上册1.1《生活中的立体图形》同步训练(含解析)

数学北师大版七年级上册1.1《生活中的立体图形》同步训练(含解析)

数学北师大版七年级上册1一、选择题1.下面几何体中,全是由曲面围成的是〔〕A.圆柱B.圆锥C.球D.正方体2.以下说法错误的选项是〔〕A. 长方体、正方体都是棱柱B. 三棱柱的正面是三角形C. 直六棱柱有六个正面、正面为矩形D. 球体的三种视图均为异样大小的图形3.以下平面图形中,有五个面的是〔〕A. 四棱锥B. 五棱锥C. 四棱柱D. 五棱柱4.将一个直角三角形绕它的最长边〔斜边〕旋转一周失掉的几何体为〔〕A. B. C. D.5.将四个棱长为1的正方体如图摆放,那么这个几何体的外表积是〔〕A. 3B. 9C. 12D. 18二、填空题6.一个直棱柱有12条棱,那么它是________棱柱.7.一个几何体的面数为12,棱数为30,它的顶点数为________.8.如图,在长方体ABCD﹣EFGH中,与平面ADHE垂直的棱共有________条.9.两个完全相反的长方体的长.宽.高区分为5cm.4cm.3cm,把它们叠放在一同组成个新长方体,在这个新长方体中,体积是________cm3,最大外表积是________cm2.10.一只小蚂蚁从如下图的正方体的顶点A沿着棱爬向有蜜糖的点B,它只能经过三条棱,请你数一数,小蚂蚁有________种匍匐路途.三、解答题11.从棱长为2的正方体毛坯的一角挖去一个棱长为1的小正方体,失掉一个如图的零件,求:〔1〕这个零件的外表积〔包括底面〕;〔2〕这个零件的体积.12.有3个棱长区分是3cm,4cm,5cm的正方体组分解如下图的图形.其露在外面的外表积是多少?〔整个平面图形摆放在地上〕13.现有一个长为5cm,宽为4cm的长方形,绕它的一边旋转一周,失掉的几何体的体积是多少?14.长方形的长为4cm.宽为3cm,将其绕它的一边所在的直线旋转一周,失掉一个几何体,〔1〕求此几何体的体积;〔2〕求此几何体的外表积.〔结果保管π〕15.观察图形,回答以下效果:〔1〕图 是由几个面组成的,这些面有什么特征?〔2〕图②是由几个面组成的,这些面有什么特征?〔3〕图①中共构成了多少条线?这些线都是直的吗?图②呢?〔4〕图①和图②中各有几个顶点?答案解析局部一、选择题1.【答案】C【考点】几何体的外表积【解析】【解答】解:A、圆柱由上下两个平面和正面一个曲面组成,不契合题意;B、圆锥由正面一个曲面和底面一个平面组成,不契合题意;C、球只要一个曲面组成,契合题意;D、正方体是由六个平面组成,不契合题意.故答案为:C.【剖析】圆锥两个面围成,一个曲面,一个平面;圆柱三个面围成,一个曲面,两个平面;正方体由6个面围成,六个面都是平面;球球只要一个曲面组成。

北师大版七年级数学上册生活中的立体图形同步测试题

北师大版七年级数学上册生活中的立体图形同步测试题

1.1 生活中的立体图形同步练习1:1,长方体共有( )个面.A.8B.6C.5D.42,六棱柱共有( )条棱.A.16B.17C.18D.203,下列说法,不正确的是( )A. 圆锥和圆柱的底面都是圆.B. 棱锥底面边数与侧棱数相等.C. 棱柱的上、下底面是形状、大小相同的多边形.D. 长方体是四棱柱,四棱柱是长方体.4,判断题:(1)棱柱侧面的形状可能是一个三角形 ( )(2)棱柱的每条棱长都相等. ( )(3)正方体和长方体是特殊的四棱柱,有是特殊的六面体.( ) 5,正方体有 个面, 个顶点,经过每个顶点有 条棱.这些棱的长度 (填相同或不同).棱长为acm 的正方体的表面积为 cm 2.6,长方体有 个顶点, 条棱, 个面.7,五棱柱是由 个面围成的,它有 个顶点,有 条棱.8,一个六棱柱共有 条棱,如果六棱柱的底面边长都是2cm ,侧棱长都是4cm ,那么它所有棱长的和是 cm.9,如图所示的几何体是由一个正方体截去41后而形成的,这个几何体是由 个面围成的,其中正方形有个,长方形有 个.10,已知一圆柱内恰好能容纳一个球体,请画出示意图并尽可能多地写出一些你发现的关系式.11,在正方体的六个面上分别涂上红、黄、蓝、白、黑、绿六种颜色,现有涂色方式完全相同的四个正方体,如图拼成一个长方体,请判断涂红、黄、白三种颜色的对面分别涂着哪一种颜色?12,如图,已知一个正方体的六个面上分别写着六个连续的整数,且每两个相对面上的两个数的和都相等,图中所能看到的数是16,19和20,求这6个整数的和.答案:1,B 2,C 3,D 4,(1)×(2)×(3)√5, 6 8 3 相同 6a2 6, 8 12 67, 7 10 15 8, 18 48 9,8 2 410,图略,该圆柱的高与底面直径相等 11,绿蓝黑12,111掌握的三个数学答题方法树枝答题法关注数学题的解题过程2014年上海市中考状元徐瑜卿认为,数学是一门思维学科,并不是平时做题多就一定会拿高分。

1.1生活中的立体图形 北师大版初中数学七年级上册同步练习(含详细答案解析)

1.1生活中的立体图形 北师大版初中数学七年级上册同步练习(含详细答案解析)

1.1生活中的立体图形北师大版初中数学七年级上册同步练习一、选择题:本题共12小题,每小题3分,共36分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.用棱长1厘米的正方体木块,摆成底面积是12平方厘米,高是2厘米的长方体,可以摆成()种不同的形状.A. 1B. 2C. 3D. 42.把一个棱长是4分米的正方体钢坯削成一个最大的圆柱,这个圆柱的体积是( )A. 18.84dm3B. 28.26dm3C. 50.24dm3D. 100.48dm23.如图,将大正方体一个顶点处的一个小正方体去掉后表面积与原表面积比较,( )A. 现在表面积大B. 原来表面积大C. 一样大4.由4个棱长均为1的小正方形组成如图所示的几何体,这个几何体的表面积为( )A. 18B. 15C. 12D. 65.下面现象能说明“面动成体”的是( )A. 流星从空中划过留下的痕迹B. 扔一块小石子,小石子在空中飞行的路线C. 时钟秒针旋转时扫过的痕迹D. 将一枚硬币竖立在桌面,击打一侧使其快速旋转,就会看到一个“球”6.一根长方体木料,长2米,宽和厚都是5米,把它锯成1米长的两段,表面积增加了()平方米.A. 50B. 40C. 45D. 257.下列几何体中,棱锥是( )A. B. C. D.8.如图,如果以直角三角形的一条直角边为轴旋转一周得到一个圆锥,这个圆锥的体积最大是______立方厘米.( )A. 37.68B. 50.24C. 78.5D. 6289.下列几何体都是由平面围成的是( )A. 圆锥B. 五棱锥C. 圆柱D. 球10.下面的几何体中,全是由曲的面围成的是( )A. 圆柱B. 圆锥C. 球D. 正方体11.2023年长沙国际马拉松在芙蓉中路(贺龙体育中心东广场旁)起跑,来自国内外的26000名跑友汇成一片红色的海洋驰骋在长马赛道上,他们用脚步丈量星城,感受一江两岸、山水洲城的魅力.图①是此次全程马拉松男子组颁奖现场.图②是领奖台的示意图,则此领奖台从正面看到的平面图形是( )A. B.C. D.12.如图,大正方体木块的体积是64cm3,把它切成大小相等的8个小正方体,则所有小正方体的表面积之和为 ( )A. 192cm2B. 194cm2C. 196cm2D. 212cm2二、填空题:本题共4小题,每小题3分,共12分。

北师大版七(上)数学1.1.2生活中的立体图形(2)课时同步检测(原创)

北师大版七(上)数学1.1.2生活中的立体图形(2)课时同步检测(原创)

北师大版七(上)数学1.1.2生活中的立体图形(2)课时同步检测(原创)学校:___________姓名:___________班级:___________考号:___________一、单选题1.汽车的雨刷把玻璃上的雨水刷干净属于的实际应用是( )A.点动成线B.线动成面C.面动成体D.以上答案都不对2.很多立体图形都是由平面图形围成的,下面立体图形不都是由平面图形围成的是( )A.长方体B.三棱锥C.圆锥D.六棱柱3.将如图所示的直角梯形绕直线l旋转一周,得到的立体图形是()A.B.C.D.4.观察下图,把左边的图形绕着给定的直线旋转一周后,可能形成的立体图形是()A. B. C.D.5.如图的几何体中,由4个面围成的几何体是( )A.B.C.D.6.下列现象能说明“面动成体”的是( )A.天空划过一道流星B.旋转一扇门,门在空中运动的痕迹C.扔出一块小石子,石子在空中飞行的路线D.汽车雨刷在挡风玻璃上划出的痕迹7.如图,左排的平面图形绕轴旋转一周,可以得到右排的立体图形,那么与甲乙丙丁各平面图形顺序对应的立体图形的编号应为()A.③④①②B.①②③④C.③②④①D.④③②①8.对于棱锥,下列叙述正确的是()A.四棱锥共有四条棱B.五棱锥共有五个面C.六棱锥的顶点有六个D.任何棱锥都只有一个底面二、填空题9.一个直角三角形绕其直角边旋转一周得到的几何体是________.10.硬币在桌面上快速地转动时,看上去象球,这说明了_________________。

11.笔尖在纸上快速滑动写出了一个又一个字,这说明了________;车轮旋转时,看起来像一个整体的圆面,这说明了________;直角三角形绕它的直角边旋转一周形成了一圆锥体,这说明了________. 12.圆柱由_________个面围成,其中_________个平面、_________个曲面.13.时钟秒针旋转时,形成一个圆面,这说明了______________;三角板绕它的一条直角边旋转一周,形成一个圆锥体,这说明了______________.14.旋转门旋转一周,形成了一个圆柱,这说明了_________.三、解答题15.如图,第二行的图形绕虚线旋转一周,便能得到第一行的某个几何体.用线连一连.16.已知长方形的长为4cm.宽为3cm,将其绕它的一边所在的直线旋转一周,得到一个几何体,(1)求此几何体的体积;(2)求此几何体的表面积.(结果保留π)17.观察如图所示的棱锥,回答下列问题:(1)这个图形是平面图形还是立体图形?(2)图中有多少个顶点?多少条线段?多少个平面?(3)图中有哪些平面图形?18.一个六棱柱模型如图所示,它的底面边长都是5cm,侧棱长是4cm.观察这个模型,回答下列问题.(1)这个六棱柱一共有多少个面?它们分别是什么形状?哪些面的形状、大小完全相同?(2)这个六棱柱一共有多少条棱?它们的长度分别是多少?19.四个完全相同的长方体,长、宽、高分别是3cm,1cm,1cm,用这四个长方体组成一个新的长方体,则这些长方体中表面积最大的是多少?20.如图,正方形ABCD的边长为3 cm,以直线AB为轴,将正方形旋转一周,得到一几何体.(1)画出从正面观察这个几何体得到的平面图;(2)求(1)中平面图的面积.参考答案1.B【解析】【分析】从运动的观点来看,点动成线,线动成面,面动成体.点、线、面、体组成几何图形. 【详解】汽车的雨刷实际上是一条线,通过运动把玻璃上的雨水刷干净,所以应是线动成面,故选B.【点睛】主要考察对点、线、面、体的理解及其实际应用.2.C【解析】【分析】圆柱的上、下底面是两个平行且相同的圆面,侧面是曲面;n棱柱的底面是n边形,侧面是四边形;n棱锥的底面是n边形,侧面是三角形;球体是一个连续曲面的立体图形,本题在分析图形各面的形状之后即可得到答案.【详解】A.长方体可以看成是由6个长方形围成的;B.三棱锥可以看成是由1个矩形和3个三角形围成的;C.圆锥的底面是由平面图形围成的,侧面是由曲面围成;D.六棱柱可以看成是由6个矩形和2个正六边形围成的,故选:C.【点睛】本题考查对立体图形的认识,解题关键是能区别圆柱、棱柱、棱锥及球体的异同.3.A【解析】【分析】根据直角梯形上下底不同得到旋转一周后上下底面圆的大小也不同,进而得到旋转一周后得到的几何体的形状.【详解】题中的图是一个直角梯形,上底短,下底长,绕对称轴旋转后上底形成的圆小于下底形成的圆,因此得到的立体图形应该是一个圆台.故选:A.【点睛】本题主要考查学生是否具有基本的识图能力,以及对点、线、面、体之间关系的理解.4.C【解析】【分析】根据面动成体的原理以及空间想象力即可解答.【详解】解:由图形可以看出,左边的长方形的竖直的两个边与已知的直线平行,因而这两条边旋转形成两个柱形表面,因而旋转一周后可能形成的立体图形是一个管状的物体.故选:C.【点睛】本题考查了点、线、面、体的关系,从运动的观点来看点动成线,线动成面,面动成体.点、线、面、体组成几何图形,点、线、面、体的运动组成了多姿多彩的图形世界.也考查学生对立体图形的空间想象能力及分析问题,解决问题的能力.5.C【解析】【分析】依据图形逐个分析各个几何体有几个面,然后作出正确选择即可.【详解】选项A有5个面;选项B有三个面;选项C有四面体;选项D有三个面.故选C.【点睛】本题主要考查对几何体的认识,简单的几何体是由平面和曲面组成.6.B【解析】【分析】根据点、线、面、体之间的关系对各选项分析判断后利用排除法求解.【详解】选项A,天空划过一道流星,说明“点动成线”,本选项错误;选项B,旋转一扇门,门在空中运动的痕迹,说明“面动成体”,本选项正确;选项C,抛出一块小石子,石子在空中飞行的路线,说明“点动成线”,本选项错误;选项D,汽车雨刷在挡风玻璃上刷出的痕迹,说明“线动成面”,,本选项错误.故选B.【点睛】本题考查了点、线、面、体,准确认识生活实际中的现象是解题的关键.7.A【解析】甲旋转后得到③,乙旋转后得到④,丙旋转后得到①,丁旋转后得到②.故与甲乙丙丁各平面图形顺序对应的立体图形的编号应为③④①②.故选A.8.D【解析】【分析】根据棱锥的定义与结构特征依次判断可得答案.【详解】对A,∵四棱锥共有八条棱,故A错误;对B,∵五棱锥共有六个面,故B错误;对C,∵六棱锥的顶点有七个,故C错误;对D,根据棱锥的定义,D正确.故选D.【点睛】本题考查了棱锥的结构特征及定义.9.圆锥【解析】解:一个直角三角形绕其直角边旋转一周得到的几何体是圆锥.故答案为:圆锥.10.面动成体【解析】【分析】本题是面动成体的原理在现实中的具体表现,根据面动成体原理解答即可.【详解】硬币在桌面上快速地转动时,看上去象球,这说明了面动成体,故答案为:面动成体. 【点睛】本题考查了点、线、面、体,掌握面动成体原理是解题的关键.11.点动成线线动成面面动成体【解析】【分析】本题是点、线、面、体间的动态关系在实际生活中理解.理论联系实际,深刻的理解点、线、面、体的概念,给出.合理的解释.【详解】笔尖在纸上快速滑动写出了一个又一个字,这说明了点动成线;车轮旋转时,看起来像一个整体的圆面,这说明了线动成面;直角三角形绕它的直角边旋转一周,形成了一圆锥体,这说明了面动成体,故答案为点动成线;线动成面;面动成体.12.3,2, 1【解析】【分析】根据圆柱的特点即可求解.【详解】圆柱由3个面围成,其中2个平面、1个曲面.故填:3;2;1.【点睛】此题主要考查圆柱的特点,解题的关键是熟知圆柱体的性质特点.13.线动成面面动成体【解析】分析:熟悉点、线、面、体之间的联系,根据运动的观点即可解.详解:根据分析即知:点动成线;线动成面;面动成体.故答案为点动成线;线动成面;面动成体.点睛:本题考查了点、线、面、体之间的联系,点是构成图形的最基本元素.14.面动成体【解析】试题解析:旋转门旋转一周,形成了一个圆柱,这说明了面动成体.15.见解析.【解析】【分析】根据几何体的形成特点即可判断.【详解】解:如图所示.【点睛】此题主要考查几何体的旋转构成特点,解题的关键是熟知简单几何体的特点.16.(1)86π或48π;(2)42π或56π【解析】试题分析:分以长为轴旋转所得圆柱和以宽为轴旋转所得圆柱两种情况求解即可. 试题解析:(1)情况①,32×π×4=86π情况②,42×π×3=48π(2)情况①,6π×4+32π×2=42π情况②,8π×3+42π×2=56π点睛:本题考查圆柱体的体积和表面积的求法,一定要注意分情况讨论.17.(1)立体图形;(2) 5个顶点,8条线段,5个平面;(3)点、线段、角、三角形、长方形【解析】试题分析:(1)观察图形即可得;(2)仔细观察即可得到有多少个顶点,多少条线段,多少个平面;(3)通过观察可得到有哪些平面图形.试题解析:通过观察可得:(1)这个图形是立体图形;(2)图中有5个顶点,8条线段,5个平面;(3)平面图形有:点、线段、角、三角形、长方形.18.(1)8,长方形,正六边形,6个侧面,2个底面;(2)18,侧棱长都是4cm,底边长都是5cm。

北师版七年级数学上册 1.1.1 生活中的立体图形 同步训练卷(含答案)

北师版七年级数学上册    1.1.1 生活中的立体图形 同步训练卷(含答案)

1.1.1生活中的立体图形同步训练卷一、选择题1.下列图形中,属于立体图形的是( )2.下列各几何体中,直棱柱的个数是( )A .5个B .4个C .3个D .2个3.下列说法正确的是( )①数学书是长方形;②数学书是长方体,也是棱柱;③数学书的表面都是长方形. A .①② B .①③ C .②③ D .①②③ 4.下列四个几何体中,是四棱柱的为( )5. 下列说法正确的是( )A .三棱柱有九条棱B .正方体不是四棱柱C .五棱柱只有五个面D .六棱柱有六个顶点 6.下列几何体,是圆柱的为( )A B C D7.若一个棱柱有10个顶点,则下列说法正确的是( ) A .这个棱柱有4个侧面 B .这个棱柱有5条侧棱 C .这个棱柱的底面是十边形 D .以上都不正确8.观察右图的棱柱,它的侧面和一个底面相交形成的线有( ) A .3条 B .4条 C .5条 D .6条 9.图所示的四种物体的形状分别类似于( )A.圆柱、圆锥、正方体、长方体B.圆柱、球、正方体、长方体C.棱柱、球、正方体、长方体D.棱柱、圆锥、四棱柱、长方体第8题图10. 如图,下列几何体中,其面既有平面又有曲面的有( )A.1个B.2个C.3个D.411.下列说法中正确的是( )A.棱柱的两个底面都平行B. 棱柱的所有棱长都相等C.棱柱的侧面都是长方形D. 棱柱的所有侧面都相同12. 数学课上,刘老师拿来一个不透明盒子,盒子中装有一个几何体模型,A、B两名同学摸该模型并描述它的特征.A同学:它有8条棱;B同学:它有4个面是三角形。

该模型的形状对应的几何体可能是( )A.三棱柱B.四棱柱C.三棱锥D.四棱锥二.填空题13.长方体有____个面,____个顶点,经过每个顶点都有____条棱.14. 一个棱柱有15个面,那么它的棱数是15.一个棱柱有12个顶点,所有的侧棱长的和是48 cm,每条侧棱的长为____.16.一个直棱柱有14个顶点,那么它的面的个数是____个.17. 五棱柱有______个面,______个顶点,________条侧棱,__________条棱。

七年级数学上册第1章《生活中的立体图形(2)》同步预习(北师大版)

七年级数学上册第1章《生活中的立体图形(2)》同步预习(北师大版)

第一章丰富的图形世界1生活中的立体图形第2课时图形变换预习要点:1.图形是由点、线、面构成的.面与面相交得到线,线与线相交得到.点动成,线动成,动成体.2.将如图所示的几何图形,绕直线l旋转一周得到的立体图形()A.B.C.D.3.汽车的雨刷把玻璃上的雨水刷干净属于的实际应用是()A.点动成线B.线动成面C.面动成体D.以上答案都不对4.把图绕虚线旋转一周形成一个几何体,与它相似的物体是()A.课桌B.灯泡C.篮球D.水桶5.将三角形绕直线l旋转一周,可以得到如图所示的立体图形的是()A.B.C.D.6.一个长方形绕着它的一条边旋转一周,所形成的几何体是.7.笔尖在纸上写字说明;车轮旋转时看起来像个圆面,这说明;一枚硬币在光滑的桌面上快速旋转形成一个球,这说明.8.以直角三角形一条短直角边所在直线为轴旋转一周,得到的几何体是.同步小题12道一.选择题1.笔尖在纸上快速滑动写出一个又一个字,用数学知识解释为()A.点动成线B.线动成面C.面动成体D.以上答案都不对2.下面现象说明“线动成面”的是()A.旋转一扇门,门在空中运动的痕迹B.扔一块小石子,石子在空中飞行的路线C.天空划过一道流星D.汽车雨刷在挡风玻璃上面画出的痕迹3.如图,一个长方形绕轴l旋转一周得到的立体图形是()A.棱锥B.圆锥C.圆柱D.球4.如图的立体图形可由哪个平面图形绕轴旋转而成()A.B.C.D.5.如图,沿着虚线旋转一周得到的图形为()A.B.C.D.6.将下列选项中的平面图形绕直线l旋转一周,可得到如图所示立体图形()A.B.C.D.二.填空题7.夜晚的流星划过天空时留下一道明亮的光线,由此说明了的数学事实.8.夏天,快速转动的电扇叶片,给我们一个完整的平面的感觉,这说明.9.硬币在桌面上快速地转动时,看上去像球,这说明了.10.将图中的直角三角板ABC绕AC边旋转一周得到的几何体是.三.解答题11.如图,上面的平面图形绕轴旋转一周,可以得出下面的立方图形,请你把有对应关系的平面图形与立体图形连接起来.12.如图所示的几何体中,分别由哪个平面图形绕某直线旋转一周得到?请画出相应的平面图形.参考答案预习要点:1.线面面2.【分析】根据面动成体以及圆台的特点,即可解答.【解答】解:绕直线l旋转一周,可以得到的圆台,故选C3.【分析】汽车的雨刷实际上是一条线,通过运动把玻璃上的雨水刷干净,所以应是线动成面.【解答】解:汽车的雨刷实际上是一条线,通过运动把玻璃上的雨水刷干净,所以应是线动成面.故选B4.【分析】如图本题是一个直角梯形围绕一条直角边为对称轴旋转一周,根据面动成体的原理可知得到的几何体是圆台.【解答】解:一个直角梯形绕垂直于底边的腰旋转一周后成为圆台,备选答案合适的为D.故选D5.【分析】将各选项的图形旋转即可得到立体图形,找到合适的即可.【解答】解:A、旋转后可得,故本选项错误;B、旋转后可得,故本选项正确;C、旋转后可得,故本选项错误;D、旋转后可得,故本选项错误.故选B6.【分析】本题是一个长方形围绕它的一条边为中为对称轴旋转一周,根据面动成体的原理即可解.【解答】解:一个长方形绕着它的一条边旋转一周,围成一个光滑的曲面,想象可知是圆柱体.答案:圆柱体.7.【分析】根据点动成线,线动成面,面动成体填空即可.【解答】解:笔尖在纸上写字说明点动成线;车轮旋转时看起来像个圆面,这说明线动成面;一枚硬币在光滑的桌面上快速旋转形成一个球,这说明面动成体.答案:点动成线;线动成面;面动成体.8.【分析】根据旋转体的定义,直角三角形绕其直角边为轴旋转一周,形成圆锥,可得答案.【解答】解:如图所示:绕一个直角三角形的一条直角边所在的直线旋转一周所成的几何体是圆锥.答案;圆锥.同步小题12道1.【分析】利用点动成线,线动成面,面动成体,进而得出答案.【解答】解:笔尖在纸上快速滑动写出一个又一个字,用数学知识解释为点动成线.故选A2.【分析】根据点动成线,线动成面,面动成体对各选项分析判断后利用排除法求解.【解答】解:A、旋转一扇门,门在空中运动的痕迹是“面动成体”,故本选项错误;B、扔一块小石子,石子在空中飞行的路线是“点动成线”,故本选项错误;C、天空划过一道流星是“点动成线”,故本选项错误;D、汽车雨刷在挡风玻璃上面画出的痕迹是“线动成面”,故本选项正确.故选D3.【分析】本题是一个矩形绕着它的一边旋转一周,根据面动成体的原理即可解.【解答】解:如图,一个长方形绕轴l旋转一周得到的立体图形是圆柱.故选C4.【分析】根据“面动成体”的原理,结合图形特征进行旋转,判断出旋转后的立体图形即可.【解答】解:A、此图形绕轴旋转成圆锥,故此选项错误;B、此图形绕轴旋转成圆台,故此选项错误;C、此图形绕轴旋转成球,故此选项错误;D、此图形绕轴旋转成半球,故此选项正确;故选D5.【分析】根据半圆绕它的直径旋转一周形成球可得出答案.【解答】解:有线动成面的知识可得:半圆绕它的直径旋转一周形成球.故选C6.【分析】根据直角梯形绕高旋转是圆台,可得答案.【解答】解:A、圆柱上面加一个圆锥,故A错误;B、圆台,故B正确;C、圆柱上面加一个圆锥,故C错误;D、两个圆锥,故D错误;故选B7.【分析】根据点动成线进行回答.【解答】解:夜晚的流星划过天空时留下一道明亮的光线,由此说明了点动成线,答案:点动成线.8.【分析】根据点动成线,线动成面,面动成体进行解答即可.【解答】解:快速转动的电扇叶片,给我们一个完整的平面的感觉,这说明线动成面,答案:线动成面.9.【分析】这是面动成体的原理在现实中的具体表现.【解答】解:硬币在桌面上快速地转动时,看上去像球,这说明了面动成体.故答案为:面动成体.10.【分析】根据面动成体,可得一个三角形绕直角边旋转一周可以得到一个圆锥.【解答】解:圆锥的轴截面是直角三角形,因而圆锥可以认为直角三角形以一条直角边所在的直线为轴旋转一周得到.所以直角三角形绕它的直角边旋转一周可形成圆锥,答案:圆锥.11.【分析】根据“面动成体”的原理,结合图形特征进行旋转,判断出旋转后的立体图形即可.解:连线如下:12.【分析】根据旋转的特点和各几何图形的特性判断即可.解:如图所示:。

北师大七年级上1.1.1认识生活中的立体图形同步练习(含答案)

北师大七年级上1.1.1认识生活中的立体图形同步练习(含答案)

1.1.1 认识生活中的立体图形1.下列图形中,不是立体图形的是( )A.球 B.圆柱 C.圆 D.圆锥2.下面物体中,最接近圆柱的是( )图13.与生活中的汽油桶的形状近似的图形是( )A.圆锥 B.长方形 C.球 D.圆柱4.下列几何体为三棱柱的是( )图25.下列几何体中与其他不同类的是( )A.长方体 B.正方体 C.三棱柱 D.圆柱6.(1)下面这些基本图形和你很熟悉,试一试在括号里写出它们的名称.图3(2)将这些几何体分类,并写出分类的理由.7.如图4所示的图形中,属于棱柱的有( )图4A.2个 B.3个 C.4个 D.5个8.下列有六个面的几何体有( )①长方体;②四棱柱;③正方体;④三棱柱.A.1个B.2个C.3个D.4个9.一个正六棱柱所有侧棱长的和是18厘米,则每条侧棱的长为________厘米.10.如图5,有一个棱长是4 cm的正方体,从它的一个顶点处挖去一个棱长是1cm的正方体后,剩下物体的表面积和原来的表面积相比较( )图5A.变大了 B.变小了C.没变 D.无法确定变化情况11.有两个完全相同的长方体,长、宽、高分别是5 cm,4 cm,3 cm,把它们叠放在一起组成一个新的长方体,在这些新的长方体中,表面积最小的是________cm2.12.如图6,现有一长方体水槽,装入一些水,然后固定底面的一边慢慢倾斜但不能使水从水槽中流出.(1)请你先实践操作一下,再说说你所见到的立体图形有哪些?(2)在这个变化中,你认为其中什么没有变化?图613.新年晚会的会场上悬挂了许多五彩缤纷的小装饰品,其中有各种各样的立体图形,如图7:图7请你数一数上图中每个多面体具有的顶点数(V),棱数(E)和面数(F),并把结果计入下表中.名称各面形状顶点数(V)面数(F)棱数(E)V+F-E正四面体正三角形正方体正方形正八面体正三角形正十二面体正五边形201230 2第1课时认识生活中的立体图形1.C 2.C 3.D4.D5.D6.解:(1)球圆柱圆锥长方体三棱柱(2)答案不唯一,如按柱体、锥体、球体来分:圆柱、长方体、三棱柱为柱体;圆锥为锥体;球为球体.按照有无曲的面来分:球、圆柱、圆锥有曲的面;长方体、三棱柱无曲的面.按照有无顶点来分:圆锥、长方体、三棱柱有顶点;球、圆柱无顶点.7.B8.C9.310.C11.14812.解:(1)长方体、四棱柱、三棱柱.(2)水的体积不变,即水槽中的水构成的柱体的体积不变.13.解:从左到右,从上到下依次填:4,4,6,2;8,6,12,2;6,8,12,2.。

1.1.2 生活中的立体图形 第2课时 北师大版七年级数学上册同步练习(含答案)

1.1.2 生活中的立体图形 第2课时 北师大版七年级数学上册同步练习(含答案)

1.1.2生活中的立体图形一.选择题。

1.下面图形中,以直线为轴旋转一周,可以得到圆柱体的是( )A.B.C.D.2.如图,下面的平面图形绕轴旋转一周,可以得到圆柱体的是( )A.B.C.D.3.“节日的焰火”可以说是( )A.面与面交于线B.点动成线C.面动成体D.线动成面4.把一枚硬币在桌面上竖直快速旋转后所形成的几何体是( )A.圆柱B.圆锥C.球D.正方体5.下面现象说明“线动成面”的是( )A.旋转一扇门,门在空中运动的痕迹B.扔一块小石子,石子在空中飞行的路线C.天空划过一道流星D.汽车雨刷在挡风玻璃上面画出的痕迹6.圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列四个选项绕直线旋转一周可以得到如图立体图形的是( )A.B.C.D.7.下列说法:①一点在平面内运动的过程中,能形成一条线段;②一条线段在平面内运动的过程中,能形成一个平行四边形;③一个三角形在空间内运动的过程中,能形成一个三棱柱;④一个圆形在空间内平移的过程中,能形成一个球体.其中正确的是( )A.①②③④B.①②③C.②③④D.①③④二.填空题(共5小题)8.粉笔在黑板上划过写出一个又一个字母,画出一个个图案,这说明 .9.长为4,宽为2的矩形绕其一边旋转构成一个圆柱的最大体积为 .(结果保留π)10.一个直角三角形的两条直角边的长分别为3厘米和4厘米,绕它的直角边所在的直线旋转所形成几何体的的体积是 立方厘米.(结果保留π)三.解答题(共4小题)11.小明学习了“面动成体”之后,他用一个边长为3cm、4cm和5cm的直角三角形,其中一条直角边旋转一周,得到了一个几何体,请计算出几何体的体积.(锥体体积=底面积×高)12.如图是一个长为4cm,宽为3cm的长方形纸片(1)若将此长方形纸片绕长边或短边所在直线旋转一周,能形成的几何体是 ,这能说明的事实是 .(2)求:当此长方形纸片绕长边所在直线旋转一周时(如图1),所形成的几何体的体积.(3)求:当此长方形纸片绕短边所在直线旋转一周时(如图2),所形成的几何体的体积.1.1.2生活中的立体图形参考答案与试题解析一.选择题。

【七年级数学】七年级数学上1.1生活中的立体图形同步习题(北师版附答案和解释)

【七年级数学】七年级数学上1.1生活中的立体图形同步习题(北师版附答案和解释)

七年级数学上1.1生活中的立体图形同步习题(北师版附答
案和解释)
第一丰富的图形世界
1生活中的立体图形
第1时生活中的立体图形
预习要点
1.写出下列几何体名称。

2.在下图中标出六棱柱的顶点、侧棱、侧面和底面
3.在棱柱中,相邻两个面的交线叫做,相邻两个侧面的交线叫做,棱柱的所有长都相等,棱柱的上、下底面的形状相同。

侧面的形状都是。

4.长方体、正方体都是棱柱,棱往可以分为和,的侧面是长方形。

5.(E=2可知,它有6个顶点,
故选D
6.【分析】根据立体图形的特征分别分析.
【解答】解A、长方体与正方体都有六个面,说法正确;B、圆锥的底面是圆,说法正确;c、棱柱的上下底面是完全相同的图形,说法正确;D、五棱柱有七个面,15条棱,说法错误.
故选D
7.【分析】根据柱体的分类棱柱和圆柱,结合图形进行选择即可.【解答】解①是圆锥,②是正方体,属于棱柱,③是圆柱,④是棱锥,⑤是球,⑥是三棱柱.所以是柱体的有②③⑥.
答案②③⑥
8.【分析】棱柱的所有侧棱相等,从而求出所有侧棱之和.
【解答】解∵六棱柱有6条棱,且每条棱的长度均为5c,。

北师大版七年级上册1.1生活中的立体图形同步练习含答案

北师大版七年级上册1.1生活中的立体图形同步练习含答案

北师大新版七年级上册《1.1 生活中的立体图形》同步练习一.选择题(共12小题)1.下列说法错误的是()A.长方体和正方体都是四棱柱B.五棱柱的底面是五边形C.n棱柱有n条侧棱,n个面D.若棱柱的底面边长相等,则它的各个侧面面积相等2.如图所示的平面图形绕直线l旋转一周,可以得到的立体图形是()A.B.C.D.3.如图,一个有盖的圆柱形玻璃杯中装有半杯水,若任意放置这个水杯,则水面的形状不可能是()A.B.C.D.4.下列关于长方体面的四个说法错误的是()A.长方体的每个面都是长方形B.长方体中每两个面都互相垂直C.长方体中相对的两个面的面积相等D.长方体中与一个面垂直的面有四个5.如图所示立方体中,过棱BB1和平面CD1垂直的平面有()A.1个B.2个C.3个D.0个6.如图,模块①由15个棱长为1的小正方体构成,模块②﹣⑥均由4个棱长为1的小正方体构成.现在从模块②﹣⑥中选出三个模块放到模块①上,与模块①组成一个棱长为3的大正方体.下列四个方案中,符合上述要求的是()A.模块②,⑤,⑥ B.模块③,④,⑥ C.模块②,④,⑤ D.模块③,⑤,⑥7.如图是一块带有圆形空洞和矩形空洞的小木板,则下列物体中最有可能既可以堵住圆形空洞,又可以堵住矩形空洞的是()A.正方体B.球C.圆锥D.圆柱体8.将下列各选项中的平面图形绕轴旋转一周,可得到如图所示的立体图形的是()A.B.C.D.9.面与面相交,形成的是()A.点B.线C.面D.体10.将下面的直角梯形绕直线l旋转一周,可以得到如图立体图形的是()A.B.C.D.11.将下列图形绕着直线旋转一周正好得到如图所示的图形的是()A.B.C.D.12.将一个棱长为3的正方体的表面涂上颜色,分割成棱长为1的小正方体(如图).设其中一面、两面、三面涂色的小正方体的个数分别为为x1、x2、x3,则x1、x2、x3之间的关系为()A.x1﹣x2+x3=1 B.x1+x2﹣x3=1 C.x1﹣x2+x3=2 D.x1+x2﹣x3=2二.填空题(共10小题)13.若一个正方体所有棱的和是60cm,则它的体积是cm3.14.一个棱柱共有18个顶点,所有的侧棱长的和是72厘米,则每条侧棱长是厘米.15.第一行的图形绕虚线转一周,能形成第二行的某个几何体,用线连起来.16.如图所示图形绕图示的虚线旋转一周,(1)能形成,(2)能形成,(3)能形成.17.棱柱侧面的形状可能是一个三角形(判断对错)18.五棱柱有个面,个顶点,条侧棱,n棱柱有个面,个顶点,条棱.19.将一个半圆绕它的直径所在的直线旋转一周得到的几何体是.20.某产品是长方体,它的长、宽、高分别为10cm、8cm、6cm,将12个这种产品摆放成一个大的长方体,则此大长方体的表面积最少为cm2.21.10个棱长为1的正方体,如果摆放成如图所示的上下三层,那么该物体的表面积为;依图中摆放方法类推,继续添加相同的正方体,如果该物体摆放了上下100层,那么该物体的表面积为.22.将如图所示半圆形薄片绕轴旋转一周,得到的几何体是,这一现象说明.三.解答题(共5小题)23.底面半径为10cm,高为40cm的圆柱形水桶中装满了水.小明先将桶中的水倒满3个底面半径为3cm,高为5cm的圆柱形杯子,如果剩下的水倒在长、宽、高分别为50cm,20cm和12cm的长方体容器内,会满出来吗?若没有满出来,求出长方体容器内水的高度(π取3).24.(1)用斜二侧画法补画下面的图形,使之成为长方体的直观图(虚线表示被遮住的线段;只要在已有图形基础上画出长方体,不必写画法步骤).(2)在这一长方体中,从同一顶点出发的三条棱出发的三条棱的棱长之比是5:7:2,其中最长的棱和最短的棱长之差为10cm,求这个长方体的棱长和总和.25.棱长为a的正方体,摆放成如图所示的形状.(1)如果这一物体摆放三层,试求该物体的表面积;(2)依图中摆放方法类推,如果该物体摆放了上下20层,求该物体的表面积.26.如图是一个长为4cm,宽为3cm的长方形纸片(1)若将此长方形纸片绕长边或短边所在直线旋转一周,能形成的几何体是,这能说明的事实是.(2)求:当此长方形纸片绕长边所在直线旋转一周时(如图1),所形成的几何体的体积.(3)求:当此长方形纸片绕短边所在直线旋转一周时(如图2),所形成的几何体的体积.27.探究:将一个正方体表面全部涂上颜色(1)把正方体的棱三等分,然后沿等分线把正方体切开,得到27个小正方体,我们把仅有i个面涂色的小正方体的个数记为x i,那么x3=,x2=,x1=,x0=;(2)如果把正方体的棱四等分,同样沿等分线把正方体切开,得到64个小正方体,那么x3=,x2=,x l=,x0=;(3)如果把正方体的棱n等分(n≥3),然后沿等分线把正方体切开,得到n3个小正方体,那么:x3=,x2=,x1=,x0=;参考答案一.选择题1.C.2.C.3.C.4.B.5.A.6.A.7.D.8.A.9.B.10.B.11.A.12.C.二.填空题13.125.14.8.15..16.圆柱;圆锥;球.17.×.18.7,10,5,(n+2),2n,3n.19.球20.1936.21.30300.22.球,面动成体.三.解答题23.解:3×102×40﹣3×32×5×3=12000﹣405=11595(cm3),长方体的容积为:50×20×12=12000cm3.∵12000>11595,∴不会满出来.11595÷(50×20)=11.595cm.∴长方体容器内水的高度11.595cm.24.解:(1)如图所示:(2)设这三条棱的棱长分别为5xcm、7xcm、2xcm,7x﹣2x=10,解得:x=2,则棱长的总和为4(7×2+5×2+2×2)=112cm.25.解:(1)6×(1+2+3)•a2=36a2.故该物体的表面积为36a2;(2)6×(1+2+3+…+20)•a2=1260a2.故该物体的表面积为1260a2.26.解:(1)若将此长方形纸片绕长边或短边所在直线旋转一周,能形成的几何体是圆柱,这能说明的事实是面动成体;(2)绕长边旋转得到的圆柱的底面半径为3cm,高为4cm,体积=π×32×4=36πcm3;(3)绕短边旋转得到的圆柱底面半径为4cm,高为3cm,体积=π×42×3=48πcm3.故答案为:圆柱;面动成体.27.解:(1)根据长方体的分割规律可得x3=8,x2=12,x1=6,x0=1;(2)把正方体的棱四等分时,顶点处的小正方体三面涂色共8个;有一条边在棱上的正方体有24个,两面涂色;每个面的正中间的4个只有一面涂色,共有24个;正方体正中心处的8个小正方体各面都没有涂色.故x3=8,x2=24,x1=24,x0=8;(3)由以上可发现规律:三面涂色8,二面涂色12(n﹣2),一面涂色6(n﹣2)2,各面均不涂色(n﹣2)3。

北师大版七年级数学上册《1.1生活中的立体图形》同步测试题及答案

北师大版七年级数学上册《1.1生活中的立体图形》同步测试题及答案

北师大版七年级数学上册《1.1生活中的立体图形》同步测试题及答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列立体图形中,是圆锥的是()A.B.C.D.2.下列图形中是多面体的有()A.(1)(2)(4)B.(2)(4)(6)C.(2)(5)(6)D.(1)(3)(5)3.子弹从枪膛中射出去的轨迹像是一条线,这个现象可以用数学知识解释为()A.点动成线B.线动成面C.面动成体D.以上都不对4.一个印有“你要探索数学”字样的立方体纸盒表面展开图如图1所示,若立方体纸盒是按图2展开,则印有“索”字在几号正方形内()A.①B.①C.①D.①5.几何图形都是由点、线、面、体组成的,点动成线,线动成面,面动成体,下列生活现象中可以反映“线动成面”的是()A.笔尖在纸上移动划过的痕迹B.长方形绕一边旋转一周形成的几何体C.流星划过夜空留下的尾巴D.汽车雨刷的转动扫过的区域6.如图,下列图形中属于棱柱的有()A.2B.3C.4D.57.夜晚时,我们看到的流星划过属于()A.点动成线B.线动成面C.面动成体D.以上答案都不对8.一个直角三角形绕它的一边所在直线旋转一周所得到的几何体一定是()A.圆锥B.圆柱C.圆锥或圆柱D.以上都不对9.观察下面四个图形是圆锥的是()A.B.C.D.10.在①球体;①柱体;①锥体;①棱柱;①棱锥中,必是多面体的是() A.①~①B.①①C.①D.①①11.一个棱柱有18条棱,那么它的底面一定是()A.五边形B.六边形C.十边形D.十五边形12.将下列平面图形绕轴旋转一周,可得到图中所示的立体图形的是().A.B.C.D.二、填空题13.一个正方体有个面,条棱,个顶点.14.今年十一国庆节当晚,香港以“富兴百业贺国庆,盈聚慧城耀香江”为主题,在维多利亚港举行国庆烟花汇演,庆祝中华人民共和国成立74周年.绚烂的焰火可以看成由点运动形成的,这个现象说明.15.如果长方形的长和宽分别为6和4,那么以长方形的一边为轴旋转一周所得的几何体的体积为(结果保留 ).16.如图的几何体有个面,条棱,个顶点,它是由简单的几何体和组成的.17.如图,有一个盛有水的正方体玻璃容器,从内部量得它的棱长为30 cm,容器内的水深为8 cm.现把一块长,宽,高分别为15 cm,10 cm,10 cm的长方体实心铁块平放进玻璃容器中,容器内的水将升高cm.三、解答题18.小明学习了“面动成体”之后,他用一个边长为6cm、8cm和10cm的直角三角形,绕其中一条边旋转一周,得到了一个几何体.请计算出几何体的体积.(锥体体积=13底面积×高)19.请把下图中的平面图形与其绕所画直线旋转一周之后形成的立体图形用线连接起来.20.将一个长方形分别沿它的长和宽所在的直线旋转一周,回答下列问题:(1)旋转后将得到什么几何体?(2)若长方形的长和宽分别为6cm和4cm,求旋转后两个几何体的体积.(结果保留π)21.请你观察下列几种简单多面体模型,解答下列问题:多面体面数(F)棱数(E)四面体46长方体612正八面体8(1)计算长方体棱数,可依据长方体有6个面,每个面均为四边形即有4条棱,得出总棱数为12;请你猜想多面体面数、形状、棱长之间的数量关系,完成以下计算:①如图所示,正八面体的每一个面都是三角形,则正八面体有__________条棱;①正十二面体的每一个面都是正五边形,则它共有__________条棱;(2)如下图,一种足球(可视作简单32面多面体)是由32块黑白相间的牛皮缝制而成,黑皮为正五边形,白皮为正六边形,且边长相等,已知图中足球有90条棱;某体育公司采购630张牛皮用于生产这种足球,已知一张牛皮可用于制作30个正五边形或者制作20个正六边形,要使裁剪后的五边形和六边形恰好配套,应怎样计划用料才能制作尽可能多的足球?22.十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格:多面体顶点数(V)面数(F)棱数(E)四面体44①长方体8612正八面体①812正十二面体201230(2)你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是.(3)一个多面体的面数与顶点数相同,且有12条棱,则这个多面体的面数是.23.18世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题.(1)根据上面的多面体模型,直接写出表格中的m,n的值,则m=______,n=______.多面体顶点数(V)面数(F)棱数(E)四面体446长方体m612正八面体n812正十二面体201230(2)你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是_______.(3)一个多面体的面数等于顶点数,且这个多面体有30条棱,求这个多面体的面数.参考答案1.A【分析】本题考查常见的几何体.熟记常见的几何体,是解题的关键.根据圆锥的特征,进行判断即可.【详解】解:A、是圆锥,符合题意;B、是球体,不符合题意;C、是圆柱体,不符合题意;D、是长方体,不符合题意;故选:A.2.B【分析】多面体指四个或四个以上多边形所围成的立体.【详解】解:(1)圆锥有2个面,一个曲面,一个平面,不是多面体;(2)正方体有6个面,故是多面体;(3)圆柱有3个面,一个曲面两个平面,不是多面体;(4)三棱锥有4个面,故是多面体;(5)球有1个曲面,不是多面体;(6)三棱柱有5个面,故是多面体.故是多面体的有(2)(4)(6)故选:B.【点睛】本题考查多面体的定义,关键点在于:多面体指四个或四个以上多边形所围成的立体.3.A【分析】根据“点动成线”的概念直接回答即可.【详解】解:子弹从枪膛中射出去的轨迹可以看作点动成线的实际应用;故选A【点睛】此题考查了点、线、面、体,正确理解点线面体的概念是解题的关键.4.A【详解】试题分析:正方体的表面展开图的特征:相对面展开后间隔一个正方形.由图可得印有“索”字在①号正方形内,故选A.考点:正方体的表面展开图点评:本题属于基础应用题,只需学生熟练掌握正方体的表面展开图的特征,即可完成.5.D【分析】根据点动成线,线动成面,面动成体即可一一判定.【详解】解:A.笔尖在纸上移动划过的痕迹,反映的是“点动成线”,故不符合题意;B.长方形绕一边旋转一周形成的几何体,反映的是“面动成体”,故不符合题意;C.流星划过夜空留下的尾巴,反映的是“点动成线”,故不符合题意;D.汽车雨刷的转动扫过的区域,反映的是“线动成面”,故符合题意.故选:D【点睛】本题考查了点动成线,线动成面,面动成体,理解和掌握点动成线,线动成面,面动成体是解决本题的关键.6.B【分析】根据有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱,由此可选出答案.【详解】解:根据棱柱的定义可得①符合棱柱定义的有第一、二、四个几何体都是棱柱,共3个,其余都不是棱柱.故选①B.【点睛】本题考查棱柱的定义,属于基础题,掌握基本的概念是关键.7.A【分析】把流星视为点,流星的轨迹是一条线,符合点动成线的原理.【详解】①把流星视为点,流星的轨迹是一条线,符合点动成线的原理①选A.【点睛】本题考查了点动成线的原理,正确理解题意是解题的关键.8.D【分析】此题考查面与体的关系,正确理解面与体的关系是解题的关键.由平面图形绕某条直线旋转一周可得到体,据此依次判断.【详解】解:将直角三角形绕一边所在的直线旋转一周形成的几何体不一定是圆锥,以斜边所在的直线为轴旋转一周所得到的几何体是两个圆锥组成的组合体,不是圆锥故选:D9.C【分析】根据圆锥的定义:圆锥面和一个截它的平面(满足交线为圆)组成的空间几何图形叫圆锥,进行判断即可.【详解】解:A、不是圆锥,故错误;B、不是圆锥,故错误;C、是圆锥,故正确;D、不是圆锥,故错误;故选C.【点睛】本题主要考查了圆锥的定义,解题的关键在于能够熟练掌握圆锥的定义.10.D【详解】解:①球体只有一个曲面,故球体不是多面体;①柱体,圆柱有三个面,故柱体不一定是多面体;①锥体,圆锥有两个面,故锥体不一定是多面体;①棱柱至少有两个底面,三个侧面,故棱柱是多面体;①棱锥至少有一个底面,三个侧面,故棱锥是多面体.故选D.11.B【分析】根据题意利用n棱柱中棱的条数为3n,由棱的总条数为18,进行计算即可求出答案.【详解】解:n棱柱有3n条棱,又18÷3=6,因此底面是六边形.故选:B.【点睛】本题考查认识立体图形,熟练掌握棱柱的顶点、面数和棱的条数是正确判断的前提.12.B【分析】根据点动成线,线动成面,面动成体进行判断即可.【详解】解:绕轴旋转一周,可得到图中所示的立体图形的是:故选:B.【点睛】此题主要考查了点、线、面、体,关键是掌握面动成体.点、线、面、体的运动组成了多姿多彩的图形世界.13.612 8【分析】根据正方体的特征:正方体有6个面、12条棱、8个顶点,每个面都是正方形,而且面积相等,每条棱的长度都相等,正方体是特殊的长方体.据此解答.【详解】解:正方体有6个面,有12条棱,有8个顶点,一个正方体所有面的大小相等;每条棱长度都相等;故答案为6,12,8.【点睛】本题考查正方体,解题关键是理解并掌握正方体的特征.14.点动成线【分析】根据点,线,面,体的关系得出答案.【详解】绚烂的烟花可以看成由点运动形成的,这个现象说明了点动成线.故答案为:点动成线.15.96π或144π【分析】由题意易得可分两种情况进行求解,即①若以长方体的长为轴,旋转一周,则得到高为6,底面半径为4的圆柱,①若以长方体的宽4为轴,旋转一周,则得到高为4,底面半径为6的圆柱;然后进行求解即可.【详解】解:①若以长方体的长为轴,旋转一周,则得到高为6,底面半径为4的圆柱,其体积为24696ππ⨯⨯=;①若以长方体的宽4为轴,旋转一周,则得到高为4,底面半径为6的圆柱,其体积为264144ππ⨯⨯=.故答案为:96π或144π.【点睛】本题主要考查几何初步,关键是由平面图形得到几何体,进而求解即可.16.9 16 9 四棱锥四棱柱【详解】观察这个几何体可知,它有9个面,16条棱,9个顶点,它是由简单的几何体四棱锥和四棱柱组成的.17.315或1【分析】根据题意列出式子,进行计算即可【详解】解:设长方体浸入水面的高度为xcm,则水面升高了(x-8)cm 当以15 cm,10 cm为底面积浸入水中时:30308+1510x=3030x⨯⨯⨯⨯解得:3 x=95故水面升高了:339-8=155(cm)当以10 cm,10 cm为底面积浸入水中时:30308+1010x=3030x⨯⨯⨯⨯解得:x=9故水面升高了:9-8=1(cm)故答案为:315或1【点睛】此题主要考查了有理数乘除的应用,根据题意得出式子进行计算是解题关键.18.几何体的体积为:96πcm3或128πcm3或76.8πcm3.【分析】根据三角形旋转是圆锥,可得几何体;根据圆锥的体积公式,分类讨论可得答案.【详解】解:以8cm为轴,得:以8cm为轴体积为13×π×62×8=96π(cm3);以6cm为轴,得:以6cm为轴的体积为13×π×82×6=128π(cm3);以10cm为轴,得以10cm 为轴的体积为13×π(245)2×10=76.8π(cm 3). 故几何体的体积为:96πcm 3或128πcm 3或76.8πcm 3.【点睛】本题考查了点线面体,利用三角形旋转是圆锥是解题关键.19.见解析【分析】本题考查了点线面体,熟记各种图形旋转得出的立体图形是解题关键.直角三角形绕直角边旋转一周得到的立体图形是圆锥,长方形绕一边旋转一周得到的立体图形是圆柱,直角梯形绕如图所示的一边旋转一周得到的立体图形是圆台,半圆绕直径旋转一周得到的立体图形是球.【详解】解:如图所示:20.(1)圆柱(2)396cm π 3144cm π【分析】(1)根据平面图形中矩形旋转一周可得到圆柱求解即可;(2)根据绕长方形的长旋转一周得到圆柱的高为6cm ,圆柱底面半径为4cm ;绕长方形的宽旋转一周得到的圆柱的高为4cm ,底面半径为6cm ,分别利用圆柱的体积公式求解即可.【详解】(1)解:由题意可得,旋转后将得到圆柱答:旋转后将得到的几何体是圆柱;(2)解:由题意可得,绕长方形的长旋转一周得到圆柱的高为6cm ,圆柱底面半径为4cm①236496V cm ππ=⨯⨯=圆柱绕长方形的宽旋转一周得到的圆柱的高为4cm ,底面半径为6cm①2246144V cm ππ=⨯⨯=圆柱答:旋转后两个几何体的体积分别为396cm π 3144cm π.21.(1)12;30(2)用于制作30个正五边形的牛皮共180张,用于制作20个正六边形的牛皮共450张.【分析】本题考查了几何体中点、棱、面之间的关系以及二元一次方程组的应用与整除问题,解题的关键是审清题意.(1)根据每一个面有三条棱,每二个面共用一条棱即可求解,即:棱数=面数32⨯÷.(2)设一个足球有黑皮x 块,白皮y 块,根据二个面共用一条棱,结合题意可列方程组,求得每个足球黑皮块数与白皮块数;然后再设用于制作正五边形的需要m 张,用于制作正六边形的需要n 张,依据题意建立方程组,求得m 与n 的最大整数值,并检验是否符合题意即可得到答案.【详解】(1)解:①正八面体的每一个面都是三角形,则每一个面有三条棱,故八个面共有2438=⨯条棱,但每两个面共用一条棱,因此正八面体棱数是:24212÷=(条).①根据①的思路可知,正十二面体共有棱数:125302⨯=(条). 故答案为:12;30.(2)设一个足球有黑皮x 块,白皮y 块,根据题意得: 5690232x y x y +=⨯⎧⎨+=⎩,解得:1220x y =⎧⎨=⎩ 设630张牛皮中,用于制作正五边形的需要m 张,用于制作正六边形的需要n 张,依据题意得:63030201220m n m n +≤⎧⎪⎨=⎪⎩,解得:180450m n ≤⎧⎨≤⎩(m 、n 为整数) m 、n 取最大的整数并经过检验知,180,450m n ==正好符合题意①最多制作2045020n =(个)足球,且正好将630张牛皮全部用完. 答:用于制作30个正五边形的牛皮共180张,用于制作20个正六边形的牛皮共450张.22.(1)6,6;(2)V+F -E=2;(3)7.【分析】(1)观察图形即可得出结论;(2)观察可得:顶点数+面数-棱数=2;(3)代入(2)中的式子即可得到面数【详解】解:(1)观察图形,四面体的棱数为6;正八面体的顶点数为6;多面体顶点数(V)面数(F)棱数(E)四面体446长方体8612正八面体6812正十二面体201230(2)观察表格可以看出:顶点数+面数-棱数=2,关系式为:V+F-E=2;(3)由题意得:F+F-12=2,解得F=7.故答案为:(1)6,6;(2)V+F-E=2;(3)7.【点睛】本题考查多面体的顶点数,面数,棱数之间的关系及灵活运用.23.(1)8;6(2)V+F-E=2(3)这个多面体的面数为16【分析】(1)观察图形即可得出结论;(2)观察可得:顶点数+面数-棱数=2;(3)将所给数据代入(2)中的式子即可得到面数.【详解】(1)解:观察图形,长方体的定点数为8;正八面体的顶点数为6;多面体顶点数(V)面数(F)棱数(E)四面体446长方体8612正八面体6812正十二面体201230故答案为:8;6;(2)解:观察表格可以看出:顶点数+面数-棱数=2,关系式为:V+F-E=2;(3)解:由题意得:F+F-30=2解得F=16①这个多面体的面数为16.【点睛】本题主要考查多面体的顶点数,面数,棱数之间的关系及灵活运用,正确理解题意是解题的关键.。

北师大版七年级上册数学生活中的立体图形同步练习题

北师大版七年级上册数学生活中的立体图形同步练习题

1.1 生活中的立体图形填空题1.立体图形的各个面都是__________的面,这样的立体图形称为多面体.2.图形是由________,__________,____________构成的.3.物体的形状似于圆柱的有________________;类似于圆锥的有______________;类似于球的有_________________.4.围成几何体的侧面中,至少有一个是曲面的是______________.5.正方体有_____个顶点,经过每个顶点有_________条棱,这些棱都____________.6.圆柱,圆锥,球的共同点是_____________________________.7.假如我们把笔尖看作一个点,当笔尖在纸上移动时,就能画出线,说明了______________,时钟秒针旋转时,形成一个圆面,这说明了_______________,三角板绕它的一条直角边旋转一周,形成一个圆锥体,这说明了___________________.8.圆可以分割成_____个扇形,每个扇形都是由___________.9.从一个七边形的某个顶点出发,分别连结这个点与其余各顶点,可以把七边形分割成__________个三角形.二、选择题10. 从一个十边形的某个点出发,分别连接这个顶点与其余各顶点,可以把这个多边形分割成( )个三角形A. 10B. 9C. 8D. 711. 图1-1是由( )图形饶虚线旋转一周形成的13.图1-2绕虚线旋转一周形成的图形是 ( )14.图1-3这个美丽的图案是由我们所熟悉的( )图形组成A.三角形和扇形 B圆和四边形C.圆和三角形 D圆和扇形15.下面全由圆形组成的图案是( )三、解答题16.请观察丰富多彩的生活世界,有哪些物体的形状与下列几何体类似?(1)六面体 (2)圆柱 (3)圆锥 (4)棱锥17.请写出下列几何体的名称( ) ( ) ( )( ) ( )18.请说出生活中至少4个规则的物体,并说出和它们类似的立体图形?19.动手做一做.将一个长方体切去一部分,看一看剩余的部分是几面体呢?四.开放创新提高题20.如图1-4,一长方体土地,用两条直线把它分成形状相同,大小相等的四块,你能做到吗,能用不同的方法完成这个任务吗?21.一个圆绕着它的直径的直线旋转一周就形成球体,那么现有一个长方形(如图1-5)你有几种方法使它类似于圆柱的几何体?请你画出这些立体圆形构建数学的知识网络学习数学,重要的是要构建一个数学的知识网络,将单一的知识都串联起来,这样有助于对综合型题目的解答。

北师大版七年级上册1.1生活中的立体图形同步练习2

北师大版七年级上册1.1生活中的立体图形同步练习2

北师大版七年级上册 1.1 生活中的立体图形同步练习 21.1 生活中的立体图形◆基础训练一、选择题1.围成圆柱的面有().A .1个B.2个C.3个D.多于3个2.用右图的图形绕轴旋转一周,可得()图形.A B C D3.以下立体图形中,不属于多面体的是().A .正方体B.三棱柱C.长方体D.圆锥体二、填空题4.飞机表演“飞机拉线”,我们用数学知识可解说为点动成线,用数学知识解说以下现象:(1)一只小蚂蚁行走留下的路线可解说为_________.(2)自行车辐条运动形成的图形可解说为_________.(3)一个圆沿着它的一条直径旋转形成图形可解说为________.5.圆锥能够当作是一个_______ 绕它的一条_______ 旋转一周而得的;? 圆柱能够看作是由________绕 ________旋转一周所获得的;球能够看作是由________?绕它的 __________旋转一周而获得的.三、解答题6.如图是一个正六棱柱,它的底面边长是3cm,高是 6cm.(1)这个棱柱共有多少个面?它的侧面积是多少?(2)这个棱柱共有多少条棱?全部的棱长的和是多少?(3)这个棱柱共有多少个极点?1 / 3( 4)经过察看,试用含n 的式子表示n 棱柱的面数与棱的条数.7.请用几何图形(一个三角形,两条平行线,一个半圆)作为构件,?尽可能构想一个独到且具存心义的图形(如图),并写上一两句贴切、幽默的讲解词(起码两幅).◆能力提升一、填空题8.教师节那一天,小明为老师制作了一个形如正方体的小礼品,棱长 4 厘米.他买的包装纸至少 _______平方厘米.9.如图是标有1, 2, 3,4, 5, 6 六个数字的一个正方体的三种不一样摆法,?下边三种不一样摆法朝左的一面的数字之和是________.◆拓展训练10.将自然数1~ 5 填入以下图中各圆内,?使正方体六个面上四个自然数的和都是18.答案1. C 2 . D 3 . D 4 .( 1)点动成线(2)线动成面(3)面动成体5.直角三角形,直角形,矩形,矩形的一边,半圆,一条直径6.( 1) 8 个, 108cm2(2)18条,72cm(3)12个极点(4)面数n+2,棱数3n.7.略8 .969.由三个正方体中的已知数字可判断数字 1 与 4 相对, 2 与 6 相对, 3 与 5 相对,故三个正方体朝左的一面数字和为5+1+4=1010.。

北师大版数学七年级上册1.1《生活中的立体图形》练习

北师大版数学七年级上册1.1《生活中的立体图形》练习

第一章丰富的图形世界1.1 生活中的立体图形专题一立体图形的识别与分类1.下面几何体中,全是由曲面围成的是()A.圆柱B.圆锥C.球D.正方体2.下列说法错误的是()A.长方体、正方体都是棱柱B.三棱柱的侧面是三角形C.直六棱柱有六个侧面、侧面为长方形D.球体的三种视图均为同样大小的图形3.如图,在一个棱长为6cm的正方体上摆放另一个正方体,使得上面正方体的四个顶点恰好均落在下面正方体的四条棱上,则上面正方体体积的可能值有()A.1个B.2个C.3个D.无数个4.如图,左排的平面图形绕轴旋转一周,可以得到右排的立体图形,那么与甲、乙、丙、丁各平面图形顺序对应的立体图形的编号应为()A.③④①②B.①②③④C.③②④①D.④③②①5.在下列几何体中,由三个面围成的有,由四个面围成的有.(填序号)6.如图,在直六棱柱中,棱AB与棱CD的位置关系为,大小关系是.7.用五个面围成的几何体可能是.8.若一个直四棱柱的底面是边长为1cm的正方形,侧棱长为2cm,则这个直棱柱的所有棱长的和是cm.9.由一个平面图形绕着它的一条边所在的直线旋转一周形成的几何体,叫做旋转体.如果有一个几何体,围成它的各个面都是多边形,那么这个几何体叫做多面体.在你所熟悉的立体图形中,旋转体有,多面体有.(要求各举两个例子)10.一只小蚂蚁从如图所示的正方体的顶点A沿着棱爬向有蜜糖的点B,它只能经过三条棱,请你数一数,小蚂蚁有种爬行路线.11.探究:将一个正方体表面全部涂上颜色,试回答:(1)把正方体的棱三等分,然后沿等分线把正方体切开,得到27个小正方体,我们把仅有i个面涂色的小正方体的个数记为x i,那么x3=,x2=,x1=,x0=;(2)如果把正方体的棱四等分,同样沿等分线把正方体切开,得到64个小正方体,与(1)同样的记法,则x3=,x2=,x l=,x0=;(3)如果把正方体的棱n等分(n≥3),然后沿等分线把正方体切开,得到n3个小正方体,与(1)同样的记法,则x3=,x2=,x1=,x0=.状元笔记:【知识要点】1.认识常见几何体的基本特征,能对这些几何体进行正确的识别和简单的分类.2.认识点、线、面,了解有关点、线及某些基本图形的一些简单性质.3.认识棱柱的某些特征,开始学习较为规范的几何语言.【温馨提示】经历从现实世界抽象出几何图形的过程,能以实物简图形式直观地给圆柱、圆锥、正方体、长方体、棱柱等几何体的命名.通过丰富的实例,认识图形是由点、线、面构成的;另外,通过观察,认识“点动成线、线动成面、面动成体”的几何事实.【方法技巧】围成几何体的面有曲面和平面两种.参考答案:1.C 解析:A.圆柱由上下两个平面和侧面一个曲面组成;B.圆锥由侧面一个曲面和底面一个平面组成;C.球只有一个曲面组成;D.正方体是由四个平面组成.2.B 解析:棱柱由上下两个底面以及侧面组成,上下两个底面可以是全等的多边形,所以表面可能出现三角形,侧面是四边形;长方体、正方体都是棱柱;三棱柱的侧面是应是四边形,故B错.3.D 解析:因为上面正方体的棱长不确定,所以根据正方体体积公式可知,上面正方体体积的可能值有无数个.4.A 解析:甲旋转后得到③,乙旋转后得到④,丙旋转后得到①,丁旋转后得到②,故与甲、乙、丙、丁各平面图形顺序对应的立体图形的编号应为③④①②.5.(2)(6)解析:(1)和(3)有6个面,(2)有两个底面和一个侧面,共3个面,(4)只有一个面,(5)有两个面,(6)有4个面.6.平行相等7.四棱锥或三棱柱解析:如果有一个底面则是四棱锥,如果有两个底面则是三棱柱.8.16 解析:∵直四棱柱的底面是边长为1cm的正方形,∴两个底面的8条棱长之和是8cm.∵侧棱长为2cm,∴4条侧棱长之和是2×4=8(cm).∴这个直棱柱的所有棱长和是8+8=16(cm).9.圆柱、圆锥六棱柱、三棱锥10.6 解析:根据正方体的特点,依次找到由顶点A沿着棱爬向B,只能经过三条棱的路线即可,如图所示,走法有:①A﹣C﹣D﹣B;②A﹣C﹣H﹣B;③A﹣E﹣F﹣B;④A﹣E﹣D﹣B;⑤A﹣G﹣F﹣B;⑥A﹣G﹣H﹣B.共有6种走法.11.解:(1)根据长方体的分割规律可得x3=8,x2=12,x1=6,x0=1.(2)把正方体的棱四等分时,顶点处的小正方体三面涂色共8个;有一条边在棱上的正方体有24个,两面涂色;每个面的正中间的4个只有一面涂色,共有24个;正方体正中心处的8个小正方体各面都没有涂色.故x3=8,x2=24,x1=24,x0=8.(3)由以上可发现规律:三面涂色8个,两面涂色12(n﹣2)个,一面涂色6(n﹣2)2个,各面均不涂色(n﹣2)3个.。

七年级数学上册1.1生活中的立体图形1.1.2立体图形的构

七年级数学上册1.1生活中的立体图形1.1.2立体图形的构

1.1.2 立体图形的构成1.下雨时汽车的雨刷把玻璃上的雨水刷干净属于下列哪个选项的实际应用( )A.点动成线 B.线动成面 C.面动成体 D.以上都不对2.将图8中的三角形绕直线l旋转一周后,能得到如图9所示的图形的是( )3.如图所示的立体图形是由________个面组成的,其中有________个面是平的,有________个面是曲的;面与面相交成________条线,其中曲的线有________条4.如图所示的几何体中,由4个面围成的几何体是( )5.如图所示,陀螺是由下面哪两个几何体组合而成的( )A.长方体和圆锥 B.长方形和三角形C.圆和三角形 D.圆柱和圆锥6.下列几何体:①正方体;②圆柱;③圆锥;④长方体;⑤球;⑥五棱柱,其中有两个底面的是( )A.②④⑥ B.①②⑥ C.②③⑤ D.①②④⑥7.观察图13中的圆柱和棱柱,通过想象回答下列问题:(1)该圆柱和棱柱各由几个面组成?这些面是平的还是曲的?(2)该圆柱的侧面与底面相交形成几条线?这些线是直的还是曲的?(3)该棱柱的侧面与下底面相交形成几条线?(4)该棱柱共有几个顶点?经过一个顶点有几条棱?8.下列几何体中,不能由一个平面图形通过旋转得到的是( )9.如图所示的几何体是由下列哪个图形绕虚线旋转一周得到的( )周后形成的立体图形是( )11. “枪打一条线,棍打一大片”这个现象说明:______________12.如图,画出旋转过程中得到的立体图形的示意图.图1913.我们曾学过圆柱的体积计算公式:V=Sh=πr2h(r是圆柱的底面半径,h是圆柱的高).现有一个长方形,它的长为2 cm,宽为1 cm,以它的一条边所在的直线为轴旋转一周,得到的几何体的体积是多少?第2课时立体图形的构成1.B 2.B 3.4 3 1 6 24.C5.D6.D7.解:(1)圆柱有3个面,底面是平的,侧面是曲的;六棱柱有8个面,这些面都是平的.(2)圆柱的侧面与底面相交形成2条线,这些线都是曲的.(3)该棱柱的侧面与下底面相交形成6条线.(4)该棱柱共有12个顶点,经过一个顶点有3条棱.8.D9.D10.D11.点动成线,线动成面12.解:如图所示:13.解:当以长方形的长所在的直线为轴旋转时,如图①所示,得到的圆柱的底面半径为1 cm,高为2 cm,其体积V=π×12×2=2π(cm3).当以长方形的宽所在的直线为轴旋转时,如图②所示,得到的圆柱的底面半径为2 cm,高为1 cm,其体积V=π×22×1=4π(cm3).综上可得,得到的几何体的体积是2πcm3或4πcm3.。

北师版七年级数学上册 1.1.1 生活中的立体图形 同步训练卷

北师版七年级数学上册    1.1.1 生活中的立体图形    同步训练卷

北师版七年级数学上册1.1.1生活中的立体图形同步训练卷一、选择题(共10小题,3*10=30)1.下列各几何体中,直棱柱的个数是( )A.5个B.4个C.3个D.2个2.下列图形中,属于立体图形的是( )3.下列说法正确的是()①教科书是长方形;②教科书是长方体,也是棱柱;③教科书的表面都是长方形.A.①②B.①③C.②③D.①②③4.下列四个几何体中,是三棱柱的为( )5.下列物体与足球形状类似的是()A.电视机B.烟囱帽C.西瓜D.铅笔6. 下列说法正确的是()A.三棱柱有九条棱B.正方体不是四棱柱C.五棱柱只有五个面D.六棱柱有六个顶点7.下列几何体,是圆柱的为()A B C D8.将如图的平面图形绕轴l旋转一周,可以得到的几何体是()9.若一个棱柱有10个顶点,则下列说法正确的是()A.这个棱柱有4个侧面B.这个棱柱有5条侧棱C.这个棱柱的底面是十边形D.以上都不正确10.观察如图的棱柱,它的侧面和一个底面相交形成的线有()A.3条B.4条C.5条D.6条二.填空题(共8小题,3*8=24)11.正方体有____个面,____个顶点,经过每个顶点都有____条棱.12. 一个棱柱有12个顶点,所有的侧棱长的和是48 cm,每条侧棱的长为____.13.夏夜,天上飞逝的流星形成一道亮光,用数学知识可解释为_________________. 14.一个直棱柱有12个顶点,那么它的面的个数是____个.15.如图所示的立体图形,是由____个面组成,面与面相交成____条线.16.如图是一个棱锥,它是由____个三角形和____个底所组成的.17.观察如图的棱柱,它的侧面和一个底面相交形成的线有____条。

18.如图,正方形ABCD的边长为3 cm,以直线AB为轴,将正方形旋转一周,得到一几何体.则从正面观察这个几何体得到的平面图的面积是____________.三.解答题(共7小题,46分)19.(6分) 写出下列立体图形的名称:20.(6分)将下列几何体分类,并说明理由.21.(6分) 如图中的棱柱、圆锥分别是由几个面围成的?它们是平的还是曲的?22.(6分) 一个六棱柱模型如图,它的底面边长都是5 cm,侧棱长4 cm.观察这个模型,回答下列问题:(1)这个六棱柱的几个面分别是什么形状?哪些面的形状、大小完全相同?(2)这个六棱柱的所有侧面的面积之和是多少?23.(6分)请你将图中的几何体按两种不同的方法分类,并说明理由.24.(8分)观察如图所示的图形,然后回答下列问题:(1)比较图①与图②的异同点;(2)比较图①与图③的异同点;(3)比较图②与图③的异同点.25.(8分) 如图是一个直五棱柱,它的底面边长都是4 cm,侧棱长为7 cm.回答下列问题:(1)这个五棱柱一共有多少个面?它们分别是什么形状?哪些面的形状、面积完全相同?(2)这个五棱柱的所有侧面的面积之和是多少?(3)这个五棱柱一共有多少条棱?它们的长度之和是多少?参考答案1-5CCCCC 6-10AADBB11. 6,8,312. 8cm13. 点动成线14. 815. 4,616. 4,117.418. 18cm219. 解:20. 解:按柱体、锥体、球体划分:(1)(2)(4)(6)(7)是柱体;(5)是锥体;(3)是球体.21. 解:图中的棱柱是由5个面围成的,它们都是平的;图中的圆锥是由2个面围成的,一个侧面是曲的,一个底面是平的.22. 解:(1)这个六棱柱的六个侧面都是长方形,两个底面都是六边形.六个侧面的形状、大小完全相同,两个底面的形状、大小完全相同.(2)这个六棱柱的所有侧面的面积之和是4×5×6=120(cm2).23. 解:按立体图形形状分:①柱体(1)(2)(4)(5)(7);②锥体(6);③球体(3)按面分:由平面组成(1)(2)(4)(7);由曲面组成(3)(5)(6)24. 解:(1)相同点:底面为圆,侧面为曲面;不同点:题图①有两个底面,题图②有一个底面.(2)相同点:都有两个底面,且两个底面平行且相等;不同点:题图①的底面为圆,侧面为曲面;题图③的底面为五边形,侧面为五个长方形.(3)相同点:无;不同点:题图②有一个底面,且底面为圆,侧面为曲面;题图③有两个底面,且底面为五边形,侧面为五个长方形.25. 解:(1)这个五棱柱一共有7个面;上、下两个底面是五边形,侧面都是长方形;两个底面的形状、面积完全相同,五个侧面的形状、面积完全相同.(2)这个五棱柱的所有侧面的面积之和是4×7×5=140(cm2).(3)这个五棱柱一共有15条棱,它们的长度之和是4×10+5×7=75(cm).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2课时点、线、面、体
01 基础题
知识点1 图形的构成元素
1.下列立体图形中,只由一个面围成的是( )
A.正方体 B.圆锥
C.圆柱 D.球
2.下列立体图形中,有五个面的是( )
A.四棱锥 B.五棱锥
C.四棱柱 D.五棱柱
3.圆锥由两个面围成,其中一个是________面,另一个是________面,这两个面相交成一条________线.
知识点2 点动成线、线动成面、面动成体
4.笔尖在纸上快速滑动写出一个又一个字,用数学知识解释为( )
A.点动成线 B.线动成面
C.面动成体 D.以上答案都不对
5.下雨时汽车的雨刷把玻璃上的雨水刷干净属于下列哪个选项的实际应用( )
A.点动成线 B.线动成面
C.面动成体 D.以上都不对
6.左图中的图形绕虚线旋转一周,可得到的几何体是( )
02 中档题
7.下列有关圆柱、圆锥相同点和不同点的描述,错误的是( )
A.围成圆柱、圆锥的面都有曲面
B.两者都有面是圆形的
C.两者都有顶点
D.圆柱比圆锥多一个面
8.下列立体图形中,面数最多的是( )
A.四棱锥 B.长方体
C.五棱柱 D.圆柱
9.如图,上边的平面图形绕虚线旋转一周,可以得到下边的立体图形,那么与甲、乙、丙、丁各平面图形顺序对应的立体图形的编号应为( )
A.③④①② B.①②③④
C.③②④① D.④③②①
03 综合题
10.我们曾学过圆柱的体积计算公式:V=Sh=πr2h(r是圆柱底面半径,h为圆柱的高),现有一个长方形,长为2 cm,宽为1 cm,绕它的一条边所在的直线旋转一周,得到的几何体的体积是多少?
参考答案
基础题
1.D 2.A 3.平曲曲 4.A 5.B 6.C
中档题
7.C8.C9.A
10.①当绕着长方形的宽所在的直线旋转时,如图1所示,得到的圆柱的底面半径为2 cm,高为1 cm,所以,其体积是V1=π×22×1=4π(cm3);
②当绕着长方形的长所在的直线旋转时,如图2所示,得到的圆柱的底面半径为1 cm,高为2 cm,所以,其体积是V2=π×12×2=2π(cm3).所以,得到的几何体的体积是4π cm3或2π cm3.。

相关文档
最新文档