苏科版-数学-七年级上册-2.2有理数与无理数 学案
2.2有理数与无理数
aaa11罗圩初中七年级数学导学案【课题】:2.2有理数与无理数【学习目标】1.知道有理数的的特征,理解无理数的意义及特征;2.会判断一个数是有理数还是无理数.【教学过程】【自主学习】根据导学提纲,自学课本第15~16页。
导学提纲:1.回顾整数与分数的概念、整数可表示为分母为1的分数.如551=,441-=-,10=.我们把能够写成分数形式____________________________ 的数叫有理数。
有理数包括和。
2.把下列分数化成小数形式:53= ;31= ;100311-= ;154= .事实上,分数化成小数后要么是有限小数,要么是无限的且________的小数,反过来一个有限小数或一个无限的循环小数都可以化成一个分数(请阅读课本第17页的【读一读】),因此有限小数或无限的循环小数都是____________数。
3.将两个边长为1的正方形分别沿对角线剪开,拼成一个大正方形,设大正方形的边长为a,那么a2 =2,a是有理数吗?通过计算器运用逼近的方法探求数a:由1.5×1.5=2.25, 1.4×1.4=1.96得 <a< ;由1.41×1.41=1.9881,1.42×1.42=2.0164得 <a< ;…事实上这样的数量a是一个无限的且不循环的小数,它的值是1.414213562373…我们把无限不循环的小数叫做_____________数.【展示交流】将下列小数分类:5.1,-3.14,π,0,0.222…,1.696696669,1.696696669…,-0.2105有限小数有:__________________________________________________; 无限小数有:__________________________________________________; 无限循环小数有:______________________________________________; 无限不循环小数有:____________________________________________; 有理数有:____________________________________________________; 无理数有:____________________________________________________; 【例题探究】将下列各数填入相应的括号内:-6,9.3,-16,42,0,-0.33,0.333…,1.41421356,-2π,3.3030030003…,-3.1415926.正数集合:{…}负数集合:{…}有理数数集合:{…}无理数数集合:{…}课堂检测(解题、互阅或自阅)1.请你写出三个负无理数:,,;2.下列各数:-5,1.5,3π,227,-1.010010001…,0。
苏教版数学七年级上册第2章有理数复习课教案
有理数复习课教学目标:1、复习整理有理数的有关概念和有理数运算法则,运算律以及近似计算等有关知识。
2、培养学生综合运用知识解决问题的能力。
3、渗透数形结合的思想。
重点:有理数概念和有理数运算 难点:对有理数运算法则和理解【要点梳理】要点一、有理数与无理数 1.有理数的分类:(1)按定义分类: (2)按性质分类:⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧____________________________________________________________分数整数有理数 ⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数正分数正整数有理数__________________________________要点诠释:(1)用正数、负数表示相反意义的量;(2)有理数“0”的作用:2.无理数: 叫做无理数.要点诠释:(1)无理数的特征:无理数的小数部分位数无限.无理数的小数部分不循环,不能表示成分数的形式.(2)目前常见的无理数有两种形式:①含π类.②看似循环而实质不循环的数,如:1.313113111……(相邻两个3之间1的个数逐渐增加).3.数轴:规定了、和的直线叫数轴.所有的有理数都可以用数轴上的表示,但并不是所有的点都表示有理数.数轴上的原点表示数________,原点左边的数表示_____,原点及原点右边的数表示.4.相反数:数a的相反数是.数a的倒数是.的相反数大于它本身,的相反数小于它本身,的相反数等于它本身.的倒数等于它本身.5.绝对值:一个数a的绝对值是指数轴上表示数a的点与距离,记作.①一个正数的绝对值是;即:如果a>0,则|a|= ;②一个负数的绝对值是;如果a<0,则|a|= ;③0的绝对值是.如果a=0,则|a|= .反之:若一个数的绝对值是它本身,则这个数是;若一个数的绝对值是它相反数,则这个数是;即若|a|=a,则a 0;若|a|=-a,则a 0.6.有理数的大小比较:⑴在数轴上表示的两个数,右边的数总比左边的数.⑵正数都0,负数都0,正数一切负数;⑶两个负数比较大小,.7.求 的运算叫做乘方, 叫做底数, 叫做指数,乘方运算的结果叫 。
七年级数学上册 第2章 有理数 2.2 有理数与无理数教学课件 苏科苏科级上册数学课件
第十页,共十一页。
内容(nèiróng)总结
教学课件。数学 七年级上册 江苏科技版。2.2 有理数与无理数。我们把能够写成分数形式(xíngshì) 且(m,n是整数,n≠0)的数叫做有理数.。, , ,。反过来,这些有限小数、无限循环小数都可
No 以化成分数,因此它们都是。有理数 0。1.2010010001000(相邻两个1之间0的个数逐次增加1。常见的
无理数的三种类型:。例 下列各数中,哪些是有理数。小结
Image
12/9/2021
第十一页,
数学(shùxué) 七年级上册 江苏科技 版
12/9/2021
第一页,共十一页。
第2章 有理数 2.2 有理数与无理数
12/9/2021
第二页,共十一页。
有理数的概念
正整数 整数 0
负整数
正分数 分数
负分数
整数可以表示成分数(fēnshù)的形式吗?
5 =0.5555……, 9
2 =0.181818……, 11
12/9/2021
第四页,共十一页。
0.8
有限小数
0.555…… -0.1777…… 0.181818……
无限(wúxiàn)循环 小数
无限(wúxiàn)循 环小数
无限循环小数
反过来,这些有限小数、无限循环小数都可以化成分数,因此
它们都是
解:有理数:3.14 , , 0.5 73; 无理数: 0.101000100 0004 1…(相邻(xiānɡ lín)两个1之间 0的个数逐次加2个).
12/9/2021
第八页,共十一页。
小结
(xiǎojié)
谈谈你这一节课有哪些(nǎxiē)收获.
七年级数学上册2.2有理数与无理数教案(新版)苏科版 (2)
有理数与无理数第(1)课时课题:书法---写字基本知识课型:新授课教学目标:1、初步掌握书写的姿势,了解钢笔书写的特点。
2、了解我国书法发展的历史。
3、掌握基本笔画的书写特点。
重点:基本笔画的书写。
难点:运笔的技法。
教学过程:一、了解书法的发展史及字体的分类:1、介绍我国书法的发展的历史。
2、介绍基本书体:颜、柳、赵、欧体,分类出示范本,边欣赏边讲解。
二、讲解书写的基本知识和要求:1、书写姿势:做到“三个一”:一拳、一尺、一寸(师及时指正)2、了解钢笔的性能:笔头富有弹性;选择出水顺畅的钢笔;及时地清洗钢笔;选择易溶解的钢笔墨水,一般要固定使用,不能参合使用。
换用墨水时,要清洗干净;不能将钢笔摔到地上,以免笔头折断。
三、基本笔画书写1、基本笔画包括:横、撇、竖、捺、点等。
2、教师边书写边讲解。
3、学生练习,教师指导。
(姿势正确)4、运笔的技法:起笔按,后稍提笔,在运笔的过程中要求做到平稳、流畅,末尾处回锋收笔或轻轻提笔,一个笔画的书写要求一气呵成。
在运笔中靠指力的轻重达到笔画粗细变化的效果,以求字的美观、大气。
5、学生练习,教师指导。
(发现问题及时指正)四、作业:完成一张基本笔画的练习。
板书设计:写字基本知识、一拳、一尺、一寸我的思考:通过导入让学生了解我国悠久的历史文化,激发学生学习兴趣。
这是书写的起步,让学生了解书写工具及保养的基本常识。
基本笔画书写是整个字书写的基础,必须认真书写。
课后反思:学生书写的姿势还有待进一步提高,要加强训练,基本笔画也要加强训练。
总第(2)课时课题:书写练习1课型:新授课教学目标:1、教会学生正确书写“杏花春雨江南”6个字。
2、使学生理解“杏花春雨江南”的意思,并用钢笔写出符合要求的的字。
重点:正确书写6个字。
难点:注意字的结构和笔画的书写。
教学过程:一、小结课堂内容,评价上次作业。
二、讲解新课:1、检查学生书写姿势和执笔动作(要求做到“三个一”)。
2、书写方法是:写一个字看一眼黑板。
22 有理数与无理数(解析版)
2021-2022学年七年级数学上册同步课堂专练(苏科版)2.2有理数与无理数一、单选题1.22,0.323272π-其中,无理数的个数是( ). A .2B .3C .4D .5【答案】A【详解】解:在22,0.323272π-中,=-0是整数,227是分数, 5=-是整数,0.10100100001是有限小数,2π是无理数,0.3232-是无限小数,故无理数的个数是2π,共2个, 故选:A .2.在实数23,2n ,3.14159260.3,0.212112111…(每两个2之间多一个1)中,无理数有( )A .2个B .3个C .4个D .5个【答案】A【详解】,∴无理数有0.212112111…(每两个2之间多一个1)共2个,故选A .3.在下列各数中,负分数有( )1-, 3.141559-,2,13-,13,0,12,5%-,34A .1个B .2个C .3个D .4个 【答案】C【详解】解:负分数有: 3.141559-,13-,5%-,共3个, 故选:C .4.在实数:3.14π227-,0.1116,1.4141141114⋅⋅⋅(每两个4之间依次多一个1)中,其中无理数的个数是( )A .2个B .3个C .4个D .5个 【答案】B【详解】,∴π,1.4141141114⋅⋅⋅(每两个4之间依次多一个1),共3个, 故选B .5.下列各数中,是无理数的为( )A .0B .3.14C .-πD .711【答案】C【详解】A 、0是整数,属于有理数,故本选项不合题意;B 、3.14是有限小数,属于有理数,故本选项不合题意;C 、-π是无理数,故本选项符合题意;D 、711是分数,属于有理数,故本选项不合题意. 故选:C .6.下面结论错误的是( )A .零是整数B .零不是整数C .零是自然数D .零是有理数 【答案】B【详解】解:A 、零是整数,所以A 选项的说法是正确的;B 、零不是整数,所以B 选项的说法是错误的;C 、零是自然数,所以C 选项的说法是正确的;D 、零是有理数,所以D 选项的说法是正确的.故选:B .7.在实数,0,1,37π,0.80108 ) A .1个B .2个C .3个D .4个 【答案】B【详解】0.31无限循环小数,是有理数,0是有理数3π是无限不循环小数,是无理数,0.80108有限小数,是有理数,2=整数,是有理数,综上,无理数只有2个,3π 故选择:B .8.在3.125 78227,3π1,0.808 008 000 8…中,无理数的个数是( ) A .1个B .2个C .3个D .4个 【答案】D【详解】3π1,0.808 008 000 8∴,共有四个故选:D .第II 卷(非选择题)二、填空题9.下列各数:﹣1,2π,1.01001…(每两个1之间依次多一个0),0,227,3.14,其中有理数有_____个. 【答案】4.【详解】 解:在所列实数中,有理数有﹣1、0、227、3.14, 故答案为:4.10.把下列各数分别填在相应的大括号里.13,3.1415,﹣31,﹣21%,13,0,﹣0.216,﹣2020 整数:{ …};正整数:{ …};负分数:{ …};负整数:{ …}.【答案】13,﹣31,0,﹣2020;13;﹣21%,﹣0.216;﹣31,﹣2020【详解】由题知:整数:{13,﹣31,0,﹣2020…};正整数:{13…};负分数:{﹣21%,﹣0.216…};负整数:{﹣31,﹣2020…}.故填:13,﹣31,0,﹣2020;13;﹣21%,﹣0.216;﹣31,﹣2020.11.在27,﹣2π+3.140 属于有理数的有: ;属于无理数的有: .【答案】27,+3.14,02π 【详解】解:属于有理数的有:27,+3.14,0属于无理数的有:﹣2π故答案为:27,+3.14,02π 12.把下列各数分别填入相应的集合里.4224,,0,, 3.14,2006,(5), 1.8837-----++ (1)负数集合∴ {_____________ };(2)整数集合∴{ _____________ };(3)分数集合∴{_____________ } 【答案】)44,, 3.14,3(5----+- 4,0,2006,(5)--+ 422,, 3.14, 1.8837---+ 【详解】解:根据有理数的分类得,(1)负数集合:{4-,4||3--, 3.14-,(5)-+,}⋯; (2)整数集合:{4-,0,2006,(5)-+,}⋯;(3)分数集合:22{7,4||3--, 3.14-, 1.88+,}⋯. 故答案为:)44,, 3.14,3(5----+-;4,0,2006,(5)--+;422,, 3.14, 1.8837---+. 三、解答题13.把下列各数填在相应的大括号里:3--, 45-, 8.9,56, 3.2-,()2--, 28, 0.非负整数集合:{ …}; 负整数集合:{ …}; 正分数集合:{ …}; 负分数集合:{ …}【答案】见解析【详解】非负整数集合:{()2--,28, 0 }; 负整数集合:{3--};正分数集合:{8.9,56}; 负分数集合:{45-, 3.2-}. 14.把下列各数填在相应的表示集合的括号内()1221,,3,0,,0.3,1.7,237------- (1)整数:{} (2)非负整数:{} (3)非正数:{} (4)有理数:{}【答案】(1)()1,3,0,2-----;(2)()0,2--;(3)11,,3,0,0.33-----;(4)()1221,,3,0,,0.3,1.7,237------- 【详解】解:(1)整数:(){}1,3,0,2-----; (2)非负整数:(){}0,2--;(3)非正数:11,,3,0,0.33⎧⎫-----⎨⎬⎩⎭; (4)有理数:()1221,,3,0,,0.3,1.7,237⎧⎫-------⎨⎬⎩⎭. 15.把下列各数分别填入相应的集合中 0, -54,3.14, -|-2|, 2π , 0.130********…, 0.13 (1)整数集合:{________________________…} (2)分数集合:{________________________…} (3)负有理数集合:{____________________…} (4)无理数集合:{______________________…}【答案】0,2--;54-,3.14,0.13;54-,2--;2π , 0.130********… 【详解】 22--=-,(1)整数集合:{0,2--,…} (2)分数集合:{54-,3.14,0.13,…} (3)负有理数集合:{54-,2--,…} (4)无理数集合:{2π , 0.130********…,…} 故答案为:0,2--;54-,3.14,0.13;54-,2--;2π , 0.130********….。
苏科版数学七年级上册第二章《有理数》教学设计
苏科版数学七年级上册第二章《有理数》教学设计一. 教材分析苏科版数学七年级上册第二章《有理数》是学生学习初中数学的重要内容,它为学生提供了一种处理数和形的有效工具。
本章主要介绍了有理数的概念、性质和运算,包括整数、分数、相反数、绝对值、有理数的加减乘除等。
这些内容不仅在数学领域有广泛的应用,也为学生后续学习函数、几何等知识打下了基础。
二. 学情分析七年级的学生已经掌握了小学数学的基本知识,对数的概念有一定的了解。
但是,他们对有理数的理解往往是表面的,缺乏深入的理解和灵活的应用。
此外,学生的学习习惯和方法有待提高,需要通过有效的教学设计引导学生主动探索、理解和运用知识。
三. 教学目标1.了解有理数的概念,掌握有理数的性质和运算方法。
2.培养学生的逻辑思维能力,提高学生解决实际问题的能力。
3.引导学生通过自主学习、合作学习,培养学生的学习兴趣和自信心。
四. 教学重难点1.有理数的定义和性质2.有理数的运算方法3.有理数在实际问题中的应用五. 教学方法1.情境教学法:通过生活实例和实际问题引入有理数的概念,使学生能够直观地理解有理数的意义。
2.引导发现法:引导学生通过自主探究、合作交流,发现有理数的性质和运算方法。
3.巩固练习法:通过大量的练习题,让学生在实践中掌握有理数的运算技巧。
六. 教学准备1.教学课件:制作精美的课件,辅助讲解和展示教学内容。
2.练习题:准备一系列有针对性的练习题,用于巩固所学知识。
3.教学工具:准备黑板、粉笔等教学工具,用于板书和演示。
七. 教学过程1.导入(5分钟)利用生活实例或实际问题,如计算购物时的找零,引入有理数的概念。
引导学生思考:为什么需要有理数来表示这样的问题?让学生体会有理数在实际生活中的重要性。
2.呈现(15分钟)讲解有理数的定义,介绍整数、分数的概念,解释相反数、绝对值等概念。
通过示例和讲解,让学生理解有理数的性质,如:相反数的性质、绝对值的性质等。
3.操练(20分钟)让学生进行有理数的加减乘除运算,引导学生发现运算规律。
苏科版七年级数学上册《2章 有理数 2.2 有理数和无理数》公开课教案_25
七年级上2.2有理数与无理数导学案(苏教版)教学目标:掌握有理数和无理数的概念,并能正确判断它们,初步感悟逼近的数学思想,体会“无限”的过程,发展数感。
教学重、难点:重点:有理数的分类,无理数概念,能估计无理数的大小难点:数的分类及判断教学过程:一、课前准备1. 写两个有理数2. 写两个无理数3.一个正方形的面积是40平方厘米,它的边长在两个相邻整数之间,这两个整数是和二、课堂探究(1)有理数的概念:________________________________________问题:有限小数和循环小数是有理数吗?(2)有理数的分类:①分两类,即_____________有理数_____________活动一:(1)你能把0.81、1.56化为分数形式吗?(2)你能把0.3333…、0.2666…化为分数形式吗?活动二:请大家四个人为一组,拿出自己准备好的两个边长为1的正方形和剪刀,认真讨论之后,动手剪一剪,拼一拼,设法得到一个大的正方形下面再请大家共同思考一个问题,假设拼成大正方形的边长为a,则a应满足什么条件呢?a可能是整数吗?a可能是分数吗?无理数:无限不循环小数。
举例圆周率π,0.1010010001…、—1.4141141114…有理数与无理数的主要区别(1)无理数是无限不循环小数,有理数是有限小数或无限循环小数.(2)任何一个有理数都可以化为分数的形式,而无理数则不能.3.例题讲解:例1.把下列各数填在相应集合内:正数集合:{,…}负数集合:{,…}整数集合:{,…}分数集合:{,…}例2. 把下列各数填在相应的大括号内:,0,,3.14,-,,,-0.55,8,1.121 221 222 1…(相邻两个1之间依次多一个2),0.211 ,999正数集合:{…};负数集合:{…};有理数集合:{…};无理数集合:{…}.四、课堂小结:本节课的收获与疑惑五、课堂检测《课课练》2.2有理数与无理数六、课后作业1.已知下列各数:其中正数是,负数是,整数是,分数是 .2.关于0的说法正确的是()A.不是正数也不是负数B.是正数C.是负数D.是正整数3.既不是正数也不是整数的有理数是()A.0和负分数B.负分数C.负整数和负分数D.正整数和正分数4.把下列各数填在表示它所在的数集的括号内:-6,9.3,,42,0,-0.33,-0.333...,1.41421356,,3.3030030003...,-3.1415926 整数集合{___________________________________________...}分数集合{___________________________________________...}有理数集合{___________________________________________...} 无理数集合{___________________________________________...}。
苏科版数学七年级上册2.2《有理数与无理数》教学设计
苏科版数学七年级上册2.2《有理数与无理数》教学设计一. 教材分析《有理数与无理数》是苏科版数学七年级上册第2章第2节的内容。
这一节主要介绍了有理数和无理数的概念,以及它们的特点。
教材通过实例和问题,引导学生理解和掌握有理数和无理数的概念,以及它们在实际问题中的应用。
二. 学情分析七年级的学生已经学习了实数的概念,对数的运算也有了一定的了解。
但是,对于有理数和无理数的概念,以及它们的特点,可能还比较陌生。
因此,在教学过程中,需要通过实例和问题,引导学生理解和掌握有理数和无理数的概念,以及它们的特点。
三. 教学目标1.理解有理数和无理数的概念,以及它们的特点。
2.掌握有理数和无理数的运算方法。
3.能够应用有理数和无理数的概念和运算方法,解决实际问题。
四. 教学重难点1.有理数和无理数的概念。
2.有理数和无理数的运算方法。
五. 教学方法采用问题驱动的教学方法,通过实例和问题,引导学生理解和掌握有理数和无理数的概念,以及它们的特点。
在教学过程中,注重学生的参与和思考,鼓励学生提出问题和解决问题。
六. 教学准备1.教材和教案。
2.课件和教学辅助材料。
3.练习题和测试题。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考实数的分类。
例如,问学生:“你们知道吗,有些数可以表示成两个整数的比,而有些数却不能。
你们能找出这样的数吗?”让学生列举一些例子,从而引出有理数和无理数的概念。
2.呈现(15分钟)通过PPT或者黑板,呈现有理数和无理数的定义和特点。
有理数是可以表示成两个整数比的数,无理数则不能。
有理数包括整数、分数和小数,而无理数则是无限不循环的小数。
3.操练(15分钟)让学生通过实际的例子,理解和掌握有理数和无理数的概念。
可以让学生做一些练习题,例如判断一个数是有理数还是无理数,或者将一个无理数近似为有理数。
4.巩固(10分钟)通过一些练习题,巩固学生对有理数和无理数的理解和掌握。
可以让学生做一些有关有理数和无理数的运算题,例如加减乘除等。
2.2有理数与无理数 说课稿 2022-2023学年苏科版数学七年级上册
2.2 有理数与无理数说课稿一、教材分析《2022-2023学年苏科版数学七年级上册》是针对七年级学生编写的数学教材。
本说课稿针对教材中的2.2单元进行讲解,主要内容涉及有理数和无理数的概念、表示方法以及它们之间的关系。
本单元内容是七年级学生初次接触有理数和无理数的重要环节,对于学生的数学思维能力的培养具有重要意义。
二、教学目标1. 知识与能力目标•理解有理数和无理数的概念。
•掌握有理数的表示方法,包括整数、分数和小数。
•了解无理数的特点和表示方法。
•理解有理数和无理数之间的关系。
2. 过程与方法目标•引导学生通过观察、实践和讨论等方式,积极参与学习。
•培养学生的逻辑思维和问题解决能力,提高数学思维能力。
•通过合作学习和探究学习,培养学生的团队合作和交流能力。
3. 情感态度与价值观目标•培养学生对数学的兴趣和好奇心,激发他们学习数学的主动性。
•培养学生认真思考、勇于探究的学习态度。
•培养学生对有理数和无理数用处的认识,增强他们对数学知识的实际应用意识。
三、教学重点和难点1. 教学重点•学习有理数的概念和表示方法。
•学习无理数的特点和表示方法。
•理解有理数和无理数之间的关系。
2. 教学难点•学生对无理数的概念和表示方法的理解。
•学生对有理数和无理数之间的关系的掌握。
四、教学内容与教学步骤1. 教学内容1.有理数的概念2.有理数的表示方法3.无理数的概念4.无理数的表示方法5.有理数和无理数的关系2. 教学步骤Step 1: 导入引入教学内容,通过简单的问题让学生思考数的分类问题,引发学生对有理数和无理数的兴趣,为下面的学习做好铺垫。
Step 2: 有理数的概念通过实际例子和图示,引导学生理解有理数的概念,包括整数、分数和小数等。
通过举例让学生体会有理数与实际生活及数学实践的联系。
Step 3: 有理数的表示方法介绍有理数的表示方法,包括整数、分数和小数的表示方法,以及它们之间的相互转化关系。
通过具体的计算实例,帮助学生掌握有理数的表示方法。
2022秋七年级数学上册 第2章 有理数2.2 有理数与无理数 2无理数(实数及其性质)说课稿苏科版
实数及其性质一、教材分析1、教学内容这节课的教学内容主要介绍无理数、实数的概念以及实数的性质。
2、教材的地位和作用本节课是人教版《数学》七年级(下)第六章最后一个小节的内容,是在学生学习了平方根、立方根以后,接触过“2”、“π”等具体的无理数的基础上,引入了无理数的概念,从而将数从有理数扩展到实数。
在中学阶段,大多数问题都是在实数的范围内研究的,因此,它对今后的数学学习有着非常重要的意义。
无理数的引入,数系的扩展充满着对立和统一的辩证关系及分类思想,实数和数轴上的点一一对应蕴含着数形结合的思想。
所以这节课不仅仅是完善学生的知识结构,而且还是培养学生想象能力,渗透数学思想,感受数学美的有效载体,也是发展学生逻辑思维能力的重要内容。
二、目标分析1、教学目标依据《课程标准》,并结合教材内容及学生的认知水平和思维特点,确定本节课的教学目标:知识目标:了解无理数、实数的概念和实数的分类;知道实数与数轴上的点一一对应。
能力目标:让学生感知无理数的存在,经历数系从有理数扩展到实数的过程。
通过无理数的引入,培养从特殊到一般、具体到抽象的逻辑思维能力。
情感目标:渗透数形结合及分类的思想,体验数系的扩展源于实际,又服务于实际的辩证关系;通过学生之间的相互交流,增强学生的合作意识。
2、重点、难点和关键本节课的重点是了解无理数、实数概念和实数的分类。
由于学生有了一次从整数扩展到有理数的体验,二次根式的学习又为有理数扩展到实数作了一定的准备,学生学习实数的困难在于无理数的引入,因此难点是正确理解无理数的意义;关键是把数化为小数形式以后区分有理数与无理数的特征。
三、教法、学法本节课通过创设问题情境,引导学生回顾认识数的过程,通过合作探索,经历无理数的产生过程,精心设问,适时、适度采用激励性语言,提高学生积极性,从而较好地完成实数概念的建构,达到教学目标。
并结合计算器、多媒体、实物投投仪等现代教投手段实施教学,体现直观性。
学生通过动手、动口、动脑等活动,主动探索、发现问题;互动合作,解决问题;归纳概括,形成能力。
苏科版七年级上册数学2.2有理数与无理数
2.2有理数与无理数1. 0是 ( )A .最小的正数B .最大的负数C .最小的有理数D .整数 2.下列说法正确的是( )A. 0.555…是分数B. -5是负分数C.3.8不是分数D.自然数一定是正数 3.下列说法:①有限小数是有理数;②无限小数都是无理数;③无理数都是无限小数;④有理数是有限小数中错误的个数是 ( ) A.1 B.2 C.3 D.4 4.下列说法正确的是( )A.整数包括正整数和负整数B.零是整数,但不是正数,也不是负数C.分数包括正分数、负分数和零D.有理数不是正数就是负数 5.以下各正方形的边长是无理数的是( )A.面积为25的正方形B.面积为16的正方形C.面积为3的正方形D.面积为1.44的正方形 6.在下列各数中:0,-3.14,722,0.101 001 0001…,3π,有理数有( ) A.1个 B.2个 C.3个 D.4个7.整数和分数统称为__________数,无限不循环小数是___________数.8.在-2,+3.5,0,-32,-0.7,11,-5π,-0.23 223 2223…,-••31.0中,负分数是__________.9.写出一个比-3大的无理数是___________.10.如图,两个圈分别表示负数集合、整数集合,请从-1,5,-80%,-7,0,-0.2,72,-10这些数中,选择适当的数填在这两个圈的重叠部分为__________.11.有6个数:0.123,-1.5,3.1416,722,π-,0.102 002 0002,若其中无理数的个数是x ,整数的个数是y ,非负数的个数是z ,则x+y+z=_________. 12.我们知道,无限循环小数都可以转化成分数.如:0.333…转化为分数时,可设0.333…=x , 则x x 1013.0+=,解得31=x ,即0.333…=31.仿此方法,将0.454545…化为分数得_____.13.将下列各数分类:5.1,-3.14, ,0,0.222…,1.696696669,1.696696669…,0.5, -0.210有理数有________________________________; 无理数有________________________________.14.将下列各数填入相应的括号内:11.将下列各数填入相应的括号内:-6,9.3, 17 ,42,0,-0.33,0.333…,1.41421356,-2 ,3.3030030003…,-3.1415926,2π,0.58588588858888….正数集合{ …} 负数集合{ …} 有理数数集合{ …} 无理数数集合{ …} 15.把下列各数填在相应的大括号中-311,-10%,722,0.3,π,0,-1.7,21,-2,1.01001,1.2020020002…,+6 有理数集合{ …} 无理数集合{ …} 正数集合{ …} 负数集合{ …} 整数集合{ …} 分数集合{ …} 非负有理数集合{ …} 16.漠漠做数学:假设抽到牌的点数为x ,漠漠猜中的结果为y ,则y 等于 ( ) A.2 B.3 C.6 D.x+2参考答案 1.D 2.A 3.B 4.B 5.C 6.C7.有理数,无理数 8.-2,-32,-0.7,-9.-0.23 2232223… 10.-7,-10 11.6 12.45/9913.有理数有5.1,-3.14,0,0.222…,1.696696669,0.5, -0.210无理数有 ,1.696696669…14.正数集合{ 9.3, 17,42 ,0.333…,1.41421356, 3.3030030003…,2π ,0.58588588858888…. …}负数集合{ -6,-0.33,-2 , -3.1415926 …}有理数数集合{ -6,9.3, 17,42,0,-0.33,0.333…,1.41421356,-2 ,-3.1415926, …}无理数数集合{ 3.3030030003…,2π,0.58588588858888…. …} 15.-311,-10%,722,0.3,π,0,-1.7,21,-2,1.01001,1.2020020002…,+6有理数集合{15.-311,-10%,722,0.3,0,-1.7,21,-2,1.01001,+6 …}••31.0无理数集合{ π, 1.2020020002… …} 正数集合{722,0.3,π, 21,1.01001,1.2020020002…,+6 …} 负数集合{-311,-10%, -1.7 , -2 …}整数集合{0, 21, -2, +6 …}分数集合{ -311,-10%,722,0.3,-1.7, -2,1.01001 …}非负有理数集合{ 15. 722,0.3,0,21,1.01001,+6 …} 16.2初中数学试卷灿若寒星 制作。
江苏省仪征市扬子中学2019年秋苏科版七年级上册2.2《有理数和无理数》导学案设计(部分答案)
七年级数学2.2《有理数和无理数》导学案教学目标:1理解有理数和无理数的概念和意义;2能够区分有理数和无理数,以及应用。
【同步知识讲解】知识点一:有理数:能够写成分数形式m n(m 、n 是整数,且n≠0)的数 要点诠释:有理数“0”的作用:作用举例 表示数的性质0是自然数、是有理数 表示没有3个苹果用+3表示,没有苹果用0表示 表示某种状态0℃表示冰点 表示正数与负数的界点0非正非负,是一个中性数 无理数:无限不循环小数要点诠释:1.有理数分类:(1 )按定义分类: (2)按性质分类:⎪⎩⎪⎨⎧负有理数正有理数0有理数2.有理数主要包括:整数、分数、有限小数以及循环小数等3.有理数按性质分不可认为分为正数、负数和零;其中,有理数按定义分中要注意小学学的小数在初中阶段也属于分数;4.无理数:关键词:无限和不循环初一一般只要求掌握两类:第一类如0.1010010001…等;第二类是含π的数。
特别注意:0.1010010001为有理数、0.1010010001…为无理数,因为前面是有限小数。
例1:把下列各数填在相应的大括号里:1,﹣4/5,8.9,﹣7,5/6,﹣3.2,+1 008,﹣0.06,289.正整数集合:{ };非负有理数非正有理数负整数集合:{ };正分数集合:{ };负分数集合:{ }.【分析】利用正整数,负整数,正分数,以及负分数的定义判断即可得到结果.例2.下列说法中,正确的是()A.0 是最小的整数 B.最大的负整数是﹣1C.有理数包括正有理数和负有理数D.一个有理数的平方总是正数【分析】根据负数、正数、整数和有理数的定义选出正确答案.特别注意:没有最大的正数,也没有最大的负数,最大的负整数是﹣1.正确理解有理数的定义.变式训练:1.下列说法中,正确的是 ( )A.有理数就是正数和负数的统称 B.零不是自然数,但是正数C.一个有理数不是整数就是分数 D.正分数、零、负分数统称分数2.下列说法中,正确的是()A.0 是最小的整数B.最大的负整数是﹣1C.有理数包括正有理数和负有数D.一个有理数的平方总是正数3..下列说法正确的是()A.0.1 是无理数B. 4/11是无限小数,是无理数C.π/3是分数D.0.13579…(小数部分由连续的奇数组成)是无理数知识点1:有理数和无理数1.实数π是( )A.整数 B.分数 C.有理数D.无理数2.在数0,1/3,,﹣(﹣1/4),,0.3,0.141 041 004…(相邻两个1,4之间的0的个数逐次加1),中,有理数的个数为( )A.3 B.4 C.5 D.63.下列语句正确的是( )A.0是最小的数B.最大的负数是﹣1C.比0大的数是正数 D.最小的自然数是14.下列各数中无理数的个数是( ),0.1234567891011…(省略的为1),0,2π.A.1个B.2个C.3个D.4个5.下列说法中,正确的是( )A.有理数就是正数和负数的统称B.零不是自然数,但是正数C.一个有理数不是整数就是分数D.正分数、零、负分数统称分数6.在,3.14,0,0.313 113 111.…,0.43五个数中分数有( )个.A.1 B.2 C.3 D.47.最小的正整数是__________,最大的负整数是__________,最小的非负整数是__________.8.有理数中.是整数而不是正数的数是__________;是整数而不是负数的数是__________.9.若一个正方形的面积为5,则其边长可能是__________数.10.给出下列数:﹣18,,3.1416,0,2001,﹣,﹣0.14,95%,其中负数有__________,整数有__________,负分数有__________.11.有六个位:0.123,(﹣1.5)3,3.1416,,﹣2π,0.1020020002…,若其中无理数的个数为x,整数的个数为y,非负数的个数为z,则x+y+z=__________.12.观察下面依次排列的一列数,根据你发现的规律在各列的后面填上三个数.(1)1,﹣2,4,﹣8,16,﹣32.__________,__________,__________…(2)4,3,2,1,0,﹣1,﹣2.__________,__________,__________…(3)1,2,﹣3,4,5,﹣6,7,8,﹣9,__________,__________,__________…13.有一面积为5π的圆的半径为x,x是有理数吗?说说你的理由.14.把下列各数填在相应的大括号内:3/5,0,,314,﹣2/3,,4/9,﹣0.55,8,1.121 221 222 1…(两个1之间依次多一个2),0.211 1,201,999.正数集合:{ …};负数集合:{ …};有理数集合:{ …};无理数集合:{ …}.15.已知有A,B,C三个数集,每个数集中所包含的数都写在各自的大括号内,A={﹣2,﹣3,﹣8,6,7},B={﹣3,﹣5,1,2,6},C={﹣1,﹣3,﹣8,2,5},请把这些数填在图中相应的位置.16.“十•一”黄金周期间,某市在7天中外出旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数).日期10月1日10月2日10月3日10月4日10月5日10月6日10月7日人数变化+1.6 +0.8 +0.4 ﹣0.4 ﹣0.8 +0.2 ﹣1.2单位:万人(1)9月30日外出旅游人数记为a,用a的代数式表示10月2日外出旅游的人数;(2)请判断七天内外出旅游人数最多的是哪天?最少的是哪天?它们相差多少万人?如果最多一天有出游人数3万人,问9月30日出去旅游的人数有多少?17.某原料仓库一天的原料进出记录如下表(运进用正数表示,运出用负数表示):进出数量﹣3 4 ﹣1 2 ﹣5(单位:吨)进出次数 2 1 3 3 2(1)这天仓库的原料比原来增加了还是减少?请说明理由;(2)根据实际情况,现有两种方案:方案一:运进每吨原料费用5元,运出每吨原料费用8元;方案二:不管运进还是运出费用都是每吨原料6元;从节约运费的角度考虑,选用哪一种方案比较合适.(3)在(2)的条件下,设运进原料共a吨,运出原料共b吨,a、b之间满足怎样的关系时,两种方案的运费相同.18.试验与探究:我们知道分数1/3写为小数即0.,反之,无限循环小数0.写成分数即1/3.一般地,任何一个无限循环小数都可以写成分数形式.现在就以0.为例进行讨论:设0. =x,由0. =0.7777…,可知,10x﹣x=7.77…﹣0.777…=7,即10x﹣x=7,解方程得,于是得0. =1/3.请仿照上述例题完成下列各题:(1)请你把无限循环小数0.写成分数,即0. =__________.(2)你能化无限循环小数0.为分数吗?请仿照上述例子求解之.课后作业:1.最小的正有理数是()A.0 B.1 C.﹣1 D.不存在2.下列说法正确的是()A.一个数前面加上“﹣”号,这个数就是负数B.零既是正数也是负数C.若a是正数,则﹣a不一定是负数D.零既不是正数也不是负数3.在0,2.1,﹣4,﹣3.2这四个数中,是负分数的是()A.0 B.2.1 C.﹣4 D.﹣3.24.在下列各数:﹣,+1,6.7,﹣(﹣3),0,,﹣5,25% 中,属于整数的有()A.2个B.3个C.4个D.5个5.下列说法正确的是( )A.正数和负数统称为有理数B.有理数是指整数、分数、正有理数、负有理数和0五类C.一个有理数不是整数,就是分数D.整数包括正整数和负整数6. 下列说法正确的个数是( )①0是整数;②-223是负分数;③3.2不是正数; ④自然数一定是非负数;⑤负数一定是负有理数.A .1B .2C .3D .47. 有下列各数:-74,1.010 010 001,833,0,-π,-2.262 662 666 2 …(每相邻两个2之间6的个数逐次加 1),0.12··,其中有理数的个数是( )A .5B .4C .3D .68.在下列各数中,非负数有( )-3,0,+5,-312,-80%,+13,2 021. A .1个 B .2个C .3个D .4个9. 在有理数-45,1,0,8.9,-6中,正数有 ,整数有 , 非正数有 .10.如果把长江的水位比警戒水位高0.2 m 记作+0.2 m ,那么比警戒水位低0.15 m 记作 m.11.比较大小:-45 -56(填“>”或“<”). 12.在227,0,-0.101 001 000 1…(每相邻两个1之间0的个数逐次加1),π四个数中,有理数有 个.参考答案1.D .2.D .3.D .4.C . 5.C 6.C 7.A 8.D9、1,8.9 1,0,-6 -45,0,-6 10. -0.15 11.> 12.2。
2.2有理数与无理数
…}
负数集合:{
-6,
1 6
2
,
…}
…}
有理数集合:{-6, 无理数集合:{
9.3, , 42, 1.41421356, —3.1415926 3.3030030003…,
1 6
0, -0.33 ,0.333… ,
2
…}
把下列各数分别填入相应的大括号内: -0.5, - 6,2.5,0,+3, -0.333 , -1.41421356· · · ,2005,3.141,85%,
课堂小结:
这节课你有哪些收获?
作 业
P17 习题 2.2 第 1 , 2题
将下列各数填到相应的大括号中。
-6, 9.3, , 42, -0.33 , 0.333… , 1.41421356, 3.3030030003…, —3.1415926
1 6
0, 2
正数集合:{ 9.3, 42,
0.333…, 1.1415926, , -0.33 ,
3.3030030003… —3.1415926
11 0.2020020002· · · , ,-0.16, π. 7 +3,-0.333 有理数集合:{-0.5, - 6,2.5,0, · · ·} 11 &
- 0.16 2005,3.141,85%, ,
7
· · , 无理数集合:{ -1.41421356· 0.2020020002· · · ,π
1.4142135×1.4142135=1.999999 1.4142136×1.4142136=2.0000005, 1.4142135<a<1.4142136
……
江苏省宿迁市泗洪县育才实验学校七年级数学上册 2.2
2.2 有理数与无理数课 题学习内容学习目标:加深对正负数的理解,了解整数、分数、有理数的概念和分类. 感受生活与数学的关系. 渗透分类思想.订正栏一、课前预习 1.理解概念:(1)整数、分数、有理数。
、 和 统称整数 和 统称分数 和 统称有理数 (2)按分类:有理数想一想:有理数还有其它的分类方法吗?2.下列说法:① 2.5-既是负数、分数,也是有理数;②25-既是负数,也是整数,但不是自然数;③0既不是正数,也不是负数;④0是非负数.其中正确的个数是 ( ) A.1 B.2 C.3 D.4 3.大于-2.5而不大于4的整数有 . 4.在有理数中举出三个负分数________,________,________. 二、合作探究 例1某巡警骑摩托车在一条南北大道上巡逻,某天他从岗亭出发,晚上停留在A 处,规定向北方向为正,当天行驶记录如下(单位:千米) +10,-9,+7,-15,+6,-14,+4,-2 (1)A 在岗亭何方?距岗亭多远? (2)若摩托车行驶1千米耗油0.05升,这一天共耗油多少升? 例2将下列各数分别填入相应的集合中: -5, ,7.3, -32 ,22, 0, 0.323, + 254,-3.14,722,π 整数集合:{ … }; 分数集合:{ …};正数集合:{ … };负分数集合:{ … }.非负整数集合:{ … }.有理数:{ … }.三、达标检测 【基础演练】 1.写出一个比2-大的负分数:_______________. 2.下列判断正确的为( )(A)0,23,4,1是正数 (B)0,-2,-3,-12是负数 (C)-1,0,1,2,3是自然数 (D)-2,-1,0,1,2是整数3.正整数集合和负整数集合合在一起,构成数的集合是 ( )A.整数集合B.有理数集合C.自然数集合D.非零整数集合 4.下列说法正确的是 ( )A.在有理数中,零的意义仅表示没有;B.正有理数和负有理数组成全体有理数;C.0.9既不是整数,也不是分数,因此它不是有理数;D.零既不是正数,也不是分数 5.下列语句中,正确的是A.1是最小的正有理数B.0是最大的非正整数C.-1是最大的负有理数D.有最小的正整数和最小的正有理数 6.把下列各数填在相应的括号内‐7,3.5, ‐3.14, π,0,1713 ,0.03%,‐314,10①自然数集合{ …} ②整数集合 { …} ③负数集合 { … }④正分数集合 { … }⑤正有理数集合{ … } 7.在下表适当的空格里打上“∨”号.整数 分数 正数 负数 自然数 有理数 157-3.14 -122。
第02讲 有理数与无理数(原卷版)-2021-2022学年秋季七年级数学基础学案(苏科版)
第02讲 有理数与无理数素养目标1.理解有理数的意义和会对有理数进行分类.2.知道无理数是客观存在的,了解无理数的意义.3.会判断一个数是有理数还是无理数、4.经历数的扩充,在探索活动中感受数学的遇近思想,体会“无限”的过程,发 展数感.考点关注1.有理数、无理数的识别.(必考点)2.有理数、无理数的分类.(必考点)知识点1有理数的概念(重点;掌握)我们把能写成分数形式 mn (m ,n 是整数,n≠0)的数叫做有理数.如: 5 =5 1,−4=−4 1,0 = 01。
即我们学过的整数(正整数、负整数、零)都是有理数。
如: 0.3 =3 10,−3.11 = −311 100,0.333… =1 3,0.2666… =415. 即有限小数和无限循环小数都可以化为分数,它们都是有理数.例1(曲阜校级月考)①一个有理数不是整数就是分数;②一个有理数不是正数就是负数;③一个整数不是正的,就是负的;④一个分数不是正的,就是负的. 以上说法正确的个数是( )A .1B .2C .3D .4针对性训练1(2020·沈阳朝阳校级月考)在下列数中: − 1 3 ,11.1111,− 111,95.57,0,+2004,−2,1.1212212222,π。
非负整数有 ___________________ ,有理数有 ___________________ .知识点2有理数的分类(重点,掌握)根据有理数的概念,有理数可以进行如下的分类:1.按整数、分数的关系分类2.按正数、0、负数的关系分类例2(德州市德城区校级月考)①正有理数是正整数和正分数的统称;②整数是正整数和负整数的统称:③有理数是正整数、负整数、正分数、负分数的统称;④0不是自然数;⑤偶数包括正偶数、负偶数和零。
以上说法正确的有()A.1个B.2个C.3个D.4个针对性训练2下列说法:①0是最小的整数;②有理数不是正数就是负数;③正整数、负整数、正分数、负分数统称为有理数;④非负数就是正数;⑤−π不仅是有理数,而且2是无限不循环小数,所以不是有理数;⑦无限小数不都是有理数;⑧是分数;⑥237正数中没有最小的数,负数中没有最大的数。
《2.2有理数与无理数》作业设计方案-初中数学苏科版12七年级上册
《有理数与无理数》作业设计方案(第一课时)一、作业目标本作业旨在巩固学生对有理数与无理数概念的理解,通过实际问题的解决,提高学生的数学应用能力,加深对有理数与无理数特性的认识,为后续的数学学习打下坚实的基础。
二、作业内容1. 概念理解:学生需熟练掌握有理数与无理数的定义及区别,能够准确判断给定的数是有理数还是无理数。
2. 计算练习:进行有理数与无理数的加、减、乘、除四则运算练习,包括简单的混合运算。
3. 实际应用:设计实际问题,如测量物体的长度、计算不规则图形的面积等,要求学生运用有理数与无理数的知识进行计算和解释。
4. 拓展探究:提供一些与有理数和无理数相关的趣味数学问题或实际生活问题,鼓励学生进行探究和思考。
三、作业要求1. 概念理解部分:学生需对每个概念有清晰的认识,并能准确解释其含义。
对于每个数的判断,需给出理由。
2. 计算练习部分:要求学生严格按照四则运算的规则进行计算,注意运算顺序和结果的准确性。
对于混合运算,需分步计算并给出每步的计算过程。
3. 实际应用部分:学生需根据实际问题进行计算,并运用所学知识进行解释。
答案需有明确的计算步骤和清晰的解释过程。
4. 拓展探究部分:学生可自由选择感兴趣的问题进行探究,鼓励创新思维和团队合作。
探究结果需以书面形式呈现,包括问题描述、探究过程和结论。
四、作业评价1. 教师根据学生的作业完成情况进行评分,重点评价学生对概念的掌握程度、计算的准确性和实际应用的能力。
2. 对于学生的拓展探究部分,教师需给予鼓励和指导,肯定学生的创新和努力,指出需要改进的地方。
3. 教师可根据学生的作业情况,进行针对性的辅导和讲解,帮助学生更好地掌握数学知识。
五、作业反馈1. 教师将学生的作业进行批改,对错误的地方进行标注和解释。
2. 针对学生的共性问题,教师可在课堂上进行讲解和讨论,帮助学生更好地理解和掌握相关知识。
3. 教师鼓励学生进行自我反思和总结,找出自己的不足之处,以便在后续的学习中加以改进。
有理数与无理数(解析版)七年级数学上册同步教与学全指导(学习导航+教学过程+课时训练)(苏科版)
一、有理数1、我们把能够写成分数形式mn(m,n是整数,n≠0)的数叫做有理数.(1)有限小数和循环小数都可以化为分数,他们都是有理数.(2)所有整数都可以写成分母是1的分数,因此可以理解为整数和分数统称为有理数.(3)整数和分数统称有理数.(有理数也叫可比数)(4)整数:正整数、零和负整数统称为整数。
(5)自然数:正整数和零。
(6)分数:正分数和负分数统称为分数。
注意:有限小数和无限循环小数都可以化为分数,它们都是有理数。
例:0.333 ……可以化为3例题11.下列各数中是有理数的是()A.2B.32C.13D.π【答案】C 【分析】根据无理数的定义2与32开方开不尽,是无理数,π是无限不循环小数,是无理数,得到答案.【详解】解:A、2开方开不尽,是无理数,不符合题意;B、32开方开不尽,是无理数,不符合题意;C、13-是负分数,是有理数,符合题意;D、π是无限不循环小数,是无理数,不符合题意;故选:C.二、有理数分类1、有理数:整数与分数统称为有理数。
整数包括三类:正整数、零、负整数。
分数包括两类:正分数和负分数。
2、注意:小学学过的零表示没有,而引入负数后,就不能把“零”完全当作没有了,如0℃就是一个特定的温度;现在我们学过的数,除和与有关的数外,其他的数都是有理数;引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大到整数。
3、按整数、分数的关系分类:4、按正数、负数、零的关系分类:5、有理数都可以写成分数的形式,整数也可以看作是分母为1的数.6、分数与有限小数、无限循环小数可以互化,所以有限小数和无限循环小数可看作分数,但无限不循环小数不是分数,例如.7、正数和零统称为非负数;负数和零统称为非正数;正整数、0、负整数统称整数.例题22.下列说法错误的是()A.最小自然数是0B.最大的负整数是1-C.没有最小的负数D.最小的整数是0【答案】Dπ310.393==,1890.189999==.混循环小数)如果小数点后面的开头几位不循环,到后面的某一位才开始循环,这样的小数叫做混循环小数.例如:0.12、0.3456456…)混循环小数化为分数的方法是:分子是不循环部分和一个循环节的数字组成的数减去不循环部分的数字组成的数所得的差,分母就是按一个循环节的位数写几个面按不循环部分的位数添写几个0组成的数.9181010.918990110-=,239230.239900-=351350.3513599900-=11000|,,1.2312--,3216,0.303003000…(两个3.14,2+3根据无限不循环小数是无理数即可解答.3.14,2+3)表示的数一定是负数。
苏科版七年级第一学期数学 有理数 有理数与无理数 教学课件
(整数可以表示成分母为1的分数).当把无理数与有理数都写成小数形式时,
无理数是无限不循环小数,如π=3.14159265…,不能写成分数.(笔记)
示例3
下列说法∶①有理数就是有限小数;②无限小数是无理数;③无限不循
环小数是无理数;④ 是分数. 其中正确的有( A
22 , 0.030030003 …(相邻两个3之间依次多一个0)。
非负整数集合:{
0 ,1
分数集合:{-, - 1.ሶ ሶ ,-3.2
无理数集合:{
…};
பைடு நூலகம்…};
1-π , 0.030030003 …
… }.
随堂巩固
3、把下列各数分别填入相应的集合中:-(-230), ,0,-0.99,1.31, ,
如面积为3的正方形的边长表
示的数、体积为5的正方体的
棱长表示的数等
拓展
⑴无理数与有理数的和、差 一定是 无理数。
⑵无理数与非0的有理数的积、商一定是无理数.
三、无理数的概念(难点)
示例2
在下列各数中,无理数的个数是( C )
0.51515354…、0、. ሶ 、3π、 、6.1010010001…、
句除外)
①零既不是正数也不是负数;
②零小于正数,大于负数;
③零不能做分母;
④零是最小的非负数;
⑤零的相反数是零;
⑥任何不为零的数的零次幂为1;
⑦零乘以任何数都是零等.
一、课堂作业:
1、课本第14页,2.2习题第1题;第60页,复习题第1题。(预计用时10分钟)
苏科版七年级数学上册《有理数和无理数》评课稿
苏科版七年级数学上册《有理数和无理数》评课稿1. 引言本评课稿旨在对苏科版七年级数学上册《有理数和无理数》进行评价和总结。
本册教材主要围绕有理数和无理数这一数学概念展开教学,旨在帮助学生理解和掌握有理数与无理数的特点、运算和应用等方面的知识。
通过对该教材的评价,可以为教材的改进提供参考,同时也对教学方法和教学效果进行分析和反思。
2. 教材概述《有理数和无理数》是苏科版七年级数学上册的一部分,主要包含以下内容:•有理数的引入和认识•有理数的绝对值•有理数的比较大小•有理数的运算(加法、减法、乘法、除法)•无理数的引入和认识该册教材通过生动有趣的例子和图表,使学生能够理解和应用有理数和无理数的概念。
同时,教材内容结构合理,难度适中,符合学生的认知特点和学习需求。
3. 教学目标本册教材的教学目标主要包括以下几个方面:•理解有理数的概念及其表示方法•掌握有理数的绝对值计算方法•能够比较有理数的大小•理解有理数的加减乘除运算规则•了解无理数的基本特点和应用通过这些教学目标的达成,学生可以建立起对有理数和无理数的完整认识,并能够在实际问题中灵活应用相关知识进行解决。
4. 教学内容评价4.1 有理数的引入和认识该部分的教学内容设计合理,通过实际生活中的例子引入有理数的概念,使学生能够直观地理解有理数的含义。
同时,教材还对有理数的集合进行了明确的定义,并给出了常见有理数的表示方法,让学生能够准确地表示和理解有理数。
4.2 有理数的绝对值教材对有理数的绝对值概念进行了详细介绍,并给出了绝对值的计算方法。
通过一系列有趣的例题,学生可以掌握有理数绝对值的求取方法,同时培养了学生分析和解决实际问题的能力。
4.3 有理数的比较大小该部分教学内容设计合理,通过图表和例题,引导学生掌握比较有理数大小的方法和技巧。
教材设计了一些常见实际问题,让学生能够应用所学知识解决问题,提高了学生的实际应用能力。
4.4 有理数的运算教材对有理数的加减乘除运算进行了详细的讲解和练习。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主备:
执教教师: 课型:新授
使用日期:
学
习 目标 1理解有理数的意义;知道无理数是客观存在的,了解无理数的概念。
2.会判断一个数是有理数还是无理数。
经历数的扩充,在探索活动中感受数学的逼近思想,体会“无限”的过程,发展数感。
重点难 点
重点 区分有理数与无理数,知道无理数是客观存在的。
难点
会判断一个数是有理数还是无理数,体会“无限”的过程。
学生活动过程
教师导学过程 一、自主学习(独学)
任务1:回顾整数与分数的概念、整数可表示为分母为
1的分数.
如
155=
,144-=-,10
0=.
结论:我们把能够写成分数形式______________ 的数叫有理数。
练习: 有理数包括哪些数?
任务2:小学里我们还学过有限小数和循环小数,它们是有理数吗?
把下列分数化成小数形式:
53=__________;31=___________;100
311-=_________;154=_______. 事实上,分数化成小数后要么是有限小数,要么是无限的且________的
小数,反过来一个有限小数或一个无限的循环小数都可以化成一个分数,因此有限小数或无限的循环小数都 是____________数。
任务3:将两个边长为1的正方形分别沿对角线剪开,拼成一个大正方形,设大正方形的边长为a,那么a 2 =2,a 是有理数吗? 通过计算器运用逼近的方法探求数a :
由1.5×1.5=2.25, 1.4×1.4=1.96得______<a<________ 由1.41×1.41=1.9881, 1.42×1.42=2.0164得______<a<________… 事实上这样的数量a 是一个无限的且不循环的小数,它的值是1.414213562373…
结论:我们把无限不循环的小数叫做_____________数. 练习: 无理数包括哪些数?
情景导入
布置自主学习任务
巡视检查
引导学生讨论交
二、合作探究。