基于Matlab的单相电压型全桥逆变器的仿真研究

合集下载

基于Matlab的单相电压型全桥逆变器的仿真研究

基于Matlab的单相电压型全桥逆变器的仿真研究

输入直流电压通过全桥逆变 电路逆变为交流电压
输出交流电压经过滤波电路后, 可以输出平滑的交流电压
逆变器的控制策略
电压控制:通过调 节输出电压的幅值 和相位来实现控制
电流控制:通过调 节输出电流的幅值 和相位来实现控制
空间矢量控制:通 过调节输出电压的 空间矢量来实现控 制
滑模控制:通过在 开关状态下进行切 换来实现控制
电容和电感:根据 实际需求进行选择
和计算
仿真模型的验证与调试
验证方法:通过对比实验数据与仿真结果,验证模型的正确性
调试过程:对仿真模型进行参数调整,以达到最佳性能指标
调试结果:经过调试后的仿真模型能够更好地模拟实际电路的工作情况
验证结论:仿真模型的验证与调试对于基于Matlab的单相电压型全桥逆变器的仿真 研究具有重要意义
单相电压型全桥 逆变器的基本原 理
逆变器的定义和分类
逆变器的定义:将直流电转换为交流电的电力电子设备 逆变器的分类:电压型逆变器、电流型逆变器、单相逆变器、三相逆变器等
单相电压型全桥逆变器的工作原理
输出交流电压的频率和幅值可 以通过控制逆变电路的开关状 态进行调节
通过改变逆变电路的开关状态, 可以实现输出交流电压的正负 半波的切换
结论与展望
本研究的贡献与局限性
贡献:本研究为单相电压型全桥逆变器的仿真研究提供了新的方法和思路,有助于深入理解逆变器 的运行原理和性能特点。
局限性:本研究主要关注了逆变器的仿真研究,未涉及实际应用中的问题和挑战,未来研究可以进 一步拓展到实际应用领域。
后续工作:针对本研究存在的局限性,后续研究可以进一步优化仿真模型和方法,提高仿真精度和 可靠性,同时探索逆变器的实际应用和优化方案。

基于simulink的单相全桥逆变电路仿真实验

基于simulink的单相全桥逆变电路仿真实验

基于simulink 的单相全桥逆变电路仿真实验11电牵3班罗凯关键字:单相 全桥 逆变 simulink本次实验主要为利用simulink 中的块原件来构建电力电子中的一种基本整流电路——单相全桥逆变电路,电路的功能是将直流电逆变为交流电,在逆变电路的设计过程中,需要对设计电路及有关参数选择是否合理、效果好坏进行验证。

如果通过实验来验证, 需要经过反复多次的元件安装、调试、重新设计等步骤, 这样使得设计耗资大,效率低, 周期长。

现代计算机仿真技术为电力电子电路的设计和分析提供了崭新的方法, 可以使复杂的电力电子电路、系统的分析和设计变得更加容易和有效。

Matlab 是一种计算机仿真软件, 它是以矩阵为基础的交互式程序计算语言。

Simulink 是基于框图的仿真平台, 它挂接在Matlab 环境上,以Matlab 的强大计算功能为基础, 用直观的模块框图进行仿真和计算。

其中的电力系统(Power System )工具箱是专用于RLC 电路、电力电子电路、电机传动控制系统和电力系统仿真用的模型库。

以Matlab7.0 为设计平台, 利用Simulink 中的Pow er System 工具箱来搭建整流电路仿真模型,设置参数进行仿真。

一、 单相全桥逆变电路工作原理1、 电路结构单相电压型全桥逆变电路的原理图及波形(阻感性负载)(图a) 输出电压(图 b )输出电流(图 c )直流输入电流(图 d ) 2、 工作原理a)两个半桥电路的组合;b) V1和V4一对,V2和V3另一对,成对桥臂同时导通,两对交替各导通180°;c) uo 波形同半桥电路的uo ,幅值高出一倍U m =U d ; d) i o 波形和半桥电路的i o 相同,幅值增加一倍; e) 单相逆变电路中应用最多的; 3、 输出电压参数分析a)tb)c)d)tuo 成傅里叶级数基波幅值基波有效值当uo 为正负各180°时,要改变输出电压有效值只能改变Ud 来实现 4、 移相调压方式(通过逆变器本身开关控制,适用于单相)图示单相全桥逆变电路的移相调压方式可采用移相方式调节逆变电路的输出电压,称为移相调压各栅极信号为180°正偏,180°反偏,且V 1和V 2互补,V 3和V 4互补关系不变但V 3的栅极信号只比V 1落后q ( 0<q <180°)u o 成为正负各为q 的脉冲,改变q 即可调节输出电压有效值 uo 成傅里叶级数输出电压的有效值:⎪⎭⎫ ⎝⎛+++= t t t U u ωωωπ5sin 513sin 31sin 4d o ddo1m 27.14U U U ==πdd1o 9.022U U U ==πa)b)图5-7VD 3VD 4u u u u i o u od o 1,3,54sin sin 2n U n u n t n θω∞==π∑o dU U =基波有效值随着θ 的变化,谐波幅值也发生变化,特别是当θ 较小时,较低次的谐波幅值将与基波的幅值相当,所以,这种调压方式不适合大范围的调压。

单相电压型全桥逆变电路及其simulink仿真(含开题报告)

单相电压型全桥逆变电路及其simulink仿真(含开题报告)

电力电子技术课程设计单相电压型全桥逆变电路及其simulink仿真开题报告课题名称:单相电压型全桥逆变电路及其simulink仿真完成时间:指导老师:刘彬(一)简要背景说明随着电力电子技术的发展,逆变电路具有广泛的应用范围。

交流电机调速用变频器、不间断电源、感应加热电源等电力电子装置的核心部分都是逆变电路。

由于电压型逆变电路具有直流侧为电压源或并联大电容,直流侧电压基本无脉动;输出电压为矩形波,输出电流因负载阻抗不同而不同;阻感负载时需要提供无功功率,为了给交流侧向直流侧反馈的无功提供通道,逆变桥各臂并联反馈二极管等特点而具有广泛的应用范围。

电压型逆变电路主要用于两方面:①笼式交流电动机变频调速系统。

由于逆变电路只具有单方向传递电能的功能,故比较适用于稳态运行、无需频繁起制动和加、减速的场合。

②不停电电源。

该电源在逆变输入端并接蓄电池,类似于电压源。

图1 单相电压型全桥逆变电路(二)研究的目的及其意义在教学及实验基础上,设计单相电压型全桥逆变电路及其控制与保护电路,并通过使用simulink对课程中理论对电路进行仿真实现,进一步了解单相电压型全桥逆变电路的工作原理、波形及计算。

培养学生运用所学知识综合分析问题解决问题的能力。

在电力电子技术的应用中,逆变电路是通用变频器核心部件之一,起着非常重要的作用。

逆变电路是与整流电路相对应,把直流电变成交流电的电路。

逆变电路的基本作用是在控制电路的控制下将中间直流电路输出的直流电源转换为频率和电压都任意可调的交流电源。

无源逆变电路的应用非常广泛。

在已有的各种电源中,蓄电池、太阳能电池等都是直流电源,当需要这些电源向交流负载供电时,需要通过无源逆变电路;无源逆变电路与其它电力电子变换电路组合形成具有特殊功能的电力电子设备,如无源逆变器与整流器组合为交-直-交变频器(来自交流电源的恒定幅度和频率的电能先经整流变为直流电,然后经无源逆变器输出可调频率的交流电供给负载)。

单相逆变电源Matlab仿真研究

单相逆变电源Matlab仿真研究

学号:课程设计题目单相逆变电源Matlab仿真研究学院自动化学院专业自动化专业班级姓名指导教师2012 年12 月28 日任务书学生姓名:专业班级:指导教师:工作单位:自动化学院题目: 单相逆变电源Matlab仿真研究初始条件:输入直流电压:100V。

要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1、输出220V单相交流电。

2、建立单相逆变器Matlab仿真模型。

3、进行仿真实验,得到单相交流电波形。

时间安排:课程设计时间为两周,将其分为三个阶段。

第一阶段:复习有关知识,阅读课程设计指导书,搞懂原理,并准备收集设计资料,此阶段约占总时间的20%。

第二阶段:根据设计的技术指标要求选择方案,设计计算。

约占总时间的40%。

第三阶段:完成设计和文档整理,约占总时间的40%。

指导教师签名:年月日系主任(或责任教师)签名:年月日摘要 (1)ABSTRACT (2)1设计意义及要求 (3)1.1设计意义 (3)1.2设计要求 (3)2方案设计 (4)2.1设计思路 (4)2.2 方案设计 (4)3部分电路设计 (5)3.1单相桥式PWM逆变电路 (5)3.1.1SPWM逆变器的工作原理 (5)3.1.2单相桥式PWM逆变电路 (6)3.2 升压变压电路 (7)3.3 滤波电路 (8)4 仿真建模 (8)4.1 Simulink仿真环境 (8)4.2 单相桥式逆变电路仿真建模 (10)4.3 逆变电源仿真建模 (10)5 仿真实现 (11)5.1 单相逆变电路仿真实现 (11)5.2 逆变电源仿真实现 (12)6 心得体会 (14)参考文献 (15)随着电力电子技术的不断发展,可控电路直流电动机控制,可变直流电源等方面得到了广泛的应用,而这些都是以逆变电路为核心。

现如今,逆变器的应用非常广泛,在已有的各种电源中,蓄电池,、干电池、天阳能电池都是直流电源,当需要这些电源向交流负载供电时,就需要逆变。

基于Matlab的单周控制单相逆变器的建模与仿真

基于Matlab的单周控制单相逆变器的建模与仿真

基于Matlab的单周控制单相逆变器的建模与仿真卜甲甲;李郁侠;孙萌【期刊名称】《工业控制计算机》【年(卷),期】2016(0)6【摘要】The single-phase inverter under one-cycle control is introduced,control method of duty cycle under bipolar control mode is proposed in this paper.The selection of filter parameter and the design of voltage close loop control is e-laborated.The voltage close loop control simulation model with the voltage regulating function under one-cycle control are established respectively in Matlab /Simulink software environment.%介绍了单相逆变器的单周控制方式,提出双极性控制方式下占空比的控制方法,对滤波器参数选择和电压闭环的设计进行阐述。

在Matlab/Simulink软件环境中建立了具有电压调节作用的单周控制闭环仿真模型,对其仿真分析。

结果表明,该方法能够很好地输出稳定电压,具有较好的动静态特性。

【总页数】3页(P143-144,147)【作者】卜甲甲;李郁侠;孙萌【作者单位】西安理工大学水利水电学院,陕西西安 710048;西安理工大学水利水电学院,陕西西安 710048;西安理工大学水利水电学院,陕西西安 710048【正文语种】中文【相关文献】1.基于单周控制的单相并网逆变器仿真分析 [J], 高学军;曹冲;周鑫2.基于Matlab的单相电压型全桥逆变器的仿真研究 [J], 徐勇;朱志忠;龚旭;王子3.基于双环控制的单相电压型PWM逆变器建模与仿真 [J], 杨会敏;宋建成4.基于双环控制的单相电压型PWM逆变器建模与仿真 [J], 杨会敏;宋建成5.基于Matlab的单相Z源逆变器的SVPWM仿真研究 [J], 郭天勇;赵庚申;程如岐;赵二刚;梁凯;赵耀;王庆章因版权原因,仅展示原文概要,查看原文内容请购买。

单相全桥逆变器matlab仿真

单相全桥逆变器matlab仿真

用MATLAB 仿真一个单相全桥逆变器,采用单极性SPWM 调制、双极性SPWM 调制或者单极倍频SPWM 调制的任意一种即可,请注明仿真参数,并给出相应的调制波波形,载波波形,驱动信号波形、输出电压(滤波前)波形。

本文选用双极性SPW调制。

1双极性单相SPW原理SPWM采用的调制波的频率为f s的正弦波U s U sm Sin s t , s 2f s;载波U c 是幅值为U cm,频率为f c的三角波。

载波信号的频率与调制波信号的频率之比称为载波比,正弦调制信号与三角波调制信号的幅值之比称为深度m通常采用调制信号与载波信号相比较的方法生成SPW信号.当Us>Uc 时,输出电压Uo等于Ud,当UsvUc时,输出信号Uo等于-Ud.随着开关以载波频率fc轮番导通,逆变器输出电压不断在正负Ud之间来回切换。

2 建立仿真模型2.1 主电路模型第一步设置电压源:在Electrical Sources 库中选用DCVoltage Source,设置Ud=300X第二步搭建全桥电路:使用Universal Bridge 模块,选择桥臂数为2,开关器件选带反并联二极管的IGBT/Diodes ,构成单项全桥电路。

第三步使用Series RLC Branch 设置阻感负载为1 Q, 2mH 并在Measurement 选项中选择Branch Voltage and current, 利用multimeter 模块观察逆变器的输出电压和电流。

电路如图2.1 所示。

图2.1单相全桥逆变逆变器电路图2.2双极性SPW 信号发生器在Simulink 的Source 库中选择Clock 模块,提供仿真时间t, 乘以2 f 后通过一个sin 模块即sin t ,乘以调整深度m 可获得所需的 正弦调整信号。

选择 Source 库中的Repeating Sequenee 模块产生三 角载波,设置 Time Values 为[0 1/fc/4 3/fc/4 1/fc ],设置OutputValues 为[0 -1 1 0],生成频率为fc 的三角载波。

基于MATLAB的逆变电源的仿真分析与开发

基于MATLAB的逆变电源的仿真分析与开发

基于MATLAB的逆变电源的仿真分析与开发摘要:逆变器能将将直流电逆变成交流电供给负载。

在设计时,可借助MATLAB进行建模、仿真,能直观、简单地分析、检验逆变器的输出频率和幅度是否达到设计要求。

关键词:逆变器建模仿真1、逆变器简介1.1逆变器的定义定义:逆变器就是能将将直流电逆变成某一频率或可变频率的交流电供给负载的电路,逆变器能输出近似正弦波的频率和幅度均可调节的正弦电压来。

1.2逆变器的应用①可以做成变频变压电源(VVVF),主要用于交流电动机调速。

②可以做成恒频恒压电源(CVCF),其典型代表为不间断电源(UPS)。

航空机载电源、机车照明,通信等辅助电源也要用CVCF电源。

③可以做成感应加热电源,例如中频电源,高频电源等。

2、逆变电路的工作原理逆变电路如下图1-A所示。

当开关T1、T4闭合,T2、T3断开:u O=U d;当开关T1、T4断开,T2、T3闭合:u O=-U d ;当以频率f S交替切换开关T1、T4和T2、T3时,则在电阻R上获得如图1-B所示的交变电压波形,其周期Ts=1/f S,这样,就将直流电压E变成了交流电压u o。

u o含有各次谐波,如果想得到正弦波电压,则可通过滤波器滤波获得。

该图中主电路开关T1~T4,实际是各种半导体开关器件的一种理想模型。

逆变电路中常用的开关器件有快速晶闸管、可关断晶闸管(GTO)、功率晶体管(GTR)、功率场效应晶体管(MOSFET)、绝缘栅晶体管(IGBT)等。

3、逆变器在MATLAB中实现3.1仿真模型的建立根据逆变器的工作原理图,将四个开关T1~T4用 IGBT来替代,加上直流电压源、脉冲发生器及测量输出电压波形的示波器等模块,构成如下图2所示的仿真模型。

3.2参数设置直流电压源幅值设置为默认值100V。

四个IGBT的缓冲电阻RS和缓冲电容均设为inf。

控制IGBT1、IGBT4的脉冲发生器周期Period设置为0.001S,相位延迟Phase delay时间为0S,控制IGBT 2、IGBT3的脉冲发生器周期Period也设置为0.001S,相位延迟Phase delay时间为0.0005S,负载电阻R为100Ω。

基于MATLAB的单相逆变器并网控制技术仿真研究毕业论文

基于MATLAB的单相逆变器并网控制技术仿真研究毕业论文

中北大学毕业论文任务书学院、系:信息商务学院、信息与通信工程系专业:电气工程及其自动化学生姓名:雒瑞阳学号:09050444X47论文题目:基于MATLAB的单相逆变器并网控制技术仿真研究起迄日期: 2013年月日~ 2013年月日指导教师:李静系主任:王明泉发任务书日期: 2013年月日毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。

尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。

对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。

作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。

作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。

除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。

对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。

本人完全意识到本声明的法律后果由本人承担。

作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。

本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。

浅谈基于MATLAB的单相独立光伏逆变电源电路仿真设计

浅谈基于MATLAB的单相独立光伏逆变电源电路仿真设计

浅谈基于MATLAB的单相独立光伏逆变电源电路仿真设计作者:魏显文来源:《山东工业技术》2016年第24期摘要:本文首先介绍了独立型光伏发电系统结构,阐述了独立光伏发电系统对逆变电源的要求,并根据此逆变结构设计了单相光伏逆变电源主电路。

其中DC/DC变流电路中采用了直流升降压电路(BUCK-BOOST),DC/AC逆变电路采用了单相全桥逆变电路,并用MATLAB软件进行的仿真。

关键词:光伏发电系统;DC/DC仿真;DC/AC仿真DOI:10.16640/ki.37-1222/t.2016.24.142独立型光伏发电系统系统结构如图1所示,主要有太阳电池组件(方阵)、控制器、储能蓄电池(组)、直流/交流逆变器等部分组成。

光伏阵列发出的直流电通过器将其逆变为交流电供给负载,蓄电池将光伏阵列在白天发出的电能存储起来,并在夜间和阴雨天给负载供电。

1 独立型光伏发电系统构成1.1 光伏电池组光伏电池板又称太阳能电池板 Solar panel,是由若干个太阳能电池组件按一定方式组装在一块板上的组装件,通常作为光伏方阵的一个单元。

通常做法是把片单体多晶硅电池串联在一起。

在实际应用时,根据负载要求,自由组合组件达到输出功率的条件。

1.2 蓄电池组蓄电池组是用电气方式连接起来的用作能源的两个或者多个单体蓄电池。

白天太阳光照射到太阳能组件上,使太阳能电池组件产生一定幅度的直流电压,把光能转换为电能,再传送给智能控制器,经过智能控制器的过充保护,将太阳能组件传来的电能输送给蓄电池进行储存。

1.3 控制器蓄电池充放电过程需要控制器来调节。

光伏控制器是用于太阳能发电系统中,控制多路太阳能电池方阵对蓄电池充电以及蓄电池给太阳能逆变器负载供电的自动控制设备。

1.4 逆变器逆变器是一种由半导体器件组成的电力调整装置,主要用于把直流电力转换成交流电,一般由升压回路和逆变桥式回路构成。

升压回路把太阳电池的直流电压升压到逆变器输出控制所需的直流电压;逆变桥式回路则把升压后的直流电压等价地转换成常用频率的交流电压。

单相全桥逆变电路原理及单相桥式全控整流电路Matlab仿真

单相全桥逆变电路原理及单相桥式全控整流电路Matlab仿真

单相全桥型逆变电路原理电压型全桥逆变电路可看成由两个半桥电路组合而成,共4个桥臂,桥臂1和4为一对,桥臂2和3为另一对,成对桥臂同时导通,两对交替各导通180°电压型全桥逆变电路输出电压uo 的波形和半桥 电路的波形uo 形状相同,也是矩型波,但幅值 高出一倍,Um=Ud输出电流io 波形和半桥电路的io 形状相同,幅值增加一倍 VD1 、V1、VD2、V2相继导通的区间,分别对应VD1和VD4、V1和V4、VD2和VD3、V2和V3相继导通的区间+-VD 3VD 4单相半桥电压型逆变电路工作波形全桥逆变电路是单相逆变电路中应用最多的, 对电压波形进行定量分析将幅值为Uo 的矩形波 uo 展开成傅里叶级数,得其中基波幅值Uo1m 和基波有效值Uo1分别为ddo1m 27.14U U U ==πdd1o 9.022U U U ==πO OONu o U - U m ioVD 1 VD2VD1VD 2⎪⎭⎫⎝⎛+++= t t t U u ωωωπ5sin 513sin 31sin 4d o上述公式对半桥逆变电路也适用,将式中的ud 换成Ud /2uo 为正负电压各为180°的脉冲时,要改变输出电压有效值只能通过改变输出直流电压Ud 来实现实际就是调节输出电压脉冲的宽度•各IGBT 栅极信号为180°正偏,180°反偏,且V 1和V 2栅极信号互补,V 3和V 4栅极信号互补•V 3的基极信号不是比V 1落后180°,而是只落后θ ( 0<θ <180°)•V 3、V 4的栅极信号分别比V 2、V 1VD 3VD 4采用移相方式调节逆变电路的输出电压u u u u i o u o t 2时刻V 1和V 2栅极信号反向, V 1截止, V 2不能立即导通,VD 2导通续流,和VD 3构成电流通道,输出电压为-U d到负载电流过零开始反向, VD 2和VD 3截止, V 2和V 3开始导通, u o 仍为- U dt 1时刻前V 1和V 4导通,输出电压u o 为u dt 1时刻V 3和V 4栅极信号反向,V 4截止,因i o 不能突变,V 3不能立即导通,VD 3导通续流,因V 1和VD 3同时导通,所以输出电压为零各IGBT 栅极信号uG1~uG4及输出电压uo 、输出电流io 的波形u u u u i o u o t 3时刻V 3和V 4栅极信号再次反向, V 3截止, V 4不能立刻导通, VD 4导通续流, u o 再次为零目录单相桥式全控整流电路仿真建模分析 ..................................................................................... 6 (一)单相桥式全控整流电路(纯电阻负载) . (7)1.电路的结构与工作原理 .................................................................................................... 7 2.建模 ........................................................................................................................................ 8 3仿真结果与分析 ................................................................................................................. 4 4小结 ........................................................................................................................................ 6 (二)单相桥式全控整流电路(阻-感性负载) .. (7)1.电路的结构与工作原理 .................................................................................................... 7 2.建模 ........................................................................................................................................ 8 3仿真结果与分析 ............................................................................................................... 10 4.小结 .. (19)u u u u i o u o(三)单相桥式全控整流电路(反电动势负载) (13)1.电路的结构与工作原理 (20)2.建模 (14)3仿真结果与分析 (16)4小结 (18)单相桥式全控整流电路仿真建模分析一、实验目的1、不同负载时,单相全控桥整流电路的结构、工作原理、波形分析。

基于matlab的单相逆变器设计

基于matlab的单相逆变器设计

摘要逆变器是将原来的直流电转换成所需交流电的一种装置,其应用范围十分广泛,而随着高频逆变技术的发展,逆变器性能和逆变技术的应用都进入了崭新的发展阶段。

作为逆变装置中最为简单的一种,单相电压型逆变器也在电力电子领域发挥着极其重要的作用。

本课程设计简单地介绍了当前逆变技术的应用,分析了单相逆变器的结构和工作原理,讨论了用PWM 调制技术实现逆变的方法。

构建了基于开关模型的单相电压型逆变电路的单极性和双极性SPWM调制,以及电流跟踪逆变电路和双环控制逆变电路,并进行了MATLAB/SIMULINK的仿真,对仿真结果进行了分析,并得出相关结论。

关键词:逆变器;PWM调制;MATLAB/SIMULINK仿真目录第1章单相逆变电路 (1)1.1 概述 (1)1.2 逆变技术的应用 (1)1.3 单相逆变电路 (2)1.3.1 单相电压型逆变结构及工作原理 (2)1.3.2单相电流型逆变结构及工作原理 (4)1.3.3单相电流型和单相电压型的比较 (5)第2章PWM调制技术 (7)2.1 概述 (7)2.2 PWM调制基本原理 (7)2.3 PWM调制的实现 (8)2.3.1 载波比和调制深度 (9)2.3.2 开关频率和开关损耗 (9)2.3.3 调制方式 (10)2.3.4 采样方式 (10)2.3.5控制方式 (12)2.4 逆变电路的PWM控制技术 (12)第3章基于MATLAB仿真及建模 (14)3.1 单相电压型逆变电路双极性SPWM仿真 (14)3.2 单相电压型逆变电路单极性SPWM仿真 (15)3.3 单相跟踪控制逆变器仿真 (17)3.4 单相全桥逆变电路仿真 (19)3.5 仿真结果分析 (23)总结 (24)参考文献 (25)第1章单相逆变电路1.1 概述所谓“逆变”就是将直流电能变换成交流电能,逆变技术作为现代电力电子技术的重要组成部分,正成为电力电子技术中发展最为活跃的领域之一,其应用极其广泛。

基于matlab的单相电压型半桥逆变电路仿真研究

基于matlab的单相电压型半桥逆变电路仿真研究

基于matlab的单相电压型半桥逆变电路仿真研究近年来,随着半导体技术的不断发展,逆变技术也在不断地得到突破。

单相电压型半桥逆变电路是一种常见的逆变电路,其被广泛应用于工业控制、电力电子、船舶、交通运输、医疗仪器等领域。

本文主要以基于matlab的单相电压型半桥逆变电路仿真研究为例探讨逆变技术的发展及应用。

一、单相电压型半桥逆变电路的基本原理单相电压型半桥逆变电路由两个IGBT管和两个二极管组成,它的主要作用是将输入直流信号经过逆变,输出交流信号。

逆变信号的交流波形通常采用PWM调制方式进行控制,以保证输出信号质量。

二、基于matlab的单相电压型半桥逆变电路仿真研究matlab作为一种广泛应用的数学软件,在电力电子领域也得到了广泛的应用。

基于matlab的单相电压型半桥逆变电路仿真研究可以精确模拟电路运行过程,验证电路设计的正确性和可行性。

在matlab中,通过Simulink模块可建立单相电压型半桥逆变电路,实现逆变信号的PWM调制控制,并且可以设置输出波形的频率、幅值和相位等参数。

同时,也可以修改电路参数,如输入电压、输出负载等,探索电路的变化规律。

三、单相电压型半桥逆变电路的应用单相电压型半桥逆变电路广泛应用于工业控制、电力电子、船舶、交通运输、医疗仪器等领域。

例如在交通领域,电动车辆使用单相电压型半桥逆变电路可以实现高效能的电能转换和控制,提升汽车性能和节能效果;在医疗仪器领域,单相电压型半桥逆变电路可以用于制造X射线机,增强设备的稳定性和精准度。

综上所述,基于matlab的单相电压型半桥逆变电路仿真研究可以为逆变器动态特性研究提供有效手段,拓宽逆变技术的发展方向。

因此,逆变技术在工业领域中仍有很大的应用前景,未来将会有更多的新型逆变器问世。

基于MATLAB的单相PWM逆变电路的仿真研究

基于MATLAB的单相PWM逆变电路的仿真研究

基于MATLAB的单相PWM逆变电路的仿真研究作者:朱南张理兵叶卫川徐俊佩来源:《电子世界》2012年第07期【摘要】逆变电路是PWM控制技术最为重要的应用场合。

这里在研究单相桥式PWM逆变电路的理论基础上,采用Matlab的可视化仿真工具Simulink建立单相桥式单极性控制方式下PWM逆变电路的仿真模型,通过动态仿真,研究了调制深度、载波频率对输出电压、负载上电流的影响;并分析了输出电压、负载上电流的谐波特性。

仿真结果表明建模的正确性,并证明了该模型具有快捷、灵活、方便、直观等一系列特点,从而为电力电子技术教学和研究中提供了一种较好的辅助工具。

【关键词】Matlab/Simulink;PWM逆变电路;动态仿真;建模1.引言在电力电子技术中,把直流电变为交流电称为逆变。

逆变电路应用非常广泛,如在直流电源向交流负载供电时需要逆变电路;交流电动机调速用变频器、不间断电源、感应加热电源等电力电子装置的核心部分也是逆变电路。

这里主要讨论单极性PWM(脉冲宽度调制)控制方式的单相桥式逆变电路,并应用Matlab的可视化仿真工具Simulink,对该电路进行建模,并对不同调制深度、载波频率情况下对输出电压、负载上电流进行了仿真分析,既加深了PWM 逆变电路的理论,同时也为现代电力电子实验教学奠定良好的实验基础。

本文中仿真软件采用MATALAB R2007a版本(MATLAB 7.4、Simu-link 6.6、SimPowerSystems 4.4版本)。

2.电路构成及工作特点采用IGBT作为开关器件的单相桥式PWM逆变电路如图1所示。

设负载为阻感负载,工作时V1和V2通断互补,V3和V4通断也互补,调制信号ur为正弦波。

PWM控制方式采用单极性控制方式,在ur的半个周期内载波uc只在正极性或负极性一种极性范围内变化,所得的PWM波也只在单个极性范围变化。

单极性PWM控制方式时的波形具体如图2所示。

在调制信号ur和载波信号uc的交点时刻控制各开关器件的通断。

基于MATLAB的单相PWM逆变电路的仿真研究

基于MATLAB的单相PWM逆变电路的仿真研究
路 应 用 非 常 广 泛 ,如 在 直 流 电源 周期 内载 波u只 在正 极性 或负极 性 单 极 性 S W 控 制 信 号 的 发 生 两 部 PM
向 交 流 负 载 供 电 时 需 要 逆 变 电
路 ; 交 流 电动 机 调 速 用 变 频 器 、

种 极 性 范 围 内变 化 ,所 得 的P M 分 。 W 单 极性 S W 信 号 的S m l n PM iu k i
视化仿真工具Smun 建立单相 桥式单极性控制方式TP i fk i WM逆 变电路 的仿真模 型,通过动 态仿 真,研 究了调 制深度 、载波频率
对输 出电压、负载上电流 的影响 ;并分析 了输 出电压、负载上电流的谐 波特性 。仿真结果表 明建模的正确性,并证 明了该模 型 具有 快捷 、灵活、方便、直观等一系列特点,从 而为 电力电子技术教学和研究 中提供 了一种较好 的辅助工具。 【 关键词 】Ma a/i uik WM逆变电路 ;动态仿真 ;建模 tb Sm l ;P l n
采 用 I B 作 为 开 关 器 件 的单 电压uf 幅值W 1U。 GT 。 的 l 1d =1

一 一 一 一 一

相 桥 式P M 变 电路 如 图 i 示 。 W逆 所 设负 载 为 阻感 负载 , 工作 时V和V ,
3 建模 及 仿真 . 3 1建 模 .
I》 _一 ) 皇王研究…………………… )



基于MA L B T A 的单; P  ̄ WM R 逆 变 电路 的仿 真研 究
温 州医学院 朱 南 张理兵
【 要】逆变 电路是P 摘 WM控制技术 最为重要的应用场合 。这 里在研 究单相 桥
叶卫川 徐俊佩

单相全桥逆变电路在matlab中的建模与仿真

单相全桥逆变电路在matlab中的建模与仿真

单相全桥逆变电路在matlab中的建模与仿真1. 单相全桥逆变电路简介单相全桥逆变电路是把一路直流电源转变为一定正弦波电压的电路,是模拟领域中重要的一种电路,大量应用于电机控制、调速调频、开关电源等控制用途以及通信以及电力电子有效数据传输方面。

它的组成主要包括4个基本部件,即正反控制电路、滞回滤波器、全桥换流器和整流桥,其工作模式:(1)正反控制电路用来制作连续的正弦波控制信号;(2)滞回滤波器滤除电路噪声,改善输出电压的波形;(3)4极全桥开关器件调理正反控制信号;(4)反激电路利用抗势分压把换流电流变换为宽幅的正弦波电压效能;(5)整流模块以连续采样,将高频正弦电压变为恒定幅值的直流电压。

2. 单相全桥逆变电路建模(1)由单相全桥逆变电路组成模型来建模,可以根据不同的元器件的特性来构建出不同的电路结构模型。

(2)建模时,应注意模型有足够的变量与参数做参考,包括可以被测量或者可以从表格中查找到的电路参数以及可外接控制参数。

(3)通常,正反控制电路ker和滞回滤波器使用电容,尤其对于低频应用电容值是重要的参数;反激电路一般考虑抗势分压,涉及到变压器的变比、电感及电阻,尤其对于开关频率和抗势是关键参数;整流模块一般考虑由半波整流的方式,可以在matlab中定义半波整流的模型,涉及到整流的电阻等参数。

3. 单相全桥逆变电路在matlab中的仿真(1)matlab具有完整的电路建模和仿真功能,可以快速绘制简单的电路图,采用不同种类的分析方法,甚至支持多媒体设计电路模型;(2)仿真中需要搭建好被仿真的单相全桥换流器模型,按照参数设置好电路条件,如开关频率、负载等参数,并建立人为定义的分析变量;(3)对单相全桥换流器模型进行仿真,可根据所构建的模型的特点,观察其控制信号的输入输出波形分析;也可以改变给定的仿真参数,观察仿真模型的变化趋势,并分析其产生的效果及可行性,快速发现问题并调节。

4. 结论单相全桥逆变电路在matlab中的建模与仿真是一个很好的应用场景,能够快速通过仿真模型来进行检验和分析,在提高效率的同时能够节省大量的人力成本。

单相全桥逆变matlab仿真

单相全桥逆变matlab仿真

计算机仿真实验报告专业:电气工程及其自动化班级:11电牵4班姓名:江流在班编号:26指导老师:叶满园实验日期:2014年4月21日一、实验名称:单相全桥电压型逆变电路MA TLAB仿真二、目的及要求了解并掌握单相全桥电压型逆变电路的工作原理; 2.进一步熟悉MATLAB中对Simulink 的使用及构建模块; 3.进一步熟悉掌握用MA TLAB绘图的技巧。

三、实验原理1.电压型逆变器的原理图当开关S1、S3闭合,S2、S4断开时,负载电压u0为正;当开关S1、S3断开,S2、S4闭合时,u0为负,如此交替进行下去,就在负载上得到了由直流电变换的交流电,u0的波形如图1(b)所示。

输出交流电的频率与两组开关的切换频率成正比,这样就实现了直流电到交流电的逆变。

2.电压型单相全桥逆变电路它有4个桥臂可以看成由两个半桥电路组合而成。

两对桥臂交替导通180°。

输出电压和电流波形与半桥电路形状相同,幅值高出一倍。

改变输出交流电压的有效值只能通过改变直流电压Ud来实现。

可采用移相方式调节逆变电路的输出电压,成为移相调压。

各栅极信号为180°正偏,180°反偏,且T1和T2互补,T3和T4互补关系不变。

T3的基极信号只比T1落后q(0<q<180°),T3、T4的栅极信号分别比T2、T1的前移180°- q,u0成为正负各位q的脉冲,改变q即可调节输出电压有效值。

四、实验步骤及电路图1、建立MATLAB仿真模型2、参数设置本实验依次对两对桥臂交替导通180度的工作方式以及输出电压可调的移相方式做实验研究。

首先,两对桥臂交替导通180度工作方式下,设置负载电阻为1欧姆、负载电感12亨利,设置直流电压100V,设置控制1、4号IGBT触发脉冲的的脉冲发生器周期0.02s,脉冲幅值1.2V,脉冲宽度50%,设置控制2、3号IGBT触发脉冲的脉冲发生器周期0.02,脉冲幅值1.2V,脉冲宽度50%,延迟0.01s;做第二个实验即逆变桥工作在移相调节输出电压方式下时,改设置控制2、3号IGBT触发脉冲的脉冲发生器的延迟为0.007s,其他参数不变。

单相全桥逆变器matlab仿真

单相全桥逆变器matlab仿真

单相全桥逆变器m a t l a b仿真(总5页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--用MATLAB 仿真一个单相全桥逆变器,采用单极性SPWM 调制、双极性SPWM 调制或者单极倍频SPWM 调制的任意一种即可,请注明仿真参数,并给出相应的调制波波形,载波波形,驱动信号波形、输出电压(滤波前)波形。

本文选用双极性SPWM 调制。

1双极性单相SPWM 原理SPWM 采用的调制波的频率为s f 的正弦波t U U s sm S ωsin =,s s f πω2=;载波c u 是幅值为cm U ,频率为c f 的三角波。

载波信号的频率与调制波信号的频率之比称为载波比,正弦调制信号与三角波调制信号的幅值之比称为深度m 。

通常采用调制信号与载波信号相比较的方法生成SPWM 信号.当Us>Uc 时,输出电压Uo 等于Ud,当Us<Uc 时,输出信号Uo 等于-Ud.随着开关以载波频率fc 轮番导通,逆变器输出电压不断在正负Ud 之间来回切换。

2 建立仿真模型主电路模型第一步设置电压源:在Electrical Sources 库中选用DC Voltage Source ,设置Ud =300V 。

第二步搭建全桥电路:使用Universal Bridge 模块,选择桥臂数为2,开关器件选带反并联二极管的IGBT/Diodes ,构成单项全桥电路。

第三步使用Series RLC Branch 设置阻感负载为1Ω,2mH ,并在Measurement 选项中选择Branch Voltage and current,利用multimeter 模块观察逆变器的输出电压和电流。

电路如图所示。

图 单相全桥逆变逆变器电路图双极性SPWM 信号发生器在Simulink的Source库中选择Clock模块,提供仿真时间t,乘以fπ2后通过一个sin模块即tωsin,乘以调整深度m可获得所需的正弦调整信号。

PWM技术在单相全桥逆变电路中的应用MATLAB仿真结果副本样本

PWM技术在单相全桥逆变电路中的应用MATLAB仿真结果副本样本

第一某些:单相电压型全桥逆变电路一、逆变电路(纯电阻负载)1、正常逆变电路负载串联电感并联电容后仿真成果:电感0.1H,电容0.07C。

2、移向逆变电路触发电平波形图:从上到下依次为VT1,VT2,VT3,VT4触发电压,幅值为4v。

器件IGBT输出波形图:从上到下依次为VT1,VT2,VT3,VT4输出电压与电流波形:(紫色为电压12v,黄色为电流2A)负载输出波形图:从上到下依次为输出电压波形(最大值为12V),输出电流(最大值为2A)。

10v1.7A负载串联电感并联电容之后仿真成果:第二某些:PWM波形发生器正弦波调制波频率决定了逆变器输出交流电压、电流频率。

为了产生频率为50HZ电压电流,将正弦波、三角波参数设立如下:一、单极性调制正弦波幅值范畴为[-3 3],三角波幅值范畴为[0 4],信号波范畴为[0 3] 下面各图依次为半个、一种、两个周期SPW波形图二、双极性控制方式第三某些:PWM技术在单相全桥逆变电路中应用下图依次为VT1、VT4与VT2、VT3不同周期时波形图。

一、纯电阻下波形图下图依次为整流输出电流、电压波形图:电流幅值范畴为[-1.7 1.7],电压幅值范畴为[-10 10]二、负载与电感串联然后再与电容并联,在电感、电容滤波作用下波形图下图依次为整流输出电流、电压波形图:电流幅值范畴为[-0.8 0.8],电压幅值范畴为[-10 10]参照文献[1]中北大学电子设计课程设计阐明书. 中北大学.[2]黄忠霖黄京. 电力电子技术MATLAB实践. 北京:国防工业出版社. .1.[3]单相SPWM逆变电源仿真设计. 黄朝飞.[4]广西大学毕业设计.。

单相电压型全桥逆变电路及其simulink仿真(含开题报告)

单相电压型全桥逆变电路及其simulink仿真(含开题报告)

电力电子技术课程设计单相电压型全桥逆变电路及其simulink仿真开题报告课题名称:单相电压型全桥逆变电路及其simulink仿真完成时间:2012.12.14指导老师:刘彬(一)简要背景说明随着电力电子技术的发展,逆变电路具有广泛的应用范围。

交流电机调速用变频器、不间断电源、感应加热电源等电力电子装置的核心部分都是逆变电路。

由于电压型逆变电路具有直流侧为电压源或并联大电容,直流侧电压基本无脉动;输出电压为矩形波,输出电流因负载阻抗不同而不同;阻感负载时需要提供无功功率,为了给交流侧向直流侧反馈的无功提供通道,逆变桥各臂并联反馈二极管等特点而具有广泛的应用范围。

电压型逆变电路主要用于两方面:①笼式交流电动机变频调速系统。

由于逆变电路只具有单方向传递电能的功能,故比较适用于稳态运行、无需频繁起制动和加、减速的场合。

②不停电电源。

该电源在逆变输入端并接蓄电池,类似于电压源。

图1 单相电压型全桥逆变电路(二)研究的目的及其意义在教学及实验基础上,设计单相电压型全桥逆变电路及其控制与保护电路,并通过使用simulink对课程中理论对电路进行仿真实现,进一步了解单相电压型全桥逆变电路的工作原理、波形及计算。

培养学生运用所学知识综合分析问题解决问题的能力。

在电力电子技术的应用中,逆变电路是通用变频器核心部件之一,起着非常重要的作用。

逆变电路是与整流电路相对应,把直流电变成交流电的电路。

逆变电路的基本作用是在控制电路的控制下将中间直流电路输出的直流电源转换为频率和电压都任意可调的交流电源。

无源逆变电路的应用非常广泛。

在已有的各种电源中,蓄电池、太阳能电池等都是直流电源,当需要这些电源向交流负载供电时,需要通过无源逆变电路;无源逆变电路与其它电力电子变换电路组合形成具有特殊功能的电力电子设备,如无源逆变器与整流器组合为交-直-交变频器(来自交流电源的恒定幅度和频率的电能先经整流变为直流电,然后经无源逆变器输出可调频率的交流电供给负载)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因为 系统 选 取 的三个 极 点 均在 S 左 半平 面 , 因 此该 系统是 稳定 的 。而动态 过程取 决 于 ∞及 ∈的取
圜豳囝囫
徐勇 ★ 朱 志 忠 ★ 龚旭 女 王子 — — 基 于 M m J I 的 单 相 电 压 型 全 桥 逆 变 器 的 仿 真 研 究
第1 期
值, 一般将 ‘ 取 0 .ቤተ መጻሕፍቲ ባይዱ5 — 0 . 7 j f 』 J M 该 力 ‘ 法的 优点 r
P I D控制 参数 选 择 l 接 f j 1 环 系统 的忡能 指 标 建 、
炎系 , _ 设 汁过 程简 一 . I 』 { j r l


图1 单相 全桥 逆 变 器电路 图
图3 单相逆 变器的 P I D控 制方框 图
根据图 1 , 基 于基 尔霍 夫 电压定 理 和 电流定 理 ,
可 以得到 以下公 式 :
i f = i + i o
i 。 =c c d u
图3 中, U 为逆变器 的原始参考输出信号 ; e 为 信号跟踪误差 ; u 。 为负载逆变器的输出电压 ; i 。 为负

要: 讲 述单 相逆 变器 的工作 原 理 , 并 以双极 性 控 制 方式 下单 相桥 式 逆 变 电路 为 例 , 采 用 经典 的 P I D
控 制策略 , 利 用 Ma l f a b / S i mu l i n k仿 真技 术进 行验 证 , 最后 仿真 结 果表 明 , 该 控制 策略 就有 良好 的 动 态性 能 。 关键 词 : Ma t l a b / s i mu l i n k ;电力 电子技 术 实验 : P MM 逆 变 电路
2 0 1 7 年第 1 期 安 徽 电 子信 息 职 业 技 术 学 院学 报 N o . 1 2 0 1 7 第1 6卷( 总第 8 8 期)J O U R N A L O F A N H U I V O C A T I O N A L C O L L E G E O F E L E C T R O N I C S & I N F O R M A T I O N T E C H N O L O G Y G e n e r a l N o . 8 8 V 0 1 . 1 6
一 —
等 两 …
L f — C

模 型如 下 :
s3 —



) f +— k) ( R —C s 2 + — ( 1 — + — k) s 一 +k ( a





于是 系统 的特 征根 方程 为 : D( s ) =L f C y s +( R r C s +k a ) s +( 1 +k p ) +k i…( 6 )
XU Yo n g ,ZHU Zhi - z ho ng ,GONG Xu, Wa n g Zi
( N a n t o n g S h i p p i n g C o l l e g e , N a n t o n g 2 2 6 3 0 0 , C h i n a )

般n = 5 ~ 1 0 , 由此动态特征方程可以改写如下 :
D ( s ) = ( s + 2 ‘ ( 1 ) s + ∞ 2 ) ( s + n ‘ ( 1 ) )
达式 :
…( 7 )
将( 7 ) 展 开与( 6 ) 相对 应 , 可得 到 k 。 , k i , k 的 表
【 文章编 号]1 6 7 1 — 8 0 2 X ( 2 0 1 7 ) 0 1 — 0 0 0 1 — 0 3
基于Ma t l a b 的 单相电 压型全桥逆变器的仿真研究
徐 勇, 朱志忠 , 龚
旭, 王
南通

2 2 6 3 0 0)
( 南通航 运职 业技 术 学院 , 江苏
圜困囱囫 徐勇 六 朱 志 忠 ★ 龚旭 女 王子 — — 基 于 M a I l a b 的 单 相 电 压 型 全 桥 逆 变 器 的 仿 真 研 究
载输 出 电压 i c 及1 ‘ 。 分别 为 电感 L f 、 电容 C f 及 负 载
Z上 流过 的电流 。
第1 期
建立数 学模 型就是 为 了对 控 制器进 行设计 并进 行理论 分析 。 在所 有控 制理论 中 , 最 为传 统 的是 P I D 控制 策略 , 如 图 3所示 , 其 中虚线框 为逆 变器 。
根 据控 制理论 可知 ,系统 的 动态特 性主要是 由 主导极 点决定 。 如果 可 以确定 系统 的动态性 能指 标 ,
即主导极点位于 S l , 2 - 一 ‘ ( I 】 ∞ 、 / 1 一 ‘ , 其中O J 及‘ 分
别 为 希望 的 自然 频率 和 阻尼 比 , 那 么选 取 ¥ 3 - 一 n ‘ ∞, 其中 n 是 正常 数 , 当 n值越 大 , 原来 由三个 极点确 定 的系 统会 近似 于 由闭环 主导 极 点决 定 的二 阶系 统 ,
中图分类 号 : T M 4 2
文献 标 识码 : B
The S i mu l a t i o n Re s e a r c h o f t he S i n g l e Ph a s e Vo l t ag e Ful l Br i dg e I nv e r t e r Ba s e d o n Ma t l a b
载 电流 。k 。 , k i 及 k 分别 为 P I D控制 中 比例 , 积 分及 微分 参数 。 根据 图 3 , 可 以推 出系统 的传 递 函数 :
…( 1 ) …( 2 ) …( 3 )

M= G 一

d i f R f i r + u d t
选取 ‰及 i , 作 为状 态量 , 则 单 相逆 变 器 的数学
相关文档
最新文档